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Abstract

We present a package using Simulink and MATLAB to perform molecular dy-
namics simulations of interacting particles obeying a Generalized Langevin
Equation. The package, which accounts for three spatial dimensions and
rigid-body like rotation, is tuned to explore surface diffusion of co-adsorbed
species. The physical parameters are species specific, and include user-
defined colored noise spectra and memory friction kernels acting indepen-
dently on translational and rotational degrees of freedom. We benchmark
the simulations using established analytical results for dynamical correlation
functions, and we use the package to numerically verify novel analytical re-
sults concerning dissipative rotational motion and mutli-exponential friction
kernels. The package provides a straight-forward way to expand the modeling
of ultra-fast surface diffusion problems at the atomic scale.
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Programming language: MATLAB/Simulink
Supplementary material (if any):
Nature of problem: Understanding molecular diffusion at surfaces is of

fundamental and industrial interest, and requires bridging between the ex-
periment and ab-initio theories. Molecular dynamics simulations are widely
used to bridge the experimental and theoretical worlds, however normally
surface dynamics simulations are done either under extreme simplifications
(two dimentional Langevin with for single species adsorbate), or with all
the substrate atoms as well as the adsorbate atoms included explicitly - at
expensive computational cost.

Solution method (approx. 50-250 words): We here present a simulator for
generalized Langevin dynamics of co-adsorbed interacting species, account-
ing for surface diffusion in 3 spatial dimensions and rigid body rotation. The
package allows also to perform statistical analysis of the computed trajec-
tories, considering a configuration of scattering centers which is imposed on
the translating and rotating center-of-mass.

Additional comments including Restrictions and Unusual features (ap-
prox. 50-250 words): References:

2. Introduction

Understanding molecular diffusion at surfaces is of fundamental impor-
tance in water studies, catalysis, atmospheric chemistry and in other fields.[1,
2, 3, 4, 5] Exploring surface-dynamics at near-desorption and desorption tem-
peratures, which are of technological importance, normally requires the use
of spectroscopic techniques, as the motion is too fast to image in real-space.
One spectroscopic technique to study surface dynamics at elevated tempera-
tures is Helium-3 Spin-Echo (HeSE),[6, 7] which uniquely allows the study of
surface dynamics at sub-nanometer length-scale and picosecond to nanosec-
ond time-scale. During its first decade of operation, the technique has been
used mainly to observe surface diffusion of atoms and some small molecules.
Due to the loss of phase information in spectroscopic studies,[8] it is nor-
mally impossible to directly infer the exact trajectories of particles at the
surface. Hence, analytic models and simulations are normally used to obtain
physically meaningful insights from the experimental results.[9]

One of the most common methods for modeling surface dynamics is to
use Langevin equation based molecular dynamics (MD) simulations,[9, 10] in
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which the interaction of adsorbates with the substrate atoms is described us-
ing a frozen potential energy surface (PES), a drag term and a stochastic fluc-
tuating force. As a result, meaningful insights into the adsorbate-substrate
interaction can be obtained. In comparison with full (micro canonical) MD
simulations, which include the interactions of all atoms, Langevin based MD
is more economical in terms of computing time, while offering a compara-
ble quantitative description of experiment.[10] The Langevin equation with
a simple drag coefficient and white noise can arise due to non-adiabatic cou-
pling to very rapidly fluctuating electronic degrees of freedom. However,
first-principles predictions of the electronic friction coefficient show that elec-
tronic dissipation is not always sufficient to reproduce the friction required
to explain HeSE data.[11] The remaining potential sources of dissipation,
such as phonons, are in general likely to cause memory effects. These can
be described with and motivate the use of a Generalized Langevin solver, as
implemented in the present work.

Use of Langevin dynamics simulations has become a standard practice
in analysis of surface-dynamics HeSE studies. Traditionally however, the
diffusing species were considered to be point particles responding to a two-
dimensional (2D) PES. Furthermore, simulations were performed and an-
alyzed only for ensembles consisting of a single species of adsorbates. In
recent years, pioneering works to study adsorption of larger molecules have
demonstrated the need to consider dynamical degrees of freedom beyond
translational diffusion in a 2D PES.[12, 13]

Here we describe PIGLE (Langevin Based Molecular Dynamics simula-
tor), a package to simulate co-motion of interacting particles from multiple
species in 2D to 4D PES (i.e. up to three spatial degrees of freedom, and
rigid body rotations). The simulation allows consideration for colored-noise
driven friction (as explained below), separately for translation and rotation.
The structured core simulation can be expanded to address problems be-
yond 4D, to allow exploration of how spectral properties of friction and noise
affect motion in higher dimensional PES. In that respect, PIGLE comple-
ments long-time simulations including methods such as Nudged Elastic Band
(NEB) and the String Method, which are normally used to find minimum-
energy transition path in a given PES.[14, 15]

One particular use of the core MD simulator in PIGLE, can be to support
scattering calculations from moving adsorbates at surfaces. Specifically, To
support analysis of measurements obtained with techniques such as HeSE,
the package allows calculation of the intermediate scattering function, either
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coherent or incoherent. The package includes routines to expand centre-of-
mass and angular trajectories into trajectories for the complete collection of
point objects making up every rigid body in the simulation, which can be
used either for visualization purposes or to calculate the scattering functions
assuming every point particle acts as a scattering centre with equal contri-
butions. The role of rotations in the surface diffusion process can therefore
be conveniently studied. Further, the effect of rotations on measured scat-
tering functions in helium atom scattering experiments can be modeled in a
way that reflects the degree of inhomogeneity of the electron density in the
adsorbed species.

In the present work, we express the Generalized Langevin Equations in a
form suitable for solution by standard methods encountered, for example, in
digital signal processing. Our approach, therefore, enables us to exploit the
optimized code and graphical programming environment offered by Simulink
and MATLAB.

3. Underlying Equation

PIGLE solves the Generalized Langevin Equation (GLE) to calculate
the the dynamical evolution of a mutually interacting adsorption system.
However, the Langevin Equation (LE) has been much more widely used in
surface diffusion studies up to now,[7, 6] and therefore it is useful to review
the approach.

The Langevin Equation. Consider an adsorption system in which there are
P homogeneous adsorbate populations (labelled µ=1:P). Each adsorbate in
a given homogeneous population interacts with the substrate via the same
single-particle potential Vµ(x) and microscopic drag coefficient, and expe-
rience inter-adsorbate forces with particles from all populations. The 3D
translational motion of the ith particle in homogeneous µth population of
adsorbates can then be described using the Langevin equation

mẍi(t) = −∇Vµ(xi(t))−mγµẋi(t) + ξ(t) +
∑
j 6=i

Fij, (1)

with γ scaling the isotropic drag, a stochastic force ξ which represents the
fluctuations, and an inter-adsorbate interaction force (j runs over all the par-
ticles in the simulation). At present, interactions in PIGLE are restricted to
radial pairwise forces, which although not completely general, can represent
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a rich variety of structural and dynamical behaviour. To satisfy the classi-
cal fluctuation dissipation theorem,[16] the kinetic energy introduced by ξ is
balanced by the frictional term, such that on average, thermal equilibrium
is maintained at constant temperature T . In order to do so, the dimension
specific stochastic force is constructed to have the autocorrelation function

〈ξ(t)ξ(t′)〉 = 2mγkBTδ(t− t′), (2)

where the angle brackets refer to the inverse Fourier transform of the power
spectrum, which defines an autocorrelation function according to the Wiener-
Khinchin theorem. The random force ξ is taken typically as Gaussian dis-
tributed with zero-mean.[17] Furthermore, there are no correlations between
the fluctuating force on one co-ordinate (dimension) and the fluctuating force
on another.

The Generalized Langevin Equation. In PIGLE, the dynamics are described
using the GLE,[18, 19] which allows the random impulse term to have a
non white noise characteristic. Filtering the noise provides a mechanism to
represent a physically reasonable spectral density of the coupling between
the adsorbate and excitations in the substrate heat bath. For example, a
low-pass filter will enhance low frequency impulses, which may be a better
representation of the noise from thermal phonons at the physical surface.
The GLE can be written for the ith particle as

miẍi(t) = −∇Vµ(xi(t))−mi

t∫
−∞

γi(t− t′)ẋi(t′)dt′ + ζi(t) +
∑
j 6=i

Fij. (3)

For spatial dimensions, mi is the mass of the particle, and γi is the isotropic
translational friction. For angular dimensions, x is replaced with θ (rotational
co-ordinate), mi with the angular mass of the ith particle, and γ with γAngular,
the friction for the rotational motion. The friction kernel γi(t) is related to
the noise ζ by

〈ζi(t)ζi(t′)〉 = 2mikBTγi(t− t′), (4)

which guarantees a constant temperature T by the fluctuation-dissipation
theorem.

Direct numerical solution of the GLE as formulated in Equation 3 is
computationally expensive, as at every time-step, the entire history of the
particle must be included in the integral over the friction kernel. Here we use

5



a method suggested by Ceriotti [20] that allows us to express the GLE using a
standard engineering approach for a discrete, state-space method.[21, 22] For
each particle in the simulation (with momentum p), and for each dimension
x of the simulation, the GLE is represented as a set of differential equations,
which depend only on the current time t:

ẋ(t) = p(t)
m

;

(
ṗ(t)
ṡ(t)

)
=

(
−V ′(x(t))−

∑
j 6=i

Fij(t)

0

)
−A

(
p(t)
s(t)

)
−Bξ(t).

(5)

The matrices A and B with dimensions (n+1)×(n+1) govern the dissipation
and fluctuations, and can represent the filter applied in the friction kernel. A
set of filters is provided with PIGLE, and a more detailed explanation can be
found in Ref [20]. s(t) then is an n-elements vector with units of momentum
and ξ is a vector of (n+ 1) white noise sources. The fluctuation-dissipation
theorem, which relates the noise spectrum and the friction kernel, is enforced
by requiring that A and B are related by

mkBT
(
A + AT

)
= BBT . (6)

4. Main Components of the Code

PIGLE is intended to model the dynamics of co-adsorbed populations of
adsorbates on periodic surfaces in situations where the coverage (or more pre-
cisely, number density defined as number of adsorbates per substrate atoms)
is finite and possibly variable. To represent a finite coverage, the code em-
ploys a super-cell approach, which is a common feature of several molecular
dynamics codes.

Implementation in Simulink. Simulink[23] is a package by MathworksTM

which allows graphical coding for simulations of time-dependent systems.
The simulation code is represented in a block diagram, with information
flows (in the form of lines) from output ports of one block to the in-port(s)
of the other block(s). Blocks are the equivalent of functions in traditional
programming languages, and each block can contain subsystems and model
references (simulations which are included in another simulation) as part of
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its block diagram. Simulink was chosen due to the convenience of its close
interaction with MATLAB code, while also providing compilation options
to increase the simulation speed. Furthermore, Simulink offers a relatively
straight-forward path to deploy the code on field-programmable gate arrays
(FPGA), which can potentially achieve a speed-up of code execution of more
than an order of magnitude. Simulink is widely used in digital signal pro-
cessing and automatic control.

Figure 1: The top-level Simulink block of the PIGLE simulation. In each time-step, the
Interactions block calculates and outputs the inter-adsorbate forces acting on all parti-
cles. Selector blocks select the force-information for all particles pre-assigned to a specific
particle-population, which is then fed to the population dedicated Population blocks. Each
Population block integrates the GLE for a single time-step and outputs the new momentum
and position (total and super-cell relative), to the MATLAB workspace, and for calcula-
tion of inter-adsorbate forces. The position from all particle populations is combined and
fed to the Interactions block, where the inter-adsorbate forces are computed for the next
time-step. The inputs identity 1,2 to the Interactions block hold the identity (species) of
each particle.

In the following exposition, we aim to set out the basic computing blocks,
in rough outline, as an illustration of the way in which PIGLE is constructed.
The code is derived from a hierarchical structure of computational blocks,
which we describe below, starting at the highest level.

Figure 1 shows the highest level block, tailored to simulate co-adsorption
of two different species (Populations). In each time-step, given information
on forces from inter-adsorbate interactions, each of subsystems Population 1
and Population 2 calculate the new positions and momenta of particles which
were assigned to it. Such a group of particles shares all the input parameters
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for a GLE simulation of a homogeneous population, except of the inter-
adsorbate forces. Each of the Population subsystems outputs the position
(relative to the origin, and to the origin of the super-cell) and the momentum
of the constituent particles to the MATLAB workspace for recording. The
position in the super-cell is also passed to the Interactions block, where the
inter-adsorbate forces are computed. The forces are then fed back for the
computation of motion in the next time-step .

Figure 2: Block to compute the motion of population-specific particles. At each time-step,
the inter adsorbate force on each particle is fed from the in-port, and is combined with
the force resulting from the PES. The Delta R block then computes the momentum which
is passed to an out-port, and the total change in translation/rotation which is passed
to the Absolute Position block. It is there where the initial position is added to obtain
the absolute position of each particle. The position within the simulation super-cell is
calculated, and the two quantities are passed to out-ports. Position within the unit cell is
also calculated, and is passed to the PES block for calculation of the PES-resulted force.

An example of a specific Population block, a block which calculates
the motion for particles of one population, is presented in figure 2. Inter-
adsorbate interaction forces, which are supplied as an input to the Population
block, and forces from the PES subsystem, are combined at each time-step
and are then fed into the Delta R subsystem. The Delta R subsystem com-
putes the momenta of all particles, and their displacements from their posi-
tions at t = 0 by integration. The integration method can currently be set to
Explicit Euler or Trapezoidal based. While the momentum is passed to the
out-port of the Population block, the net position is passed to the Absolute
Position subsystem. The Absolute Position subsystem adds the initial po-
sition to the net trajectory, to obtain the absolute position of each particle.
It then calculates the position within the unit cell and the super-cell of the
simulation, and outputs the absolute position and super-cell relative position
to the upper block-level. The unit cell relative position is passed to the PES
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subsystem, where the force from the PES is calculated. Information from
the PES subsystem is fed back for usage in the next time-step.

The Delta R block contains gle subsystems (one for each enabled dimen-
sion) which integrates the GLE equation for each particle. Figure 3 presents
an example subsystem, which is based on the work of R. Collingham.[24].
In each time-step, the forces resulting from two subsystems, the PES and
inter-adsorbate interactions, are fed to the gle in-port dU. The sum of dU,
the drag force and random impulse is then integrated and is both fed back to
the frictional term, and is propagated for further calculations (i.e force from
PES and other adsorbates at the next time-step ).

Figure 3: A subsystem to solve the GLE for a group of particles in one dimension. Four
inputs are the population specific A and B matrices (Equation 5), white noise source,
and the sum of the forces derived from inter-adsorbate interactions and the gradient of
the single-adsorbate PES. The summation of the three components in the right hand
of Equation 5 gives the time derivative of the momenta. A discrete integrator block
is used to obtain the momenta (a combined vector of p and s from Equation 5). The
momenta are then both fed back to be multiplied with the matrix A, and passed through
a selector which selects the momentum p (the first element in the momenta). The position
of particles is obtained via further integration (which can currently be based on Explicit
Euler or Trapezoidal methods), and both the momentum and 1D position are passed to
out-ports. The same A and B matrices are used for spatial dimensions, but different ones
are being used for rotational dimensions. Equally, for the angular dimension, an angular
mass is being used.

To calculate interactions between particles, the simulation assumes a
super-cell. The nature of the super-cell is determined in the MATLAB wrap-
per, and is a combination of the unit cell, the user-defined adsorbate coverage,
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and the user-defined total number of adsorbed particles. The position of the
particles in the super-cell is used then to compute the inter-adsorbate inter-
actions. PIGLE currently assumes a pair-wise, isotropic interaction between
the centers of mass, and no rotational interaction. The interaction between a
particle i and a neighbor j is calculated using the Minimum Image Conven-
tion; shadow j particles are assumed in adjacent (eight) super-cells around
the actual super-cell. Out of the total nine j particles which surrounds par-
ticle i, the interaction is computed between the pair i-j with the shortest
distance.[25, 26] An implicit assumption is that the maximum distance for
interactions is half of the super-cell size, so adsorbate i can interact with
its neighbor j (in the same super-cell), or shadow neighbor j from adjacent
super-cell, but not both. In future work a connection list of particles will be
implemented, which is expected to reduce the scaling of computational time
used in the interaction block from quadratic to linear with the total number
of particles, N .

Both inter-adsorbate and adsorbate-substrate interactions, as well as other
parameters are pre-defined in a structure (constructed by the MATLAB
wrapper) which is used by the model. The simulation logs trajectories and
momentum for particles in each population.

5. MATLAB Wrapper and additional functionality of the PIGLE
package

The MATLAB wrapper which is provided with PIGLE, run pigle.m, per-
forms three principal tasks: (a) it configures the Simulink model, (b) it exe-
cutes the Simulink simulation, and, if required by the user, (c) it calculates
the coherent and incoherent intermediate scattering function (ISF) which can
be compared with scattering experiments.[27]

Configuring the model. After initial tasks, the file config model.m is called.
In this file one can define general parameters of the simulation, such as num-
ber of steps, total simulation time, thermalization time, momentum transfer
(∆K) values and the ISF is to be calculated (Coherent, Incoherent, both,
if at all). A surface params.m file provides all the surface related parame-
ters (lattice properties, adsorbate properties, parameters for inter-adsorbate
interactions). The values of ∆K where the ISF is calculated, are rounded
onto a grid whose points are determined by the super-cell dimensions (the
grid is specified precisely later in the present section). Further, the particles
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are given uniform random initial positions, and momenta either thermally
distributed (default) or zero (optional). Built-in into the scripts are auxil-
iary functions, allowing for example the generation of A and B matrices for
the GLE, enabling specification of different memory kernels (applying dif-
ferent filters). Similarly, the PES can be generated given several principal
parameters.

Executing the model. In generating the intermediate scattering function, a
statistical average is achieved by executing the simulation repeatedly (for
a requested number of iterations) and averaging over the resulting ensem-
ble. Using the parsim command, the iterations can be computed in parallel,
taking into account the maximum number of available workers for parallel
computing. The model can be executed using rapid-acceleration mode, which
provides compilation of the model before execution.

Calculation of the Intermediate Scattering Function (ISF). Following com-
pletion of a simulation, the trajectories can be used to calculate the (co-
herent and/or incoherent) ISF. The rotational co-ordinate, and the spatial
co-ordinates of the center of mass, are used to define a particular molecular
configuration for the diffusing particles. For example, the user can define a
ring with six particles, and the MATLAB-wrapper will expand the trajectory
of each adsorbate (of the relevant population) to six trajectories according
to the position of the center of mass, and the rotational co-ordinate. Given a
vector of amplitudes for each particle i, Ai = exp(−i∆K · ri), where Ai(tν)
is the element for time-step ν, the incoherent scattering function from an
adsorbate i, Si(∆K,∆ω), can be calculated as

Si(∆K,∆ω) = F{Ai}∗ · F{Ai}, (7)

where F marks a Fourier transformation and ~∆ω the energy exchange. The
overall incoherent scattering function is the sum Sinc =

∑
i Si over the parti-

cles in all populations. The coherent scattering function is calculated by first
summing the amplitudes of scattering from all particles, A =

∑
iAi, and

then computing the scattering function, Scoh(∆K,∆ω) = F{A}∗ · F{A}.
The coherent and incoherent ISF are calculated by inverse Fourier transfor-
mation of S for each iteration, and the final ISFs are the mean over all the
iterations.
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Adjustment of momentum transfer points for calculation of ISFs. It is as-
sumed that a particle and its shadow particles (from adjacent super-cells)
scatter the helium probe in-phase. This assumption is essential, since while
the simulation assumes shadow particles, the calculation of the ISF does
not take those particles explicitly into account. Given a scattering ampli-
tude from an adsorbate Aµ = exp[−i(R · ∆K)], the condition for in-phase
scattering of the adsorbate and its shadow particles can be written as

exp[−i(R + a) ·∆K] = exp[−iR ·∆K]⇒ 2πn = ∆K · a, (8)

were R is the particle position in the super-cell, and a is a super-cell lattice
vector. The user-defined values of the momentum transfer are rounded on to
a grid of points satisfying the in-phase condition 8, i.e. the reciprocal lattice
vectors associated with the simulation super cell.

Visualization. The MATLAB wrapper run pigle.m provides plotting func-
tions for the calculated ISFs. For further visualization, a script make movie.m
is provided.

6. Benchmark calculations

We provide several examples to demonstrate and illustrate the perfor-
mance and capabilities of the code. We assess the validity of the results
via comparison of the computed ISF(s) to analytic models where available,
and to qualitative expectations and previous numerical results in cases where
analytic models are not available. As well as the experimental connection
with scattering experiments, there are conceptual advantages to quantifying
the adsorbate dynamics using the ISF. It is well known that the ISF, as the
temporal fourier transform of the scattering function as defined in Equation
7, is also the spatial Fourier transform of van Hove’s conditional probabil-
ity function.[28] The ISF therefore contains essentially complete statistical
information on the adsorbate dynamics.

6.1. Analytic ISFs

6.1.1. Translational GLE

A key feature of the PIGLE package is the facility to flexibly and effi-
ciently explore different forms of memory friction, in which the friction kernel
is naturally represented as the sum of exponential functions in the time do-
main. To validate the implementation of memory friction in translational
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motion, we perform simulations of the single-particle GLE in a flat potential
[V (R) = 0]. In Figure 4, simulation results (circles, squares and diamonds
markers) are confirmed against analytical ISFs from the GLE with three dif-
ferent friction kernels (solid, dashed and dotted curves, labelled in the figure).
In one test (dotted line), the friction kernel is a mono-exponential function
γ(t) = γωc exp(−ωct) where the cutoff frequency ωc is sufficiently high that
memory effects represent a minor quantitative correction to Langevin dynam-
ics. In the second (dashed line), another mono-exponential kernel is tested
in which ωc is low enough to induce oscillatory behavior in the ISF. In the
third comparison (solid line), the friction kernel is taken as the sum of the
previous two kernels, forming the bi-exponential kernel

γ(t) = γ1ω1 exp(−ω1t) + γ2ω2 exp(−ω2t) . (9)

Further details of the simulation parameters are provided in the caption of
Figure 4.

The analytical ISF in the case of a mono-exponential kernel has been
derived previously using an exact second-order cumulant expansion relating
the ISF to the velocity autocorrelation function (VACF) ψ(t):

I(∆K, t) = exp
[
−∆K2

∫ t

0

dt′(t− t′)ψ(t′)
]
. (10)

The VACF and the friction kernel are compactly related in Laplace space.
Defining Ψ(s) and Γ(s) as the Laplace transforms of ψ(t) and γ(t) respec-
tively, the transforms are related by [29, 30]

Ψ(s) =
kBT/m

s− Γ(s)
, (11)

which can be analytically inverted to obtain ψ(t) for sufficiently simple forms
of Γ(s). When γ(t) is a mono-exponential function γ(t) = γωc exp(−ωct), the
inversion to obtain ψ(t), and the subsequent integration of ψ(t) to obtain the
exponent of Equation 10 produces [30]

I(∆K, t) =
2∏

k=1

exp
(
−∆K2kBT

m

pk
s2
k

[
eskt − skt− 1

])
, (12)

where the two sk are the solutions of a quadratic equation s2 +ωcs+γωc = 0,
and the corresponding pk are given by

p1 =
(s1 + ωc)

s1 − s2

; p2 =
(s2 + ωc)

s2 − s1

. (13)
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Equation 12 constitutes the solid curves in Figure (4) for the two mono-
exponential kernel tests. The method of Laplace transforms followed by a
cumulant expansion is readily extended to cover multi-exponential kernels,
except that the roots sk are the solutions of a polynomial of higher degree.
For the bi-exponential kernel (9), the ISF is given by

I(∆K, t) =
3∏

k=1

exp
(
−∆K2kBT

m

pk
s2
k

[
eskt − skt− 1

])
, (14)

where the three sk are the solutions of the cubic equation

s3 + (ω1 + ω2)s2 + (ω1ω2 + γ1ω1 + γ2ω2)s+ (γ1 + γ2)ω1ω2 = 0 , (15)

and the corresponding pk follow the same pattern as seen in the mono-
exponential kernel result:

pk =
(sk + ω1)(sk + ω2)

(sk − sk′)(sk − sk′′)
, (16)

where k′ 6= k′′ 6= k. Equation 14 is included as a function in LAMPD, which
has been used to plot the solid curve in Figure 4, in agreement with the
simulated data. The cubic equation 15 is solved numerically. The solution
of progressively higher degree polynomial equations is the only aspect of the
method requiring numerical treatment.

6.2. Rotational ISF

In PIGLE, the rotational co-ordinate of each rigid body is treated on
the same footing as translational co-ordinates, in that it obeys GLE dynam-
ics including inertial effects. The ISF has previously been derived [31] for
a collection of point scatters undergoing rigid rotations described either by
rotational jump diffusion, or continuous Brownian dynamics. However, just
as the ISF for translational Langevin dynamics includes a ballistic/diffusive
transition [32] distinguishing the dynamics from the spatial diffusion limit,
the rotational dynamics should also exhibit a ballistic/diffusive crossover.
In order to benchmark the implementation of rotational Langevin dynam-
ics within PIGLE, we benchmark against an analytical result including the
inertial effects that are both inevitable in the simulation, and in principle
observable in experiment.
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Figure 4: Benchmark PIGLE results (markers) with an analytic ISF (solid curves) for
an isolated particle with mass of 104.15 amu on a flat PES. The ISFs were calculated

for ∆K = 1 Å
−1

, and the particle obeys the GLE with a noise filtered with either an
exponential (eq. 12) or a bi-exponential (eq. 14) low-pass filter (with global frictions of
1 ps−1 and 5 ps−1, and corresponding decay constants of τ = 1 ps, τ = 5 ps).

We calculate the incoherent ISF associated with the Langevin dynamics
of a single particle constrained to a circle of radius r, in the (x, y) plane. Its
angular co-ordinate θ(t) is assumed to obey a Langevin equation

Iθ̈ = −γθ̇ +G(t) , (17)

where I is the moment of inertia, γ is the rotational friction with units ps−1,
and G(t) is a Gaussian zero-mean random torque analogous to the random
force in the translational LE. The isotropy of the dynamics means we can
choose ∆K to point in an arbitrary direction, and we choose the x direction
such that the scattering amplitude A = exp(i∆K ·R) takes the form

A∆K(θ) = exp
[
i∆Kr cos(θ)

]
. (18)

The ISF can then be expressed in terms of the initial probability p(θ) to find
the molecule at an angle θ, and the conditional probability G(θ′, θ; t) for it
to propagate to a new angle θ′ in time t, by [31]

I(∆K, t) =

∫ ∞
−∞

dθ′
∫ 2π

0

dθp(θ)G(θ′, θ; t)A∆K(θ′)A∆K(θ) . (19)
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For Brownian rotations, the conditional probability function G(θ′, θ; t) is
given by the Green’s function of a master equation describing spatial dif-
fusion [31]. However, by analogy with the translational Langevin ISF [32],
the short time ballistic behavior in Equation 17 is correctly accounted for by
the solution

G(θ′, θ; t) =

√
Iγ2√

4πkBT [e−γt + γt− 1]
exp

(
− Iγ2(θ − θ′)2

4kBT [e−γt + γt− 1]

)
. (20)

We apply the Jacobi-Anger expansion

exp
[
i∆Kr cos(φ)

]
=

+∞∑
n=−∞

inJn(∆Kr)einφ (21)

to both A(θ) and A(θ′), after which the θ and θ′ integrals produce the final
result

I(∆K, t) =
+∞∑

n=−∞

J2
n(∆Kr) exp

{
− kBTn

2

Iγ2
[e−γt + γt− 1]

}
. (22)

Although in general helium scattering methods will measure the coherent
ISF rather than the incoherent ISF, it is straightforward to show that the co-
herent rotational ISF for a homonuclear diatomic molecule is the same as the
incoherent ISF in equation 22. The only change required to the calculation
is to substitute the coherent scattering amplitude

A(θ) =
1

2

[
ei∆Kr cos(θ) + e−i∆Kr cos(θ)

]
. (23)

Otherwise following through the evaluation of the general expression 19 as
before, the result turns out to be the same because Jn(∆Kr) = J−n(∆Kr),
although in general the coherent ISF will be different when the number of
scattering centers changes.

Figure 5 shows benchmarking results for rotational motion,and primarily
demonstrates that Equation (22) agrees with PIGLE simulation results of
Langevin rotational motion in a flat potential energy landscape. To illustrate
the angular inertial effects automatically present in the simulation, overlaid
is the corresponding Brownian (spatial diffusion) result [31] that gives the
same angular diffusion constant:

I(∆K, t) =
+∞∑

n=−∞

J2
n(∆Kr) exp

{
− kBTn

2

Iγ
t
}

. (24)
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As in Brownian translational diffusion, the lack of inertial effects reveals itself
as a cusp at the origin; the short time ballistic behavior in the simulations and
in Equation 22 leads instead to smooth Gaussian behavior at short correlation
times.

Figure 5: ISF calculated from PIGLE simulation for a diatomic molecule rotating on a
flat PES (purple circles), is bench-marked against analytic ISFs for Langevin (solid blue)
and ’pure’ Brownian rotations (dashed red). The mass of the molecule is set to m=104.15
amu, with radius of r = 4 Å, friction of γ = 2 ps−1, at 300 K.

6.3. Potential Energy Surface and Interactions

To benchmark the implementation of the PES, we now make use of the
Chudley-Elliott analytic model for single jumps on a Bravais lattice.[33] The
model predicts exponentially decaying ISFs with a ∆K-dependent decay rate
called α(∆K), given the allowed site-to-site jump vectors and the correspond-
ing jump rates. We chose to construct a PES for hexagonal surface, with
several distinct high symmetry sites (commonly referred to as top, bridge,
hcp hollow and fcc hollow). While the example PES is abstract, the symme-
try and values we use are representative to diffusion of small molecules on
(111) faces of transition metals. The PES was constructed using a Fourier
series of the first six shells of G vectors (of a hexagonal lattice), with the
Fourier coefficients calculated from values for six points in the unit cell (top,
half way between top and hcp, hcp, half way betwen top and fcc, bridge,
fcc). Let VT,H,F,B be the potential at the top, hcp, fcc, bridge sites. We use a
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potential with VT = 0 meV, VH,F = 130 meV, and VB = 100 meV. The half-
way points between the top and two hollow sites where set to VT−H,T−F = 65
meV (a function to create a similar PES is provided in the PIGLE package).
The PES is effectively an array of 100 meV adsorption wells arranged in a
Bravais lattice, and therefore, for a friction high enough to hinder multiple
jumps, we can expect a qualitative agreement between ISF calculated from
the simulation, and the Chudley Elliott model for single jumps. The sim-
ulation is performed with and without inter-adsorbate interactions enabled.
The expected effect of inter-adsorbate interactions is described by de Gennes,
[34] where a dip in the dispersion curve is expected at a momentum transfer
proportionally inverse to the average distance of the adsorbates, which is
governed by the number density.[7]

Figure 6 shows the decay rates of ISFs from a simulation of 50 interacting
particles of mass 28 amu, at temperature of T= 200 K, and the PES described
above. The friction was set to 6 ps−1, with non-filtered random-impulse. The
simulation time-step was 1 fs, and the total simulation time was 3 ns. The
upper panels present results for a simulation with non-interacting particles.
On two different azimuths the ISF was calculated for various momentum
transfers, and the tail of the ISF, which is expected to hold information on
the jump part pf the particle’s motion,[7] was fitted to a decaying exponent.
The decay rates are plotted (circles), along with a fit to the Chudley Elliott
model for single jumps (solid line).[33] As expected, the variation of the decay
rates with ∆K agrees with the Chudley-Elliott model for single jumps. The
lower panels present results for a simulation of interacting particles, with the
inter-adsorbate force defined to be f(x) = −50 · 104 · x−4 meV/Å. The inter-

adsorbate interactions induce a de Gennes feature ([34]) at ∆K = 0.45 Å
−1

,
as expected for the number density (adsorbates per primitive unit cell) used
in the simulation, 0.025. The unequal spacing in ∆K is a consequence of the
in-phase scattering condition in the simulation (see explanation above).

The calculation of the interacting system was performed using the high
performance computing center at the University of Cambridge, on a node
with 32 cores, and each iteration of 32 parallel runs took 28 minutes. A
total of 96 simulation runs were performed to average the ISFs. The decay
rates presented in Figure 6 were extracted by fitting the tail of the ISF to an
exponential decay, separately for every ∆K at which the ISF was computed.

A simulation of non-interacting adsorbates was used to validate the acti-
vation energy. For the same potential (with wells of 100 meV), simulations of
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100 non-interacting particles were performed for temperature range between
150 K and 300 K. Extracting the incoherent ISF from each simulation is
equivalent to running 100 simulations of a single particle. Figure 7 shows the

natural logarithm of the decay rate of the ISF at ∆K = 0.6 Å
−1

along the
< 1, 1 > high symmetry azimuth, against the temperature (1/T ). The linear
fit gives an activation energy of 83.25 meV which is slightly smaller than the
PES well depth of 100 meV, as expected.[7]

7. Summary

PIGLE, a MATLAB/Simulink based package for molecular dynamics sim-
ulations, enables the expansion of the scope under which surface dynamics
experiments are analyzed, within the Langevin framework. The main fea-
tures of the simulator include a 4D PES (including rigid-body rotations),
implementation of the Generalized Langevin Equation, and support in co-
existence of multiple interacting species. In the paper we have presented
the main building block of the simulator, and key information about proce-
dures for post simulation analysis of the dynamical correlation functions of
the simulated particles. Presented as well is the benchmarking of the rota-
tional and translational motion, and of the generalized form of the Langevin
Equation, which allows to apply more realistic noise spectrum to the surface
fluctuations. Analytical models for the benchmarking are explained, includ-
ing novel expressions for the intermediate scattering function of particles
diffusing in a flat potential energy landscape. The analytical test cases are
a diatomic molecule subject to Langevin rotational dynamics, and a point
particle obeyed Generalized Langevin dynamics with bi-exponential memory
friction.
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Figure 6: The effects of a corrugated potential and inter-adsorbate interactions are tested
by following the changing decay rate of the ISF as function of momentum transfer. In
the upper panels, simulation results for non-interacting particles are compared with the
Chudley-Elliott analytic model for single jumps on a Bravais lattice (solid blue curves),
for the two high symmetry azimuths of the underlying hexagonal lattice. The lower pan-
els show results for a simulation with interacting particles; the curves show the variation
of the decay rate of the incoherent (circles) and coherent (dots connected by a line) ISF
calculated. The simulation parameters are described in the text. Left and right panels cor-
respond to the two high symmetry azimuths of the underlying lattice (hexagonal surface
with the lattice constant of copper crystal), < 1, 0 > and < 1, 1 >. The non-interacting
simulation agrees with a Chudley Elliott model for single jumps. Furthermore, the ex-
pected de-Gennes effect of inter-adsorbate interactions is well observed in the variation of

the coherent ISF (lower panels), and its position (∆K ≈ 0.45Å
−1

) matches the number
density of the simulated adsorbates, 0.025.

24



3 4 5 6 7

10
-3

1

2

3

4

5

Figure 7: Arrhenius plot for decay rates at ∆K = 0.6Å
−1

. The activation energy extracted
from the linear fit is 83.25 meV, which is slightly smaller than the adiabatic barrier of 100
meV, as generally expected.[7].
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Required Metadata

Current executable software version

Nr. (executable) Software metadata
description

Please fill in this column

S1 Current software version 1.0.0-beta2
S2 Permanent link to executables of

this version
example: https :
//github.com/na364/PIGLE/
releases/tag/v1.0.0− beta2

S3 Legal Software License GNU/GPL-3.0
S4 Computing platform/Operating

System
Any OS supported by MAT-
LAB/Simulink, i.e. Linux, Mi-
crosoft Windows

S5 Installation requirements & depen-
dencies

MATLAB/Simulink, with a com-
piler compatible with Simulink. See
http : //mathworks.com/support/
compilers.html)

S6 If available, link to user manual - if
formally published include a refer-
ence to the publication in the refer-
ence list

S7 Support email for questions na364@cam.ac.uk

Table 1: Software metadata (optional)

Current code version
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Nr. Code metadata description Please fill in this column
C1 Current code version v1.0.0-beta2
C2 Permanent link to code/repository

used of this code version
For example: https :
//github.com/na364/PIGLE/
releases/tag/v1.0.0− beta2

C3 Legal Code License GNU/GPL-3.0
C4 Code versioning system used git
C5 Software code languages, tools, and

services used
MATLAB/Simulink

C6 Compilation requirements, operat-
ing environments & dependencies

A compiler compatible with
Simulink is required (See
http : //mathworks.com/support/
compilers.html)

C7 If available Link to developer docu-
mentation/manual

C8 Support email for questions na364@cam.ac.uk

Table 2: Code metadata (mandatory)
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