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Abstract 
Small molecule effectors are essential for drug discovery. Specific molecular 
recognition, reversible binding, and dose-dependency are usually key requirements 
to ensure utility of a novel chemical entity. However, artefactual frequent-hitter and 
assay interference compounds may divert lead optimization and screening programs 
towards attrition-prone chemical matter. Colloidal aggregates are the prime source of 
false positive readouts, either through protein sequestration or protein-scaffold 
mimicry. Nevertheless, assessment of colloidal aggregation remains somewhat 
overlooked and under-appreciated. In this Review we discuss the impact of 
aggregation on drug discovery by analysing select examples from the literature and 
publicly-available datasets. We also examine and comment on technologies used to 
experimentally identify these potentially problematic entities. We focus on evidence-
based computational filters and machine learning algorithms that may be swiftly 
deployed to flag chemical matter and mitigate the impact of aggregates in discovery 
programs, and highlight the tools that can be used to scrutinize libraries, identify, and 
eliminate these problematic compounds. 
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Introduction 
 
Specific binding of a drug to a given target and modulation of its activity remains the 
hallmark of clinical medicine1. To that end, small molecule entities have a long 
history and a paramount role as chemical probes and drug target effectors. Target- 
as well as cell-based screens are now privileged means of testing large compound 
collections in a high throughput manner to fuel development pipelines. Naturally, 
quality chemical probes and drug leads are in high demand to interrogate biological 
events, and infer the relationship between drug target binding and downstream 
phenotype changes2,3. However, the usefulness of unpruned small molecule libraries 
is usually questionable and can lead to artefact readouts. As a consequence, it is 
now well known that a significant proportion of high-throughput screening (HTS) hits 
are indeed nuisances – “false positives” – that can divert research efforts towards 
attrition prone chemical matter4,5. False positives can be loosely defined as 
compounds that show up as hits in the primary HTS assay readout without de facto 
exerting the desired biological effect. Often, this only becomes visible when they fail 
to produce the desirable target activity in orthogonal, follow-up validations.  
 
False positives have shown to be abundant in discovery chemistry, having the 
potential to disrupt not only basic research in chemical biology and medicinal 
chemistry but also applied programs aiming at bringing small molecules from bench 
to clinic5. Strikingly, when gathering data on false positives to better understand their 
nature, it was discovered that they are not target-specific, but can be identified as 
“hits” against multiple biological targets, target-families, and even while using 
different assay technologies6. This observation has propelled recent investigations 
on assay interference molecules and the awareness of the structural underpinnings 
for undesirable assay behaviour7-9. For example, careful screening library design 
together with a trained medicinal chemistry eye appear to be central to remove 
problematic compounds and, thereby, mitigate pre-clinical attrition5,10,11.  
 
In line with this recent awareness, nine editors-in-chief of journals published by the 
American Chemical Society wrote an editorial to alert the need of ascertaining the 
quality of the reported chemotype–biology association data12. As pinpointed by those 
recommendations, one of the major reasons for false positive readouts is the 
aggregation of poorly water-soluble compounds into colloidal, nano- and micro-scale 
particles. These Small Colloidally Aggregating Molecules (SCAMs) can produce 
false positives in a broad range of assay formats, following well-established physical 
chemistry underpinnings13. In spite of being able to explain and control such effects, 
the molecular frameworks that can lead to aggregation are currently not understood. 
As a rule of thumb, molecules with high lipophilicity and/or surface area are more 
likely to aggregate in aqueous solution, and although potentially useful, special care 
must be taken to balance aggregation vs. potency and derisk the lead development 
process. For example, this can be achieved by reducing the aromatic ring count, 
which can positively impact on the kinetic solubility of small molecules14. However, 
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drugs frequently contain aromatic rings and not all of them present a liability, such 
that there is an urgent need for a more detailed understanding of the molecular 
frameworks causing aggregation. In contrast to assay interference 
compounds7,8,15,16, e.g. compounds that interfere directly with the assay readout for 
example via auto-fluorescence, the colloidal aggregation phenomenon has been 
substantially less considered by many chemical probe and drug designers as 
attested by fewer publications and fewer available counter-screen efforts.  
 
To bring attention to this problem and enhance the general understanding of the 
matter, we devote the following sections of the Review to this subject. By critically 
discussing select examples and analysing available data, we highlight the impact of 
colloidal aggregation in drug discovery. In particular, we focus on machine learning 
methods that can be swiftly deployed for the identification and flagging of 
aggregating chemical matter. We hope this Review will enable researchers at the 
forefront of drug discovery and chemical biology to understand and apply such 
methods and thus further their discovery programs by avoiding nuisance 
compounds. 
 
 
Colloidal aggregates as source of false positive readouts 
 
SCAMs can inhibit enzymatic activity in different functional assays. It has been 
shown that they have the potential to elicit reproducible, yet confounding and 
irrelevant enzymatic responses, given the unspecific nature of the molecular 
recognition mechanisms17,18. Formation of colloidal aggregates, unlike auto-
fluorescence and reactivity, is largely independent of both the assay technology and 
drug target, but instead driven by the chemical structure of the assayed molecule 
and the buffered medium conditions. The latter include the pH value, buffer 
composition and concentration, and the amount and identity of surfactant in the 
buffer19,20. In analogy to micelle formation, the critical aggregation concentration 
(CAC) governs the assembly of those aggregates and its proportion to monomeric 
small molecule forms21. As soon as the testing concentration is above the CAC, 
nucleation occurs and colloidal aggregates start forming. The exact mechanism of 
how such aggregates form and their exact shape is still a matter of active research, 
but is well grounded on the physical chemistry of the small molecules22. The most 
recent progress suggests that colloidal aggregates form as unstructured, filled 
spheres, which can be composed by as many as 108 small molecules, and present 
large polydispersity21. Many of these aggregates seem to continue growing and 
eventually precipitate after reaching a given size22. What is certain is that colloidal 
aggregation drastically changes the ability of the chemical matter to interact with 
other macromolecules, possibly due to the large surface area and hydrophobicity. 
From a molecular point of view, the generated particles are usually present in the 
mid-femtomolar to low picomolar concentration range, and bind up to 10,000 
enzymes per aggregate. Because of the tight binding, these aggregates promote 
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partial and local protein denaturation, resulting in the abovementioned 
enzyme/protein inhibition in a time-dependent manner (Figure 1)21-24. Recently, 
crystallography experiments suggested a complementary mechanism of action that 
originates from much smaller aggregates comprising only 5–6 molecules. These can 
bind to the protein surface and displace protein monomers, thereby inhibiting 
functional protein activity. An x-ray crystal of a TNFα–aggregate complex clearly 
shows a non-symmetrical small molecule conglomerate replacing one of the three 
TNFα subunits of the apo form. The authors suggest that, like in specific molecular 
recognition, the aggregate induces a quaternary structure change without 
sequestration nor denaturation25 (Figure 1). Given that an x-ray structure captures 
only one diffraction snapshot, which is not always representative of the protein and 
ligand conformations in solution, one may still question if this mimicry mechanism is 
valid in biochemical, target-based assays. 
 
The deceiving effects of aggregates can also extend to cellular assay systems, 
where they can lead to less-than-expected activity due to reduced cell membrane 
diffusion, and hence reduced intracellular concentration26. Furthermore, aggregates 
have the potential to artefactually inhibit membrane-bound proteins, e.g. G-protein 
coupled receptors (GPCRs), as reported by Sassano et al.27 It has also been 
recognized that aggregation might indeed not only impact drug screening, but 
aggregates can also be observed in biologically relevant environments. For example, 
the formation of colloidal aggregates in simulated intestinal fluid may lead to 
unpredictable pharmacokinetics, including absorption and distribution28. Altogether, 
the pernicious effects of SCAMs in chemical probe and lead discovery cripple both 
target- and cell-based assay readouts. Therefore, their identification at the early 
stages of molecular design is essential. 
 
 
The impact of SCAMs on drug discovery projects  
 
As discussed above, there are different mechanisms by which SCAMs can influence 
assay readouts and afford false positives. This indeed suggests that numerous 
research efforts aiming to specifically perturb the function of drug targets are 
potentially affected by such molecules. It remains to be studied how frequent these 
occur and understand if warnings regarding colloidal aggregators are merely 
anecdotal and do not require further attention. Unfortunately, it turns out that 
molecular signatures necessary to form colloidal aggregates, although not fully 
understood mechanistically, are empirically prominent among relevant chemical 
matter in drug discovery and early development efforts. Shoichet and co-workers 
have pioneered the high-throughput detection of SCAMs, having identified several 
thousand of them among natural products29, drugs30, “chemical probes”27, and 
molecules from vendor libraries31. SCAMs are frequently found in unpruned HTS and 
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vendor compound libraries, from where such false positive “hits” have been all-too-
often reported in troubling proportions17,19. 
 
Specifically, the formation of colloidal aggregates has been identified as a major 
source of false positive readouts amongst micromolar HTS “hits”19. It has been 
estimated that 5–20%32 of screening compounds possess the chemical signature to 
form aggregates under typical HTS conditions. While this number might be 
considered low, it can indeed lead to a large amount of false positives among the 
usually small number of total acquired screening hits. For example, Feng et al. 
reported that a staggering 95% of HTS hits present a colloidal aggregation 
signature33. Likewise, in a HTS program aiming at the identification of starting points 
for optimization against the cysteine protease cruzain, 90% of the original hits were 
colloidal aggregate artefacts17. In another campaign against the same protease, an 
oxadiazole hit was expanded to a small, focused library for structure-activity 
relationships (SAR) studies31. Interpretable SAR was obtained only to realize later 
that several of the library members acted in divergent mechanisms, including 
colloidal aggregation. Surprisingly, those aggregates were responsible for multiple 
log units of apparently “sound” SAR and were only unveiled as nuisances from steep 
Hill slopes that suggested superstoichiometry in the biochemical assay31. While SAR 
is often sought after and may be considered a hallmark of chemical series 
tractability, this particular study definitely suggests otherwise. Indeed, it further 
highlights the need for hit validation and the role of multiple assays to probe for 
confounding bioactivity profiles. Fascinatingly, such high-rates of false positives in 
classical screening libraries are not necessarily eliminated through advanced pre-
selection techniques. For example, a report on the discovery of new ligands for the 
orphan GPCR37L1 used a sophisticated computational method that predicted 
interactions between ligands and binding pocket for the selection of promising 
candidates for biochemical screening. In spite of this mechanistic filtering, a total of 
two out of five acquired hits were SCAMs34. These results are worrisome for the 
community given that large fractions of discovery efforts are harnessing chemical 
screening libraries similar to the ones in these studies, which are expected to contain 
a similar fraction of potential SCAMs. With this in mind, one might wonder whether 
SCAMs are similarly prevalent in other chemical classes relevant for drug discovery. 
 
Natural product-based medicines have played an important role in therapeutics for 
several millennia. Given the biological pre-validation of their architectures35-38 they 
have also been used as screening compounds against targets of interest. Recently, 
14 natural products whose bioactivity has been interrogated in hundreds of scholarly 
reports were analysed for colloidal aggregation29. Eight of those molecules, e.g. 
physcion and curcumin (Figure 2a), formed colloidal aggregates at concentrations 
within their bioactivity range – typically above 10 µM. For example, physcion begins 
aggregating at concentrations as low as 0.32 µM. Such observation might render 
multiple reported bioactivities as irrelevant. Importantly, curcumin has been studied 
over 6000 times, amassing several million dollars spent on research39,40. However, 
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several of these studies do not account for the colloidal aggregation signature of 
curcumin at the utilized concentrations39, raising serious doubts about the biological 
relevance and therefore clinical translatability of the in vitro generated associations29. 
Admittedly, since CAC values depend on the exact experimental layout, it would be 
unwise to refute all previous bioactivity reports of these natural products. Even for 
aggregators there are likely conditions, targets, and a concentration range where this 
mechanism is not relevant. However, given the limited awareness of colloidal 
aggregation and the limited usage of detergents in biological assays, it is probable 
that many of the reported activities are irrelevant.  
 
Our own natural product research has included routine tests to rule out colloidal 
aggregation-derived artefacts. We have found that some complex entities, e.g. 
archazolid A41 and (–)-englerin A42, do form aggregates at double-digit micromolar 
concentrations. However, aggregation at those concentrations does not interfere with 
bioactivity readouts in the low micromolar or nanomolar range. Conversely, 
fragment-like entities may be less prone to such a behaviour at high 
concentrations43, but exceptions do exist44. It is, however, important to stress that 
given the long-standing tradition of utilizing natural products as chemical probes and 
leads enables us also to estimate the rate at which such potential false-positives are 
reported. For example, quercetin and staurosporine aglycone (K-252c) have been 
used to study phosphoinositide 3-kinase and protein kinase C, respectively, for 
several years. Against their main targets, both molecules have displayed IC50 values 
of 2.5–4 µM45,46, which are in the range of activities typically seen for SCAMs; a flag 
should therefore be raised. Indeed, these “probes” have been confirmed to 
aggregate at relevant biological concentrations through multiple assays47. In 2003, 
quercetin and K-252c had been referenced 2,878 and 363 times in PubChem, 
respectively47. Strikingly, their citation count has now considerably increased even 
further to >14,000 times for quercetin and >650 times for K-252c. Many of these 
reported bioactivities are potentially erroneous. The fact that weak bioactivities for 
such structures keep appearing may also support the limited awareness of the 
implications of colloidal aggregates in chemical biology and drug discovery, and the 
implied skewed biological data. Further analyses on quercetin bioactivities annotated 
in ChEMBL shows a strong bias towards low affinity values, which may exclude true 
promiscuous inhibition and a privileged structure in drug discovery. In fact, >65% of 
those values lie in a range of potential colloidal aggregation, and hence artefactual 
target inhibition (Figure 2b)47. Moreover, a recent report shows that the quercetin 
behaviour can be extended to its scaffold class – flavonoids – raising questions on 
their tractability for chemical probe and hit-to-lead campaigns20. 

 
As it turns out, SCAMs are not only prevalent in screening libraries but some of them 
can be found among approved drugs. In a seminal contribution, a screen of 50 
approved drugs revealed that aggregation is present among high value chemical 
matter (14%)30. This suggests that extensive medicinal chemistry may not be 
enough to completely abrogate aggregation, and that optimizing SCAMs into drugs is 
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likely to include additional development challenges. From the selected drugs, 
clotrimazole (Figure 2a) aggregated at concentrations below 100 µM. While these 
effects are unlikely to affect the potent interaction of these drugs with their on-
targets, aggregation may be considered as a “feature” of small molecules, given that 
even highly optimized chemical matter might still aggregate and create false positive 
results if tested at sufficiently high concentrations. Such false positive readouts 
might, however, sabotage drug repurposing efforts as well as the selective 
optimization of side effect activities campaigns48. 
 
A decade ago, Hopkins coined the term “network pharmacology” as the underlying 
basis of polypharmacology and billing it as a paradigm for future drug discovery49,50. 
It appears logical that SCAMs may compromise the accuracy of established 
pharmacology networks by adding false target links. In fact, analysing a list of 
validated SCAMs51, one may estimate that 45-80% of bioactivities in ChEMBL for 
SCAMs might constitute false positive (cf. Box 1), which will have a dramatic impact 
on drug target networks by adding erroneous protein associations. Specifically, 
computation of pharmacology networks as a function of ligand commonalities allows 
straightforward conclusions after binning data into two groups – very low (pAffinity < 
4) and very high (pAffinity ≥ 7) affinities. Very low affinities possibly represents false 
positives, considering that >100 µM hits are more likely to result from unspecific 
binding. While likely false ligand–target associations constitute the bulk of the 
extracted data, totalling 3,855 potentially erroneous activities (Figure 2c), SCAMs 
can still afford 1,985 cases of specific, potent target binding (~1% of all target 
annotations for known SCAMs, pAffinity ≥ 7, Figure 2d). The latter include tests 
against 297 different targets and a network comprising 1,672 binary interactions, 
which provides unexpected opportunities for further biological exploration. The 
analysis further highlights that aggregation is a contextual problematic, warranting 
target binding validation on a case-by-case basis to ascertain true target 
engagement. Altogether, the data supports that ligand-centric drug target 
relationships are indeed partly skewed due to colloidal aggregation and that careful 
validation of target binding/engagement is required. Admittedly, the bias will be 
largely introduced for lower potency compounds; hence the impact on medicinal 
chemistry optimization might be limited. Furthermore, the presented networks 
specifically focus on SCAMs, which only compromise a subset of the available 
bioactivity data. However, the sheer number of edges and convolution of the 
presented plots, in particular for proteins that have been targeted frequently, can 
introduce a noticeable bias in polypharmacology networks and hamper future drug 
discovery and biochemistry by incorrectly emphasizing irrelevant target relationships 
and misleading SAR. 
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Experimental SCAM detection methods 
 
Some direct observations on the experimental results might justify suspicion on 
whether the determined interaction is real or a result of aggregation. Most 
importantly, steep dose-response curves (high Hill coefficients) provide initial 
suspicion for colloidal aggregation, as sudden nucleation just above the CAC can 
lead to the formation of aggregates with apparent potent inhibitory effects. Indeed, 
thousands of enzymes in a biochemical assay can potentially be sequestered by a 
single aggregate24. It is important to keep in mind that, in some cases, such high 
slopes are not pathological but a consequence of drug target dimerization52, or 
cooperative binding to allosteric sites53. Moreover, “bell-shaped” concentration-
response curves in cell viability assays have also been partly linked to colloidal 
aggregation, whereby the negligible diffusion of colloidal aggregates across intact 
cell membranes, and hence a reduction of intracellular drug concentration, is 
responsible for such a behavior26,54. 
 
Several biophysical and biochemical technologies can and should be routinely used 
to identify the aggregation-based inhibition mechanism by bioactive molecules, 
especially to scrutinize micromolar hits. A validation of the observed activity can be 
performed by slightly altering the original assay conditions; it is well established that 
re-screens in presence of small amounts of detergent (e.g. 0.01% Triton X-100 for 
biochemical assays or 0.025% Tween-80 as a gentler detergent for cell-based 
assays55) can discriminate false from true positive hits; as detergents will favour the 
monomeric form of molecules in solution, their apparent activity (e.g. percentage 
inhibition of control) will be lower when such detergents are present in assay buffers. 
Evaluating whether the observed binding and/or target engagement is reduced or 
abolished with increasing detergent concentrations allows a conclusion on an 
unspecific target engagement event31,56,57. Indeed, performing parallel screens with 
and without detergent and relying on model enzymes, such as beta lactamase, has 
become one state-of-the-art protocol to identify colloidal aggregates (Table 1). 
Alternatively, instead of adding detergents, the addition of bovine serum albumin to 
the assay medium has been utilized as a means of attenuating the inhibition of 
proteins/enzymes by SCAMs through a competing adsorption mechanism at the 
aggregate’s surface58. More recently, Adachi and co-workers59 have developed a 
DMSO-perturbed assay to identify SCAMs among natural products. In short, the 
addition of DMSO to the assay mixture leads to conformational changes in the 
protein, and the formation of two distinct protein populations – one productive 
(folded) and another that is non-productive (partly unfolded). In the presence of 
SCAMs, non-specific binding to the non-productive enzyme population occurs, 
leading to a decrease in the effective concentration of ligand in solution and, 
consequently, its inhibitory activity against the folded population59. For all 
approaches, it has to be confirmed that the additive (detergent, DMSO or serum 
albumin) does not interfere with the readout, e.g. by interacting with the investigated 
protein itself. Furthermore, the difference in assay activity needs to be statistically 
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quantified, to ensure that the observed changes are not simply induced through 
experimental variations. This approach represents the most direct readout of false 
positive determination by relying on the assay of interest and closely mimicking the 
original screening conditions.  
 
Other orthogonal assay technologies have been developed and can be employed to 
investigate a compound’s potential to form colloidal aggregates. Dynamic light 
scattering (DLS) is able to identify the presence of colloidal aggregates, determine 
the underlying critical aggregation concentration and assess the kinetic solubility of 
chemical matter of interest31,32,60. Though this method has become the gold standard 
to test for aggregation there remain major challenges associated with current DLS 
setups. Because the DLS mathematical modelling of diffracted laser light assumes a 
certain particle shape, its measurements have demonstrated inconsistent readings 
for several SCAMs whose aggregates adopt shapes other than the predefined61. 
Thus, DLS may be valuable for qualitative studies but shows limitations for studying 
the exact size of colloidal aggregates. It is also not always trivial to represent the 
exact original assay conditions for the DLS measurement, especially when co-factors 
and proteins are contained in the assay buffer and medium, which can contribute to 
a high scattering background that overshadows the aggregate signal62. Moreover, 
not all SCAMs form colloidal particles measurable through DLS, which can 
significantly increase the percentage of false negative aggregation events32. The use 
of transmission electron microscopy may partly mitigate limitations of DLS, allowing 
the measurement of aggregates in physiologically-relevant media. However, 
microscopy imaging can be time consuming63. Importantly, observing aggregates 
through DLS or microscopy does not necessarily imply unspecific inhibition and thus 
false positive readouts. Apparently some aggregates lead to immediate precipitation 
or do not bind enzymes and thereby will not show up as unspecific hits in 
biochemical screening assays. Their relevance as chemical probes is nevertheless 
questionable.  As an easy-to-implement routine, colloidal aggregates can be actively 
precipitated by centrifugation before an assay is run. Using this method, one can 
swiftly conclude on the formation of aggregates if the effectiveness of the compound 
against the cell- or target-based assay is much higher before centrifugation than 
after. Using a simple and sensitive fluorescence-based method, Cai et al.64 have 
also been able to identify SCAMs. The method explores the surface tension changes 
in solvents as a function of colloidal alterations in solution. Formation of aggregates 
in solution significantly affects the shape of the meniscus and the fluorescence 
intensity when detected by a top-read fluorescence plate reader. Importantly, the 
method is amenable to high-throughput detection of SCAMs. Interestingly, colloidal 
aggregates originating from small molecules also afford unusual 1H NMR 
resonances (at lower fields) and/or unusual peak shapes (broader). This becomes 
particularly visible across an increasing concentration series. This method is, 
however, only applicable to small size aggregates where tumbling is compatible with 
NMR timescales and has a restricted detection limit65. Albeit the lower throughput 
compared to most of the technologies cited above, the widespread use of NMR 
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spectrometers in medicinal chemistry laboratories renders it an easily accessible 
means to screen for potentially pathological chemical matter65,66. 
 
A new class of aggregation detection methods rely on advanced biosensor 
technology. Surface plasmon resonance (SPR) is a label-free technology commonly 
used to determine ligand–target binding kinetics and affinity constants in early drug 
discovery. Careful analysis of the resulting sensorgrams not only provides crucial 
knowledge of the stoichiometry of binding, but may also reveal pathological binding 
events as reported by Giannetti et al.67 Using SPR, it was shown that colloidal 
aggregates may interact reversibly only with some proteins, for which the response 
units are not stoichiometric. Furthermore, the interaction mechanism varies between 
proteins, suggesting that it may be difficult to identify a method for the systematic 
identification of SCAMs. Photonic crystal (PC) optical biosensors are another label-
free biophysical technology that has been productively employed to detect SCAMs 
with competitive results to other technologies61. The PC sensors comprise a sub-
wavelength periodic surface that reflects a narrow band of wavelengths when 
illuminated with a broadband collimated light source. Upon binding of aggregates, 
the sensor surface is changed, modulating the refractive index of the material61. 
Among the many advantages of the method, it is important to highlight its 
independence relative to aggregate shape, and amenability to high-throughput 
screening.  
 
While the methods discussed above may be in general easy to implement and can 
provide robust answers on the aggregation propensity of the molecules under 
investigation, running them can become unpractical, as in several cases they require 
expensive/dedicated equipment that is inaccessible to the wider community or 
require additional experiments with varying throughput. Accurate analyses of the 
generated data can also be time-consuming, deterring researchers from routine 
tests. Hence, they provide tools for hit validation, although their utility as a parallel 
assay for screening library curation might not be feasible. This stems from the fact 
that the abovementioned assays are often not high-throughput compatible, fail to 
reproduce the assay conditions, or pose concerns regarding their accuracy. 
Nonetheless, these methods offer an invaluable means of generating high-quality 
training data for tailoring in silico SCAM detection tools and streamline their 
identification. It will be important to see whether the data acquired from different 
screening methods is compatible and whether a learning algorithm can successfully 
determine relevant patterns.  
 
 
Automated prediction of SCAMs 
 
Rule-based cheminformatic filters7 in drug discovery have traditionally provided 
medicinal chemists with tools to scrutinize small molecules. More recently, artificial 
intelligence has seen successful applications in the deconvolution of molecular 
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targets of phenotypic hits35,41,60 and design new chemical entities68, among others. 
Considering that the publicly available positive (aggregating molecules) and negative 
(non-aggregating molecules) data not only spans a wide range of calculated logP 
and molecular weight values (Box 1), but also notable scaffold diversity (Figure 3), 
one can envisage that machine learning algorithms may play an important role for 
the expeditious identification of potentially liable chemical matter. Those 
cheminformatics and machine learning approaches applied to flag screening 
compounds are discussed henceforth. 
 
Despite being known that SCAMs can populate natural product and synthetic 
chemical spaces, very few publications report or analyse the exact structures of such 
aggregators. To the best of our knowledge, there is no structured and publicly 
available resource containing chemical structures of SCAMs, with the exception of 
datasets released by Shoichet and co-workers (shoichetlab.compbio.ucsf.edu). 
Exploration of those datasets allows concluding that between 2003 and 2015 the 
number of known aggregating chemotypes has grown exponentially; however as a 
result of only a few studies, i.e. knowledge in this particular field does not appear to 
be sustained but rather evolving in discrete studies through the introduction of assay 
technologies with increasing throughput. In particular, no in-depth scaffold analysis 
and its evolution in the past two decades has been researched. When investigating 
scaffold diversity on the Shoichet laboratory data, one can realize there is impressive 
scaffold diversity with 58% of the molecules featuring unmatched Murcko scaffolds 
among their aggregating counterparts (Figure 3). The data suggests that care was 
taken by Shoichet and colleagues throughout the years to test chemically diverse 
compounds. The scaffold diversity of SCAMs also highlights that the phenomenon of 
aggregation is not restricted to specific chemotypes but plagues a wide range of 
different chemical structures. Strikingly, flavones (Figure 3, scaffold count = 31) 
appear to be particularly susceptible to aggregation possibly as consequence of a 
flat/hydrophobic structure, which was accused previously of representing a chemical 
feature that promotes aggregation69. This structural feature is even more likely to be 
encountered in synthetic screening libraries. Altogether, analysis of the publicly 
available datasets also confirms that SCAMs are reasonably ubiquitous. 
Computational prediction methods can help to eliminate them from screening 
libraries or at least caution drug hunters in follow-up studies. Indeed, in silico tools 
promise a rapid and efficient way to predict colloidal aggregation or other liabilities 
from compound structures and prioritize hits for validation assays. 
 
There is a long tradition of deploying computational reasoning for filtering unwanted 
structures in screening libraries both in the industrial and the academic sectors. 
Major research efforts have been devoted to standardizing the prediction of false 
positives using computationally-accessible guideline processing. Around 20 years 
ago, to translate chemical intuition into rapid, reproducible, and computable units, 
seminal work by Hann10, Rishton5 and Murcko70-72 defined certain potentially critical 
chemical substructures as taboo lists. These lists were carefully designed to capture 
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substructures in screening molecules that could afford intractable or unfavourable 
readouts. These lists include moieties that can either decompose, react with assay 
components73 or do not have drug-like properties (Box 2) – similar to the original 
“rule of five” developed by Lipinski74 but focusing on the presence of alarming 
structures instead of physicochemical rules hardwired into the “rule of five”. Using 
any of such or other proprietary substructure lists for the curation of screening pools 
has now become a commonplace practice75. More recently, Hajduk and co-workers 
developed a method named “ALARM NMR” to specifically assess thiol reactivity9. In 
an orthogonal approach, instead of focusing on the mechanistic filtering of reactive 
groups, Baell and Holloway followed a more empirical route and identified 
substructures of compounds that appeared as “hits” in multiple AlphaScreen assays 
and hence could represent target-agnostic false positives – coining them as pan-
assay interference compounds (PAINS)7. 
 
Although frequently applied to filter or caution researchers against certain 
substructures, these flagging lists are inappropriate to detect SCAMs. Indeed, we 
emphasize that those lists were designed for a different purpose. For example, the 
assay technology utilized to detect PAINS specifically included Tween-20 to mitigate 
the effect of aggregators76. Comparing the number of alerts triggered for a dataset of 
known SCAMs compared to a set of random molecules of similar size and weight 
distribution that is largely devoid of SCAMs, we observed practically no difference 
between the number of flagged compounds between those two sets (Figure 4 and 
Box 1)51. With the exception of ALARM NMR, all filters consistently fail at identifying 
SCAMs, i.e. only low numbers of known SCAMs are flagged, and the number of 
alerts do not differ from the numbers of flagged compounds in the random 
background (ChEMBL-derived) set. This also implies that the number of other 
liabilities among SCAMs are equally frequent compared to non-aggregators. 
Interestingly, many aggregators and non-aggregators are flagged by ALARM NMR 
with SCAMs showing a slightly higher numbers of alerts. This observation would 
need further validation, but can suggest that ALARM NMR implicitly encodes some 
of the features potentially correlated with aggregation, albeit not designed for that 
purpose; whether chemical reactivity is linked to colloidal aggregation remains 
unknown. Other hypotheses could involve potential reactive compounds being 
included in the aggregator dataset or, conversely, the ALARM NMR flags being 
partly trained on aggregation instead of reactive compounds. Nonetheless, the data 
reinforces that the aggregation phenomenon is ubiquitous, and that seemingly 
“clean” structures may still provide false positive readouts through a confounding 
mechanism such as aggregation. Even more importantly, this highlights that simple 
flagging lists were not designed to capture the complex phenomena of compound 
aggregation. More advanced in silico models might be necessary to reliably identify 
and combat these structures. 
 
Machine learning models have been trained on large screening datasets to predict 
whether a compound is likely to occur as a hit in multiple screens. These might either 
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be true promiscuous binders or compounds that interfere with multiple assay 
technologies. These so-called “frequent hitter” compounds share features that can 
be computationally identified on a substructural level by applying more or less 
advanced mathematical models6,77,78. In the particular case of flagging undesired 
chemical matter, self-organizing maps6 and Bayesian learning79 (Box 3) have proven 
useful for the identification of “frequent hitters”. While in the first case data is 
clustered, preserving local neighbourhoods, through an algorithm that is inspired by 
artificial neural networks, in the latter case, probability modelling drives the data 
association in a typically faster manner. Both tools seem promising at identifying 
compounds that can hit in multiple HTS campaigns, but they are commonly not able 
to distinguish between false positives (artefacts) and privileged scaffolds 
(promiscuous compounds with specific effects on multiple targets). The Hit Dexter 
webserver can flag 65% of known SCAMs as “frequent hitters” by using extremely 
randomized decision trees trained on the chemical structures of compounds 
frequently studied in biochemical assays80. This performance is much better 
compared to the flagging lists discussed previously, but it is also unspecific as a 
majority of the non-aggregating compounds are flagged (inner circle). Given that Hit 
Dexter has shown good specificity in regards to not flagging non-promiscuous 
compounds80, the result might suggest that the ChEMBL-derived compounds (Box 
1), while largely lacking chemical signatures leading to aggregation, potentially 
exhibit other mechanisms of true or false promiscuity (Figure 4). This strongly 
advocates for the development and deployment of specific aggregation prediction 
models to delineate the exact mechanism of artefactual target modulation and alert 
the project team of different, context-dependent liabilities. Moreover, the Hit Dexter 
server does not flag 35% of known SCAMs, which shows that not all known 
aggregating molecules have been extensively employed in biochemical assays and 
likely are not (yet) perceived as “frequent hitters”. The fact that two-thirds of known 
SCAMs are captured by these methods emphasizes two points. Firstly, it suggests 
that accurate identification of SCAMs is possible, even though the discussed models 
were not designed to predict aggregation – indicating that specific aggregation 
models might potentially show better and more specific performance. Secondly, 
many SCAMs have already been tested repeatedly in multiple screening campaigns 
and potentially been conceived as true hits, which further advocates for the 
pernicious impact of SCAMs in drug discovery as well as for the need of a highly-
accurate computational model to devalidate these “hits”.  
 
Indeed, a handful of studies have aimed at developing advanced machine learning 
models specifically for the prediction of the aggregation likelihood of a query 
compound. As in any other classification applications, the training data must contain 
molecules belonging to both classes (aggregators vs. non-aggregators). We 
describe the methods here in chronological order, which coincidentally also 
corresponds to an increasing order of data requirements. A pioneering effort at the 
automated identification of SCAMs used as little as 111 chemical entities and 260 
physicochemical properties that were recursively partitioned to afford a tree-like 
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model30 (Box 3). Given the small training dataset, one may speculate that 260 
descriptors could potentially be correlated or irrelevant to distinguish aggregators 
from non-aggregators in this data. Indeed, refinement of the recursive partitioning 
(RP) models through elimination of redundant and non-readily accessible descriptors 
afforded a model that was able to correctly classify 94% of the chemical entities. Not 
surprisingly, the Daylight ClogP descriptor afforded the first partition (i.e. represented 
the most important descriptor to separate aggregators from non-aggregators) with a 
cut off of 3.6. The result is intuitive and shows how simple machine learning 
algorithms can easily grasp data patterns even in small datasets. The presence or 
absence of ionisable groups and the extent of conjugation also decisively contributed 
to the accuracy of the classification model, highlighting that lipophilicity alone is not a 
sufficiently descriptive property to separate aggregators from non-aggregators (cf. 
Box 1); other features that capture the interaction-capabilities of the compounds 
further refine the predictive capabilities. Importantly, the RP model outperformed 
straightforward similarity searches, suggesting that aggregation is widespread in 
chemical space and not confined to certain clusters or chemotypes (cf. Figure 3)30. 
While such a modelling approach delivered a human-interpretable model that 
captures important aspects of the aggregation propensity of compounds, the limited 
training data used for modelling makes it an unlikely candidate to accurately flag 
large screening libraries with thousands of compounds that differ substantially from 
the 111 compounds used for training. Indeed, in a follow-up study, the predictive 
utility of the RP model to correctly classify aggregators and non-aggregators in a 
large screening was refuted32. With the advent of more sophisticated experimental 
screening technologies for aggregators, specifically the possibility to compare HTS 
results with and without surfactants as an indicator of unspecific binding effects or 
using high-throughput DLS (Table 1), more data and hence more complex 
computational models became amenable. Such models promise to be able to 
capture a broader range of chemical signatures that will lead to aggregation. For 
example, the investigation of 1,030 drug-like molecules not only allowed constructing 
a naïve Bayes classifier, but also the evolution of the above discussed RP model into 
a more sophisticated random forest (RF) model, which affords predictions through a 
majority class vote within an ensemble of decision trees (Box 3)32. By relying both on 
chemical substructural fingerprints as well as physicochemical property descriptors, 
the RF achieved a low misclassification rate of 11%. In another effort at identifying 
SCAMs from physicochemical properties derived from chemical structure, Chen and 
co-workers81 developed a support vector machine  – recursive feature elimination 
(SVM-RFE, Box 3) classification model from 1,319 aggregators and 128,325 
hypothetical non-aggregators that was competitive with other classifiers81. The 
authors used 199 molecular descriptors for model building, including simple 
molecular properties, connectivity, shape, electro-topological, quantum chemical and 
geometrical property descriptors to identify diverse SCAMs at the Murcko scaffold 
level. Gratifyingly, the feature elimination analysis corroborated all previous reports 
highlighting the relevance of hydrophobicity, connectivity, electro-topological, and 
quantum mechanical descriptors for characterizing SCAMs81. Thus, based on the 



16 

agreement of several independent studies using orthogonal algorithms, it is 
reasonable to assume that said descriptors are robust starting points for future 
investigations. 
   
Although initial reports on sparse datasets had previously refuted the identification of 
aggregators from chemical structure similarity alone30, more recent reports based on 
larger datasets show that model-free approaches simply based on molecular 
similarity to the reference data hold great potential for aggregation inference51. The 
Aggregator Advisor (http://advisor.bkslab.org) uses substructural fingerprints to 
determine similarity of query entities to over 12,000 experimentally validated SCAMs. 
A likelihood of aggregation for the queried compound is calculated by triaging the 
molecular similarity to known SCAMs, the observed affinity range, as well as the 
calculated logP of the query compound51. Considering there is no training step, the 
method is guaranteed to afford a reasonable amount of false positive/negative alerts, 
despite the remarkable diversity of physicochemical properties, except calculated 
logP, within the reference database. Furthermore, notwithstanding the high structural 
diversity of the molecules, as attested by a low average path-based fingerprint 
similarity, the reference database will always represent a minute percentage of 
chemical space, which will decisively contribute to said flagging inaccuracies.  
 
To better understand how these different methods behave prospectively, we 
compared the three most promising methods, specifically the SVM-RFE81, RF32 
classification models and the  publicly-available Aggregator Advisor51. The use of all 
three methods for flagging of novel compounds from a ChEMBL subset of random 
molecules as aggregators (12,637 compounds, cf. Box 1) revealed a distinct 
behaviour between the different models on uncharted chemical structures. Not only 
did the algorithms differ in the molecules they would flag as aggregators, they also 
flagged vastly different numbers of compounds. Taking into account the number of 
predicted SCAMs for each model (Table 2), one may speculate that the RF approach 
is more conservative, with a potentially smaller fraction of false positive predictions 
compared to the remaining models but also the possibility of false negatives. This 
behaviour is also visible in the original publication through its low recall (60%) and 
high precision (83%) on the training data32. Therefore, the method is likely valuable 
when aggregators are to be identified with high confidence. However, this also 
means that many potential aggregators would not be flagged by this method. If 
flagging of chemical structures is imperative to generate exhaustive alerts and avoid 
any aggregators, it is arguably key to ensure a high recall. This would support the 
Aggregator Advisor or the SVM-RFE as models of choice. Indeed, the latter showed 
almost inverse performance statistics on its original training data compared to the RF 
model, with an impressive recall of 77% but a low precision of around 33%81. This 
indicates that relying on such a method could potentially eliminate thousands of 
promising structures through wrongly accusing them of aggregation – a behaviour 
that has brought classic flagging lists into disfavour recently (Box 2), and would likely 
also limit the deployment of such approaches in the pharmaceutical industry. 
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Understandably, despite this theoretical framework, only experimental 
characterization of the flagged chemical matter can provide a definitive answer. 
 
We next wondered how different the chemical space landscape flagged by the 
different algorithms was. Both the Aggregator Advisor and SVM-RFE model predict 
more than 2,500 structures (>5% of the whole dataset) as aggregators, but have 
disparate classification vantage points, with only ca. 25% agreement (Figure 5a). 
The result is intriguing and raises questions on both the complementarity and ability 
to detect SCAMs by both methods. On the other hand, the RF model flags less than 
half the number of molecules compared to the other two approaches. An overlap of 
68% with the SVM-RFE model supports a somewhat similar behaviour, which is not 
unexpected considering that they share the same training data set in the 
implementation. Given that the Aggregator Advisor is a model-free approach based 
on chemical similarity, this indicates that a total of 2,664 compounds in the 
prospective test set are chemically very similar to known aggregators. The RF and 
SVM-RFE models, on the other hand, generalize from physicochemical descriptors, 
thereby creating models that can predict SCAMs among novel chemotypes: 780 
(70%) of all flagged compounds of the RF model and 1,718 (74%) for the SVM-RFE 
model are structures that are not highly similar to the training data. Conversely, 
1,976 compounds are highly similar to the training data but not flagged by either the 
SVM or the RF models. This clearly highlights the differential characters of the 
different models, as well as the dissociation of the SVM and RF models from pure 
chemical similarity analysis. From a chemoinformatics perspective, one can also 
conclude that highly different model architectures with similar retrospective 
performances still contrast starkly in prospective behaviour and the character of 
flagged compounds. This can be easily visualized by using dimension reductions 
and projections of structural (dis)similarities between molecules identified as 
potential aggregators by the three different flagging methods (Aggregator Advisor, 
SVM-RFE, and RF models; Figure 5b). Even when relying on a completely 
independent definition of chemical similarity (e.g. MACCS keys) that is agnostic to 
the relationships implemented by the machine learning models, it becomes visible 
that the Aggregator Advisor largely flags highly-similar molecules with minute 
differences between them – visible through well-defined clusters among the flagged 
data (black dots in Figure 5b). Conversely, molecules identified by the SVM-RFE and 
RF models present a wider range of chemotypes as visible through larger 
dissimilarities between them, which can be attested to through the absence of 
clusters and a more widespread population of the chemical space. In summary, this 
result supports that SVM-RFE and RF models generalize learnt data patterns 
beyond simple chemical similarity, unlike the Aggregator Advisor that relies on 
chemical structure equivalence to alert on the aggregation propensity. Moreover, the 
chemical space projection also clearly highlights that the three methods behave 
differently and are able to provide distinct solutions to the challenge of identifying 
SCAMs with several molecules covering distinct areas, despite sharing the same or 
similar reference data. 
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Similar conclusions will be valid for alternative machine learning methods of potential 
interest for the colloidal aggregation problem, e.g. k-NN (Box 3), or the 
computationally simpler linear, and logistic regression methods. In any case, as 
model generalization is crucial for prospective utility, a fine balance between model 
complexity and accuracy must be found and ensure that the model is neither under- 
or overfit. The analysed machine learning models point towards the difficulty in 
identifying suitable descriptors as chemical markers for colloidal aggregation, and 
expose strengths but also limitations of the employed methods and algorithms. The 
significance of colloidal aggregation to mislead drug discovery and the limited 
number of current proposals to address this challenge highlights there is much room 
for improvement in the current machine learning applications. The publicly reported, 
successful applications of automated SCAM detection hint at established chemical 
descriptors coupled to advanced machine learning models being able to capture the 
aggregation propensity of a novel chemical structure, while algorithmic and 
performance shortcomings serve as important guideposts for future research in this 
most relevant area of drug discovery. 
 
We must re-emphasize that, like for other substructural filters, the output of machine 
learning models of colloidal aggregation prediction should be interpreted with healthy 
scepticism and solely as an alert. As discussed above, all reported models still 
remain too crude to capture the concentration dependence of the colloidal aggregate 
formation e.g. via CACs32. The prediction of CAC values would require the 
employment of regression machine learning methods, which typically need even 
larger datasets for acceptable accuracy. The lack of this data and therefore 
requirement for extensive experimental profiling of CAC values to include in the 
training data can, at least in part, explain why such a regression model has never 
been reported before. Another shortcoming is the inability to distinguish different 
assay conditions, i.e. with diverging pH or buffer conditions the aggregation 
behaviour might not be relevant anymore for a compound of interest. Inclusion of the 
CAC value as well as the specific assay conditions might eventually provide the drug 
discovery community with advanced computational models to effectively gauge the 
relevance of aggregation propensity in a biological context. Such models and data 
will also improve our understanding of this phenomenon and provide useful guidance 
for the design of future HTS campaigns as well as the analysis of already published 
data. From a biological perspective, some enzymes might be particularly vulnerable 
to SCAMs while others might be less vulnerable to such effects22. Bootstrapping 
data from different campaigns will eventually enable us to develop a thorough 
understanding of when caution is advised. 
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Outlook 
 
Modulation of drug targets in chemical biology and molecular medicine programs 
relies on the discovery and validation of new chemical entities that specifically bind 
the protein of interest. Evidence from literature, data analysis, and personal 
experience shows that the tortuous path to the successful discovery of disease-
relevant chemical matter is often plagued by artefactual, false positive readouts. As 
discussed, colloidal aggregation can account for up to 95% of false positives in HTS 
campaigns, which renders it by far the most prevalent cause of erroneous ligand–
target associations and yet, one of the least studied and tested for. We have here 
discussed select examples where discovery campaigns were misled by this effect 
and have estimated that up to 4% of screening data points are potentially 
compromised. This suggests that a staggering 80% of bioactivities for SCAMs might 
be false (Box 1). Overall, this alarming picture can compromise future drug discovery 
campaigns by inflating the selection of such seemingly promising structures. Tightly 
connected is the overlook of genuinely active compounds because of aggregation at 
sufficiently high micromolar concentrations, i.e. false negatives – this could be case 
for an undefined number of molecules. Both realizations advocate for the urgency of 
improving our understanding of the underpinnings of colloidal aggregation for 
informed decision-making. 
 
To raise awareness on the impact of colloidal aggregates in discovery chemistry and 
provide tools to combat their development, we have here compared screening 
methodologies for the identification of SCAMs that may be valuable to the drug 
development community. A variety of methods exist with different complexities and 
advantages (Table 1). Their appropriate use will arm researchers with powerful tools 
to validate their screening hits. However, given the additional cost associated with 
counter-screens, emerging machine learning tools have a promising future for the 
automated aggregation prediction, to enable data curation, screening library filtering, 
and to study the aggregation behaviour further. Only few examples have been 
published on the automated detection of SCAMs (Table 2). While their performances 
are already promising and indicate that SCAM detection is indeed a computationally 
accessible challenge, their distinct vantage points and prospective behaviour 
indicate clear opportunities for improvement. Namely the gross under- or 
overestimation of the number of affected compounds or the strong dependence on 
high chemical similarity have important implications on their ability to predict the 
aggregation propensity of new chemical entities82. Therefore, it will be of utmost 
importance to obtain a thorough understanding of the behaviour and limitations of 
current methods, so that informed experts can apply and interpret their results and 
make decisions that suit the needs of their projects. We have shown here that 
available methods, albeit far from being perfect, already provide a range of different 
capabilities that will enable scientists to deploy these approaches with the desired 
outcome. Undeniably, with increasing data on aggregation and advances in 
predictive model architectures, the machine learning tools will become more 
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accurate at flagging liable chemical matter and overcome the current shortcomings 
of automated SCAM detection. In particular, with the advent of deep learning83 and 
active learning84 (Box 3) in medicinal chemistry and the life sciences in general, we 
expect the rapid development of more sophisticated models trained on large, high-
quality data to emerge in the near future. Such optimized methods will provide 
invaluable in silico screening methods that act fast and are reliable to combat 
SCAMs by flagging liable structures for exclusion, re-screening, and validation. The 
identification of molecules forming colloidal aggregates does not always imply that 
they should be blindly discarded from further investigations. The bioactivity and the 
CAC should be evaluated vis-à-vis as a step towards proper validation of drug target 
binding and engagement. As discussed, drug target binding at low nanomolar 
concentrations is unlikely to be affected by aggregates if the CAC is orders of 
magnitude higher. In particular, given that many approved, life-changing drugs show 
aggregation at low concentrations indicates that such compounds can still act as 
potent therapeutics and their naïve elimination would dismiss potentially invaluable 
molecular material.  
 
To promote well-informed decisions on this matter, we foresee that both human-
controlled and “driverless” artificial intelligence will increasingly play a pivotal role in 
the setup and monitoring of drug discovery pipelines.  Harnessing multiple predictive 
algorithms to anticipate crucial properties such as bioactivities, reactive accessibility, 
solubility, but also colloidal aggregation propensity will assist researchers in the 
efficient navigation of complex data pattern landscapes and streamline future drug 
discovery. 
 



21 

Box 1. Datasets 
 
A random ChEMBL dataset85 (green) of equal size (12,637 compounds) to the 
Shoichet database of validated SCAMs51 (orange) was generated to mimic the 
molecular weight distribution of the latter. The obtained library (Figure above) 
includes 119 known SCAMs and 2,664 entities that are structurally very similar to 
known aggregators. This observation is fully in line with previous findings by 
Shoichet et al. on the expected frequency of SCAMs in publicly available 
databases51. Interestingly, although not selected for, a similar calculated logP 
(clogP) distribution emerged (Figure above), which suggests that molecular weight 
and predicted lipophilicity are correlated features in this particular library. Moreover, 
while there is a slight bias towards higher clogP values for the known aggregators, 
the distributions are strongly overlapping and therefore raise doubts about the utility 
of simple clogP measures to estimate the aggregation propensity of a molecular 
structure. Strikingly, disparate affinity profiles [pAffinity = –log(XC50 or KD/i)] between 
the two subsets can be observed (Figure above). By distinguishing high from low 
potency values (cut off pAffinity = 6, i.e. 1 µM), some interesting trends became 
visible. Both sets showed an equal number of high affinity interactions, suggesting 
that the aggregation potential occurring at high ligand concentrations does seemingly 
not sabotage the potential of a compound to form specific, potent interactions with 
proteins. This is in line with observations that potent, approved drugs still aggregate 
at high concentrations. However, when looking at low affinity interactions, a stark 
difference was apparent. The average number of reported low affinity interactions 
was more than two times higher for aggregators compared to non-aggregators, 
hinting at 45% to 80% of the reported bioactivities for these structures being 
potentially false – depending on whether only assuming the additional low affinity 
interactions to be false or all low affinity interactions. Apart from economic 
implications, these wrong associations impact the development process of 
medications. Such potential false positives can dramatically perturb structure-activity 
relationships, misguide in silico method development and disrupt future drug 
discovery. 
 
 
Box 2. Assay interference compounds 
 
Especially since the introduction of PAINS, substructure filters have (re-)gained 
immense attention and are now more commonly applied. More than 1400 citations 
(as of December 2018; GoogleScholar) of the original PAINS paper attest to their 
frequent application and their utility for researchers to filter screening libraries to 
avoid artefacts. Indeed, leading journals, such as those published by the American 
Chemical Society, require authors to consider PAINS when publishing new 
bioactivities. However, as with any other technology, PAINS filtering is not a 
panacea12 and they recently have been more thoroughly analysed and criticised86,87. 
It is now well established that substructure filters should not be applied blindly76; 
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multiple retrospective analyses have disclosed that many flagged compounds will 
remain inactive in a broad range of assays88,89. This has been rationalized with the 
fact that some PAINS present features that are not necessarily associated to 
frequent-hitter behaviour76,90. Thus, not all PAINS represent liabilities irrespective of 
the molecular and screening context88. Raising further doubt about the utility of 
simple flagging lists, molecular design may provide a means to tailor molecules 
containing problematic moieties, and ultimately render them suitable for the clinics91. 
Indeed, there are multiple examples of “ugly” chemical matter with proven utility92, 
including several FDA-approved natural products and derivatives, e.g. atovaquone, 
mitomycin, doxorubicin91. According to blindly following the abovementioned filters, 
these drugs would have been discarded from development pipelines, which would 
have significantly impacted the life of patients relying on these medications7,8,15. This 
should not be considered a refutation of the utility of PAINS, but a word of precaution 
regarding how the filters can be wrongly applied. They are useful formalizations of 
automated, focused chemical intuition90, but blindly removing chemical matter from 
follow-up studies without sound context-based criteria could drastically influence 
future drug discovery. Instead, these rules should rather serve as guidelines to 
prioritize chemical matter and as a flagging system for downstream in-depth hit 
validation. Experimental validation of target engagement93,94 is always warranted – a 
practice commonplace in the pharmaceutical industry. The figure depicts a taboo list 
(outer red circle) including examples of overlapping or unique motifs from the 
Hann10, Rishton5, “rapid elimination of swill” (REOS)70,72 and “pan-assay interference 
compounds” (PAINS)7,15 filters. Examples of FDA-approved drugs containing 
potentially problematic moieties are shown for comparison (inner green circle).  
 

 
 
Box 3. A primer on artificial intelligence and machine learning 
 
With the increasing amount of available data in drug discovery, new, fast and 
dependable ways of structuring it and exploring patterns became both needed and 
relevant. Data mining, machine learning, and artificial intelligence (AI) are 
overlapping technologies for automated data analyses in a holistic/integrated manner 
without the caveats of biased human reductionism95. At its core, AI software reacts 
to a previously “unknown” external stimulus (data features or descriptors) to provide 
an output (prediction) through a defined effector function (algorithm). AI leverages 
hundreds to millions of data points encoded through descriptors and use one of a 
dozen different mathematical approaches to recognize patterns or determine data 
correlations95. 
 
Machine learning methods include algorithms for grouping data into sets (clustering), 
to facilitate data interpretation and visualization (dimensionality reduction), to 
attribute a category to data objects (classification) and to predict numerical values 
(regression). In drug discovery, machine learning has seen applicability in the 
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prediction of solubility96 or biological activity of drugs97, the structure of proteins from 
their genetic sequence98, or automated processing of medical imaging99. More 
recently, deep learning has emerged as a subfield of AI100 that harnesses several 
hidden layers to unravel complex data. This method is especially data-avid and 
requires higher-than-usual computing power, which can potentially prohibit its use, 
despite notorious applications83,101. Conversely, active learning (or “selective 
sampling”) focuses on building competent predictive models through selection of 
data points for testing and feeding them back into the model with the aim of 
modifying it in iterative fashion. It thus leverages a scarce amount of data, while 
using well-established algorithms to efficiently design experiments and add relevant 
knowledge84,102,103. 
 
Self-Organizing Maps (SOMs) or Kohonen networks104 were developed as a neural 
network-inspired heuristic (with input/output neurons and their weight parameters) to 
reduce dimensionality and cluster data. As an unsupervised clustering method there 
is no target output, i.e. learning considers only the structure of the data but not the 
classes. Training evolves positions of cluster centroids (“neurons”) until stabilization 
or a user-defined number of iterations. SOMs include a neighbourhood structure 
between the clusters and, within this neighbourhood network, small topological 
distances between clusters translate into small distances between cluster members 
in the original parameter space. Hence, SOMs function as a visualization technique 
by showing clusters with their neighbourhood relationship.  
 
Naïve Bayes (NB) classifier is a supervised machine learning method that uses the 
Bayes theorem (assumption that the probability of any given event is correlated with 
a previously known variable) as workhorse to assess the degree of belief (the so-
called posterior probability) in the association. The method assumes (naïve) 
independence between feature pairs to simplify joint probabilities P(x,y) into products 
of independent probabilities P(x)P(y). NB classifiers are highly versatile, robust and 
easy to use for the aggregation or other drug discovery problems by predicting the 
probability of a given class, e.g. aggregator/non-aggregator. 
 
Recursive Partitioning (RP) or decision tree is a non-parametric and supervised 
method that can be used for classification and regression problems. It uses decision 
rules (split point) to separate the training data in an iterative (recursive) fashion, 
which leads to successively smaller groups of data that are more homogeneous in 
terms of the objective variable. From a tree model it is possible to extract the feature 
importance towards the prediction, e.g. by evaluating the order of splitting or 
calculate the associated impurity reduction of a variable. Decision trees do however 
tend to overfit. To mitigate this limitation, pruning of trees or ensemble methods have 
become increasingly popular. 
 
Random Forests (RF) employ a combination (ensemble) of multiple tree predictors. 
Every tree is fitted using a randomly selected subset of the data and the available 
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data descriptors. Thereby, every tree learns to distinguish a certain aspect of the 
dataset, which contributes to high variance between the trees and mitigates their 
overfitting. When predicting new data, every tree will provide a prediction from their 
perspective, and the combination of all trees gives a consensus prediction (forest). 
Such a consensus can, for example, be the average predicted value (regression) or 
the majority class (classification). RFs are robust with respect to data noise, 
correlated features and descriptors with different magnitudes, which make them 
methods of choice for a vast majority of pattern recognition problems. 
 
Extremely Randomized Trees (ERT) employ multiple decision tree predictors 
similar to RFs. The main difference lies in searching the most discriminative 
threshold for a certain variable. While RF searches all thresholds systematically, the 
ERT approach selects thresholds at random. The best thresholds are then used as 
splitting rules. This leads to a further de-correlation of the trees, which can improve 
the predictive ability of the ensemble. 
 
Support Vector Machines (SVM)105 are a method for classification or regression 
analysis of data projected into high (p) dimensional space. It identifies a so-called 
“hyperplane” in p–1 dimensional space that separates the training data, e.g. 
aggregators/non-aggregators. Multiple hyperplanes are thus possible with the 
optimal linear model presenting the maximum cumulative distance (margin) possible 
to the closest data points (support vectors). Since data might not be separable in the 
original parameter space, increasing the dimensionality to find separating planes is 
performed. Data separation can be achieved by implicitly increasing the 
dimensionality through the use of kernel functions. SVMs are sensitive to descriptor 
scaling, its performance is affected by the choice of parameters, can be slow to train, 
but have a lower risk of overfitting and work well on a wide range of problems. 
 
Whereas RFs have an in-built feature selection process, the same is not true for 
SVMs106, which can negatively impact the predictive performance. Recursive 
Feature Elimination (RFE) is a method to iteratively build smaller groups of features 
responsible for a given output. Pruning of the feature set is based on their relative 
weights (importance), with the first eliminated feature corresponding to that with 
smallest weight. The pruning procedure is repeated until a user-defined number of 
features is reached. Pre-processing the input data with a feature selection method 
may thus be not only desirable but also important. Alternative approaches for such 
pre-processing methods include removing correlated features or using principle 
component analysis (PCA) to reduce the dimensionality of the feature space. 
 
k-Nearest Neighbour (k-NN) is a supervised method using lazy learning 
(generalization is performed only once the algorithm is fed with a query) for 
classification or regression analysis of data by drawing conclusions from the k most 
similar reference data points.  In both instances, the value of k is assigned by the 
user and can be weighted to reflect the distance between the query and the 



25 

reference data point. The molecular similarity evaluation can be considered a k-
NN approach with k = 1 and using a distance threshold to ensure that the considered 
reference data point is sufficiently similar to be relevant for classification.  
 
Irrespective of the employed classification or regression method, it is good practice 
to probe the scope and performance of the AI model. A k-fold cross-validation is 
commonly performed as a retrospective model evaluation approach to validate 
machine learning models. To that end, the dataset is partitioned into k equal-sized 
subsets, where one of those is held out for model validation, and the remaining k–1 
subsamples are used to train the model to be tested. By performing a total of k 
evaluations, the whole data is used as a test set exactly once. A performance 
measure can then be calculated from the whole data, or on every individual 
evaluation and averaged. Important metrics to assess the utility of the classification 
models include: 
• Sensitivity or recall is the fraction of positives identified as such. It is calculated 

as, ܵ݁݊ݕݐ݅ݒ݅ݐ݅ݏ = ܶܲܶܲ +  ܰܨ

 
• Specificity is the fraction of negatives identified as such. It is calculated as, ܵݕݐ݂݅ܿ݅݅ܿ݁݌ = ܶܰܶܰ +  ܲܨ

 
• Accuracy is the fraction of correctly identified positives and negatives among the 

total population. It is calculated as, ݕܿܽݎݑܿܿܣ = ܶܲ + ܶܰܶܲ + ܶܰ + ܲܨ +  ܰܨ

 
• Matthews Correlation Coefficient (MCC) gauges the quality of the model in a 

range from -1 to 1, where -1 denotes a completely wrong binary classifier and 1 a 
correct one. It stems from a 2×2 confusion matrix of true and false positives and 
negatives. It can be calculated as, ܥܥܯ = ܶܲ × ܶܰ − ܲܨ × ܲܶ))ܰܨ + ܲܶ)(ܲܨ + ܰܶ)(ܰܨ + ܰܶ)(ܲܨ +  ଵ/ଶ((ܰܨ

 
where TP, TN, FP and FN are true positives, true negatives, false positives and false 
negatives, respectively. 
 
Regression methods may be best assessed through metrics such as: 
• Coefficient of determination (r2) can be determined between actual and 

predicted values, which reflects a better fit of the model to the training data 
through increasing values, up to a maximum of 1. 
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• Mean absolute error (MAE) measures the average error extent in a prediction 
set without considering its direction and assigning equal weights to the individual 
errors. It can be calculated as, ܧܣܯ = ∑ ௜ݕ| − ො௜|௡௜ୀଵݕ ݊  

where ݊ is the number of samples, ݕ is a true value and ݕො௜ its paired predicted value. 
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Figure captions 

 

Figure 1. Mechanisms of unspecific protein inhibition by colloidal aggregates. 
Poorly water-soluble molecules aggregate at concentration values higher than the 
critical aggregation concentration. These aggregates can engage in unspecific 
interactions with proteins, which lead to the protein’s inactivation through different 
mechanisms. Two mechanisms of unspecific protein binding have been reported: (i) 
formation of large aggregates that sequester and partly denaturate proteins and, (ii) 
formation of small conglomerates that mimic protein monomers. The example of 
TNFα inhibition by a conglomerate mimicking a protein scaffold is given (PDB 
5MU8)25. One should note however that the protein scaffold mimicry mechanism was 
identified by x-ray crystallography, which not always accurately represents events in 
solution. 

 

 
Figure 2. SCAMs are ubiquitous in drug discovery and impact network 
pharmacology. a) Exemplary structures of natural products and drugs that are 
commonly used in chemical biology and medicinal chemistry as probes despite 
aggregating at biochemically relevant concentrations. b) Violin plot of reported 
bioactivities for quercetin. The activities are biased towards low affinity values, which 
potentially result in artefactual readouts due to colloidal aggregation. pAffinity = –
log(Ki/D or XC50, ChEMBL22). c) Network analysis of potentially erroneous drug 
target associations extracted from reported bioactivities for experimentally validated 
SCAMs (pAffinity < 4). Each node (vertex) denotes a drug target and associations 
(edges) are made by a common ligand. The node colour code denotes a connectivity 
index, i.e. from cold (blue; low connectivity) to hot (red; high connectivity) colours. 
The high network convolution supports multiple drug target relationships that are 
plagued by artefacts and potentially connects biochemically unrelated drug targets. 
d) Network analysis of potentially true drug target associations extracted from 
reported bioactivities for experimentally validated SCAMs (pAffinity ≥ 7). The node 
colour code denotes a connectivity index, i.e. from cold (blue; low connectivity) to hot 
(red; high connectivity) colours. The high network convolution supports multiple drug 
target relationships that ought to be explored. 

 

 
Figure 3. Historical evolution of confirmed SCAMs and their underlying 
scaffolds. The identification of molecules (red) aggregating at biologically relevant 
concentrations has seen exponential growth in the last years as a result of a few 
seminal studies focused on the colloidal aggregation phenomenon and the validation 
of novel assay technology for their detection. The scaffold diversity (blue) in the 
Shoichet dataset is high, with ca. three out five molecules featuring a different 
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framework. The five most frequent scaffolds, and their counts of occurrences in 
SCAMs, are highlighted in the blue box. An example of a SCAM for each of the most 
frequent scaffolds is shown directly above the scaffold in the red box. 
 
 
Figure 4. Common filters do not detect SCAMs. Pie charts of compound filtering 
with commonly employed substructural filters. Known aggregating molecules (from 
the “Aggregator Advisor” database; outer pie charts) and the molecular weight-
proportional ChEMBL set of random molecules (inner pie charts) display similar 
numbers of alerts for widely accepted substructures as computed from a range of 
filters, implemented by Ekins et al.107 It follows that all substructural filters are 
insensitive to SCAMs, with the exception of ALARM NMR, which does not appear to 
be specific. Hit Dexter identifies aggregators but is also not specific. REOS = Rapid 
elimination of swill70,72; GSK = Hann filters10; PAINS = Pan-assay interference 
compounds7,8,15; Green = pass filter; Red = fail filter. 
 
 
Figure 5. Comparison three different in silico methods for the automated 
identification of SCAMs. a) Venn diagram showing overlapping and diverging 
predictions. The Aggregator Advisor predicts colloidal aggregation through similarity 
searches with the reference database, i.e. it does not involve a training step. 
Random forests (RF) and support vector machines – recursive feature elimination 
(SVM-RFE) employ different machine learning algorithms (Box 3) to teach a 
computer in distinguishing patterns. Despite being constructed with the same 
reference data including aggregators/non-aggregators, the methods still behave 
differently when applied prospectively to a random subset of ChEMBL molecules. 
The consensus prediction of all classification models consists of only 241 molecules, 
i.e. 1.9% of the database size, of which only <1% were known aggregators. 
Amalgamation of similarity search methods with artificial intelligence may provide an 
expeditious means to confidently predict SCAMs and nuisance behaviour. b) 
Multidimensional scaling of predicted liable compounds in the random dataset (Box 
1), as identified by the Aggregator Advisor (black), SVM-RFE (cyan) and RF 
(orange). The projection into two new dimensions (coordinates 1 and 2) is computed 
from a similarity matrix based on Tanimoto coefficients derived from RDKit’s MACCS 
keys. Data shows that compounds identified by the “Aggregator Advisor” do cluster, 
which is consistent with a similarity-based approach for flagging chemical matter. 
Both machine learning methods identify molecules further scattered in the 
(dis)similarity space, without recognizing privileged clusters, which shows that 
patterns in molecular properties are learned and identified across a wider range of 
chemical space. 
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Tables 
 
Table 1a. Experimental methods for the detection of colloidal aggregates. 
 Detergent sensitivity Dynamic light 

scattering 
Centrifugation Fluorescence 

Assay type Biochemical Biophysical Biophysical Biophysical 
Principle Enzyme inhibition by 

SCAMs is disrupted 
through addition of a 
detergent (e.g. Triton 
X-100, Tween 80). 

Measures the 
Brownian movement 
of particles, which 
correlates with their 
hydrodynamic radius. 
It assumes a certain 
particle shape. 

Centrifugation 
induces the formation 
of pellets originating 
from aggregates. 
Bioactivity change 
before and after 
centrifugation is a 
function of presence 
of aggregates. 

Aggregates change 
the meniscus 
curvature in multi 
well plates, which 
affects the 
fluorescence 
intensity detected by 
a top read 
fluorescence plate 
reader. 

Throughput Depends on assay 
throughput 

Low, but also 
amenable to multi 
well plates 

Low to high High in multi well 
plates 

Operational cost Low per data point in 
HTS mode 

Low per data point Low Low per data point in 
HTS mode 

Accessibility Easy to implement. 
Gold-standard 
method using model 
enzymes. 

Easy to implement 
but requires an 
expensive 
equipment. Gold-
standard method. 

Very easy to 
implement 

Easy to implement 

Readout Enzyme inhibition Light scattering / 
hydrodynamic radius 

Enzyme inhibition of 
phenotype change 

Fluorescence 
intensity 

Interpretability Easy Easy Easy Easy 

 
 
Table 1b. Experimental methods for the detection of colloidal aggregates. 
 Surface plasmon 

resonance 
Photonic crystal 
biosensors 

1H NMR DMSO-perturbed 
enzymatic assay 

Assay type Biophysical Biophysical Biophysical Biochemical 
Principle A plane-polarized 

light is reflected by a 
conducting surface at 
the interface of two 
media. Non 
stoichiometric 
binding by 
aggregates affects 
the angle of 
diffraction. 

Biosensors have a 
sub-wavelength 
periodic surface that 
reflects light. The 
reflected light is 
modulated by 
changes in the 
refractive index 
induced by 
aggregates.  

At high 
concentrations, 1H 
NMR chemical shifts, 
multiplicity, shape 
and intensity change 
as a result of slow 
tumbling of 
aggregates in 
solution. 

High DMSO content 
generates protein 
populations – 
productive and non-
productive. Binding 
of aggregates to the 
denatured form 
results in lower 
inhibitory activity 
against the fully 
folded form. 

Throughput Low High in multi well 
plates 

Very low High in multi well 
plates 

Operational cost High cost of 
consumables  

Low cost of 
consumables 

Low per data point Low per data point in 
HTS mode 

Accessibility Assay conditions 
must be finely tuned 
and requires 
expensive equipment 

Easy to implement, 
fast, but requires 
specialized 
equipment 

Easy to implement 
but requires a very 
expensive equipment 
and analysis 

Easy to implement 

Readout Refractive index of 
sample 

Refractive index of 
sample 

Chemical shifts of 1H 
nuclei 

Enzyme inhibition 

Interpretability Difficult Easy Difficult Easy 
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Table 2. Comparison of in silico SCAM prediction methods. 
 Seidler et al.30  Feng et al.32 Rao et al.81 Aggregator 

Advisor51 
Algorithm Recursive 

Partitioning 
Random Forest Support-Vector 

Machine 
Chemical 
similarity 

Training / model 
complexity 

Low Medium  High None 

Interpretability High Medium Low By chemistry 
experts 

Data quantity Low High High Very high 
Advantage Good 

Interpretability 
High precision High recall Continuously 

add data 
Disadvantage Low accuracy Low recall Low precision No 

generalization 
Applicability 
domain 

Narrowa Wide Wide Narrow 

Prediction 
speed 

Very fast Fast Fast Medium 

a as originally implemented with a small training set. 
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