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Artificial agents are becoming prevalent across human life domains. However, the 

neural mechanisms underlying human responses to these new, artificial social partners 

remain unclear. The Uncanny-Valley (UV) hypothesis predicts that humans prefer 

anthropomorphic agents but reject them if they become too human-like—the so-called 

UV reaction. Using functional MRI, we investigated neural activity when subjects 

evaluated artificial agents and made decisions about them. Across two experimental 

tasks, the ventromedial prefrontal cortex (VMPFC) encoded an explicit representation 

of subjects’ UV reactions. Specifically, VMPFC signaled the subjective likability of 

artificial agents as a nonlinear function of human-likeness, with selective low likability 

for highly humanlike agents. In exploratory across-subject analyses, these effects 

explained individual differences in psychophysical evaluations and preference choices. 

Functionally connected areas encoded critical inputs for these signals: the temporo-

parietal junction encoded a linear human-likeness continuum, whereas nonlinear 

representations of human-likeness in dorsomedial prefrontal cortex (DMPFC) and 

fusiform gyrus emphasized a human-nonhuman distinction. Following principles of 

multisensory integration, multiplicative combination of these signals reconstructed 

VMPFC’s valuation function. During decision-making, separate signals in VMPFC and 

DMPFC encoded subjects’ decision variable for choices involving humans or artificial 

agents, respectively. A distinct amygdala signal predicted rejection of artificial agents. 

Our data suggest that human reactions toward artificial agents are governed by a 

neural mechanism that generates a selective, nonlinear valuation in response to a 

specific feature combination (human-likeness in nonhuman agents). Thus, a basic 

principle known from sensory coding—neural feature selectivity from linear-nonlinear 

transformation—may also underlie human responses to artificial social partners. 

 

 

Significance statement 

Would you trust a robot to make decisions for you? Autonomous artificial agents are 

increasingly entering our lives but how the human brain responds to these new, artificial 

social partners remains unclear. The Uncanny Valley hypothesis—an influential 

psychological framework—captures the observation that human responses to artificial agents 

are nonlinear: we like increasingly anthropomorphic artificial agents, but feel uncomfortable 

if they become too human-like. Here we investigated neural activity when humans evaluated 

artificial agents and made personal decisions about them. Our findings suggest a novel 

neurobiological conceptualization of human responses toward artificial agents: The Uncanny 

Valley reaction—a selective dislike of highly human-like agents—is based on nonlinear 

value-coding in VMPFC, a key component of the brain’s reward system. 
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INTRODUCTION 
Would you trust a robot to make personal choices for you? Artificial agents capable of 

decision-making are becoming more prevalent across human life domains (Broadbent, 2017). 

Such artificial (i.e. synthetic, not naturally occurring) agents can elicit positive emotions but 

they can also make humans uncomfortable and even induce repulsion, leading to rejection as 

social partners (Mori et al., 2012; Broadbent, 2017). Understanding human responses to 

artificial agents is important, not only for optimizing human-robot interaction, but it may also 

reveal previously unrecognized mechanisms governing human-human social interactions 

(MacDorman and Ishiguro, 2006; Vogeley and Bente, 2010). 

The influence of physical appearance on human acceptance of artificial agents is 

conceptualized by the Uncanny Valley (UV) hypothesis (Mori, 1970; Mori et al., 2012). This 

hypothesis states that robots become more likable the more human-like they appear. But, 

when robots become too human-like, likability decreases and instead reverses into negative 

reactions of dislike, eeriness or uncanniness. This nonlinear valuation is the so-called UV 

reaction. Although its psychological basis is not fully understood (Rosenthal-von der Putten 

and Kramer, 2014; Rosenthal-von der Putten and Weiss, 2015; MacDorman and 

Chattopadhyay, 2016; Lischetzke et al., 2017), the UV hypothesis offers a framework for 

investigating human-robot interactions and associated neural mechanisms. 

From a neural coding perspective, human responses to artificial agents suggest a 

transition from a linear representation of human-likeness to a nonlinear representation of 

likability (i.e. selectively decreased likability for highly human-like agents). In sensory 

systems, such linear-nonlinear transformations occur gradually as neurons acquire selectivity 

to specific feature combinations (Olshausen and Field, 2004). However, it is unexplored 

whether this coding principle also underlies responses to artificial agents. 

Here we used functional magnetic resonance imaging (fMRI) to investigate the neural 

mechanisms underlying reactions toward artificial agents and their role in decision-making. 

We hypothesized involvement of neural systems supporting mentalizing and social 

perception, including temporo-parietal junction (TPJ) and dorsomedial prefrontal cortex 

(DMPFC) (Saxe and Wexler, 2005; Amodio and Frith, 2006; Mitchell et al., 2006; Hampton 

et al., 2008; Behrens et al., 2009; Bhatt et al., 2012), as well as systems supporting valuation 

and decision-making, including ventromedial prefrontal cortex (VMPFC) (Chib et al., 2009; 

Hare et al., 2010; Bartra et al., 2013; Neubert et al., 2015). We examined these areas’ 

contributions to UV reactions by measuring neural activity in two paradigms—a 

psychophysical rating task and a choice task. We addressed the following questions. 

First, it is unclear whether a subjective UV reaction is itself neurally represented. 

Neural signals related to anthropomorphism of artificial agents have previously been 

described (Krach et al., 2008); however, an explicit neural UV representation has remained 

elusive (Cheetham et al., 2011). Evidence for a neural UV representation would support the 

UV hypothesis as a principle governing human-robot interactions, with potential broader 

implications for human-human interactions. 

Second, the UV hypothesis implies the existence of (i) a system that derives human-

likeness from sensory cues, and (ii) a downstream system that integrates these signals to a 

nonlinear value function, encoding low likability specifically for human-like artificial agents. 

Analogous nonlinear responses to specific feature-combinations occur in multisensory 

integration (de Araujo et al., 2003; Stein and Stanford, 2008). But whether a similar principle 

applies to social valuations—including UV reactions—is unknown. 

Third, as previous imaging studies focused largely on perception of robots 

(Chaminade et al., 2007; Krach et al., 2008; Cheetham et al., 2011), the neural processes 

underlying decision-making about artificial agents remain unclear. These processes likely 

converge in VMPFC and DMPFC, where mentalizing and decision networks intersect (Bartra 
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et al., 2013; Wittmann et al., 2018). Recent studies showed that activity in these areas differs 

during social choices (Nicolle et al., 2012; Wittmann et al., 2016) and evaluations (Mitchell 

et al., 2006; Jenkins et al., 2008). Despite these advances, delineating functional distinctions 

between VMPFC and DMPFC remains difficult, and approaches involving artificial agents, 

as taken here in the context of the UV hypothesis, may offer new insights. 

 

MATERIALS AND METHODS 

Participants. Twenty-six healthy volunteers (14 female, 12 male; aged between 18 and 35 

years (M = 23.04, SD = 4.47)) participated in this study, though the final sample consisted of 

21 subjects (see below). The local ethical committee approved the study. Participants were 

recruited via general advertising on campus. Inclusion criterion was that participants had to 

be aged between 18 and 35 years. Exclusion criteria were the usual exclusion criteria due to 

technical and medical limitations (no implants; no large tattoos in the region of head, neck, 

shoulder and upper back; no claustrophobia; no current medication). None of the 26 

participants suffered from neurological or psychiatric diseases as ensured by previous e-mail 

based screening. Twenty-four participants were right-handed and two left-handed. Four data 

sets were excluded due to data loss or technical problems during scanning. Most of 

participants were students (n = 23) who received extra credit (hourly credit as a trial subject). 

Non-student participants (n = 3) were reimbursed with €40. Upon arrival participants were 

instructed and signed informed consent. Before starting the scanning procedure, participants 

trained how to operate the response device used in the scanner. They completed a series of 

rating tasks and a series of choice tasks. These rating and choice tasks involved different 

pictures as subsequently used in the scanner. Subsequently, participants were prepared for the 

scanner and then completed the six experimental sessions in the scanner. After the fMRI 

session, participants completed a questionnaire after which they were debriefed, reimbursed 

and thanked for their participation. 

 

Design. Participants underwent six experimental sessions of fMRI scanning of the main task 

and two additional shorter sessions for functional localizers (not analysed for the present 

study). In each experimental session, participants were asked to perform rating and choice 

tasks, which were run in random permutation trial-by-trial. In total, participants performed 72 

trials of the rating task and 108 trials of the choice task. 

 

Stimuli. The experiment used six stimulus categories: humans without physical impairments, 

humans with physical impairments, artificial (synthetic) humans, android robots, humanoid 

robots and mechanoid robots.  

Pictures of humans with and without physical impairments were taken from picture 

databases (www.shutterstock.com; www.gettyimages.com, www.istockphoto.com, 

www.fotolia.de). Only pictures showing people in a standing (if possible for humans with 

physical impairments), frontal position without exaggerated postures or exaggerated facial 

expressions in front of a white background were considered for the pre-test. Pictures with 

extreme colors (e.g. bright red) were excluded. 

Pictures of artificial humans were created based on portraits of people who received 

extreme plastic surgery (Toledano, 2011). The pictures present the people in dramatic light 

and reduced coloring (resulting in a light-grey complexion). According to the orientation of 

the heads depicted in the Toledano portraits, pictures were taken of volunteers exposing the 

same head and body orientation, under similar light conditions. The pictures of the bodies 

were also reduced in coloring and matched to the portraits, resulting in full body images of 

humans who share some irritating features: reduced coloring which resulted in light-grey 
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complexion, mismatches in the proportion of head and body, exaggerated facial features (due 

to plastic surgery). In total, nine synthetic humans (4 female, 5 male) were evaluated. 

For the category of the android robots, the pre-test included a set of ten android 

robots. Again, pictures showed the robots in a standing or sitting frontal position without 

exaggerated postures or exaggerated facial expressions. 

For the humanoid and mechanoid robots, pictures were chosen from a study on robot 

appearances (Rosenthal-von der Putten and Kramer, 2014). In total, ten mechanoid and eight 

humanoid robots were evaluated. 

In the pre-test, the humans and robots were evaluated with regard to eight items 

(likable, unpleasant, familiar, uncanny, intelligent, disgusting, human-like, and attractive) 

rated on 6-point Likert scale ranging from “I fully agree” to “I do not agree at all”. To keep 

the test short, two sets of pictures were created which were evaluated by 77 participants (39 

participants completed set one, and 38 completed set two). Mean values for each of the eight 

items and each of the stimulus pictures were calculated. With regard to the humans without 

physical impairments, those pictures of female and male healthy humans were selected that 

provided the best fit of high likability, human-likeness, and attractiveness and rated low in 

terms of being uncanny, unpleasant and disgusting. 

The resulting stimulus material consists of six pictures for each of the six categories. 

When necessary, and if possible, gender of the stimuli was balanced. However, due to the 

restricted original material it was not possible to balance for gender within the category of 

humans with impairments and synthetic humans. Both groups contained more pictures with 

male than with female people. 

Thus, we wished to study evaluations for specific categories of stimuli that feature in 

the literature of the Uncanny Valley and that are distinguished from each other by their 

design features. These categories included (1) the very un-humanlike mechanoid robots, 

which are typically not designed with the intention to mimic human appearance, (2) 

humanoid robots, which resemble humans in terms of basic body shape but without clear 

recognizable facial features, (3) android robots, which are explicitly designed to closely 

mimic human appearance including in facial features, (4) the newly introduced artificial 

humans, which were derived from real human faces (see our explanation above), and (5, 6) 

humans with or without physical disabilities, which were recognizably human but varied in 

familiarity. Each of these categories was represented by several stimulus exemplars that were 

carefully selected based on pre-tests: In an online study (Rosenthal-von der Putten and 

Kramer, 2014), over 40 robots were evaluated regarding UV-measures. A cluster analysis 

showed that robots with similar patterns of received evaluations (e.g., on human-likeness and 

likability) clustered also regarding design characteristics. Thus, our fMRI study was intended 

to study specific classes of stimuli based on theoretical and empirical considerations. This 

approach also closely follows the UV-literature in which the UV-effect is fit to mean data for 

stimulus categories (Burleigh and Schoenherr, 2015). 

Visual stimulus presentation was controlled using the software PRESENTATION 

(Neurobehavioral Systems Inc., Albany, CA). 

 

Rating task. The rating trials started with the presentation of a stimulus for 4 s, followed by a 

blank screen for 3 s. Afterwards, participants rated the stimulus with regard to its likability, 

familiarity and human-likeness on three separate visual analogue scales, each presented for 3 

s. The scales ranged from 1 (not at all likable / familiar / human-like) to 5 (very likable / 

familiar / human-like). The rating scales were followed by a variable inter-trial interval (ITI) 

with jittered duration of 2-6 s. An instruction was presented during the ITI (“rate” or 

“decide”) to inform participants about whether the next trial would be a rating or choice trial. 
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Each specific picture (i.e. stimulus) was presented twice, resulting in 72 rating trials in total 

(6 stimulus categories × 6 pictures × 2 repetitions). 

 

Choice task. The choice trials started with the presentation of the first stimulus for 4 s, 

followed by a blank screen of 3 s. Then the second stimulus was shown for 4 s, followed by a 

blank screen of 4 s. Subjects were then prompted to report their choice by showing the 

options “first” and “second” on the monitor (within 2 s). Subsequently, participants rated 

their confidence level with regard to the previously reported decision on a separate visual 

analogue scale presented for 3 s. The scale ranged from 1 (not at all confident) to 5 (very 

confident).  

Subjects were instructed that they have to choose between two pictures against the 

background of the following scenario: 

“Prior to this study we asked all humans and robots to choose one item among four 

items which will be given to the volunteers as gratification for participation in this study. The 

four items were a movie theatre voucher, a package of dishwasher tabs, a bottle of sparkling 

wine, and a package of quality toilet bowl deodorizer blocks. Every person and robot made a 

choice. You will see pictures of all these persons and robots, but will not receive information 

on who decided in favor for what item. During the choice task trial you will see two pictures 

each showing a person or a robot (in the possible combinations person-person, robot-person, 

and robot-robot). You shall decide in favor of the picture showing the robot or the person 

from whom you prefer to receive the previously chosen present. Since the time for decision 

making and reporting your decision is very short, please make a “gut decision”. There will be 

easy and hard decisions. Thus, please indicate your level of confidence in the decision on a 

subsequent rating scale from 1 (not at all confident) to 5 (very confident).” 

All subjects received the same gift at the end of the session (a cinema voucher). They 

were instructed about the possible gifts they could receive with the information that the 

robots and humans would have decided for a gift prior to the experiment. The instruction 

contained pictures of four possible gifts, and samples of these gifts were placed on a shelf in 

the corner of the training room. Although the experimenter did not refer to these samples, 

they were visible to the subjects. Subjects typically asked questions about the choice task and 

the gifts; for instance, they confirmed with the experimenter that everybody (humans and 

robots) would have made a gift choice. Overall, subjects’ behavior during instructions and 

debriefing did not indicate that they did not believe the cover story. (For example, nobody 

explicitly stated that they did not believe the cover story.) 

The choice trials were designed as follows. In total, nine ‘choice contrasts’ between 

the six categories of stimuli (humans without physical impairments, humans with physical 

impairments, artificial humans, android robots, humanoid robots, mechanoid robots) were 

implemented. These choice contrasts are shown on the x-axis of Fig. 5B. The stimulus 

category of humans without physical impairments was used as a reference to be compared 

with all other stimulus categories in five of these choice contrasts; the android stimulus 

category was used as a reference to be compared with all other stimulus categories (except 

humans without physical impairments) in the remaining four choice contrasts. Within each 

choice contrast, there were twelve individual choice trials that contrasted specific stimulus 

exemplars from each category (e.g. a specific human stimulus vs. a specific artificial human 

stimulus). Each of these twelve individual choice trials, comparing a pair of specific stimuli, 

occurred only once in the experiment. With respect to the order of presentation on each trial, 

these twelve choice trials were balanced: six comparisons started with a picture from one 

stimulus category and six started with pictures of the other category. This design resulted in a 

total of 108 choice trials (twelve choice trials contrasting specific stimuli × nine choice 

contrasts). 
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Behavioral data analysis. To analyze the rating data, we performed one-way repeated-

measures analysis of variance (ANOVA) with stimulus category (shown on x-axis of Fig. 1C) 

as factor. Separate ANOVAs were performed for ratings of likability, human-likeness and 

familiarity. We tested relationships between these rating variables using Pearson correlation 

and linear regression. 

We focused on the artificial human stimuli to investigate the UV effect for the 

following reasons. These stimuli were conceptually very interesting as they were derived 

from actual human photographs and thus followed Pollick’s approach (Pollick, 2010) that 

humans can also fall in the Uncanny Valley when they sufficiently deviate from the typical 

human appearance. By contrast, android robots are often perceived to be robots because of 

their stiff posture and/or their visible mechanical parts. Therefore, we created artificial 

humans as a new category of stimuli that resemble android robots in their unnatural 

(synthetic) appearance but without visible mechanical parts or stiff posture and instead 

altered facial and head-body proportions and grey skin tone. Based on this design, artificial 

humans were thus conceptually closer to actual humans than android robots on a theoretically 

motivated human-likeness continuum (Mori, 1970; Mori et al., 2012). We also found in 

separate pre-tests and in our main rating task that artificial humans were relatively less liked 

than android robots, likely because android robots offer relatively obvious cues regarding 

their status as machines, including stiff posture and visible mechanical parts, compared to the 

more subtle cues in artificial humans. We indicate in the Results that the main effects of 

defining the Uncanny Valley were robust when also including android robots in the analyses. 

For analysis of choice data we used multiple logistic regression analysis. All 

regressions were performed at the random-effects level (i.e. regression coefficients were 

estimated separately for each subject and then entered into one-sample t-tests at the group 

level to assess statistical significance). To assess the influence of the different rating 

differences we performed the following logistic regression: 

 

𝑦 = 𝛽0 + 𝛽1𝐿𝑖𝑘𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝛽2𝐹𝑎𝑚𝑖𝑙𝑖𝑎𝑟𝑖𝑡𝑦 + 𝛽3𝐻𝑢𝑚𝑎𝑛𝑙𝑖𝑘𝑒𝑛𝑒𝑠𝑠 + 𝜀 
 

with 𝑦 as the observed choice on a single trial (0 for choice of first presented stimulus, 1 for 

choice of second presented stimulus), 𝐿𝑖𝑘𝑎𝑏𝑖𝑙𝑖𝑡𝑦 as the relative difference in rated likability 

between the first presented stimulus and second presented stimulus (calculated from the 

subject-specific and stimulus-specific likability rating given in the rating task), 𝐹𝑎𝑚𝑖𝑙𝑖𝑎𝑟𝑖𝑡𝑦 

as the relative difference in rated familiarity between the first presented stimulus and second 

presented stimulus (calculated from the subject-specific and stimulus-specific familiarity 

rating given in the rating task), 𝐻𝑢𝑚𝑎𝑛𝑙𝑖𝑘𝑒𝑛𝑒𝑠𝑠 as the relative difference in rated human-

likeness between the first presented stimulus and second presented stimulus (calculated from 

the subject-specific and stimulus-specific human-likeness rating given in the rating task), 

𝛽0 as constant term, 𝛽1 to 𝛽3 as the corresponding parameter estimates (regression 

coefficients), and 𝜀 as residual. Accordingly, a subject’s ‘decision variable’ (cf. Fig. 5D) was 

modelled as follows: 

 

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 =  𝛽1𝐿𝑖𝑘𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝛽2𝐹𝑎𝑚𝑖𝑙𝑖𝑎𝑟𝑖𝑡𝑦 + 𝛽3𝐻𝑢𝑚𝑎𝑛𝑙𝑖𝑘𝑒𝑛𝑒𝑠𝑠  
 

with 𝐿𝑖𝑘𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝐹𝑎𝑚𝑖𝑙𝑖𝑎𝑟𝑖𝑡𝑦, 𝐻𝑢𝑚𝑎𝑛𝑙𝑖𝑘𝑒𝑛𝑒𝑠𝑠 as the trial-by-trial relative rating 

differences as described above, and 𝛽1 to 𝛽3 as the corresponding parameter estimates defined 

for each subject by the logistic regression described above. Thus, we modelled a subject’s 

decision variable as a linear combination of subjectively weighted decision attributes. 

For the analysis shown in Fig. 5D, we binned the decision variable into equally 
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populated bins (shown on the x-axis of Fig. 5D) and then determined the choice probability 

for each of these bins (as the number of observed choices for the first or second stimulus 

divided by the number of total choices in each bin); these data are represented by the circles 

in Fig. 5D. The line in Fig. 5D was obtained from fitting a logit function. For the analysis 

shown in Fig. 5E, we focused on the five choice contrasts that compared humans without 

physical impairments to all other stimulus categories. For each choice contrast, we calculated 

the average absolute (unsigned) value of the decision variable, which we term ‘Δ Decision 

variable’. Thus, larger values for Δ Decision variable would indicate that on average, 

subjects evaluated the stimulus categories as very different in terms of their preference, and 

accordingly would have a strong preference for one category over the other. 

 

fMRI data acquisition. Functional MRI scanning was performed with a 7-Tesla whole-body 

MRI system (Magnetom 7T, Siemens Healthcare, Erlangen, Germany) at the Erwin L. Hahn 

Institute for Magnetic Resonance Imaging, Essen, Germany. The system is equipped with the 

SC72 gradient system capable of 70 mT/m maximum amplitude and a slew rate of 200 

mT/m/ms. For this experiment, the scanner was equipped with a 1 channel transmit/ 32-

channel receive head coil (Nova Medical, Wilmington, MA, USA). For each participant, a 

T1-weighted high-resolution anatomical scan (same slice prescription as echoplanar images 

(EPI)) and magnetization-prepared rapid-acquisition gradient echo (MPRAGE) were acquired 

for registration purposes (repetition time (TR) = 2500 ms, echo time (TE) = 1.27 ms, 

inversion time (TI) = 1100 ms, flip angle = 7°, Field of View (FOV) = 270 × 236 mm², 

matrix = 394 × 345, sagittal plane, slice thickness = 0.7 mm, 256 slices with a non-

interpolated voxel size of 0.7 × 0.7 × 0.7 mm
3
). For the acquisition of functional images, 

subjects were scanned in six subsequent sessions, each lasting about 12 min to acquire a total 

of 2022 volumes (331 – 343 volumes per session). In addition, subjects were scanned during 

two functional localizer tasks not used in the present paper, each lasting about 90 seconds. 

Whole-brain functional T2*-weighted EPI were acquired with an bold contrast-sensitive EPI 

sequence (Poser and Norris, 2009b, a) optimized for 7.0-T (slice thickness, 1.51 mm; 144 

coronal slices; TR = 2000 ms; TE = 22 ms; flip angle, 14°; matrix, 170 × 170; FOV = 256 × 

256 mm², order of acquisition of slices: interleaved). As head coil array allows massive 

parallel imaging, the GRAPPA (Generalized Autocalibrating Partially Parallel Acquisitions) 

algorithm was used with a reduction factor of R = 9 to reconstruct the undersampled k-space 

(Griswold et al., 2002). B0 fieldmaps were acquired prior to the EPI-sequence. 

 

fMRI data analysis. We performed the fMRI data analysis using statistical parametric 

mapping (SPM8; Wellcome Trust Centre for Neuroimaging, London). Preprocessing 

included realignment of functional data including motion correction, normalization to the 

Montreal Neurological Institute (MNI) coordinate system, and smoothing with a Gaussian 

kernel with full width at half maximum (FWHM) of 6 mm. A high-pass temporal filter with a 

cut-off period of 128 s was applied. General linear models (GLMs) assuming first-order 

autoregression were applied to the time course of activation in which event onsets were 

modelled as single impulse response functions convolved with the canonical hemodynamic 

response function. Time derivatives were included in the basis functions set. Linear contrasts 

of parameter estimates were defined to test specific effects in each individual dataset. Voxel 

values for each contrast resulted in a statistical parametric map of the corresponding t 

statistic. In the second (group random-effects) stage, subject-specific linear contrasts of these 

parameter estimates were entered into one-sample t-tests, as described below, resulting in 

group-level statistical parametric maps. For parametric modulators, we used the standard 

SPM8 settings by which regressors are orthogonalized in the order they are entered into the 

design matrix. To test that our results are robust with respect to regressor orthogonalization, 
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we performed region-of-interest timecourse analyses (described below) in which regressors 

competed to explain variance in the absence of orthogonalization. Shared variances between 

our main variables of interest, computed within subjects and then averaged across subjects, 

were as follows: likability and familiarity, R
2
 = 0.39 (± 0.05); likability and human-likeness, 

R
2
 = 0.26 (± 0.03); familiarity and human-likeness, R

2
 = 0.36 (± 0.04); likability and human 

detection, R
2
 = 0.24 (± 0.03); familiarity and human detection, R

2
 = 0.24 (± 0.03); human-

likeness and human detection, R
2
 = 0.39 (± 0.03). Variance inflation factors (VIF) in our 

GLMs were within acceptable limits (mean VIF = 2.28  ± 0.19; (Kutner et al., 2004)). For the 

rating regressors in SPM analyses and region-of-interest analyses we did not perform any 

weighting of the different rating variables but simply entered the mean-centred variables as 

regressors in the GLM. We estimated the following GLMs to test specific hypotheses: 

 

GLM 1. This GLM served three purposes: (1) to identify brain areas with rating-task activity 

related to rated likability, familiarity and human-likeness (Fig. 2A, 3A, I); (2) to identify 

brain areas with choice-task activity related to the main decision variable and to rated 

decision confidence (Fig. 6A, 7A); (3) to identify brain areas with higher activity in the 

choice task than in the rating task (Table 2). For each subject we estimated a GLM with the 

following regressors of interest: (R1) an indicator function for the stimulus onset during the 

rating task; (R2) R1 modulated by the trial-specific human-likeness rating; (R3) R1 

modulated by the trial-specific likability rating; (R4) R1 modulated by the trial-specific 

familiarity rating; (R5) an indicator function for the onset of the rating scales; (R6) an 

indicator function for the onset of the first stimulus during the choice task; (R7) an indicator 

function for the onset of the second stimulus during the choice task; (R8) R7 modulated by 

the trial-specific decision variable; (R9) R7 modulated by the trial-specific confidence rating; 

(R10) an indicator function for the onset of the choice phase; (R11) – (R16) the motion 

parameters resulting from the realignment pre-processing step as covariates of no interest; 

(R17) – (R22) six session constants. (Note that R1-R16 were defined separately for each 

scanning session.) 

 

GLM 2. This GLM served to identify brain areas with choice-task activity related to the 

relative human-likeness (Fig. 6H). For each subject we estimated a GLM with the following 

regressors of interest: (R1) – (R6) as above; (R7) an indicator function for the onset of the 

second stimulus during the choice task; (R8) R7 modulated by the trial-specific confidence 

rating; (R9) R7 modulated by the trial-specific relative likability; (R10) R8 modulated by the 

trial-specific relative familiarity; (R11) R18 modulated by the trial-specific relative human-

likeness; (R12) an indicator function for the onset of the choice phase; (R13) an indicator 

function for the onset of the confidence rating scale;  (R14) – (R20) the motion parameters 

resulting from the realignment pre-processing step as covariates of no interest; (R21) – (R26) 

six session constants. (Note that R1-R20 were defined separately for each scanning session.) 

 

GLM 3. This GLM served to identify brain areas with differential activity between specific 

stimulus categories (Fig. 3E, Fig. 6E). For each subject we estimated a GLM with the 

following regressors of interest: (R1) – (R6) indicator functions for the stimulus onsets during 

the rating task for each of the six stimulus categories defined above; (R7) an indicator 

function for the onset of the rating scales; (R8) – (R16) indicator functions for the onsets of 

the first stimulus during the choice task for each of the nine choice contrasts defined above; 

(R17) – (R25) indicator functions for the onsets of the second stimulus during the choice task 

for each of the nine choice contrasts defined above; (R26) an indicator function for the onset 

of the choice phase; (R27) – (R32) the motion parameters resulting from the realignment pre-
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processing step as covariates of no interest; (R33) – (R38) six session constants. (Note that 

R1-R32 were defined separately for each scanning session.) 

 

Functional connectivity analysis. We assessed functional connectivity using the 

psychophysiological-interaction (PPI) approach (Friston et al., 1997; Gitelman et al., 2003). 

For each subject we first extracted eigenvariates for a 6 × 6 × 6 voxel cluster around a seed 

voxel based on the peak voxels identified by a contrast between the choice task and the rating 

task. The peak voxel used for each subject was determined using a leave-one-subject-out 

procedure by re-estimating our second level analysis 21 times, each time leaving out one 

subject. Starting at the respective peak voxel for correlation with sequence length we selected 

the nearest peak in these cross-validation analyses. Time courses were de-convolved with the 

canonical hemodynamic response function (HRF) to construct a time series of neural activity 

in the region of interest. The regressors were constructed using the standard deconvolution 

procedure as implemented in SPM8 (Gitelman et al., 2003). For each model, we calculated 

single-subject first-level contrasts for the PPI regressor (R1) that were then entered into a 

second level analysis by calculating a one-sample t-test across the single subject coefficients. 

We estimated the following PPI GLMs. 

 

PPI 1. This GLM tested for differential coupling between brain areas as a function of 

stimulus category (humans vs. non-humans) in the rating task. A schematic summary of the 

results is shown in Fig. 6J. The model contained the following regressors: (R1) a 

psychophysiological interaction regressor between the time series of activity in a seed brain 

area, extracted as just described, and a contrast between trials with human stimuli and non-

human stimuli; (R2) the time series of activity in a seed brain area, extracted as just 

described; (R3) a contrast between human vs. non-human stimuli; (R4-R9) the motion 

parameters resulting from the realignment pre-processing step as covariates of no interest; 

(R10-R15) six session constants. (Note that R1-R9 were defined separately for each scanning 

session.) This model was estimated for the seed region DMPFC. 

 

PPI 2. This GLM tested for differential coupling between brain areas as a function of task 

(choice task vs. rating phase). A schematic summary of the results is shown in Fig. 6J The 

model contained the following regressors: (R1) a psychophysiological interaction regressor 

between the time series of activity in a seed brain area, extracted as just described, and a 

contrast between choice task vs. rating task; (R2) the time series of activity in a seed brain 

area, extracted as just described; (R3) a contrast between choice task vs. rating task; (R4-R9) 

the motion parameters resulting from the realignment pre-processing step as covariates of no 

interest; (R10-R15) six session constants. (Note that R1-R9 were defined separately for each 

scanning session.) This model was estimated for the seed regions TPJ, VMPFC, FFG, 

DMPFC, amygdala. 

 

Statistical significance testing. For all fMRI analyses, we report effects that survive 

correction for multiple comparisons across the whole brain using a significance level of P < 

0.05 (family-wise error) at cluster level, imposed on maps that were displayed at cluster-

defining threshold of P < 0.005 with minimum cluster size of k = 10 contiguous voxels. In 

addition, we used small volume correction (P < 0.05, cluster-level) in structures for which we 

had strong a priori hypotheses based on previous studies, including the VMPFC, ventral 

striatum, DMPFC, and amygdala. Small volume corrections were performed in spheres of 10 

mm radius for cortical areas (VMPFC, DMPFC) and spheres of 6 mm radius for subcortical 

areas (ventral striatum, amygdala). The spheres were centred on specific coordinates reported 

in previous studies as follows. VMPFC [-2 40 -4] and ventral striatum [10 14 -4], taken from 
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a meta-analysis of value-based decision-making (Clithero and Rangel, 2014); amygdala: [18, 

-6, -22] taken from a previous study of value-based decisions using a similar experimental 

design to the present study but with different kinds of stimuli (Grabenhorst et al., 2013); 

DMPFC [2 44 36] taken from a previous study of social decision-making (Wittmann et al., 

2016). (For DMPFC, we chose this particular study for our coordinate definition as it 

investigated DMPFC function in a task that required evaluating social others’ performance to 

guide own decisions. We reasoned that similar processes might be engaged in our task, which 

required subjects to decide which agent would be capable of selecting a personal gift for 

them. Significant effects for human-likeness and human-non human contrast in DMPFC were 

also found when defining coordinates based on the Neurosynth meta-analysis database 

(Yarkoni et al., 2011), which localizes DMPFC at [0 56 22] using the search term ‘social’). 

 

Region of interest analysis. To ensure that statistical inference in our region of interest 

analyses was not circular, we followed approaches used in previous studies (Behrens et al., 

2008; Kriegeskorte et al., 2009; Esterman et al., 2010; Zangemeister et al., 2016). 

Specifically, we used a leave-one-subject-out method in which we re-estimated a second-

level analysis 21 times, each time leaving out one subject to define the ROI coordinates for 

the left-out subject. We then extracted the signal from the subject-specific coordinates 

defined in this way. Thus, the data which we used for the region of interest analysis were 

independent from those used to define the coordinates for extracting the signal.  Following 

data extraction we applied a high-pass filter with a cut off period of 128 s. The data were then 

z-normalized, oversampled by a factor of 10 using sinc-interpolation, and separated into trials 

to produce a matrix of trials against time. We generated separate matrices for each event of 

interest (rating trials, choice trials). We then fitted GLMs to each oversampled time point 

across trials separately in each subject. 

 For the rating task, our analysis strategy for region of interest analyses was as follows: 

We first fitted a GLM containing as main regressors the three (parametrically varying) rating 

variables likability, human-likeness and familiarity. We then tested whether the model fit was 

improved by inclusion of an additional binary human detection regressor that modelled the 

difference between human and non-human stimuli. We accepted this extended GLM if it 

yielded a better model fit as assessed with Akaike Information Criterion (AIC) and 

significant human-detection regressor. In the figures, we plot the standardized regression 

coefficients for significant regressors only; we report in the Results text which model 

provided the best fit and which regressors were significant. In addition to these regressors, the 

GLMs included motion parameters and session constants as covariates of no interest. This 

GLM analysis yielded one regression coefficient for each regressor for every oversampled 

time point in each subject. We entered individual-subject coefficients into one-sample t-tests 

(random-effects analysis, P < 0.05) and calculated group averages and standard errors for 

each time point across participants, yielding the across-subject effect size time courses shown 

in the figures. These mean effect size time courses are shown in Fig. 2B, Fig. 3B, F, J, Fig. 

6B, F, H, Fig. 7B, C.  

  To test for relationships between specific behavioral and neural effect sizes, we 

extracted neural effects sizes from individual subject’s data using the leave-one-out 

procedure described above. We only tested for these relationships if a ROI showed a 

significant effect in the tested variable. We performed linear regression to produce the plots 

shown in the figures. We tested statistical significance using Pearson correlation. As the 

behavioral UV depths in the rating task and choice task entered these analyses multiple times, 

we performed a Bonferroni correction.  Specifically, we obtained a P-value of P < 0.0125 for 

tests involving the behavioral UV depth in the rating task and a P-value of P < 0.0167 for 
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tests involving behavioral UV depth in the choice task. The resulting effect size scatter plots 

are shown in Fig. 2D, Fig. 3D, H, L, Fig. 6D, I, Fig. 7D. 

 

 

RESULTS 

Behavioral Uncanny-Valley reactions in the rating task. Subjects performed a 

psychophysical rating task in which they evaluated humans and different kinds of artificial 

agents on the key dimensions of the UV hypothesis, including human-likeness, likability, and 

familiarity (Fig. 1A, B). Our approach to evoke UV reactions followed two concepts: First, 

we followed Mori’s original hypothesis that likability increases with human-likeness but 

sharply decreases for highly human-like artificial agents (Mori, 1970; Mori et al., 2012). 

Second, we followed the argument that humans can also fall in the UV if they significantly 

deviate from typical human appearance or behavior (Pollick, 2010). Accordingly, we tested 

not only human-like androids but, to elicit strong UV reactions, we designed ‘artificial 

humans’ derived from photographs of humans with artificially altered facial features. These 

artificial or synthetic humans were more human-like than typical androids but deviated from 

human appearance by having exaggerated smooth, flawless, unnatural faces and slightly 

unnatural proportions. 

In total, we used four categories of artificial agents (Fig. 1B), based on independent 

pre-tests: (1) ‘artificial humans’, (2) ‘android robots’, (3) ‘humanoid robots’, (4) ‘mechanoid 

robots’. We hypothesized that the human-like artificial agents (in particular artificial humans, 

and androids) would fall in the UV, i.e. having lower likability ratings than predicted by a 

human-likeness continuum (defined in the next paragraph), whereas less human-like robots 

(humanoid and mechanoid robots) should lie outside the UV. As controls, we included 

photographs of humans with and without physical impairments, the former having presumed 

lower familiarity than the latter. 

Stimulus categories differed significantly in rated likability (F(1, 20) = 46.19; P < 

0.001; η
2
 = 0.698; repeated-measures ANOVA), familiarity (F(1, 20) = 54.82; p < 0.001; η

2
 = 

0.733) and human-likeness (F(1, 20) = 119.95; P < 0.001; η
2
 = 0.857). As predicted from the 

UV hypothesis, subjects evaluated the stimulus categories along a human-likeness continuum 

(Fig. 1C, left; R = 0.980, P = 0.0006, linear regression): mechanoid and humanoid robots 

constituted the low end of this continuum, humans constituted the high end, and the UV-

relevant artificial humans and android robots were rated intermediately human-like. [Slightly 

lower ratings for humans with physical impairments, compared to those without physical 

impairments, were explained by lower familiarity: human-likeness and likability ratings 

depended on familiarity ratings for humans with physical impairments (both R > 0.5, P < 

0.05, Pearson correlation) but not for humans without physical impairments (P > 0.22)]. 

Within this observed human-likeness continuum, we next measured UV reactions in 

likability. 

Across all stimuli, likability tended to increase with human-likeness (Fig. 1D). The 

key prediction of Mori’s UV hypothesis is that, although likability generally increases with 

human-likeness, highly human-like artificial agents are less likable than predicted by a 

human-likeness continuum, and thereby fall in the UV. Consistent with this prediction, 

likability ratings for artificial humans (and some specific androids) were lower than expected 

based on their rated human-likeness (Fig. 1D). As proposed by the UV hypothesis (Mori, 

1970) and found in previous work (depending on the appearance dimension that was varied, 

for instance, prototypicality (Burleigh et al., 2013)), likability data were well described by a 

cubic polynomial fit (R
2
 = 0.573, Fig. 1D), with consistent results in individual subjects’ fits 

(mean R
2
 = 0.362 ± 0.03). A distinct UV effect was visible in the average likability of 
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artificial humans, which was lower than expected based on the human-likeness continuum 

(Fig. 1E). Thus, ratings across subjects and stimuli indicated the existence of a UV effect. 

 

Modelling the Uncanny Valley. To examine neural correlates of UV reactions, it was 

critical to first model and quantify the UV psychometrically within individual subjects. As we 

observed the most pronounced UV effect for artificial humans, we focused on this stimulus 

category (see Methods; including android stimuli yielded similar results).  

We used a direct approach and quantified the UV effect as the extent to which 

likability ratings for artificial humans deviated from a linear fit of likability to human-

likeness, calculated across all other stimulus categories (‘UV depth’, Fig. 1F). This approach 

captured Mori’s original notion of the UV: an individual subject would have a stronger UV 

reaction (i.e. a deeper UV) if likability ratings for human-like stimuli were lower than linearly 

predicted from that subject’s human-likeness ratings. Figure 1F illustrates the approach and 

resulting UV depth in one example subject, with further examples and across-subjects 

distribution shown in Fig. 1G. The visible downward deflections of likability from linear 

human-likeness fits (Figs. 1F, G, compare red and blue data points, indicating observed 

likability and likability predicted from human-likeness, respectively) implied that artificial 

humans were less liked than expected from a linear human-likeness function. 

We found robust behavioral UV reactions in the rating data. Despite considerable 

inter-individual variation, UV depths for artificial humans were significantly larger than 

predicted from human-likeness (indicating lower likability than predicted; P = 3.47 ×10
-8

, 

one-sample t-test). UV depth was significant in 18 of 21 individual subjects (P < 0.05, one-

sample t-tests). (Weaker but significant UV reactions were found for familiarity (P = 1.9 × 

10
-4

) but, as expected, not for human-likeness (P = 0.117)). A significant UV effect was also 

found when including both artificial humans and androids (P = 6.1 × 10
-6

). As controls, UV 

depths were non-significant for stimuli not hypothesized to fall in the UV, (e.g. humans with 

physical impairments or humanoid robots; both P > 0.15, one-sample t-tests), for which 

likability was well predicted by a linear human-likeness fit. 

We confirmed the robustness of these results by an alternative approach to model the 

UV based on regression residuals. Within subjects, we fitted six linear regressions of 

likability ratings on human-likeness ratings (cf. Fig. 1D), each time leaving out the data from 

one of the six stimulus categories. We then applied the estimated regression coefficients on 

the data of the left-out category to predict likability from human-likeness and noted the 

regression residuals (i.e. the variance in likability not explained by human-likeness given the 

specific regression coefficients). According to the UV hypothesis, these residuals should be 

significantly more negative for the UV-relevant artificial humans (and possibly android 

robots) compared to other stimulus categories. Indeed, residuals for artificial humans were 

significantly smaller (more negative) than those for all other agents (all comparisons P < 

0.005, t-test, corrected for multiple comparisons), while the residuals for androids were 

significantly smaller than those for humanoids and humans without physical disabilities (both 

P < 0.005). The UV effect quantified within each subject based on these residuals was highly 

correlated with our main measure of the UV effect (R = 0.7486, P = 9.4 × 10
-5

, Pearson 

correlation). Thus, this procedure provided additional validation for the existence of a UV 

effect in the behavioral data. 

Thus, behavioral data confirmed the existence of a UV reaction in our stimulus set 

and validated the rating task to search for neural correlates of subjective UV reactions. We 

next investigated how neural systems might transform a linear human-likeness function into a 

nonlinear UV function. 
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A neural Uncanny Valley in ventromedial prefrontal cortex. To locate neural correlates of 

UV reactions, we regressed stimulus-evoked activity in the rating task on trial-by-trial rated 

likability, which was the key rating to reflect the UV (shown above). Likability evaluations 

were encoded in typical reward areas, including ventromedial prefrontal cortex (VMPFC, 

Fig. 2A, B). Additionally, VMPFC activity reflected human-likeness ratings (Fig. 2B). 

Because likability and human-likeness were covariates, these variables accounted for 

different activity-components. Familiarity did not explain VMPFC activity. [All region-of-

interest (ROI) analyses used leave-one-subject-out cross-validation to identify subject-

specific, independent ROI coordinates, ensuring unbiased analysis (Kriegeskorte et al., 2009; 

Esterman et al., 2010). ROI regressions were performed without orthogonalization. All three 

ratings were included as regressors; in addition, we tested in a second GLM whether a binary 

human detection contrast would improve model fit (see Methods).] We tested whether the 

GLM in the region-of-interest analysis was improved by inclusion of a binary ‘human 

detection’ regressor that contrasted human and non-human stimuli. (For this contrast, non-

human agents involved mechanoid, humanoid, android and artificial-human stimuli.) 

Inclusion of this human detection regressor did not change the significant effects for likability 

and human-likeness shown in Fig. 2B; although the human detection regressor itself showed 

a significant effect on VMPFC activity, this occurred quite late outside our primary analysis 

window (P = 0.033, one-sample t-test at 9 s post-stimulus onset). Thus, VMPFC integrated 

the two key UV-dimensions likability and human-likeness, suggesting a role in UV reactions.  

If a brain area signalled the key UV dimension likability, it might also explicitly 

represent the UV reaction. [In an ‘explicit’ UV representation, activity patterns across stimuli 

should match the prototypical UV shape.] Consistent with this notion, VMPFC activity across 

stimuli closely resembled the behavioral UV reaction (Fig. 2C): activity increased 

approximately linearly according to human-likeness for most stimuli, but responses to 

artificial humans were significantly lower than expected from a linear human-likeness fit 

(Fig. 2C; P = 0.008, one-sample t-test). VMPFC activity thus followed the typical UV shape 

with selectively lower activity for highly humanlike artificial agents. Across subjects, neural 

UV depths (derived from individual subjects’ VMPFC activities) matched subjects’ 

behavioral UV reactions (Fig. 2D; R = 0.576, P = 0.006, Pearson correlation, Bonferroni-

corrected). When calculating this across-subjects effect with the alternative UV-

quantification based on regression residuals (described above), the relationship with neural 

UV depths in VMPFC was weaker (R = 0.41, P = 0.062). Accordingly, the relationship to 

individual differences should be considered exploratory.    

Thus, VMPFC activity integrated the key UV dimensions likability and human-

likeness to an explicit representation of the UV reaction. The strength of this representation 

partly explained individual differences in behavioral reactions toward artificial agents. 

 

Linear and nonlinear human-likeness signals as neural basis for the Uncanny Valley. 

We next searched for activities related to the UV dimension human-likeness. We reasoned 

that different types of human-likeness signals might constitute neural inputs required for 

transforming the psychophysical human-likeness continuum (Fig. 1C) into the nonlinear UV 

representation observed in VMPFC (Fig. 2C). 

Neural responses to human and artificial stimuli in temporo-parietal junction (TPJ), 

dorsomedial prefrontal cortex (DMPFC), and part of fusiform gyrus (FFG) were related to 

human-likeness ratings (Fig. 3, Table 1). TPJ activity showed a positive linear relationship 

with human-likeness (Fig. 3A-C): it gradually increased across stimuli and faithfully reflected 

the human-likeness continuum. Likability and familiarity did not show significant effects on 

TPJ activity; a human detection regressor was not significant and its inclusion did not affect 
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the significance of the human-likeness regressor. TPJ thus provided a parametric, linear 

human-likeness signal—the most basic element of the UV hypothesis. 

By contrast, human-likeness coding in DMPFC was more complex. Although we 

found a significant relationship with parametric human-likeness (Table 1, GLM1), a binary 

contrast showed significantly stronger activation by human agents compared to non-human 

agents (Fig. 3E; GLM3, contrasting mechanoid, humanoid, android robots and artificial 

humans with both human stimulus categories). Detailed region-of-interest analysis indicated 

that neural activity in this DMPFC area was best explained by a human detection contrast as 

follows. Across stimuli, DMPFC activity followed the human-likeness continuum for non-

human agents but then sharply increased for human agents (Fig. 3E-G). We modelled this 

activity with a ‘human detection’ regressor (Fig. 3F, a dummy variable distinguishing human 

from non-human stimuli) in addition to linear human-likeness (improvement in GLM fit was 

assessed by Akaike Information Criterion). [Although Fig. 2C and 3G may look similar, it is 

important to note that these data are averaged across trials and subjects; our region of interest 

analysis within each subject indicated that while VMPFC activity was best explained by joint 

likability and human likeness coding, DMPFC activity was best explained by a human 

detection regressor.] Thus, DMPFC activity emphasized differences between human and non-

human stimuli, suggesting a role in distinguishing human from artificial agents. 

FFG exhibited a third type of human-likeness signal. It showed a negative parametric 

relationship with human-likeness selectively for non-human stimuli and an average response 

to human stimuli (Fig. 3I-K, modelled in the same way as DMPFC activity). Both human-

likeness and human detection explained significant variance in FFG activity (Fig. 3J, inset). 

Thus, FFG combined a human-detection response with negative human-likeness coding 

selectively for artificial agents. 

If TPJ, DMPFC and FFG contributed to UV reactions, their sensitivity to human-

likeness should reflect individuals’ UV depths. Indeed, all three areas encoded human-

likeness more strongly for subjects with stronger UV reactions (Fig. 3D, H, L). [These 

relationships were significant for human-likeness coefficients (P < 0.05, Pearson correlation); 

in DMPFC, the effect was strongest for human-detection and in FFG for differential human-

likeness.] Similar effects were not found in control analyses with non-UV stimulus categories 

(P > 0.6). We note that the effect in Fig. 3L did not survive Bonferroni-correction for 

multiple comparisons; accordingly, we treat this result as an exploratory finding.  

Thus, TPJ, DMPFC and FFG encoded distinct linear and nonlinear human-likeness 

signals that were related to individuals’ UV reactions. 

  

Modelling the neural Uncanny Valley from human-likeness signals. These data suggest a 

possible information-processing sequence, whereby a linear human-likeness code in TPJ is 

transformed to nonlinear human-likeness codes in DMPFC and FFG and eventually to an 

explicit UV representation (i.e. nonlinear likability) in VMPFC. Specifically, the observed 

FFG signal seemed to track the proximity to a human-nonhuman boundary (decreasing 

activity selectively for non-humans), which seems suited for determining the UV-typical 

likability-drop for the most human-like artificial agents. The DMPFC human-detection signal 

might be relevant for setting up such selective human-likeness signalling. 

Consistent with these notions, a simple multiplicative integration of linear and 

nonlinear human-likeness signals in TPJ and FFG approximated the UV-related activity 

pattern in VMPFC (Fig. 4A). Such multiplicative signal integration is biologically plausible 

and routinely used in models of neural multisensory integration (Pena and Konishi, 2001; de 

Araujo et al., 2003; Small et al., 2004; Stein and Stanford, 2008). Across subjects, the 

strengths of the human-likeness components in TPJ and FFG were related to the neural UV-
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effect in VMPFC (Fig. 4B, C), suggesting these combined signals were relevant for the 

observed UV effect in VMPFC. 

Thus, the neural UV-code in VMPFC could be approximated by multiplicative 

integration of human-likeness signals from TPJ and FFG. We next tested in a second 

experiment how these activities were related to behavioral choices toward artificial agents. 

 

Uncanny-Valley reactions guiding decision-making. In a second experimental task (Fig. 

5A), subjects viewed sequential human and artificial agents and chose from whom they 

would rather receive a personal gift. We instructed subjects that each human and artificial 

agent had selected a gift from an option set, and that they would receive one of these gifts 

based on their choices for the different agents during the experiment. Actual gift choices were 

unknown to the subjects; they had to decide whom they would trust to select an attractive 

gift. We reasoned that this situation likely encouraged subjects to compare humans and 

artificial agents on UV-relevant dimensions. 

 When choosing whether to prefer a gift from a human or artificial agent, subjects 

typically (but not always) preferred humans (Fig. 5B, black bars). Choice probabilities were 

more variable when choosing between artificial agents (grey bars). We next sought to explain 

subjects’ choices in terms of the separately made ratings of key UV dimensions. 

In value-based choice, a decision-maker integrates relevant information to a ‘decision 

variable’ (a weighted composite of decision factors) to compare and decide between different 

options. Accordingly, we reasoned that weighted, comparative valuations of likability, 

human-likeness and familiarity guided subjects’ choices. We defined trial-specific relative 

differences in likability, human-likeness and familiarity based on individual subjects’ 

stimulus ratings (from the rating task). Logistic regression showed that relative likability, 

familiarity and human-likeness were significant predictors for subjects’ choices: subjects 

were more likely to accept a gift from an individual they considered relatively more likable, 

familiar, and human-like (Fig. 5C, all regression coefficients P < 0.0002, one-sample t-tests). 

The same result was found when considering only choices involving UV-relevant artificial 

humans and androids (all coefficients P < 0.0009, one-sample t-tests). On average, logistic 

regression based on relative ratings provided correct choice classification for 85.7% of trials 

(mean across subjects, ± 0.89, s.e.m.) and resulted in a pseudo-R
2
 of 0.53 (mean across 

subjects, ± 0.02, s.e.m.). Choice probabilities were thus well described by a subject-specific 

decision variable, defined as a weighted sum of relative likability, familiarity and human-

likeness (Fig. 5D). 

To quantify the UV in the choice task, we examined the decision variable for specific 

stimulus categories. For this analysis and subsequent neural analyses, we focused on the 

unsigned decision variable i.e. the absolute value difference. [In value-based decisions, neural 

decision signals often reflect this absolute value difference between choice options (Heekeren 

et al., 2004; Rolls et al., 2010a, b; Hunt et al., 2012; Grabenhorst et al., 2013), which is 

usually interpreted as the signature of a competitive decision mechanism.] 

Similar to likability ratings (Fig. 1F), the decision variable followed a human-likeness 

continuum: the more two stimulus categories differed in human-likeness, the more they also 

differed in the decision variable (Fig. 5E; R = -0.533, P = 1.8 × 10
-7

, Pearson correlation), 

with highest differences for humans vs. mechanoid robots and smallest differences for 

humans with and without physical impairments. (A high difference in the decision variable 

between stimuli indicated clear choice preference between these stimuli.) However, 

consistent with the UV hypothesis, the difference in the decision variable between humans 

and artificial humans was significantly larger than expected from a human-likeness 

continuum (Fig. 5F; t(20) = 4.66, P = 1.52 ×10
-4

, one-sample t-test), which matched the UV 

reaction observed in likability ratings (Fig. 1D). This upward deflection from the linear 
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human-likeness fit (Fig. 5E, difference between red and blue data points, indicating actual 

difference in decision variable and difference in decision variable estimated from linear 

human-likeness fit, respectively) implied a greater difference than expected if the decision 

variable followed a human-likeness continuum. This result quantified the UV during choices 

in terms of individual subjects’ decision variable. [Choice UV-effects were not found for 

control stimuli (humanoid robots; P = 0.505, one-sample t-test).] 

Thus, choices between humans and artificial agents were based on a decision variable 

that reflected subjects’ individual UV reactions. These data validated the choice task for 

examining neural correlates of decision-making in the context of the UV hypothesis. 

 

Neural Uncanny-Valley components during decisions. A contrast showed that areas 

involved in the rating task were even more strongly activated in the choice task, including 

VMPFC, DMPFC and TPJ (Table 2). To examine neural UV components during decisions, 

we regressed choice-task activity (responses to humans and artificial agents at time of the 

second stimulus on each trial) on individual subjects’ decisions variables, i.e. the weighted 

sums of relative likability, familiarity and human-likeness. 

Activity in VMPFC tracked subjects’ decision variable, with stronger activity for 

larger unsigned value differences (Fig. 6A, B). Similar effects occurred in other areas 

implicated in decision-related valuations (Bartra et al., 2013), including striatum and 

posterior cingulate cortex (Table 2). VMPFC encoding of the decision variable was not 

accounted for by subjective decision difficulty: confidence ratings (a common measure of 

subjective difficulty) explained separate VMPFC activity components (Fig. 6B). Across 

decision categories, VMPFC activity followed a human-likeness continuum but deviated 

significantly for choices involving UV-relevant artificial humans, thereby matching the 

psychophysical UV (Fig. 6C). [Note that Fig. 6C shows VMPFC activity when subjects 

chose whether to receive a gift from humans compared to different agents, labelled on x-

axis.] The significant deviation from linear fit for choices between humans and artificial 

humans (Fig. 6C, compare red and blue points) suggested stronger VMPFC activation 

(indicating more disparate value difference) than expected from a human-likeness continuum, 

specifically for artificial agents that elicited UV reactions. Across subjects, this neural UV 

correlated with subjects’ behavioral UV depths (Fig. 6D). Thus, VMPFC encoded the 

behaviorally important decision variable in close relation to individual differences and 

reflected UV reactions during decision-making. 

Previous studies showed separate functions of VMPFC and DMPFC during choices 

for self and others (Nicolle et al., 2012; Wittmann et al., 2016) and during evaluations of 

similar and dissimilar others (Mitchell et al., 2006). We therefore examined decision-activity 

of these areas for choices involving humans (vs. other stimulus categories) and choices not 

involving humans (choices among artificial agents). Contrasting decision-trials involving 

humans and non-humans showed stronger activation in both DMPFC and VMPFC (Fig. 6E). 

Given this differential activation, we performed a region-of-interest regression on DMPFC 

and VMPFC activity in which the decision variable was modelled separately for choices 

involving humans and choices involving non-humans. This analysis revealed selective coding 

of the decision variable in DMPFC for choices involving non-humans (Fig. 6F, top, negative 

coding scheme). By contrast, VMPFC coded the decision variable specifically for choices 

involving humans (Fig. 6F, bottom, positive coding scheme). Thus, VMPFC and DMPFC 

coded subjects’ decision variable selectively, and complementarily, in a human-nonhuman 

frame of reference. 

Regressing decision-activity specifically on relative human-likeness, a subcomponent 

of the decision variable important in UV-reactions, showed a significant effect in the TPJ 

region that also encoded human-likeness during ratings (Fig. 6G, H). Across subjects, TPJ’s 
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sensitivity to human-likeness was related to behavioral UV reactions (Fig. 6I), suggesting 

behavioral relevance for subjects’ choices. Additionally, similar to the rating task, region-of-

interest regression on FFG activity showed a significant human-detection contrast (t(20) = 

2.27, P = 0.033, one-sample t-test) and negative human-likeness coding (t(20) = 4.39, P = 

0.0003, one-sample t-test). 

We examined functional connectivity with psychophysiological interaction (PPI) 

analyses. We found that TPJ was more strongly connected with both DMPFC and FFG 

during choices compared to ratings (Fig. 6J, blue; Table 3), reflecting these areas’ observed 

common human-likeness encoding. Functional connections also existed between VMPFC and 

both DMPFC and FFG (Fig. 6J, magenta), but we found no direct coupling between VMPFC 

and TPJ. Thus, areas implicated in valuations of human-likeness, likability and subjects’ 

decision variable interacted functionally during decision-making. 

  

Amygdala signals for rejecting human and nonhuman agents. The amygdala is a 

subcortical structure involved in emotion and social information processing (Phelps and 

LeDoux, 2005; Adolphs, 2010) that contributes to decision-making (Seymour and Dolan, 

2008; Grabenhorst et al., 2012; Grabenhorst et al., 2013; Grabenhorst et al., 2016; 

Zangemeister et al., 2016). Contrast analysis suggested amygdala engagement in the choice 

task (Table 2). We therefore examined its role in UV-related decisions. 

Similar to VMPFC, the amygdala encoded subjects’ decision variable (Fig. 7A), but 

with a negative coding scheme whereby higher activity indicated lower decision values (Fig. 

7B) and without additional confidence-coding (P = 0.741, one-sample t-test). Unlike VMPFC 

and DMPFC, the amygdala encoded subjects’ decision variable irrespective of whether 

decisions involved humans or nonhuman agents (Fig. 7C, D), suggesting a context-invariant 

decision signal. As for VMPFC, amygdala’s encoding of the decision variable was related to 

individual differences in UV reactions (Fig. 7E, black data). The amygdala was distinct as its 

coding was directly related to subjects’ choice probabilities: subjects with higher amygdala 

decision-sensitivity were less likely to accept gifts from artificial agents (Fig. 7E, orange 

data). [Similar relationships were not found for VMPFC (P = 0.777, Pearson correlation) or 

human-gift acceptance (P = 0.317).] The amygdala was not functionally coupled to other 

areas, except for a non-significant effect in DMPFC. Thus, the amygdala encoded subjects’ 

decision variable, and this coding partly explained gift refusal from UV-relevant artificial 

agents. 

 

DISCUSSION 

We investigated neural activity when subjects evaluated different attributes of human and 

artificial agents and made personal decisions about these agents. We found that stimulus-

evoked activity in VMPFC, a key valuation structure (Chib et al., 2009; Hare et al., 2010; 

Wunderlich et al., 2010; Bartra et al., 2013), matched the characteristic nonlinear shape of the 

UV reaction (Mori, 1970; Mori et al., 2012): VMPFC responses to human and artificial 

agents increased according to the psychophysically measured human-likeness continuum but 

were markedly decreased for the most humanlike artificial agents (‘artificial humans’), which 

fell in the psychophysically measured UV. Across subjects, the depth of this neural UV—

formalized as a deviation from a linear human-likeness fit—explained individual differences 

in behavioral UV reactions. VMPFC was a candidate site for computing the UV response, as 

it jointly encoded human-likeness and likability signals. Consistently, during decision-

making, VMPFC activity reflected the UV in terms of a decision variable (derived from 

subjectively weighted decision attributes) that guided subjects’ choices between humans and 

artificial agents. These data demonstrate a surprisingly direct neural representation of the UV 

as a nonlinear value function and provide neurobiological evidence for the key prediction of 
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the UV hypothesis that the UV derives from integrated human-likeness and likability 

evaluations. 

 A distinct set of brain areas implicated in social information processing encoded the 

human-likeness dimension underlying the UV hypothesis. A human-likeness continuum was 

faithfully and linearly encoded by neural responses to artificial agents in the TPJ, consistent 

with this area’s roles in agency-detection (Mar et al., 2007), belief-attribution (Saxe and 

Wexler, 2005; Carter and Huettel, 2013; Vogeley, 2017) and learning about others (Behrens 

et al., 2008; Hampton et al., 2008; Boorman et al., 2013). TPJ thus represented the most basic 

element of the UV hypothesis, human-likeness, on a linear scale of neural activity. Such a 

linear neural representation is computationally useful (Rolls and Treves, 1998), as it provides 

a versatile basis for deriving other, nonlinear neural representations of related variables, as 

observed in DMPFC, FFG and VMPFC. Thus, TPJ likely provided important inputs for 

generating neural UV representations, as also suggested by the observed relationship to 

individual differences. 

By contrast, the DMPFC, a region implicated in mentalizing (Saxe and Wexler, 2005; 

Amodio and Frith, 2006), responded particularly strongly to human agents and coded human-

likeness by a nonlinear, step-like function that emphasized differences between humans and 

nonhumans. Previous studies observed differential DMPFC activity when making choices for 

self or others (Nicolle et al., 2012), when tracking performance for self or other (Wittmann et 

al., 2016), and when attributing mental states to others (Mitchell et al., 2006). The present 

data extend these observations toward a distinction between human and non-human social 

others. Such human-detection activity might be critical in setting up a UV effect as it could 

set a threshold of ‘humanlike but not genuinely human’ that would trigger the characteristic 

drop in likability. 

The FFG encoded an additional candidate input for computing UV reactions, by 

signalling linear human-likeness with a negative coding scheme up to the human-nonhuman 

threshold encoded in DMPFC. These activities are consistent with FFG responses to non-

living compared to living entities (e.g. tools vs. animals) (Chao et al., 1999; Noppeney et al., 

2006; Mahon et al., 2007; Chaminade et al., 2010). Our data suggest that preferential FFG 

responses to non-living entities can be elicited gradually by different types of artificial agents. 

The FFG’s selective human-likeness signal was not directly expressed in psychophysical 

ratings but could reflect a potential input signal for neural UV computations. 

Together, these data identify an apparent progression of activity patterns that reflected 

the transition from a linear human-likeness continuum in TPJ, to nonlinear human-likeness 

signals in DMPFC and FFG and toward a nonlinear UV value function in VMPFC. The 

observed functional connectivities between these areas supported this information-processing 

sequence. Notably, these neural signals were recorded during UV-relevant evaluations and 

explained inter-individual variation in UV reactions. 

Such linear-nonlinear transformations are known from hierarchical sensory systems 

that gradually, over a series of neural representations, produce selective responses to specific 

feature combinations (Rolls and Treves, 1998; Olshausen and Field, 2004). We found that a 

multiplicative combination of linear and nonlinear human-likeness signals from TPJ and FFG 

was sufficient to approximate the observed neural UV representation in VMPFC. 

Multiplicative signal integration is biologically plausible and prevalent in sensory systems, 

where it produces nonlinear enhancement to specific feature combinations (Pena and Konishi, 

2001; de Araujo et al., 2003; Small et al., 2004; Stein and Stanford, 2008). Based on these 

data, we suggest that the UV reaction can be conceptualized as a nonlinear neural valuation 

response elicited by a specific feature combination—high human-likeness in nonhuman 

agents. This response likely derives from multiplicative integration of linear and nonlinear 

human-likeness signals.  
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At the behavioral level, our data demonstrate how subjective UV reactions extend 

beyond perceptual impressions to active preference choices, guided by subjectively weighted 

decision attributes. To elicit UV reactions, we constructed artificial human stimuli from real 

human individuals that maximized human-likeness but imposed unnatural, flawless and 

smoothed facial appearances and body proportions. The present neural and behavioral data 

suggest that this novel manipulation is particularly effective in eliciting a UV reaction, in 

accordance with recent suggestions (Pollick, 2010). Notably, previous behavioral studies 

typically reported strongest UV reactions for androids (Piwek et al., 2014; Rosenthal-von der 

Putten and Kramer, 2014; Rosenthal-von der Putten and Weiss, 2015; Wang et al., 2015; 

MacDorman and Chattopadhyay, 2016). Here, inclusion of the highly human-like artificial 

humans may have elicited adaptation effects that maximized UV reactions for artificial 

humans while attenuating UV reactions for androids. Such adaptive coding is well 

established in neural valuation systems, whereby neural responses adapt to the current 

statistical distribution of stimuli (Tobler et al., 2005; Schultz, 2015). Future studies could test 

systematically how the range of presented stimuli affects UV reactions in behavior and neural 

activity. 

Our results shed new light on the functions of different parts of medial prefrontal 

cortex that have been implicated in social and evaluative functions (Amodio and Frith, 2006). 

Previous studies reported involvement of DMPFC in evaluating traits of other people 

(Schiller et al., 2009; Denny et al., 2012), modelling others’ values and choices (Nicolle et 

al., 2012; Suzuki et al., 2012; Stanley, 2016), and understanding others’ intentions (Amodio 

and Frith, 2006; Mitchell et al., 2006). Despite these advances, the role of DMPFC in social 

cognition has remained elusive. Here we showed that DMPFC encoded a nonlinear human-

likeness signal that emphasized the distinction between human and nonhuman agents. This 

signal in DMPFC likely derived from TPJ’s linear representation of the human-likeness 

continuum and may have contributed to the nonlinear valuation function seen in VMPFC, as 

suggested by these areas’ functional connections. VMPFC activity is consistently observed 

during value-based choice (Chib et al., 2009; Hare et al., 2010; Levy et al., 2010; Wunderlich 

et al., 2010; Grabenhorst and Rolls, 2011; Hunt et al., 2012; Bartra et al., 2013; De Martino et 

al., 2013; Zangemeister et al., 2016), including social choice (Hampton et al., 2008; Behrens 

et al., 2009; Suzuki et al., 2012; Sul et al., 2015). Our results advance understanding of 

VMPFC’s functions by demonstrating how a nonlinear value function in VMPFC can be 

generated through multiplicative signal integration from other areas. 

The amygdala is implicated in two functional domains that intersected in our study: 

the valuation of sensory events and the processing of social information (Phelps and LeDoux, 

2005; Adolphs, 2010; Rolls, 2014). Specifically, previous studies showed amygdala 

involvement in face processing (Adolphs, 2010), trustworthiness evaluation (Winston et al., 

2002), anthropomorphizing (Heberlein and Adolphs, 2004), and social impression formation 

(Schiller et al., 2009), which likely contributed to the observed amygdala activation in our 

decision task. Similar to VMPFC, amygdala encoding of subjects’ decision variable is 

consistent with recent evidence implicating the amygdala in value-guided decisions (Seymour 

and Dolan, 2008; Grabenhorst et al., 2012; Grabenhorst et al., 2013; Hernadi et al., 2015; 

Grabenhorst et al., 2016). Different to VMPFC, amygdala coding of this decision variable 

reflected subjects’ tendencies to reject gifts from artificial agents in the UV. Thus, the 

amygdala may distinctly contribute to inhibiting interactions with human-like artificial 

agents. 

Our data suggest a novel, neurobiological conceptualization of human responses 

toward artificial social partners. In two experimental tasks, the VMPFC encoded an explicit 

representation of subjects’ UV reactions as a nonlinear valuation function, by signalling 

selective low likability for the most humanlike artificial agents. This neural UV 
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representation seemed to derive from a multiplicative combination of linear and nonlinear 

human-likeness signals in functionally connected TPJ, FFG and DMPFC. Thus, human 

reactions toward artificial agents involve a selective, nonlinear neural valuation in response to 

a specific feature combination (human-likeness in nonhuman agents). These findings indicate 

that a basic sensory coding principle—enhanced neural feature selectivity through linear-

nonlinear transformation—may also apply to human valuations of social partners, as shown 

here for specific artificial agents. 
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Fig 1. Behavioral Uncanny-Valley reactions. (A) Rating task. Subjects evaluated UV-

relevant dimensions of humans and artificial agents. (B) Example stimuli. (i) Artificial 

humans; (ii) androids; (iii) humanoid robots; (iv) mechanoid robots. (Human examples not 

shown). (C) Human-likeness ratings for stimulus categories (MechR: mechanoid robots; 

HumR: humanoid robots; AndR: android robots; ArtificH: artificial humans; HumPhys: 

humans with physical impairments; HumNPhys: humans without physical impairments). 

[Relatively lower ratings for HumNPhys compared to HumPhys due to lower familiarity, see 

text.] (D-G) UV effect in likability. (D) Likability ratings for all stimuli. Black line: third-

order polynomial fit (R
2
 = 0.573). (E) Likability for artificial humans showed the UV-

characteristic drop, indicating deviation from linear relationship between human-likeness and 

likability. (F) Quantifying UV depth. UV-definition in single subject’s likability ratings. 

Black line: linear regression-fit of likability to human-likeness continuum from all stimuli 

(grey data) except UV-relevant artificial humans (red data). Blue point: predicted likability 

for artificial humans from linear fit; red point: observed likability. UV depth defined as 

difference between predicted and observed likability. (G) UV depths across subjects. The 

procedure in (F) defined UV depths, illustrated for three individual subjects (top) and all 

subjects (bottom; P = 3.47 ×10
-8

, one-sample t-test). UV effects were not found in several 

controls (e.g. humanoid robots; P > 0.15, one-sample t-test). Error bars: s.e.m. 
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Fig. 2. Uncanny Valley in ventromedial prefrontal cortex. (A) VMPFC signalled 

subjective likability. Activity during rating task reflected trial-by-trial likability ratings (P < 

0.05, whole-brain corrected at cluster level; all statistical maps thresholded at P < 0.005, 

uncorrected for display purposes). (B). Integration of likability and human-likeness. Region-

of-interest regression of VMPFC activity on likability (t(20) = 2.93, P = 0.008; one-sample t-

test in random-effects analysis) and human-likeness (t(20) = 3.45, P = 0.003). (C). VMPFC 

activity encodes UV reactions. As for likability ratings, VMPFC responses to artificial 

humans were lower than expected based on human-likeness continuum. Black line: linear 

regression-fit of VMPFC activity to human-likeness continuum from all stimuli except UV-

relevant artificial humans (R = 0.268, P = 0.008, Pearson correlation). Blue point: predicted 

VMPFC response for artificial humans from linear fit; red point: measured response. UV 

depth defined as difference between predicted and measured response (deviation from linear 

fit: t(20) = -2.97, P = 0.008, one-sample t-test). (D) Neural UV depths matched behavioral 

UV depths. Linear regression of behavioral UV depths (Fig. 1F) on neural UV depths in 

VMPFC activity (P = 0.006; significant robust regression; mean-centred neural UV depths 

extracted from independently defined coordinates using leave-one-subject-out cross-

validation). 
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Fig. 3. Linear and nonlinear human-likeness coding. (A) Linear coding of subjective 

human-likeness in TPJ. Activity reflected trial-by-trial human-likeness ratings (P < 0.05, 

whole-brain corrected). (B) Region-of-interest regression of TPJ activity on human-likeness 

(with likability and familiarity covariates; t(20) = 3.47, P = 0.002, one-sample t-test in 

random effects analysis). (C) TPJ activity closely followed the human-likeness continuum. 

(D) TPJ human-likeness sensitivity reflected subjects’ behavioral UV depths. Linear 

regression of behavioral UV-depth (cf. Fig. 1F) on TPJ human-likeness βs (significant robust 

regression). (E) Stronger DMPFC-activation for humans vs. non-humans shown by contrast 

analysis ([10 48 14], z-score = 4.78, P = 0.001, whole-brain corrected). (F) Regression of 

DMPFC activity on human detection (t(20) = 2.26, P = 0.036) and human-likeness (P = 

0.603; non-significant likability and familiarity covariates). (G) Selective DMPFC response 

to humans. (H) Linear regression of behavioral UV depths on DMPFC human-detection βs 

(significant robust regression). (I) Negative human-likeness coding in FFG (P < 0.05, whole-

brain corrected). (J) Regression of FFG activity on human-detection (t(20) = -2.26, P = 

0.034) and human-likeness (t(20) = -3.56, P = 0.0019). Inset: significant β-difference for 

human-likeness and human-detection. (K) FFG activity across stimulus categories. (L) FFG 

nonlinear human-likeness sensitivity reflected behavioral UV depths  (significant robust 

regression). 
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Fig. 4. Constructing the Uncanny Valley from linear and nonlinear human-likeness 

signals. (A) Combining human-likeness signals in TPJ and FFG to construct nonlinear 

likability in VMPFC. Upper panels: measured activity patterns (across subjects) in TPJ, FFG 

and VMPFC. Multiplicative combination of measured TPJ and FFG signals (‘Computed’) 

approximated the observed neural UV in VMPFC (‘Measured’). Lower panels: Modelled 

signals. TPJ activity modelled by linear human-likeness function; FFG activity modelled as 

inverse, linear human-likeness function (negative linear relation across hypothesized human-

likeness continuum), selectively for non-humans, with undifferentiated (average) response to 

human stimuli; VMPFC activity modelled as multiplicative combination of these signals. (B, 

C) Relation between neural human-likeness sensitivities and neural UV depth in VMPFC 

across subjects. (B) Linear regression of TPJ human-likeness on VMPFC UV depth  

(significant robust regression). (C) Linear regression of FFG human-likeness on VMPFC UV 

depth  (significant robust regression). 
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Fig. 5. Decision-making to accept or reject artificial agents.  (A) Choice task. Subjects 

viewed sequential stimuli and decided from whom they would like to receive a gift (example 

from categories android robots (first screen) and artificial humans (second screen). (B) 

Choice behavior. Probability for gift-acceptance from humans (blacks) and androids (grey) 

over other stimulus categories. (C) Modelling choices with logistic regression. β weights of 

relative likability, familiarity and human-likeness (all P < 0.002, ones-sample t-tests). (D) 

Psychometric function: Relation between decision variable and choice probability. Relative 

differences in likability, familiarity and human-likeness were weighted for individual 

subjects, based on subject-specific logistic regression, and summed to form a decision 

variable. Choice probabilities calculated for equally populated decision-variable bins and 

fitted with logit function. (E) Defining UV depth for the choice task, based on decision 

variable. Unsigned (absolute) differences in decision variable between stimulus categories (Δ 

Decision Variable, derived from stimulus-specific ratings during rating task; data for all 

subjects). Black line: linear regression-fit to human-likeness continuum for all conditions 

(grey data) except choices involving artificial humans (red data). Blue point: predicted 

decision variable for artificial humans from linear fit; red point: observed decision variable. 

Choice UV depth defined as difference between predicted and observed decision variable. (F) 

Choice UV depth across subjects. The procedure in (F) defined UV depths for all subjects (P 

= 1.1 ×10
-4

, one-sample t-test). 
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Fig. 6. Neural Uncanny-Valley components during decision-making. (A) VMPFC activity 

during gift-choices between humans and artificial agents coded subjects’ decision variable (P 

< 0.05; small-volume correction). Decision variable used as parametric modulator was the 

sum of subjectively weighted relative likability, familiarity and human-likeness, which 

explained choices (cf. Fig. 5F, G). (B) Region-of-interest regression of VMPFC activity on 

decision variable (t(20) = 2.25, P = 0.0356; one-sample t-test, random-effects analysis) and 

rated confidence (t(20) = 3.48, P = 0.002). (C) VMPFC activity during choices reflects UV. 

VMPFC responses during choices involving artificial humans deviated from expected 

human-likeness continuum. Black line: linear regression-fit of activity on relative human-

likeness for all stimuli except artificial humans (R = -0.248, P = 0.023, Pearson correlation). 

Blue point: predicted response for artificial humans from linear fit; red point: measured 

response. (D) Linear regression of behavioral choice UV depth (defined in Fig. 5E) on neural 

UV depth derived from VMPFC activity (P = 0.016; significant robust regression). (E) 

Stronger activation in VMPFC ([-6 40 -6], z = 4.21) and DMPFC ([0 56 18], z =3.81) during 

choices involving humans contrasted with choices without humans (both P < 0.001, whole-

brain corrected). (F) DMPFC coded decision variable specifically for choices involving non-

humans (t(20) = -2.45, P = 0.0294, one-sample t-test); VMPFC coded decision variable 

specifically for choices involving humans (t(20) = 2.139, P = 0.044, one-sample t-test). (G) 

TPJ activity reflected the human-likeness component of the decision variable (P < 0.05, 

whole-brain corrected). (H) Region-of-interest regression of TPJ activity on relative human-

likeness (t(20) = 3.678, P = 0.0015, one-sample t-test). (I) Behavioral UV depths matched 

TPJ human-likeness βs (robust regression). (J) Functional connectivity. Psychophysiological 

interactions identified pairs of brain regions with stronger activity-correlations during choices 

than ratings (magenta connections) or stronger activity-correlations for non-humans 

compared to humans (blue connections, rating task). Summary figure based on whole-brain-

corrected statistical maps. 
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Fig. 7. Amygdala rejection-signals for humans and artificial agents. (A) Amygdala 

choice-activity coded subjects’ decision variable (P < 0.05; small-volume correction on pre-

defined amygdala coordinates). (B) Region-of-interest regression showed negative amygdala-

coding of decision variable (t(20) = -3.05, P = 0.006, one-sample t-test). (C) Significant 

coding of decision variable for choices involving humans (P = 0.0173, one-sample t-test) and 

choices without humans (P = 0.005). (D) Amygdala sensitivity to decision variable predicted 

behavioral UV depths (black data) and gift rejections from artificial agents (orange data). 

Linear regressions of choice UV depths (P = 0.012, robust regression) and probability of gift 

acceptance from artificial humans and androids (P = 0.019, robust regression) on amygdala 

βs. 
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Table 1. Rating task analyses. Results are whole-brain corrected, P < 0.05, cluster level; 

maps thresholded at P < 0.005, extent threshold 10 voxels. PM: parametric modulator; C: 

contrast; PPI: psychophysiological interaction; sv: small-volume correction, based on pre-

defined coordinates (see Methods). X, Y, Z: coordinates in MNI space. 
Effect Area X Y Z z-

score 

P 

Human-likeness PM, positive TPJ 56 -60 20 3.53 0.029  

 DMPFC 4 40 42 3.14 0.018 sv 

Human-likeness PM, negative FFG 26 -66 -12 4.22 0.001  

 Occipital gyri -20 -102 2 5.54 0.001  

 Middle frontal gyrus -48 36 24 3.90 0.001  

       

Likability PM, positive VMPFC 12 48 8 4.00 0.001  

 Striate area 30 -98 18 3.87 0.002  

 Ventral striatum 12 12 -10 3.10 0.043 sv 

Likability PM, negative -      

       

Familiarity PM, positive Ventral striatum 10 14 -4 3.40 0.025 sv 

Familiarity PM, negative -      
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Table 2. Choice task analyses. Results are whole-brain corrected, P < 0.05, cluster level; 

maps thresholded at P < 0.005, extent threshold 10 voxels. PM: parametric modulator; C: 

contrast; PPI: psychophysiological interaction; sv: small-volume correction, based on pre-

defined coordinates (see Methods). X, Y, Z: coordinates in MNI space. 
Effect Area X Y Z z-

score 

P 

Decision variable PM, positive VMPFC 0 34 6 3.60 0.019 sv 

 TPJ 68 -34 44 3.30 0.030  

 Caudate nucleus -12 24 12 4.53 0.001  

 Occipital gyri 20 -90 30 4.50 0.001  

 Occipital gyri 18 -54 12 4.40 0.010  

 Cingulate gyrus 6 -42 46 3.77 0.003  

 Occipital gyri -22 -60 24 3.72 0.042  

Decision variable PM, negative Amygdala 16 -8 -20 3.49 0.022 sv 

 Intraparietal sulcus -32 -56 46 4.48 0.001  

 Superior frontal gyrus -10 -4 72 4.43 0.001  

 Middle frontal gyrus -42 8 36 4.09 0.001  

 Middle frontal gyrus 34 4 32 3.86 0.015  

       

Relative human-likeness PM, positive TPJ 54 -64 8 4.50 0.001  

Relative human-likeness PM, negative Occipital gyri 24 -98 8 5.99 0.001  

 Occipital gyri -24 -94 -2 4.74 0.001  

       

Choice > rating, C VMPFC 4 44 2 4.00 0.001  

 TPJ 54 -64 26 5.51 0.001  

 TPJ -52 -58 28 5.71 0.001  

 Amygdala 22 6 -26 4.32 0.001  

 Ventral striatum 12 10 -6 3.43 0.025 sv 

 Precuneus 2 -68 24 6.11 0.001  

 Superior frontal gyrus 10 22 66 5.22 0.001  

 Planum polare 34 14 -22 4.93 0.001  

 Middle temporal gyrus 68 -34 -6 4.53 0.001  

 Cingulate gyrus 0 -14 34 4.11 0.004  

Rating > choice, C Occipital gyri 34 -88 12 6.46 0.001  

 FFG -32 -80 -18 5.68 0.001  

 Precentral gyrus -26 -16 76 4.81 0.001  

 Middle frontal gyrus -42 22 26 4.66 0.002  
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Table 3. PPI analyses. Results are whole-brain corrected, P < 0.05, cluster level; maps 

thresholded at P < 0.005, extent threshold 10 voxels. PM: parametric modulator; C: contrast; 

PPI: psychophysiological interaction; sv: small-volume correction, based on pre-defined 

coordinates (see Methods). X, Y, Z: coordinates in MNI space. 
Effect Area X Y Z z-

score 

P 

PPI non-human  > human, DMPFC seed VMPFC 6 34 10 3.82 0.006 

 DMPFC 4 46 32 4.18 0.006 

 TPJ 46 -70 34 3.97 0.019 

 Posterior cingulate cortex -8 -48 36 4.19 0.001 

       

PPI non-human  > human, FFG seed TPJ 50 -36 26 3.64 0.020 

       

PPI Choice > rating, VMPFC seed FFG 14 -70 -10 5.02 0.001  

 Cingulate gyrus  -4 18 40 4.22 0.001  

 Caudate nucleus 24 -19 26 4.15  0.001  

       

PPI Choice > rating, FFG seed TPJ 50 -38 28 4.32 0.001  

 FFG -18 -64 -6 4.22 0.028  

 Precuneus 0 -78 28 3.98 0.012  

       

PPI Choice > rating, TPJ seed DMPFC 0 46 38 3.52 0.001 

 Occipital gyri 10 -102 18 4.95 0.021 

 Superior frontal gyrus -8 20 66 4.82 0.001 

       

PPI Choice > rating, DMPFC seed VMPFC -2 44 10 4.11 0.001 

 Cingulate gyrus -14 54 30 4.39 0.005 

 Occipital gyri 14 -100 6 4.12 0.002 
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