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Abstract

The nonlinear evolution of the parametric instability of inertial waves inherent to
eccentric discs is studied by way of a new local numerical model. Mode coupling of
tidal deformation with the disc eccentricity is known to produce exponentially growing
eccentricities at mean-motion resonances, most prominently via the 3:1 eccentric
Lindblad resonance in circumstellar binaries. However, the details of an efficient
saturation mechanism for this growth are still not fully understood. Linear theory
for the parametric instability of inertial waves in eccentric discs has previously been
studied by Barker and Ogilvie (2014), the nonlinear evolution of which dictates the
transport rates and may help saturate this unmitigated eccentricity growth. This thesis
develops a generalised numerical model for an eccentric quasi-axisymmetric shearing
box based on the theoretical model developed by Ogilvie and Barker (2014) which
itself generalises the often-used local cartesian shearing box model. The numerical
method is an overall 2nd order well-balanced finite volume method which maintains
the stratified and oscillatory steady state solution to machine precision.

This implementation is employed to study the nonlinear outcome of this parametric
instability in eccentric discs with vertical structure. Stratification is found to constrain
the perturbation energy near the midplane, and localises the effective region of the
secondary instability. A saturated marginally sonic turbulent state is then maintained
by the breaking of inertial waves cascading energy into smaller scales. The resulting
turbulence is quite inefficient at transporting angular momentum through the disc, as
might be expected from a restricted axisymmetric instability. Still, the saturation of
this parametric instability of inertial waves is shown to damp the eccentricity on the
timescale of 50 to 100 orbital periods, and so is a promising mechanism for balancing
the exponential growth of eccentricity from the eccentric Lindblad resonances.
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Chapter 1

Introduction

Astrophysical discs are a common phenomenon in the universe — from galaxies and
their resident active galactic nuclei, to x-ray binary stars, protoplanetary discs, and
planetary rings. These discs are all characterised by rotationally-supported matter in
a stable orbit around a central gravitating object. Accretion discs are an interesting
subset of these discs because they support a radial inflow of mass and thus mass
accretion onto a central object. Accretion discs form when an external source of
in-falling matter has excess angular momentum and thus settles into a flattened disc
(if the medium is collisional, i.e., gaseous). Since these discs are often dominated
by centripetal support against gravity, they are differentially rotating which appears
locally as a background shear flow. This shear flow contains a vast source of energy,
which in non-rotating systems (such as plane Couette flow) would be fluid-dynamically
unstable at these high Reynolds numbers. It may then be surprising at first glance
that these shearing discs don’t immediately become unstable, dissipate orbital energy,
and infall onto the central object. Indeed this does not happen because the system is
additionally restricted by angular momentum conservation. Thus in a rotating system,
energy liberation must be accompanied with the transport of angular momentum
radially outwards while mass accretes inwards. All accretion discs consequently require
a mode of angular momentum transport out of the disc to continue supporting mass
accretion.

Unfortunately, molecular viscosity alone cannot account for the observed transport
rates of mass and angular momentum through the disc. Acting solely on the background
shear, molecular viscosity can produce effective α-viscosity values of only 10−10 to 10−8

(Shakura and Sunyaev, 1973), often implying that the molecular viscous timescale is
very much longer than the lifetime of the disc itself! Thus to explain observations, an
α-viscosity near 10−3 to 10−1 is required (Spitzer, 1962). For many years, attention
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has been focused on searching for efficient modes of transporting angular momentum
that might explain this deduced rate of mass accretion through observable discs. An
enhanced, turbulent viscosity can often significantly exceed that of molecular viscosity,
though the origin of the required turbulence is still elusive in particular scenarios and
quite debated. The magneto-rotational instability is now being accepted as the most
promising means of driving turbulence to enhance this viscosity (Balbus and Hawley,
1991); however, it is only effective in ionised regions of the disc.

Razor thin viscous circular accretion discs in particular have been the subject of
early seminal theories (Pringle, 1981). Yet there are no widely accepted local purely
hydrodynamic instabilities in cylindrical discs efficient enough to explain the deduced
rate of mass accretion through observable discs. Thus by lifting the assumption
of a cylindrical disc, additional instability and transport processes may be excited.
Indeed, although the lowest orbital energy state is circular, Syer and Clarke (1992)
have shown that not every disc tends to circularise. Lin and Pringle (1976) have
shown circularisation is inevitable for the special case of discs in a binary potential;
however, in general this is dependent on the phase of the stresses in relation to the
orbital phase. Analogous to the classic axisymmetric orbital diffusion problem for a
circular ring, Syer and Clarke evolved an elliptical ring of matter, finding that the
initial eccentricity can be sustained even on viscous timescales for aligned orbits of
similar eccentricities. Further mechanisms have more recently been found to couple
with the evolution of eccentric disc modes and continually perturb or sustain eccentric
orbits. These eccentric perturbations may be related to the origination of the disc,
due to the continuous anisotropic mass transfer from a binary companion (Roche
overflow) or from the parent nebular cloud core. Eccentricity may also be sustained by
a viscous instability to eccentric perturbations which is known to exist for particular
viscosity prescriptions, including the often-used α-viscosity (Lyubarskij et al., 1994).
On longer time-scales, secular interactions with an eccentric companion or planet
are also known to induce eccentricity. Finally, eccentric mode-coupling with a tidal
deformation via a mean-motion resonance has been shown to produce exponentially
growing eccentricities when the disc and perturbing companion orbital frequency are
nearly in a ratio of m to m ± 2 (Lubow, 1991, 2010). These mean-motion resonances
may arise in planetary rings resonating with satellites (Goldreich and Tremaine, 1981),
protostellar discs with embedded planets (Kley and Dirksen, 2006; Papaloizou et al.,
2001), as well as circumstellar or circumbinary discs perturbed by the stellar binary
(Lubow, 1991; Whitehurst, 1988).
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Thus the classical theory of accretion discs (Pringle, 1981) has been generalised to
accommodate this additional degree of freedom in the orbital energy (Ogilvie, 2001).
Eccentric discs store additional energy in the m = 1 azimuthal inertial mode, which
opens up possibilities for instability and energy extraction not available to cylindrical
discs. One such instability arises from the parametric coupling between small-scale
inertial waves and the periodically modulated parameters of the eccentric azimuthal
mode, generating growing inertial waves capable of transporting mass and angular
momentum (Barker and Ogilvie, 2014; Papaloizou, 2005b). This instability may provide
the necessary means of saturating the eccentricity growth, in particular from the strong
3:1 eccentric inner Lindblad resonance viable in cataclysmic binaries, and which are
shown to produce unmitigated eccentricity growth in linear theory (Lubow, 1991). The
details of this saturation mechanism may help explain the occurrence of outbursts and
superhumps common to these binary systems, as well as the observed eccentricities
of embedded planets (Goldreich and Sari, 2003). There is also interest in finding a
dependence of the α-viscosity on disc eccentricity, which would contribute to higher-
level analytic models allowing theorists to probe the early formation of protostellar
discs, setting the initial conditions for star and planet formation.

These disc phenomena are able to be explored in a number of ways; however, upon
exhausting linear perturbation theory, numerical models become an irreplaceable tool for
studying the nonlinear dynamics of these accretion flows. Current numerical methods
for studying eccentric discs are limited to global (entire disc) simulations. Global
smoothed particle hydrodynamics (SPH) simulations (Murray, 1996; Whitehurst, 1988)
were originally employed to deduce the global disc properties and eccentric instability
modes; however, global finite volume and difference methods are now common (Kley
and Dirksen, 2006; Kley et al., 2008; Marzari et al., 2009). Yet this parametric inertial
wave instability has only ever been previously observed by Papaloizou (2005a) using
a global disc model with no vertical gravity. This is likely because the majority of
global simulations of eccentric discs are either 2D, and therefore unable to support
this instability, or 3D but too short in duration and numerically dissipative (Bitsch
et al., 2013) due to limits of computational resources. Alternatively, simulating only a
subset of the disc permits using higher spatial resolutions, as well as allowing more
control over the numerical studies. Thus local models have seen many advances in
theories of accretion discs where global simulations fall short. However, until now no
generalisation of the shearing box has been implemented to model eccentric discs.

The following work aims to establish a numerical method for the local description
of eccentric discs, based on the model developed by Ogilvie and Barker (2014). This
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local numerical model will subsequently be used to probe the nonlinear evolution of the
parametric inertial wave instability described by Barker and Ogilvie (2014), extending
the work of Papaloizou (2005b) to include vertical gravity which has been shown to
be important for the dynamics of the instability. This thesis will begin with a review
of the dynamics and relevant instabilities inherent to eccentric discs in Chapter 2,
including how they can be probed in a controlled manner using local models to deduce
global disc transport properties and subsequent evolution of the eccentricity. The finite
volume methods (FVM) and local numerical model for eccentric discs are developed in
Chapter 3, in addition to a number of modifications and assumptions when adapting
this theoretical model. Finally, a detailed look at the nonlinear effects and breaking
of inertial waves is presented in §4.1, as well as how it contributes to the saturation
of the parametric instability in §4.2. A scaling of the turbulent energy dissipation
with eccentricity is additionally proposed, extending the linear analysis of Barker and
Ogilvie (2014). In §4.3, the turbulent transport of angular momentum is deduced, and
the effect of this turbulent state on the eccentricity decay is further investigated in
§4.4, where the implications for a steady disc eccentricity are discussed.



Chapter 2

Eccentric accretion discs

2.1 Background

2.1.1 Accretion disc dynamics

A global hydrodynamical model of an accretion disc may be realised by simply
adding a gravitation term, ∇Φg, to the Euler momentum equation, where the non-
self-gravitational potential at radius r, and height off the midplane, z, is Φg =
−GM/

√
r2 + z2. This assumption that self-gravitation between fluid elements is

negligible is valid for low-mass discs and quantified by the Toomre Q stability criterion
(Toomre, 1964) for a Keplerian disc

Q = csΩ
πGΣ > 1. (2.1)

Here Σ is the local surface density of the thin disc, Ω is the angular velocity (orbital
frequency), and cs =

√
γp/ρ is the adiabatic sound speed. The addition of this

radial gravitation term motivates a number of length and time scalings pertinent to
astrophysical discs. Apart from the disc radius, R, a second length scale is motivated
from a hydrostatic balance with the vertical component of gravity. This isothermal
scale height is

H = cs

Ω . (2.2)

Relating these two length scales gives a non-dimensional disc aspect ratio, H/R.
Three additional pertinent timescales also come out of the Navier-Stokes equations
with a central gravitational potential: the dynamical, viscous, and thermal times.
The relative magnitude of each will motivate and validate a number of important
assumptions. The dynamical time, td ∼ Ω−1, is the timescale on which important
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dynamic processes occur on, such as instability and turbulent transition. A viscous
timescale, tv ∼ R2/ν ∼ α−1 (R/H)2 td, sets the time for a fluid parcel to move radially
through the disc solely due to momentum diffusion or transport. Here, α < 1 is the
α-viscosity parameter of Shakura and Sunyaev (1973) which gives a dimensionless
measure of the rate of angular momentum transport within the disc. Finally, the
thermal timescale is locally set by the ratio of the thermal heat content to the viscous
heating rate and is tt ∼ α−1td. Thus for thin (H/R ≪ 1) discs, td < tt ≪ tv. It is
argued based on the relative time-scales of this system that any long-term evolution
can be ignored because the dynamical processes of interest are relatively quite fast.
This means the evolution of the central mass may be ignored as well as viscous heating
processes that could perturb the system from an initial equilibrium state. Viscosity
may then be ignored altogether, and focus turned to the Euler system.

It should be acknowledged that some additional physics will not be considered
here for the sake of simplicity, but which are known to be important in particular disc
dynamics (Papaloizou and Lin, 1995, and references therein). Irradiation heating from
the central object and radiative cooling dictate the viability of certain instabilities, in
particular gravitational instability. Viscous heating also wages in this thermodynamic
balance in regions of intense shear near the central object, warranting a general
viscosity prescription. Most importantly in ionised discs, magnetic fields are necessary
for realising the magneto-rotational instability known to locally destabilise even weakly-
ionised discs (Armitage, 2011).

2.1.2 Eccentric disc dynamics

This global accretion disc model may be generalised to describe eccentric discs simply
by changing the initial orbit equilibrium conditions. The initial orbital energy and
angular momentum of a fluid parcel uniquely determines the eccentricity of the orbit.
Consider a fluid parcel initially located at r = λ with a specific orbital angular
momentum ℓ =

√
GMλ. Given a specific orbital energy equal to ε = −GM/(2λ),

the fluid parcel will take on a circular orbit; however, if the energy is increased to
ε = − (1 − e2) GM/(2λ), the orbit becomes eccentric with eccentricity e. Then to first
order in e, the eccentricity appears as horizontal epicycles with frequency κ, which for
a Keplerian disc, κ = Ω.

Thus a particular orbit is uniquely described by the semilatus rectum, λ, along with
the orbit eccentricity. This suggests a generalisation of polar coordinates, (r, ϕ), natural
to eccentric discs, which was introduced by Ogilvie (2001). These eccentric orbital
coordinates, (λ, ϕ), therefore can describe any point in the disc when the eccentricity,
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e(λ), and the longitude of pericentre, ω(λ), are also specified, and which are in general
functions of λ. Because eccentric Keplerian orbits are ellipses, the transformation
between polar and eccentric orbital coordinates is

r = λ

1 + e cos(ϕ − ω) (2.3)

The Jacobian for this coordinate transformation from cartesian into the eccentric
orbital coordinates is then

J(λ, ϕ, z) = ∂(x, y, z)
∂(λ, ϕ, z) = λ (1 + (e − λe′) cos θ − λeω′ sin θ)

(1 + e cos θ)3 (2.4)

where e′ and ω′ are the eccentricity gradient and orbital phase shift (or disc twistedness),
respectively. θ = ϕ − ω here is the true anomaly, measuring the angular distance from
pericentre. The Riemannian metric tensor, gij, and symmetric Levi-Civita connection,
Γi

jk describe the vector calculus on this Riemannian manifold, and were first derived
for the orbital coordinates by Ogilvie (2001). All relevant geometric quantities are
reproduced in Appendix A for convenience.

With the geometry now defined in the orbital coordinate system, the invariant form
of the Euler equations in a gravitational potential can be written as

Dρ = − ρ

J
∂i(Jui) (2.5a)

Dui + Γi
jkujuk = −gij

(
∂jΦ + 1

ρ
∂jp

)
(2.5b)

Dp = −γp

J
∂i(Jui), (2.5c)

where D = ∂t + ui∂i is the Lagrangian derivative, ui is the typical contravariant
velocity in the orbital coordinates, and Φ is the gravitational potential. An ideal gas
equation of state, p = (γ − 1) e, was assumed to write equation (2.5c) in terms of
pressure, providing closure. Index notation with assumed summation over repeated
indices is used to write (2.5) succinctly. The additional connection terms in equation
(2.5b) come from the covariant derivative in a general geometry, and will give rise to
the Coriolis terms when entering a local frame.

2.1.3 Eccentric Lindblad resonance

Mean-motion orbital resonances are a well-studied mechanism that are able to continu-
ally increase orbit eccentricity, warranting this investigation into eccentric accretion
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discs. This natural resonance occurs wherever the companion orbital period and local
particle orbital period are commensurate (i.e. in a ratio of two small integers). At
risk of oversimplification to construct a toy model in order to gain insight into this
resonance, the circular restricted 3-body problem may be approximated by adding
an ad-hoc gravitational term to the effective potential in the 1D equation of motion
describing the orbital motion of a test particle in an axisymmetric potential:

r̈ = −∂rΦeff (2.6)

where the effective potential for the 2-body system in the rotating frame is

Φeff(r) = −GM

r
+ 1

2Ω2r2. (2.7)

The additional time-dependent potential term from the perturbing companion object
can be constructed by analogy to an impulse model as

∂rΦc ≈ − GMc

r − Rc

cos Θ (2.8)

where Θ ≈ (Ω0 − Ωc)t is the angular separation of the test particle and the perturbing
companion. An expansion, r = δr + R0, can then be made for small perturbations
from the initially nearly circular orbit, giving

δ̈r ≈ −δr∂rrΦeff(R0) (2.9)

≈ −δr

[
Ω2

0 − 2GMc

(Rc − R0)3 cos ((Ω0 − Ωc)t)
]

. (2.10)

In the absence of the companion, the solution of (2.10) describes epicyclic oscillations
with frequency κ = Ω0, but in general are written as κ2 = ∂rrΦeff .

The form of equation (2.10) is that of the Mathieu equation,

ẍ(t) + (a − 2q cos(2t)) x(t) = 0, (2.11)

which generically produces parametric resonance at integer values of
√

a for small
values of the parametric excitation coefficient, q. To see why this is, a first order
expansion about q = 0 is made, given the free-oscillatory zero order solution, x0(t) =
A cos (

√
at). Moving the parametric oscillation term to the right side, and using x0(t),
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the Mathieu equation now appears as a forced oscillator,

ẍ(t) + ax(t) ≈ qA
[
cos

(
(2 −

√
a)t
)

+ cos
(
(2 +

√
a
)

t
)

. (2.12)

It is evident then that the primary resonance condition is 2 −
√

a =
√

a, giving the
first parametrically unstable mode, a = 1.

Comparing (2.12) and (2.10), the parameter a can be shown to be

√
a = Ω0

Ω0 − Ωc

(2.13)

giving each of the parametrically unstable, mean-motion resonances for m ∈ N:

Ωc =
(

1 ± 2
m

)
Ω0. (2.14)

Thus, by periodically modulating the epicyclic frequency, the test orbit becomes
parametrically resonant. It can be seen in the inertial frame that when this condition
is met, the test particle traces closed orbits forming increasingly intricate rosettes for
large m.

In generalising to a fluid disc, these mean-motion resonances take a different
form due to continuum restrictions which limit the propagation of perturbations in
certain regions of the disc, and prevents an explicit parametric resonance as previously
demonstrated. Density waves of a given azimuthal pattern speed, ωϕ, can only freely
propagate outside of the inner/outer Lindblad radii, where the magnitude of the wave
frequency exceeds the epicyclic frequency in the co-orbiting frame. Thus |ωϕ − Ω| > κ,
which for a Keplerian disc only permits undamped frequencies greater than twice the
local orbital frequency. Inside this “corotation” region, the particular azimuthal wave
frequency nearly vanishes in a local frame and produces damped evanescent density
waves (as the eigenvalues take on an imaginary component). Mean-motion resonances
with ωϕ = Ωc due to tidal forcing, and which occur between the Lindblad radii, then
produce evanescent wave solutions that may generate long-time growth by secular
interactions. Away from corotation, however, a Lindblad resonance is produced which
generates density waves. When coupled with the eccentric mode (i.e. the first azimuthal
inertial mode) of a fluid disc and with some means of dissipating the generated density
waves, irreversible orbit eccentricity growth ensues (Lubow, 1991). The first of these
Lindblad resonances to be encountered by an expanding disc is the m = 3 (3:1) inner
resonance, which is also the only eccentric Lindblad resonance not coincident with
a corotation resonance. However, only binary systems with large mass ratios and
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an extensive circumstellar disc are able to reach this resonance, making it a leading
theory to explain the superhump phenomenon in Cataclysmic Binaries. Still, there
is no known means of saturating this particular mean-motion resonance, motivating
the development of the following local model for eccentric discs to investigate how the
local dissipation of inertial waves might saturate this eccentricity growth.

2.2 Local disc models

2.2.1 Cartesian geometry

For studying local small-scale phenomena, it is numerically and often analytically bene-
ficial to enter a local reference frame co-rotating and shearing with the disc (Goldreich
and Lynden-Bell, 1965). It is conceptually easier to first develop the local model for a
circular disc resulting in a cartesian metric and then draw analogies to the local eccentric
model. In local cartesian coordinates, (x, y, z) = (r − R0, R0 (ϕ − ϕ0 − Ω0t) , z), cen-
tred about a fiducial radius, R0, and co-rotating with the orbital frequency, Ω0 = Ω(R0),
additional symmetries are introduced which can greatly simplify analysis (see Fig-
ure 2.1). The equation of motion governing u in the rotating frame is found by
transforming equation (2.5b), and using the cartesian metric with familiar definitions
for the inner product:

ρ (Du + 2Ω0ẑ × u) = −∇p − ρ∇Φt, (2.15)

where Φt = Φc + Φg is the effective tidal potential — the sum of the centrifugal
potential arising from the non-inertial reference frame and the gravitational potential,
respectively. The Keplerian rotation profile, Ωk =

√
GM/r3 is independent of ϕ in this

case of a circular disc.
The shearing box approximation is derived by expanding (2.15) in x/R0 ≪ 1. The

tidal potential in the local coordinates is then

Φeff = − GM√
r2 + z2

+ 1
2Ω2

0r
2 = −qΩ2

0x
2 + 1

2Ω2
0z

2 + O
(
x3 + z3

)
, (2.16)

where the shear rate, q ≡ −rdΩ/dr, measures the strength of differential rotation,
which is 3/2 for a Keplerian disc. This expansion can be seen as a projection removing
the curvature of the solution by eliminating dependence on y. Using this expansion
with (2.15), the local shearing box approximation in primitive variables can be written



2.2 Local disc models 11

R0

?

φ̂(t)
r̂(t)

Ω(r) x̂
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Fig. 2.1 The global disc (left) and extracted local cartesian patch (right). The control volume
is shown sheared and advected at a later time while the shearing box remains unchanged.

as

Dρ = −ρ∇ · v (2.17a)

Dv = −1
ρ

∇p − 2Ω0ẑ × v + 2qΩ2
0xx̂ − Ω2

0zẑ (2.17b)

Dp = −γp∇ · v, (2.17c)

where v is the relative velocity in local coordinates. An ideal gas equation of state,
p = (γ − 1) e, is again assumed to write the energy equation in terms of pressure.
The shearing box admits an equilibrium velocity solution, v̄ = −qΩ0xŷ, which is
exactly the local uniform Keplerian orbital motion by construction. Additionally, for
an initially isothermal (i.e. γ = 1) disc, the equilibrium density and pressure profiles
are proportional to exp (−z2/2H2).

Simple periodic boundary conditions can be applied in the ŷ direction. Writing the
vector of primitive variables as W = (ρ, v, p)T , the boundary condition is explicitly

W(x, y, z, t) = W(x, y ± Ly, z, t) (2.18)

for a domain of size (Lx, Ly). However, this periodic boundary condition conflicts with
the background Keplerian shear flow solution when applied in the x̂ direction. The
x = −Lx/2 boundary is moving faster than at x = +Lx/2 by vboost = qΩ0Lx, and
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so the velocity must be Galilean boosted and shifted in the ŷ direction to remain
continuous. Finally, the boundaries in the vertical (ẑ) direction must be chosen to
approximate a vertically unbounded disc. Considering the vertical equilibrium profile,
reflective boundary conditions are a good choice when enforced at a height Lz/2 ≫ H

so as to minimise artificially constraining the fluid near the midplane.
A number of symmetries arise as consequence of making the shearing sheet ap-

proximation with these boundary conditions. The system (2.17) is evidently (globally)
horizontally invariant — the dynamics are independent of the (r, ϕ) coordinates consid-
ered to be the centre of the domain, since these were neglected at leading order in the
expansions. This also implies the direction towards the central gravitating object is
ambiguous. Therefore, this local model is limited in determining global disc properties
such as accretion rate or evolution of eccentricity directly (Regev and Umurhan, 2008).
To deduce these properties, additional assumptions must be made about the radial
disc structure.

2.2.2 Eccentric geometry

Analogous to the local cartesian approximation, the velocities in equation (2.5) are
decomposed into the background orbital motion, with uϕ = Ω(λ, ϕ), and the relative
velocities, vi, so that (uλ, uϕ, uz) = (vλ, Ω + vϕ, vz). The global orbital coordinates are
then expanded around a co-orbiting fiducial orbit, λ0, centred on the midplane at φ(t),
and rotating with the disc at orbital frequency Ω(λ0, ϕ). These local non-orthogonal
coordinates are (ξ, η, z) = (λ − λ0, ϕ − φ(t), z), as shown at two different times in
Figure 2.2.

2.2.2.1 Governing equations

The linear theory of Barker and Ogilvie (2014) has shown that the fastest growing
azimuthal mode of the eccentric instability is the zero mode. Thus the local model
given by Ogilvie and Barker (2014) can be further simplified by taking all ∂η → 0.
However, the generally non-orthogonal coordinate system means that a component of
the ∂ξp remains in the η̂-momentum equation, and so it cannot simply be passively
advected as in the cartesian shearing box of §2.2.1. The governing equations describing
the local (non-shearing) axisymmetric model of an eccentric disc in primitive variables
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Fig. 2.2 The global orbital coordinate grid, (λ, ϕ), shown overlaid on the disc. The fiducial
orbit, λ0, is shown in bold along with the local contravariant basis vectors, (eξ, eη), at two
different times. The initial shearing box control volume at apocentre is shown stretched and
advected at a later time.

are then

Dρ = −ρ(∆ + ∂ξv
ξ + ∂zvz) (2.19a)

Dvξ = −1
ρ

gλλ∂ξp − 2Γλ
λϕΩvξ − 2Γλ

ϕϕΩvη (2.19b)

Dvη = −1
ρ

gλϕ∂ξp − (Ωλ + 2Γϕ
λϕΩ)vξ − (Ωϕ + 2Γϕ

ϕϕΩ)vη (2.19c)

Dvz = −Φ2z − 1
ρ

∂zp (2.19d)

Dp = −γp(∆ + ∂ξv
ξ + ∂zvz), (2.19e)

where the axisymmetric Lagrangian derivative is

D = ∂t + vξ∂ξ + vz∂z. (2.20)

Apart from the cross-over pressure gradient terms due to the in-plane coordinates
being non-orthogonal, and the Coriolis terms coming from the connection terms of
the covariant derivative with uϕ, two additional forcing terms arise when considering
the eccentricity. First, it is apparent that the effective tidal potential expansion now
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varies with ϕ. Expanding the tidal potential similarly to the cylindrical case, but
with R(θ) = λ0/(1 + e cos θ), the second order term (in z) appearing in the local
approximation is

Φ2 = GM

λ3
0

(1 + e cos θ)3, (2.21)

which is an implicit function of t, periodic with the eccentric orbital period,

P = 2π

√
λ3

0
GM

(
1 − e2

)−3/2
. (2.22)

This is a periodic variation in the vertical gravitational acceleration due to the time-
varying radius while on a constant orbit, λ0.

A second modification to the cylindrical shearing box originates in the oscillatory
geometry of the disc. Although the vertical (ẑ) direction remains unchanged in the
transformation, each of the velocity divergence terms in (2.17a) and (2.17c) must be
transformed into the new coordinate system, and are non-zero due to the azimuthal
velocity of the fiducial orbit, dφ/dt = Ω. Accounting for this horizontal velocity
divergence amounts to including an additional energy and mass source to the governing
equations. Using the Jacobian, J(λ0, ϕ, 0), for the eccentric orbital coordinates, this
velocity divergence on the λ0 orbit can be expressed as

∆ = 1
J

∂

∂ϕ
(JΩ) =

√
GM

λ3
0

λ0(1 + e cos θ) (e′ sin θ − eω′(cos θ + e))
1 + (e − λ0e′) cos θ − λ0eω′ sin θ

. (2.23)

This is again an implicit periodic function of time, with period P, which arises from
the misalignment of the apse lines in the disc (ω′) in addition to the non-constant
eccentricity (e′). The orbits illustrated in Figure 2.2 show this orbital convergence near
pericentre, as well as the azimuthal elongation of the local domain between apocentre
and just before pericentre due to the relative azimuthal acceleration of points on the
same orbit.

While the axisymmetric model presented above is quite general, as is that developed
by Ogilvie and Barker (2014), the following work will be limited to e′ = ω′ = 0 for
isothermal discs. This greatly simplifies the following initial investigation into the
nonlinear evolution by reducing the number of disc control parameters from three down
to only the eccentricity.
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Fig. 2.3 Comparison of the resonant, laminar solution with the naïve solution which uses
the hydrostatic scale height at each orbital radius, for e = 0.3.

2.2.2.2 Semi-analytic horizontally invariant laminar solution

The system of equations (2.19) admits laminar solutions that are horizontally invariant
in the disc when vξ = vη = 0. The system (2.19) then reduces to a set of three equations
which may be solved for semi-analytically in the case of isothermal thermodynamics.

A naïve quasi-hydrostatic approach to solving the resulting 1D system might involve
finding the isothermal scale height for a cylindrical disc at radius R(θ) = λ0/(1+e cos θ)
as it varies about the orbit. Although incorrect due to neglecting all dynamics of the
system, it is still instructive for demonstrating the dynamical amplification (shown in
Figure 2.3 for a disc with e = 0.3).

A semi-analytic solution becomes possible after noticing the eccentric forcing terms
generate homogeneous vertical oscillations with period P . The primitive variables are
rewritten to uncouple the temporal and spatial dependencies by exploiting the solution
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form of the homogeneous oscillations,

ρ(t, z) = ρ̂(t)e−ζ2/2 (2.24a)
vz(t, z) = v̂z(t)z (2.24b)
p(t, z) = p̂(t)e−ζ2/2 (2.24c)

where the similarity variable, ζ(t) = z/H(t), can be defined for an isothermal disc.
The governing equations are then uncoupled by inserting this form for the primitive
variables into (2.19):

˙̂ρ
ρ̂

− H

Ḣ
ζ2 − v̂zζ2 = −(∆ + v̂z) (2.25a)

˙̂vz + (v̂z)2 = −Φ2 + c2
s

H2 , (2.25b)

where the redundant pressure equation is dropped. However, since the additional
variable H(t) has been introduced, a final relation is needed to close the system.
This is found using a global mass conservation argument motivated by the mass
component (2.19a). Integrating this term vertically over the disc, and using the form
(2.24a), the closing equation is

˙̂ρ
ρ̂

+ Ḣ

H
= −∆. (2.26)

This set now can be simplified in terms of H, giving a second order non-linear ODE
describing the evolution of H:

Ḧ = −Φ2H + c2
s

H
. (2.27)

This ODE describes a non-linear oscillator periodically forced by Φ2, and admits both
free oscillations as well as the forced response driven at the orbital frequency. The
purely forced response can then be obtained by writing this as a periodic boundary
value problem that can be solved numerically for H, and for which ρ̂, v̂z, and p̂ easily
follow.

Thus in a local model, an eccentric disc exhibits a vertical oscillatory “breathing”
mode, where the disc scale height periodically expands and contracts. Nonetheless,
these solutions appear stationary in the inertial frame and therefore describe the global
steady state of the eccentric disc. Figure 2.4 shows the vertical disc profile exhibiting
this oscillation with equally spaced snapshots in time, starting (from the bottom) at
apocentre, and displaying a large thin compression at pericentre. It is this vertical
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Fig. 2.4 Vertical pressure profiles demonstrating the laminar “breathing” mode, taken at
four equally-spaced times between pericentre (top) and apocentre (bottom) for a disc with
e = 0.3.

oscillation mode that parametrically couples with inertial waves, causing resonant
instability.

2.2.2.3 Turbulent transport

It is now of interest to deduce the mass and angular momentum transport rates for
the global disc represented by this local model. The angular momentum transport is
often parameterised by the α-viscosity parameter (Shakura and Sunyaev, 1973), which
posits that the efficiency with which angular momentum can be transported through
the disc is proportional to the local averaged pressure. Thus α nondimensionalises
the in-plane shear stresses responsible for transport with the average pressure, and for
Keplerian shear is

α = −2
3

T rϕ

p
. (2.28)

As explicit viscous stresses are not considered here, the specific angular momentum
of each fluid parcel is conserved around an orbit. Thus the only source of α can be seen
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as being attributed to some enhanced turbulent viscosity acting on the background
shear,

νT ∼ αc2
s

Ω . (2.29)

In a turbulent state, this mixing is given by the Reynolds stresses,

T ij
R = −

〈
ρvivj

〉
, (2.30)

where < · > indicates a time-average. This turbulent stress is an averaged stress arising
from correlated velocity fluctuations, and which often greatly exceed viscous stresses
in developed turbulence. Ignoring the viscous stresses, the total stress can be written
for a general geometry,

T ij = −
〈
ρvivj

〉
− gijp (2.31)

where it should be noted that for a general non-cartesian metric (and in orbital
coordinates), there is an off-diagonal pressure contribution to the shear.

The in-plane shear stress, T λϕ, is the component responsible for turbulent transport
of angular momentum. The net effect of this shear stress in the eccentric disc may be
found by integrating the internal torque due to the shear stress and the total pressure
over the entire disc, giving the α-viscosity in the local eccentric model,

α = −
˜

JR2T λϕΩ dt dz˜
Jλ0pΩ dt dz

, (2.32)

which scales with the turbulent viscosity as expected.

2.2.2.4 Eccentricity evolution

Once a sustained turbulent state is achieved in the local model, it is then necessary
to determine the induced eccentricity decay rate in order to balance the eccentricity
growth from mean-motion resonances and find a stable eccentricity. This is not as
simple as equating the dissipation of turbulent energy with an orbital energy decrease,
consequently producing eccentricity decay. Depending on the phase of stresses in
the orbit, the dissipation of perturbation energy may either decrease the angular
momentum of the disc (thereby increasing eccentricity), or reduce the orbital energy
(decreasing eccentricity).

Equation (52) in Ogilvie and Barker (2014) describes the precession and evolution of
the global disc eccentricity, but which requires the mean quasi-radial velocity through
the disc in order to solve. Given e′ = λ′ = 0 in a non-precessing disc, the eccentricity
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decay rate may be simplified to

ℓM∂te =
¨ [

2 (cos θ + e) ∂λ

(
JR2T λϕ

)
− JR2

λ
(cos θ + e) T λϕ

+ λ sin θ ∂λ

(
JRλT λλ

)
+ JR2 sin θ T ϕϕ

]
dθ dz,

(2.33)

where ℓ = λ2
0Ω0 is the specific angular momentum on the fiducial orbit, and M =˜

JρΩ dt dz is the total mass of the disc. In order to evaluate the λ derivatives,
additional approximations about the radial disc structure must be made. A global
steady-state alpha disc model with constant α is often used to describe accretion
discs, and is likely a good approximation for discs in Cataclysmic Binaries (Shakura
and Sunyaev, 1973). This model produces a flared disc with surface density scaling
Σ ∝ r−3/4, and vertically-integrated pressure P ∝ r−3/2. This same model was assumed
in the work by Lubow (2010) to find the eccentricity growth rate in tidally distorted
discs, and so will be used here to facilitate comparison to the eccentricity decay rate.
Another simple self-similar model for an accretion disc with a constant aspect ratio,
Σ ∝ r−5/2, and the same scaling for P as the alpha disc, may also be a reasonable
model.

The integral of the Reynolds stresses may be found to scale with λ similar to P ,
allowing the λ derivatives to be calculated, giving

ℓM∂te =
¨

J sin θ
(

−1
2RλT λλ + R2T ϕϕ

)
Ω dt dz. (2.34)

Thus for this alpha disc model, the in-plane shear stresses cancel and so the eccentricity
evolution is dictated only by the ξ and η normal stresses varying around the disc.

It is expected that the α-viscosity and eccentricity decay are greatly influenced by
the nature of the sustained turbulence. This steady turbulent state sourced by the
nonlinear breaking of inertial waves will now be considered.

2.3 Inertial-acoustic waves

2.3.1 Background

Internal waves are propagating disturbances whose restoring force may be gravity or
Coriolis, and which are permitted to propagate within a fluid by some stable density
stratification or rotation. In a rotating frame, and where the dynamics are slow
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compared to the orbital frequency, inertia-gravity waves are supported due to the
influence of the Coriolis force. These inertial (“epicyclic”) waves freely propagate only
at particular frequencies depending on the spatial structure of the perturbation. This is
described by the dispersion relationship, which gives the eigenvalues for axisymmetric
perturbations of the form

δ̂(z)eikξξ−iωt (2.35)

and may be found from a linear perturbation analysis of the governing equations in
the local coordinates. The dispersion relation is then

(ω2 − nΩ2)(ω2 − κ2) = ω2k2
ξ c2

s, (2.36)

for n ∈ Z+ designating the mode. Figure 2.5 shows the viable solutions for the first four
modes of the dispersion relation. Two distinct branches are evident for these “inertial-
acoustic” waves in the limit of large kξ: The high frequency branch has an acoustic
character in which ω/Ω0 → kξH. In other words, these waves are non-dispersive and
the phase speed vp = cs similar to acoustic waves. In contrast, the low frequency branch
appears as an inertial wave, which for large wavenumber gives ω/Ω0 →

√
n/(kξH)

Finally, the vertical structure of the eigenmodes δ̂(z) can be found in terms of
Hermite polynomials (Ogilvie and Latter, 2013; Okazaki et al., 1987):

v̂ξ, v̂η, ĥ ∝ Hen

(
z

H

)
(2.37a)

v̂z ∝ Hen−1

(
z

H

)
(2.37b)

for each mode n. Here, h = c2
s ln(ρ/ρ0) is the enthalpy, taking the place of pressure

and density in the isothermal disc. For n = 1, the horizontal velocity normal modes
are linearly increasing with height, whereas the vertical velocity amplitude is constant.
This vertical structure of the perturbations and background stratification means that
the perturbation energy quickly falls off away from the midplane, as shown in Figure 2.6.
It is hypothesised that because the stratification constrains the perturbation energy to
be localised near the mid-plane, the nonlinear development of the parametric instability
will be significantly different than that found in Papaloizou (2005a). Without strong
vertical stratification, as in the Earth’s atmosphere and as approximated in Papaloizou
(2005b), the perturbation energy is constant in z.
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Fig. 2.5 Inertial-acoustic dispersion relationship (2.36) giving the viable freely propagating
waves, ω(kξ), for the first four modes.

2.3.2 Parametric instability of inertial waves

Analogous to the eccentric parametric instability producing eccentricity growth in
the global disc equations (§2.1.3), parametric resonance may be excited in the local
model by the inherent modulation of the physical parameters including the orbital
convergence of streamlines as well as the tidal potential, Φ2, at a frequency Ω, due to
the prescribed eccentricity. However, now the parametric driving frequency is set as
Ω, and the natural oscillation frequencies of the inertial waves are selected, given the
resonance condition

ω = n

2 Ω. (2.38)

The strongest (n = 1) resonance occurs then for inertial waves with frequency ω = 1/2Ω0,
which corresponds to the wavenumber kξH = 1/2

√
3(4n − 1).

The founding linear instability analysis studying the growth of this parametric
instability in constant eccentricity discs was carried out by Papaloizou (2005b). His local
stability analysis applies only near the midplane where he makes the approximation
of a cylindrical disc gravitational potential, Φ = −GM/r, independent of z, such
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Ẽ

n = 0

n = 1

n = 2

n = 3

Fig. 2.6 Perturbation energy (ρvivi) for the first few inertial modes, showing the energy
containment near the mid-plane.

that there is no vertical stratification. In the limit that n, kξ → ∞ it was found that
the oscillating divergence of the non-circular streamlines around the disc produces a
growth rate of σ = 3

16e. In follow-up nonlinear global simulations, Papaloizou (2005a)
additionally finds small-scale subsonic turbulence as the instability saturates, leading
to a slow decay of eccentricity. Barker and Ogilvie (2014) extended this initial linear
theory to account for the vertical structure of the disc due to a spherical gravitational
potential varying off of the mid-plane. They found that the effect of the enhanced
vertical oscillations made possible by the vertical stratification contributes an additional
free energy source to the parametric growth. Consequently a larger growth rate of
σ = 3

4e is shown, compared to that with no vertical structure. This linear theory
inevitably breaks down as the inertial waves grow too large. At that point, nonlinear
effects become important, eventually causing the inertial waves to break.
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2.3.3 Inertial wave breaking

A criterion for the critical amplitude at which inertial waves break will now be
constructed, first by order of magnitude kinematic arguments, and then more physically-
grounded in the stability of rotating fluids.

General waves are often seen breaking as their constituent particle velocities exceed
the phase velocity, leading to steepening gradients. A similar argument could be made
for inertial waves. Restricting the wavevector to be in the ξ̂ direction, the inertial wave
perturbations are then described by

ṽ = v̂ei(kξξ−ωt). (2.39)

The phase speed of this perturbation is vp = ω/kξ, suggesting that the critical velocity
for breaking is v̂ξ

crit ≈ ω/kξ.
A more physically-motivated argument can be constructed by suggesting that

inertial waves break when they produce a local violation of the Rayleigh stability
criterion — where the angular momentum gradient locally becomes negative,

dℓ

dr
= d

dr

(
r2|vϕ|

)
< 0. (2.40)

The angular momentum equation for collisionless particles in the local model is

ℓ = Rṽη + 2ΩRξ (2.41)

where ṽη is the angular velocity perturbation from the local eccentric model. Equating
the ξ derivative to 0, and using the fact that

ṽξ = 1
2

Rω

Ω ṽη, (2.42)

the same result is obtained that v̂ξ
crit ≈ ω/kξ. Written in terms of the particle

displacement, δξ, shows that breaking occurs when kξδξ ≈ 1.
Finally, the critical height above the mid-plane that the inertial waves will begin to

break, is found to be
zcrit = ω

kξv̂
ξ
0(1)

e−γt (2.43)

for the n = 1 mode of the profile given by (2.37), and for the growth rate γ. Thus
looking far enough off of the mid-plane, the inertial waves can always be seen to break.
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Without considering nonlinear effects, then as the parametric instability grows, the
breaking region approaches the mid-plane if unbalanced by a secondary instability.

Although these criteria are motivated in a circular disc, they are found to be a
good approximation for small eccentricities when compared to numerical simulations.



Chapter 3

Numerical methods

3.1 Finite volume methods

The finite volume methods (FVM) will first be developed in an inertial Cartesian
frame before extending to a co-rotating frame of reference. The compressible Euler
equations of ideal-gas hydrodynamics with a point-mass gravitational potential (2.5),
are a hyperbolic set of equations with full real eigenvalues. Thus information travels
across the domain at finite speed, and so the domain of dependence is a bounded set.
The governing equations consequently lend well to explicit methods (including FVM)
as well as domain decomposition for MPI parallelisation.

The finite volume methods will thus be employed to numerically solve the developed
physical models cast in a general conservative form,

∂tU + ∇ · F(U) = S(U, t). (3.1)

The governing equations must be cast into this conservation form, describing the vector
of conserved variables, U = (ρ, ρu, E)T , in order to converge to the weak solution
upon discretisation. This conservative construction guaranteeing the correct wave
speeds is a particular strength of FVM over finite differences or elements in fluid
dynamics, although generally more difficult to implement, and in particular for this
problem.
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3.1.1 Generalised finite volume formulation

An ideal numerical scheme is designed to emulate the properties and behaviour of the
physics it is being used to model. The foremost of these properties is being conservative,
and so the following methods will by construction be conservative.

The vector of physically conserved continuous variables, U(x, y, z, t), is discretised
by interpreting the value at the cell-centred point, Uijk(t) = U(i∆x, j∆y, k∆z, t), to
be averaged over the the whole of the ijkth finite control volume (or area in 2D). This
integral average over cell volume Vijk is

Uijk(t) = 1
Vijk

ˆ z
k+ 1

2

z
k− 1

2

ˆ y
j+ 1

2

y
j− 1

2

ˆ x
i+ 1

2

x
i− 1

2

U(x, y, z, t) dx dy dz

= 1
Vijk

˚
Vijk

U(x, t) dV. (3.2)

The finite volume method is then founded on locally enforcing a general conservation
law (3.1) in each discretised control volume, Vijk. Here F(U) is the equation flux
function and S(U, t) is the sourcing term, both mapping R5 → R5 in the case of the
3D Euler system.

Integrating (3.1) over the finite volume, Vijk, and using Leibniz’s rule with the
Gauss-Ostrogradsky theorem, gives an ODE describing the evolution of the finite
volume as

d
dt

Uijk(t) +
‹

∂Vijk

F(U) · dA = (S (U, t))ijk . (3.3)

The discretised finite volume source term is written here in the continuous form
(S(U, t))ijk =

˝
Vijk

S(U, t)dV to emphasise that the source term is volume-averaged.
Often times the conservative set of equations define a flux function which is difficult
to solve all at once. Thus, dimensional splitting algorithms help make the 3D update
formula (3.3) computationally tractable.

3.1.2 Operator splitting

Operator splitting is often employed to simplify the full 3D non-homogeneous conser-
vation law into a series of 1D fractional step operators without compromising solver
accuracy. Thus only a generalised 1D finite volume scheme needs to be designed.

Using the Method of Lines the general conservation equation (3.1) can be spatially
semi-discretised as

dU
dt

= AxU + AyU + AzU + AsU (3.4)
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where Ax, Ay, and Az are the discrete operators for some approximation to the partial
derivatives of F(U). As is the source function in the special case that it can be written
as a linear operator on U, which is now a vector of vectors containing all spatial data
reordered into a single column. It is trivial to solve this ODE giving U(t) in each
discrete control volume:

U = U0et(Ax+Ay+Az+As) (3.5)

Matrix exponentials are not in general commutative and so this exponent cannot be
written as the product of the individual exponents. However, to make an overall 2nd

order scheme, (3.4) only needs to be solved at 2nd order itself!
Now considering just a 2D method with a source term, there are two 2nd order

methods to split the exponent in equation (3.5):

et(Ax+Ay+As) = e 1
2 tAxe 1

2 tAyetAse 1
2 tAye 1

2 tAx + O
(
t3
)

(3.6)

= 1
4
[
etAxetAyetAs + etAxetAsetAy + etAyetAsetAx + etAsetAyetAx

]
+ O

(
t3
)

(3.7)

The first of these operator splitting methods is Strang splitting, which is implemented
as a half time step in x then y, a full time step to solve the source with As, and finally
the second half time step in y then x. The second method, (3.7), is the parallel splitting
scheme, which gains 2nd order accuracy by averaging each of the 4 cyclic permutations
of the linear operators. However, it will be shown that taking two half steps is not
exactly equivalent to taking one full step, solely because of compounding truncation
errors. This compounding error often emerges as an increase in numerical diffusion
with increasing number of time steps. Strang splitting decreases the effective time
step by half and consequently increases the numerical diffusivity. Therefore, although
parallel splitting is over twice as expensive, it is favoured over Strang splitting because
it does not unnecessarily decrease the advection step size.

Now the 3D ODE given by equation (3.3) has been simplified to four independent
1D ODEs. Defining the solution operator in the x̂ direction, Lt

x, which approximates
(to within the constant of integration) the solution to

∂tU + ∂xF(U) = 0 (3.8)

at time t for some initial condition U0, it is clear that, L∆t
x = exp(∆tAx), by using the

approximation to the discrete partial derivative and equation flux operator, Ax. A first
order solution to the 3D system, (3.1), is then given by Un+1 = L∆t

x L∆t
y L∆t

z L∆t
s Un.
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The only task is to find each L∆t to step Un forward by ∆t in a single dimension at a
time.

Focussing on just the x̂ direction advection solution, L∆t
x , in 1D the closed surface

integral term of equation (3.3) becomes a difference of fluxes evaluated at the cell
edges, xi± 1

2
. Integrating from time n∆t to (n + 1)∆t, gives the 1D conservative update

formula,
Un+1

i = Un
i + ∆t

∆x

(
fi− 1

2
− fi+ 1

2

)
. (3.9)

This allows the vector of conservative variables to be marched forward in time, given
the time-averaged equation flux at each cell edge. This new flux is termed the scheme2

flux, fi± 1
2
, which is the flux through the cell edges normal to the solution direction (x̂).

It is clear now that this scheme is conservative, because the flux leaving one cell is
identically the flux entering the adjacent cell.

Whereas the grid size ∆x is specified by the user at run-time, the time step size
in (3.9) must be adaptively chosen to help ensure numerical stability. The time step
and cell size define a computational grid speed, ∆x/∆t, which is the fastest speed
that information such as waves, characteristics, or flow velocities can be resolved
to travel across the computational domain. The grid velocity must be greater than
the speed of the physics of interest to have stability. It is convenient to define the
Courant-Friedrich-Lewy (CFL) number,

CFL = ∆t

∆x
umax (3.10)

where umax = max∀i(|u| + a) over all cells, and a is the sound speed in a numerical
context. The CFL number is then the fraction of a cell width that is acceptable for a
disturbance to propagate in a single time step. CFL ≤ 1 is a necessary condition for
any finite volume method to be stable and convergent, though a particular scheme may
further restrict the stable CFL regime. Throughout this work, CFL = 0.9 will be used,
except during the first 5 time steps when umax is not known with enough certainty,
and so CFL will be reduced to 0.2.

The final 2nd order splitting scheme of choice for the 2D system with sourcing is

Un+1 = L
1
2 ∆t
s

1
2
(
L∆t

x L∆t
y + L∆t

y L∆t
x

)
L

1
2 ∆t
s Un. (3.11)

The fractional steps are as follows: The source term is first stepped forward 1
2∆t using

Un as the initial condition. Then the x and y terms are stepped forward parallel in
2Not to be confused with the equation flux function, F(U).
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time, using the output of L1/2∆t
s Un as the initial condition. Finally, this output is used

again as the input for the final half-step of the source term to give Un+1. This scheme
was chosen to minimise numerical diffusivity and artificial anisotropies in the advection
terms while avoiding the 2x penalty incurred by using parallel splitting on the source
term.

3.1.3 Advection solver

With the full 3D advection step simplified into three uncoupled 1D steps, all that is left
to do now is evaluate the scheme fluxes in the 1D conservative update (3.9) defining
each solution operator, L, in terms of the equation flux,

F(U) =


ρu

ρuu + pI
(E + p)u

 (3.12)

specific to the compressible Euler equations. For MUSCL-type “high-resolution”
schemes which gain spatially 2nd order accuracy through domain reconstruction, the
advection solution algorithm may be split into reconstruct, solve, and average steps
which will be outlined in the following sections. This entails a 2nd order spatial recon-
struction, followed by solving the generalised Riemann problem at each reconstructed
cell edge, and finally employing a numerical integration scheme to average the solution
over the advanced time step. Other 2nd order upwinding schemes that do not perform
this spatial reconstruction (such as the Weighted-Area Flux scheme) will not be utilised
here, but an in-depth comparison of which may be found in Wienkers (2016).

3.1.3.1 Reconstruction

A common technique for constructing a higher order method is to reconstruct the
piecewise constant discrete data (3.2) to more accurately define the initial left and right
cell edge states for the solution step. This is the idea behind MUSCL-type methods
(Monotonic Upstream-centred Scheme for Conservation Laws). Specifically, to gain
2nd order spatial accuracy, the variables within each cell will be interpolated using a
piecewise linear reconstruction (see Figure 3.1). So as to not bias one direction over the
other, the slope is defined from a centred difference (Fromm), ∆i = 1/2(Ui+1 − Ui−1),
and is a vector corresponding with the vector of conservatives. This slope can then be
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Fig. 3.1 MUSCL-type piecewise linear Fromm reconstruction (grey), of the initial piecewise
constant data.

used to determine the boundary-extrapolated values at the left and right edges:

UL
i = Un

i − 1/2∆i

UR
i = Un

i + 1/2∆i.
(3.13)

Slope limiting
An ideal 2nd order modified Godunov method is 2nd order everywhere the solution

is smooth. These so-called “high resolution” schemes should be consistent, stable, and
therefore convergent as well as being numerically inviscid and resolving discontinuities
without artificial oscillations.

A metric for these oscillations inherent to higher order methods is the Total Variation.
The Total Variation is defined as

TV (Un) =
∞∑

i=−∞
|Un

i+1 − Un
i |, (3.14)

such that any spurious oscillations introduced into Un, however small, will increase
the total variation. If the total variation is monotonically decreasing in time, then it is
assured there are no oscillations near discontinuities. This total variation diminishing
(TVD) property is a necessary requirement to construct a high resolution 2nd order
scheme; however, Godunov (1959) proved that the highest order monotone (and
therefore TVD) scheme is only 1st order! A constraint on 2nd order solutions must
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Fig. 3.2 The Superbee and Minbee slope limiter functions within the Sweby (1984) 2nd order
TVD region (grey).

then be imposed to regain TVD. Limiting selectively suppresses the technique used
to gain 2nd order, returning the scheme to the 1st order monotone scheme where the
solution becomes steep, while maintaining higher-order accuracy in smooth regions.
This “steepness” is given by

ri = ∆Ui,up

∆Ui,down
(3.15)

which are the upwind and downwind differences of the entire state vector U.
As the MUSCL acronym implies, the reconstruction is monotone and therefore

TVD. The TVD constraint for MUSCL schemes is in the form of a limiter, ξ(r), applied
to the slope during reconstruction to mitigate spurious oscillations (as in the left edge
of cell xi in Figure 3.1), effectively increasing the numerical dissipation locally to
smear out shocks. The limited slope, ∆̄i = ξi∆i, is instead used to determine the
boundary-extrapolated values at the left and right edges.

The two limiter functions that will be used throughout this work are the Minbee
and Double Minbee limiters, shown in Figure 3.2. Although the growth rate of the
sensitive instability of interest is affected by numerical dissipation, it is more devastated
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by phase errors which would accumulate over long evolution times introduced by
antidiffusion (when ξ > 1) such as in the Superbee limiter. Superbee liberally attempts
to compensate for any dissipation by artificially amplifying reconstructions with small r.
The Minbee limiters do not artificially steepen the slope, and so only adds dissipation
on strong discontinuities or shocks, while leaving everything else 2nd order (ξ = 1).

Well-balanced correction
A cursory implementation of the source splitting method in §3.1.2 produces signifi-

cant numerical artefacts on the seemingly trivial problem of maintaining the vertical
hydrostatic equilibrium solution (as pointed out in Slyz and Prendergast, 1999). This is
because the hydrostatic pressure profile, which at cell interfaces manifests as a pressure
jump, is interpreted by the Riemann solver as a propagating wave in the direction
of the gradient of the potential. Even with 2nd order parallel source splitting, the
advection terms are not exactly balanced with the source term, as it is analytically in

∂p

∂z
= −ρ

∂Φ
∂z

. (3.16)

So-called “well-balanced” schemes (Greenberg and Leroux, 1996) exactly satisfy a
discrete form of this equilibrium; however, often assuming some underlying thermo-
dynamic equilibrium to do so (Botta et al., 2004; Chandrashekar and Klingenberg,
2015; LeVeque, 1997). The method introduced in Käppeli and Mishra (2016) rather
relies on a simple pressure reconstruction and assumes no thermodynamic equilibrium.
A modified 2nd order version of their technique is implemented here, which makes a
slope-limited MUSCL-type reconstruction of the perturbation quantities, differing from
the extrapolated pressure equilibrium in the neighbouring cell centres approximated as

pi(xi−1) = pi + ρi−1 + ρi

2
Φi − Φi−1

∆z
∆z

pi(xi+1) = pi + ρi + ρi+1

2
Φi+1 − Φi

∆z
∆z.

(3.17)

The potential gradient must be calculated discretely so that this extrapolation satisfies
the discrete pressure equilibrium defined as

pi+1 − pi

∆z
= −ρi + ρi+1

2
Φi+1 − Φi

∆z
. (3.18)

The MUSCL reconstruction step is instead approximated in primitive variables, with ∆̄i

being the limited centred difference of the perturbation quantities. The reconstruction
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(3.13) then gives the left and right edge states as

WL
i = Wn

i − 1/2
(
∆̄i + ∆L

p

)
WR

i = Wn
i + 1/2

(
∆̄i + ∆R

p

) (3.19)

where the pressure component of the limited slopes are supplemented with the equilib-
rium pressure difference at the cell edges,

∆L
p = −ρi (Φi − Φi−1)

∆R
p = −ρi (Φi+1 − Φi) .

(3.20)

Thus for an arbitrary thermodynamic and hydrostatic equilibrium, this correction to
the reconstruction maintains the steady state equilibrium to machine precision given
that the potential gradient source term is unsplit from the integration scheme.

3.1.3.2 Riemann solution

The most common upwind methods for solving the compressible Euler equations
are based on solving a Riemann problem at each intercell boundary arising from
discretisation (see Figure 3.3a), to obtain the intercell scheme flux, fi± 1

2
. These

general methods are called Godunov Methods. The resulting Riemann problem is in
a family of generalised Riemann problems which describe any initial value problem
to a conservation equation with a piecewise initial condition consisting of a single
discontinuity. Thus at each cell edge, a Riemann problem arises due to the domain
discretisation (3.2) described by the initial condition,

U(x, t = 0) =

UL x ≤ 0
UR x > 0

(3.21)

which evolves according to the conservative advection terms of the governing equations
(left hand side of (3.1)). Given a solution to this Riemann problem, the original
(1st order) Godunov upwind method evaluates the scheme flux using the state vector
of the Riemann problem solution, Ǔi+ 1

2

(
x
t

)
, at the cell edge (where x = 0 due to a

translation by xi+ 1
2
), giving

fi+ 1
2

= F
(
Ǔi+ 1

2
(0)
)

. (3.22)
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Fig. 3.3 The problem discretisation onto the cell-centred points, ·, shown in (a) gives rise to
a Riemann problem at each cell-edged point, ×; and (b) the general Riemann solution centred
about x = 0, with a left-moving rarefaction, central contact discontinuity, and right-moving
shock.

This is the Godunov intercell numerical flux. Thus the scheme flux to step equation
(3.9) forward in time is evaluated using the particular Riemann solution state vector at
the cell edge.

The Riemann problem solution for the Euler equations in general has no analytic
solution, but can be solved either iteratively or by approximate means. The solution
consists of left- and right-travelling shock and rarefaction waves in different combi-
nations, but always separated by a contact discontinuity. Then three characteristic
waves (eigenvalues) in the solution, separate the four states shown in Figure 3.3b. The
relationship between each of these states may be found using the Rankine–Hugoniot
jump conditions derived from the integral form of the conservation law, and cannot be
solved analytically. It should be noted that when solving a dimensionally split system,
the parallel momentum equations become linearly degenerate and so the eigenvalues
coincide, such that no additional characteristic waves need to be considered.

A thorough comparison of the Adaptive Noniterative approximate Riemann solver
(ANRS) and Harten - Lax - van Leer Contact (HLLC) approximate Riemann solver, as
well as the implementation is detailed in Wienkers (2016). However, for the following
investigation the exact iterative Riemann solver as described in Toro (1999) will be used,
with an initial guess provided by the ANRS. The quite popular HLLC approximate
Riemann solver is not appropriate for the application presented here. This is because
the “starred” pressure state approximation which the HLLC depends on for its accuracy,
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suffers loss of significance at the high mach number and near-vacuum experienced near
the vertical extents of the domain.

3.1.3.3 Integration

Finally, with the scheme fluxes, f , from the spatially-discretised solution above specified
as a function of the state, U, the advection operator Lx and Ly may be found by
solving the semi-discrete system of ordinary differential equations,

dUi

dt
= − 1

∆x

(
fi+ 1

2
− fi− 1

2

)
+ Se,i (3.23)

where Se is the equilibrium source term responsible for the stratification. This equi-
librium source term balances exactly with the discrete hydrostatic equilibrium (3.18)
when solved here unsplit with the advection. Unfortunately, this prevents clever
less-diffusive integration tricks from being used, such as the Hancock time-stepper
(from MUSCL-Hancock), because this equilibrium source term cannot be integrated
alongside the advection contribution.

A 1st order solution to (3.23) by Forward Euler gives the familiar 1D conservative
update (3.9); however, an overall 2nd order scheme is desired. A good choice for a
2nd order time integration scheme which preserves the TVD properties of the spatial
semi-discretisation is the 2nd order Runge-Kutta strong stability preserving (RK2SSP)
scheme (Gottlieb et al., 2001),

U(1) = Un + ∆t
dUn

dt

U(2) = U(1) + ∆t
dU(1)

dt

Un+1 = 1
2
(
Un + U(2)

)
(3.24)

which steps the state Un forward by ∆t. This integration scheme is shown to be slightly
more diffusive than the MUSCL-Hancock scheme, if not only because the effective CFL
number is reduced.

3.1.4 Source solver

With the advection scheme detailed above, the final solution operator of the splitting
method (3.11) that is left to be found is Ls. This source operator approximates the
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solution to the initial value problem

∂tU = Sn(U, t) (3.25)

where Sn(U, t) is the non-equilibrium-holding source terms. An adaptive step size
Runge-Kutta (Fehlberg) 4th order with a 5th order error estimator is implemented here
to solve the above differential equation while maintaining a relative error tolerance
to machine precision. It should be noted that it is still necessary to solve the non-
equilibrium source terms using this source splitting technique, as opposed to including
it in equation (3.23) as the stable time step restriction from these source terms would
detrimentally depress the CFL number.

3.1.5 Boundary conditions

The boundary conditions are enforced by introducing fictitious ghost cells around the
entirety of the domain (RK2SSP requires 4 on either side). Then before each advection
step, the ghost cells are updated to reflect the desired boundary conditions. This
procedure is non-invasive to the the interior of the domain because each quantity is
defined at cell-centre. By passively enforcing the boundary conditions in this way the
finite volume method retains the desired conservative qualities.

The eccentric local model (2.19) is not shearing in the radial direction because the
azimuthal-like velocity is actually an angular velocity. Enforcing this periodic boundary
is as straightforward as updating the left ghost cells with the values from the right and
similarly with the right ghost cells (except when MPI communication is required for
a parallel-split domain). The domain in the periodic direction is then effectively of
infinite extent and so it is apparent that this boundary is conservative.

More care must be taken to realise reflective (no-flux) vertical boundaries due
to the oscillatory dynamic equilibrium. By simply using a homogeneous Neumann
boundary condition on the pressure and density, the ghost cells will not be in equilibrium
resulting in a continuous inward momentum flux. The density and pressure must then
be extrapolated into the ghost cells by fully reconstructing the discrete equilibrium
with (3.18) given the dynamic scale height, H(t). Finally, the vertical velocity may be
set to reflecting, as transmissive (or inflow) boundaries here can result in an ill-posed
problem producing numerical instability.
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3.2 Axisymmetric cartesian shearing box model

The eccentric local numerical model will similarly be constructed in light of the simpler
cartesian local model presented below before continuing. A simplification over the full
3D shearing box equations (2.17) is to rather solve the axisymmetric (2.5D) system by
taking every ∂y → 0. The dependence on y then drops out, and the azimuthal velocity
vy becomes a passively advected quantity in the 2.5D x-z shearing box. This allows
treatment of the 3D equations which support inertial waves, while only needing to
simulate two spatial dimensions. The azimuthally (ŷ) invariant, conservative system,
where now U = (ρ, ρvx, ρvy, ρvz, E)T is then explicitly

∂t



ρ

ρvx

ρvy

ρvz

E


+ ∂x



ρvx

ρvxvx + p

ρvxvy

ρvxvz

(E + p)vx


+ ∂z



ρvz

ρvxvz

ρvyvz

ρvzvz + p

(E + p)vz


=



0
2ρvyΩ0 + 2ρqΩ2

0x

−2ρvxΩ0

−ρΩ2
0z

ρΩ2
0(2qvxx − vzz)


. (3.26)

By assuming a constant background shear, v̄y = −qΩ0x, the effective potential gradient
term (2ρqΩ2

0x) in the x̂ momentum is balanced and cancels. Wienkers (2016) details
the specific numerical implementation of this cartesian shearing box model, including
various relevant validation tests.

3.3 Local eccentric model

A number of further approximations and modifications must be made to the local
eccentric model (2.19) in order to implement it using the numerical methods outlined
in §3.1. Nonetheless, the numerical model developed here will be presented for general
thermodynamics and disc geometry (e′ & ω′); however, the results will focus solely on
varying the eccentricity.

3.3.1 Local axisymmetric approximation

The axisymmetric approximation will also be made in the local eccentric model (2.19)
by taking each ∂η → 0, suppressing any non-zero azimuthal modes. This assumption is
permissible because the most unstable azimuthal mode in the parametric instability is
axisymmetric (Barker and Ogilvie, 2014). Unfortunately, the eccentricity looks like
an m = 1 azimuthal inertial mode itself, so that a component of ∂ξp still remains
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in equation (2.19c) when making the axisymmetric approximation. Thus vη is not
passively advected as is the azimuthal velocity in the cylindrical model! However, by
writing equation (2.19c) rather for the covariant velocity,

vη = gλϕvξ + gϕϕvη, (3.27)

the (now angular momentum-like) equation becomes axisymmetric and can be passively
advected as in §3.2. This is akin to writing the azimuthal momentum equation in
terms of the specific angular momentum, which is a conserved quantity for a general
eccentric disc, unlike the angular velocity. This becomes a problem only in eccentric
discs due to the variation of the radial distance from the centre along an orbit. Thus
the Lagrangian derivative describing the evolution of the covariant vη is

Dvη =
(
gϕϕΩλ + Ω

(
gϕϕΓϕ

λϕ − gλλΓλ
ϕϕ − gλϕΓϕ

ϕϕ

))
vξ + gϕϕΩϕvη, (3.28)

which may now be advected in the Riemann solver.
A further modification to the local eccentric model of Ogilvie and Barker (2014) will

also be made to help formulate a more well-posed vertical boundary, as well as permit
the use of the well-balanced method. By transforming the vertical z coordinate into a
coordinate system following the vertical “breathing” of the laminar solution, then the
laminar oscillations become a static equilibrium. In this oscillating frame, reflective
boundary conditions actually coincide with the laminar solution, and so it becomes
unnecessary for “un-physical” fluid to be introduced inflowing near the boundaries just
to maintain the vertical structure. The laminar solution in this formulation can also
now be maintained to machine precision using the well-balanced method of §3.1.3.1.

The governing equations (2.19) are thus transformed into the oscillatory ζ coordinate,
described by z → ζH(t). This transformation modifies the following relevant geometric
terms from the definitions in the orbital coordinates of Ogilvie (2001):

∂z → H−1∂ζ (3.29a)

∂t|z → ∂t|ζ − Ḣ

H
ζ∂ζ (3.29b)

vz → Hvζ + Ḣζ = Hvζ + v̄z (3.29c)

gζζ = 1
H2 (3.29d)

∆′ = ∆ + Ḣ

H
. (3.29e)
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In particular, the orbital divergence term, ∆′, picks up a contribution from the vertical
laminar oscillations.

The governing equations (2.19) can then be rewritten in the (ξ, η, ζ) coordinates in
conservation form as

∂t



ρ

ρvξ

ρvη

ρvζ

Ẽ


+ ∂ξ



ρvξ

ρvξvξ + gλλp

ρvξvη

ρvξvζ(
Ẽ + p

)
vξ


+ ∂ζ



ρvζ

ρvξvζ

ρvηvζ

ρvζvζ + gζζp(
Ẽ + p

)
vζ


= S(U), (3.30)

where the source term on the right side is

S(U) =

−ρ∆′

−ρvξ∆′ − 2ρΩ
(
Γλ

λϕvξ + Γλ
ϕϕvη

)
−ρvη (∆′ + Ωϕ) + ρvξ

(
gλϕΩϕ − gϕϕΩλ +

(
gλλΓλ

ϕϕ + gλϕΓϕ
ϕϕ − gϕϕΓϕ

λϕ

)
Ω
)

−ρvζ∆′ − ρΦ2ζ − 2ρvζ Ḣ
H

− ρ Ḧ
H

ζ

−
(
Ẽ + p

)
∆′ − ρΩvη

(
vξΓϕ

λϕ + vηΓϕ
ϕϕ

)
+ ρΦ2H

2
(

1
2ζ2∆ − ζvζ

)
− ρvζH

(
Ḣvζ + Ḧζ

)


(3.31)

The perturbation energy, Ẽ, is also redefined as

Ẽ = e + 1/2ρ
(
gλλvξvξ + 2gλϕvξvη + gϕϕvηvη + gζζvζvζ

)
, (3.32)

which must be used to cancel out the additional vertical pressure gradient term in the
energy equation.

3.3.2 Modified Riemann problem and finite volume scheme

The gλλ and gζζ inverse metric terms that arise in the ξ and ζ flux now imply that the
finite volume advection is anisotropic. This necessitates a number of modifications
to the Riemann solver as well as the finite volume scheme. As these metric terms
vary with time, the ξ and ζ coordinates stretch and contract periodically around the
disc. Thus the characteristics in an inertial cartesian system where the Riemann
problem is posed are curved, which requires consideration of the generalised Riemann
problem. Nonetheless, for a first approximation, the geometric coefficients may be held
constant for the short duration of each advection time step. Convergence can then
be shown as ∆t → 0, as the quasi-constant characteristics better represent the true
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curved characteristics. In this approximation, the standard Riemann problem (3.21) is
transformed by simply scaling the characteristics by

√
gλλ and

√
gζζ when solving in

the split ξ and ζ direction, respectively.
From the local expansion in §2.2.2, each of the geometric terms are evaluated on

the reference orbit, (λ0, φ(t), 0), and so are implicit functions of time only. The orbital
location of the local coordinates, φ(t), must then be determined as a function of time.
This requires solving the ODE

dφ

dt
= Ω(λ0, φ) =

√
GM

λ3
0

(1 + e cos θ)2 . (3.33)

Alternatively, a more accurate solution may be obtained by using Kepler’s method to
determine the true anomaly as a function of time. This is found by directly computing

θ(t) = 2 tan−1

√1 + e

1 − e
tan

(E
2

) (3.34)

where the eccentric anomaly, E , is first found by numerically solving

2πt

P
mod 2π = E − e sin E (3.35)

for example by using the Newton-Raphson method. Thus φ(t) = θ + ω can be quickly
computed at each time step. The transformation into ζ coordinates also requires the
horizontally invariant laminar solution describing H(t) to be found at each time step.
For efficiency, H(t) is calculated once at the start of each simulation, and then these
tabulated values used around each orbit.

Two additional source terms arise in the ζ-momentum equation as a result of the
transformation into vertically oscillating coordinates. The first comes from the flux of
ζ-momentum by the grid velocity, whereas the second term arises from the acceleration
of the grid. This −ρḦ/Hζ term may be interpreted as coming from an additional
potential, Ḧ/H, and which must be included into Φ in the well-balanced correction
(3.19) to maintain this “static” equilibrium. The equilibrium source term to be solved
unsplit in the ζ-momentum component of (3.23) is then

Se = −ρ

(
Φ2 + Ḧ

H

)
. (3.36)
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3.3.3 Problem setup

The numerical implementation of the methods described above, as well as the following
results are given in units of length such that the circular disc isothermal scale height,
H0, is unity. The unit of time is also defined such that the angular velocity, Ω0 at
r = λ0 is unity, so that the linear velocities are nondimensionalised by the isothermal
sound speed. Finally, the mid-plane density at apocentre is set to be 1.

The standard numerical problem setup that was used for each of the base runs
evolves an initial perturbation on a centred domain with height Lζ = 12, and width
Lξ chosen to exactly fit the wavelength of the perturbation, 2π/kξ. Although tests
included the n = 1, 2, 3 modes, the following will focus on the n = 1 vertical mode,
where the ω = 1/2 perturbation has radial wavenumber kξ = 3/2. For this mode, the
vast majority of the perturbation energy is represented in the domain, with less than
10−7 of the total energy not captured in the first 6 scale heights (see Figure 2.6).

The Minbee limiter was chosen for these standard runs, because although more
numerically diffusive, is necessary for stability near the boundary for larger eccentricities.
To that end, the last two scale heights were also reduced to a 1st order spatial
reconstruction.

A standard resolution of Nξ = 128 was used, with Nζ chosen so that ∆ξ = ∆ζ to
minimise any anisotropic numerical diffusion that could cause spurious results. For
n = 1 then, Nζ = 366. With this resolution, a typical evolution time of 1000 orbital
periods requires around 500 CPU-hours.

The domain is initialised with the discrete isothermal density profile (3.18) and the
equilibrium velocities equal to naught. An exact inertial wave perturbation is added,
producing a standing wave with |vξ| = 10−3. The form of this perturbation is


h′

vξ

vη

vζ

 =


−kξω

2

ω(ω2 − n)
1
2(ω2 − n)
nkξω/H

 ·


sin(ωt + π/4) sin(kξξ − π/4)
sin(ωt − π/4) sin(kξξ + π/4)
sin(ωt + π/4) sin(kξξ + π/4)
sin(ωt − π/4) sin(kξξ − π/4)

 (3.37)

which has a vertical structure given by (2.37).

3.3.4 Model verification

The 1D Toro (1999) validation tests are presented in Appendix B for the above
described finite volume implementation using the TVD RK2SSP integrator with
the Minbee limiter and exact Riemann solver as it is implemented for the standard
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Fig. 3.4 The scale height evolution shown here over one orbit computed in the z coordinate
system using the well-balanced scheme and Hperi/∆z = 6.0 for e = 0.1, 0.3, and 0.5. Each
semi-analytic solution is given for reference.

runs. As expected, compared with the often-used MUSCL-Hancock scheme, the
RK2SSP integrator is found to be slightly more dissipative, smearing out strong shocks
particularly in test 1 shown in Figure B.1.

3.3.4.1 Horizontally invariant laminar solutions

The described implementation (§3.1) is first tested in the untransformed z coordinates
to ensure agreement with the semi-analytic horizontally invariant laminar solution
given by (2.27). The results over a single orbit for e = 0.1, 0.3, and 0.5 show good
agreement with the analytic solution (see Figure 3.4); however, for longer evolution
times with moderate eccentricities, the vertical boundaries were found to produce
errors by slowly degrading the similarity solution profiles (2.24). The no-flux boundary
produces a weak rarefaction wave which eventually affects the midplane. Unfortunately,
a transmissive reconstructive boundary still creates an ill-posed problem due to the
fluid inflow. Hence, the oscillatory vertical geometry (ζ) is adopted, and will now be
tested.
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3.3.4.2 Well-balanced ζ equilibrium

It is first critical that this new implementation, in particular due to the modified
splitting method, produces the correct physical frequencies in response to specific
perturbations. Thus the initial conditions described in §3.3.3 with e = 0 and n = 0, 1, 2
are evolved for 1000 orbital periods to gain high frequency resolution. The response is
subsequently Fourier analysed to extract the relevant frequencies, and which are found
to agree with those given by the dispersion relation down to the frequency resolution.

Throughout the course of these long runs the amplitude of the initial perturbation
inevitably decreases. Although no explicit viscosity is prescribed, momentum diffusion
across cell boundaries inherent to discretisation is unavoidable, and produces an effective
numerical viscosity. This effective α-viscosity due to numerical dissipation may be
measured given the properties of the test perturbation and the decay rate by

α ∼ σdamp

k2
ξ + n

. (3.38)

For a typical run with kξ = 3/2 and n = 1, the perturbation decays to nearly 50% of
the initial amplitude over the course of 1000 periods, corresponding to a damping rate
of ≈ 10−4. The effective numerical α-viscosity is then approximately αn ≈ 3 · 10−5.
Although this exceeds the molecular viscosity α ≈ 10−9, it is still orders of magnitude
smaller than the expected and observed values of α, as well as more than 100 times
less diffusive than comparable global simulations with vertical structure (Bitsch et al.,
2013). This numerical viscosity may also be halved by doubling the resolution, as well
as by not using a slope limiter, but at the expense of less numerical stability.

The linear growth rate of these simulations can then be shown to agree with the
σ = 3/4e from linear theory, less this numerical damping rate.

3.3.4.3 Well-balanced convergence study

The 2nd order RK2SSP well-balanced implementation is now compared against the
standard unbalanced MUSCL-Hancock scheme in a convergence study of the deviation
from the laminar solutions. The discrete hydrostatic equilibrium with no initial velocity
perturbation is evolved for 10 periods in a disc with e = 0.1 so as to also demonstrate
the consistency of the quasi-constant geometry approximation of §3.3.2. As evidenced
in Figure 3.5, the well-balanced scheme nearly maintains the laminar oscillations to
machine precision. Near the mid-plane, however, it maintains the equilibrium exactly
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Fig. 3.5 L2-norm error of the velocity for the well-balanced and unbalanced schemes, in a
test to hold the “static” laminar solution.

to machine precision, whereas near the boundaries, the machine precision perturbations
from the midplane amplify as they travel into the increasingly rarefied atmosphere.

This is compared to the unbalanced MUSCL-Hancock scheme, in which errors arise
due to the operationally-split nature of the algorithm trying to balance the pressure
gradient independently from the gravitational source. Thus without the well-balanced
method, a prohibitive 108 grid points would be required with this 2nd order source-split
scheme!



Chapter 4

Results and Discussion

The well-balanced finite volume method evolving the local eccentric axisymmetric
model as described previously has been implemented and will now be employed to
study the nonlinear effects which are initially produced by the breaking of inertial
waves.

4.1 Development of breaking inertial waves

The evolution of each numerical simulation is initialised with a perturbation of amplitude
∼ 10−3, which is well within the linear parametric growth phase. However, this linear
instability soon gives way to a saturated growth rate as the linear theory begins to break
down. This is initially due to the breaking of inertial waves, but when fully developed
may include more complex wave-wave interactions. In an unrestricted domain, due to
the monotonic (n = 1) vertical profile, there always exists a height above the midplane
with a large enough amplitude to feel these nonlinear effects, however small the energy
contribution. In a limited computational domain, only eventually will the waves begin
to break at the vertical extents, first appearing as a local increase in the azimuthal
shear. The criterion for breaking from §2.3.3 written as kξδξ ≈ 1 implies there is a
local increased convergence from the fluid over-extension in ξ̂, consequently producing
a vertical jet. This initial breaking process is demonstrated in Figure 4.1, showing
three snapshots at apocentre, taken at τ = 44, 52, and 60, where τ = t/P . Each of the
columns from left to right give contours of vξ, vη, and vζ respectively.

The critical vξ motivated in §2.3.3 can also be roughly verified on these plots.
Although it is not clear exactly when an inertial wave is considered broken, shortly
after the snapshot at τ = 44, vξ ≈ 0.33 is observed as predicted. One apparent
effect of inertial wave breaking is that the phase of the in-plane velocity perturbations



Fig. 4.1 The initial inertial wave breaking period shown for a disc with e = 0.02. Velocity
snapshots shown (from top to bottom) just before (τ = 44), during (τ = 52), and shortly
after (τ = 60) the initial wave breaking. The velocities from left to right are vξ, vη, and vζ .
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abruptly shifts, lagging by more than π/2 compared to in the linear growth regime
(cf. vξ at τ = 52 in Figure 4.1). This point will become more important when discussing
the evolution of α.

4.2 Saturation of the parametric instability

After this initial ordered wave breaking period which causes a slight overshoot in the
perturbation energy, the mode is finally recovered before the secondary instability
saturates the temporal evolution into a steady turbulent state. This steady turbulence
is characterised by subsonic fluctuations with a typical root-mean-square vertical
velocity of vz

RMS ≈ 0.4, except at large distances from the mid-plane for moderate
eccentricity where the fluctuations are marginally supersonic. This dependence on
eccentricity is shown in Figure 4.2 and may be compared to the typical velocities an
order of magnitude smaller that were found in the numerical simulations by Papaloizou
(2005a) in a disc without vertical structure. His global disc simulations with e ≈ 0.13
produced typical vz

RMS ≈ 0.03cs constant over the height of the disc.

4.2.1 Heuristic model for energy transport in a stratified disc

A heuristic model may be constructed by using turbulent kinetic energy transfer and
localisation arguments to gain insight into the energy saturation behaviour in Figure 4.3.
Saturation of the parametric (primary) instability is caused by the dissipation of the
parametrically excited mode by a secondary instability, which includes inertial wave
breaking as well as other wave-wave interactions. Further insight may be had into
the perturbation energy transfer by considering local energy balances at each height.
This will then be extended by making a global energy balance between the primary
instability sourcing energy and decay from the secondary instability, allowing a scaling
of the energy saturation point to be deduced.

Assuming that the perturbation energy is localised to particular ζ by the disc
stratification, the specific turbulent kinetic energy contained in wavenumber k, at
height ζ, may be written as ε(k, ζ) = 1/2 ⟨gijv

ivj⟩. The evolution of this turbulent
kinetic energy is then locally described by

∂tε(k, ζ) = T (ε, k) + G(ε, k) + F (k, ζ) − 2νk2ε(k, ζ), (4.1)

for each k and ζ, although fluctuations at different heights may interact via the energy
flux term, F (k, ζ), and different wavenumber fluctuations can communicate through
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mode (dotted line) at saturation are shown scaling with the eccentricity. For small eccentricity,
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the triadic term, T (ε, k). These triadic interactions describe the cascade of energy to
higher wavenumbers due to the transport and stretching of the perturbations by the
nonlinear advection term in the Euler equations and so are not localised in k-space.
Finally, the linear growth rate of the parametric instability increases only the energy of
the parametrically excited wavenumber, k0, as G(ε, k) = 3/4eΩε · δ(k − k0) where δ here
is the Kronecker delta function. Although there is no explicit dissipation prescribed in
the numerical model, the dissipation rate at the smallest length scales are still described
by a molecular (or numerical) viscosity, ν.

This model will now be analysed at the steady turbulent state, where ∂tε = 0 for
each k and ζ, by first focussing on the perturbations at ζ = ζcrit, where the inertial
waves begin to break and dissipate energy. For k = k0 at this height, there is very
little dissipation because k0 is small. Thus the energy flux from ζ < ζcrit along with
the instability energy growth are balanced by transferring the energy to smaller scales
(k′) via triad interactions:

F (ζ < ζcrit) + G(k0) −→ T (k′ > k0). (4.2)

However, considering now k > k0, at ζcrit, there is no parametric growth term, and so
energy at k′ is solely transferred through k to smaller scales and dissipated:

T (k′ < k) −→ T (k′ > k) + 2νk2ε(k). (4.3)

Physically, the energy here proceeds to cascade to smaller scales, down to the order of
the mean free path where molecular viscosity is able to dissipate it as heat; however,
numerically this turbulent cascade is preempted by the grid size. Nonetheless, the
energy is similarly “dissipated” by the energy conservation scheme when the momentum
is no longer able to be represented on the subgrid-scale.

Now considering the remainder of the disc, at ζ < ζcrit, it is reasonable to say
that T (ζ) ≪ T (ζcrit) for all k (i.e. the perturbations are very weakly nonlinear).
Additionally, because the majority of energy remains in the k0 mode, little dissipation
occurs, so that the perturbation energy is only diffused across ζ:

G(k) + F (ζ) −→ F (ζ ′ ≶ ζ). (4.4)

Due to the vertical flux conservation for ζ < ζcrit, all energy is eventually transported
through ζcrit at k0. At these large scales, the energy must go through the triadic term
at k0 (4.2), and so the turbulent cascade may be parameterised by an eddy viscosity,
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νT , above ζcrit, which accounts for the energy dissipation at k > k0. Thus νT k2
0ε takes

the place of T above ζcrit, permitting a macroscopic and global energy balance.
Energy is injected by the disc eccentricity at a given k0 for all ζ, written as

∂tẼk,gain ≈
ˆ ∞

0

3
4eΩρε0 dζ ∼ ẼkeΩ, (4.5)

where Ẽk is the total perturbation kinetic energy. The approximation Ẽ0 ≈ Ẽk has
been used here, which is seen to be true for small eccentricity (cf. Figure 4.3). This
total energy growth is balanced with the dissipation by the parameterised turbulent
viscosity term above ζcrit:

∂tẼk,loss ≈
ˆ ∞

ζcrit

ρνT k2
0ε dζ. (4.6)

A scaling for this turbulent viscosity motivated by the mixing length model for large
eddy transport suggests νT ∝

√
ε/k0. Additionally, a linear velocity profile (n = 1) is

assumed for all ζ, so that
ε = εcrit

ζ2
crit

ζ2, (4.7)

allowing the scaling of integral (4.6) to be found. A similar analysis may also be done
for the other inertial modes using profiles of higher powers in ζ, with conceptually
similar results.

Balancing these two energy integrals finally gives a scaling for the total energy at
saturation,

Ẽk ≈ a

e

2 + ζ2
crit

ζ3
crit

e−ζ2
crit/2 (4.8)

for some proportionality constant a. To find closure, the final conservation argument
relating the total energy to ζcrit is

Ẽk =
ˆ ∞

0
ρε dζ (4.9)

≈ εcrit

ζ2
crit

ˆ ∞

0
ρζ2 dζ (4.10)

≈ b

ζ2
crit

. (4.11)

where it was assumed that εcrit ∝ v2
crit ∝ 1 as suggested by §2.3.3. The magnitude of

the proportionality constant b is then expected to be b ∼ 3ρ0v
2
crit. The total energy
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Fig. 4.4 The total kinetic energy at saturation is shown with the best fit function (4.12).
The upper saturation energy level is also shown when it significantly differs from the average
at small eccentricities as seen in Figure 4.5.

can then be implicitly represented in terms of the eccentricity as

a2
(
b + 2Ẽk

)2

b3Ẽk

e−b/Ẽk ≈ e2, (4.12)

which may be solved numerically for Ẽk.
The best fit function of the form (4.12) was found for the constants a = 0.089 and

b = 0.452, and is plotted over the saturation energy scaling in Figure 4.4. As will
be considered in the following section, at small eccentricities a low frequency weakly
nonlinear oscillation may occur in which the saturation point flips between a high and
low energy state. In particular, for e = 0.02 and 0.03, the averaged energy differs
significantly from this upper saturation level, and as shown in Figure 4.4, appears to
better match the form of this heuristic model. Still, the assumptions made to formulate
this model are unable to explain the sensitive threshold point for the weakly nonlinear
oscillations, yet the model fits the scaling quite well in the more strongly nonlinear
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regime. Further, the value of b implies that εcrit ∼ 0.38, or that vξ
crit ∼ 0.35. This

critical value for vξ is only slightly larger than the value of 0.33 estimated in §2.3.3,
but could be expected as the argument presented there was only indicating the point
of initial breaking.

The estimated values for ζcrit from this model are compared to those found in
simulations and shown in Figure 4.6. As expected, as more energy is required to be
dissipated (with increasing eccentricity), then ζcrit must encroach on the higher densities
near the midplane. Thus, only localised parts of the disc both become unstable to
the secondary instability and are able to dissipate sufficient energy. Below ζcrit, the
inertial waves are not significantly nonlinear, whereas above ζcrit the perturbation
energy available to dissipate decreases in the more rarefied atmosphere. It may then
be expected that ζcrit remains further from the midplane for higher inertial modes
because the perturbation energy profile extends higher (as in Figure 2.6). Nonetheless,
as it was shown that vcrit is nearly constant, the most kinetic energy is available to the
n = 1 mode because this profile is contained nearest the midplane. This particular
behaviour is a consequence of the vertical disc structure, and so is unique to stratified
atmospheres.

4.2.2 Self-regulation

As noticed in the previous section, when the secondary instability saturating growth is
only weakly nonlinear, oscillations at saturation may be produced due to the modulation
of the linear terms by weakly nonlinear effects. These oscillations are most pronounced
for e = 0.02 and 0.03, as evident in Figure 4.5. The timescale of these oscillations is
found to decrease with increasing eccentricity. Very long timescale undulations exist
at saturation for e = 0.01, compared to the strongly nonlinear saturation at higher
energy where eventually there is no obvious separation of timescales. At the threshold
near e = 0.02, the energy is found to reside in two distinct energy states, the lower of
which has an average energy even below the saturation level for e = 0.01. The presence
of these oscillations is found to be quite robust; however, their quality is extremely
sensitive to the numerical dissipation as well as any initial noise. For example, the exact
residence time in the high compared to the low energy states may change, although
the particular saturation levels are not affected.

These oscillations may also be seen as a self-regulation process at saturation. As
the secondary instability depletes the primary mode of too much energy, the inertial
waves no longer break. The primary signal subsequently regains a near-linear growth
rate until eventually overshooting vξ

crit producing further unbalanced dissipation as
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crit (dotted line).

evidenced in Figure 4.7. Thus it makes sense that the modulation frequency increases
with the “stiffness” of the system, being the linear growth rate.

Beyond this weakly nonlinear saturation regime for e ≲ 0.03, the saturation energy
is pushed into a more strongly nonlinear regime, which appears as the large jump at
e = 0.04 in the saturation energy scaling (Figure 4.4).

4.2.3 Convergence study

Chaotic behaviour is common for nonlinear dynamical systems, such as this inertial
wave breaking and interaction process. This causes extreme sensitivity to the initial
conditions as well as any inevitable numerical dissipation. Nonetheless, the energy
saturation level was confirmed to be statistically independent of the particular initial
conditions and resolution used in the evolution through an extensive convergence study
targeting e = 0.02 and e = 0.1. In particular, when initialised with a random velocity
field, the resonant mode is selected, and consistently saturates. Nonetheless, there is
still an unavoidable bias due to the size of Lξ, as this will preferentially choose the
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mode supported in an integer size of the domain. Therefore, it was also shown that
these results are independent of the box size by using a domain twice the size for the
n = 1 mode. This domain size also nearly supports the n = 2 mode, yet little change
was noticed due to sharing the energy between modes.

Finally, convergence with resolution (or more generally with decreasing numerical
dissipation) was shown for the energy saturation level. However, values based on the
Reynolds stresses are notoriously difficult to converge without sub-grid turbulence
models or direct numerical simulations. This is because although often insignificant
to the larger scales (given no backscatter interaction), sub-grid scale fluctuations
still contribute to the Reynolds stresses, and therefore α and the eccentricity decay
rate. This means that the value calculated for α will always depend on the grid size
(King et al., 2007)! Thus as expected, with 4 times higher resolution, the magnitudes
computed for the Reynolds stresses consistently increase by around 20%.

4.3 Angular momentum transport

The integral (2.32) around the disc is computed discretely within the code after each
time step to determine the efficiency with which this turbulent state transports angular
momentum. A typical time evolution of α is shown in Figure 4.8, where three distinct
phases are noted. In the initial linear growth phase, α ≈ 0 as Reynolds shear stresses
in the plane of the disc nearly cancel out over the course of a perturbation period (2P).
Due to the linear growth rate breaking the symmetry of the integral, α is very slightly
negative. This can be shown using equation (2.32), with the eigenvector (3.37) and
growth rate exp(γt).

As the inertial waves grow, −α increases exponentially until beginning to feel the
nonlinear effects of wave breaking. Coincident with this decrease in α, the phase of
both vξ and vη shift, lagging by nearly 120 degrees. Although they similarly lag, their
phase separation increases slightly from π/2, causing a negative velocity correlation
which also contributes to the dip in α seen in Figure 4.8 after τ = 100. This phase
shift is more pronounced further from the midplane where the waves first break, and
so initially does not contribute significantly to the angular momentum transport.

Once the disc has reached a steady turbulent state, large amplitude fluctuations in
α are produced which average out to be small and negative. This averaged value of α

is shown scaling with eccentricity in Figure 4.9. A sharp transition between e = 0.03
and e = 0.04 is again associated with the secondary instability being pushed away from
the weakly nonlinear regime. Additionally, for large eccentricity, the gλϕp term in the
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Reynolds shear stress begins to dominate over the correlated velocity term, producing
the plateau in α. The reason for the increased influence of this term is still not clear,
but it is also manifest as a slightly positive value in the linear growth phase for high
eccentricity. Further investigation must be made to confirm that this is not an artefact
of the numerical methods, as the limits of this implementation could be exceeded for
large eccentricities.

A rough scaling for α may be found by rewriting the energy dissipation rate (4.6) as

∂tẼk,loss ≈ α

Ω

ˆ ∞

ζcrit

pk2
0ε dζ, (4.13)

and then equating with (4.6). As expected, this gives α ∝
√

ε. In the averaged sense,
then α ∝ Ẽk (with a negative proportionality constant to fit the scaling), suggesting
that α should indeed continue to grow with eccentricity.

Most instabilities in discs extract energy from the background differential rotation
(shear). This instability rather extracts energy from the background eccentric oscilla-
tions, and so does not immediately guarantee outward angular momentum transport.
Axisymmetric instabilities are known to produce very little angular momentum trans-
port, so that the turbulent and numerical viscosities are able to mix down the angular
momentum gradient. Each fluid parcel conserves its initial angular momentum, ℓ ∝

√
λ,

and so as the turbulence rearranges the fluid it transports angular momentum inwards,
producing α ≲ 0! In a similar 2D axisymmetric model of tidally distorted discs, Ryu
and Goodman (1994) also found negligible angular momentum transport (albeit being
quite dependent on the initial conditions). A small negative α is also produced, for
example, in weak 3D convective instabilities, where the shear restricts the evolution to
be effectively 2D axisymmetric (Lesur and Ogilvie, 2010). Therefore, present results
are expected to be valid in 3D discs when the Keplerian shear dominates over the
secondary instability, which could be expected for discs of moderate eccentricity. It
is speculated then for a 3D local model with sufficiently large forcing (eccentricity),
that the turbulence could overcome the tendency towards axisymmetry by the shear,
and produce α > 0. This would be of interest to investigate in future 3D eccentric
shearing box simulations, and compare with the work of Papaloizou (2005a) who found
an α ∼ 10−3 for e = 0.1.
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Fig. 4.10 The averaged eccentricity decay rate at saturation is shown scaling with the disc
eccentricity. The eccentricity growth rate by the 3:1 eccentric Lindblad resonance found by
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4.4 Eccentricity evolution

The integral (2.34) around the disc may also be computed discretely within the
implemented code, assuming the radial structure of a stationary alpha-disc with
constant α(r). The scaling of the eccentricity decay rate in this model is given in
Figure 4.10, which suggests eccentricity decay times on the order of 50 to 100 orbital
periods. It is a bit surprising that ∂τ e plateaus; however, as this value is also dependent
on the Reynolds stresses, the calculation becomes increasingly sensitive to numerical
dissipation for high eccentricities. In reality, the nonlinear evolution of this instability
is also likely to modify the global disc structure with increasing eccentricity.

Assuming a constant alpha-disc model, Lubow (2010) found an eccentricity growth
rate driven by the eccentric Lindblad resonance of

∂τ e ∼ e

10Pb

, (4.14)
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where Pb is the binary orbit period relative to the local disc period. This growth rate is
shown in Figure 4.10 for the 3:1 eccentric inner Lindblad resonance which is thought to
be active in Superhump binaries. This energy absorption from the eccentric mode by
the saturated parametric instability thus appears to be a promising means of balancing
rapid eccentricity growth due to mean-motion resonances.



Chapter 5

Conclusions

The viability of implementing a well-balanced numerical method based on the local
eccentric disc model has been demonstrated in this work, in addition to its effectiveness
at studying local instabilities inherent to eccentric discs. Just as the linear theory for
the inertial wave parametric instability produced significantly higher growth rates in a
vertically stratified disc (Ogilvie and Barker, 2014; Papaloizou, 2005b), the nonlinear
evolution and saturation has interesting differences as the vertical structure localises
the effective region of the secondary instability. Below a critical height, the nonlinear
effects are very weak; yet far above this critical height, the density is too low for the
dissipation there to contribute significantly. There was some success at modelling this
interplay using a vertical energy balance, shedding light on the observed scaling of the
saturation energy with eccentricity in the strongly nonlinear regime.

This nonlinear regime of the axisymmetric instability was also found to be quite
inefficient at transporting angular momentum. This result is expected to remain
valid in 3D models for small eccentricity; however, more significant (outward) angular
momentum transport could be expected for large eccentricities when the azimuthal
symmetry is broken as the turbulence overcomes the Keplerian shear. Studying this
impact of the nonaxisymmetry on the α-viscosity at large eccentricity would require
development of a 3D numerical model for the eccentric local model, but may help
explain the occurrence of superoutbursts in SU UMa stars. Further investigation into
the impacts of an eccentricity gradient and disc twist on this nonlinear evolution would
also be of interest, as well as the implications of using less-compressive (non-isothermal)
thermodynamics. Nonetheless, the saturation of this parametric instability appears
to be a promising dissipation mechanism for balancing the exponential growth of
eccentricity due to mean-motion resonances. The stresses produced in the steady
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turbulent state were found to effectively damp the eccentricity, giving estimated decay
times of 50 to 100 orbital periods.

These presented results are applicable to any continually perturbed eccentric disc
of small eccentricity, where the balance with the eccentricity decay studied here might
set a stable disc eccentricity. In particular, in protoplanetary discs where embedded
planets may continually perturb the disc, this eccentricity decay mechanism may have
further-reaching effects on the evolution and damping of planet eccentricity (Bitsch
et al., 2013; Goldreich and Sari, 2003; Papaloizou et al., 2001). Finally, in Cataclysmic
binary systems, the eccentricity damping rate found here is comparable to the estimated
growth by the 3:1 Lindblad resonance.
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Appendix A

Relevant geometric quantities

The relevant geometric quantities describing the orbital coordinates with oscillating
height are given (primed, or in ζ), alongside the original or unchanged quantities
reproduced from Ogilvie and Barker (2014) for convenience.

gλλ = R2
λ (A.1)

gλλ =
R2 + R2

ϕ

R2R2
λ

(A.2)

gλϕ = gϕλ = RλRϕ (A.3)

gλϕ = gϕλ = − Rϕ

R2Rλ

(A.4)

gϕϕ = R2 + R2
ϕ (A.5)

gϕϕ = 1
R2 (A.6)

gζζ = 1
gζζ

= H2 (A.7)
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J ′(λ, ϕ, ζ) = HJ(λ, ϕ, z) = Hλ (1 + (e − λe′) cos θ − λeω′ sin θ)
(1 + e cos θ)3 (A.8)

Γλ
λϕ = Γλ

ϕλ = Rλϕ

Rλ

− Rϕ

R
(A.9)

Γλ
ϕϕ = −

R2 + 2R2
ϕ − RRϕϕ

RRλ

(A.10)

Γϕ
ϕϕ = 2Rϕ

R
(A.11)

Γϕ
λϕ = Γϕ

ϕλ = Rλ

R
(A.12)

∆′ = ∆ + Ḣ

H
=
√

GM

λ3
λ(1 + e cos θ) (e′ sin θ − eω′(cos θ + e))

1 + (e − λe′) cos θ − λeω′ sin θ
+ Ḣ

H
(A.13)

Φ2 = GM

λ3 (1 + e cos θ)3 (A.14)

Ωi = ∂iΩ (A.15)

Ri = ∂iR (A.16)



Appendix B

Code validation

A test suite of five 1D tests designed by Toro (1999) define macroscopic Riemann
problems producing varying magnitudes and combinations of shocks, rarefactions, and
contact discontinuities. These are summarised in Table B.1, including the simulation
time and the location, xc, of the initial discontinuity. A thorough description of each
test, in addition to the performance of the WAF and MUSCL-Hancock schemes using
different limiters is investigated in Wienkers (2016).

Test Description tstop xc ρL uL pL ρR uR pR

1 Modified Sod 0.2 0.3 1.0 0.75 1.0 0.125 0.0 0.1
2 123 Problem 0.12 0.5 1.0 −2.0 0.4 1.0 2.0 0.4
3 Blast Wave 0.012 0.5 1.0 0.0 1000.0 1.0 0.0 0.01
4 Shock Collision 0.035 0.4 6.0 19.5975 460.894 6.0 −6.19633 46.095
5 Stationary Contact 0.012 0.8 1.0 −19.5975 1000.0 1.0 −19.5975 0.01

Table B.1 Summary of the 1D test regimen.

The finite volume implementation described in §3.1 using TVD RK2SSP integration
with the Minbee limiter and exact Riemann solver (shown with blue ◦’s) is compared
against the often-used MUSCL-Hancock TVD integration scheme with the Minbee
limiter and HLLC approximate Riemann solver (shown with red ×’s). The results of
each of these tests are given on the following pages.



68

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0

ρ

0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

|u
|

0.2 0.4 0.6 0.8√
x2 + y2

0.2

0.4

0.6

0.8

1.0

p

0.2 0.4 0.6 0.8√
x2 + y2

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

e

Fig. B.1 Test 1 at t = 0.2, with the exact Riemann solution for reference.
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Fig. B.2 Test 2 at t = 0.12, with the exact Riemann solution for reference.
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Fig. B.3 Test 3 at t = 0.012, with the exact Riemann solution for reference.
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Fig. B.4 Test 4 at t = 0.035, with the exact Riemann solution for reference.
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Fig. B.5 Test 5 at t = 0.012, with the exact Riemann solution for reference.
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