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The empirical sciences have seen a rapid increase in data 
collection, both in the number of studies conducted and 
in the richness of data within each study. With large 
numbers of variables available, researchers often want 
to go beyond what their hypothesis-driven models tested 
and explore which variables are most informative in 
explaining observed variability in the outcome of inter-
est. Typical questions asked are “What is the importance 
of my variables for predicting the outcome of interest?” 
and, ultimately, “What subset of variables is most predic-
tive of (or most relevant for) that outcome?”

How to select a subset of variables for modeling pur-
poses (variable selection) is a pervasive challenge in 

applied statistics. In the field of statistical learning (also 
known as machine learning or data mining), a large 
amount of attention has been dedicated to the topic of 
how predictors can be optimally selected when there is 
little or no prior knowledge. Statistical approaches to 
variable selection range from the notorious stepwise 
variable-selection procedures (cf. Thompson, 1995) to 
more complex and comprehensive approaches, such as 
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Abstract
Methodological innovations have allowed researchers to consider increasingly sophisticated statistical models that 
are better in line with the complexities of real-world behavioral data. However, despite these powerful new analytic 
approaches, sample sizes may not always be sufficiently large to deal with the increase in model complexity. This 
difficult modeling scenario entails large models with a limited number of observations given the number of parameters. 
Here, we describe a particular strategy to overcome this challenge: regularization, a method of penalizing model 
complexity during estimation. Regularization has proven to be a viable option for estimating parameters in this small-
sample, many-predictors setting, but so far it has been used mostly in linear regression models. We show how to 
integrate regularization within structural equation models, a popular analytic approach in psychology. We first describe 
the rationale behind regularization in regression contexts and how it can be extended to regularized structural equation 
modeling. We then evaluate our approach using a simulation study, showing that regularized structural equation 
modeling outperforms traditional structural equation modeling in situations with a large number of predictors and 
a small sample size. Next, we illustrate the power of this approach in two empirical examples: modeling the neural 
determinants of visual short-term memory and identifying demographic correlates of stress, anxiety, and depression.
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support vector machines and random forests. One par-
ticularly fruitful approach is regularized regression, a 
method that solves the variable-selection problem by 
adding a penalty term that penalizes solutions, effectively 
producing sparse solutions in which only few predictors 
are allowed to be “active.” Regularization approaches 
vary in their precise specifications and include methods 
such as ridge (Hoerl & Kennard, 1970), lasso (least-
absolute-shrinkage-and-selection operator; Tibshirani, 
1996), and elastic-net (Zou & Hastie, 2005) regression.

Despite their strengths, these regularization approaches 
are generally developed in a context of models that 
include only observed indicators and consequently do 
not allow for modeling measurement error. However, 
incorporation of measurement error is central to many 
approaches in psychology. The most dominant approach 
to incorporating measurement error in psychology and 
related fields is the use of structural equation modeling 
(SEM). SEM offers a general framework in which hypoth-
eses can be formulated at the construct (latent) level 
and explicit measurement models link the observed 
variables to the latent constructs. Latent-variable models 
account for measurement error, assess reliability and 
validity, and often have greater generalizability and sta-
tistical power than methods based on observed variables 
(e.g., Brandmaier, Wenger, Raz, & Lindenberger, 2018; 
Little, Lindenberger, & Nesselroade, 1999). Here we 
describe a novel approach called regularized SEM, 
which incorporates the strengths of regularization into 
the SEM framework, allowing researchers to estimate 
sparse model solutions and implicitly solve large-scale 
variable selection in SEM by introducing a penalized 
likelihood function. We use simulations and two empiri-
cal data sets to illustrate the performance of regularized 
SEM and discuss practical aspects of using the method 
for modeling empirical data. First, though, we outline 
the general principles of regularization and discuss how 
to extend these principles to SEM.

Regularization overview

Regularization in the context of 
regression

To set the stage for discussing the use of regularization 
(e.g., shrinkage or penalized estimation) in structural 
equation models, we give a brief overview in the context 
of regression. (For more detail, interested readers may 
consult McNeish, 2015, or Helwig, 2017.) We use ordi-
nary least squares (OLS) estimation as a basis for our 
discussion. Given N continuous observations of P pre-
dictors in matrix X and associated continuous outcome 
Y, one can estimate the regression coefficients by mini-
mizing the residual sum of squares (RSS) as follows:

	 RSS = − −( )= =Σ Σi
N

i j
P

j ijY X1 0 1

2
β β .	 (1)

For coefficients, one estimates an intercept β0 along 
with βj coefficients (one for each of the P predictors). 
However, there may be instances when a simpler 
model—that is, one that includes fewer predictors—is 
preferred. To select the variables for this simpler model, 
one can use the lasso (Tibshirani, 1996). Lasso regular-
ization builds upon Equation 1, incorporating a penalty 
for each parameter (larger parameter values incur a 
larger penalty):

	 lasso = + =RSS
OLS


λ |β |Σ j
P

j1 . 	 (2)

The lasso penalty includes the traditional RSS as in 
Equation 1, but introduces two new components. First 
and foremost, it introduces a new penalty term that 
reflects the sum of all beta coefficients (the right-hand 
term in Equation 2). In this manner, much as how a 
traditional regression attempts to minimize the squared 
residuals, the lasso penalty tries to drive parameters to 
zero, thus implicitly performing variable selection. Sec-
ond, as can be seen in Equation 2, the sum of the 
absolute values of the βj coefficients is multiplied by a 
hyperparameter, λ. This term quantifies the influence 
of the lasso penalty on the overall model fit and thus 
weights the importance of the least squares fit versus 
the importance of the lasso penalty: As λ increases, a 
stronger penalty is incurred for each parameter, which 
results in greater shrinkage of the coefficient sizes. The 
λ term is called a hyperparameter because it cannot be 
estimated jointly with the βj coefficients (this is not the 
case in Bayesian regularization, which we return to 
shortly). As there is no generally optimal value for λ, 
it is common to test a range of λ values, combined with 
cross-validation, to examine what the most appropriate 
degree of regularization is for a given data set.

Another type of regularization is ridge regularization 
(Hoerl & Kennard, 1970). In contrast to the lasso, the 
ridge sums the squared coefficients. Whereas the lasso 
penalty will push the betas all the way to zero (as any 
nonzero beta will contribute to the penalty term), the 
ridge penalty will instead shrink the betas, but not 
necessarily all the way to 0 (as the squaring operation 
means that small betas incur negligible penalties). One 
benefit of ridge regularization is that it better handles 
multicollinearity among predictors.

In an effort to combine the variable-selection 
aspects of the lasso with the ridge regularization’s 
ability to handle collinearity, Zou and Hastie (2005) 
proposed the elastic net. Through the use of a mixing 
parameter, α, the elastic net combines ridge and lasso 
regularization:
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Much as different values of λ, combined with cross-
validation, can be tested to choose a final model, dif-
ferent values of α can be tested. Generally, the values 
tested range from zero (equivalent to the ridge penalty) 
to 1 (equivalent to the lasso penalty).

Extensions

Originating from the application of ridge regression as 
a way to improve the results of OLS when predictors are 
correlated (Hoerl & Kennard, 1970), a large number of 
alternative forms of regularization have been proposed. 
In the case of high-dimensional research scenarios, 
sparser versions of the lasso have been proposed. These 
include the adaptive lasso (Zou, 2006), the smoothly 
clipped absolute deviation penalty (Fan & Li, 2001), and 
the minimax concave penalty (Zhang, 2010), to name a 
few. Methods such as these have been shown to produce 
more optimal results than the lasso when only a small 
number of predictors among thousands of candidates or 
more are desired to have nonzero coefficients. In gen-
eral, there is no optimal type of regularization, as each 
type is optimal under different assumptions.

An additional way that regularization methods have 
been extended is with Bayesian estimation. In Bayesian 
regression, prior distributions are placed on all the coef-
ficients in the model. When these priors are diffuse (large 
variances), the observed data have a large influence on 
the posterior distribution of each parameter. Regulariza-
tion as applied to Bayesian estimation entails placing 
different types of prior distributions on those parameters 
of interest and constraining the width of these priors to 
shrink the coefficients toward zero. Thus, prior knowl-
edge, as applied through strong priors, carries greater 
weight in determining the posterior distribution for each 
parameter when regularization is applied. Placing normal-
distribution priors has been shown to be equivalent to 
ridge regression (Kyung, Gill, Ghosh, & Casella, 2010;  
T. Park & Casella, 2008; Tibshirani, 1996), whereas the 
lasso corresponds to Laplace distribution priors (T. Park 
& Casella, 2008; Tibshirani, 1996). Particularly when vari-
able selection is desired, a number of more advanced forms 
of Bayesian regularization have been found to perform 
better than the Bayesian version of the lasso (see van 
Erp, Oberski, & Mulder, 2018, for an overview).

The Rationale for Regularization

Traditionally, a test statistic (and associated p value) is 
used to determine the significance of a parameter. In 
regression with regularization, one instead tests a 
sequence of penalties, compares models to choose a 

best-fitting model, and examines whether the parameter 
estimates in this best model are nonzero. Nonzero coef-
ficients can be thought of as important (e.g., see Laurin, 
Boomsma, & Lubke, 2016). This approach stands in 
stark contrast to the use of p values, as using regular-
ization to label parameters as important does not rely 
on any asymptotic foundations (there are no statements 
with regard to a population). In particular, because the 
regularized estimates move away from the point of 
maximum likelihood, asymptotic distributions of param-
eter estimates do not hold any more. Commonly paired 
with cross-validation, regularization attempts to identify 
which parameters are likely to be nonzero not only in 
the current sample, but also in a hold-out sample.

Sparsity is an implicit conceptual assumption of regu-
larization methods, such as the lasso, that set parameters 
to zero (e.g., Hastie, Tibshirani, & Wainwright, 2015). 
In other words, this approach reflects the hypothesis 
that the true underlying model has few nonzero param-
eters. However, in psychological research, this is unlikely 
to be true. Instead, most variables in a data set likely 
have small correlations among themselves (e.g., the 
“crud” factor—Meehl, 1990). As a result, the use of regu-
larization in psychological research will impart some 
degree of bias into the results; as with all procedures, 
there is no such thing as a “free lunch” (Wolpert & 
Macready, 1997). Although this may at first seem to be 
an undesirable side effect, we argue that there are com-
mon situations in which the benefits of reduced variance 
outweigh the drawbacks of nonzero degrees of bias. 
First, we provide a brief overview of the bias-variance 
trade-off.

Bias-variance trade-off

Although regularization is often used when variable 
selection is desired to achieve a parsimonious level of 
description, or when the number of predictors is larger 
than the sample size, one of the fundamental motiva-
tions behind regularization concerns the bias-variance 
trade-off. Bias refers to whether estimates or predictions 
are, on average (across many random draws from the 
population), equal to the true values in the population. 
Variance, on the other hand, refers to the variability, or 
precision, of these estimates (see Yarkoni & Westfall, 
2017, for further discussion). Practically speaking, 
researchers want bias to be absent and variance to be 
low (e.g., the Gauss-Markov theorem guarantees that 
least squares estimation yields unbiased estimates with 
the lowest variance among all unbiased linear estima-
tors); however, it can be difficult to achieve both goals 
in practice. Regularization plays a role when one wishes 
to allow for some bias in order to achieve a larger 
decrease in variance. When the sample size may be 
insufficient to adequately test the number of predictors 
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the researcher desires to include in the model, regular-
ization will systematically bias the regression coeffi-
cients toward zero, as the variance of the estimator will 
be high because of the low sample size. Such an 
approach will prove particularly beneficial when the 
true model is sparse (i.e., only few predictors are 
important).

To provide a simple example, we simulated 30 observa-
tions with 10 predictors of a normally distributed outcome 
variable. This 3-to-1 (30-to-10) ratio is far below recom-
mended guidelines for regression models. Across 1,000 
repetitions, the first predictor was simulated to have the 

strongest regression coefficient (.5), the second predictor 
was simulated to be half as strong (.25), and the third 
predictor was simulated to be half as strong as the second 
(.125). The other 7 predictors had simulated coefficients 
of zero. The resultant coefficients from both OLS and ridge 
regression models are displayed in Figure 1.

The figure shows that the estimates from the OLS 
model are unbiased (i.e., the mean parameter estimates 
correspond with the simulated parameter estimates). 
However, the absence of bias comes at the expense of 
variance, as the OLS coefficients have a large degree 
of variability. This is to be expected given the results 

OLS Ridge1 Ridge2

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
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Fig. 1.  Illustration of the bias-variance trade-off: parameter estimates from 
models fit to simulated data. The simulation involved 1,000 repetitions of 30 
observations with 10 predictors of a normally distributed outcome variable. 
Results from an ordinary least squares (OLS) model and two ridge regressions 
(a weaker penalty of 5 for Ridge1 and a stronger penalty of 50 for Ridge2) are 
shown. The error bars show ±1 SD of the estimate for each parameter. Asterisks 
denote the simulated parameter estimates.
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of methodological work on sample sizes in linear regres-
sion (Green, 1991). However, instead of restricting the 
number of predictors entered into the model in order 
to address a small fixed sample size (e.g., testing only 
2 predictors when testing all 10 is desired), researchers 
can use regularization to impart bias as a mechanism 
to decrease the variance of the estimates. In contrast 
to the OLS results, the ridge parameter estimates are 
biased toward zero (i.e., they are lower than the means 
in the data-generating mechanism), and this bias is 
greater when the penalty is larger. Higher regularization 
imparts more bias toward zero, while also reducing the 
variance of the parameter estimates. Particularly when 
the sample size is small or the number of variables is 
large (compared with the sample size), this is a desir-
able property of regularization.

Rationale for accepting bias to reduce 
variance

Even though there may be a confluence of small effects 
in a data set, researchers may not value including every 
nonzero parameter into the model, as it complicates 
estimation and renders interpretation difficult. In such 
cases, researchers care more about what could be termed 
functional sparsity. They specifically want to develop a 
parsimonious model that facilitates interpretation and 
generalization of the most important parameters.

One of the main motivations for developing regular-
ization methods is for use with data sets that have more 
variables than observations. In such cases, OLS regres-
sion cannot be used. Although settings in which the 
number of parameters exceeds N may still be uncom-
mon, the benefits generalize to settings in which the 
ratio of observations to predictors is small, which can 
be said to pose a sample-size challenge (e.g., Bakker, 
Van Dijk, & Wicherts, 2012). Adequate power to detect 
a given parameter requires a suitably large sample size 
(depending on the magnitude of the effect), and when 
multiple effects are considered, either separately or in 
the context of a multivariate model, the required sample 
size can increase rapidly. If a sample size is small for 
practical or principled reasons, one strategy for testing 
a complex model is to reduce the dimensionality of the 
model. Most commonly this means using some method, 
such as stepwise regression, to reduce the number of 
coefficients in a regression model, which can be highly 
problematic (e.g., Harrell, 2015).

Regularization in Structural Equation 
Modeling

In psychological research, it is common to have more 
than one outcome of interest, each specified as a latent 

variable. Usually, researchers want to model not only 
latent variables, but also predictors of these factors. 
One strategy is to estimate factor scores in a confirma-
tory factor analysis (CFA), extract the factor estimates, 
and treat those as outcomes in a traditional OLS regres-
sion. However, this can be problematic (e.g., Devlieger 
& Rosseel, 2017; Grice, 2001), inducing issues such as 
biased estimates of the regression parameters and 
factor-score indeterminacy. In contrast, one can stay 
within the latent-variable framework and include pre-
dictors of all outcomes of interest in a single analysis. 
This allows for richer analysis; for example, one can 
test the equality of relationships across time, assess fit 
(through various fit indices), and test for directed rela-
tionships between latent variables. Pairing regulariza-
tion with a multivariate model of this type requires a 
generalization of the types of univariate regularization 
methods we discussed earlier.

Regularization has been extended in a number of 
directions beyond linear regression. These extensions 
have been applied to, for example, generalized linear 
models (e.g., M. Y. Park & Hastie, 2007), network-based 
models (e.g., Epskamp, Rhemtulla, & Borsboom, 2017), 
item-response-theory models (Chen, Li, Liu, & Ying, 
2018; Sun, Chen, Liu, Ying, & Xin, 2016), differential 
item functioning (Magis, Tuerlinckx, & De Boeck, 2015; 
Tutz & Schauberger, 2015), educational assessment 
(Culpepper & Park, 2017), and factor analysis (e.g., 
Hirose & Yamamoto, 2015), to name just a few. Specific 
to our purposes is what we refer to as regularized SEM, 
or RegSEM ( Jacobucci, Grimm, & McArdle, 2016; see 
also Huang, Chen, & Weng, 2017).

RegSEM directly builds different types of regulariza-
tion into the estimation of structural equation models, 
by expanding the traditional maximum likelihood esti-
mation (MLE) to include a penalty term, as follows:

	F P PRegSEM tr( * )= + − − +−log( ) log( )|Σ| Σ | | λC C1

MLE
� ������� ������� (( ) ,⋅

penalty
� 	 (4)

where C is the sample covariance matrix, Σ is the model 
implied covariance, matrix, and P is the number of 
variables. This adds a penalty term, λP( )⋅ , to the tradi-
tional MLE fit function. Just as in regularized regression, 
λ is the penalty; P( )⋅  is a general function for summing 
parameters. In the case of the lasso, P( )⋅  sums the abso-
lute values of the specific parameter estimates. The 
same goal is accomplished for ridge penalties, the elas-
tic net, and other extensions (see Jacobucci, 2017). An 
important step is selecting which parameter estimates 
should be included (i.e., which parameters are penal-
ized) in P( )⋅ . Because this form of regularization takes 
place in the estimation of structural equation models, 
regularization can be selectively applied to one or more 
subsets of parameters, including factor loadings (e.g., 
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to select items from a questionnaire to create a short 
form), variances or covariances (e.g., to test whether 
the addition of residual covariances is necessary), or—of 
specific interest to us here—regression paths.1 For each 
of these penalized parameters in the model, it is impor-
tant to standardize the corresponding variables prior to 
the analysis. By standardizing the variables, one ensures 
that all penalized parameters contribute equally to 
model fit.

When the type of regularization is either the lasso 
or the elastic net (or another sparse penalty), the num-
ber of effective degrees of freedom can change as the 
penalty increases. Most notably, as the penalty increases, 
each parameter that is set to zero increases the degrees 
of freedom (see Jacobucci et al., 2016, for additional 
information). Thus, increasing the penalty often results 
in an improvement in fit as assessed by those fit indices 
that include the number of parameters in the equation 
(e.g., root mean square error of approximation, or 
RMSEA; comparative-fit index, or CFI; and information 
criteria). Note, however, that some fit indices are 
derived under the assumption that the point estimate 
is maximum likelihood; thus, it may be preferable to 
evaluate prediction error in a test set rather than to use 
classic in-sample test statistics (see Yarkoni & Westfall, 
2017).

RegSEM combines confirmatory aspects of SEM with 
an exploratory search for important predictors. The 
confirmatory and exploratory aspects can take place in 
either the measurement or the structural parts of a 
structural equation model. In many situations, research-
ers may have some a priori idea of how some variables 
relate to each other. For instance, imagine that a group 
of researchers have constructed an initial CFA model 
with five indicators of a single latent variable, such as 
fluid intelligence. This confirmatory formulation may 
be based on previous research support for a single 
latent dimension underlying the covariance among the 
five indicators. Figure 2 displays the addition of three 
predictors (say, volumetric measures of different brain 
regions; cf. Kievit et al., 2014) to the initial CFA model. 
The resulting model is called a multiple-indicators (fac-
tor loadings), multiple-causes (regression parameters 
directed to the latent variable) model (MIMIC model; 
Jöreskog & Goldberger, 1975). Once the model is run, 
traditional techniques, such as the Wald test (and asso-
ciated test statistics), can be used to determine which 
predictors have nonzero population values.

This kind of model is commonly used to simultane-
ously estimate the joint influence of a set of presumed 
causal influences on one or more latent variables. How-
ever, given the constraints of traditional SEM approaches, 
the predictors are usually selected a priori on the basis 
of theoretical or empirical considerations (cf. Kievit 
et  al., 2014). Now imagine an alternative scenario in 

which the researchers have a much larger number of 
predictors they wish to test (e.g., gray-matter volume 
in all regions identified in an atlas). None of these 
additional relationships may be based on previous 
hypotheses. The researchers may be relatively uncertain 
about which covariates in their data set are important 
predictors of the fluid-intelligence latent factor, either 
because they do not have strong a priori expectations 
or because there are a large number of candidates (e.g., 
genetic markers, brain variables). In this case, an explor-
atory search would be conducted. Traditional tools are 
no longer as suitable in such a scenario, as the model 
may not converge, or estimates may be imprecise, 
because of problems using MLE with large numbers of 
variables when the sample size is limited (e.g., see 
Hastie et  al., 2015). Although previous research has 
examined the influence of large models on test statistics 
(Yuan, Yang, & Jiang, 2017), less attention has been 
paid to strategies that produce more accurate parameter 
estimates in large models. Here, in an effort to reduce 
this gap in the literature, we propose and evaluate the 
use of regularization.

In many applied fields such as genetics, cognitive 
neuroscience, and epidemiology, the ratio of predictors 
to the available sample size may be large. Indeed, one 
could argue that the absence of regularization methods 

C 1 C 2

Factor

Y 2 Y 3 Y 4 Y 5Y 1

C 3

Fig. 2.  A simple multiple-indicators, multiple causes (MIMIC) model  
with five indicators (yellow boxes) and three predictors (green boxes) 
of a latent factor. Note that the variances of C1, C2, and C3 have been 
omitted.
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may help explain why fields such as cognitive neurosci-
ence rely on mass univariate approaches (i.e., a relation-
ship between an outcome and neural data is tested 
thousands of times, separately for each brain region or 
voxel). However, multivariate approaches generally paint 
a richer, more realistic picture of the true data structure, 
and also allow the researcher to investigate which effects 
are redundant, and which may be partially independent 
and complementary. To examine the possible benefits of 
regularization in the SEM context, we conducted three 
studies. In Study 1, we examined the effectiveness of both 
MLE and regularization in the context of complex struc-
tural equation models. In Studies 2 and 3, we applied 
regularized SEM to large existing data sets.

Disclosures

The scripts for the simulation and applied analyses in 
this article are available online at https://osf.io/z2dtq/.

Study 1: Simulation

Method

To evaluate the effectiveness of the RegSEM lasso, we 
designed simulation conditions that researchers may 
commonly face when evaluating a large number of 

predictors (e.g., a property such as cortical thickness 
measured across many brain regions). We varied our 
simulations across two dimensions: sample size and 
predictor collinearity. The template model for our simu-
lation is depicted in Figure 3. The model included six 
indicators (Y1–Y6) of the latent variable, f. The factor 
loadings of these indicators differed in their simulated 
population values (see Fig. 3). As predictors of f, there 
were 70 uninformative (noise) variables (Cn1–Cn70), with 
simulated population coefficients of zero. Additionally, 
there were three sets of 10 predictors each; a set of 
predictors with small effect sizes (0.20, Cs1–Cs10), a set 
of predictors with medium effect sizes (0.50; Cm1–Cm10), 
and a set of predictors with large effect sizes (0.80; 
Cl1–Cl10). Taken together, there were 100 potential pre-
dictors of f, each treated as a fixed effect. The variance 
of the latent variable was fixed to 1 for identification 
purposes, so that each factor loading could be freely 
estimated (we did not estimate a mean structure).

After creating simulated data according to the model 
in Figure 3, we tested a model that included 112 free 
parameters: 100 regression coefficients, 6 factor load-
ings, and 6 residual variances. Although rules of thumb 
are inherently limited, common guidelines suggest a 
ratio of 10:1 between sample size and the number of 
free parameters (e.g., Kline, 2015) to obtain stable esti-
mates. In this case, that would mean a minimum N of 

f
1

1

1 .8 .8 .8 .5 .5

1 1 1 1 1

0 0 0 0.2 0.2 0.8 0.80.5 0.5

Cn1

Y1 Y2 Y3 Y4 Y5 Y6

Cn2 Cn70 Cs1 Cs10 Cm1 Cm10 Cl1 Cl10

Fig. 3.  Template model for the simulation in Study 1. This multiple-indicators, multiple-causes (MIMIC) model included a single latent fac-
tor f, six indicators (Y1–Y6) with factor loadings from .5 to 1 and unique error variances, and 100 potential predictors. Some predictors were 
uninformative (Cn1–Cn70), and others had a small effect (Cs1–Cs10), a moderate effect (Cm1–Cm10), or a strong effect (Cl1–Cl10).

https://osf.io/z2dtq/
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1,200. Given that many researchers may wish to test 
models of this size, but may not have the requisite 
sample size, we wanted to test a variety of sample sizes 
to examine when the performance of MLE degrades 
and when the use of regularization is beneficial. There-
fore, we tested sample sizes2 of 150, 250, 350, 500, 800, 
and 2,000.

In most psychological studies that examine the influ-
ence of a variety of predictors, these predictors have 
correlations among themselves. This complicates the 
interpretation of the results. For instance, it becomes 
challenging to determine the relative contribution of 
individual predictors (Grömping, 2009). Moreover, high 
degrees of collinearity can result in problematic estima-
tion. Therefore, we also investigated the effect of pre-
dictor collinearity in our simulation by simulating data 
with correlations of 0, .20, .50, .80, and .95 among all 
predictors. We expected that bias in both MLE and 
regularized estimation would increase as the correlation 
among predictors increased. Because lasso regulariza-
tion is problematic with high degrees of collinearity, 
we also tested the elastic-net estimator. Finally, we 
examined the prevalence of Type I errors (wrongly 
including a noise predictor in the final model) and Type 
II errors (wrongly excluding a true predictor) across 
the sample sizes and effect sizes.

To test each form of estimation, we used a different 
package in the R statistical environment (R Core Team, 
2018). For MLE, we used the lavaan package (Version 
0.5-23.1097; Rosseel, 2012). For RegSEM, we used the 
regsem package (Version 1.0.6; Jacobucci, Grimm, 
Brandmaier, & Serang, 2017). Both lasso and elastic-net 
regularization are implemented in regsem, along with 
a host of additional penalties ( Jacobucci, 2017). We 
varied λ (see Equation 4) across 30 values, ranging from 
0 to 0.29 in equal increments. In initial preruns, higher 
penalty values were included, but they always resulted 
in worse fit. To choose a final model among the 30 
models run, we used the Bayesian information criterion 
(BIC; Schwarz, 1978). Each cell in the simulation’s 
design was replicated 200 times.

Results

Instead of giving a detailed analysis of the simulation’s 
results, we provide a high-level overview. We compare 
the performance of the RegSEM lasso with the perfor-
mance of MLE using three metrics: root mean square 
error (RMSE; averaged across each set of parameters), 
relative bias (averaged across each set after taking the 
absolute value of each parameter), and error rate (for 
Type I and Type II errors, respectively). For each per-
formance metric, we discuss how results varied across 
sample sizes and predictor collinearities. We do not 

present the results for RegSEM elastic-net estimation, 
as those results were almost identical to the results for 
the RegSEM lasso.

Parameter estimates.  First we discuss the precision of 
parameter recovery, quantified as RMSE (Fig. 4) and rela-
tive bias (Fig. 5). At high sample sizes, the results for 
RMSE showed that MLE performed similarly to the lasso, 
and MLE’s performance was better than the lasso’s when 
performance was measured by relative bias. This differ-
ence in results for the two metrics was expected, because, 
as we discussed earlier, the lasso imparts bias to reduce 
variance. RMSE measures both bias and variance, whereas 
relative bias measures only bias; thus, with the lasso, the 
increase in bias is somewhat offset by a decrease in vari-
ance. At small sample sizes, and particularly a sample 
size of 150, the lasso performed better than MLE with 
regard to both RMSE and relative bias. In conditions with 
only 150 observations, MLE was highly unstable in its 
estimation of parameters; that is, parameter estimates 
were drastically larger than their simulated values.

The lasso produced better RMSE results than MLE in 
most conditions, particularly with sample sizes of 150 
and 250. When the correlation among all predictors was 
extremely high (.95), the lasso produced a large amount 
of RMSE in the factor loadings. This condition is prob-
ably the reason why the RMSE values for the estimates 
of the factor loadings were higher for the lasso than for 
MLE across sample sizes. This poor performance can 
most likely be explained by covariance expectations 
and by the fact that correlations among predictors cre-
ate a complicated web of relationships (see the appen-
dix for further details). Fortunately, collinearity of 
predictors in the range of .95 is unlikely to be observed 
in real data sets.

The results for relative bias were more mixed. The 
lasso produced less relative bias than MLE for the sam-
ple size of 150, but MLE produced less relative bias 
with larger samples. An extreme degree of collinearity 
resulted in a large increase in relative bias for the lasso, 
much as extreme collinearity increased RMSE for the 
lasso. This secondary effect of collinearity was much 
less evident with MLE. Collinearity had a U-shaped 
effect on relative bias of the regression coefficients 
when the lasso was used: Both small (.00) and extreme 
(.95) correlations among predictors resulted in the high-
est relative bias. In contrast, this relationship did not 
hold for MLE. Together, our simulations show that regu-
larized SEM outperforms traditional MLE in accuracy of 
parameter estimation when sample sizes are small and 
the number of predictors is large.

Type I and Type II errors.  An alpha criterion of .05 was 
used to determine parameter significance in the MLE 
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models. Thus, a Type I error occurred when the coefficient 
for a noise variable had a p value less than .05. Results for 
the frequency of Type I errors (see Fig. 6) showed that 
sample size had a larger effect than did collinearity in the 
MLE models. For a sample size of 150, there was a 17% 
chance for a noise variable to be incorrectly identified as a 
significant parameter. Although the Type I error rates were 
higher than .05 across the range of collinearities tested, 
this can mostly be attributed to the influence of sample 
size. A Type II error occurred when the coefficient for a 
predictor with a small, medium, or large simulated effect 
size had a p value greater than .05. Results for Type II 
errors (see Fig. 6) were alarming in that they indicated 
there was low power to detect the effects of the parame-
ters with small and medium simulated effect sizes. As col-
linearity increased, so did the Type II error rates for these 
parameters (i.e., power decreased); the inverse relation-
ship held for sample size. Even for the parameters with a 
simulated effect size of 0.8, larger-than-expected numbers 
of Type II errors were committed when sample sizes were 
small and when collinearity was high.

Overall, the lasso models committed far more Type 
I errors than the MLE models, but also had much lower 
Type II error rates (i.e., they rarely omitted a truly 
predictive variable).

Summary.  Across our simulations, the MLE models esti-
mated parameters more accurately than the lasso models 
when sample sizes were large, and the lasso models were 
more accurate than the MLE models when sample sizes 
were small. Overall, the MLE models had less relative bias 
(as expected), but the lasso models improved upon the 
MLE models with respect to the RMSE. The RegSEM lasso 
committed more Type I errors then MLE did, but achieved 
much higher rates of power (lower Type II error rates) 
across conditions. These results are in line with previous 
findings, such as those of Serang, Jacobucci, Brimhall, and 
Grimm (2017), who found a similar trade-off between reg-
ularization and other forms of estimation in the context of 
mediation models. The optimal method for a given research 
context depends on the relative importance of decreasing 
parameter bias and decreasing parameter variance. Within 
a given sample, an MLE model may produce more accurate 
results than a model using regularization, but the MLE 
model may not generalize as well. We note that the contrast 
between these forms of estimation may not apply beyond 
the small selection of models we discuss here.

Study 2: White-Matter Determinants of 
Visual Short-Term Memory

Many features of brain structure and function may have 
complementary cognitive effects. Thus, a challenge in cog-
nitive neuroscience is how to reconcile the dimensionality 

constraints of covariance-based methodologies such as 
SEM with the richness of the imaging metrics (which may 
include hundreds of measures per individual). Here, we 
describe an illustrative example in which we used regular-
ized SEM to model visual short-term memory (VSTM) as 
a function of white-matter microstructure. The data came 
from the Cambridge Study of Cognition, Aging and 
Neuroscience (Cam-CAN, www.cam-can.org; Shafto et al., 
2014), a study of a large, population-derived cohort of 
healthy individuals

The Sample

The data for this empirical illustration are from 627 
adults (320 female; age range from 18 to 88, M = 54.18, 
SD = 18.42) who participated in a large battery of cog-
nitive tests, demographic and life-style measurements, 
and MRI scans (for more details on the cohort and 
sampling methodology, see Taylor et  al., 2017). We 
focus on participants who had complete data for a 
specific cognitive task (the VSTM task) and a common 
index of white-matter microstructure (fractional anisot-
ropy). Analyses of subsets of these MRI data (but not 
the data for this cognitive task) have previously been 
reported (e.g., Henson et al., 2016; Kievit et al., 2016; 
Kievit et al., 2014).

The VSTM task

The VSTM task in the Cam-CAN battery was developed 
to quantify the capacity and precision of VSTM. The 
task consists of three phases: an encoding phase, dur-
ing which participants view one to four colored circles 
(targets); a brief blank screen (900 ms); and a cue in 
the same spatial location as one of the target circles 
(see Fig. 7). Participants are asked to use a color wheel 
to pick the color of the circle that previously appeared 
at the cued location, as well as to rate their confidence 
in their judgment. They performed a total of 224 trials 
across two blocks; position of the targets, set size, and 
cue (i.e., which target was cued) were counterbalanced 
across blocks. We focus here on the effects of set size 
for set sizes 2 through 4 (to avoid the ceiling effects 
associated with the simplest version of the task). Each 
participant’s mean performance for each of these three 
set sizes was scored; the scores for each set size ranged 
between 0 and the maximum number of circles for that 
set size.

White-matter predictors

For the neural indicators, we used a common metric of 
white-matter organization called fractional anisotropy. 
This metric quantifies the dispersion of water molecules 

www.cam-can.org
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and the extent to which this dispersion is constrained 
by the organization of white-matter structures. Frac-
tional anisotropy is a complex and indirect measure 
with various limitations, and its relationship to white-
matter health is not yet fully understood (Bender, 
Prindle, Brandmaier, & Raz, 2016; Jones, Knösche, & 
Turner, 2013). Nonetheless, fractional anisotropy is 
widely used, as it has been shown to be associated with 
individual differences in a range of cognitive domains, 
especially in old age (Madden et al., 2009). We focused 
on mean fractional anisotropy for each tract in the 
ICBM-DTI-81 atlas (Mori et al., 2008), which parcellates 
the human white-matter skeleton into 48 tracts. 
Although our previous work used white-matter atlases 
of lower dimensionality (e.g., Kievit et al., 2016, and 
de Mooij, Henson, Waldorp, & Kievit, 2018), we inten-
tionally used a more high-dimensional white-matter 
atlas for this example to illustrate the benefit of regu-
larization. (For more details regarding the analysis pipe-
line, see Kievit et al., 2016.)

The MIMIC model

To examine the neural determinants of VSTM, we fit a 
MIMIC model ( Jöreskog & Goldberger, 1975). Our 
model captured the hypothesis that VSTM (the latent 
variable), which was measured by scores on the VSTM 
task (the multiple indicators), was in turn affected by 
the fractional anisotropy of various white-matter tracts 
(the multiple causes; see Kievit et al., 2012, for a com-
parison of the MIMIC model with competing represen-
tations). First, we specified a measurement model in 

which the latent VSTM variable was measured by mem-
ory scores at each of the three set sizes (2, 3 and 4). 
Next, we simultaneously regressed this latent variable 
on the fractional anisotropy for all 48 white-matter 
tracts. This model tested the joint prediction of the 
latent variable by all 48 white-matter tracts, which 
allowed us to determine whether one or more tracts 
helped predict individual differences in VSTM.

Model estimation and results

We estimated the regularized model across a range of 
λ values and used the BIC (also known as the Schwarz 
criterion) to compare the fit of these models (see 
Jacobucci, Grimm, & McArdle, 2016, for details on alter-
native strategies for selecting a final model). The BIC 
balances the increased parsimony achieved by regular-
izing parameters to zero with the concurrent decrease 
in explanatory power. As we had a strong a priori 
hypothesis about the measurement model, we regular-
ized the structural parameters (i.e., the joint prediction 
of the latent variable by the 48 tracts), but not the factor 
loadings or residual variances. As Figure 8 shows, the 
best solution was obtained with a λ value of 0.18. This 
model yielded an acceptable RMSEA of 0.0321. Figure 
9 shows the beta estimates across a range of λ values, 
as well as the location of the 6 tracts with nonzero beta 
estimates in the final model.

As Figure 9 shows, the beta estimates for six tracts 
remained nonzero in the regularized MIMIC model. 
Strikingly, three of these tracts are subdivisions of the 
fornix (the column body, as well as the cres), and all 

250 ms

900 ms

Fig. 7.  The visual short-term memory task in the Cambridge Study 
of Cognition, Aging and Neuroscience (Shafto et al., 2014). On each 
trial, participants viewed from one to four target circles for 250 ms 
and then a 900-ms blank screen. Finally, a cue for one of the pre-
vious targets was presented, and participants were asked to use a 
color wheel to indicate which hue most closely matched that of the 
cued target.
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showed positive effects (i.e., greater white-matter micro-
structure was associated with better VSTM performance). 
The fornix, which connects the hippocampus to other 
brain regions, has long been associated with various 
aspects of memory, usually autobiographic memory 
(e.g., Hodgetts et al., 2017) but also, in the Cam-CAN 
cohort, subdomains such as recollection, familiarity, 
and priming (Henson et al., 2016). Notably, there have 
been some Phase I trials suggesting that deep-brain 
stimulation to the fornix may alleviate memory com-
plaints in patients with early Alzheimer’s disease 
(Laxton et al., 2010). The posterior thalamic radiations 
(see Fig. 9) have been posited as crucial for focusing 
and allocating attention in demanding tasks (Menegaux 
et al., 2017). Evidence from infants suggests an asso-
ciation between greater white-matter organization in 
the posterior thalamic radiations and better perfor-
mance on the VSTM task (Menegaux et  al., 2017). 
Finally, we observed a positive association between 
VSTM performance and white-matter microstructure 
of the superior fronto-occipital fasciculus, which 
was positively associated with children’s spatial work-
ing memory in previous research (Vestergaard et al., 
2011).

Although the results for these five tracts align well 
with previous literature, we also observed a single (sur-
prising) negative effect: Greater white-matter integrity 
of the superior cerebellar peduncle was associated with 
poorer VSTM performance. However, closer inspection 
suggested that this pattern was likely an artifact of 

image registration, as the integrity of this tract, unlike 
others, increases (bilaterally) with age. A likely explana-
tion is that the relatively deep location of this tract 
within the brain makes it vulnerable to registration 
challenges, such as partial volume effects (Alexander, 
Hasan, Lazar, Tsuruda, & Parker, 2001). We suggest that 
this negative pattern is more likely due to an imaging 
artifact than to a true association.

It should be noted that the regularized model solu-
tion does not imply that the white-matter microstructure 
of all the other tracts is uncorrelated to VSTM. When 
predictors are collinear, the predictors that emerge in 
a regularized solution are likely to be the most repre-
sentative of broader sets of correlated predictors (in the 
present case, a single tract may capture most or all of 
the predictive power across a network of tracts). In the 
case of collinear predictors, regularizing groups of 
predictors with the group lasso (Friedman, Hastie, & 
Tibshirani, 2010) may be more appropriate than regu-
larizing individual predictors; however, this approach 
has not yet been generalized to SEM.

To summarize, a regularized structural equation/
MIMIC model was able to model the relation between 
cognitive performance and imaging metrics, taking a 
high-dimensional set of predictors and reducing this set 
to create a relatively parsimonious representation of key 
tracts previously implicated in VSTM performance. 
These results demonstrate the viability of this methodol-
ogy in cognitive neuroscience in general and in research 
with aging and developmental cohorts in particular.
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Fig. 9.  Results from Study 2: beta estimates for the white-matter tracts as a function of the penalty (λ) value and brain maps showing the 
location of the six tracts with nonzero estimates in the final model. Note that the tracts with effects regularized to zero are shown in gray.
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Study 3: Modeling the Determinants of 
Depression, Anxiety, and Stress

The Sample

Previous work has suggested that there are many dis-
tinct predictors of individual differences in depression, 
anxiety, and stress (e.g., Sümer, Poyrazli, & Grahame, 
2008), but the extent to which these determinants of 
mental health are separable or collinear (nonunique) 
is unclear. For our second empirical example, we 
attempted to answer this question using a large (N = 
27,835) publicly available data set containing answers 
to the Depression Anxiety Stress Scales (DASS; Lovibond 
& Lovibond, 1995). This data set was collected from an 
online sample and is freely available at https://openpsy 
chometrics.org/_rawdata/. The 42-item DASS captures 
latent variables of depression, anxiety, and stress (each 
with 14 indicators), and the data set also includes a set 
of personality and demographic covariates, which we 
subjected to regularization. These covariates include 
responses on the Ten-Item Personality inventory (TIPI; 
Gosling, Rentfrow, & Swann, 2003), which uses 7-point 
Likert scales (from disagree strongly to agree strongly). 
Other covariates are highest level of education (ranging 
from 1, less than high school, to 4, graduate degree), 
gender (1 = male, 2 = female), age (in years), handed-
ness (1 = right, 2 = left), voter record (1 = I have voted 
in the last year, 2 = I have not voted in the last year), 
and family size (“Including you, how many children 
did your mother have”; participants filled in the correct 
number). These covariates are included for illustrative, 
rather than conceptual, reasons.

Results

First, we fit a three-factor measurement model to all the 
DASS data. This model fit the data well, χ2(816) = 
64,490.79, p < .001; RMSEA = 0.053, 90% confidence 
interval = [0.053, 0.053]; CFI = 0.897; standardized root 
mean square residual = .040, and all factor loadings 
were moderate to strong (range = .50–.84, M = .70). 
Despite considerable covariance among the latent vari-
ables (all correlations > .7), a three-factor model fit 
considerably better than a competing unidimensional 
account (in which all items were taken to measure a 
single latent variable), Δχ2 = 29,414, Δdf = 3, p < .001. 
Next, we fit a MIMIC model in which the three latent 
factors were simultaneously regressed on the 16 predic-
tors. Results reported here are based on a random sub-
sample (N = 1,000) of the full cohort. Model fit was 
good, χ2(1440) = 4,348.61, p < .001; RMSEA = 0.045, 
90% confidence interval = [0.044, 0.046]; CFI = 0.884; 
standardized root mean square residual = .038, and the 

joint covariates predicted a large amount of variance 
(depression: 40.7%; anxiety: 41.9%; stress: 52.3%). In 
this same subsample, MLE yielded 4 predictors that 
were nominally significant for stress, 7 that were sig-
nificant for anxiety, and 6 that were significant for 
depression (see Fig. 10).

Next, we refit the model using the RegSEM lasso. Forty 
penalty values were tested, and Figure 11 summarizes 
the results. The optimal BIC solution was observed with 
a λ value of 0.15. This penalty regularized the paths of 
27 of the 48 structural parameters to zero, yielding the 
most parsimonious model representation. Table 1 
shows the fully standardized parameter estimates for 
the MLE model as well as the regularized model. Across 
all three factors, two TIPI items—4 (“easily upset, anx-
ious”) and 9 (“calm, emotionally stable”)—had strong 
associations (r = ~.3) with the three mental-health out-
comes. Note that the strong associations between the 
latent factor anxiety and TIPI Item 4 is unsurprising 
given their partial content overlap. However, both the 
MLE and the lasso estimates demonstrate that a consid-
erable number of additional predictors, including edu-
cation and “reserved, quiet” (TIPI Item 6) personality, 
explained unique variance in individual differences in 
mental health. Moreover, the DASS and TIPI purport-
edly capture distinct domains (mental health and per-
sonality), and this model is meant for illustrative 
purposes only. We present these parameters for readers 
to interpret accordingly.

Note that the predictors with the largest Wald-test z 
values in Table 1 do not consistently correspond to the 
predictors selected as having nonzero coefficients in 
the lasso model. One thing to keep in mind when 
interpreting lasso parameter estimates is that they are 
biased toward zero because of the shrinkage (Tibshirani, 
1996). To address this bias, one can refit the model 
without any penalty in a second stage that includes 
only the chosen subset of predictors. This procedure, 
which is referred to as the relaxed lasso (Meinshausen, 
2007), has been shown to perform favorably compared 
with best-subset selection, forward stepwise selection, 
and the lasso without the second stage (Hastie, 
Tibshirani, & Tibshirani, 2017; Serang et  al., 2017). 
Because we did not follow this two-stage approach, the 
regularized coefficients are best interpreted only as zero 
or nonzero.

Discussion

We have argued that regularized SEM is a powerful and 
underutilized method for researchers who want to 
examine a (relatively) large number of predictors, or 
who have a relatively modest sample size combined 

https://openpsychometrics.org/_rawdata/
https://openpsychometrics.org/_rawdata/
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with a model of moderate complexity. We have 
described regularization as applied to both regression 
and SEM, and have evaluated its use in high-dimensional 
MIMIC models. In our simulation study, models with 
lasso penalties incurred less error than MLE models 
when sample sizes were small and demonstrated higher 
power to detect effects of small and medium magni-
tude. Our results illustrate how sample size and the 
correlation among regressors influence the accuracy of 
parameter estimates and how variable selection is per-
formed in an extremely complex model. Regularized 
SEM was applied to modeling VSTM as a function of 
white-matter microstructure in a large existing data set. 
Starting with a complex model of 48 distinct white-
matter tracts, the regularized model identified 6 tracts 
as determinants of VSTM. Finally, in our last example, 
we used a regularized model to identify a broad set of 
variables that explain individual differences in stress, 
anxiety, and depression.

Our simulation study showed that regularized SEM 
may be a viable option for researchers looking to iden-
tify relatively low-dimensional sets of predictors in 
fields with broad sets of candidate variables, such as 
cognitive neuroscience and behavior genetics. Notably, 
this technique goes beyond traditional methods used 

Table 1.  Results From Study 3: Fully Standardized Regression 
Parameters From the Maximum Likelihood and Lasso Models

Maximum likelihood model

Predictor
Standardized 

estimate Wald-test z
Lasso model’s 

estimate

Predictors of the stress latent variable
TIPI1 −0.018 −0.55 −0.003
TIPI2 0.062 2.14 0.029
TIPI3 −0.043 −1.54 −0.007
TIPI4 0.394 10.65 0.134
TIPI5 −0.044 −1.42 −0.002
TIPI6 0.041 1.37 0
TIPI7 −0.032 −1.28 0
TIPI8 −0.009 −0.31 0
TIPI9 −0.307 −8.3 −0.103
TIPI10 0.004 0.14 0
Education −0.099 −3.3 0
Gender 0.047 1.88 0
Age −0.035 −1.52 −0.012
Handedness −0.002 −0.08 0
Voter record 0.005 0.19 0
Family size 0.012 0.46 0

Predictors of the anxiety latent variable
TIPI1 −0.007 −0.2 0
TIPI2 0.029 0.97 0
TIPI3 −0.041 −1.24 0
TIPI4 0.293 7.51 0.069
TIPI5 −0.078 −2.29 −0.016
TIPI6 0.098 3.06 0.003
TIPI7 −0.027 −0.87 0
TIPI8 0.013 0.42 0.014
TIPI9 −0.228 −5.7 −0.05
TIPI10 0.026 0.84 0
Education −0.125 −3.68 0
Gender 0.014 0.5 0.017
Age −0.089 −2.02 −0.013
Handedness 0.015 0.54 0
Voter record 0.057 1.97 0
Family size 0.064 2.21 −0.006

Predictors of the depression latent variable
TIPI1 −0.14 −4.12 −0.04
TIPI2 0.042 1.5 0
TIPI3 −0.041 − 1.32 0
TIPI4 0.224 6.22 0.046
TIPI5 −0.044 −1.33 0
TIPI6 0.113 3.53 0.027
TIPI7 0.012 0.43 0
TIPI8 0.089 2.87 0.043
TIPI9 −0.306 −8.5 −0.118
TIPI10 0.042 1.45 0
Education −0.071 −2.37 0
Gender −0.022 −0.85 0
Age 0.01 0.43 −0.009
Handedness −0.005 −0.17 0
Voter record 0.02 0.74 0
Family size 0.031 1 0

Note: TIPI1 through TIPI10 refer to the items on the Ten-Item 
Personality inventory (Gosling, Rentfrow, & Swann, 2003).
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Fig. 11.  Parameter trajectory plot from Study 3. The graph shows the 
values of the 48 regression coefficients as a function of the penalty 
value. The dashed vertical line highlights the penalty value yielding 
the model with the best fit (i.e., the lowest Bayesian information 
criterion).
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to correct for multiple comparisons in neuroimaging 
studies. Methods that correct for multiple comparisons, 
such as those based on the false discovery rate and 
Gaussian random-field theory (for an accessible intro-
duction, see Brett, Penny, & Kiebel, 2003), are generally 
still implemented to correct (mass) univariate tests, 
rather than joint simultaneous prediction across voxels 
(regions of interest). It may be possible to combine 
regularized SEM with methods of joint comparisons, 
such as principal component regression, to estimate the 
joint predictive value of multiple components across 
many voxels even in cases with modest sample sizes 
(e.g., Wager, Atlas, Leotti, & Rilling, 2011).

Limitations and challenges

Although we have illustrated several benefits of regu-
larization in regression and SEM when sample sizes are 
small, we did not include any conditions with sample 
sizes below 100 in our simulation study. This was 
mostly due to the complexity of our model, as we were 
unable to achieve stable estimates at a sample size of 
120 or below. In regularized regression, it is possible 
to test models in which there are more predictors than 
observations; however, to our knowledge, methods of 
testing models with more predictors than observations 
have not been extended to SEM, and we were unsuc-
cessful in our attempt to apply regularized SEM to such 
cases in our simulation study. A possible solution is to 
use Bayesian SEM, in which strongly informative priors 
or hierarchal models with sparsity-inducing priors can 
achieve stable estimation even in such extreme cases 
(see Jacobucci & Grimm, 2018). Given that Bayesian 
estimation is increasingly being used in cases of small 
numbers of observations (McNeish, 2016), and that pair-
ing of Bayesian SEM and regularization has been more 
widely applied than pairing of frequentist SEM and 
regularization (see Brandt, Cambria, & Kelava, 2018; 
Feng, Wu, & Song, 2017; Lu, Chow, & Loken, 2016), we 
expect to see more research in this area in the future. 
Other avenues for future work include investigating bias 
when regularization is used in factor-score regression 
(Devlieger & Rosseel, 2017), a method that may help 
overcome the current limitation of needing more observa-
tions than predictors. Additionally, bias induced by high 
degrees of collinearity may be reduced by first creating 
factor scores, and thus fixing the factor loadings.

Frequentist software for regularized SEM currently 
requires complete cases. As it is rare for psychological 
data to have no missing values, this requirement is cur-
rently a considerable weakness of regularized SEM. One 
strategy for modeling data with missing values is mul-
tiple imputation. The main issue with using this strategy 
with regularized SEM concerns how to combine the 

results. In traditional multiple imputation for SEM, 
parameter estimates can be aggregated across 10 to 20 
data sets (or more) by averaging the parameter esti-
mates and correcting the standard errors for the lack 
of randomness in the process. However, regularization 
is most often used to perform variable selection, and 
this necessitates a way to aggregate a set of 0 to 1 deci-
sions across imputed data sets. Although some research 
has addressed how to aggregate results in regression 
(Liu, Wang, Feng, & Wall, 2016), this work has not been 
generalized to SEM.

Lockhart, Taylor, Tibshirani, and Tibshirani (2014) 
have derived sampling distributions to calculate p val-
ues that take into account the adaptive nature of the 
lasso regression model, but this work has not been 
extended to SEM with the lasso. When parameter esti-
mates are not accompanied by p values or confidence 
intervals, researchers may feel uncertain in making 
inferences. Consequently, inference can be more chal-
lenging with regularized structural equation models 
than with regularized regression models, particularly 
given the inherent bias in estimation. One proposed 
method for overcoming this challenge is the relaxed 
lasso (Meinshausen, 2007), which has been shown to 
produce unbiased parameter estimates when applied 
to mediation models (Serang et al., 2017).

It may be difficult to change the mind-set of relying 
on p values and instead to characterize nonzero paths 
as important. To overcome this difficulty, we recom-
mend thinking in terms of generalizing to an alternative 
sample. Although researchers may incur bias when 
using regularization, the more important aim is gener-
alization, which is achieved by reducing variance and 
preferring models of a complexity that is afforded by 
the observed data. This holds true particularly for 
exploratory studies, which are less concerned with 
within-sample inference and more concerned with 
informing future research.

In our simulation, we found a trade-off between MLE 
and the RegSEM lasso with respect to Type I and Type 
II errors: The RegSEM lasso kept more variables in the 
model (more Type I and fewer Type II errors), whereas 
MLE was more restrictive with respect to which vari-
ables were deemed significant (fewer Type I and more 
Type II errors). In exploratory studies, we generally 
recommend a liberal stance; that is, more emphasis 
should be given to the inclusion of potentially impor-
tant variables, and the possibility of including variables 
that do not have either predictive or inferential value 
should be of less concern. In an ideal setting, research-
ers would apply regularized SEM to data from a pilot 
or initial study in the hopes of being maximally efficient 
in identifying what variables should be included in a 
future, possibly larger study. Our simulation study 
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supports the idea that applying MLE when the sample 
is small and the number of variables is large will result 
in the exclusion of potentially relevant variables. Note, 
however, that our conclusions depended not only on 
the method of regularization applied but also on the 
specific heuristic for choosing the penalty (i.e., relying 
on fit indices rather than domain expertise). The pen-
alty values that align with the goals of researchers who 
want to be relatively inclusive in variable selection (i.e., 
who can tolerate more Type I errors) may be different 
from the penalty values that align with the goals of 
researchers who want to be more exclusive (i.e., who can 
tolerate more Type II errors; (see also Lakens et al., 2018).

Related approaches

Regularized SEM is only one of the new methods devel-
oped for SEM with large data sets. Particularly in the 
area of variable selection, SEM trees (Brandmaier, von 
Oertzen, McArdle, & Lindenberger, 2013) and forests 
(Brandmaier, Prindle, McArdle, & Lindenberger, 2016) 
are alternative methods. SEM trees directly use the 
observed covariates to partition observations, and in 
the process, only a subset of covariates are used to 
create the model. This allows researchers to uncover 
nonlinearities and interactions. Additional meth-
ods include the use of heuristic search algorithms 
(e.g., Marcoulides & Ing, 2012), various methods for 
identifying group differences (Frick, Strobl, & Zeileis, 
2015; Kim & von Oertzen, 2018; Tutz & Schauberger, 
2015), and the use of graphical models for identifying 
latent variables (e.g., Epskamp et al., 2017). Given the 
increasing amounts of data sharing, facilitated by vari-
ous new tools for data storage and sharing, such as the 
Open Science Framework (https://osf.io/) and Open-
fMRI (https://openfmri.org/), we can envision the utility 
of testing models much larger than our template simula-
tion model. One of the biggest challenges to such work 
is software implementation. In this regard, we expect 
Bayesian estimation (see Jacobucci & Grimm, 2018), 
discussed earlier, to be a particularly fruitful alternative 
to our frequentist approach, especially in the creation 
of new sampling methods such as those in the Stan 
software package (Carpenter et al., 2016). Interfaces for 
specifying models (see Merkle & Rosseel, 2015) are sure 
to be more widely used among psychological research-
ers as they become easier to use.

Concluding thoughts

We encourage researchers to think of regularization as 
an approach that can combine confirmatory and explor-
atory modeling. Regularization gives researchers more 
flexibility to make both their uncertainty and their 

knowledge concrete. It is particularly suitable when 
researchers hope to use a principled approach to go 
beyond the limitations of their theory to identify poten-
tially fruitful avenues for future study. In both our simu-
lation and our empirical examples, we conducted 
exploratory searches for important predictors in rela-
tion to a confirmatory latent-variable model. This is 
only one example of how these types of modeling can 
be fused, and we look forward to seeing new areas of 
application. We hope that this article sheds light on a 
new family of statistical methods that have much utility 
for psychological research.

Appendix: Dependency Among 
Parameters in MIMIC Models

With two predictors (y1 and y2), and just one indicator 
(x1) of a single latent variable, the covariance between x1 
and y1 (covx1,y1) is

	
covx y x y y x y y y1 1 1 1 1 1 2 1 2, , ,= +λ β σ λ β σ

	

where λx1 is the factor loading for x1, βy1 is the regression 
coefficient for y1, σy1 is the variance of y1, and σy1,y2 is the 
covariance between y1 and y2.

This equation means that when predictor covariance is 
high, the estimation of the second regression coefficient 
plays a large role. Thus, whenever parameters are over-
penalized (either because the sample is not large enough 
to estimate them or because sparsity is desired), this bias 
not only is incurred in the regression, but also trickles 
down to the factor loadings. This is always a problem, as 
the model will try to “make up for” the downward bias of 
βy1 in the value assigned to λx1, but it can be exacerbated 
to a large extent when there is covariance among predic-
tors. Adding in a large numbers of predictors makes the 
problem much worse.
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Notes

1. Note that regression paths can be penalized regardless of 
which variables they connect. For example, paths from mani-
fest variables to latent variables can be penalized, as can the 
reversed paths, paths between latent variables, and paths 
between manifest variables. In fact, lasso regression can be 
seen as a subset of the RegSEM lasso method.
2. We tested a sample size of 120 as well, but with this sample 
size the models generated by the regsem package failed to 
converge at a high rate. Therefore, we did not include these 
results.
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