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Dissecting celastrol with machine learning to unveil dark 
pharmacology   
Tiago Rodrigues,a Bernardo P. de Almeida,a Nuno L. Barbosa-Moraisa and Gonçalo J. L. 
Bernardesa,b,*  

Coallescing bespoke machine learning and bioinformatics analyses with cell-based assays we unveil 
pharmacology of celastrol. Celastrol is a direct modulator of the progesterone and cannabinoid receptors, and 
its effects correlate with the antiproliferative activity. We demonstrate how in silico methods may drive 
systems biology studies for natural products. 

 

Introduction 
Natural products (NPs) are a privileged source of protein binding 
motifs that have been curated by evolutionary pressure over millions 
of years.1, 2 NPs offer diverse and biologically-relevant chemotypes, 
which ought to be explored in chemical biology and drug discovery 
programs.3 The significant expansion of the synthetic chemistry 
toolbox has played a paramount role in enabling the exploration of 
such molecules. Still, NP research is experiencing a steady decline in 
recent years.4 It has been argued that the lack of knowledge of 
binding counterparts is an important contributor to such a decline as 
well as a major bottleneck in early discovery chemistry.5 As target 
identification method of choice, chemical proteomics offers an 
elegant solution to unravel the underlying biology of NPs, but such 
methods persist as both laborious and time consuming.6 Also, the 
need for chemical derivatization of the NP of interest may drastically 
disrupt its affinity towards relevant on-/off-targets.5 Moreover, pull 
down of membrane proteins, e.g. G-protein coupled receptors, is 
unlikely, as is the identification of proteins with low cellular 
expression. As an alternative, we and others have shown that 
machine intelligence harnessing the increasing wealth of currently 
available biological and chemical data is a viable and complementary 
solution to chemical proteomics, while mitigating several 
shortcommings of the latter.7-9 
Celastrol (1, Fig. 1) is a quinone methide triterpene that exhibits anti-
obesity and antiproliferative activities, through disparate 
mechanisms of action.10 For example, it has been shown that 1 
inhibits the accumulation of nuclear hypoxia-inducible factor-1α 
(HIF-1α), suppresses HSP90 and reduces the trascriptional activity of 

VEGF genes.11 However, despite the clinical interest – including anti-
inflamation, cancer and neurodegenerative disorders12, 13 – the 
network pharmacology of 1 remains poorly understood, which may 
hamper an effective preclinical development. Herein we shed light 
on the dark pharmacology of 1 by using machine intelligence to 
confidently and accurately quantify the predicted ligand–target 
relationships. Employing this approach we identified 1 as a potent 
cannabinoid receptor-1/2 (CB1/2) agonist and as a moderate 
progesterone receptor antagonist. Importantly, by analysing the 
gene expression of a panel of cancer cell lines, we associated the CB1 
gene with the antiproliferative activity of the NP in specific cell lines. 
The result is relevant, as the low CB1 transcript levels in the analyzed 
cell lines would render the discovery inacessible through mainstream 
chemical proteomic approaches.  

 

Fig. 1 Structure of the quinone methide triterpene celastrol. 

Results and discussion 

As part of our ongoing research program aiming to clarify modes of 
action for NPs of clinical interest we set out to investigate 1. We used 
SPiDER14 to predict potential drug targets for 1, given the extensive 
prior validation of the software tool in NP chemical space.15-18 In 
short, SPiDER builds independent self-organizing maps based on 
topological pharmacophore19 and physicochemical small molecule 
descriptors (MOE, Chemical Computing Group, Canada) prior to 
affording a consensus qualitative (bind / does not bind) prediction. 
Tesselation of the chemical feature space through self-organizing 
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maps offers an intuitive means for data visualization and 
interpretation, as co-clustering of query compounds with any given 
reference ligands suggests a similar ligand–target relationship.14 
Additionally, a p-like value is calculated to rank order the SPiDER 
output. Through this approach, several targets were predicted for 1, 
including G-protein coupled receptors, ion channels, nuclear 
receptors and enzymes (Table 1). 
To curate SPiDER predictions, we had previously built DEcRyPT, an 
orthogonal machine learning method that infers affinity values 
(pAffinity, -log[Affinity]) for the query ligand against drug targets of 
interest.7 DEcRyPT employs the random forest (RF) regression 
technology and type-scaled CATS2 topological pharmacophore 
descriptors (MOE implementation), which provide a “fuzzy” 
molecular representation and have been deemed important to 
leverage confident target predictions in NP space.16 Despite a prior 
successful case study,7 the utility of DEcRyPT remained limited given 
that only 236 drug targets had been made known to the method. 
Therefore, we here considerably expanded the range of predictable 
targets to 1026 (DEcRyPT 2.0). An average mean absolute error of 
0.541 ± 0.167 pAffinity units in 10-fold cross-validation studies 
suggests the general utility of the RF models (cf. ESI). Importantly, it 
has been suggested that adversarial controls should become 
commonplace in current machine learning applications, to rule out 
the exploitation of data/experimental artifacts and validate the 
applicability of the employed descriptors.20, 21 To that end, we built 
alternate models by randomizing the target variable to assess the 
relevance of DEcRyPT 2.0 and the importance/correlation of the 
CATS2 descriptors with the reported bioactivities (cf. ESI). Our data 
fully supports the appropriateness of our target prediction 
technology, as all adversarial controls provided notorious low 
accuracy in stratified 10-fold cross-validation studies. With these RF 
models in hand, and to provide an additional layer of confidence to 
the affinity predictions, we created an ancilliary Score value based on 
the background pAffinity distribution for each of the predictable 
targets. To compute such a background, we used 139,352 molecules 
previously identified as dark chemical matter,22 assuming that these 
entities are essentially inactive against drug targets included in 
DEcRyPT 2.0, i.e. afford low (basal) pAffinity values for each target. 
As implemented in DecRyPT 2.0, higher Score values denote a higher 
distance to the background pAffinity distribution (Table 1), thus 
providing a quantitative metric for assay prioritization. 

Table 1. Drug target predictions for celastrol using SPiDER and 
DEcRyPT 2.0. 

SPiDER DecRyPT 2.0 
Target p value  pAffinitya Score 
Mineralocorticoid  0.012 6.4 -0.4 
PTPb,c 0.017 4.1–5.5 -204.2–44.8d 
Progesterone  0.018 7.5f 132.2 
Glutamate ionotropic 0.022 4.7–5.7 -78.9–20.3d 
Liver X  0.023 5.5 (a), 6.2 (b) -68.3, 43.3 
TRP channel 0.024 6.1 (TRPV1) 12.4 
Phospholipase c 0.027 5.3 (A2) 86.1 
Smoothened  0.028 7.6 114.3 
GPCR19 0.030 5.7 -79.4 
Polymerase 0.031 5.5 -54.3 
Farnesoid X  0.033 5.0 -89.8 
Vitamin D  0.034 6.5c,e 143.0 
Estrogenc  0.037 5.2 (a), 5.3 (b) 14.6, -21.5 

Microtubules 0.038 n/a n/a 
Androgen  0.040 6.8 38.9 
Glucocorticoid 0.041 5.6 -58.3 
Aromatase 0.041 5.1 -91.6 
Integrinsc 0.044 7.0 46.8 
Cannabinoid  0.045 6.5g (CB1), 7.3h 

(CB2) 
59.0, 62.2 

Acid glycoprotein 0.046 n/a n/a 
apAffinity = -log(EC50, KD/i); bProtein tyrosine phosphatase; cBoldface 
denotes targets whose association to celastrol had been previously 
reported in the literature, but remained unknown to the algorithms; 

dRange denotes that several targets within the same protein family 
are considered. epAffinity variance =2.4. fpAffinity variance =2.0. 
gpAffinity variance =1.2. hpAffinity variance =1.5. n/a, not available 
due to insufficient data to build a random forest model. 

Applying to 1, both machine learning methods presented 
complementary vantage points and confidence regarding their 
output (Table 1). Indeed, while the predictions suggest that 1 
remains unexplored as binding counterpart for a number of cases, 
both methods confidently predicted targets whose association to 1 
was unknown to the algorithms, but already reported in the 
literature, e.g. protein tyrosine phosphatase 1B,23 phospholipase 
A2,24 estrogen receptor,25 and integrins.26 Indirect evidence of 
modulation of cannabinoid receptor-2 had also been reported.27 
Having obtained encouraging results from this pseudo-prospective 
evaluation of 1, we then prioritized the cannabinoid 1/2, vitamin D 
and progesterone receptors for screening. These had not been 
previously probed, and a range of predictions highly distinct from the 
background had been made by DEcRyPT 2.0. Additionally, 
confirmation of activity would significantly expand the ligand space 
– as assessed by uncertainty sampling based on computed pAffinity 
variances28 – and binding and/or functional assays were readily 
accessible. Moreover, all the prioritized targets had been previously 
implicated in cancer,29-31 which can potentially explain the 
phenotypic effects of 1 both in vitro and in vivo. 
A primary, single-concentration (20 µM or pAffinity = 4.7, 
correponding to 50% effect at the tested concentration) screen 
against the selected targets (Fig. 2a, b) showed a range of funcional 
effects by 1. Notoriously, 1 was inactive against the vitamin D 
receptor (VDR; predicted pAffinity = 4.0 vs. experimental pAffinity < 
4.7), and presented agonistic and antagonistic effects against the 
cannabidiol and progesterone receptors, respectively (Fig. 2a,b), as 
confidently suggested by the pAffinity values computed by DEcRyPT 
2.0. 
Next, we confirmed the screening data in concentration–response 
curve studies (Fig. 2c), where 1 presented potent agonistic effects for 
cannabinoid receptors – EC50 (CB1) = 0.8 µM ± 0.2 log units (pAffinity 
= 6.1); EC50 (CB2) = 1.1 µM ± 0.1 log units (pAffinity = 6.0) – and 
modest antagonism of the progesterone receptor (KB = 7.1 µM; 
pAffinity = 5.1). Radioligand displacement assays further 
corroborated the direct interaction with the receptors (cf. ESI). 
Moreover, we ruled out 1 as a small colloidally aggregating molecule 
(SCAM) disrupting cannabinoid receptor signaling by protein 
sequestration, partial denaturation or protein scaffold mimicry – the 
major sources of false positive readouts in screening assays32 – at 
concentrations below 10 µM through dynamic light scattering 
measurements (cf. ESI). Most importantly, the obtained pAffinity 
data is in line with the DEcRyPT 2.0 predictions (Table 1), which 
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validates the RF models and the designed Score value as assistants in 
the prioritization of biochemical assays. 

 

Fig. 2 Celastrol, 1, is a modulator of the progesterone (PR), and 
cannabinoid 1/2 (CB1 and CB2), but not of the vitamin D (VDR) 
receptors. a) Screening of 1 (20 µM) for functional antagonism; n = 
2. b) Screening of 1 (20 µM) for functional agonism; n = 2. c) 
Concentration–response curves of 1 against the CB1/2 and 
progesterone receptors; n = 2; dots depict the average value and 
whiskers correspond to the range of values. EC50 (CB1) = 0.8 µM ± 0.2 
log units; EC50 (CB2) = 1.1 µM ± 0.1 log units; IC50 (PR) = 60 µM ± 0.1 
log units, KB = 7.1 µM. 

Key for this successful application of SPiDER/DEcRyPT 2.0 to 1 was 
the learning of data patterns and relationships between 
ligands/biology beyond simple ligand similarity measures. For 
example, through a common similarity-based search using the 
ECFP4-like Morgan fingerprint (radius 2, 2048 bits), we obtained an 
average Tanimoto index < 0.10 when comparing 1 to ligands of CB1/2 
and the progesterone receptor in ChEMBL v24. In any case had the 
nearest neighbor a Tanimoto similarity higher than 0.19. For similar 
ligands this index approaches 1. Conversely, if the ligands are 
substantially different the result is close to 0. Thus, the similarity 
search results would have disqualified screening of 1 against the 
cannabinoid and progesterone receptors, given the dissimilarity 
between ligands. The results further attest this NP as a new 
chemotype for the modulation of the receptors reported herein. 
Noteworthy, the association of cannabinoid and progesterone 
biology by ligand structure / pharmacophore features remained non-
obvious as no cross-screening between these two receptor families 
had been reported, according to ChEMBL. Thus, simple database 
analyses cannot rationalize the performed assays, which highlights 
the potential of our machine intelligence. 
Intrigued by the obtained data we then projected the cannabinoid 
and progesterone receptor ligands, together with 1, to the plane 
using manifold learning of CATS2 descriptors (Fig. 3). Our results 
show that, besides a new chemotype, compound 1 also presents an 
unusual topological pharmacophore feature arrangement as it does 
not cluster in the bulk of CB1/2 and progesterone receptor ligands. 
The obtained projection corroborates the output by DEcRyPT 2.0, as 
a ligand dissimilarity may explain the high prediction variance values 
and fulfils the initial selection criteria of expanding ligand space. 
Altogether, our data show the potential and highlight the uniqueness 

of our machine intelligence method for identifying subtle patterns in 
sparse chemical datasets and unravelling dark pharmacology of small 
bioactive molecules. 

 

Fig. 3 Projection (t-distributed stochastic neighborhood embedding) 
of topological pharmacophore descriptor (CATS2) space. Grey: 
Cannabinoid receptor ligands; Orange: progesterone receptor 
ligands. Data shows that celastrol (black dot) presents an unusual 
pattern among ligands of the studied receptors. 

To assert the relevance of inhibition of CB1/2 in the antiproliferative 
activity of 1, we analyzed the publically available screening data 
against the NCI-60 panel of cancer cell lines.33 We sought for a 
correlation between GI50 values of 1 against 60 different cancer cell 
lines and their CB1/2 gene expression profiles,34 hypothesising that 
1 will have higher activity in cell lines highly expressing the predicted 
target genes. Compound 1 displayed a range of activity values across 
the different NCI-60 tissues of origin (p value = 0.005, Kruskal-Wallis 
rank sum test; Fig. 4a), showing higher inhibitory activity in blood and 
kidney cell lines and lower activity in lung cancer (Fig. 4a and ESI). 
Indeed, although CB1 and CB2 are generally lowly expressed in the 
NCI-60 panel (average expression in 16 and 33 percentiles among all 
23,060 genes, respectively; Fig. 4b), the expression of CB1 associates 
with the antiproliferative activity of 1 (Spearman’s rho = 0.29, p value 
= 0.03). Conversely, no significant correlation was found for CB2 (rho 
= -0.05, p value = 0.72), nor for other candidate targets predicted by 
SPiDER / DEcRyPT 2.0 (Table 1), or reported in the literature (cf. ESI). 
The result reinforces the significance of our finding and the putative 
role of CB1 receptors in the antiproliferative activity of 1. 
Next, we analysed the expression levels of CB1/2 across 9,721 
tumour and 725 matched-normal human samples of 32 cancer types 
from The Cancer Genome Atlas (TCGA; 
https://cancergenome.nih.gov/; cf. ESI), aiming at identifying 
tumour types where the impact of 1 should be higher. CB1 was 
differently expressed (False Discovery Rate (FDR) < 0.05, Wilcoxon 
rank-sum test) between tumour and matched-normal samples in 14 
out of 15 cancer types (lowerly and higherly expressed in tumour 
samples of 10 and 4 cancer types, respectively – cf. ESI). CB2 was 
differently expressed in 7 cancer types (FDR < 0.05, Wilcoxon rank-
sum test) (cf. ESI). Despite the varying degrees of activity of 1 against 
the NCI-60 cell lines, overexpression of cannabinoid receptors 
potentiates the activity of the NP (Fig. 4c). It is apparent that other 
mechanisms of action are at play, and that phenotype changes 
induced by 1 are a result of multi-target engagement. Nonetheless, 
tunning pharmacology, such as activity against cannabinoid 
receptors, by molecular design may prove an important strategy to 
enhance the antiproliferative activity of celastrol analogues in 



COMMUNICATION Journal Name 

4  | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

appropriate cancer subtypes. Critically, molecular design should also 
focus on improving the oral absorption of 1, which has been shown 
suboptimal.35 Alternatively, to increase the concentration of 1 to 
levels relevant to modulation of the cannabidoid signalling, tailored 
drug delivery systems may be designed.36 

 

Fig. 4 Expression of the cannabinoid 1 receptor (CB1) contributes to 
the antiproliferative activity of celastrol. a) Activity of celastrol 
against the NCI-60 panel of cancer cell lines, grouped by tissue. b) 
Cannabinoid receptors have low expression in different types of 
cancer cell lines.  

Conclusions 
In summary, we have built a new and widely applicable machine 
intelligence tool to unravel dark pharmacology of NPs. We show how 
such a method counter-intuitively integrates uncertainty sampling 
and a scoring function to assess prediction reliability. By applying 
DEcRyPT 2.0 to study 1, we rediscovered known targets but, most 
importantly, iluminated hitherto unknown biology. Significantly, the 
discovered targets could be correlated with the antiproliferative 
activity of 1, thus offering new avenues for the development of 
celastrol-inspired chemical matter and further exploit the 
cannabinoid-mediated signaling in cancer. 
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