
The resurgence of structure

in deep neural networks

Petar Veličković

Trinity College

This dissertation is submitted on 15 January 2019

for the degree of Doctor of Philosophy

The resurgence of structure in deep neural networks

Petar Veličković

Abstract

Machine learning with deep neural networks (“deep learning”) allows for learning com‐

plex features directly from raw input data, completely eliminating hand‐crafted, “hard‐

coded” feature extraction from the learning pipeline. This has lead to state‐of‐the‐art

performance being achieved across several—previously disconnected—problem domains,

including computer vision, natural language processing, reinforcement learning and gen‐

erative modelling. These success stories nearly universally go hand‐in‐hand with avail‐

ability of immense quantities of labelled training examples (“big data”) exhibiting simple

grid‐like structure (e.g. text or images), exploitable through convolutional or recurrent

layers. This is due to the extremely large number of degrees‐of‐freedom in neural net‐

works, leaving their generalisation ability vulnerable to effects such as overfitting.

However, there remain many domains where extensive data gathering is not always ap‐

propriate, affordable, or even feasible. Furthermore, data is generally organised in more

complicated kinds of structure—which most existing approaches would simply discard.

Examples of such tasks are abundant in the biomedical space; with e.g. small numbers of

subjects available for any given clinical study, or relationships between proteins specified

via interaction networks. I hypothesise that, if deep learning is to reach its full potential

in such environments, we need to reconsider “hard‐coded” approaches—integrating as‐

sumptions about inherent structure in the input data directly into our architectures and

learning algorithms, through structural inductive biases. In this dissertation, I directly val‐

idate this hypothesis by developing three structure‐infused neural network architectures

(operating on sparse multimodal and graph‐structured data), and a structure‐informed

learning algorithm for graph neural networks, demonstrating significant outperformance

of conventional baseline models and algorithms.

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome

of work done in collaboration except as declared in the Preface and specified in the text. It

is not substantially the same as any that I have submitted, or am concurrently submitting,

for a degree or diploma or other qualification at the University of Cambridge or any other

University or similar institution except as declared in the Preface and specified in the text.

I further state that no substantial part of my dissertation has already been submitted, or is

being concurrently submitted, for any such degree, diploma or other qualification at the

University of Cambridge or any other University or similar institution except as declared

in the Preface and specified in the text. This dissertation does not exceed the prescribed

limit of 60 000 words.

Petar Veličković

15 January 2019

Acknowledgements

Finally completing this dissertation brings to an end a truly extraordinary three‐year pe‐

riod of my life. While it has challenged my sanity in ways that I could never have been

able to foresee, it has also given me the opportunity to have some of the best experiences

of my life. I truly believe that I have come out of the entire experience as, primarily, a bet‐

ter person. However, this would have not been even remotely possible without support of

some of the most amazing and generous people in this world. They have simultaneously

celebrated my successes and made sure to always remind me that my work has value,

whenever times were hard. Here, I will humbly try to give them due credit.

I will start by acknowledging my exceptional parents, Alma and Dušan Veličković. They

have helped me see through this academic journey with unconditional love, and under‐

standing for the divergence between our professional worlds. As through all of my life,

they have truly provided the backbone to my efforts. I hope that I have managed to make

them proud remotely as much as they’ve made my life fulfilling.

This PhD wouldn’t be remotely as fruitful without the endless support of my supervi‐

sor, Pietro Liò. Ever since the “early” days in the Computer Science Tripos, Pietro put

the utmost of faith in me, and fully rightly taught me that a PhD is all about expanding

the network, accommodating my every research‐related whim. I’m hopeful that I have

justified the confidence I’ve received from him, and remain eternally thankful.

Besides Pietro, over the course of this PhD I was very lucky to interact with Nicholas

Lane and Yoshua Bengio, both of whom put extreme faith in me when I did not have any

way of substantiating this faith. The work I’ve done in collaboration with them (atNokia

Bell Labs and Mila, respectively) forms the essence of this dissertation. I cannot thank

them enough for the wonderful opportunities. This also provided essential credentials

for my next pursuit (at DeepMind), and I would like to particularly thank Raia Hadsell

for her continued interest in my work, and look forward to working with her for years to

come. Credits are also due to Jovana Mitrović and Irina Higgins, both of whom played

a key supportive role in guiding me through the process of becoming a Research Scientist.

When it comes to my formation as a machine learning researcher, nobody deserves more

credit than Adriana Romero and Devon Hjelm, direct supervisors of my work at Mila.

Adriana has taught me all the tricks of the trade; the hidden methodological and intuitive

details that research papers scarcely show. Devon, on the other hand, truly convinced

me that impossible is nothing, with his endlessly persistent and driven mentorship. Both

of them, being extremely hands‐on, managed to extract the utmost of my potential, and

I am grateful to have been able to get a chance to work with them.

In these three years, I had a chance to collaborate with some brilliant researchers. Ones

that have impacted my formation the most—either through very instructive insights or

immense collegial spirit—areDuoWang, Sourav Bhattacharya, Pietro Sormanni,Guillem

Cucurull,Arantxa Casanova,Thomas Kipf, Jian Tang,William Fedus andWilliamHamil‐

ton—whom I also give exceptional thanks to for inviting me to co‐organise a workshop

on graph representation learning, which has proven to be a truly invaluable experience.

Perhaps no experience has been more humbling than getting to supervise students’ project

work. Even more so, seeing that work published at various strong venues, and seeing

many of the people I advised go on to building successful careers in research of their own.

In this respect, I’d like to acknowledge Benjamin Day, Ioana Bica,Momchil Peychev, Tu‐

dor ´Tiplea, Edgar Liberis, Laurynas Karazija and Nathaniel McAleese‐Park. Foremost,

they are all exceptional people with immense potential, and I hope that I managed to

justify their faith by playing a useful role in shaping their interests.

Outside research, some of the most computer science‐related fun I’ve had these three

years involved participating in competitive programming and being a machine learning

educator. In the first aspect, I thank Dimitrije Erdeljan, Marko Stanković and Dušan

Živanović for being truly the best team of competitive programmers one can work with.

In the second, I cannot even begin to explain how important my collaboration with Cam‐

bridge Spark was—in terms of substantially improving my stage confidence as well as

meeting some truly exceptional people. As such, I thank Annalisa Occhipinti for giving

me the initial opportunity for collaborating with this company, and the CEO, Raoul‐

Gabriel Urma, for entrusting me with so many additional engagements since then. Of

course, thanks are also due to all the amazing people at Cambridge Spark I worked with

throughout my PhD: Thibaut Lienart, Valentin Dalibard, Olivia Hughes, Elena Hatzimi‐

hali, Ekaterina Kochmar, Chih‐Chun Chen and Ryan‐Rhys Griffiths.

I was exceptionally lucky to perform a research visit to Montréal’s Mila two times during

my PhD. Therein, I have met extraordinary machine learning researchers, but primar‐

ily wonderful and highly welcoming people. Highlighting only a few is very hard—but

I’d like to thank Rosemary Ke, Chiheb Trabelsi, Joseph Paul Cohen, Assya Trofimov,

Dmitry Serdyuk, Dendi Suhubdy, Philippe Lacaille, Samuel Lavoie‐Marchildon, Yikang

Shen, Konstantinos Drossos, João Felipe Santos, Christopher Beckham, Olexa Bilaniuk,

Philemon Brakel, Fran ,cois Corneau‐Tremblay and Alex Fedorov for making my experi‐

ence a truly unforgettable one. But, utmostly, I’d love to thank Amina Madzhun, Jae

Hyun Lim, Shawn Tan and Chin‐Wei Huang, who accompanied me to late night hours

in the 3248 lab during the most pressuring deadline push of my life. Without their over‐

whelming support, this dissertation would likely have missed its last chapter.

Throughout the development of this dissertation I always had the support from a se‐

lect group of really close people, who—in many respects—were like a second family to

me: Nikola Jovanović, Cătălina Cangea, Miloš Stanojević, Ana Šemrov, Vanja Šarković,

Djordje Nikolić and Marina Ivanović. Enumerating all the ways in which these people

were invaluable tomy progress would probably occupymore pages than this dissertation—

and therefore, here I would just like to thank them for all the times they were there for

me. It will never be forgotten.

To Emma Rocheteau, I would like to say that she is truly exceptional. She has exceeded

the limits of human kindness I thought were possible. At least when it comes to making

sure that I am in the best possible state, she is ready to go to truly extreme lengths—even

when things are critical with her as well. I hope that only the best things happen to her

from now on, as she most certainly deserves it. She has certainly earned my endless re‐

spect and eternal friendship. Merci beaucoup!

Last, but certainly not least, I would like to express indefinite gratitude to Andreea‐Ioana

Deac. If there is one person that consistently reinforced my (debatable) self‐confidence,

and made sure that I was on track, both academically and psychologically—often sacri‐

ficing countless hours of her own time to do so—that would definitely be her. From the

very fruitful research collaborations to all the random and wonderful bonaventures that

followed, she has been a really lovely person to have around, and never failed to remind

me that what I’m doing is worthwhile. I am truly lucky to have such a caring person

in my life, and it is no understatement that completing this dissertation would not have

been possible without her never‐ending support. Mul ´tumesc foarte mult!

Contents

1 Introduction 15

1.1 The successes and pitfalls of deep learning 17

1.2 Reintroducing structural inductive biases 19

1.3 Research questions and contributions . 21

1.4 List of publications . 23

2 Deep neural networks 27

2.1 Mathematical notation . 27

2.2 Essentials . 28

2.2.1 The perceptron . 29

2.2.2 Multilayer perceptrons . 31

2.2.3 Learning the MLP parameters . 31

2.2.3.1 Initialisation . 32

2.2.3.2 Optimisation . 33

2.2.3.3 Regularisation . 34

2.2.4 Hyperparameter tuning . 37

2.3 Structured neural networks for grids, sequences and sets 38

2.3.1 Convolutional neural networks 38

2.3.1.1 Convolutional layers . 39

2.3.1.2 Pooling layers . 41

2.3.1.3 Residual networks . 41

2.3.2 Recurrent neural networks . 42

2.3.2.1 The recurrent layer . 43

2.3.2.2 SimpleRNN and vanishing gradients 44

2.3.2.3 Long short‐term memory 45

2.3.2.4 LSTM regularisation . 46

2.3.3 Self‐attention . 47

2.4 Graph neural networks . 49

2.4.1 Node classification . 49

2.4.2 Random walk‐based node embeddings 50

2.4.3 Graph convolutional networks 52

3 Cross‐modality through early fusion 55

3.1 Methodology . 56

3.1.1 Cross‐connections . 57

3.1.2 X‐CNN . 57

3.1.3 X‐LSTM . 59

3.1.4 Hyperparameter tuning . 61

3.1.5 Xsertion . 61

3.2 Experimental setup . 62

3.2.1 Datasets and preprocessing . 63

3.2.2 Model architectures . 66

3.2.3 Evaluation protocol . 69

3.3 Results . 71

3.3.1 Quantitative results . 71

3.3.2 Qualitative results . 72

3.4 Generalisations: XFlow . 78

3.5 Summary . 79

4 Attentive graph convolutions 83

4.1 Prior approaches . 84

4.2 What’s in a graph convolution? . 85

4.3 The self‐attentional solution . 87

4.4 GAT architecture . 88

4.4.1 Graph attentional layer . 88

4.4.2 Theoretical properties . 91

4.5 Evaluation . 92

4.5.1 Datasets . 92

4.5.2 Baseline methods . 93

4.5.3 Experimental setup . 94

4.5.4 Results . 95

4.6 Extensions and applications . 98

4.6.1 Mesh‐based parcellation of the cerebral cortex 98

4.6.2 Neural paratope prediction . 100

4.6.3 Additional related work . 100

4.7 Summary . 102

5 Local‐global mutual information maximisation on graphs 103

5.1 Preliminaries . 104

5.1.1 Unsupervised graph learning . 104

5.1.2 Mutual information estimation and maximisation 105

5.1.3 Related work . 105

5.2 DGI methodology . 106

5.2.1 Graph‐based unsupervised learning setup 106

5.2.2 Local‐global mutual information maximisation 107

5.2.3 Theoretical motivation . 108

5.2.4 Overview of DGI . 110

5.3 Classification performance . 110

5.3.1 Datasets . 111

5.3.2 Experimental setup . 112

5.3.3 Results . 115

5.4 Qualitative analysis . 117

5.4.1 Embedding space visualisation . 118

5.4.2 DGI learning mechanism . 118

5.5 Corruption function robustness . 120

5.6 Summary . 122

6 Conclusions 125

6.1 Summary of contributions . 125

6.2 Structural inductive biases meet reinforcement learning 126

Bibliography 129

Chapter 1

Introduction

“Language makes infinite use

of finite media.”

Wilhelm von Humboldt

The initial success stories of computer science (primarily related to areas such as algo‐

rithm design and analysis, computer architecture or programming languages) revolved

around efficiently breaking down problems into simpler problems, in such a way that the

steps to solve them may eventually be specified unambiguously, as a sequence of “hard‐

coded” instructions that a computer is capable of executing. This approach was pervasive

in the historical work on artificial intelligence as well—aiming to represent knowledge

about the world as a knowledge base of axioms, along with simple rules for deriving new

knowledge [123].

Despite its initial successes, it quickly became evident that the symbolic approach to arti‐

ficial intelligence becomes intractable in many problems of interest. The algorithms are

required to contain an exponentially growing space of intermediate conclusions—many

of which irrelevant or trivially symmetric to each other—to reach a final decision.

More importantly, it turned out that for many problems of interest it is extremely hard

to manually specify rigorous axioms and rules that a computer could use for making con‐

clusions. This is sometimes referred to as the symbol grounding problem [66]: relying

entirely on hand‐crafted mathematical elements (such as constants, functions and predi‐

cates) can hardly be reconciled with the richness of signal in the real world, and therefore

these methods typically lack robustness tominor perturbations of the input problem setup.

As a guiding example, I will leverage a standard computer vision task: glyph recognition

on the notMNIST [19] dataset (Figure 1.1).

15

Figure 1.1: The notMNIST dataset of glyphs corresponding to characters A–J. For
humans, the associated classification task—of predicting the character depicted in the
glyph—is trivial to perform, but near‐impossible to conceptualise algorithmically.

The notMNIST dataset, designed as a step‐up in complexity from the handwritten digit

recognition of MNIST [103], is concerned with predicting the character depicted in a

given input glyph (represented as a 28 × 28 grayscale image; i.e., matrix of pixel intensi‐

ties). For humans, this task is often trivial; the majority of the glyphs shown in Figure

1.1 may quickly be recognised as the character A. However, formulating a rigorous set

of classification rules turns out to be quite difficult. This difficulty stems primarily from

the variability of real‐world signals: the large number of ways (fonts) to effectively en‐

code the “substance” of an A is not readily amenable to a rule‐based system that looks at

individual pixels. Even simple transformations, such as shifts, scales and rotations may

completely fool such a system without compromising human performance1.

Unlike such a rule‐based classifier, humans have been exposed to a significant number of

A characters during their lifetimes, and have therefore learnt the complex features that

make up an A, without ever needing to rigorously define a set of rules for doing so. Ma‐

chine learning, at its core, aims to capture exactly this—systems capable of generalising

from past experiences. It has, therefore, become the dominant approach to artificial in‐

telligence in recent years; especially through deep neural networks (commonly known as

deep learning [101] in this context).

1 It should be noted, of course, that modern methods based on deep neural networks are not immune to
variants of this issue either—in this space often referred to as adversarial attacks [168]. These, however,
often produce fooling inputs that substantially escape the true data distribution.

16

Figure 1.2: Left: An input image (of the tabby cat class). A deep neural network (VGG‐
16 [160]) pre‐trained on ImageNet is capable of extracting meaningful representations in
both its shallow (middle) and deep (right) layers. The shallower layers typically extract
rudimentary features (such as separating the foreground from the background) while, at
the deeper stages of processing, the network highlights distinct “cat‐like” properties, such
as its eyes, ears and fur.

1.1 The successes and pitfalls of deep learning

Deep neural networks (DNNs) tackle the problem from a representation learning [11]

perspective; they are composed of a stack of feature‐extracting layers, with the first layer

processing raw inputs, and each subsequent layer receiving the output of the previous

layer. As such, DNNs build up a gradually more complex representation of the input

and eliminate the need for hand‐crafted feature extraction. Given a sufficiently large

training set of input/output examples, the network iteratively adjusts its parameters (typ‐

ically using a first‐order method [143] such as gradient descent) in order to optimise the

error of the network’s predictions on those examples compared to the ground‐truth out‐

put. As a consequence, the network gradually acquires better representations of the data

as well, with the “shallower” layers specialising to detect simple input features (such as

edges and contours in an image), with “deeper” layers detecting more complex clues. Fig‐

ure 1.2 provides a visualisation of this phenomenon in the case of image classification on

the ImageNet dataset [144] (where it is typically easiest to conceptualise).

This method assumes a direction which is in stark contrast to the symbolic approaches;

minimal assumptions about the specifics of the task are given, relying on the model to

automatically infer them through observing the training data. In conjunction with spe‐

cialised architectures that use parameter sharing to exploit simple redundancies and in‐

variances in grid‐structured data—such as convolutional neural networks (CNNs) [102]

for images and recurrent neural networks (RNNs) [41, 74, 82] for sequences—these tech‐

niques currently hold the state‐of‐the‐art result on many challenging tasks of interest.

Their resurgence in the 21st century may be primarily attributed to the ability to har‐

17

ness large quantities of training data (the “big data” phenomenon) and an upturn in

specialised computer architectures for parallel processing (primarily graphics processing

units (GPUs), with fully‐dedicated architectures such as the tensor processing unit (TPU)

[83] being proposed recently).

Under tasks with a large dataset and simplistic structural invariances, deep neural net‐

works typically dominate. The scope of potential applications is extremely varied, with

state‐of‐the‐art (and often superhuman) performance being attained across areas such

as computer vision [98], speech recognition [70], natural language processing [166], re‐

inforcement learning [120], game‐playing [158] and generative modelling [54]. What is

particularly impressive is that the same kind of architecture may often be applied in wildly

different scenarios, achieving competitive performance on all of them. This allowed, for

the first time, the seamless connection between previously disjoint disciplines of computer

science. Historically, tackling each problem in these domains required extensive input

from experts for creation of appropriate hand‐crafted features. Deep neural networks al‐

low for automatic inference of useful features, purely through observing large quantities

of training data, therefore often eliminating the domain expert from the pipeline.

While the successes of deep neural networks are indisputable and certainly correspond

to the most promising direction of artificial intelligence in recent times, they are far from

a catch‐all solution to everything. Even if we assume that the networks do not have to

perform well in the presence of adversarial inputs [55]; a phenomenon already known to

leave most deep architectures particularly vulnerable2, issues arise as soon as we step out

of the “big data” environment and/or are forced to deal with more general kinds of input

structure (such as graph‐structured data or data lying on manifolds).

As modern‐day neural networks often have parameter counts in the millions, they will

tend to easily overfit to their inputs on a small training set—constructing representations

that memorise their training data rather than generalise to unseen inputs (which is the es‐

sential property of successful machine learning systems!). Furthermore, applying neural

networks to complex‐structured inputs makes it substantially less trivial to share parame‐

ters in ways that are simultaneouslymeaningful (do not lose representational power) and

scalable (computationally efficient, and ideally deployable on GPUs). The most common

response to such scenarios is to gather more data (nowadays possible even outside the

industrial environment, e.g. by leveraging tools such as the Amazon Mechanical Turk

[18] to effectively harness human annotators) and to discard the additional structure.

2While tangential to the aims of the work presented in this dissertation, I acknowledge defence against
adversarial examples as a very important research direction.

18

Both of these paradigms work only to an extent—in many cases, discarding the struc‐

ture can cause severe losses in performance (as is the case with many node classification

tasks on graphs [92, 187]). Similarly, gathering more data is not always appropriate,

affordable or even feasible:

• In some cases, we may not know upfront what the task of interest is—and therefore

not be able to determine appropriate labels (ground‐truth outputs) for the data;

• For some tasks, data can be reliably collected only by trained professionals; a sim‐

ple example of this is medical image segmentation, where every pixel of the input

needs to be carefully labelled by an expert. In this setting, techniques such as ac‐

tive learning [46] may be applied to carefully choose which examples are the most

important to be labelled.

• If we are aiming to detect an extremely rare event, such as diagnosing a rare genetic

disease, any training dataset is fundamentally limited by the number of examples

possessing this characteristic, and extending it further is impossible3.

1.2 Reintroducing structural inductive biases

The contributions I will present in this dissertation are primarily concerned with alleviat‐

ing the issues outlined above in the setting where there is additional structure in the data

which may be exploited. A common way in which additional knowledge about data may

be exploited is by applying an appropriate inductive bias to the model.

Typically, given a particular (machine) learning setup, one may find a space of possible so‐

lutions (e.g. parameter assignments) to the learning problem that exhibit equally “good”

performance [57]. Inductive biases [118], broadly speaking, encourage the learning algo‐

rithm to prioritise solutions with certain properties. While there are many ways to encode

such biases—e.g. explicit regularisation objectives [115] or choices of prior distributions

in a Bayesian model [60]—I have restricted my attention specifically to methods that

incorporate structural assumptions directly into the learning architecture or algorithm.

This can be seen as a “meet‐in‐the‐middle” approach, combining aspects of classical sym‐

bolic artificial intelligence with modern deep architectures for representation learning.

3With the caveat that data augmentation through generative models such as variational autoencoders
(VAEs) [89] or generative adversarial networks (GANs) [54] could provide a way to artificially expand
such datasets [199]—albeit substantial further research is necessary in order to verify the viability of such
examples in safety‐critical domains such as biomedicine.

19

By directly encoding the structural inductive biases present in data, I have recovered mod‐

els that are more data‐efficient, enabling a leap in predictive power—especially on smaller

training datasets. While the specific research questions I have tackled through my contri‐

butions will be thoroughly outlined in the next section, I would like to highlight that this

is by no means an isolated effort, and in fact represents a major recent push within the

machine learning community—as the amount of “low hanging fruit” tasks for deep neu‐

ral networks deteriorated over the past years. For reasons of space, I will only highlight

a few such directions and architectures here:

• Nontrivial structural inductive biases are introduced in the context of multimodal

deep learning [124, 163]—wherein the assumption that different parts of the input

should be processed by different feature extractors is encoded. Most work in this

space focusses on “late fusion”; separately extracting features from each modality,

and then driving decision‐making using the combination of these features [2, 85],

with recent work allowing for generic cross‐modal interaction to occur at an earlier

stage through feature‐wise transformations [130].

• A substantial recent research direction involves generalising CNNs to operate on

more general input structures—which grids are a special case of—such as graphs

[49], manifolds [121] and point clouds [183]. Here, convolutions are generalised

to more generic operations, often preserving appropriate locality, invariance and

parameter sharing properties.

• Relational inductive biases [7] explicitly encode that a neural network should be

mindful of relations present between objects in the input, and has recently been

explored in the context of physics interactions [6], visual question answering [151],

multi‐agent interactions [75], and relational memory modules [150]. It should be

noted that all of the above approaches assume a complete graph of relations; the

tangential problem of relational inference, which aims to explicitly recover these

relations and use them for inference, has also seen attention recently [90].

• Substantial work exists in introducing structural inductive biases in deep reinforce‐

ment learning, where they typically substantially improve the few‐shot performance

of the learnt agents. These approaches span reintroducing symbolic methods in

deep RL algorithms [47], explicitly handling relations between “objects” present in

the RL state [194], directly expressing nontrivial structure of the agent [149, 181],

and allowing for information flow across tasks for continual learning [145, 146,

155]. In addition, structural biases have been successfully introduced in the con‐

text of imitation learning [37] and programmable agents [34].

As a few additional assorted topics where structural inductive biases have been deployed, I

20

Convolution

Convolution

Max-Pool

Max-Pool

Conv. Conv.

Conv.

Conv.

Merge

Merge

Conv.

Conv.

. . .

. . .

. . .

. . .

X‐CNN [176]

. . .

. . .

X‐LSTM [177]

~h1

~h2

~h3

~h4

~h5

~h6

~α
16

~α11

~α
12

~α13

~α 1
4

~α
1
5

~h′1

concat/avg

GAT [174]

~xi

~̃xj

(X,A)

(X̃, Ã)

~hi

~̃
hj

(H,A)

(H̃, Ã)

E

C

E

~s

R
D

D

+

−

~h1

~h2
~h3

~s

DGI [175]

Chapter 2
Background

Chapter 3
Early cross‐modal fusion

Chapter 4
Graph convolutions

Chapter 5
Graph unsupervised learning

Figure 1.3: An overview of the main contributions presented in this dissertation. Firstly,
two models with specialised structural inductive biases are proposed for early fusion in
multimodal learning; one for grid‐structured input modalities (X‐CNN [176]) and one for
sequential input modalities (X‐LSTM [177]). Following, the desirable structural induc‐
tive biases for graph convolutional layers are outlined—and for the first time, simultane‐
ously satisfied—in the graph attention network (GAT [174]) model. Lastly, local mutual
information maximisation is successfully introduced—through the Deep Graph Infomax
(DGI [175]) algorithm—as an unsupervised learning objective for graph‐structured in‐
puts, allowing a very powerful structural inductive bias to be introduced to learning node
representations in conjunction with graph convolutional encoders.

would highlight neural programmer‐interpreters [135], amortised probabilistic program‐

ming inference [138], visual de‐animation [188], capsule neural networks [72, 147] and

compositional attention networks [77].

1.3 Research questions and contributions

Having provided the necessary background overview of the importance of structural in‐

ductive biases, and surveyed the wide landscape of ongoing related work, I will now

formulate three research questions that I seek to answer within this dissertation, along

with the specific contributions made towards achieving them (and where they may be

found in this document). Figure 1.3 may also be consulted for a condensed overview.

21

Q1. Investigate viable candidate layers for early fusion in multimodal neural networks,

and assess their practical deployability and benefits with respect to difficult learning

environments, especially when the input data is sparse or incomplete.

In Chapter 3 and [176, 177], I propose two cross‐modal neural network architec‐

tures that perform early fusion between their modalities, operating on grid‐like (X‐

CNN) and sequential (X‐LSTM) input modalities, respectively. The methods rely

on allowing separate modality streams to exchange intermediate features, therefore

more easily exploiting any correlations between the modalities, and preserving the

“unrestricted dataflow” property of fully‐connected neural networks with a substan‐

tially smaller parameter count. It was shown that these methods can outperform

their more traditional counterparts, especially under low training set sizes and in‐

complete input scenarios.

I will also highlight two related works that I have been involved in in an advisory

role. One of them generalises the feature exchange to the 1D‐2D case, setting strong

results on audiovisual classification [21], while the other demonstrates that, while

models such as the X‐CNN provide an increase in hyperparameter count, these

hyperparameters can be effectively tuned using an automated procedure [87].

Q2. Study the generalisation of the convolutional operator from images to inputs ex‐

hibiting graph structure (i.e. the graph convolutional layer). Clearly outline the

desirable properties for such an operator. Is it possible to satisfy all of these prop‐

erties simultaneously, and do the theoretical properties imply competitive perfor‐

mance in practice?

In Chapter 4 and [174], looking back at the favourable aspects of CNNs, I carefully

specify the desirable properties for a graph convolutional layer, and assess why pre‐

viously proposed such models needed to sacrifice some of these properties. I then

define the graph attention network (GAT)4, which generalises the self‐attention op‐

erator [173] to the graph domain. Concluding that self‐attention has all the desir‐

able properties in this setting, I then deploy this model on several standard node

classification benchmarks, and demonstrate competitive performance against other

approaches (setting three state‐of‐the‐art results at the time of submission).

Here I will also outline two subsequently released pieces of related work I’ve been

involved in—both demonstrating that the proposed model holds up well in seem‐

ingly unrelated biomedical applications: cortical mesh‐based parcellation [29] and

4N.B. The acronym GAT was chosen to avoid a name clash with generative adversarial networks [54].

22

neural paratope prediction [32].

Q3. To what extent are graph convolutional networks useful for unsupervised learning

on graph‐structured data? Is it possible to usefully exploit global structural prop‐

erties of a graph when formulating an unsupervised objective on it?

In Chapter 5 and [175], I survey the previous approaches to unsupervised repre‐

sentation learning on graphs (primarily based on random walks), and realise that

they are unlikely to be appropriate when used in combination with graph convolu‐

tional encoders. Building up on promising prior work on local mutual information

maximisation in the image domain [73], I then propose the Deep Graph Infomax

(DGI) learning algorithm for graph‐structured inputs. This unsupervised objective

allows every local component of the graph to be seamlessly mindful of the graph’s

global structural properties. As a result, the model is capable of producing node

embeddings that are competitive with similar encoders trained using a supervised

objective—even exceeding their performance at times!

Aside from exposing my primary research contributions—in the three chapters outlined

above—this dissertation also contains (in Chapter 2) a comprehensive overview of back‐

ground information on machine learning with deep neural networks. Particular empha‐

sis is given on providing the essential mathematical details of the relevant models with

structural inductive biases (going from CNNs and RNNs towards graph convolutional

networks). I will also provide concluding thoughts, with particular emphasis on future

work directions, in Chapter 6.

1.4 List of publications

Here I will provide the list of publications that have been used to convey the research con‐

tributions I have made and documented in this dissertation, along with making explicit

the contributions of coauthors.

[176] Veličković, P., Wang, D., Lane, ND. and Liò, P. (2016) X‐CNN: Cross‐modal con‐

volutional neural networks for sparse datasets. The 7th IEEE Symposium Series on

Computational Intelligence (IEEE SSCI 2016).

Also presented at the ARM Research Summit 2016, the ARM‐Cambridge Research

Showcase and the Fourth Edinburgh Deep Learning Workshop.

http://ieeexplore.ieee.org/document/7849978/

[177] Veličković, P., Karazija, L., Lane, ND., Bhattacharya, S., Liberis, E., Liò, P., Chieh,

A., Bellahsen, O. and Vegreville, M. (2018) Cross‐modal Recurrent Models for

23

http://ieeexplore.ieee.org/document/7849978/

Weight Objective Prediction from Multimodal Time‐series Data. The 12th EAI In‐

ternational Conference on Pervasive Computing Technologies for Healthcare (Per‐

vasiveHealth 2018).

Also presented at the 2017 NIPS Workshop on Machine Learning for Health, the

2017 NIPS Time Series Workshop and ObesityWeek 2017.

https://dl.acm.org/citation.cfm?id=3240937

[21] Cangea, C., Veličković, P. and Liò, P. (2017) XFlow: 1D‐2D Cross‐modal Deep

Neural Networks for Audiovisual Classification. Workshop on Computational

Models for Crossmodal Learning (CMCML) at The 7th Joint IEEE International

Conference onDevelopment and Learning and on Epigenetic Robotics (IEEE ICDL‐

EPIROB 2017).

Also presented at the ARM Research Summit 2017.

https://arxiv.org/abs/1709.00572

[87] Karazija, L., Veličković, P. and Liò, P. (2018) Automatic Inference of Cross‐Modal

Connection Topologies for X‐CNNs. The 15th International Symposium on Neural

Networks (ISNN 2018).

https://link.springer.com/chapter/10.1007/978-3-319-92537-0_7

[174] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P. and Bengio, Y.

(2018) Graph Attention Networks. The 6th International Conference on Learning

Representations (ICLR 2018).

https://openreview.net/forum?id=rJXMpikCZ

[29] Cucurull, G., Wagstyl, K., Casanova, A., Veličković, P., Jakobsen, E., Drozdzal,

M., Romero, A., Evans, A. and Bengio, Y. (2018) Convolutional neural networks

for mesh‐based parcellation of the cerebral cortex. The 1st Conference on Medical

Imaging with Deep Learning (MIDL 2018).

Also presented at the 2017 NIPS BigNeuro Workshop.

https://openreview.net/forum?id=rkKvBAiiz

[32] Deac, A., Veličković, P. and Sormanni, P. (2018) Attentive cross‐modal paratope

prediction. Journal of Computational Biology.

Also presented at the 2018 ICML/IJCAI Workshop on Computational Biology.

https://www.liebertpub.com/doi/10.1089/cmb.2018.0175

[175] Veličković, P., Fedus, W., Hamilton, WL., Liò, P., Bengio, Y. and Hjelm, RD.

(2019) Deep Graph Infomax. The 7th International Conference on Learning Rep‐

resentations (ICLR 2019).

Also presented at the 2018NeurIPS Relational Representation LearningWorkshop.

https://openreview.net/forum?id=rklz9iAcKQ

24

https://dl.acm.org/citation.cfm?id=3240937
https://arxiv.org/abs/1709.00572
https://link.springer.com/chapter/10.1007/978-3-319-92537-0_7
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rkKvBAiiz
https://www.liebertpub.com/doi/10.1089/cmb.2018.0175
https://openreview.net/forum?id=rklz9iAcKQ

To summarise the contributions of individual authors:

• The majority of ideas, text, figures and experiments originated from the first author.

• The papers by Andreea Deac, Laurynas Karazija and Cătălina Cangea are extended

versions of their Part II/III/MPhil projects (respectively) at the Computer Laboratory

of the University of Cambridge, completed under my (co‐)supervision.

• I have performed an advisory role on the paper by Guillem Cucurull, primarily

advising on the deployment of graph convolutional networks to the studied task.

• Duo Wang, Guillem Cucurull, Arantxa Casanova and William Fedus contributed

by running and proposing additional experiments over the papers they coauthored.

• Edgar Liberis and William L. Hamilton have made substantial contributions to the

textual presentation and related work surveys over the papers they coauthored.

• As relevant domain experts, Angela Chieh, Otmane Bellahsen, Matthieu Vegreville,

KonradWagstyl, Estrid Jakobsen, Alan Evans and Pietro Sormanni provided helpful

domain‐related input—and in some cases, the datasets used for the analysis—over

all papers they coauthored.

• Pietro Liò, Nicholas D. Lane, Adriana Romero, R Devon Hjelm and Yoshua Bengio

had an important advisory role over all papers they coauthored.

In addition, whenever this was possible, I have strived to make the source code of the

relevant machine learningmodels and algorithms publicly available onmyGitHub profile:

https://github.com/PetarV-.

25

https://github.com/PetarV-

26

Chapter 2

Deep neural networks

“Science is what we understand well

enough to explain to a computer. Art

is everything else we do.”

Donald E. Knuth

The contributions of this dissertation, outlined in Section 1.3, are exclusively centered

around deep neural network architectures and optimisation methods. In order to pro‐

vide necessary contextual information for interpreting their significance, in this chapter

I will establish a common notational framework and comprehensively survey the most

important background methods.

2.1 Mathematical notation

To aid clarity throughout the document, I will assume a consistent notation, to be de‐

scribed in this section, and referred to hereinafter. The layout idea is largely inspired by

the notation used by [53].

s Scalar

v⃗ Vector

M Matrix

In Identity matrix of shape n× n

I Identity matrix of implied dimensionality

R The set of real numbers

{0, 1, 2} The set containing 0, 1 and 2

27

(l, r) The open interval from l to r

[l, r] The closed interval from l to r

f : X→ Y Function f , taking elements of set X to elements of set Y

f(x) f applied to input(s) x1

log x The natural logarithm of x

∥v⃗∥ The L2 norm of v⃗

vi Element i of vector v⃗

m⃗i The i‐th row vector of matrix M

Mij Element (i, j) of matrix M

MT Transposed matrix M

a⃗⊙ b⃗ Elementwise product of a⃗ and b⃗

a⃗∥⃗b Concatenation of a⃗ and b⃗

∇θy|θ=θ′ Gradient of y with respect to θ, evaluated at θ = θ′

P(x) Probability distribution of a discrete RV x

P(x|y) Probability distribution of a discrete RV x, given y

p(x) Probability distribution of a continuous RV x

x ∼ P(x) Random variable x sampled from P

Ex∼P(x)[f(x)] The expected value of f(x) given that x is sampled from P(x)

Var(f(x)) The variance of f(x)

U(a, b) The uniform real distribution on the range [a, b]

N (µ, σ) The normal distribution with mean µ and standard deviation σ

2.2 Essentials

In this section, I will recap the foundational material on deep neural networks by express‐

ing their most potent variant, the multilayer perceptron, and covering all the relevant

1 If f takes a scalar, and x is a tensor, then f is applied to all elements of x elementwise.

28

Σ σ

+1

x1

x2

x3

xn

b

w
1

w2

w3

w n
σ

(
b+

n∑
i=1

wixi

)

...

I1

I2

I3

Input
layer

Hidden
layer

Output
layer

O1

O2

Figure 2.1: Left: A single perceptron model, with input vector x⃗, weights w⃗, bias b and
activation function σ. Right: The dataflow of a small multilayer perceptron with a single
hidden layer, highlighting the role of a single perceptron within it.

techniques for their training and regularisation (often applicable in all other settings).

2.2.1 The perceptron

Neural networks are machine learning models composed of simple interconnected pro‐

cessing units—the (artificial) neurons or perceptrons [140].

A perceptron (illustrated by Figure 2.1 (Left)) receives a vector x⃗ ∈ Rn as input2, and

computes a linear combination of its entries. This combination is specified by a weight

vector, w⃗ ∈ Rn, and a bias value, b. Afterwards, a nonlinear activation function, σ, is

potentially applied to the result to obtain the final output value, y ∈ R:

y = σ

(
b+

n∑
i=1

wixi

)
= σ

(
b+ w⃗T x⃗

)
(2.1)

The activation functions of interest for this dissertation (Figure 2.2) are as follows:

• The logistic sigmoid function:

σ(x) =
1

1 + exp(−x)
(2.2)

which monotonically maps real numbers to the [0, 1] range, making it suitable for

modelling Bernoulli random variables (e.g. for binary classification);

2The entries of x⃗ may be direct input values, or may be intermediate outputs of other perceptrons.

29

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

0

1

x

σ
(x
)

Common activation functions

Identity
Logistic
Tanh
ReLU

LeakyReLU
ELU

Figure 2.2: Plots of all the activation functions used throughout this dissertation.

• The hyperbolic tangent function:

σ(x) = tanh(x) (2.3)

which can model general real outputs (given its [−1, 1] range and sigmoidal shape).

• The rectified linear function (ReLU) [51]:

σ(x) = max(x, 0) (2.4)

which is currently one of the most popular activations (owing to its biological plau‐

sibility, sparsity, lack of vanishing gradients, and computational efficiency).

• Two ReLU variants that extend its output signal into negative inputs:

– The leaky ReLU [112], with a given negative slope, α:

σ(x) =

x x ≥ 0

αx x < 0
(2.5)

called the parametric ReLU (PReLU) [67] when α is learnable (i.e. not fixed).

– The exponential linear unit (ELU) [26], which thresholds the negative outputs:

σ(x) =

x x ≥ 0

exp(x)− 1 x < 0
(2.6)

30

2.2.2 Multilayer perceptrons

Neural networks typically assume a feedforward structure, organising their constituent

neurons in a stack of layers, with each layer receiving the input(s) of previous layer(s) only.

The most potent such architecture, a multilayer perceptron (MLP) (Figure 2.1 (Right)),

fully connects the outputs of a layer to inputs of its succeeding layer. Namely, if we denote

the input to an MLP layer as x⃗, then the j‐th neuron of this layer computes the following:

yj = σ
(
bj + w⃗Tj x⃗

)
(2.7)

where w⃗j and bj are the weights and bias of this neuron, respectively. For purposes of

convenience, especially when leveraging deep learning frameworks, the computation of

Equation 2.7 is often expressed in matrix form:

y⃗ = σ
(
Wx⃗+ b⃗

)
(2.8)

whereW and b⃗ are the weight matrix and bias vector of the MLP layer, respectively. The

depth of an MLP may now easily be increased by stacking multiple such layers—each

with their own parameters—e.g. like so:

y⃗ = σ2

(
W2σ1

(
W1x⃗+ b⃗1

)
+ b⃗2

)
(2.9)

If there’s more than one hidden (intermediate) layer, the network is called a deep neural

network. This is in relation to the universal approximation theorem, due to Cybenko

[30]. It states that a neural network with one hidden layer and sigmoidal (e.g. logistic or

hyperbolic tangent) activations can approximate any bounded continuous real function,

arbitrarily precisely. Therefore, any network that is deeper provides no further theoret‐

ical power—however, it substantially simplifies hierarchical input processing (gradually

extracting more complex features from the input). Furthermore, the proof of Cybenko’s

theorem is not constructive—it doesn’t specify how many neurons this single hidden layer

must have or how to obtain their weights and biases—and it is implied that in most cases

the number of neurons is prohibitively large.

2.2.3 Learning the MLP parameters

Assume, for now, that we are working with an MLP structure that is fixed—i.e. that

the number of neurons and activation functions for each of the layers are known. This

implies that we know the dimensionality of Wi and b⃗i, as well as the form of σi.

Specifying the values ofWi and b⃗i then fully determines the computation of the network.

31

In the following subsections, I will outline the most important steps for doing so.

2.2.3.1 Initialisation

Neural networks are typically optimised in a sequence of smaller steps that gradually

adjust their parameters, starting from an initial value. Properly initialising a neural net‐

work is often critical, and can make the difference between good performance and not

converging at all. The early successes of deep learning usually relied on unsupervised pre‐

training [42], either by leveraging deep belief networks (DBNs) [71] or stacked autoen‐

coders [12, 134]. Currently, however, the gold‐standard involves drawing each weight,

i.i.d., from a carefully chosen probability distribution. Commonly, these are either the

uniform or normal distribution with zero mean; that is, for each weight wi, wi ∼ U(−x, x)
or wi ∼ N (0, σ). This means that only the variance of the weights, σ2, needs to be speci‐

fied in order to determine the initialisation scheme.

Assuming a linear neuron with zero‐mean and uncorrelated inputs3 x⃗ and weights w⃗,

consider the variance of the output of the neuron:

Var

(
nin∑
i=1

wixi

)
=

nin∑
i=1

Var(wixi) =
nin∑
i=1

Var(W)Var(X) = ninσ
2Var(X) (2.10)

where nin is the fan‐in, the number of inputs to the neuron. In order to have consistent

gradient updates, it is useful if this neuron (at least early‐on during training) preserves the

variance of the input. Therefore, we should set σ2 = 1
nin
, obtaining LeCun initialisation

[104]. A similar argument for preserving the variance of the computed weight updates

(which are computed backwards from the output layers towards the input), yields the

condition σ2 = 1
nout

, where nout is the fan‐out, the number of neurons directly receiving

this neuron’s output. As it is typically infeasible to satisfy both conditions at once, we

may elect to satisfy their average:

σ2 =
2

nin + nout
(2.11)

leading to Xavier initialisation [50], which is now the standard initialisation for linear

and sigmoidal neurons (as sigmoidal functions are roughly linear in their unsaturated

range). A similar argument for the ReLU‐like functions leads to the following condition:

σ2 =
2

nin
(2.12)

3N.B. This assumes that we have standardised our inputs upfront, i.e. E(X) = 0 for all input values xi.

32

known as He initialisation [67], which was critical to surpassing human performance on

the ImageNet benchmark.

2.2.3.2 Optimisation

Once weights have been appropriately initialised, a learning algorithm is applied to itera‐

tively fine‐tune them to the specifics of the task at hand. This is usually done by expressing

a differentiable loss function, L, which dictates the suitability of the network’s parame‐

ters for the task, and is the primary objective for a (typically first‐order) optimisation

algorithm. This objective is usually data‐driven.

As a guiding example, I will use the standard supervised learning setup: assume we have

a training set, s⃗ = {(x⃗i, y⃗i)}mi=1 of m input‐output pairs. Feeding the input x⃗i into the

network, we obtain the prediction of the network on this input, ⃗̂yi, as the output of its

final layer. For simple regression problems, we may use the mean squared error of this

prediction against the ground truth y⃗i, over the entire training set, as the loss function:

LMSE =
1

m

m∑
i=1

∥∥∥y⃗i − ⃗̂yi∥∥∥2 (2.13)

If, instead, we are dealing with classification problems, then the ground‐truth y⃗i is usually

a one‐hot probability distribution over the K classes. To interpret the network predic‐

tions, z⃗i, as probability distributions, they are passed through the softmax function:

P (x⃗i ∈ class j) = ŷij =
exp(zij)∑K
k=1 exp(zik)

(2.14)

After this, the distance between the two distributions is commonly expressed using the

cross‐entropy loss function:

LCE =
1

m

m∑
i=1

K∑
j=1

yij log ŷij (2.15)

For deep neural networks, the loss function, L, is commonly optimised using mini‐batch

stochastic gradient descent (SGD). At each iteration, a mini‐batch, B ofm training exam‐

ples is selected, and the backpropagation algorithm [143] is applied to them in order to

compute the gradient of the loss function,∇θ⃗LB with respect to the network’s parameters,

θ⃗. This computation involves repeatedly applying the chain rule for partial derivatives,

proceeding progressively backwards from the output layer towards the input layer of the

33

network. The parameters are then updated by doing a single step of gradient descent:

θ⃗t+1 ← θ⃗t − η∇θ⃗LB
∣∣
θ⃗=θ⃗t

(2.16)

where η is the learning rate. The choice of learning rate is critical to convergence rate and

stability. However, recent advances in adaptive optimisers—that dynamically adjust the

learning rate based on historical gradient updates—have substantially reduced this issue.

At the time of writing this document, the Adam (adaptive moment) SGD optimiser [88] is

the most popular variant. Letting g⃗t = ∇θ⃗LB
∣∣
θ⃗=θ⃗t

be the gradient at time t, the algorithm

maintains exponential moving averages of both g⃗t and g⃗2t = g⃗ ⊙ g⃗:

m⃗t+1 = β1m⃗t + (1− β1)g⃗t v⃗t+1 = β2v⃗t + (1− β2)g⃗2t (2.17)

The default values of the mixing constants are β1 = 0.9 and β2 = 0.999. This heavily

biases the averages towards zero early on, so the following bias correction is applied:

⃗̂mt =
m⃗t

1− βt1
⃗̂vt =

v⃗t
1− βt2

(2.18)

Finally, these averages are used to update the network parameters, effectively giving each

parameter, θi, a “bespoke” update corresponding to its average (m̂i), scaled depending

on its squared average (v̂i):

θ⃗t+1 ← θ⃗t − η
⃗̂mt√
⃗̂vt + ϵ

(2.19)

where η is the initial learning rate (which may now be set far more leniently), and ϵ is a

small constant (usually 10−8) designed to protect against division by zero.

In practice, mini‐batch SGD is often performed by first shuffling the entire training set,

then sequentially taking batches from the shuffled dataset. Once the entire dataset is cov‐

ered in this way, a single epoch of training is completed, and the dataset is reshuffled in

advance of the next one.

2.2.3.3 Regularisation

Deep neural networks are usually overparametrised models, as they are often optimised

on training datasets of substantially smaller sizes than their parameter counts—that are

often in the millions. This makes them extremely prone to overfitting; the effect of learn‐

ing tomemorise the training set, along with any noise present within it. As a consequence,

overfitted models fail to generalise outside of the training set (a defining requirement for

well‐trained machine learning models)—see Figure 2.3.

34

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y

Learning the sine function

Training set
Target
Linear fit
Degree-3
Degree-14

Figure 2.3: Potential pathological behaviours of learning systems, illustrated on the sim‐
ple example of fitting a sine wave from a (noisy) training set of points. A pure linear fit
is not powerful enough to model the data’s curvature (and therefore underfits). A degree‐
14 polynomial fits the training data perfectly, but captures all of its inherent noise and
catastrophically fails to generalise (and therefore overfits).

To protect neural networks against overfitting, regularisation is usually the first line of

defence. Broadly speaking, it requires the neural network to optimise for the same prob‐

lem, under additional constraints that somehow restrict the set of parameters available to

it during training—hopefully, in a way that discourages memorisation. For the purposes

of the models deployed within this dissertation, three regularisation techniques have been

utilised, and I will describe them in turn, across separate paragraphs.

L2‐regularisation This regulariser imposes a prior belief that the weights and biases of

the network should not deviate too far from zero. Aside from constraining the model

complexity, this may also yield clear numerical benefits. It is implemented as a weight

penalty term—based on the L2 norm—which is added to the loss function as follows:

L̃ = L+
λ

2
∥θ⃗∥2 (2.20)

where λ is a constant that controls the importance of penalising the weights compared to

optimising the loss function, and should be chosen carefully.

35

dropout ×
×

×

×

×

×

×

Figure 2.4: Left: The effect of a single iteration of dropout on a fully‐connected neural
network. Right: An illustration of the internal covariate shift effect—as training pro‐
gresses, the statistics (mean/standard deviation) of the output of an intermediate neural
network layer begin to deviate from other layers.

Dropout When trained without additional constraints, neural networks will tend to en‐

courage highly specialised neurons. Even worse—there may be neurons that perform

poorly, with several other neurons present solely to correct for its mistakes. As a conse‐

quence, the network becomes overreliant on individual neurons, and failure of a single

neuron may compromise the operation the entire network.

The dropout [162] technique aims to mitigate this overreliance, by randomly “killing”

each neuron in a layer with probability p, during training only (Figure 2.4 (Left)). To

preserve the expected activation value, outputs of surviving neurons are scaled by 1
1−p .

Batch normalisation The initialisation techniques covered in Section 2.2.3.1 have been

concerned with preserving the statistics of the input signal as it propagates through the

network. However, as training progresses, especially for deeper networks, it is to be

expected that weights are pushed in a direction that will change the intermediate layer

statistics—an effect known as the internal covariate shift (Figure 2.4 (Right)). This is an

important problem, as neurons need not only to perform a particular feature‐extracting

function, but also to adapt to input statistics that are changing over time.

A practical solution turns out to be quite simple—simply periodically renormalising the

activations of the network. The first—and still most widely used—approach to doing so

is to renormalise across each training minibatch. This approach is known as batch nor‐

malisation [78]. If we let the outputs of a layer across a minibatch be B = {x⃗1, . . . , x⃗m},
we renormalise as follows, to obtain new outputs, y⃗i:

µ⃗B =
1

m

m∑
i=1

x⃗i σ⃗2
B =

1

m

m∑
i=1

(x⃗i − µ⃗B)
2 (2.21)

⃗̂xi =
x⃗i − µ⃗B√
σ⃗2
B + ϵ

y⃗i = γ⃗̂xi + β (2.22)

36

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

Iteration

L
os
s

Training loss
Validation loss
Stopping point

Fold 1 Val. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr.

Fold 2 Tr. Val. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr.

Fold 3 Tr. Tr. Val. Tr. Tr. Tr. Tr. Tr. Tr. Tr.

Fold 4 Tr. Tr. Tr. Val. Tr. Tr. Tr. Tr. Tr. Tr.

Fold 5 Tr. Tr. Tr. Tr. Val. Tr. Tr. Tr. Tr. Tr.

Fold 6 Tr. Tr. Tr. Tr. Tr. Val. Tr. Tr. Tr. Tr.

Fold 7 Tr. Tr. Tr. Tr. Tr. Tr. Val. Tr. Tr. Tr.

Fold 8 Tr. Tr. Tr. Tr. Tr. Tr. Tr. Val. Tr. Tr.

Fold 9 Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Val. Tr.

Fold 10 Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Val.

Full dataset

Figure 2.5: Left: An illustration of early stopping, with a patience of 500 iterations.
Right: 10‐fold crossvalidation. At each fold, a distinct partition of the dataset is used for
validation, with the remainder used for training. Results are averaged across all folds.

Here, γ and β are learnable parameters. As the normalisation operation may restrict the

predictive power of the neural network4, this allows the network to revert to the old val‐

ues, if it is beneficial to do so. Interpreted from an alternate angle, the network is allowed

to learn its own normalisation scheme.

At test time, as we should not observe the remainder of the test batch, the values of

µ⃗B and σ⃗2
B are taken across the entire training set—in practice, this is usually computed

as an exponential moving average during training.

2.2.4 Hyperparameter tuning

In the preceding section, we have assumed many aspects of the network architecture and

setup to be known and fixed—parameters such as the network depth, number of neurons

per layer, learning rate, dropout probability, etc. All of these parameters—not explicitly

optimised by SGD—are hence referred to as hyperparameters. Appropriately choosing

them—especially in an automatic way—is an open area of research.

For the purposes of my contributions, all hyperparameters are optimised using a held‐

out validation set. To choose a hyperparameter configuration out of a set of possible

configurations, the network is trained from scratch with each one, and the configuration

that achieves the best performance metric on the validation set is retained.

A special case of this is early stopping (Figure 2.5 (Left)), where the validation set is

4For example, if the values are fed into a sigmoidal activation function, normalisation may persistently
restrict them to the unsaturated region of the input space.

37

used to optimise the number of iterations taken by SGD. Typically, if the loss (or any

other appropriate metric) on the validation set has not improved in a certain number of

iterations or epochs (known as the patience), training is prematurely terminated.

Lastly, if the training set is not too large, it is possible to utilise its entirety for the pur‐

poses of validation, by using the k‐fold crossvalidation method. Here, the entire dataset

is partitioned into k parts (or folds), and at each iteration, k − 1 folds are used for train‐

ing with the final one used for validation (Figure 2.5 (Right)). The overall crossvalidation

performance is taken as the average of performance across the individual folds. Typically,

the crossvalidation is performed in a stratified fashion, meaning the classes present in the

individual folds’ examples should respect the class distribution of the entire dataset.

2.3 Structured neural networks for grids, sequences and sets

Despite its potency, the multilayer perceptron (as described thus far) is primarily designed

for processing flat (unstructured) data. To make further progress on larger‐scale inputs,

we need to exploit simple structure in the inputs whenever possible. Here I will present

three popular directions for doing so—for when the data is grid‐like (e.g. images), se‐

quential (e.g. sound or text), or consists of unordered sets (e.g. point clouds).

It should be noted that each of the architectures to be presented can be re‐expressed as a

(constrained) MLP; however, an MLP would require substantially more training data to

rediscover the structural inductive biases present therein.

2.3.1 Convolutional neural networks

When working with image(‐like) data in neural networks, they will typically be repre‐

sented as tensors5 of shape h×w× d, with d image channels of height h and width w. As

MLPs treat each input element independently, this means that O(h× w × d) parameters

are introduced per each neuron in the first hidden layer. As images become larger, the

memory requirements and tendency for overfitting quickly increase—with datasets on

the scale of 32× 32× 3 (e.g. CIFAR‐10 [97]) already becoming too challenging for such

unrestricted architectures to handle.

The general idea for handling this (in the case of image classification, at least) is straight‐

forward: downsample the image to a size which is small enough to be processed by an

MLP. However, pure downsampling potentially discards a wealth of useful information,

5This can easily be generalised to more (or less) than two input dimensions.

38

Figure 2.6: The power of the convolutional operator, demonstrated on the Lena image
used for computer vision benchmarking. With a very small amount of parameters (e.g.
3× 3 kernel matrices), convolutions are capable of extracting valuable information such
as edges out of an image (which often encode most of the valuable information therein).

2 3 4 4 3 3

1 3 3 4 3 2

0 1 2 3 4 4

0 0 1 1 2 2

1 1 2 2 3 2

1 2 3 3 2 1

2 3 4 4 3 3

1 3 3 4 3 2

0 1 2 3 4 4

0 0 1 1 2 2

1 1 2 2 3 2

1 2 3 3 2 1

X

∗
-1 -1 -1

2 2 2

-1 -1 -1

K

=

2 3 0 -3

-2 0 4 8

-5 -7 -8 -8

1 0 2 3

X′

2 3 0 -3

-2 0 4 8

-5 -7 -8 -8

1 0 2 3

-1 -1 -1

2 2 2

-1 -1 -1

× -1 × -1 × -1

× 2 × 2 × 2

× -1 × -1 × -1

2 3 4 4 3 3

1 3 3 4 3 2

0 1 2 3 4 4

0 0 1 1 2 2

1 1 2 2 3 2

1 2 3 3 2 1

2 3 4 4 3 3

1 3 3 4 3 2

0 1 2 3 4 4

0 0 1 1 2 2

1 1 2 2 3 2

1 2 3 3 2 1

2 3 4 4 3 3

1 3 3 4 3 2

0 1 2 3 4 4

0 0 1 1 2 2

1 1 2 2 3 2

1 2 3 3 2 1

X

∗
-1 -1 -1

2 2 2

-1 -1 -1

K

=

2 3 0 -3

-2 0 4 8

-5 -7 -8 -8

1 0 2 3

X′

2 3 0 -3

-2 0 4 8

-5 -7 -8 -8

1 0 2 3

-1 -1 -1

2 2 2

-1 -1 -1

× -1 × -1 × -1

× 2 × 2 × 2

× -1 × -1 × -1

Figure 2.7: A convolutional layer, as applied on a single‐channel image (Equation 2.23;
left) and a three‐channel (e.g. RGB) image (Equation 2.24; right).

and therefore it would be highly beneficial if we could extract some useful image features

first, before downsampling it too strongly. In order to make a parameter‐efficient feature

extractor for images, we need to exploit the spatial structure present in such inputs—a

natural candidate for such a layer is the convolutional operator (Figure 2.6).

2.3.1.1 Convolutional layers

To define a convolutional operator, we will consider the case of 2D inputs (i.e. single‐

channel images), X ∈ Rh×w. Let K ∈ Rn×m be a small kernel matrix (typically, n = m = 3

in modern neural network architectures [160]). The kernel is overlaid in all possible ways

over the input (see Figure 2.7 (Left)), recording sums of elementwise products to create a

new image, X′:

X ′
ab =

n∑
i=1

m∑
j=1

Kij ·Xa+i−1,b+j−1 (2.23)

It should be noted that this approach is actually cross‐correlation rather than the con‐

volution; but, for purposes of machine learning, the two are equivalent. The image is

typically padded with sufficiently many zeroes on the edges, to ensure that the size of the

39

Figure 2.8: Visualisation of learnt convolutional kernels for the first layer of AlexNet
[98], an early success story of deep neural networks for computer vision, after training
on ImageNet. The majority of the kernels can be easily related to edge detectors (in
various directions). Note that the model was never instructed to look for edges.

output matches the size of the input.

Moving from here to a convolutional layer requires a few extensions, primarily to support

multiple channels:

• If the input has multiple channels, the kernel matrix is extended in the channel

dimension to match the input—this kernel tensor specifies a single output channel;

• Each output channel requires a separate kernel tensor;

• Lastly, a channel‐specific bias and nonlinearity may be applied to obtain the final

output image (sometimes known as a feature map).

In summary, to process an input imageX ∈ Rh×w×d using a convolutional layer computing

d′ channels, we require a kernel tensor K ∈ Rn×m×d×d′ and a bias vector b⃗ ∈ Rd′ , and

proceed as follows (Figure 2.7 (Right)):

X ′
abc = σ

(
bc +

n∑
i=1

m∑
j=1

d∑
k=1

Kijkc ·Xa+i−1,b+j−1,k

)
(2.24)

This layer clearly exploits the structure present in an image—with neighbouring pixels

influencing each other far more strongly than ones on opposite corners. The operator is

also translation invariant—as the same kernels are applied identically across each image

patch, we are encoding a structural bias that a feature of interest is important, no matter

where it occurs in the image.

As the sole computation being performed is multiplication by weights and summation,

the identical gradient descent training from before may be performed to find suitable

kernels. Often, these kernels will learn to do highly interpretable operations, with the

40

12 20 30 0

8 12 2 0

34 70 37 4

112 100 25 12

20 30

112 37

2× 2 Max-Pool
Conv. Pool Conv. Pool

FC

FC

Softmax

Figure 2.9: Left: Illustration of the 2× 2 max‐pool operator, applied on a single‐channel
image. Right: An overview of a typical CNN architecture for image classification. Convo‐
lutional and pooling layers are interleaved, with the depth (number of features computed
per pixel) increased at the expense of height and width. Once the images are small enough,
they are flattened into 1D, and an MLP is used to classify them.

first‐layer ones almost always becoming various edge detectors (Figure 2.8).

Convolutional layers specify several new hyperparameters, with the output channel count,

d′, often the most important one to optimise, and others taking known default values.

2.3.1.2 Pooling layers

Once a sufficient number of convolutions has been applied to the input, we may proceed

to downsample the image. As convolutions “light up” (return high values) when a certain

pattern of interest is detected in the input, when summarising the image it makes sense

to preserve maximally activated components of it. This motivates the max‐pooling layer,

which takes n×m (usually disjoint, with n = m = 2) image patches across each channel

and summarises them by taking only the maximal pixel value (Figure 2.9 (Left)).

Note that a 2 × 2 max‐pooling layer (which is most common) will preserve only a quar‐

ter of the pixels, while leaving the channel axis unchanged. This provides more space

for gradually increasing the channel size, and therefore computing a richer quantity of

higher‐level features. A typical convolutional neural network architecture thus consists

of a series of interleaved convolutional and pooling layers, until the input is reduced suf‐

ficiently to be processed by an MLP—as in Figure 2.9 (Right).

2.3.1.3 Residual networks

It is generally perceived that, for image recognition tasks, deep convolutional networks

strongly draw their outperformance from both their depth and their parameter tying

[172]. However, training very deep convolutional networks used to be notoriously dif‐

ficult. As shown in [68], overly deep convolutional networks do not overfit, as their

training performance degrades along with their testing performance. This is somewhat

41

counterintuitive, as increased depth not only comes with larger parameter spaces to opti‐

mise, but moreover, if the additional layers are useless to learning good representations,

the layer could simply choose to ignore them (by learning the identity function).

Through this counterintuitive property, the authors proposed an obvious fix: the resid‐

ual (skip) connection [68], which “shortcuts” a particular block of operations in a neural

network. If a neural network block computes a function Φ(x⃗), a skip connection allows

x⃗ to directly reach the output of this block through aggregation; i.e. the neural network

simply computes Φ(x⃗)+ x⃗. More generally, if the block changes the input dimensionality,

a simple linear projection may be introduced to correct for this:

Φ̃(x⃗) = Φ(x⃗) +Wskipx⃗ (2.25)

Note that, effectively, this operation allows signals to directly reach deeper stages of the

input processing, and therefore allows the network to choose its own depth. This turned

out to be a very powerful and versatile concept, that enabled a 152‐layer network to win

the ImageNet competition in 2015. Currently, it is ubiquitous in deep learning.

2.3.2 Recurrent neural networks

Now, consider the situation in which the inputs are sequential (e.g. text or speech)—

consisting of arbitrarily many steps, wherein at each step we have a fixed set of input

features6. As fully‐connected layers expect a fixed‐size input, they will no longer suffice.

Convolutional layers (in 1D), treating the input step features as individual channels) may

still be applicable. However, their parameter sharing properties mean that they are un‐

able to efficiently summarise sequences of widely different sizes7.

Hence, a neural network layer that is simultaneously capable of handling and rapidly

summarising variable‐length sequential input—through exploiting appropriate structural

inductive biases—is highly desirable. Currently, recurrent neural networks represent the

key development in this space, and therefore they will be the main focus of this subsection.

42

RNN

~xt

~ht

~ht−1

RNN RNN RNN . . . RNN

~x1 ~x2 ~x3 ~xT

~hT

~h0

~h1
~h2

~h3
~hT−1

. . .

RNN1 RNN1 RNN1
. . . RNN1

RNN2 RNN2 RNN2
. . . RNN2

~x1 ~x2 ~x3 ~xT

~yT

~h0

~y0

~h1
~h2

~h3
~hT−1

. . .

~h1
~h2

~h3
~hT

~y1 ~y2 ~y3 ~yT−1

Figure 2.10: Left: A single recurrent neural network cell. Middle: Unrolling of the RNN
cell in order to perform backpropagation through time (N.B. each “RNN” block has
same parameters). Right: A “deep” RNN, obtained by stacking two RNN cells.

2.3.2.1 The recurrent layer

Consider a sequential input, {x⃗1, x⃗2, . . . , x⃗T}, consisting of T steps8. At each step, a re‐

current neural network (RNN) will compute a summary, h⃗t, of all input steps up to and

including position t. This (partial) summary is computed conditional on the current step’s

features and the previous step’s summary, through a shared function f (Figure 2.10 (Left)):

h⃗t = f(x⃗t, h⃗t−1) (2.26)

Specially, the initial summary vector is usually set to the zero‐vector, i.e. h⃗0 = 0⃗. This form

of temporal weight sharing encodes another translation invariance assumption; namely,

that a pattern of interest is equally important, regardless of when it happens in the se‐

quence. While this introduces loops in the network’s computational graph, in practice

the network is unrolled for an appropriate number of steps—see Figure 2.10 (Middle)—

allowing for backpropagation through time to be applied.

The summary vectors may then be appropriately leveraged for the downstream task—if

a prediction is required at every step of the sequence, then a shared MLP may be applied

to each h⃗t individually. For classifying entire sequences, typically the final summary, h⃗T ,

is passed through an MLP. For arbitrary sequence‐to‐sequence translation tasks [166]

(such as machine translation), h⃗T may be used as an initial input for a decoder RNN,

with outputs of RNN blocks being given as inputs for the next step.

Lastly, it should be noted that it is easy to stack multiple RNNs—simply use the h⃗t vec‐

6For simplicity, we will assume that these features are flat. However, it is often straightforward to extend
this framework to cases where each step’s features are more complicated (e.g. in the case of video input,
wherein each step consists of an input image).

7 It should be noted that recent advances in à trous (dilated) convolutional layers have given convolutions
substantially faster input coverage, making them competitive in a variety of sequential tasks traditionally
dominated by recurrent neural networks [32, 86, 127].

8T may be different across different input sequences.

43

tors as an input sequence for a second RNN. This kind of construction, depicted in Figure

2.10 (Right), is occasionally called a “deep RNN”, which is potentially misleading. Ef‐

fectively, due to the repeated application of the recurrent operation, even a single RNN

“layer” has depth equal to the number of input steps. This introduces a kind of learning

problem uniquely challenging for RNNs—to be discussed in the following paragraph.

2.3.2.2 SimpleRNN and vanishing gradients

As can be seen from Equation 2.26, the choice of the function f (the recurrent cell) is

very flexible—the sole requirement is for it to consume two vector inputs (current step

and previous summary) and produce a single vector output (current summary).

In the simplest case, this role may be performed by a single‐layer MLP; and this is exactly

what is done by the original SimpleRNN model [41, 82]. Its computation is performed

as follows:

h⃗t = σ
(
Wx⃗t +Uh⃗t−1 + b⃗

)
(2.27)

whereW andU are learnable weight matrices, b⃗ is a learnable bias, and σ is a nonlinearity.

While this model can be quite powerful for many tasks of interest [100], it suffers from

potentially pathological learning dynamics. As just mentioned, even “single‐layer” Sim‐

pleRNNs become very deep neural networks when trained on long‐range sequences. When

using backpropagation through time, a gradient with respect to a particular input step

will depend on a product of gradients across all subsequent steps, multiplied by the net‐

work output at the current step.

Consider a SimpleRNN with a sigmoidal function for σ. The magnitude of the derivative

of σ is then always between 0 and 1, and multiplying many such values results in gradients

that quickly tend to zero, implying that early steps in the input sequence may not be able

to have influence in updating the network parameters at all. This is the vanishing gradi‐

ent problem, which is especially pathological for recurrent neural networks. For example,

consider the next‐word prediction task (common in e.g. predictive keyboards), and the

input text “Petar is Serbian. He was born on … [long paragraph] … Petar currently lives

in ________”. Here, predicting the next word as “Serbia” may only be reasonably con‐

cluded by considering the very start of the paragraph—but gradients have vanished by

the time they reach this input step.

Deep MLPs have also suffered from the vanishing gradient problem until the invention

of the ReLU activation (which has gradients equal to exactly zero or one—thus fixing

44

new fts.

input gate

forget gate

output gate

~xt

~ht−1 × + σ × ~ht

×

M

~ct−1

~ct

LSTM

Figure 2.11: The dataflow of the long short‐term memory cell, with its memory cell (M)
and gating mechanisms clearly highlighted.

the vanishing gradient problem). However, in RNNs, using ReLUs may easily lead to ex‐

ploding gradients, as the output space of the cell is now unbounded, and gradient descent

will update the cell once for every input step, quickly building up the scale of the updates.

2.3.2.3 Long short‐term memory

Most developments in recurrent cells since the SimpleRNN tackle the vanishing gradi‐

ent problem, often demonstrating highly promising results. The first such model that

achieved high popularity is the long short‐term memory (LSTM) [74]. Despite several

other layers being proposed in recent times (such as the gated recurrent unit [24]), none

of them have been able to improve on the LSTM on average. As such, in this subsection

I will solely consider the LSTM.

The LSTM augments the recurrent computation by introducing a memory cell, which

stores vectors c⃗t that are preserved between computational steps—thus exposing a gra‐

dient of 1, eliminating the vanishing gradient problem. The LSTM cell’s outputs, h⃗t are

computed based on these vectors, and they are in turn computed using x⃗t, h⃗t−1 and c⃗t−1.

Critically, the cell is not completely overwritten based on x⃗t and h⃗t−1, which would ex‐

pose the network to the same issues as the SimpleRNN. Instead, a certain quantity of the

previous cell state may be retained—and the proportion by which this occurs is explicitly

learned through data.

Explicitly, the LSTM cell leverages four single‐layer MLPs on x⃗t and h⃗t (Figure 2.11)

45

to perform the following computation (W∗, U∗ and b⃗∗ are appropriate learnable weights

and biases):

• Analogously to SimpleRNN, the “new features” MLP computes the candidate fea‐

ture vector to be written into the memory cell:

⃗̃ct = tanh
(
Wcx⃗t +Uch⃗t−1 + b⃗c

)
(2.28)

Note that, as the LSTM is optimised to combat vanishing gradients, a sigmoidal

function (such as the hyperbolic tangent) is now appropriate.

• The input gate computes the proportion of the candidate vector to be actually al‐

lowed into the memory cell:

i⃗t = logistic
(
Wix⃗t +Uih⃗t−1 + b⃗i

)
(2.29)

where the logistic sigmoid nonlinearity gives values in the range [0, 1], thus control‐

ling the proportion of candidate features.

• The forget gate computes the proportion of the previous cell state to be retained:

f⃗t = logistic
(
Wf x⃗t +Uf h⃗t−1 + b⃗f

)
(2.30)

• The output gate computes the proportion of the final output vector to be allowed

to exit the recurrent cell:

o⃗t = logistic
(
Wox⃗t +Uoh⃗t−1 + b⃗o

)
(2.31)

Once all these values are computed, the memory can first be updated, respecting the

proportions dictated by input and forget gates. Then the output of the recurrent cell is

computed, respecting the output gate:

c⃗t = i⃗t ⊙ ⃗̃ct + f⃗t ⊙ c⃗t−1 (2.32)

h⃗t = o⃗t ⊙ tanh(c⃗t) (2.33)

Note that, as the values of f⃗t are derived from x⃗t and h⃗t−1—and therefore directly learn‐

able from data—the LSTM effectively learns how to appropriately forget.

2.3.2.4 LSTM regularisation

While the LSTM has effectively surpassed the limitations of SimpleRNNs on many tasks

that require capturing long‐range temporal dependencies, their success is often condi‐

46

tional on carefully handling their parameters (with appropriate regularisation techniques).

The space of such proposed optimisations to LSTMs is substantially large, and I will only

present the ones of interest to this dissertation.

Particular care should be exercised when initialising the LSTMparameters. The following

set of initialisation schemes is often deemed most appropriate, and will be used through‐

out this document:

• The recurrent weights, U∗ are typically initialised as orthonormal matrices [153].

This is useful for its properties such as norm‐preservation, as these matrices will be

repeatedly applied to outputs of the recurrent cell.

• The forget gate bias, b⃗f is typically initialised as a ones‐vector [84], i.e. b⃗f = 1⃗. This

encourages the network to “remember” the values within its memory cell during the

early phases of training—which was shown to be critical to appropriately picking

up on long‐range dependencies later on.

• All other weights are initialised using Xavier initialisation [50], as recommended

for sigmoidal activations.

Adaptive SGD optimisers such as Adam [88] are still appropriate for training recurrent

neural networks. However, as gradient updates are applied many times over on the same

recurrent cell, sometimes a less aggressive approach is sought after (especially in contexts

where RNNs are applied in conjunction with reinforcement learning algorithms). In such

situations, the RMSprop optimiser [170] may be used as a controllable alternative.

Techniques such as dropout and batch normalisation are still appropriate for recurrent

neural networks, but special care needs to be taken when applying them as well. Dropout

may only be straightforwardly applied to the input‐to‐hidden transitions within RNNs

[196], whereas for recurrent transitions the dropout mask needs to be fixed across all

timesteps [45]. Similar arguments follow for batch normalisation [28], spearheading the

development of specialised operators such as layer normalisation [3] and weight normali‐

sation [148]. Despite significant strides being made, appropriate normalisation layers for

RNNs remain very much an open area of research.

2.3.3 Self‐attention

As the final example of simple structural inductive biases, I will direct attention to neu‐

ral networks optimised to operate over sets. Sets represent a simple generalisation of

sequences—wherein we don’t assume a sequential ordering among the individual steps—

and therefore more generic neural network architectures are required for processing them.

47

~e1 . . . ~ej . . . ~en

aφ aφ aφ

α1,j αj,j αn,j

× × ×

Σ

~e′j

fψ fψ fψ

Figure 2.12: The operation of a self‐attentional layer (Equations 2.35–2.36) for comput‐
ing the next‐level representation e⃗′j of the j‐th element of E .

While several neural network architectures for set‐structured data have been recently pro‐

posed [179, 193], most prominent directions for handling such inputs leverage attentional

mechanisms [5]—in particular, the recent developments in self‐attention [173].

A self‐attentional operator, A, acts on an unordered set of n entities9, E = {e⃗1, e⃗2, . . . , e⃗n}
with the i‐th entity described by a feature vector, e⃗i ∈ Rm:

Ẽ = A(E) (2.34)

producing a new set of feature vectors for each entity, Ẽ = {e⃗′1, e⃗′2, . . . , e⃗′n}, e⃗′i ∈ Rk.

The fact that input sets are now unordered introduces a new desirable bias: permuta‐

tion invariance. Permutation invariance implies that, even if we were to shuffle the input

positions, we would still recover the same result after applying A.

The reason why RNNs are not permutation invariant is that each output vector (⃗ht) only

considers inputs up to a certain input step. Self‐attention extends this concept by allow‐

9n may be different across different input sets.

48

ing each output step to consider all input steps. Namely, each component of Ẽ will be

derived by examining all components of E—by way of bespoke linear combinations for

each output element (see Figure 2.12):

e⃗′i =
∑
j

αijfψ(e⃗j) (2.35)

Here, fψ : Rm → Rk is a learnable transformation (e.g. simpleMLP, or even identity) with

parameters ψ, and αij is the attentional coefficient, specifying the importance of entity j’s

features to entity i. These coefficients are implicitly defined by a shared pairwise function,

aϕ : Rn × Rn → R, like so:
αij = aϕ(e⃗i, e⃗j) (2.36)

The function aϕ is the attention mechanism, and properly choosing it can have substantial

effects on the learnt representations. Besides simple deep MLPs [5] or dot product‐based

approaches [173], more recent interesting work aims to compute similarities between ele‐

ments in hyperbolic space [62], enabling higher representational power for sets exhibiting

hierarchical properties.

Self‐attentional mechanisms have also seen substantial application across tasks where

the sets are not entirely unordered, even protruding into the sequential task space—such

as machine translation [173]—historically dominated by RNNs. Such operators may be

beneficial to recurrent networks, given that all attention computations may be executed

in parallel, thus requiring O(1) effective depth for a single layer that covers the entire

input (as opposed to O(n) for recurrent layers).

2.4 Graph neural networks

A substantial proportion of the work covered in this dissertation concerns neural net‐

works operating on data that are accompanied with some form of graph structure. De‐

signing appropriate layers for such inputs is one of the major ongoing challenges of ma‐

chine learning [7, 16, 65], as graphs present natural generalisations of many popular

inputs such as images, text or speech.

2.4.1 Node classification

I will solely focus on the node classification task here, as it is the main graph task ex‐

plored throughout this document. As input, we are provided with a matrix of node fea‐

tures, F ∈ RN×F , with F features in each of the N nodes, as well as an adjacency matrix,

A ∈ RN×N . The objective is to classify each of the nodes into one of C classes, i.e. to pro‐

49

duce a matrix of node class probabilities, Y ∈ RN×C , such that Yij = P(Node i ∈ Class j).

For simplicity, I will also consistently assume that the graphs are unweighted and undi‐

rected, i.e. that A is symmetric and binary:

Aij = Aji =

1 i↔ j

0 otherwise
(2.37)

However, most of the algorithms discussed here are capable of generalising to more

generic kinds of edges—even ones exhibiting arbitrary vector‐valued features.

In this space, there are two main kinds of learning tasks:

• Transductive learning—wherein the training algorithm has access to the entirety of

the input graph’s features, including the test nodes. This learning setup may be seen

as a semi‐supervised task of propagating labels from training nodes to the remainder

of the graph.

• Inductive learning—here, the algorithm will not have access to all nodes upfront.

This implies that, either, we are dealing with an evolving graph wherein test nodes

are incrementally added or, more generally, there exist disjoint and unseen test

graphs. This is a substantially harder learning problem, which requires generalising

across arbitrary graph structures, and many transductive graph learning algorithms

will be theoretically inappropriate in the inductive setting.

Clearly, the simplest way of approaching this task is to drop the graph structure entirely,

and simply have a shared per‐node classifier (e.g. anMLP). In fact, this setup corresponds

to themajority of deep learning applications nowadays—given that, in many cases, graph

structure can be derived between individual training examples in a dataset10. I will present

two approaches—the main focus of this dissertation’s contributions—that go beyond this

simple classifier to incorporate graph structure rather than drop it.

2.4.2 Random walk‐based node embeddings

One such approach decouples the incorporation of the graph structure from the process‐

ing of input node features11. Namely, for each node i, structural features, Φ⃗i, are derived,

considering only the adjacency matrix information. Afterwards, the concatenation of

10However, a graph‐based network requires simultaneously storing all training nodes in GPU memory.
Therefore, such approaches are often prohibitively memory‐intensive on high‐dimensional datasets.

11This simplifies the processing to an extent when input graphs are featureless.

50

structural features with the input features, f⃗i∥Φ⃗i, can be used as input to a shared per‐

node classifier, just as before.

Typically, random walks in a graph are used as the primary proxy for analysing its struc‐

tural information, and the first method to successfully exploit this information with deep

neural networks is DeepWalk [131]. As most random‐walk based methods that came

after it, such as node2vec [61] and LINE [169], primarily focus on modifying the way

in which the random walks are constructed without modifying the primary idea, in the

remainder of this section I will focus solely on a brief exposition of DeepWalk.

DeepWalk draws inspiration from skip‐gram methods in natural language processing

[116], generalising them to graphs by treating random walks as sentences and individ‐

ual nodes as words—a “good” structural node representation should be predictive of the

nodes surrounding it (i.e. nodes that occur close to it in a random walk).

Specifically, the algorithm initially stores random structural features Φ⃗i for each node

i. At each step, a random walk, W, following along the edges of the graph, is sam‐

pled. Considering the node at its j‐th step, x = Wj, and a node at its k‐th step, where

k ∈ [j − w, j + w] (where w is an appropriately chosen window size), y = Wk, the al‐

gorithm modifies Φ⃗x to maximise logP(y|Φ⃗x)—obtained from a neural network‐based

classifier. The entire architecture is trained end‐to‐end using gradient descent.

It should be noted that implementing the prediction network as a simple neural network

classifier is prohibitive for large graphs, given that it features an N ‐way softmax across

all the nodes—making most probabilities negligibly small early on, and therefore mak‐

ing most gradient updates vanish. DeepWalk rectifies this issue through a hierarchical

softmax layer (representing the prediction as a tree of binary classifiers, each halving the

space of consdered nodes), while most of the more recent techniques tend to incorporate

negative sampling as an alternative.

Methods such as DeepWalk are still favourable when dealing with fully unsupervised

graph tasks, as they don’t depend on having labels or features in the nodes. However,

if this information is available, it is often quite beneficial to use it—leading to random‐

walk based supervised methods such as Planetoid (Predicting Labels And Neighbours

with Embeddings Transductively Or Inductively from Data) [190].

51

~hb

~ha

~hc

~hd
~he

~h′
b

Figure 2.13: In the most usual formulation, a graph convolutional layer derives next‐
level features for each node (e.g. h⃗′b in this case) by taking into account all nodes within
its (usually first‐order) neighborhood. These features, therefore, provide a summary of
patches centered around each node.

2.4.3 Graph convolutional networks

Conversely, this subsection will consider techniques that leverage the graph structure di‐

rectly while extracting intermediate feature representations, h⃗i, for each node i in the

graph—these representations may then be used to classify each node separately, as be‐

fore. Dependent on context, these techniques may be referred to as graph neural net‐

works [58, 107, 154] or graph convolutional networks [17, 33, 92].

Hereinafter, I will assume the term graph convolutional networks to refer to these tech‐

niques, as it nicely relates them to a generalisation of the convolutional layer from CNNs

to graph‐based neural networks. It should be noted that, in general, all of the architec‐

tures to be presented in this document can be reformulated as a particular instance of

message‐passing neural networks [49]. In particular, I will present the graph convolu‐

tional network (GCN) of Kipf and Welling [92], which is the most popular such layer at

the time of writing this dissertation.

Akin to convolutional layers within CNNs, a graph convolutional layer (Figure 2.13),

g, obtains higher‐level representations of a node i by leveraging the information in its

neighbourhood, Ni (often including the node itself):

h⃗′i = g(⃗ha, h⃗b, h⃗c, . . .) (a, b, c, · · · ∈ Ni) (2.38)

Images have a highly rigid and regular connectivity pattern, making convolutional layers

trivial to deploy (as a small kernel matrix which is slided across). Generalising this to

arbitrary graphs, however, represents a much harder challenge.

52

One simple way to aggregate node neighbourhoods is by multiplying the node feature

matrix with the adjacency matrix:

H′ = σ (AHW) (2.39)

where W is a shared, node‐wise, learnable linear transformation (necessary in order to

derive higher‐level features), and σ is a nonlinearity.

A few additional aspects of this layer need to be fixed in order to make it viable. Ini‐

tially, it discards the central node, which can result in a catastrophic loss of information.

A simple correction with inserted self‐loops fixes this problem:

H′ = σ
(
ÃHW

)
(2.40)

Here, Ã = A + IN is the adjacency matrix with inserted self‐loops. Furthermore, the

multiplication by Ã may modify the scale of the output features, and therefore needs to

be normalised appropriately, e.g. by applying the following modification:

H′ = σ
(
D̃−1ÃHW

)
(2.41)

where D̃ is the degree matrix of Ã, i.e. D̃ii =
∑

j Ãij, and it is zero off‐diagonal. This

fully specifies the mean‐pooling update rule, written out node‐wise as follows:

h⃗′i = σ

(∑
j∈Ni

1

|Ni|
Wh⃗j

)
(2.42)

which is a simple but versatile operator, applicable in inductive settings as well (as the

information on the neighbourhood size can be obtained by simple local message passing).

The GCN update rule is obtained by, instead, using symmetric normalisation:

H′ = σ
(
D̃− 1

2 ÃD̃− 1
2HW

)
(2.43)

which, written out node‐wise, is as follows:

h⃗′i = σ

(∑
j∈Ni

1√
|Ni||Nj|

Wh⃗j

)
(2.44)

The use of symmetric normalisation allows for emergence of more interesting dynamics,

and can be related to a particular approximation of applying the convolution theorem

53

to signals defined on graphs [17, 33]. This causes the layer to be simple, powerful and

robust to overfitting—however, it is in theory not applicable to inductive problems, as

knowledge of neighbourhood sizes implies that the learnt filters rely on knowing the

entire graph structure upfront.

54

Chapter 3

Cross‐modality through early fusion

“Things are sometimes fun, when you

know exactly what you know.”

Mara Mihali

Inherently, for most machine learning tasks of interest, we will have access to a multitude

of input data sources; i.e. we will be performing multimodal machine learning [124].

Appropriately exploiting this wealth of information remains a key challenge, especially

when the corresponding training set sizes are small—i.e. the wide data, or “small n, large

p” regime—which is extremely common in the biomedical space.

Taking into account that, in many cases of interest, the different input modalities will

also come with different structural biases (for example, we may be asked to combine

audiovisual information), it is often assumed that each modality will be independently

processed by a neural network specialised for handling its biases. Each of these networks

will extract a set of high‐level features for its modality, which are then concatenated across

all modalities for the purposes of prediction tasks.

This is the late fusion approach [2, 85], which is often simple to implement but poten‐

tially misses out on opportunities to augment the individual feature extractors with useful

cross‐modal information—and many multimodal signals exhibit correlations that should

be exploitable even on this level. The alternative approach—early fusion—is often ne‐

glected given its requirement for bespoke methods of cross‐modal communication.

As an important step towards viable early fusion methods, in this chapter I restrict myself

to the case where the structural inductive biases are identical across modalities (i.e. the

modalities are either all grid‐like or all sequential). This simplifies the design of the cross‐

communication architecture between the feature extractors, allowing for focus on evalu‐

55

ating the benefits of performing early fusion. I successfully demonstrate that early fusion

provides tangible benefits, within both CNN and LSTM architectures—especially in set‐

tings when the sample sizes are small and/or when important features remain unobserved.

Furthermore, despite the fact that the cross‐modal architecture requires specification of

a substantial further number of hyperparameters, I show that they can be optimised in a

principled manner, requiring careful tuning of only a single parameter.

Lastly, I indicate further work I have been involved in that expanded these early fusion

ideas into the domain of generic structural inductive biases for each modality—primarily,

by demonstrating a successful early fusion system for audiovisual data.

3.1 Methodology

The early fusion methodology depicted here is inspired bymultilayer networks [94], math‐

ematical structures encompassing several layers of graphs over the same set of nodes, al‐

lowing for unrestricted intra‐layer as well as inter‐layer connections. They have been a

demonstrably valuable tool for modelling a variety of natural and social systems [31, 43,

59], and their applicability to machine learning was already demonstrated within the con‐

text of hidden Markov models [178], managing to achieve high performance on a sparse

breast cancer classification dataset involving gene expression and methylation data.

The network design process is initiated by appropriately partitioning the input data—this

may be done either manually (by exploiting existing domain knowledge) or through an un‐

supervised pre‐training step that will determine which (not necessarily disjoint) fragments

of the input data are more likely to constructively influence one another. Afterwards, a

cross‐modal network is constructed such that a separate neural network superlayer (CNN

or LSTM) is dedicated to each partition of the input data. The purpose of the partitioning

is to help the constituent networks become powerful predictors while requiring a smaller

dimensionality of the input data, by allowing them access to those parts of the input

which are most significantly related to each other in the context of the predictions that

need to be made.

Finally, the superlayers may be interconnected by any (feedforward) cross‐connection

as is best seen fit, and they may be combined in arbitrary ways at the output stage to pro‐

duce the final output. This construction is biologically inspired by cross‐modal systems

[40] within the visual and auditory systems of the human brain (which in turn inspired

the development of CNNs)—wherein several cross‐connections between various sensory

networks have been discovered [8, 189].

56

I will now outline the ways in which cross‐connections may be constructed, separately

handling the case of cross‐modal convolutional neural networks (X‐CNNs) [176] and

cross‐modal long short‐term memories (X‐LSTMs) [177]. Lastly, I will highlight a sim‐

ple but effective method for performing hyperparameter tuning on such models [87].

3.1.1 Cross‐connections

Assume, for simplicity, that we have only two modalities, with (intermediate) feature

representations x⃗a and x⃗b that we wish to cross‐connect. In this case, we initially compute

intra‐layer and inter‐layer feature representations, and then recombine them into outputs

(y⃗a and y⃗b) as follows:

h⃗a→a = ϕa(x⃗a) h⃗b→b = ϕb(x⃗b) (3.1)

h⃗a⇝b = χab(x⃗a) h⃗b⇝a = χba(x⃗b) (3.2)

y⃗a = γa(⃗ha→a, h⃗b⇝a) y⃗b = γb(⃗hb→b, h⃗a⇝b) (3.3)

Here, ϕ·, χ· and γ· are (potentially learnable) feature transformations—often simple neural

network layers, chosen appropriately to respect the structural biases between each of the

inputs. The scheme easily generalises to more than two modalities, and it is also possible

to omit computing features in certain directions. For all cross‐modal instances considered

here, the recombination function γ will be featurewise concatenation (i.e. γ(⃗a, b⃗) = a⃗∥⃗b),
allowing each superlayer maximal freedom with how it chooses to process the incoming

information. This effectively preserves the dataflow benefits of a fully connected neural

network, while requiring substantially fewer parameters; as such, it is expected that such

architectures will generalise better under challenging data scenarios (e.g. datasets with

small sample sizes or missing observations).

3.1.2 X‐CNN

Here I consider the case of multimodal input wherein each modality constitutes an im‐

age of the same width and height. While somewhat specific, this setup still holds high

practical applicability—e.g. in medical imaging, we may think of individual images as

representing a patient’s medical scans (CT/MRI/PET), allowing insights into different

granularities of anatomical organisation. The individual images may also be obtained

from a single base image, by e.g. decoupling its individual channels (in either YUV or

RGB space).

In this case, a separate CNN feature extractor is utilised for each of the images. Early

57

Input
(channel 1)

Input
(channel 2)

Input
(channel 3)

Conv.

Conv.

Conv.

Pool

Pool

Pool

×conn.

×conn.

Conv.

Conv.

Conv.

Pool

Pool

Pool

Merge

FC

FC

Softmax

Figure 3.1: Diagram of a simple cross‐modal CNN for image classification, generated
from a baseline CNN of the form [Conv → Pool] × 2 → FC → Softmax. Each of the
three channels (e.g. RGB/YUV) of the input image receives its own CNN superlayer,
with cross‐connections inserted after the pooling operation. A more in‐depth view of a
potential cross‐connection layout is provided by Figure 3.2.

Convolution

Convolution

Max-Pool

Max-Pool

Conv. Conv.

Conv.

Conv.

Merge

Merge

Conv.

Conv.

. . .

. . .

. . .

. . .

Figure 3.2: Illustration of a single cross‐connection segment within an X‐CNN with two
superlayers. After each pooling operation, feature maps between the superlayers are ex‐
changed, after first passing them through an additional convolutional layer. We may also
perform an additional intra‐superlayer convolution before merging the feature maps in
each superlayer via concatenation.

58

fusion is performed by way of convolutional cross‐connections, allowing the individual

extractors to exchange information, as in Figure 3.1. The exact implementation of the

cross‐connection can vary; here it constitutes feature map exchange, i.e. it allows each of

the feature extractors to receive intermediate feature maps from other extractors through‐

out the pipeline. Therefore, the functions ϕ· and χ· (of Equations 3.1–3.3) are convolu‐

tional layers, and γ· is channel‐wise concatenation.

Within the specific implementation attempted in [176], I have applied 1× 1 convolutions

to transform the feature maps from one CNN stream before passing them to another (as

in Figure 3.2). The motivation between such an operator is that it learns a pointwise

transformation of pixels, such that they become more usable for the other stream with

minimal parameter usage. This kind of cross‐connection was concurrently developed (un‐

der the name lateral connection) by [145], where it was used for enabling information

exchange between task‐specialised neural networks in continual learning.

The cross‐connections are placed at the end of every pooling (downsampling) layer of the

individual CNNs—with the motivation that the decrease in width and height provides

additional space for augmenting the channels with the newly received feature maps.

3.1.3 X‐LSTM

Now consider the multimodal deep learning setting where the input modalities are aligned

sequences. Once again, while potentially specific, such settings naturally correspond to

several measurements taken at regular intervals (e.g. from various sensors), and many

irregular setups can be transformed to it through methods such as interpolation.

Here a natural choice for each of the superlayers is a recurrent neural network (such

as an LSTM). I have investigated several candidates for early fusion, finding recurrent

cross‐connections to perform the best. In this case, intermediate time‐series features are

exchanged between superlayers by first passing them through another recurrent layer, fol‐

lowed by concatenation at each timestep. As such, the functions ϕ· and χ· of Equations

3.1–3.3 are LSTM layers, and γ· is featurewise concatenation.

Unlike the X‐CNN setup, here the “depth” of the LSTMs typically will not exceed three

layers. As such, only a single cross‐connection is placed (within the second layer), and

the third layer is used for intra‐layer summarisation (as depicted in Figure 3.3).

59

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

. . .

. . .

⊗

⊗ ⊕

⊗

||

xt

yt−1

ct−1 ct

yt

yt

ft jt

it
ot

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

Figure 3.3: A hierarchical diagram of a 3‐layer X‐LSTMmodel with one cross‐connection
in the second layer. Top: A single LSTM cell. Middle: An LSTM layer (replicated cell).
Bottom: A 3‐layer cross‐modal LSTM model with 2 superlayers. In the second layer, the
hidden sequences are passed through a separate LSTM layer and featurewise concatenated
with the main stream sequence to facilitate sharing.

60

3.1.4 Hyperparameter tuning

Despite the clear potential of cross‐connected architectures, they also carry an obvious

and significant overhead—namely, as we need to specify how each pair of superlayers

will interact when cross‐connected, the number of design decisions now grows at least

quadratically with the number of modalities available. This makes such models poten‐

tially unsuitable for widespread application in the general case.

It turns out, however, that effective hyperparameter optimisation is possible for both

the X‐CNN and X‐LSTM, and it often can be reduced to optimising a single hyperpa‐

rameter. The technique relies on leveraging unimodal performance metrics to inform the

model on how many features should be dedicated to each modality, as well as sent across

when cross‐connecting.

Upon first presenting X‐LSTMs [177], I have devised a simple hand‐crafted version of

this technique, which proceeds as follows:

• First, construct a unimodal LSTM, which processes only a single modality.

• Evaluate the performance of this LSTM when applied to each modality in turn, e.g.

on a held‐out validation set, obtaining scores sm (e.g. accuracy, area under ROC

curve, etc.) for each modality m.

• When constructing the X‐LSTM, upon deciding how many features to allocate to

each modality’s superlayer, construct them such that they respect the ratio of these

scores, e.g. for three modalities a, b and c, the superlayers’ feature counts should

respect the ratio sa : sb : sc. Similarly, the decision on the number of features sent

across for a cross‐connection of type a⇝ b should respect the ratio sa : sb.

• In many cases, the unimodal performance metric will be too similar, and therefore

respecting the direct score ratio may cause the produced networks to be “too uni‐

form”. As such, discrepancies can be enforced by raising the scores to a power pa‐

rameter, k. The feature counts should then be chosen to respect the ratio ska : s
k
b : s

k
c .

Thus, assuming a desirable overall parameter count, specifying the hyperparameter k can

fully specify the choice of feature counts. Empirically, this approach has lead to highly

desirable architecture configurations with minimal tuning effort.

3.1.5 Xsertion

Subsequently, this intuitive approach was formalised into the Xsertion library [87] by

Laurynas Karazija, for his Part III project performed under my co‐supervision. Xsertion

61

consumes as input a dataset (with a specified training/validation split) and a baseline

CNN, producing a hyperparameter‐tuned X‐CNN with a comparable parameter count

to the baseline. Given a unimodal score, nli , for modality i, the scaling multiplier for the

ith superlayer’s feature counts is defined as follows:

sl1 =
nαl1∑
i n

α
li

. (3.4)

where α is a hyperparameter used for tuning the prioritisation of higher informativeness

(equivalent of k from before).

Similarly, cross‐connection feature counts are optimised through a scalingmultiplier called

the connection weight. A desired weight wl1,l2 ∈ [0, 1] of a connection between super‐

layers l1 ⇝ l2 is such that wl1,l2 > 0.5 when connecting a node from a more informative

position to a less informative one. This can be parametrised as:

wl1,l2 =
nβl1

nβl1 + nβl2
, (3.5)

where β is a hyperparameter controlling the discounting of lower informativeness. With

β → 0, all modality pairs are treated equally. When β → ∞, most of the weight is as‐

signed to the features transferred from the more informative superlayer. If a weight is set

to zero, the corresponding cross‐connection is dropped.

Besides determining the optimal feature counts within cross‐connections (which effec‐

tively reduces to appropriately tuning α and β), Xsertion also optimises for the locations

where cross‐connections should be placed, which is another potentially challenging de‐

sign decision. For purposes of brevity, I omit the discussion of such aspects of Xsertion,

but it should be noted that, taken in unison, they allow the neural network designer to

be extremely lenient when designing a X‐CNN architecture.

3.2 Experimental setup

Having described the essential components of all the considered cross‐modal architec‐

tures, in this section I will outline the experimental procedure used to evaluate the relative

benefits of X‐CNNs and X‐LSTMs against baseline approaches, highlighting in particular

the chosen datasets, architectural hyperparameters and the exact learning and evaluation

setup used to obtain the final performance comparisons.

62

3.2.1 Datasets and preprocessing

As was previously mentioned, it is especially assumed that the outlined early fusion ar‐

chitectures will perform well in challenging data scenarios. For the case of X‐CNNs, it

is possible to leverage large‐scale image datasets, to more directly quantify these benefits

(by holding out increasing quantities of training images from the learning algorithm).

Consequently, for evaluating the X‐CNN construction I leverage the standard CIFAR‐

10 and CIFAR‐100 datasets [97], involving classifying tiny coloured images (32× 32× 3)

into 10 and 100 classes, respectively. For both of these datasets, an abundance of data

is available (50,000 training and 10,000 testing examples). This makes it easier to study

the behaviour of the models as different fractions of the training data are discarded. I hy‐

pothesise that, at lower levels of data availability (up to a threshold), X‐CNNs will yield

significant gains over equivalent unrestricted CNNs—and also that they will remain com‐

petitive at all higher training set sizes.

At all times, images are represented in the YUV colour space. As a linear transforma‐

tion from RGB, it should not have an impact on performance of the baselines, while it

has the benefit of decoupling luminance from chrominance, allowing for a simpler analy‐

sis of cross‐connections (and relating its learned kernels to human vision processes). The

images are preprocessed by applying a single batch normalisation operation on them; I

have found this to yield slightly better results compared to doing global contrast normal‐

isation and ZCA whitening.

Multimodal sequential datasets of similar properties (to be used for evaluation of X‐

LSTMs) are harder to come by. For example, the majority of open datasets in such

spaces consist of textual data, for which each step of the sequence will consist of a word

embedding—the embeddings being arbitrary vectors, they may not be trivially split into

modalities as is the case with image channels.

Recently, consumer‐grade health devices, such as wearables and smart home appliances

became more widespread, which presents new data modelling opportunities. For the pur‐

poses of evaluating the X‐LSTM, I investigate one such task—predicting the users’ future

body weight in relation to their weight goal given historical weight, along with sleep and

steps measurements [177]. This study is enabled by a first‐of‐its‐kind dataset of fitness

measurements from ∼15,000 users. Data are captured from various sources, such as

smartwatches, wrist‐ and hip‐mounted wearables, smartphone applications and smart

bathroom scales. This is one of the first times that such quantities of large‐scale longitu‐

dinal (spanning up to 500 consecutive days of comprehensive measurements recorded per

63

user) multi‐device consumer‐grade health data have been investigated. From this dataset,

a binary classification task is studied: will the users be able to achieve the weight goal

they input into their smart device?

Besides the inherent multimodality and sequentiality of the input data, this dataset also

poses a further modelling challenge which makes it suitable for evaluating the benefits

of early fusion. Namely, modelling even thousands of users limits the kind of data that

sufficiently many user devices can accurately measure. Therefore, many factors key in

weight change (such as eating habits) must remain as only latently observed.

There is a range of potential scenarios where such predictive modelling would be useful

for weight control within consumer health systems. Motivating examples include: direct

feedback to the user about their progress, suggesting new, realistic weight objectives, and

evaluating the effects of major lifestyle changes. Significant work already exists towards

developing consumer systems of this type [99, 106, 111, 184] but they often assume the

availability of scalable predictive models of user behaviour, such as the weight goal pre‐

diction task I investigate.

This investigation was performed on anonymised data obtained from several devices

across the Nokia Digital Health ‐ Withings1 range. The dataset contains weight, height,

sleep and steps measurements, as well as user specified weight objectives. Weights are

measured by the Withings scale. All other data are obtained from the Withings applica‐

tion through the use of wearables.

Users were first included in the dataset under the condition of having recorded at least

10 weight measurements over a 2‐month period. In total, the dataset contains 1,664,877

such users. Further processing was performed to remove outliers or those users with too

few, or too sporadic, data observations; after this stage ∼15K users were remaining. The

precise steps taken to reach this final dataset are described below.

Obvious outliers, reports of unrealistic heights (below 130 cm or above 225cm), and/or

consistent weight changes of more than 1.5kg per day have been discarded. Steps and

sleep are recorded on a per‐day basis, while weights are recorded at the user’s discre‐

tion; to align the weight measurements with the other two modalities, we have applied

a moving average to the person’s recorded weight throughout an individual day. A se‐

quence may be labelled with any weight objective that has been set by the user, and is

still unachieved, by the time the sequence ends. Overly ambitious objectives (over ±20
1At the time of writing this dissertation, known only as Withings.

64

10 15 20 25 30 35 40 45 50 55 60
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400

2,600

2,800

Length (days)

N
u
m
b
e
r
o
f
e
x
a
m
p
le
s

Sequence lengths

Successful
Failed

−20−18−16−14−12−10 −8 −6 −4 −2 0 2 4 6 8 10 12 14
0

100

200

300

400

500

600

700

800

900

1,000

1,100

1,200

Weight objective − Current weight (kg)

A
ch

ie
v
e
m
e
n
t
ti
m
e
(d

a
y
s)

Objective achievement times

100

200

300

400

500

600

700

800

900

Figure 3.4: Left: Plot of the sequence length distribution in the final dataset. Right:
Mixed heatmap/scatter plot of the weight objectives against their achievement times, for
the successful sequences in the final dataset.

kilograms proposed) are ignored.

A weight objective is considered to be successful if there exists a weight measurement in

the future that reaches or exceeds it, and unsuccessful if the user stops recording weights

(allowing for a long enough window after the end of the recorded sequence) or sets a more

conservative objective in the meantime. The derived dataset spans 18,036 sequences as‐

sociated with weight objectives. Within it, 6,313 of the sequences represent successful

examples, while the remaining 11,723 represent examples of failure. To address the po‐

tential issues of class imbalance, appropriate class weights are applied to all relevant

optimisation targets and loss functions.

All of the sequences are comprised of user‐related features: height, gender, age category,

weight objective; along with sequential features—for each day: duration of light and deep

sleep, time to fall asleep and time spent awake; number of times awoken during the night;

time required to wake up; bed‐in/bed‐out times; steps and (average) weights for the day.

Only sequences that span at least 10 contiguous days are considered. There are ∼3.6K
users for whom more than one sequence is present in the dataset. In line with known best

practices in deep learning, data are normalised to have mean zero and standard deviation

one per‐feature.

In order to get an impression of the statistics present within the dataset, we have visu‐

alised the sequence length distributions (outliers removed for visibility, but still used in

our analysis), as well as scatter plots of successful weight objective magnitudes against

their achievement times. These are provided by Figure 3.4. The median time of achieve‐

65

ment for successfully achieved objectives is 57 days.

3.2.2 Model architectures

For purposes of reproducibility, in this section I will expose the architectural hyperpa‐

rameters of the models used for evaluation. The cross‐modal architectures’ feature map

counts have been altered in such a way as to make the overall number of parameters as

close as possible to their baseline. This ensures as‐fair‐as‐possible comparison with re‐

spect to degrees‐of‐freedom.

For evaluating the X‐CNN construction, the investigation spans two models:

• A simple CNN with four convolutional layers, followed by two fully connected

layers. I will be referring to it as KerasNet throughout this chapter as it is based on

the Keras CIFAR‐10 CNN example [25]. It represents a likely style of a “starting”

model that one is going to attempt to apply on an image classification problem.

The architecture of the model, as well as its cross‐modal variant (X‐KerasNet) is

outlined in Table 3.1. It is trained for 200 epochs using the Adam SGD optimiser,

with hyperparameters as described in [88], and a batch size of 32. Dropout has

been applied after both pooling operations (with p = 0.25) as well as after the first

fully connected layer (with p = 0.5).

• The FitNet4 architecture [139], representing a sophisticated CNN close to the state‐

of‐the‐art on CIFAR‐10/100. This model was chosen for its prominent appear‐

ance in topical CNN research [117, 164], and due to its design goal of being a

“thin&deep” network, managing to keep its parameter count relatively low com‐

pared to many other successful models. The FitNet4 consists of 17 convolutional

2‐way maxout [56] layers, followed by two fully connected layers, the first of which

is a 5‐way maxout layer. The full architecture of this model—as well as its cross‐

modal variant (X‐FitNet4)—is presented in Table 3.2. The models are initialised

using Xavier initialisation [50], and are then trained for 230 epochs using the Adam

SGD optimiser with a batch size of 128. Batch normalisation [78] has been applied

to the output of each hidden layer to significantly accelerate the training procedure.

L2 regularisation with λ = 0.0005 has been applied to all weights in the model.

Finally, dropout (with p = 0.2) was applied on the input, after every pooling oper‐

ation, and after the fully connected maxout layer.

It should be noted that further domain knowledge is injected into these hand‐crafted X‐

CNN models by favouring the CNN superlayer corresponding to the Y channel in terms

of feature map counts (typically doubled compared to the U/V superlayers within the

66

Table 3.1: Architectures for KerasNet and X‐KerasNet

Output size KerasNet X‐KerasNet

∼ 4.46M param. ∼ 4.37M param.

32× 32 [3× 3, 64]× 2 Y: [3× 3, 32]× 2

U/V: [3× 3, 16]× 2

16× 16 2× 2 Max‐Pool, stride 2

Y→ Y: identity

U→ U: identity

V→ V: identity

Y⇝ U/V: [1× 1, 32]

U/V⇝ Y: [1× 1, 16]

[3× 3, 128]× 2 Y: [3× 3, 64]× 2

U/V: [3× 3, 32]× 2

8× 8 2× 2 Max‐Pool, stride 2

1× 1 Fully connected, 512‐D

10/100‐way softmax

67

Table 3.2: Architectures for FitNet4 and X‐FitNet4

Output size FitNet4 X‐FitNet4

∼ 2.75M param. ∼ 2.72M param.

32× 32 [3× 3, 32]× 3 Y: [3× 3, 24]× 3

U/V: [3× 3, 12]× 3

[3× 3, 48]× 2 Y: [3× 3, 36]× 2

U/V: [3× 3, 18]× 2

16× 16 2× 2 Max‐Pool, stride 2

Y→ Y: [1× 1, 36]

U→ U: [1× 1, 18]

V→ V: [1× 1, 18]

Y⇝ U/V: [1× 1, 12]

U/V⇝ Y: [1× 1, 12]

[3× 3, 80]× 6 Y: [3× 3, 60]× 6

U/V: [3× 3, 30]× 6

8× 8 2× 2 Max‐Pool, stride 2

Y→ Y: [1× 1, 60]

U→ U: [1× 1, 30]

V→ V: [1× 1, 30]

Y⇝ U/V: [1× 1, 18]

U/V⇝ Y: [1× 1, 18]

[3× 3, 128]× 6 Y: [3× 3, 96]× 6

U/V: [3× 3, 48]× 6

1× 1 8× 8 (global) Max‐Pool

Fully connected, 500‐D

10/100‐way softmax

68

same hidden layer). This corresponds to the assumption that the majority of relevant

information about an object is contained within its brightness channel, while colour usu‐

ally represents auxiliary information. For both baselines, I will also report the scores

obtained by applying the Xsertion library [87].

For evaluating X‐LSTMs, the primary baseline architecture represents a three‐layer deep

LSTM model for processing the historical weight/sleep/steps data. After performing the

LSTM operations, the features of the final computed LSTM output step are concatenated

with the user’s height, gender, age category and weight objective for downstream predic‐

tion. As previously discussed, an X‐LSTM variant would only have a cross‐connection

in the second layer.

To construct competitive X‐LSTMs, I have applied the manual hyperparameter optimi‐

sation technique detailed in Section 3.1.4. Therefore, I have computed the AUCs of the

individual unimodal LSTMs on a validation dataset, obtaining AUCs of 80.62% (for

weight), 80.17% (for sleep) and 74.18% (for steps). As the scores were not disparate

enough in order to generate non‐uniform X‐LSTMs, I have performed a grid search on

the power parameter k. The X‐LSTM performed the best with k = 30. Its architecture is

reported in Table 3.3. Furthermore, note the slightly surprising result: sleep being almost

equally predictive of future weight change as weight. This result will be compounded by

the qualitative analysis of the model behaviour in Section 3.3.2.

For both the LSTM and X‐LSTM, the fully connected layers of the networks apply ReLU

activations. The LSTM weights are initialised with Xavier initialisation [50], and its for‐

get gate biases with ones [84]. Finally, the fully connected weights are initialised using He

initialisation [67]. The models are trained for 200 epochs using the Adam SGD optimiser,

with hyperparameters as described in [88], and a batch size of 1024. For regularisation

purposes, batch normalisation is applied to the output of every hidden layer, as well as

dropout (with p = 0.1) to the input‐to‐hidden transitions within the LSTMs [196].

3.2.3 Evaluation protocol

Lastly, I will present the evaluation protocols for verifying the benefits of the proposed

cross‐modal architectures in challenging data scenarios.

Evaluating the validity of the claim about X‐CNN performance is performed, as pre‐

viously discussed, by performing comparative evaluation on CIFAR‐10/100. In each in‐

dividual test, the accuracy of the considered models is evaluated on the entire test set of

10,000 samples, when the training routine is presented with only p% of the entire train‐

69

Table 3.3: LSTM and X‐LSTM model architectures. Cross‐connections are highlighted.

LSTM X‐LSTM (k = 30)

76377 param. 75089 param.

21 features wt: 15 features, sl: 12 features, st: 2 features

wt⇝ sl: 9 features, wt⇝ st: 14 features

sl⇝ wt: 6 features, sl⇝ st: 11 features

st⇝ wt: 1 feature, st⇝ sl: 1 feature

42 features wt: 29 features, sl: 24 features, st: 3 features

84 features wt: 57 features, sl: 48 features, st: 5 features

Fully connected, 128‐D

Fully connected, 64‐D

Fully connected, 1‐D

ing dataset (chosen deterministically). Xsertion built X‐CNN topologies using KerasNet

and FitNet4 as blueprints, using 80% of the given training set for unimodal training (for

80 epochs) and 20% of the training set as a validation set. Hyperparameters α of 1 and

2 and β of 2 and 4 were used for KerasNet and FitNet4, respectively. All experiments

are repeated 5 times in order to report 95% confidence intervals.

For evaluating the X‐LSTM, stratified 10‐fold crossvalidation was performed on the full

dataset (for the LSTM, X‐LSTM as well as several further baselines):

• A classical time‐series forecasting technique (ARIMA), to evaluate the benefits of

performing machine learning in this task;

• Standard “shallow” approaches tomachine learning: support vectormachines (SVM)

with the RBF kernel, random forests (RF) and Gaussian hidden Markov models

(GHMM), to assess the benefits of using deep neural networks. The SVM has been

augmented to produce probabilistic predictions by leveraging Platt scaling [132];

• Feedforward deep neural networks (DNN), expressing the relative necessity of using

recurrent architectures;

• A recent state‐of‐the‐art neural approach in processing multimodal sequential data

[136] which imposes cross‐modality throughweight sharing of the recurrent weights

(U∗) across LSTM superlayers—I will refer to this method as SH‐LSTM. This comes

at a cost to expressivity—in order to share them, these weight matrices need to have

70

the same sizes, implying the different modality streams need to all compute the same

number of features at each depth level.

All baselines’ hyperparameters have been optimised using thorough sweeps. The non‐

sequential models (SVM, RF, DNN) were only trained on the last l days of the sequences,

where l = 10 was found to give the best results. The SH‐LSTM was optimised to have

the same number of parameters as the baseline LSTM, and it was found that better re‐

sults are achieved when sharing between sleep and weight superlayers only—as expected,

given their superior unimodal predictive power.

ROC curves (and the associated area under them) are used as the primary evaluation

metric, given the class imbalance of the dataset, and the fact that it is unclear how a

practical classification threshold for this task should be chosen. For completeness, I also

report the accuracy, precision, recall, F1 score and the Matthews correlation coefficient

[114] under the classification threshold which maximises the F1 score. To confirm that

the advantages demonstrated by the X‐LSTM methodology are statistically significant,

paired t‐testing has been performed on the metrics of individual crossvalidation folds,

choosing a significance threshold of p < 0.05.

3.3 Results

Having detailed the essential aspects of the experimental setups, I will now present the out‐

comes of the experiments, demonstrating outperformance of the proposed cross‐modal

architectures. These quantitative results have inspired several follow‐up qualitative stud‐

ies, the results of which will also be presented here.

3.3.1 Quantitative results

The results of the X‐CNN quantitative studies2 are presented in Tables 3.4–3.5. They

demonstrate that X‐CNN architectures consistently remain competitive against their base‐

lines, and that these benefits are particularly pronounced when the datasets are increas‐

ingly sparse (strongest differences being observed on small CIFAR‐100 training setups).

Furthermore, the Xsertion library produced statistically significantly outperforming archi‐

tectures in all of the settings considered—showing that, despite the rise in hyperparameter

count for the early‐fusion models, these hyperparameters can be pragmatically optimised

in a seamless way, requiring little to no additional user input. As such, armed with a

2 It should be noted that the results are as reported in the Xsertion paper by Laurynas Karazija [87]. The
reason behind this is twofold: besides allowing for a clear comparison between hand‐crafted X‐CNNs
and Xsertion, it also ameliorates the unstable results reported in the original X‐CNN paper [176]—likely
to be caused by an outdated version of the Theano deep learning framework used at the time.

71

Table 3.4: Comparison of accuracies of KerasNet based models, with highlighted 95%
confidence intervals (after five independent runs).

CIFAR‐10

Model\
p% 20% (%) 40% (%) 60% (%) 80% (%) 100% (%)

KerasNet 70.02± 0.14 76.57± 0.16 79.28± 0.17 81.40± 0.10 82.55± 0.11

X‐KerasNet 71.00± 0.23 76.92± 0.10 79.62± 0.16 81.32± 0.10 82.68± 0.15

Xsertion 72.02± 0.70 77.29± 0.16 79.92± 0.07 81.54± 0.10 82.93± 0.09

CIFAR‐100

Model\
p% 20% (%) 40% (%) 60% (%) 80% (%) 100% (%)

KerasNet 28.20± 0.13 36.28± 0.24 42.14± 0.56 45.40± 0.33 48.53± 0.35

X‐KerasNet 30.41± 0.32 39.32± 0.39 43.95± 0.40 47.08± 0.23 48.96± 0.22

Xsertion 31.31± 0.49 40.01± 0.11 44.74± 0.20 47.75± 0.27 50.29± 0.53

baseline CNN and a dataset, any deep learning practitioner should be able to leverage

Xsertion to obtain an outperforming X‐CNN variant.

The ROC curves and related quantitative results for the X‐LSTM quantitative study are

summarised by Table 3.6 and Figure 3.5. Similarly as to the X‐CNN, it was found that

all of the observed differences in ROC‐AUC are indeed statistically significant, verifying

simultaneously that the recurrent models are superior to other baseline approaches, that

the X‐LSTM has significantly improved on its LSTM baselines. In spite of the various

optimisations applied to the weight sharing strategy, SH‐LSTM was unable to outper‐

form the baseline LSTM—highlighting once again its lack of ability to accurately specify

relative importances between modalities, which is essential for this task.

3.3.2 Qualitative results

Firstly, I will demonstrate that cross‐connections inserted in the considered X‐CNN mod‐

els, though being 1 × 1 convolutions, learn more complex functions than simple feature

map passing. First, we note that the weights of a 1× 1 convolutional layer may be repre‐

sented as a 2D table that maps input channels to output channels (akin to an adjacency

matrix, where columns are the input channels and rows are the output channels).

Rather than displaying the raw table values, I decided to visualise weights in a heatmap

72

Table 3.5: Comparison of accuracies of FitNet4 based models, with highlighted 95%
confidence intervals (after five independent runs).

CIFAR‐10

Model\
p% 20% (%) 40% (%) 60% (%) 80% (%) 100% (%)

FitNet4 75.47± 0.32 82.02± 0.18 84.98± 0.20 86.22± 0.19 87.42± 0.05

X‐FitNet4 76.56± 0.24 82.43± 0.07 85.11± 0.19 86.23± 0.18 87.42± 0.08

Xsertion 77.35± 0.15 82.66± 0.09 85.43± 0.12 86.78± 0.16 87.77± 0.22

CIFAR‐100

Model\
p% 20% (%) 40% (%) 60% (%) 80% (%) 100% (%)

FitNet4 29.29± 1.69 40.91± 2.48 50.94± 0.51 55.47± 0.96 58.92± 0.60

X‐FitNet4 36.17± 0.27 48.02± 0.72 54.18± 0.36 57.98± 0.33 60.32± 0.29

Xsertion 38.59± 0.37 50.11± 0.30 55.48± 0.41 59.06± 0.63 61.67± 0.31

style; Figure 3.6 showcases this visualisation for the first cross‐connection layer of X‐

FitNet4 (trained on 100% of CIFAR‐10’s training set). Green colours indicate that an

input channel has a positive connection weight to the respective output channel while

blue colours indicate negative weights. The colour intensities are proportional to the ab‐

solute weight values.

It can be seen that each output channel of the cross‐connection layer is obtained through

a nontrivial weighted combination of input channels. It is therefore hypothesised that the

cross‐connection layers selectively filter and combine input features that are more utilis‐

able in another processing stream.

To delve deeper into what kinds of features the cross‐connection layers are filtering, com‐

bining and passing, the layer‐wise feature‐map activation techniques proposed by [159]

were applied. This technique performs gradient ascent on a white‐noise input image to

maximise activations of a specific channel of feature maps at any of the layers within a

pre‐trained model. The objective function for gradient ascent is defined as

I′ = argmax
I

Σ(I)− λ∥I∥2 (3.6)

73

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
p
o
si
ti
v
e
ra

te

Mean ROC curves after 10-fold crossvalidation

Random
SVM
RF
GHMM
DNN
LSTM
SH-LSTM
X-LSTM

Figure 3.5: Mean ROC curves for the baselines, LSTM and the best‐performing SH‐
LSTM and X‐LSTM models.

Figure 3.6: Weight visualisation of the first‐level cross‐connection layer for the X‐FitNet4
CNN. The columns correspond to input channels, while rows correspond to output chan‐
nels. Green colour indicates a positive‐weight connection between an input channel and
an output channel, while blue colour indicates a negative‐weight connection. The colour
intensities are proportional to the absolute weight values. Top: Y⇝ U/V (36 input chan‐
nels, 12 output channels). Bottom, left‐to‐right: U ⇝ Y and V ⇝ Y (18 input channels,
12 output channels).

74

Table 3.6: Comparative evaluation results of the baseline models against the LSTMs after
10‐fold crossvalidation. Reported p‐values are for the X‐LSTM vs. each baseline for the
ROC‐AUC metric.

Metric ARIMA SVM RF GHMM DNN LSTM SH‐LSTM X‐LSTM

Accuracy 59.22% 67.65% 70.97% 66.31% 68.93% 79.12% 78.49% 80.30%

Precision 42.96% 52.54% 56.05% 51.26% 53.80% 67.25% 65.31% 68.66%

Recall 50.44% 81.02% 81.34% 82.32% 83.02% 79.30% 82.95% 81.62%

F1 score 46.40% 63.71% 66.25% 63.11% 65.18% 72.69% 72.98% 74.37%

MCC 13.94% 39.74% 44.75% 38.57% 42.63% 56.60% 56.80% 59.45%

ROC AUC — 76.77% 79.97% 74.86% 78.54% 86.91% 86.63% 88.07%

p‐value — 2 · 10−12 6 · 10−10 7 · 10−11 2 · 10−11 1 · 10−4 4 · 10−5 —

where I is input image, Σ(I) is the activation of the considered neuron when provided with

I as input, and λ is a regularisation factor. After iterating for a number of gradient ascent

steps, the original white‐noise image will be modified into patterns that approximate the

detection function of a specific neuron.

For the first cross‐connection layer of a pre‐trained X‐FitNet4, I have visualised a se‐

lection of channel activations in Figure 3.7. This visualisation indicates that the cross‐

connection layer is indeed passing combined lower‐level features, such as the addition of

horizontal and vertical stripes in the upper right image in the figure. It can further be

observed that the pattern frequency for the Y channel’s cross‐connection layer is higher

than the one for the U and V layers. This observation reflects the fact that the human

vision system is able to detect higher frequency variations in intensity than chrominance.

This is a solid indicator that the X‐CNN architecture, when faced with an image classifi‐

cation task in the YUV colour scheme, is actually attempting to mimic human vision.

For qualitatively analysing the learning potential of an X‐LSTM, initially, note an ob‐

vious factor to the model’s power: the magnitude of the weight objective the user has set.

It should be expected that, at smaller weight objective magnitudes, the model’s confusions

will be roughly evenly distributed between successes and failures. As objectives become

more ambitious, the model should become increasingly skewed towards predicting failure

more often (as a consequence of the realistic statistics on such objectives), and therefore

the majority of confusions are expected to represent successful sequences that the model

misclassified as failures.

After aggregating the X‐LSTM’s model prediction across all crossvalidation folds (for

75

Figure 3.7: Artificially generated images (from white noise) that cause strong activations
of specific channels in the first cross‐connection layer of a pre‐trained X‐FitNet4 model.
Top: Three channels from the Y⇝ U/V cross‐connections. Middle: Three channels from
the U⇝Y cross‐connections. Bottom: Three channels from the V⇝Y cross‐connections.

76

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800 3,000
−20

−15

−10

−5

0

5

10

15

20

98.97%
98.02%
94.74%

98.78%
98.27%
98.01%

96.28%
95.80%
96.39%

94.79%
94.86%

93.88%
92.41%

90.16%
87.16%

80.98%
78.66%

73.93%
70.78%

76.65%
76.63%

72.42%
73.33%

73.08%
75.93%
70.83%
84.62%
84.62%
76.92%
100.00%
100.00%
90.91%
100.00%
100.00%

N/A
100.00%
100.00%
100.00%
100.00%

N/A

Number of examples

W
e
ig
h
t
o
b
je
ct
iv
e
−

C
u
rr
e
n
t
w
e
ig
h
t

Predictive power for weight objective levels

Correct
Incorrect (succ.)
Incorrect (fail.)

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

90.45%
91.22%

96.53%
91.07%

89.18%
91.33%

92.38%
87.98%

89.47%
90.91%

84.54%
84.83%

81.23%
80.30%

82.42%
79.94%

77.19%
82.41%

79.87%
75.46%

73.58%
73.60%

75.04%
73.48%

68.66%
69.81%
73.26%

71.28%
74.53%

75.89%
78.16%

79.87%
76.21%

73.95%
80.00%

77.30%
66.91%

79.61%
69.89%

75.61%

Number of examples

W
e
ig
h
t
o
b
je
ct
iv
e
−

C
u
rr
e
n
t
w
e
ig
h
t

Predictive power for weight objective levels

Correct
Incorrect (succ.)
Incorrect (fail.)

Figure 3.8: Left: A bar plot demonstrating the X‐LSTM’s performance for different mag‐
nitudes of weight objectives (at the classification threshold of 0.5). Right: The same
plot, zoomed in on the [−8kg, 2kg] range of weight objectives (where the majority of the
examples are).

a classification threshold of 0.5), a histogram of the proportions of correctly classified,

incorrectly classified successful and incorrectly classified failed sequences—for various

bins of weight objective magnitudes—was produced (Figure 3.8). The results completely

match the expectations outlined above—at lower weight objective magnitudes, there is

a roughly 50/50 split between misclassified successes and failures. However, starting

at −3kg and moving towards more ambitious objectives, there is a clear bias towards

misclassifying successful sequences, which eventually grows into nearly all misclassified

sequences being successful. This kind of behaviour is likely to be desirable—on average,

it will encourage the users to choose realistic weight objectives, at the expense of making

incorrect initial predictions about a few users that do eventually manage to achieve very

ambitious goals.

Lastly, I apply the same approach used to visualise channel activations for X‐CNN cross‐

connections [159] to visualise classification models for a pre‐trained X‐LSTM. Starting

with a zero‐sequence as input, gradient ascent was applied (following Equation 3.6) to

produce a sequence that maximises or minimises the model’s confidence in predicting suc‐

cess or failure.

The generated sequences spanning 10 days are shown in Figure 3.9. As expected, a user

is deemed to be likely to hit their weight objective if there is a downwards trend in weight

and an upwards trend in steps, and vice‐versa for a failing sequence. Interestingly—and

compounding the strong unimodal results for the sleep metrics—the model also uncov‐

ered that to have a higher confidence of success, it is important for the user to fall asleep

77

1 2 3 4 5 6 7 8 9 10

light

deep

awake

to sleep

nb awake

to wakeup

bedin

bedout

weight

steps

Day

Confidence: 96.614987%

−0.15σ

−0.1σ

−0.05σ

µ

+0.05σ

+0.1σ

+0.15σ

1 2 3 4 5 6 7 8 9 10

light

deep

awake

to sleep

nb awake

to wakeup

bedin

bedout

weight

steps

Day

Confidence: 3.498110%

−0.2σ

−0.15σ

−0.1σ

−0.05σ

µ

+0.05σ

+0.1σ

+0.15σ

+0.2σ

+0.25σ

+0.3σ

Figure 3.9: Iteratively produced artificial sequences that maximise the model’s confidence
in achieving (left) or failing (right) a −4kg weight objective.

quicker once going to bed. This is likely encoding important latent variables that can not

directly be accessed from the dataset—for example, a person that takes more time to fall

asleep is more likely to snack in the evening, which is known to be detrimental to weight

loss (as previously observed in biomedical research [95, 122, 152]).

Aside from helping establish a more illustrated notion of the neural network’s decision‐

making process, this analysis may also enhance feature selection. Namely, the features

that are not significantly differently activated in the two cases may potentially be assumed

to be irrelevant—here, those are likely to be the time spent awake during the night, num‐

ber of times the person is awoken during the night, and the bed‐in/bed‐out times.

3.4 Generalisations: XFlow

Leading on from the successful results outlined in the preceding section, it may be natu‐

ral to reflect on the initial challenge of early‐fusion models that I have chosen to neglect

at the beginning of this chapter: is it tractable to design cross‐connections for arbitrary

input modality types?

As a brief aside, at the end of this chapter I would like to highlight that the answer to

this question is affirmative, as a result of the study performed by Cătălina Cangea (as

her MPhil in Advanced Computer Science project performed under my co‐supervision).

The produced XFlow architecture [21] generalises cross‐connections to transcend feature

extractors of different dimensionalities—in this case, 1D and 2D signals in the context of

audiovisual classification.

78

In this particular case, the visual input is given as images (to be processed by a CNN

superlayer), and the audio input is given as MFCC features (to be processed by an MLP

superlayer). Therefore, the function ϕ· of Equation 3.1 is a convolutional layer for the

image modality and a fully‐connected layer for the sound modality.

Designing a viable cross‐connection in this case requires being able to reduce input of one

dimensionality to the other. However, it turns out that these are already well‐understood

from other computer vision tasks:

• Going from a 2D representation to 1D occurs at the tail‐end of most CNNs—as

such, a suitable function χimg⇝snd is a stack of convolutional and pooling layers,

followed by a flattening operation.

• The converse operation occurs commonly in encoder‐decoder architectures—such

as the ones used for image segmentation tasks [4]. Therein, the input image is first

reduced to a flat representation, and then a segmentation prediction is produced by

reshaping the image from the flat representation. A suitable function χsnd⇝img is,

therefore, a fully‐connected layer followed by a reshaping operation (to shape the

output into 2D), followed by deconvolution (to perform the inverse operation to a

convolutional layer).

It turns out that these intuitive definitions of cross‐connections work well without sub‐

stantial hyperparameter optimisation, and can be freely inserted into the network archi‐

tecture (as illustrated by Figure 3.10), promptly leading to outperformance of baseline

architectures (multimodal architectures lacking early fusion), as well as interpretable in‐

sights on the features being passed—such as the fact that the images synthesised by the 1D

⇝ 2D cross‐connection tend to mimic intermediate activations of a lip‐reading network,

while encoding changes in volume of the input audio track.

Such details are omitted from this dissertation in the interests of brevity, but illustrate

that early fusion through cross‐connection is a viable direction for future research, one

that could feasibly compete with related recent approaches such as FiLM [130].

3.5 Summary

In this chapter, I have outlined my contributions towards allowing early fusion to be

feasibly deployed within multimodal deep learning architectures. Restricting to the case

where input modalities were all grid‐like (yielding the X‐CNN architecture) or sequential

(yielding the X‐LSTM architecture) allowed for a more robust and rigorous analysis of

79

Softmax

FC

Concat

CNN Input MLP Input

X-conn

X-conn

X-conn

X-conn

Res-conn

Res-conn

Res-conn

Res-conn

Figure 3.10: CNN × MLP XFlow model with cross‐connections clearly highlighted. It
has been shown that adding residual cross‐connections (ones that directly shortcut the
input of one modality to an intermediate representation of another) are highly beneficial
to outperformance.

80

these benefits—and they have both been shown to significantly outperform their base‐

line approaches, especially under challenging data scenarios. The presented qualitative

results further augment the insights of these findings, illustrating that interpretable be‐

haviour can be extracted from these models.

Specially, subsequent work performed by Laurynas Karazija and Cătălina Cangea un‐

der my co‐supervision has demonstrated that the primary issues of such approaches (the

quadratic increase in hyperparameter space and difficulty of generalising to modalities

of different dimensionalities) can both be ameliorated—through their contributions to

developing the Xsertion library and the XFlow architecture.

81

82

Chapter 4

Attentive graph convolutions

“The image of the world around us,

which we carry in our head, is just a

model. Nobody in his head imagines

all the world, government or country.

He has only selected concepts, and

relationships between them, and uses

those to represent the real system.”

Jay Wright Forrester

A multitude of important real‐world datasets come together with some form of graph

structure: social networks, citation networks, protein‐protein interactions, brain connec‐

tome data, etc. Extending neural networks to be able to properly deal with this kind of

data is therefore a very important direction for machine learning research [6, 16, 65], but

one that has received comparatively rather low levels of attention until very recently. In

the remainder of my dissertation, I will dedicate undivided attention to my own contri‐

butions towards this challenge.

In this chapter, I will introduce Graph Attention Networks (GATs) [174], a graph con‐

volutional layer leveraging masked self‐attentional layers [173] to address the theoretical

shortcomings of prior methods based on graph convolutions and their approximations.

To the best of my knowledge, at the time of publication this was the first proposed and

evaluated graph convolutional layer to satisfy all of the desirable properties for a generic

convolution layer simultaneously. These theoretical features are validated on several

benchmarks, demonstrating results competitive with—and often exceeding—the state‐of‐

the‐art at the time of publication. I will also outline the results of this validation study.

Finally, I will outline several pieces of relevant work that leverage or further build on

83

GAT(‐like) models—a list which is by no means exhaustive, but aims to demonstrate the

real‐world utility of the model. It should be noted, as well, that attentive models on

graphs have recently exclusively been covered in a separate survey paper [105].

4.1 Prior approaches

Convolutional Neural Networks (CNNs) have been successfully applied to tackle prob‐

lems such as image classification [68], semantic segmentation [80] or machine translation

[48], where the underlying data representation has a grid‐like structure. These architec‐

tures efficiently reuse their local filters, with learnable parameters, by applying them to

all the input positions.

However, many interesting tasks involve data that can not be represented in a grid‐like

structure and that instead lies in an irregular domain. This is the case of 3D meshes, so‐

cial networks, telecommunication networks, biological networks or brain connectomes.

Such data can usually be represented in the form of graphs.

There have been several attempts in the literature to extend neural networks to deal with

arbitrarily structured graphs. Early work used recursive neural networks to process data

represented in graph domains as directed acyclic graphs [44, 161]. Graph Neural Net‐

works (GNNs) were introduced in [58] and [154] as a generalisation of recursive neural

networks that can directly deal with a more general class of graphs, e.g. cyclic, directed

and undirected graphs. GNNs consist of an iterative process, which propagates the node

states until equilibrium; followed by a neural network, which produces an output for each

node based on its state. This idea was adopted and improved by [107], which proposes

to use gated recurrent units [24] in the propagation step.

Nevertheless, there is an increasing interest in generalising convolutions to the graph

domain. Advances in this direction can often be categorised into two groups: spectral

approaches and spatial approaches.

On one hand, spectral approaches work with a spectral representation of the graphs and

have been successfully applied in the context of node classification. In [17], the convo‐

lution operation is defined in the Fourier domain by computing the eigendecomposition

of the graph Laplacian, resulting in potentially intense computations and non‐spatially

localised filters. These issues were addressed by subsequent works. [69] introduced a

parameterisation of the spectral filters with smooth coefficients in order to make them

spatially localised. Later, [33] proposed to approximate the filters by means of a Cheby‐

84

shev expansion of the graph Laplacian, removing the need to compute the eigenvectors of

the Laplacian and yielding spatially localised filters. Finally, [92] simplified the previous

method by restricting the filters to operate in a 1‐step neighbourhood around each node.

However, in all of the aforementioned spectral approaches, the learned filters depend on

the Laplacian eigenbasis, which depends on the graph structure. Thus, a model trained

on a specific structure can not be directly applied to a graph with a different structure.

On the other hand, we have spatial approaches [1, 39, 64], which define convolutions

directly on the graph, operating on groups of spatially close neighbours. One of the

challenges of these approaches is to define an operator which works with different sized

neighbourhoods and maintains the weight sharing property of CNNs. In some cases,

this requires learning a specific weight matrix for each node degree [39], using the pow‐

ers of a transition matrix to define the neighbourhood while learning weights for each

input channel and neighbourhood degree [1], or extracting and normalising neighbour‐

hoods containing a fixed number of nodes [125]. [121] presented mixture model CNNs

(MoNet), a spatial approach which provides a unified generalisation of CNN architec‐

tures to graphs. More recently, [64] introduced GraphSAGE, a method for computing

node representations in an inductive manner. This technique operates by sampling a

fixed‐size neighbourhood of each node, and then performing a specific aggregator over

it (such as the mean over all the sampled neighbours’ feature vectors, or the result of

feeding them through a recurrent neural network). This approach has yielded impressive

performance across several large‐scale inductive benchmarks.

4.2 What’s in a graph convolution?

CNNs are a major workforce when it comes to working with image data. They exploit

the fact that images have a highly rigid and regular connectivity pattern (each pixel “con‐

nected” to its eight neighbouring pixels), making such an operator trivial to deploy (as a

small kernel matrix which is slid across the image).

Arbitrary graphs are a much harder challenge! Ideally, we would like to aggregate in‐

formation across each of the nodes’ neighbourhoods in a principled manner, but we are

no longer guaranteed such rigidity of structure.

Reflecting on the desirable traits of image convolutions, we arrive at the following prop‐

erties we would ideally like a graph convolutional layer to have:

• Computational and storage efficiency (requiring no more than O(V +E) time and

memory, where V is the number of nodes and E the number of edges);

85

• Fixed number of parameters (independent of input graph size);

• Localisation (acting on a local neighbourhood of a node);

• Ability to specify arbitrary importances to different neighbours;

• Applicability to inductive problems (arbitrary, unseen graph structures).

Satisfying all of the above at once has proved to be quite challenging, and indeed, none

of the prior techniques outlined above have successfully achieved them simultaneously:

• With respect to spectral approaches, the original Graph Fourier Transform ap‐

proach of [17] suffers from lack of localisation, computational inefficiencies, and

the fact that the number of parameters is not fixed.

• Subsequent simplifications of this framework [33, 92] address all of these issues,

at the expense of becoming unable to specify arbitrary importances to different

neighbours (these importances being fully conditioned on the graph structure).

• In fact, any spectral method (one dependent on knowledge of the graph Laplacian)

is unlikely to be theoretically applicable to inductive problems—given that their

learnt filters are dependent on the Laplacian and may not be applicable to arbitrary

graph structures. Furthermore, the Laplacian may not be known upfront for many

graphs of interest, especially dynamic graphs.

• The early spatial approach of [107] uses a recurrent update rule, which not only

seems unnatural for spatially defined data, but also requires the number of features

computed at every stage to be fixed—therefore restricting the neural network prac‐

titioner from specifying a true analogue of a convolutional layer (with arbitrary

numbers of filters).

• The spatial approach of [39] handles the issue of varying degrees in a graph by

specifying a separate convolutional filter for each individual node degree. While

this was suitable in their particular application of interest (fingerprinting of small

chemicals, wherein no atom may be connected to more than five other atoms), it

fails to generalise to graphs with wide degree distributions.

• Lastly, GraphSAGE [64] defines several spatial graph convolutional layers with in‐

ductive properties. This includes:

– Several reparametrisations of the GCN update rule, which still suffer from

being unable to specify different importances to different neighbours;

– An LSTM‐based aggregator, which is not easy to parallelise and lacks permu‐

tation invariance over the neighbourhood;

86

– A max‐pool based aggregator, which relies on being able to subsample neigh‐

bourhoods (as applying it in parallel across the full neighbourhood of a node

is nontrivial to perform sparsely). This has the limitation of requiring sub‐

sampling at training as well as inference time—thus restricting the amount of

information available to the model.

It should be noted that there existed two proposed spatial frameworks—theMoNet [121]

and MPNNs [49]—that can generalise many other spatial approaches. Therefore—in

their general form—they do satisfy all the desirable properties of graph convolutions.

However, for both of them, the experimentally tested architectures always reduced to

one of the previously proposed ones—thus sharing their theoretical limitations.

4.3 The self‐attentional solution

In my opinion, the common issue of most previously considered methods is that they

defined the recombination weights across their neighbourhood explicitly1 (either based

on the structural properties of the graph or as a learnable weight), which required com‐

promising at least one other desirable property. Thus, I believe that the optimal graph

convolutional layers will always specify these weights implicitly—and in this chapter I

will propose self‐attention as a scalable way of doing so.

Attention mechanisms have become almost a de facto standard in many sequence‐based

tasks [5, 48]. One of the benefits of attention mechanisms is that they allow for deal‐

ing with variable sized inputs, focussing on the most relevant parts of the input to make

decisions. When an attention mechanism is used to compute a representation of a sin‐

gle sequence, it is commonly referred to as self‐attention or intra‐attention. Together

with Recurrent Neural Networks (RNNs) or convolutions, self‐attention has proven to

be useful for tasks such as machine reading [23] and learning sentence representations

[109]. However, [173] showed that not only self‐attention can improve a method based

on RNNs or convolutions, but also that it is sufficient for constructing a powerful model

obtaining state‐of‐the‐art performance on the machine translation task.

Inspired by this recent work, I introduce an attention‐based architecture to perform node

classification of graph‐structured data. The idea is to compute the hidden representations

of each node in the graph, by attending over its neighbours, following a self‐attention

1A notable exception is the MoNet framework [121] which our work can be considered an instance of.
However, in all of the experiments presented in this paper, the weights were implicitly specified based
on the graph’s structural properties, meaning that two nodes with same local topologies would always
necessarily receive the same (learned) weighting—thus still violating one of the desirable properties for a
graph convolution.

87

strategy. The attention architecture has several interesting properties: (1) the operation

is efficient, since it is parallelisable across node‐neighbour pairs; (2) it can be applied to

graph nodes having different degrees by specifying arbitrary weights to the neighbours;

and (3) the model is directly applicable to inductive learning problems, including tasks

where the model has to generalise to completely unseen graphs.

It is worth noting that, as is the case for [1] and [92], this work can also be reformulated

as a particular instance of MoNet [121]. Moreover, the approach of sharing a neural net‐

work computation across edges is reminiscent of the formulation of relational networks

[151] and VAIN [75], wherein relations between objects or agents are aggregated pair‐

wise, by employing a shared mechanism. Similarly, our proposed attention model can be

connected to the works by [34] and [37], which use a neighbourhood attention operation

to compute attention coefficients between different objects in an environment. Other

related approaches include locally linear embedding (LLE) [142] and memory networks

[186]. LLE selects a fixed number of neighbours around each data point, and learns a

weight coefficient for each neighbour to reconstruct each point as a weighted sum of its

neighbours. A second optimisation step extracts the point’s feature embedding. Memory

networks can be related to this work, in particular, if the neighbourhood of a node is

interpreted as the memory, which is used to compute the node features by attending over

its values, and then is updated by storing the new features in the same position.

4.4 GAT architecture

In this section, I will present the building block layer used to construct arbitrary graph at‐

tention networks, and directly outline its theoretical and practical benefits and limitations

compared to prior work in the domain of neural graph processing.

4.4.1 Graph attentional layer

I will start by describing a single graph attentional layer, as the sole layer utilised through‐

out all of the GAT architectures used in the experimental evaluation. The particular at‐

tentional setup utilised closely follows the work of [5]—but the framework is agnostic to

the particular choice of attention mechanism.

The input to the layer is a set of node features, H = {h⃗1, h⃗2, . . . , h⃗N}, h⃗i ∈ RF , where N

is the number of nodes, and F is the number of features in each node. The layer produces a

new set of node features (of potentially different cardinalityF ′),H′ = {h⃗′1, h⃗′2, . . . , h⃗′N}, h⃗′i ∈
RF ′

, as its output.

88

In order to obtain sufficient expressive power to transform the input features into higher‐

level features, at least one learnable linear transformation is required. To that end, as an

initial step, a shared linear transformation, parametrised by a weight matrix,W ∈ RF ′×F ,

is applied to every node. Then, self‐attention is performed on the nodes—a shared atten‐

tional mechanism a : RF ′ × RF ′ → R computes attention coefficients

eij = a(⃗hi, h⃗j) (4.1)

that indicate the importance of node j’s features to node i. In its most general formula‐

tion, the model allows every node to attend on every other node, dropping all structural

information. The graph structure is injected into the mechanism by performing masked

attention—we only compute eij for nodes j ∈ Ni, where Ni is some neighbourhood of

node i in the graph. In all experiments, these will be exactly the first‐order neighbours

of i (including i). To make coefficients easily comparable across different nodes, they are

normalised across all choices of j using the softmax function:

αij = softmaxj(eij) =
exp(eij)∑
k∈Ni

exp(eik)
(4.2)

For all experiments, the attention mechanism a is a single‐layer feedforward neural net‐

work, parametrised by a weight vector a⃗ ∈ R2F ′
, and applying the LeakyReLU nonlinear‐

ity (with negative input slope α = 0.2). Fully expanded out, the coefficients computed by

the attention mechanism (illustrated by Figure 4.1 (left)) may then be expressed as:

αij =
exp

(
LeakyReLU

(
a⃗T [Wh⃗i∥Wh⃗j]

))
∑

k∈Ni
exp

(
LeakyReLU

(
a⃗T [Wh⃗i∥Wh⃗k]

)) (4.3)

where ·T represents transposition and ∥ is the concatenation operation.

Once obtained, the normalised attention coefficients are used to compute a linear com‐

bination of the features corresponding to them, to serve as the final output features for

every node (after potentially applying a nonlinearity, σ):

h⃗′i = σ

(∑
j∈Ni

αijWh⃗j

)
(4.4)

To stabilise the learning process of self‐attention, it has been found that extending the

mechanism to employmulti‐head attention is beneficial, similarly to [173]. Specifically,K

independent attention mechanisms execute the transformation of Equation 4.4, and then

89

αij

a⃗

so
ft
m
ax

j

h⃗i h⃗j

h⃗1

h⃗2

h⃗3

h⃗4

h⃗5

h⃗6

α⃗
16

α⃗11

α⃗
12

α⃗13

α⃗ 1
4

α⃗
1
5

h⃗′1
concat/avg

Figure 4.1: Left: The attention mechanism a(⃗hi, h⃗j) employed by the GAT model,
parametrized by a weight vector a⃗ ∈ R2F ′

, applying a LeakyReLU activation. Right: An
illustration of multi‐head attention (with K = 3 heads) by node 1 on its neighborhood.
Different arrow styles and colors denote independent attention computations. The aggre‐
gated features from each head are concatenated or averaged to obtain h⃗′1.

their features are concatenated, resulting in the following output feature representation:

h⃗′i =

K

∥
k=1

σ

(∑
j∈Ni

α
(k)
ij W

(k)h⃗j

)
(4.5)

where ∥ represents concatenation, α(k)
ij are normalized attention coefficients computed

by the k‐th attention mechanism (a(k)), and W(k) is the corresponding input linear trans‐

formation’s weight matrix. Note that, in this setting, the final returned output, H′, will

consist of KF ′ features (rather than F ′) for each node.

Specially, if we perform multi‐head attention on the final (prediction) layer of the net‐

work, concatenation is no longer sensible—instead, averaging is employed, with the ap‐

plication of the final nonlinearity (usually a softmax or logistic sigmoid for classification

problems) delayed until then:

h⃗′i = σ

(
1

K

K∑
k=1

∑
j∈Ni

α
(k)
ij W

(k)h⃗j

)
(4.6)

The aggregation of a multi‐head graph attentional layer is illustrated by Figure 4.1 (right).

90

4.4.2 Theoretical properties

The graph attentional layer described in subsection 4.4.1 directly addresses several issues

that were present in prior approaches to modelling graph‐structured data with neural

networks. In this section, I will enumerate the favourable properties of the GAT layer in

turn, along with a discussion of a few of its limitations.

• Computationally, the GAT layer is highly efficient: the operation of the self‐attentional

layer can be parallelised across all edges, and the computation of output features

can be parallelised across all nodes. No eigendecompositions or similar computa‐

tionally intensive matrix operations are required. The time complexity of a single

GAT attention head computing F ′ features may be expressed as O(V FF ′ + EF ′),

where F is the number of input features, and V and E are the numbers of nodes

and edges in the graph, respectively. This complexity is on par with the baseline

methods such as Graph Convolutional Networks (GCNs) [92].

• Furthermore, the GAT layer can be expressed solely in sparse matrix operations,

reducing the storage complexity to linear in the number of nodes and edges and

enabling the execution of GAT models on larger graph datasets.

• Applying multi‐head attention multiplies the storage and parameter requirements

by a factor of K, while the individual heads’ computations are fully independent

and can be parallelised.

• The GAT layer boasts a fixed number of parameters (all contained within the atten‐

tional mechanism and pointwise transformation), and it is trivially localised (as we

only allow attending over neighbourhoods).

• As opposed to many prior approaches, GAT allows for (implicitly) assigning dif‐

ferent importances to nodes of a same neighbourhood, enabling a leap in model

capacity. Furthermore, analysing the learned attentional weights may lead to ben‐

efits in interpretability, as was the case in the machine translation domain (e.g. the

qualitative analysis of [5]).

• The attention mechanism is applied in a shared manner to all edges in the graph,

and therefore it does not depend on upfront access to the global graph structure or

(features of) all of its nodes (a limitation of many prior techniques). This makes

GATs directly applicable to inductive learning—including tasks where the model is

evaluated on graphs that are completely unseen during training.

• GraphSAGE [64] samples a fixed‐size neighbourhood of each node, in order to keep

its computational footprint consistent; this does not allow it access to the entirety

91

of the neighbourhood while performing inference. Conversely, GATworks with the

entirety of the neighbourhood (at the expense of a variable computational footprint,

which is still on‐par with methods like the GCN).

• As mentioned in Section 4.3, GAT can be reformulated as a particular instance of

MoNet [121]. Specifically, setting the pseudo‐coordinate function to be u(x, y) =

f(x)∥f(y), where f(x) represent (MLP‐transformed) features of node x and ∥ is
concatenation; and the weight function to be wj(u) = softmax(MLP(u)) (with the

softmax performed over the entire neighborhood of a node) would make MoNet’s

patch operator similar to the GAT layer. Nevertheless, one should note that, in

comparison to previously considered MoNet instances, the GAT layer uses node

features for similarity computations, rather than the node’s structural properties

(which would assume knowing the graph structure upfront).

Depending on the regularity of the graph structure in place, GPUs may not be able to

offer major performance benefits compared to CPUs in the sparse scenarios considered

here. It should also be noted that the size of the “receptive field” of graph attention net‐

works is upper‐bounded by the depth of the network (similarly as for GCN and similar

models). Techniques such as skip connections [68] could be readily applied for appro‐

priately extending the depth, however. Lastly, parallelisation across all the graph edges,

especially in a distributed manner, may involve a lot of redundant computation, as the

neighbourhoods will often highly overlap in graphs of interest.

4.5 Evaluation

I have performed comparative evaluation of GAT models against a wide variety of strong

baselines and previous approaches, on four established graph‐based benchmark tasks

(transductive as well as inductive), achieving or matching state‐of‐the‐art performance

across all of them. This section summarises the experimental setup, results, and a brief

qualitative analysis of a GAT model’s extracted feature representations.

4.5.1 Datasets

Transductive learning I utilise three standard citation network benchmark datasets—

Cora, Citeseer and Pubmed [156]—and closely follow the transductive experimental

setup of [190]. In all of these datasets, nodes correspond to documents and edges to

(undirected) citations. Node features correspond to elements of a bag‐of‐words represen‐

tation of a document. Each node has a class label. Only 20 nodes per class are allowed to

be used for training—however, honouring the transductive setup, the training algorithm

92

Table 4.1: Summary of the datasets used in the experiments.

Cora Citeseer Pubmed PPI

Task Transductive Transductive Transductive Inductive

Nodes 2,708 3,327 19,717 56,944 (24 graphs)

Edges 5,429 4,732 44,338 818,716

Fts./Node 1,433 3,703 500 50

Classes 7 6 3 121 (multilabel)

Train. Nodes 140 120 60 44,906 (20 graphs)

Val. Nodes 500 500 500 6,514 (2 graphs)

Test Nodes 1,000 1,000 1,000 5,524 (2 graphs)

has access to all of the nodes’ feature vectors. The predictive power of the trained mod‐

els is evaluated on 1,000 test nodes, and 500 additional nodes are used for validation

purposes (the same ones as used by [92]). The Cora dataset contains 2,708 nodes, 5,429

edges, 7 classes and 1,433 features per node. The Citeseer dataset contains 3,327 nodes,

4,732 edges, 6 classes and 3,703 features per node. The Pubmed dataset contains 19,717

nodes, 44,338 edges, 3 classes and 500 features per node.

Inductive learning I make use of a protein‐protein interaction (PPI) dataset that con‐

sists of graphs corresponding to different human tissues [200]. The dataset contains 20

graphs for training, 2 for validation and 2 for testing. Critically, testing graphs remain

completely unobserved during training. To construct the graphs, the preprocessed data

provided by [64] was used. The average number of nodes per graph is 2,372. Each node

has 50 features that are composed of positional gene sets, motif gene sets and immuno‐

logical signatures. There are 121 potential labels for each node set from gene ontology,

collected from the Molecular Signatures Database [165], and a node can possess several

labels simultaneously.

An overview of the interesting characteristics of the datasets is given in Table 5.1.

4.5.2 Baseline methods

Transductive learning For transductive learning tasks, I compare against the same strong

baselines and state‐of‐the‐art approaches as specified in [92]. This includes label propa‐

93

gation (LP) [198], semi‐supervised embedding (SemiEmb) [187], manifold regularization

(ManiReg) [10], skip‐gram based graph embeddings (DeepWalk) [131], the iterative clas‐

sification algorithm (ICA) [110] and Planetoid [190]. I also directly compare the GAT

model model against GCNs [92], as well as graph convolutional models utilising higher‐

order Chebyshev filters [33], and the MoNet model presented in [121].

Inductive learning For the inductive learning task, I compare against the four different

supervised GraphSAGE inductive methods presented in [64]. These provide a variety of

approaches to aggregating features within a sampled neighbourhood: GraphSAGE‐GCN

(which extends a graph convolution‐style operation to the inductive setting), GraphSAGE‐

mean (taking the elementwise mean value of feature vectors), GraphSAGE‐LSTM (aggre‐

gating by feeding the neighbourhood features into an LSTM) and GraphSAGE‐pool (tak‐

ing the elementwise maximisation operation of feature vectors transformed by a shared

nonlinear multilayer perceptron). The other transductive approaches are either com‐

pletely inappropriate in an inductive setting or assume that nodes are incrementally added

to a single graph, making them unusable for the setup where test graphs are completely

unseen during training (such as the PPI dataset).

Additionally, for both tasks I provide the performance of a per‐node shared multilayer

perceptron (MLP) classifier (that does not incorporate graph structure at all).

4.5.3 Experimental setup

Transductive learning For the transductive learning tasks, I apply a two‐layer GAT

model. Its architectural hyperparameters have been optimised on the Cora dataset and

are then reused for Citeseer. The first layer consists of K = 8 attention heads computing

F ′ = 8 features each (for a total of 64 features), followed by an exponential linear unit

(ELU) [26] nonlinearity. The second layer is used for classification: a single attention

head that computes C features (where C is the number of classes), followed by a soft‐

max activation. For coping with the small training set sizes, regularisation is liberally

applied within the model. During training, L2 regularisation with λ = 0.0005 is applied.

Furthermore, dropout [162] with p = 0.6 is applied to both layers’ inputs, as well as to

the normalised attention coefficients (critically, this means that at each training iteration,

each node is exposed to a stochastically sampled neighbourhood). Similarly as observed

by [121], I found that Pubmed’s training set size (60 examples) required slight changes to

the GAT architecture: I have applied K = 8 output attention heads (instead of one), and

strengthened the L2 regularisation to λ = 0.001. Otherwise, the architecture matches the

one used for Cora and Citeseer.

94

Inductive learning For the inductive learning task, I apply a three‐layer GAT model.

Both of the first two layers consist of K = 4 attention heads computing F ′ = 256 fea‐

tures (for a total of 1024 features), followed by an ELU nonlinearity. The final layer is

used for (multi‐label) classification: K = 6 attention heads computing 121 features each,

that are averaged and followed by a logistic sigmoid activation. The training sets for this

task are sufficiently large and I found no need to apply L2 regularisation or dropout—I

have, however, successfully employed skip connections [68] across the intermediate at‐

tentional layer. I utilise a batch size of 2 graphs during training. To strictly evaluate the

benefits of applying an attention mechanism in this setting (i.e. comparing with a near

GCN‐equivalent model), I also provide the results when a constant attention mechanism,

a(x, y) = 1, is used, with the same architecture—this will assign the same aggregation

weight to every neighbour.

Both models are initialised using Xavier initialisation [50] and trained to minimise cross‐

entropy on the training nodes using the Adam SGD optimiser [88] with an initial learning

rate of 0.01 for Pubmed, and 0.005 for all other datasets. In both cases, I use an early

stopping strategy on both the cross‐entropy loss and accuracy (transductive) or micro‐F1

(inductive) score on the validation nodes, with a patience of 100 epochs.

4.5.4 Results

The results of the comparative evaluation experiments are summarised in Tables 4.2–4.3.

For the transductive tasks, I report the mean classification accuracy (with standard devi‐

ation) on the test nodes of the GAT model after 100 runs, and reuse the metrics already

reported in [92] and [121] for state‐of‐the‐art techniques. Specifically, for the Chebyshev

filter‐based approach [33], I provide the maximum reported performance for filters of or‐

ders K = 2 and K = 3. In order to fairly assess the benefits of the attention mechanism,

I further evaluate a GCN model that computes 64 hidden features, attempting both the

ReLU and ELU activation, and reporting (as GCN‐64∗) the better result after 100 runs

(which was the ReLU in all three cases).

For the inductive task, I report the micro‐averaged F1 score on the nodes of the two

unseen test graphs, averaged after 10 runs, and reuse the metrics already reported in

[64] for the other techniques. Specifically, as the learning setup is supervised, I compare

against the supervised GraphSAGE approaches. To evaluate the benefits of aggregating

across the entire neighbourhood, I further provide (as GraphSAGE∗) the best result I was

able to achieve with GraphSAGE by just modifying its architecture (this was with a three‐

layer GraphSAGE‐LSTM with [512, 512, 726] features computed in each layer and 128

95

Table 4.2: Summary of results in terms of classification accuracies, for Cora, Citeseer and
Pubmed. GCN‐64∗ corresponds to the best GCN result computing 64 hidden features
(using ReLU or ELU).

Transductive

Method Cora Citeseer Pubmed

MLP 55.1% 46.5% 71.4%

ManiReg [10] 59.5% 60.1% 70.7%

SemiEmb [187] 59.0% 59.6% 71.7%

LP [198] 68.0% 45.3% 63.0%

DeepWalk [131] 67.2% 43.2% 65.3%

ICA [110] 75.1% 69.1% 73.9%

Planetoid [190] 75.7% 64.7% 77.2%

Chebyshev [33] 81.2% 69.8% 74.4%

GCN [92] 81.5% 70.3% 79.0%

MoNet [121] 81.7 ± 0.5% — 78.8 ± 0.3%

GCN‐64∗ 81.4 ± 0.5% 70.9 ± 0.5% 79.0 ± 0.3%

GAT (ours) 83.0 ± 0.7% 72.5 ± 0.7% 79.0 ± 0.3%

96

Table 4.3: Summary of results in terms of micro‐averaged F1 scores, for the PPI dataset.
GraphSAGE∗ corresponds to the best GraphSAGE result I was able to obtain by just
modifying its architecture. Const‐GAT corresponds to a model with the same architecture
as GAT, but with a constant attention mechanism (assigning same importance to each
neighbour; GCN‐like inductive operator).

Inductive

Method PPI

Random 0.396

MLP 0.422

GraphSAGE‐GCN [64] 0.500

GraphSAGE‐mean [64] 0.598

GraphSAGE‐LSTM [64] 0.612

GraphSAGE‐pool [64] 0.600

GraphSAGE∗ 0.768

Const‐GAT (ours) 0.934 ± 0.006

GAT (ours) 0.973 ± 0.002

97

features used for aggregating neighbourhoods). Finally, I report the 10‐run result of the

constant attention GAT model (as Const‐GAT), to fairly evaluate the benefits of the at‐

tention mechanism against a GCN‐like aggregation scheme (with the same architecture).

The reported results successfully demonstrate state‐of‐the‐art performance being achieved

or matched across all four datasets—in concordance with expectations, as per the discus‐

sion in Section 4.4.2. More specifically, the GAT model improved upon GCNs by a

margin of 1.5% and 1.6% on Cora and Citeseer, respectively, suggesting that assigning

different weights to nodes of a same neighbourhood may be beneficial. It is worth not‐

ing the improvements achieved on the PPI dataset: the GAT model improves by 20.5%

w.r.t. the best GraphSAGE result I was able to obtain, demonstrating that the model

has the potential to be applied in inductive settings, and that larger predictive power can

be leveraged by observing the entire neighbourhood. Furthermore, it improves by 3.9%

w.r.t. Const‐GAT (the identical architecture with constant attention mechanism), once

again directly demonstrating the significance of being able to assign different weights to

different neighbours.

The effectiveness of the learned feature representations may also be investigated quali‐

tatively, and for this purpose I provide a visualisation of the t‐SNE [113]‐transformed

feature representations extracted by the first layer of a GAT model pre‐trained on the

Cora dataset (Figure 4.2). The representation exhibits discernible clustering in the pro‐

jected 2D space. Note that these clusters correspond to the seven labels of the dataset,

verifying the model’s discriminative power across the seven topic classes of Cora. Addi‐

tionally, I visualise the relative strengths of the normalised attention coefficients (averaged

across all eight attention heads).

4.6 Extensions and applications

Following the publication of the original GAT paper [174], I have been delighted to wit‐

ness (and contribute to) several new lines of research wherein GAT‐like architectures have

been leveraged to solve challenging problems. In this section, I will outline two subse‐

quent contributions that I have personally been involved in, and outline several interesting

contributions by others.

4.6.1 Mesh‐based parcellation of the cerebral cortex

In this work—primarily investigated by Guillem Cucurull—we have considered the task

of cortical mesh segmentation (predicting functional regions for locations on a human

98

Figure 4.2: A t‐SNE plot of the computed feature representations of a pre‐trained GAT
model’s first hidden layer on the Cora dataset. Node colours denote classes. Edge thick‐
ness indicates aggregated normalised attention coefficients between nodes i and j, across
all eight attention heads (

∑K
k=1 α

(k)
ij + α

(k)
ji).

brain mesh). To do this, we have leveraged functional MRI data from the Human Con‐

nectome Project (HCP). We found that graph convolutional methods (such as GCNs and

GATs) are capable of setting state‐of‐the‐art results, exploiting the underlying structure

of a brain mesh better than all prior approaches, enabling more informed decisions.

The main qualitative findings of the method (clearly demonstrating improved segmenta‐

tion outputs on a given test brain) are given in Figure 4.3. In interests of brevity, further

details about the experimental setup are held out from this document—for further details,

Figure 4.3: Area parcellation qualitative results for several methods on a test subject. The
approach of Jakobsen et al. [79] is the prior state‐of‐the‐art.

99

please see [29].

4.6.2 Neural paratope prediction

Antibodies are a critical part of the immune system, having the function of directly neu‐

tralising or tagging undesirable objects (the antigens) for future destruction. Here we

consider the task of paratope prediction: predicting the amino acids of an antibody that

participate in binding to a target antigen. A viable paratope predictor is a significant

facilitator to antibody design, which in turn will contribute to the development of per‐

sonalised medicine.

In this work—performed by Andreea Deac as her Part II project (under my supervision)—

we build on Parapred, the previous state of the art approach of Liberis et al. [108], substi‐

tuting its convolutional and recurrent layers with à trous convolutional and attentional

layers, respectively. These layers have been shown to perform more favourably, and

allowed us to, for the first time, positively exploit antigen data. We do this through cross‐

modal attention, allowing amino acids of the antibody to attend over the amino acids

of the antigen (which could be seen as a GAT‐like model applied to a bipartite antibody‐

antigen graph). This allowed us to set new state‐of‐the‐art results on this task, along

with obtaining insightful interpretations about the model’s mechanism of action—some

of which may be seen in Figure 4.4.

As above, further details on the model architecture and experimental setup have been

omitted in interests of brevity—for further details, please see [32].

4.6.3 Additional related work

Lastly, I will outline several interesting relevant research directions that leverage or further

build on GAT(‐like) models. The list is by no means exhaustive.

• It is natural to extend the GAT layer to handle edge features, as they can be used

to further condition the attention mechanism—and, indeed, it is expected that the

GAT model will thrive the most in an environment with rich edge features. The

RGAT [20] and EAGCN [157] models both extend the GAT to handle discrete edge

features, while EGAT [52] fully generalises the setup for adaptive edge features. In

all cases, the recovered GAT architectures compare favourably to several baselines.

• Gated Attention Networks (GaAN) [197] introduce gating mechanisms into the

multi‐head attention system of GATs, in order to give different value to different

100

Figure 4.4: For a test antibody‐antigen complex: Left: Antibody residue binding probabil‐
ities to the antigen (in gold) assigned by our paratope predictor [32]. Right: Normalised
antigen attention weights for a single (binding) antibody residue (in red). Warmer colours
indicate higher probabilities/coefficients.

heads’ computations. Several challenging baselines are outperformed on both in‐

ductive node classification tasks (Reddit, PPI) and a spatiotemporal traffic speed

forecasting task (METR‐LA).

• DeepInf [133] leverages graph convolutional layers to modelling influence locality

(predicting whether a node will perform a particular action, given the action statuses

of its r‐hop neighbours at a particular point in time). Notably, this is the first

study where attentional mechanisms (GAT) appear to be necessary for surpassing

baseline approaches (such as SVMs or logistic regression), given the heterogeneity

of the edges. Furthermore, a comprehensive qualitative analysis is performed on

the action mechanism of the various attention heads employed by the GAT model.

• In Attention, Learn to Solve Routing Problems! [96], GAT‐like layers (using the

Transformer attention mechanism [173]) have been successfully applied to solving

combinatorial optimisation problems, specifically the Travelling Salesman Problem.

• PeerNets [167] augment a standard convolutional neural network architecture for

image classification with GAT‐like layers over a graph of “neighbouring” feature

maps from related images in a training dataset. This makes the learnt feature maps

substantially more robust, providing a strong defence against a variety of adversar‐

ial attacks while sacrificing almost no test accuracy.

• Lastly, hyperbolic attention networks [62] generalise the attentional mechanism to

101

act in hyperbolic space, making it theoretically more favourable to tasks requiring

hierarchical reasoning (which is often the case for trees and graphs). Favourable re‐

sults against a baseline GAT on Cora and Citeseer further compound these insights.

4.7 Summary

In this chapter, I have presented graph attention networks (GATs), novel convolution‐

style neural networks that operate on graph‐structured data, leveraging masked self‐

attentional layers. The graph attentional layer utilised throughout these networks is

computationally efficient (does not require costly matrix operations, and is parallelisable

across all nodes in the graph), allows for (implicitly) assigning different importances to dif‐

ferent nodes within a neighbourhood while dealing with different sized neighbourhoods,

and does not depend on knowing the entire graph structure upfront—thus addressing

many of the theoretical issues with prior approaches. Results, both within the original

GAT paper [174] and the numerous subsequently published work, highlight the impor‐

tance of such architectures towards building principled graph convolutional networks.

102

Chapter 5

Local‐global mutual information

maximisation on graphs

“If intelligence is a cake, the bulk of

the cake is unsupervised learning, the

icing on the cake is supervised

learning, and the cherry on the cake is

reinforcement learning.”

Yann LeCun

As exemplified by the above quote, from the perspective of mimicking biological systems

(primarily the brain), unsupervised learning is the most important learning setup—it re‐

quires reasoning about the entirety of the input state without any auxiliary supervision

signal, and is how humans actually learn in most cases. As a motivating example, we are

capable of extrapolating the complex features that make an entity a “cat”—to the level

where we can easily detect cats in the wild—with only a small amount of actual occasions

(e.g. during our childhood) where a supervisor was nearby to instruct us that we were,

in fact, looking at a cat. Therefore, advances in unsupervised learning are always poised

to have a wide range of immediate effects to the general state‐of‐the‐art in artificial intel‐

ligence, and substantial attention must be dedicated to its advancement.

While graph‐structured machine learning techniques have seen significant successes re‐

cently, most of the prominent methods use a supervised learning setup, which is often

not possible as most graph data in the wild is unlabelled1. In addition, it is often de‐

sirable to discover novel or interesting structure from large‐scale graphs, and as such,

unsupervised graph learning is essential for many important tasks.

1 In many cases of interest, e.g. prediction on large social networks, the task of interest may not even be
known at training time.

103

As a fitting final contribution of this dissertation, I will now restrict my attention solely

to the unsupervised learning setup on graphs. Upon highlighting several shortcomings of

combining “modern” graph convolutional architectures [49, 92, 174] with traditionally

used random walk objectives [61, 131, 169], I will present mutual information max‐

imisation as a very promising objective for unsupervised learning on graphs. Through

generalising one such approach, Deep InfoMax (DIM) [73] to the graph domain, I verify

that this is indeed a viable path—one that will be validated through extensive theoretical

and practical results throughout this chapter.

The resulting approach, Deep Graph Infomax (DGI) [175], is readily applicable to both

transductive and inductive learning setups, and it demonstrates competitive performance

on a variety of node classification benchmarks, which at times even exceeds the perfor‐

mance of supervised learning.

5.1 Preliminaries

Initially, I will outline several relevant research directions whose efforts are joined together

to create DGI—along with a comprehensive survey of related work.

5.1.1 Unsupervised graph learning

Currently, the dominant algorithms for unsupervised representation learning with graph‐

structured data rely on random walk‐based objectives [61, 64, 131, 169], sometimes fur‐

ther simplified to reconstruct adjacency information [38, 91]. The underlying intuition

is to train an encoder network so that nodes that are “close” in the input graph are also

“close” in the representation space.

While powerful—and related to traditional metrics such as the personalised PageRank

score [81]—randomwalk methods suffer from known limitations. Most prominently, the

random‐walk objective is known to over‐emphasise proximity information at the expense

of structural information [137], and performance is highly dependent on hyperparameter

choice [61, 131]. Moreover, with the introduction of stronger encoder models based on

graph convolutions [49], it is unclear whether random‐walk objectives actually provide

any useful signal, as these encoders already enforce an inductive bias that neighbouring

nodes have similar representations.

104

5.1.2 Mutual information estimation and maximisation

Through DGI, I propose an alternative objective for unsupervised graph learning that is

based on mutual information, rather than random walks. Recently, scalable estimation

of mutual information was made both possible and practical through Mutual Informa‐

tion Neural Estimation [9], which relies on training a statistics network as a classifier of

samples coming from the joint distribution of two random variables and their product

of marginals. Following on MINE, [73] introduced Deep InfoMax (DIM) for learning

representations of high‐dimensional data. DIM trains an encoder model to maximise the

mutual information between a high‐level “global” representation and “local” parts of

the input (such as patches of an image). This encourages the encoder to carry the type of

information that is present in all locations (and thus is globally relevant), such as would

be the case of a class label.

DIM relies heavily on convolutional neural network structure in the context of image

data, and to my knowledge, no work has applied mutual information maximisation to

graph‐structured inputs. Here, I adapt ideas from DIM to the graph domain, which can

be thought of as having a more general type of structure than the ones captured by con‐

volutional neural networks.

5.1.3 Related work

Contrastive methods An important approach for unsupervised learning of representa‐

tions is to train an encoder to be contrastive between representations that capture sta‐

tistical dependencies of interest and those that do not. For example, a contrastive ap‐

proach may employ a scoring function, training the encoder to increase the score on

“real” input (a.k.a. positive examples) and decrease the score on “fake” input (a.k.a.

negative samples). Contrastive methods are central to many popular word‐embedding

methods [27, 116, 119], but they are found in many unsupervised algorithms for learn‐

ing representations of graph‐structured input as well. There are many ways to score a

representation, but in the graph literature the most common techniques use classifica‐

tion [61, 65, 91, 131], though other scoring functions are used [13, 38]. DGI is also

contrastive in this respect, as our objective is based on classifying local‐global pairs and

negative‐sampled counterparts.

Sampling strategies A key implementation detail to contrastive methods is how to draw

positive and negative samples. The prior work above on unsupervised graph representa‐

tion learning relies on a local contrastive loss (enforcing proximal nodes to have similar

embeddings). Positive samples typically correspond to pairs of nodes that appear together

105

within short random walks in the graph—from a language modelling perspective, effec‐

tively treating nodes as words and random walks as sentences. Recent work by [13] uses

node‐anchored sampling as an alternative. The negative sampling for these methods is

primarily based on sampling of random pairs, with recent work adapting this approach

to use a curriculum‐based negative sampling scheme, with progressively “closer” negative

examples [191] or introducing an adversary to select the negative examples [14].

Predictive coding Contrastive predictive coding (CPC) [128] is anothermethod for learn‐

ing deep representations based on mutual information maximisation. Like the models

above, CPC is also contrastive, in this case using an estimate of the conditional density,

in the form of noise contrastive estimation [63] as the scoring function. However, un‐

like my approach, CPC and the graph methods above are all predictive: the contrastive

objective effectively trains a predictor between structurally‐specified parts of the input

(e.g. between neighbouring node pairs or between a node and its neighbourhood). Our

approach differs in that we contrast global/local parts of a graph simultaneously, where

the global variable is computed from all local variables.

To the best of my knowledge, the sole prior works that instead focus on contrasting

“global” and “local” representations on graphs do so via (auto‐)encoding objectives on

the adjacency matrix [180] and incorporation of community‐level constraints into node

embeddings [182]. Both methods rely on matrix factorisation‐style losses and are thus

not scalable to larger graphs.

5.2 DGI methodology

Now I will present the Deep Graph Infomax method in a top‐down fashion: starting with

an abstract overview of the specific unsupervised learning setup, followed by an exposi‐

tion of the objective function optimised by the method, and concluding by enumerating

all the steps of the procedure in a single‐graph setting.

5.2.1 Graph‐based unsupervised learning setup

I assume a generic graph‐based unsupervised machine learning setup: we are provided

with a set of node features, X = {x⃗1, x⃗2, . . . , x⃗N}, where N is the number of nodes in the

graph and x⃗i ∈ RF represents the features of node i. We are also provided with relational

information between these nodes in the form of an adjacency matrix, A ∈ RN×N . WhileA

may consist of arbitrary real numbers (or even arbitrary edge features), in all experiments

I will assume the graphs to be unweighted, i.e. Aij = 1 if there exists an edge i→ j in the

graph and Aij = 0 otherwise.

106

The objective is to learn an encoder, E : RN×F × RN×N → RN×F ′
, such that E(X,A) =

H = {h⃗1, h⃗2, . . . , h⃗N} represents high‐level representations h⃗i ∈ RF ′
for each node i. These

representations may then be used for downstream tasks, such as node classification.

Here the focus will be on graph convolutional encoders—a flexible class of node em‐

bedding architectures, which generate node representations by repeated aggregation over

local node neighbourhoods [49]. A key consequence is that the produced node embed‐

dings, h⃗i, summarise a patch of the graph centered around node i rather than just the

node itself. In what follows, I will often refer to h⃗i as patch representations to emphasise

this point.

5.2.2 Local‐global mutual information maximisation

DGI’s approach to learning the encoder relies on maximising local mutual information—

that is, I seek to obtain node (i.e. local) representations that capture the global informa‐

tion content of the entire graph, represented by a summary vector, s⃗.

In order to obtain the graph‐level summary vectors, s⃗, I leverage a readout function,

R : RN×F → RF , and use it to summarise the obtained patch representations into a

graph‐level representation; i.e., s⃗ = R(E(X,A)).

As a proxy for maximising the local mutual information, I employ a discriminator, D :

RF ×RF → R, such that D(⃗hi, s⃗) represents the probability scores assigned to this patch‐
summary pair (should be higher for patches contained within the summary).

Negative samples for D are provided by pairing the summary s⃗ from (X,A) with patch

representations ⃗̃hj of an alternative graph, (X̃, Ã). In a multi‐graph setting, such graphs

may be obtained as other elements of a training set. However, for a single graph, an ex‐

plicit (stochastic) corruption function, C : RN×F×RN×N → RM×F×RM×M , is required to

obtain a negative example from the original graph, i.e. (X̃, Ã) = C(X,A). The choice of
the negative sampling procedure will govern the specific kinds of structural information

that is desirable to be captured as a byproduct of this maximisation.

For the objective, I follow the intuitions fromDeep InfoMax [73] and use a noise‐contrastive

type objective with a standard binary cross‐entropy (BCE) loss between the samples from

the joint (positive examples) and the product of marginals (negative examples). Following

107

their work, I use the following objective2:

L =
1

N +M
E(X,A)

[
N∑
i=1

logD
(
h⃗i, s⃗

)
+ E(X̃,Ã)

[
M∑
j=1

log
(
1−D

(
⃗̃
hj, s⃗

))]]
(5.1)

This approach effectively maximises mutual information between h⃗i and s⃗, based on the

Jensen‐Shannon divergence3 between the joint and the product of marginals.

As all of the derived patch representations are driven to preserve mutual information

with the global graph summary, this allows for discovering and preserving similarities

on the patch‐level—for example, distant nodes with similar structural roles, which are

known to be a strong predictor for many node classification tasks [36]. Note that this is

a “reversed” version of the argument given by [73]: for node classification, our aim is for

the patches to establish links to similar patches across the graph, rather than enforcing

the summary to contain all of these similarities (however, both of these effects should in

principle occur simultaneously).

5.2.3 Theoretical motivation

I now provide some intuition that connects the classification error of the discriminator

to mutual information maximisation on graph representations.

Lemma 1. Let {X(k)}|X|
k=1 be a set of node representations drawn from an empirical proba‐

bility distribution of graphs, p(X), with finite number of elements, |X|, such that p(X(k)) =

p(X(k′)) ∀k, k′. Let R(·) be a deterministic readout function on graphs and s⃗(k) = R(X(k))

be the summary vector of the k‐th graph, with marginal distribution p(s⃗). The optimal

classifier between the joint distribution p(X, s⃗) and the product of marginals p(X)p(s⃗),

assuming class balance, has an error rate upper bounded by Err∗ = 1
2

∑|X|
k=1 p(s⃗

(k))2. This

upper bound is achieved if R is injective.

Proof. Denote by Q(k) the set of all graphs in the input set that are mapped to s⃗(k) by

R, i.e. Q(k) = {X(j) | R(X(j)) = s⃗(k)}. As R(·) is deterministic, samples from the joint,

(X(k), s⃗(k)) are drawn from the product of marginals with probability p(s⃗(k))p(X(k)), which

decomposes into:

p(s⃗(k))
∑
s⃗

p(X(k), s⃗) = p(s⃗(k))p(X(k)|s⃗(k))p(s⃗(k)) = p(X(k))∑
X′∈Q(k) p(X′)

p(s⃗(k))2 (5.2)

2Note that, in [73], a softplus version of the binary cross‐entropy is used.
3The “GAN” distance defined here—as per [54] and [126]—and Jensen‐Shannon divergence can be related
by DGAN = 2DJS − log 4. Therefore, any parameters that optimise one also optimise the other.

108

For convenience, let ρ(k) = p(X(k))∑
X′∈Q(k) p(X′)

. As, by definition,X(k) ∈ Q(k), it holds that ρ(k) ≤
1. This probability ratio is maximised at 1whenQ(k) = {X(k)}, i.e. whenR is injective for

X(k). The probability of drawing any sample of the joint from the product of marginals is

then bounded above by
∑|X|

k=1 p(s⃗
(k))2. As the probability of drawing (X(k), s⃗(k)) from the

joint is ρ(k)p(s⃗(k)) ≥ ρ(k)p(s⃗(k))2, we know that classifying these samples as coming from

the joint has a lower error than classifying them as coming from the product of marginals.

The error rate of such a classifier is then the probability of drawing a sample from the

joint as a sample from product of marginals under the mixture probability, which we can

bound by Err ≤ 1
2

∑|X|
k=1 p(s⃗

(k))2, with the upper bound achieved, as above, when R(·) is
injective for all elements of {X(k)}.

It may be useful to note that 1
2|X| ≤ Err∗ ≤ 1

2
. The first result is obtained via a trivial

application of Jensen’s inequality, while the other extreme is reached only in the edge

case of a constant readout function (when every example from the joint is also an example

from the product of marginals, so no classifier performs better than chance).

Corollary 1. From now on, assume that the readout function used,R, is injective. Assume

the number of allowable states in the space of s⃗, |s⃗|, is greater than or equal to |X|. Then,
for s⃗⋆, the optimal summary under the classification error of an optimal classifier between

the joint and the product of marginals, it holds that |s⃗⋆| = |X|.

Proof. By injectivity of R, we know that s⃗⋆ = argmins⃗ Err
∗. As the upper error bound,

Err∗, is a simple geometric sum, we know that this is minimised when p(s⃗(k)) is uniform.

As R(·) is deterministic, this implies that each potential summary state would need to be

used at least once. Combined with the condition |s⃗| ≥ |X|, we conclude that the optimum

has |s⃗⋆| = |X|.

Theorem 1. s⃗⋆ = argmaxs⃗MI(X; s⃗), where MI is mutual information.

Proof. This follows from the fact that the mutual information is invariant under invert‐

ible transforms. As |s⃗⋆| = |X| andR is injective, it has an inverse function,R−1. It follows

then that, for any s⃗, MI(X; s⃗) ≤ H(X) = MI(X;X) = MI(X;R(X)) = MI(X; s⃗⋆), where

H is entropy.

Theorem 1 shows that for finite input sets and suitable deterministic functions, minimising

the classification error in the discriminator can be used to maximise the mutual informa‐

tion between the input and output. However, as was shown in [73], this objective alone

is not enough to learn useful representations. As in their work, I discriminate between

the global summary vector and local high‐level representations.

Theorem 2. Let X(k)
i = {x⃗j}j∈n(X(k),i) be the neighbourhood of the node i in the k‐th

graph that collectively maps to its high‐level features, h⃗i = E(X(k)
i), where n is the neigh‐

bourhood function that returns the set of neighbourhood indices of node i for graph X(k),

109

and E is a deterministic encoder function. Let us assume that |Xi| = |X| = |s⃗| ≥ |⃗hi|.
Then, the h⃗i that minimises the classification error between p(⃗hi, s⃗) and p(⃗hi)p(s⃗) also

maximises MI(X(k)
i ; h⃗i).

Proof. Given our assumption of |Xi| = |s⃗|, there exists an inverse Xi = R−1(s⃗), and

therefore h⃗i = E(R−1(s⃗)), i.e. there exists a deterministic function (E ◦R−1) mapping s⃗ to

h⃗i. The optimal classifier between the joint p(⃗hi, s⃗) and the product of marginals p(⃗hi)p(s⃗)

then has (by Lemma 1) an error rate upper bound of Err∗ = 1
2

∑|X|
k=1 p(⃗h

(k)
i)2. Therefore

(as in Corollary 1), for the optimal h⃗i, |⃗hi| = |Xi|, which by the same arguments as in

Theorem 1 maximises the mutual information between the neighbourhood and high‐level

features, MI(X(k)
i ; h⃗i).

This motivates the use of a classifier between samples from the joint and the product

of marginals, and using the binary cross‐entropy (BCE) loss to optimise this classifier is

well‐understood in the context of neural network optimisation.

5.2.4 Overview of DGI

Assuming the single‐graph setup (i.e., (X,A) provided as input), we will now summarise

the steps of the Deep Graph Infomax procedure:

1. Sample a negative example by using the corruption function: (X̃, Ã) ∼ C(X,A).

2. Obtain patch representations, h⃗i for the input graph by passing it through the en‐

coder: H = E(X,A) = {h⃗1, h⃗2, . . . , h⃗N}.

3. Obtain patch representations, ⃗̃hj for the negative example by passing it through the

encoder: H̃ = E(X̃, Ã) = {⃗̃h1,
⃗̃
h2, . . . ,

⃗̃
hM}.

4. Summarise the input graph by passing its patch representations through the readout

function: s⃗ = R(H).

5. Update parameters of E , R and D by applying gradient descent to maximise the

cross‐entropy objective expressed in Equation 5.1.

This algorithm is fully summarised by Figure 5.1.

5.3 Classification performance

I have assessed the benefits of the representation learnt by the DGI encoder on a variety of

node classification tasks (transductive as well as inductive), obtaining competitive results.

In each case, DGI was used to learn patch representations in a fully unsupervised manner,

110

~xi

~̃xj

(X,A)

(X̃, Ã)

~hi

~̃
hj

(H,A)

(H̃, Ã)

E

C

E

~s

R
D

D

+

−

Figure 5.1: A high‐level overview of Deep Graph Infomax. Refer to Section 5.2.4 for
more details.

Table 5.1: Summary of the datasets used in the DGI experiments.

Dataset Task Nodes Edges Features Classes Train/Val/Test Nodes

Cora Transductive 2,708 5,429 1,433 7 140/500/1,000

Citeseer Transductive 3,327 4,732 3,703 6 120/500/1,000

Pubmed Transductive 19,717 44,338 500 3 60/500/1,000

Reddit Inductive 231,443 11,606,919 602 41 151,708/23,699/55,334

PPI Inductive
56,944

818,716 50
121 44,906/6,514/5,524

(24 graphs) (multilbl.) (20/2/2 graphs)

followed by evaluating the node‐level classification utility of these representations. This

was performed by directly using these representations to train and test a simple linear

(logistic regression) classifier.

5.3.1 Datasets

I follow the experimental setup described in [92] and [64] on the following benchmark

tasks: (1) classifying research papers into topics on the Cora, Citeseer and Pubmed cita‐

tion networks [156]; (2) predicting the community structure of a social network modelled

with Reddit posts; and (3) classifying protein roles within protein‐protein interaction (PPI)

networks [200], requiring generalisation to unseen networks.

All datasets except for Reddit have already been described in Section 4.5.1. Reddit is

a large graph dataset (231,443 nodes and 11,606,919 edges) of Reddit posts created dur‐

ing September 2014 (derived and preprocessed as in [64]). The objective is to predict

111

the posts’ community (“subreddit”), based on the GloVe embeddings of their content

and comments [129], as well as metrics such as score or number of comments. Posts

are linked together in the graph if the same user has commented on both. Reusing the

inductive setup of [64], posts made in the first 20 days of the month are used for train‐

ing, while the remaining posts are used for validation or testing and are invisible to the

training algorithm.

Further information on the datasets may be found in Table 5.1.

5.3.2 Experimental setup

For each of three experimental settings (transductive learning, inductive learning on large

graphs, and multiple graphs), I have employed distinct encoders and corruption functions

appropriate to that setting (described below).

Transductive learning For the transductive learning tasks (Cora, Citeseer and Pubmed),

the encoder is a one‐layer Graph Convolutional Network (GCN) model [92], with the

following propagation rule:

E(X,A) = σ
(
D̂− 1

2 ÂD̂− 1
2XΘ

)
(5.3)

where Â = A + IN is the adjacency matrix with inserted self‐loops and D̂ is its corre‐

sponding degree matrix; i.e. D̂ii =
∑

j Âij. For the nonlinearity, σ, I have applied the

parametric ReLU (PReLU) function [67], andΘ ∈ RF×F ′
is a learnable linear transforma‐

tion applied to every node, with F ′ = 512 features being computed (specially, F ′ = 256

on Pubmed due to memory limitations).

The corruption function used in this setting is designed to encourage the representations

to properly encode structural similarities of different nodes in the graph; for this pur‐

pose, C preserves the original adjacency matrix (Ã = A), whereas the corrupted features,

X̃, are obtained by row‐wise shuffling of X. That is, the corrupted graph consists of

exactly the same nodes as the original graph, but they are located in different places in

the graph, and will therefore receive different patch representations. I will subsequently

demonstrate that DGI is stable to other choices of corruption functions, but I find that

those that preserve the graph structure result in the strongest features.

Inductive learning on large graphs For inductive learning, the GCN update rule may no

longer be used in the encoder (as the learned filters rely on a fixed and known adjacency

matrix); instead, I apply the mean‐pooling propagation rule, as used by the GraphSAGE‐

112

~h1
~h2

~h3

~s

Figure 5.2: The DGI setup on large graphs (such as Reddit). Summary vectors, s⃗, are
obtained by combining several subsampled patch representations, h⃗i (here obtained by
sampling three and two neighbours in the first and second level, respectively).

GCN [64] model:

MP(X,A) = D̂−1ÂXΘ (5.4)

with parameters defined as in Equation 5.3. Note that multiplying by D̂−1 actually per‐

forms a normalised sum (hence the mean‐pooling). While Equation 5.4 explicitly specifies

the adjacency and degree matrices, they are not needed: identical inductive behaviour may

be observed by a constant attention mechanism across the node’s neighbours, as used by

the Const‐GAT model [174].

For Reddit, the encoder is a three‐layer mean‐pooling model with skip connections [68]:

M̃P(X,A) = σ (XΘ′∥MP(X,A)) E(X,A) = M̃P3(M̃P2(M̃P1(X,A),A),A) (5.5)

where ∥ is featurewise concatenation (i.e. the central node and its neighbourhood are

handled separately). F ′ = 512 features are computed in each MP layer, with the PReLU

activation for σ. Given the large scale of the dataset, it will not fit into GPU memory en‐

tirely. Therefore, I use the subsampling approach of [64], where a minibatch of nodes is

first selected, and then a subgraph centered around each of them is obtained by sampling

node neighbourhoods with replacement. Specifically, I sample 10, 10 and 25 neighbours

at the first, second and third level, respectively—thus, each subsampled patch has 1 + 10

+ 100 + 2500 = 2611 nodes. Only the computations necessary for deriving the central

node i’s patch representation, h⃗i, are performed. These representations are then used to

derive the summary vector, s⃗, for the minibatch (Figure 5.2). I have used minibatches of

256 nodes throughout training.

113

To define the corruption function in this setting, I use a similar approach as in the trans‐

ductive tasks, but treat each subsampled patch as a separate graph to be corrupted (i.e.

I row‐wise shuffle the feature matrices within a subsampled patch). Note that this may

very likely cause the central node’s features to be swapped out for a sampled neighbour’s

features, further encouraging diversity in the negative samples. The patch representation

obtained in the central node is then submitted to the discriminator.

Inductive learning on multiple graphs For the PPI dataset, inspired by previous success‐

ful supervised architectures [174], the encoder is a three‐layer mean‐pooling model with

dense skip connections [68, 76]:

H1 = σ (MP1(X,A)) (5.6)

H2 = σ
(
MP2(H1 +XWskip,A)

)
(5.7)

E(X,A) = σ
(
MP3(H2 +H1 +XWskip,A)

)
(5.8)

where Wskip is a learnable projection matrix, and MP is as defined in Equation 5.4. I

compute F ′ = 512 features in each MP layer, using the PReLU activation for σ.

In this multiple‐graph setting, I opted to use randomly sampled training graphs as neg‐

ative examples (i.e. the corruption function simply samples a different graph from the

training set). I have found this method to be the most stable, considering that over 40%

of the nodes have all‐zero features in this dataset. To further expand the pool of negative

examples, I also apply dropout [162] to the input features of the sampled graph. I have

found it beneficial to standardise the learnt embeddings across the training set prior to

providing them to the logistic regression model.

Readout, discriminator, and additional training details Across all three experimental

settings, I have employed identical readout functions and discriminator architectures.

For the readout function, I use a simple averaging of all the nodes’ features:

R(H) = σ

(
1

N

N∑
i=1

h⃗i

)
(5.9)

where σ is the logistic sigmoid nonlinearity. While I have found this readout to perform

the best across all our experiments, it is assumed that its power will diminish with the

increase in graph size, and in those cases, more sophisticated readout architectures such

as set2vec [179] or DiffPool [192] are likely to be more appropriate.

114

The discriminator scores summary‐patch representation pairs by applying a simple bi‐

linear scoring function (similar to the scoring used by [128]):

D(⃗hi, s⃗) = σ
(
h⃗Ti Ws⃗

)
(5.10)

Here, W is a learnable scoring matrix and σ is the logistic sigmoid nonlinearity, used to

convert scores into probabilities of (⃗hi, s⃗) being a positive example.

All models are initialised using Xavier initialisation [50] and trained to maximise the

mutual information provided in Equation 5.1 on the available nodes (all nodes for the

transductive, and training nodes only in the inductive setup) using the Adam SGD op‐

timizer [88] with an initial learning rate of 0.001 (specially, 10−5 on Reddit). On the

transductive datasets, I use an early stopping strategy on the observed training loss, with

a patience of 20 epochs. On the inductive datasets, I train for a fixed number of epochs

(150 on Reddit, 20 on PPI).

5.3.3 Results

The results of the comparative evaluation experiments are summarised in Table 5.2.

For the transductive tasks, I report the mean classification accuracy (with standard devia‐

tion) on the test nodes of the DGI method after 50 runs of training (followed by logistic re‐

gression), and reuse the metrics already reported in [92] for the performance of DeepWalk

and GCN, as well as Label Propagation (LP) [198] and Planetoid [190]—a representative

supervised random walk method. Specially, I provide results for training the logistic re‐

gression on raw input features, as well as DeepWalk with the input features concatenated.

For the inductive tasks, I report the micro‐averaged F1 score on the (unseen) test nodes,

averaged after 50 runs of training, and reuse the metrics already reported in [64] for

the other techniques. Specifically, as the setup is unsupervised, I compare against the

unsupervised GraphSAGE approaches. I also provide supervised results for two related

architectures—FastGCN [22] and Avg. pooling [197].

The results demonstrate strong performance being achieved across all five datasets. I par‐

ticularly note that the DGI approach is competitive with the results reported for the GCN

model with the supervised loss, even exceeding its performance on the Cora and Citeseer

datasets. It is assumed that these benefits stem from the fact that, indirectly, the DGI ap‐

proach allows for every node to have access to structural properties of the entire graph,

115

Table 5.2: Summary of results in terms of classification accuracies (on transductive tasks)
or micro‐averaged F1 scores (on inductive tasks). In the first column, I highlight the kind
of data available to each method during training (X: features, A: adjacency matrix, Y:
labels). “GCN” corresponds to a two‐layer DGI encoder trained in a supervised manner.

Transductive

Available data Method Cora Citeseer Pubmed

X Raw features 47.9 ± 0.4% 49.3 ± 0.2% 69.1 ± 0.3%

A,Y LP [198] 68.0% 45.3% 63.0%

A DeepWalk [131] 67.2% 43.2% 65.3%

X,A DeepWalk + features 70.7 ± 0.6% 51.4 ± 0.5% 74.3 ± 0.9%

X,A Random‐Init (ours) 69.3 ± 1.4% 61.9 ± 1.6% 69.6 ± 1.9%

X,A DGI (ours) 82.3 ± 0.6% 71.8 ± 0.7% 76.8 ± 0.6%

X,A,Y GCN [92] 81.5% 70.3% 79.0%

X,A,Y Planetoid [190] 75.7% 64.7% 77.2%

Inductive

Available data Method Reddit PPI

X Raw features 0.585 0.422

A DeepWalk [131] 0.324 —

X,A DeepWalk + features 0.691 —

X,A GraphSAGE‐GCN [64] 0.908 0.465

X,A GraphSAGE‐mean [64] 0.897 0.486

X,A GraphSAGE‐LSTM [64] 0.907 0.482

X,A GraphSAGE‐pool [64] 0.892 0.502

X,A Random‐Init (ours) 0.933 ± 0.001 0.626 ± 0.002

X,A DGI (ours) 0.940 ± 0.001 0.638 ± 0.002

X,A,Y FastGCN [22] 0.937 —

X,A,Y Avg. pooling [197] 0.958 ± 0.001 0.969 ± 0.002

116

whereas the supervised GCN is limited to only two‐layer neighbourhoods (by the extreme

sparsity of the training signal and the corresponding threat of overfitting). It should be

noted that, while DGI is capable of outperforming equivalent supervised encoder archi‐

tectures, this performance still does not surpass the current supervised transductive state

of the art (which is held by methods such as GraphSGAN [35]). It can further be ob‐

served that the DGI method successfully outperformed all the competing unsupervised

GraphSAGE approaches on the Reddit and PPI datasets—thus verifying the potential of

methods based on local mutual information maximisation in the inductive node classifi‐

cation domain. The Reddit results are competitive with the supervised state of the art,

whereas on PPI the gap is still large—I believe this can be attributed to the extreme spar‐

sity of available node features (over 40% of the nodes having all‐zero features), that our

encoder heavily relies on.

I note that a randomly initialised graph convolutional network may already extract highly

useful features and represents a strong baseline—a well‐known fact, considering its links

to the Weisfeiler‐Lehman graph isomorphism test [185], that have already been high‐

lighted and analysed by [92] and [64]. As such, I also provide, as Random‐Init, the logis‐

tic regression performance on embeddings obtained from a randomly initialised encoder.

Besides demonstrating that DGI is able to further improve on this strong baseline, it par‐

ticularly reveals that, on the inductive datasets, previous random walk‐based negative

sampling methods may have been ineffective in conjunction with a GCN‐based encoder

for learning appropriate features for the classification task.

Lastly, It should be noted that deeper encoders correspond to more pronounced mixing

between recovered patch representations, reducing the effective variability of the posi‐

tive/negative examples’ pool. I believe that this is the reason why shallower architectures

performed better on some of the datasets. While it cannot be said that these trends will

hold in general, with the DGI loss function I generally found benefits from employing

wider, rather than deeper models.

5.4 Qualitative analysis

To compound the quantitative results, I have performed a diverse set of analyses on the

embeddings learnt by the DGI algorithm in order to better understand the properties of

DGI. I focus the analysis exclusively on the Cora dataset (as it has the smallest number

of nodes, significantly aiding clarity).

117

Figure 5.3: t‐SNE embeddings of the nodes in the Cora dataset from the raw features
(left), features from a randomly initialised DGI model (middle), and a learned DGI model
(right). The clusters of the learned DGI model’s embeddings are clearly defined, with a
Silhouette score of 0.234.

Figure 5.4: Discriminator scores, D
(
h⃗i, s⃗

)
, attributed to each node in the Cora dataset

shown over a t‐SNE of the DGI algorithm. Shown for both the original graph (left) and
a negative sample (right).

5.4.1 Embedding space visualisation

A standard set of “evolving” t‐SNE plots [113] of the embeddings is given in Figure 5.3.

As expected given the quantitative results, the learnt embeddings’ 2D projections exhibit

discernible clustering in the 2D projected space (especially compared to the raw features

and Random‐Init), which respects the seven topic classes of Cora. The projection obtains

a Silhouette score [141] of 0.234, which compares favourably with the previous reported

score of 0.158 for Embedding Propagation [38].

5.4.2 DGI learning mechanism

I have ran further analyses, revealing insights into DGI’s mechanism of learning, isolating

biased embedding dimensions for pushing the negative example scores down and using

the remainder to encode useful information about positive examples. I then leveraged

these insights to retain competitive performance to the supervised GCN even after half

the dimensions are removed from the patch representations provided by the encoder.

118

0 100 200 300 400 500
0

100

200

300

400

500

Dimension

N
od

e

Visualizing top positive/negative samples

0.04

0.02

0.00

0.02

0.04

·10−2

Figure 5.5: The learnt embeddings of the highest‐scored positive examples (upper half),
and the lowest‐scored negative examples (lower half).

Visualising discriminator scores After obtaining the t‐SNE visualisations, attention has

turned to the discriminator—and I have visualised the scores it attached to various nodes,

for both the positive and a (randomly sampled) negative example (Figure 5.4). From here,

an interesting observation can be made—within the “clusters” of the learnt embeddings

on the positive Cora graph, only a handful of “hot” nodes are selected to receive high dis‐

criminator scores. This suggests that there may be a clear distinction between embedding

dimensions used for discrimination and classification, which I more thoroughly investi‐

gate in the next paragraph. In addition, it may be observed that, as expected, the model

is unable to find any strong structure within a negative example. Lastly, a few negative

examples achieve high discriminator scores—a phenomenon caused by the existence of

low‐degree nodes in Cora (making the probability of a node ending up in an identical

context it had in the positive graph non‐negligible).

Impact and role of embedding dimensions Guided by the previous result, I have visu‐

alised the embeddings for the top‐scoring positive and negative examples (Figure 5.5).

The analysis revealed existence of distinct dimensions in which both the positive and neg‐

ative examples are strongly biased. I hypothesise that, given the random shuffling, the

average expected activation of a negative example is zero, and therefore strong biases

are required to “push” the example down in the discriminator. The positive examples

may then use the remaining dimensions to both counteract this bias and encode patch

119

0 100 200 300 400 500
65

70

75

80

85

Dimensions removed

Te
st

ac
cu

ra
cy

DGI classification: robustness to removing dimensions

DGI (p ↑)
DGI (p ↓)
GCN
Random-Init

0 100 200 300 400 500

0

500

1,000

1,500

2,000

2,500

Dimensions removed

E
xa

m
pl

es
m

is
cl

as
si

fie
d

by
D

DGI discriminator: robustness to removing dimensions

+ (p ↓)
− (p ↓)
+ (p ↑)
− (p ↑)

Figure 5.6: Classification performance (in terms of test accuracy of logistic regression;
left) and discriminator performance (in terms of number of poorly discriminated posi‐
tive/negative examples; right) on the learnt DGI embeddings, after removing a certain
number of dimensions from the embedding—either starting with most distinguishing (p ↑)
or least distinguishing (p ↓).

similarity. To substantiate this claim, I have ordered the 512 dimensions based on how

distinguishable the positive and negative examples are in them (using p‐values obtained

from a t‐test as a proxy). I then remove these dimensions from the embedding, respect‐

ing this order—either starting from the most distinguishable (p ↑) or least distinguishable
dimensions (p ↓)—monitoring how this affects both classification and discriminator per‐

formance (Figure 5.6). The observed trends largely support my hypothesis: if we start

by removing the biased dimensions first (p ↓), the classification performance holds up

for much longer (allowing for removing over half of the embedding dimensions while

remaining competitive to the supervised GCN), and the positive examples mostly remain

correctly discriminated until well over half the dimensions are removed.

5.5 Corruption function robustness

To conclude this chapter, I consider alternatives to the corruption function, C, used to

produce negative graphs. I generally find that, for the node classification task, DGI is

stable and robust to different strategies. However, for learning graph features towards

other kinds of tasks, the design of appropriate corruption strategies remains an area of

open research.

The corruption function described in Section 5.3.2 preserves the original adjacency ma‐

trix (Ã = A) but corrupts the features, X̃, via row‐wise shuffling of X. In this case, the

negative graph is constrained to be isomorphic to the positive graph, which should not

120

have to be mandatory. One can instead produce a negative graph by directly corrupting

the adjacency matrix.

Therefore, I first consider an alternative corruption function C which preserves the fea‐

tures (X̃ = X) but instead adds or removes edges from the adjacency matrix (Ã ̸= A).

This is done by sampling, i.i.d., a switch parameter Σij, which determines whether to

corrupt the adjacency matrix at position (i, j). Assuming a given corruption rate, ρ, C
may be defined as performing the following operations:

Σij ∼ Bernoulli(ρ) (5.11)

Ã = A⊕Σ (5.12)

where ⊕ is the XOR (exclusive OR) operation.

This alternative strategy produces a negative graph with the same features, but different

connectivity. Here, the corruption rate of ρ = 0 corresponds to an unchanged adjacency

matrix (i.e. the positive and negative graphs are identical in this case). In this regime,

learning is impossible for the discriminator, and the performance of DGI is in line with a

randomly initialised DGI model. At higher rates of noise, however, DGI produces com‐

petitive embeddings.

I have also considered simultaneous feature shuffling (X̃ ̸= X) and adjacency matrix

perturbation (Ã ̸= A), both as described before. I find that DGI still learns useful fea‐

tures under this compound corruption strategy—as expected, given that feature shuffling

is already equivalent to an (isomorphic) adjacency matrix perturbation.

From both studies, it may be observed that a certain lower bound on the positive graph

perturbation rate is required to obtain competitive node embeddings for the classifica‐

tion task on Cora. Furthermore, the features learned for downstream node classification

tasks are most powerful when the negative graph has similar levels of connectivity to the

positive graph.

The classification performance peaks when the graph is perturbed to a reasonably high

level, but remains sparse; i.e. the mixing between the separate 1‐step patches is not sub‐

stantial, and therefore the pool of negative examples is still diverse enough. Classification

performance is impacted only marginally at higher rates of corruption—corresponding to

dense negative graphs, and thus a less rich negative example pool—but still considerably

outperforming the unsupervised baselines considered here. This could be seen as fur‐

121

10−6 10−5 10−4 10−3 10−2 10−1 100

70

75

80

Corruption rate, ρ

Te
st

ac
cu

ra
cy

Classification accuracy for A corruption

X̃ = X
GCN
Random-Init

Figure 5.7: DGI also works under a corruption function that modifies only the adjacency
matrix (Ã ̸= A) on the Cora dataset. The left range (ρ → 0) corresponds to no modifi‐
cations of the adjacency matrix—therein, performance approaches that of the randomly
initialised DGI model. As ρ increases, DGI produces more useful features, but ultimately
fails to outperform the feature‐shuffling corruption function. N.B. log scale used for ρ.

ther motivation for relying solely on feature shuffling, without adjacency perturbations—

given that feature shuffling is a trivial way to guarantee a diverse set of negative examples,

without incurring significant computational costs per epoch.

The results of this study are visualised in Figures 5.7 and 5.8.

5.6 Summary

In this chapter, I have presented Deep Graph Infomax (DGI), a new approach for learn‐

ing unsupervised representations on graph‐structured data. By leveraging local mutual

information maximisation across the graph’s patch representations—obtained by power‐

ful graph convolutional architectures—I have been able to obtain node embeddings that

are mindful of the global structural properties of the graph. This enables competitive

performance across a variety of both transductive and inductive classification tasks, at

times even outperforming relevant supervised architectures.

122

10−6 10−5 10−4 10−3 10−2 10−1 100

80

81

82

Corruption Rate, ρ

Te
st

ac
cu

ra
cy

Classification accuracy for (X,A) corruption

X̃ 6= X
GCN

Figure 5.8: DGI is stable and robust under a corruption function that modifies both
the feature matrix (X ̸= X̃) and the adjacency matrix (Ã ̸= A) on the Cora dataset.
Corruption functions that preserve sparsity (ρ ≈ 1

N
) perform the best. However, DGI

still performs well even with large disruptions (where edges are added or removed with
probabilities approaching 1). N.B. log scale used for ρ.

123

124

Chapter 6

Conclusions

“Seldom do more than a few of

nature’s secrets give way at one time.

It will be all too easy for our

somewhat artificial prosperity to

collapse overnight when it is realised

that the use of a few exciting words

like information, entropy, redundancy,

do not solve all our problems.”

Claude E. Shannon

This dissertation has investigated the effects of introducing bespoke structural inductive

biases into a series of popular neural network architectures and optimisation algorithms.

The primary argument posed here—that such bespoke solutions are necessary whenever

the problem setup or data environment is not optimal for “standard” application of deep

learning, has been consistently validated across its chapters.

I will conclude the writeup by briefly summarising the key contributions once more, fol‐

lowed by an overview of one of the most important avenues where further work in the

area should be deployed.

6.1 Summary of contributions

• In Chapter 3, I have pioneered two early fusion architectures for cross‐modal learn‐

ing on homogeneous modalities: the X‐CNN [176] for images and X‐LSTM [177]

for sequential data. In both cases, it has been shown that these architectures can

bring tangible benefits, especially under challenging data scenarios (such as small

sample sizes or missing observations). Furthermore, despite the perceived difficulty

125

of optimising such an architecture’s hyperparameters, as well as generalising it to

heterogeneous scenarios, it has been found that both of these challenges can be

managed; primarily through the Xsertion library, developed by Laurynas Karazija

[87], and the XFlow architecture, developed by Cătălina Cangea [21]—both under

my co‐supervision.

• In Chapter 4, I have outlined the required theoretical properties that a graph convo‐

lutional layer should have. Upon concluding that none of the previous experimen‐

tally validated architectures have met all of this criteria, I have proposed Graph

Attention Networks (GATs) [174] as the first operator to do so. GAT’s reliance

onmasked self‐attentional layersmakes it both theoretically powerful and scalable,

which has been confirmed by both quantitative and qualitative analyses. The layer

is now commonly used within graph neural network architectures, prominently fea‐

turing in many successful follow‐up studies, including two that I’ve personally been

involved in: the work of Guillem Cucurull onmesh‐based cortical parcellation [29]

and the work of Andreea Deac on neural paratope prediction [32] (performed under

my direct supervision).

• In Chapter 5, I have focussed on the problem of unsupervised graph representation

learning, realising that the traditionally used random walk objectives are incom‐

patible with the recently proposed graph convolutional network encoders. As a

remedy, I have adopted the approach of local‐global mutual information maximi‐

sation which has seen success in the image domain, and generalised it to the graph‐

structured domain. This contribution is embodied in the Deep Graph Infomax

(DGI) [175] method, which successfully outperformed many strong unsupervised

baselines, and in some cases even the supervised variant of its encoder. Substan‐

tial qualitative studies verify the method’s robustness, discriminative power, and

provide further insights into its learning mechanism. I believe that this is a highly

promising approach for generic representation learning, and am hopeful to see it ex‐

tended in the future tomore generic graph‐structured inputs (such as spatiotemporal

graphs, allowing for dynamically modifying the node properties through time).

6.2 Structural inductive biases meet reinforcement learning

It is obvious that the generality of exploiting domain‐specific structure readily lends itself

to a vast amount of avenues for future work. As such, I choose not to make a compre‐

hensive overview of these avenues at the very end of this dissertation. Rather, I prefer to

focus my attention on only one such avenue, where not only I believe such methods can

readily thrive, but also one that I hope to personally contribute to over the years follow‐

126

ing the submission of this dissertation.

Namely, it concerns the marriage between structural inductive biases (especially on graph‐

structured data) and reinforcement learning. Reinforcement learning has been a critical

component in many of deep learning’s largest successes [120, 158], but it represents a

highly challenging environment for algorithms to learn in. Often, large quantities of in‐

put must be consumed before any useful reward signal is observed. Therefore, I argue

that, perhaps especially in this setting, useful inductive biases can and should readily be

exploited. A few such avenues, especially in relation to the methods covered in this dis‐

sertation, can be summarised by the following:

• Enabling processing of cross‐modal inputs. Often, the observations given to us

by an RL environment can be multimodal—although most of the ongoing work

leveraging environments such as the OpenAI Gym [15] inherently discard all but

the visual one. This is unlikely to be optimal even for the videogame setting, as often

very useful cues are given to the player about the obtained reward (or proximity to

the reward) in aural form. Cross‐modal architectures—such as the early‐fusion

ones described in Chapter 3—may then be leveraged to accomplish efficient usage

of such additional signals, accelerating the learning procedure.

• Various aspects of the reinforcement learning statemay be represented using graphs.

For example, it may be possible to extract information about the relations between

separate objects in the agent’s field of view, thus enabling a more causal way of

reasoning about the actions (i.e. deriving conclusions such as “performing an ac‐

tion on object 1 may perturb object 2, but should probably not affect object 2”).

Such conclusions may greatly aid the agent’s processing power on the input signal

and, once again, accelerate learning. Some advances have already been made in

this direction through relational networks [194], but they rely on a complete graph

of patch representations, which uses substantially more edges than are really neces‐

sary. Making further progress reduces to the problem of latent graph inference, for

which the current best result is the NRI model [90]—and substantial further work

is required, given that the NRI’s applicability is commonly limited to systems with

small numbers of entities, governed by simple physical laws.

• The RL agent itself may internalise a graph structure with respect to itself—for

example, in any kind of robotics or locomotion task, the agent’s joints may be

represented as a graph—thus allowing for a more relational approach to the output

movements given to the environment. Arguably, some of the most positive results

already exist for this direction, primarily in [149] and [181], where expressing the

various agents’ components as nodes in a graph in the MuJoCo environment [171]

127

allowed for more robust control behaviour.

• Lastly, I am highly interested in the problem of continual learning—attempting to

simultaneously learn to perform multiple tasks within a single architecture. Prior

prominent approaches to this involve progressive neural networks [145] and elastic

weight consolidation [93] as well as combining the two [155], but I believe that

this is another area where graph‐structured methodologies can be helpful. Namely,

all tasks of interest could be represented as nodes in a graph, with edges ideally

encoding some form of information about how individual tasks are related (and

therefore, how information from one may benefit the other). The graph structure

could, for example, be used to govern the exchange of high‐level features in a princi‐

pled way. This would, significantly, allow learning signal to flow in both directions

(from more recently learned tasks to earlier ones), which was a key limitation of

several prior attempts. While it is at this time unclear how such a graph may be con‐

structed, recent prominent works such as Taskonomy [195] illustrate one way in

which tasks can be related for the purposes of computer vision, and could therefore

serve as valuable inspiration.

128

Bibliography

[1] James Atwood and Don Towsley. Diffusion‐convolutional neural networks. In

Advances in Neural Information Processing Systems, pages 1993–2001, 2016.

[2] Yusuf Aytar, Carl Vondrick, and Antonio Torralba. See, hear, and read: Deep

aligned representations. arXiv preprint arXiv:1706.00932, 2017.

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.

arXiv preprint arXiv:1607.06450, 2016.

[4] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. SegNet: A Deep Con‐

volutional Encoder‐Decoder Architecture for Scene Segmentation. IEEE Transac‐

tions on Pattern Analysis and Machine Intelligence, 2017.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans‐

lation by jointly learning to align and translate. In International Conference on

Learning Representations, 2015.

[6] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. In‐

teraction networks for learning about objects, relations and physics. In Advances

in neural information processing systems, pages 4502–4510, 2016.

[7] PeterWBattaglia, Jessica BHamrick, Victor Bapst, Alvaro Sanchez‐Gonzalez, Vini‐

cius Zambaldi, MateuszMalinowski, Andrea Tacchetti, David Raposo, Adam San‐

toro, Ryan Faulkner, et al. Relational inductive biases, deep learning, and graph

networks. arXiv preprint arXiv:1806.01261, 2018.

[8] Anton L. Beer, Tina Plank, andMarkW. Greenlee. Diffusion tensor imaging shows

white matter tracts between human auditory and visual cortex. Experimental Brain

Research, 213(2):299–308, 2011.

[9] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua

Bengio, Aaron Courville, and Devon Hjelm. Mutual information neural estima‐

tion. In Proceedings of the 35th International Conference on Machine Learning,

volume 80 of Proceedings of Machine Learning Research, pages 531–540, Stock‐

holmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

129

[10] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A

geometric framework for learning from labeled and unlabeled examples. Journal

of machine learning research, 7(Nov):2399–2434, 2006.

[11] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A

review and new perspectives. IEEE transactions on pattern analysis and machine

intelligence, 35(8):1798–1828, 2013.

[12] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer‐

wise training of deep networks. In Advances in neural information processing

systems, pages 153–160, 2007.

[13] Aleksandar Bojchevski and Stephan Günnemann. Deep Gaussian Embedding of

Graphs: Unsupervised Inductive Learning via Ranking. In International Confer‐

ence on Learning Representations, 2018.

[14] Avishek Bose, Huan Ling, and Yanshuai Cao. Adversarial Contrastive Estimation.

In ACL, 2018.

[15] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul‐

man, Jie Tang, and Wojciech Zaremba. OpenAI Gym. arXiv preprint

arXiv:1606.01540, 2016.

[16] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van‐

dergheynst. Geometric deep learning: going beyond euclidean data. IEEE Signal

Processing Magazine, 34(4):18–42, 2017.

[17] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral net‐

works and locally connected networks on graphs. In International Conference on

Learning Representations, 2014.

[18] Michael Buhrmester, Tracy Kwang, and Samuel D Gosling. Amazon’s Mechani‐

cal Turk: A new source of inexpensive, yet high‐quality, data? Perspectives on

psychological science, 6(1):3–5, 2011.

[19] Yaroslav Bulatov. notMNIST dataset. 2011.

[20] Dan Busbridge, Dane Sherburn, Pietro Cavallo, and Nils Y. Hammerla. Relational

Graph Attention Networks, 2019.

[21] Cătălina Cangea, Petar Veličković, and Pietro Liò. XFlow: 1D‐2D Cross‐

modal Deep Neural Networks for Audiovisual Classification. arXiv preprint

arXiv:1709.00572, 2017.

130

[22] Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: Fast Learning with Graph Con‐

volutional Networks via Importance Sampling. In International Conference on

Learning Representations, 2018.

[23] Jianpeng Cheng, Li Dong, and Mirella Lapata. Long Short‐Term Memory‐

Networks for Machine Reading. In EMNLP, 2016.

[24] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning Phrase Repre‐

sentations using RNN Encoder–Decoder for Statistical Machine Translation. In

EMNLP, 2014.

[25] François Chollet et al. Keras. https://keras.io, 2015.

[26] Djork‐Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and Accurate

Deep Network Learning by Exponential Linear Units (ELUs). In International

Conference on Learning Representations, 2016.

[27] Ronan Collobert and Jason Weston. A unified architecture for natural language

processing: Deep neural networks with multitask learning. In Proceedings of the

25th International Conference on Machine Learning, pages 160–167. ACM, 2008.

[28] Tim Cooijmans, Nicolas Ballas, César Laurent, Çağlar Gülçehre, and Aaron

Courville. Recurrent Batch Normalization. In International Conference on Learn‐

ing Representations, 2017.

[29] Guillem Cucurull, Konrad Wagstyl, Arantxa Casanova, Petar Veličković, Estrid

Jakobsen, Michal Drozdzal, Adriana Romero, Alan Evans, and Yoshua Bengio.

Convolutional neural networks for mesh‐based parcellation of the cerebral cortex.

In International Conference on Medical Imaging with Deep Learning, 2018.

[30] George Cybenko. Approximation by superpositions of a sigmoidal function.Math‐

ematics of control, signals and systems, 2(4):303–314, 1989.

[31] Manlio De Domenico, Clara Granell, Mason A Porter, and Alex Arenas. The

physics of spreading processes in multilayer networks. Nature Physics, 12:901 EP

–, 08 2016.

[32] Andreea Deac, Petar Veličković, and Pietro Sormanni. Attentive cross‐modal

paratope prediction. Journal of Computational Biology, 2018.

[33] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional

neural networks on graphs with fast localized spectral filtering. In Advances in

Neural Information Processing Systems, pages 3844–3852, 2016.

131

https://keras.io

[34] Misha Denil, Sergio Gómez Colmenarejo, Serkan Cabi, David Saxton, and Nando

de Freitas. Programmable agents. arXiv preprint arXiv:1706.06383, 2017.

[35] Ming Ding, Jie Tang, and Jie Zhang. Semi‐supervised Learning on Graphs with

Generative Adversarial Nets. In Proceedings of the 27th ACM International Con‐

ference on Information and Knowledge Management, CIKM 2018, Torino, Italy,

October 22‐26, 2018.

[36] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. Learning Struc‐

tural Node Embeddings via Diffusion Wavelets. In International ACM Conference

on Knowledge Discovery and Data Mining (KDD), volume 24, 2018.

[37] Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas

Schneider, Ilya Sutskever, Pieter Abbeel, and Wojciech Zaremba. One‐shot imita‐

tion learning. In Advances in neural information processing systems, pages 1087–

1098, 2017.

[38] Alberto Garcia Duran andMathias Niepert. Learning Graph Representations with

Embedding Propagation. In Advances in Neural Information Processing Systems,

pages 5119–5130, 2017.

[39] David K Duvenaud, DougalMaclaurin, Jorge Iparraguirre, Rafael Bombarell, Tim‐

othy Hirzel, Alán Aspuru‐Guzik, and Ryan P Adams. Convolutional networks on

graphs for learning molecular fingerprints. In Advances in neural information pro‐

cessing systems, pages 2224–2232, 2015.

[40] Mark A Eckert, Nirav V Kamdar, Catherine E Chang, Christian F Beckmann,

Michael D Greicius, and Vinod Menon. A cross‐modal system linking primary

auditory and visual cortices: Evidence from intrinsic fMRI connectivity analysis.

Human brain mapping, 29(7):848–857, 2008.

[41] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211,

1990.

[42] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre‐Antoine Manzagol, Pas‐

cal Vincent, and Samy Bengio. Why does unsupervised pre‐training help deep

learning? Journal of Machine Learning Research, 11(Feb):625–660, 2010.

[43] Ernesto Estrada and Jesús Gómez‐Gardeñes. Communicability reveals a transition

to coordinated behavior in multiplex networks. Physical Review E, 89(4):042819,

2014.

132

[44] Paolo Frasconi, Marco Gori, and Alessandro Sperduti. A general framework for

adaptive processing of data structures. IEEE transactions on Neural Networks,

9(5):768–786, 1998.

[45] Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of

dropout in recurrent neural networks. In Advances in neural information pro‐

cessing systems, pages 1019–1027, 2016.

[46] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep Bayesian Active Learn‐

ing with Image Data. In Proceedings of the 34th International Conference on

Machine Learning (ICML‐17), 2017.

[47] Marta Garnelo, Kai Arulkumaran, andMurray Shanahan. Towards deep symbolic

reinforcement learning. arXiv preprint arXiv:1609.05518, 2016.

[48] Jonas Gehring, Michael Auli, David Grangier, and Yann N. Dauphin. A Convolu‐

tional Encoder Model for Neural Machine Translation. In ACL, 2016.

[49] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.

Dahl. Neural Message Passing for Quantum Chemistry. In Proceedings of the

34th International Conference on Machine Learning, volume 70 of Proceedings of

Machine Learning Research, pages 1263–1272, International Convention Centre,

Sydney, Australia, 06–11 Aug 2017. PMLR.

[50] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep

feedforward neural networks. In Proceedings of the thirteenth international con‐

ference on artificial intelligence and statistics, pages 249–256, 2010.

[51] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural

networks. In Proceedings of the fourteenth international conference on artificial

intelligence and statistics, pages 315–323, 2011.

[52] Liyu Gong and Qiang Cheng. Adaptive Edge Features Guided Graph Attention

Networks. arXiv preprint arXiv:1809.02709, 2018.

[53] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learn‐

ing, volume 1. MIT press Cambridge, 2016.

[54] Ian Goodfellow, Jean Pouget‐Abadie, Mehdi Mirza, Bing Xu, David Warde‐Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In

Advances in neural information processing systems, pages 2672–2680, 2014.

133

[55] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harness‐

ing adversarial examples. In International Conference on Learning Representa‐

tions, 2015.

[56] Ian Goodfellow, David Warde‐Farley, Mehdi Mirza, Aaron Courville, and Yoshua

Bengio. Maxout networks. In Proceedings of the 30th International Conference

on Machine Learning, volume 28 of Proceedings of Machine Learning Research,

pages 1319–1327, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

[57] Nelson Goodman. The new riddle of induction. 1965.

[58] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning

in graph domains. In IEEE International Joint Conference on Neural Networks,

page 729–734, 2005.

[59] Clara Granell, Sergio Gómez, and Alex Arenas. Competing spreading processes on

multiplex networks: awareness and epidemics. Physical Review E, 90(1):012808,

2014.

[60] Thomas LGriffiths, Nick Chater, Charles Kemp, Amy Perfors, and Joshua B Tenen‐

baum. Probabilistic models of cognition: Exploring representations and inductive

biases. Trends in cognitive sciences, 14(8):357–364, 2010.

[61] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for net‐

works. In Proceedings of the 22nd ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 855–864. ACM, 2016.

[62] Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu,

Karl Moritz Hermann, Peter Battaglia, Victor Bapst, David Raposo, Adam San‐

toro, and Nando de Freitas. Hyperbolic Attention Networks. In International

Conference on Learning Representations, 2019.

[63] Michael Gutmann and Aapo Hyvärinen. Noise‐contrastive estimation: A new

estimation principle for unnormalized statistical models. In Proceedings of the

Thirteenth International Conference on Artificial Intelligence and Statistics, pages

297–304, 2010.

[64] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive Representation

Learning on Large Graphs. Neural Information Processing Systems (NIPS), 2017.

[65] William L. Hamilton, Rex Ying, and Jure Leskovec. Representation Learning on

Graphs: Methods and Applications. IEEE Data Eng. Bull., 40:52–74, 2017.

134

[66] Stevan Harnad. The symbol grounding problem. Physica D: Nonlinear Phenom‐

ena, 42(1‐3):335–346, 1990.

[67] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti‐

fiers: Surpassing human‐level performance on imagenet classification. In Proceed‐

ings of the IEEE international conference on computer vision, pages 1026–1034,

2015.

[68] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[69] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on

graph‐structured data. arXiv preprint arXiv:1506.05163, 2015.

[70] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel‐rahman Mohamed,

Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N

Sainath, et al. Deep neural networks for acoustic modeling in speech recogni‐

tion: The shared views of four research groups. IEEE Signal processing magazine,

29(6):82–97, 2012.

[71] Geoffrey E Hinton, Simon Osindero, and Yee‐Whye Teh. A fast learning algorithm

for deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[72] Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules with EM

routing. In International Conference on Learning Representations, 2018.

[73] R Devon Hjelm, Alex Fedorov, Samuel Lavoie‐Marchildon, Karan Grewal, Phil

Bachman, Adam Trischler, and Yoshua Bengio. Learning deep representations by

mutual information estimation and maximization. In International Conference on

Learning Representations, 2019.

[74] Sepp Hochreiter and Jürgen Schmidhuber. Long short‐term memory. Neural com‐

putation, 9(8):1735–1780, 1997.

[75] Yedid Hoshen. VAIN: Attentional multi‐agent predictive modeling. In Advances

in Neural Information Processing Systems, pages 2701–2711, 2017.

[76] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.

Densely Connected Convolutional Networks. In CVPR, volume 1, page 3, 2017.

[77] Drew Arad Hudson and Christopher D. Manning. Compositional Attention Net‐

works for Machine Reasoning. In International Conference on Learning Repre‐

sentations, 2018.

135

[78] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Net‐

work Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd

International Conference onMachine Learning ‐ Volume 37, ICML’15, pages 448–

456, 2015.

[79] Estrid Jakobsen, Franziskus Liem, Manousos A Klados, Seyma Bayrak, Michael

Petrides, and Daniel S Margulies. Automated individual‐level parcellation of

Broca’s region based on functional connectivity. Neuroimage, 2016.

[80] Simon Jégou, Michal Drozdzal, David Vázquez, Adriana Romero, and Yoshua

Bengio. The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for

Semantic Segmentation. In Workshop on Computer Vision in Vehicle Technology

CVPRW, 2017.

[81] Glen Jeh and Jennifer Widom. Scaling personalized web search. In Proceedings of

the 12th International Conference on the World Wide Web, pages 271–279. ACM,

2003.

[82] Michael I Jordan. Serial order: A parallel distributed processing approach. In

Advances in psychology, volume 121, pages 471–495. Elsevier, 1997.

[83] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In‐

datacenter performance analysis of a tensor processing unit. In Computer Archi‐

tecture (ISCA), 2017 ACM/IEEE 44th Annual International Symposium on, pages

1–12. IEEE, 2017.

[84] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration

of recurrent network architectures. In International Conference onMachine Learn‐

ing, pages 2342–2350, 2015.

[85] Lukasz Kaiser, Aidan N Gomez, Noam Shazeer, Ashish Vaswani, Niki Parmar,

Llion Jones, and Jakob Uszkoreit. One model to learn them all. arXiv preprint

arXiv:1706.05137, 2017.

[86] Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex

Graves, and Koray Kavukcuoglu. Neural machine translation in linear time. arXiv

preprint arXiv:1610.10099, 2016.

[87] Laurynas Karazija, Petar Veličković, and Pietro Liò. Automatic Inference of Cross‐

Modal Connection Topologies for X‐CNNs. In International Symposium on Neu‐

ral Networks, pages 54–63. Springer, 2018.

136

[88] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

In International Conference on Learning Representations, 2015.

[89] Diederik P Kingma and Max Welling. Auto‐encoding variational bayes. In Inter‐

national Conference on Learning Representations, 2014.

[90] Thomas N. Kipf, Ethan Fetaya, Kuan‐Chieh Wang, Max Welling, and Richard S.

Zemel. Neural Relational Inference for Interacting Systems. In Proceedings of

the 35th International Conference on Machine Learning, ICML 2018, Stock‐

holmsmässan, Stockholm, Sweden, July 10‐15, 2018, pages 2693–2702, 2018.

[91] Thomas NKipf andMaxWelling. Variational graph auto‐encoders. arXiv preprint

arXiv:1611.07308, 2016.

[92] Thomas N Kipf andMaxWelling. Semi‐Supervised Classification with Graph Con‐

volutional Networks. In International Conference on Learning Representations,

2017.

[93] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Des‐

jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka

Grabska‐Barwinska, et al. Overcoming catastrophic forgetting in neural networks.

Proceedings of the national academy of sciences, page 201611835, 2017.

[94] Mikko Kivelä, Alex Arenas, Marc Barthelemy, James P Gleeson, Yamir Moreno,

and Mason A Porter. Multilayer networks. Journal of complex networks,

2(3):203–271, 2014.

[95] C Kleiser, N Wawro, M Stelmach‐Mardas, H Boeing, K Gedrich, H Himmerich,

and J Linseisen. Are sleep duration, midpoint of sleep and sleep quality associated

with dietary intake among Bavarian adults? European journal of clinical nutrition,

71(5):631, 2017.

[96] Wouter Kool, Herke van Hoof, and Max Welling. Attention, Learn to Solve Rout‐

ing Problems! In International Conference on Learning Representations, 2019.

[97] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from

tiny images. Technical report, Citeseer, 2009.

[98] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification

with deep convolutional neural networks. In Advances in neural information pro‐

cessing systems, pages 1097–1105, 2012.

137

[99] Neal Lathia, Veljko Pejovic, Kiran K Rachuri, Cecilia Mascolo, Mirco Musolesi,

and Peter J Rentfrow. Smartphones for large‐scale behavior change interventions.

IEEE Pervasive Computing, (3):66–73, 2013.

[100] Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize re‐

current networks of rectified linear units. arXiv preprint arXiv:1504.00941, 2015.

[101] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,

521(7553):436, 2015.

[102] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to

handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.

[103] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient‐based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998.

[104] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus‐Robert Müller. Efficient

backprop. In Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.

[105] John Boaz Lee, Ryan A Rossi, Sungchul Kim, Nesreen K Ahmed, and Eunyee Koh.

Attention Models in Graphs: A Survey. arXiv preprint arXiv:1807.07984, 2018.

[106] Anming Li, Hareton Leung, and Yvette Lui. Friend recommendation for weight

loss app. In Proceedings of the 2014 ACM International Joint Conference on Per‐

vasive and Ubiquitous Computing: Adjunct Publication, pages 1257–1264. ACM,

2014.

[107] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph

sequence neural networks. In International Conference on Learning Representa‐

tions, 2016.

[108] Edgar Liberis, Petar Velickovic, Pietro Sormanni, Michele Vendruscolo, and Pietro

Liò. Parapred: Antibody Paratope Prediction using Convolutional and Recurrent

Neural Networks. Bioinformatics, 1:7, 2018.

[109] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang,

Bowen Zhou, and Yoshua Bengio. A structured self‐attentive Sentence Embedding.

In International Conference on Learning Representations, 2017.

[110] Qing Lu and Lise Getoor. Link‐based classification. In Proceedings of the 20th

International Conference on Machine Learning (ICML‐03), pages 496–503, 2003.

138

[111] Edith Talina Luhanga, Akpa Akpro Elder Hippocrate, Hirohiko Suwa, Yutaka

Arakawa, and Keiichi Yasumoto. Towards proactive food diaries: a participatory

design study. In Proceedings of the 2016 ACM International Joint Conference on

Pervasive and Ubiquitous Computing: Adjunct, pages 1263–1266. ACM, 2016.

[112] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities

improve neural network acoustic models. In Proc. ICML, volume 30, page 3,

2013.

[113] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t‐SNE. Jour‐

nal of machine learning research, 9(Nov):2579–2605, 2008.

[114] BrianWMatthews. Comparison of the predicted and observed secondary structure

of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)‐Protein Structure,

405(2):442–451, 1975.

[115] James L McClelland. The interaction of nature and nurture in development: A

parallel distributed processing perspective. International perspectives on psycho‐

logical science, 1:57–88, 1994.

[116] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis‐

tributed representations of words and phrases and their compositionality. In Ad‐

vances in neural information processing systems, pages 3111–3119, 2013.

[117] Dmytro Mishkin and Jiri Matas. All you need is a good init. In International

Conference on Learning Representations, 2016.

[118] Tom M Mitchell. The need for biases in learning generalizations. Department of

Computer Science, Laboratory for Computer Science Research, Rutgers Univ. New

Jersey, 1980.

[119] Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently with

noise‐contrastive estimation. In Advances in neural information processing sys‐

tems, pages 2265–2273, 2013.

[120] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. Human‐level control through deep reinforcement learning. Na‐

ture, 518(7540):529, 2015.

[121] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svo‐

boda, andMichaelM Bronstein. Geometric deep learning on graphs andmanifolds

using mixture model CNNs. In Proc. CVPR, volume 1, page 3, 2017.

139

[122] Arlet VNedeltcheva, JenniferMKilkus, Jacqueline Imperial, Kristen Kasza, Dale A

Schoeller, and Plamen D Penev. Sleep curtailment is accompanied by increased in‐

take of calories from snacks. The American journal of clinical nutrition, 89(1):126–

133, 2008.

[123] Allen Newell. Physical symbol systems. Cognitive science, 4(2):135–183, 1980.

[124] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and An‐

drew Y Ng. Multimodal deep learning. In Proceedings of the 28th international

conference on machine learning (ICML‐11), pages 689–696, 2011.

[125] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning Convo‐

lutional Neural Networks for Graphs. In Proceedings of The 33rd International

Conference on Machine Learning, volume 48, pages 2014–2023, 2016.

[126] SebastianNowozin, Botond Cseke, and Ryota Tomioka. f‐gan: Training generative

neural samplers using variational divergence minimization. In Advances in Neural

Information Processing Systems, pages 271–279, 2016.

[127] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol

Vinyals, Alex Graves, Nal Kalchbrenner, Andrew W Senior, and Koray

Kavukcuoglu. Wavenet: A generative model for raw audio. In SSW, page 125,

2016.

[128] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation Learning with

Contrastive Predictive Coding. arXiv preprint arXiv:1807.03748, 2018.

[129] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vec‐

tors for word representation. In Proceedings of the 2014 conference on empirical

methods in natural language processing (EMNLP), pages 1532–1543, 2014.

[130] Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C.

Courville. Film: Visual reasoning with a general conditioning layer. In AAAI,

2018.

[131] Bryan Perozzi, Rami Al‐Rfou, and Steven Skiena. Deepwalk: Online learning of

social representations. In Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 701–710. ACM, 2014.

[132] John Platt et al. Probabilistic outputs for support vector machines and comparisons

to regularized likelihood methods. Advances in large margin classifiers, 10(3):61–

74, 1999.

140

[133] Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang.

DeepInf: Social Influence Prediction with Deep Learning. In Proceedings of the

24th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, pages 2110–2119. ACM, 2018.

[134] Marc’Aurelio Ranzato, Christopher Poultney, Sumit Chopra, and Yann LeCun.

Efficient Learning of Sparse Representations with an Energy‐based Model. In Pro‐

ceedings of the 19th International Conference on Neural Information Processing

Systems, NIPS’06, pages 1137–1144, Cambridge, MA, USA, 2006. MIT Press.

[135] Scott Reed and Nando De Freitas. Neural Programmer‐Interpreters. In Interna‐

tional Conference on Learning Representations, 2016.

[136] Jimmy SJ Ren, Yongtao Hu, Yu‐Wing Tai, Chuan Wang, Li Xu, Wenxiu Sun, and

Qiong Yan. Look, Listen and Learn‐A Multimodal LSTM for Speaker Identifica‐

tion. In AAAI, pages 3581–3587, 2016.

[137] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. struc2vec:

Learning node representations from structural identity. In Proceedings of the 23rd

ACM SIGKDD International Conference on Knowledge Discovery and Data Min‐

ing, pages 385–394. ACM, 2017.

[138] Daniel Ritchie, Paul Horsfall, and Noah D Goodman. Deep amortized inference

for probabilistic programs. arXiv preprint arXiv:1610.05735, 2016.

[139] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang,

Carlo Gatta, and Yoshua Bengio. FitNets: Hints for Thin Deep Nets. In Inter‐

national Conference on Learning Representations, 2015.

[140] Frank Rosenblatt. The perceptron: a probabilistic model for information storage

and organization in the brain. Psychological review, 65(6):386, 1958.

[141] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation

of cluster analysis. Journal of computational and applied mathematics, 20:53–65,

1987.

[142] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by

locally linear embedding. Science, 290:2323–2326, 2000.

[143] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning repre‐

sentations by back‐propagating errors. Nature, 323(6088):533, 1986.

141

[144] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan‐

der C. Berg, and Li Fei‐Fei. ImageNet Large Scale Visual Recognition Challenge.

International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[145] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James

Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive

neural networks. arXiv preprint arXiv:1606.04671, 2016.

[146] Andrei A. Rusu, Matej Večerík, Thomas Rothörl, Nicolas Heess, Razvan Pascanu,

and Raia Hadsell. Sim‐to‐Real Robot Learning from Pixels with Progressive Nets.

In Proceedings of the 1st Annual Conference on Robot Learning, volume 78 of

Proceedings of Machine Learning Research, pages 262–270. PMLR, 13–15 Nov

2017.

[147] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between

capsules. In Advances in Neural Information Processing Systems, pages 3856–

3866, 2017.

[148] Tim Salimans and Diederik P Kingma. Weight normalization: A simple reparam‐

eterization to accelerate training of deep neural networks. In Advances in Neural

Information Processing Systems, pages 901–909, 2016.

[149] Alvaro Sanchez‐Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel,

Martin A. Riedmiller, Raia Hadsell, and Peter Battaglia. Graph Networks as

Learnable Physics Engines for Inference and Control. In Proceedings of the 35th

International Conference on Machine Learning, ICML 2018, Stockholmsmässan,

Stockholm, Sweden, July 10‐15, 2018, pages 4467–4476, 2018.

[150] Adam Santoro, Ryan Faulkner, David Raposo, Jack Rae, Mike Chrzanowski,

Theophane Weber, Daan Wierstra, Oriol Vinyals, Razvan Pascanu, and Timothy

Lillicrap. Relational recurrent neural networks. In Advances in neural information

processing systems, pages 7310–7321, 2018.

[151] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan

Pascanu, Peter Battaglia, and Tim Lillicrap. A simple neural network module for

relational reasoning. In Advances in neural information processing systems, pages

4967–4976, 2017.

[152] Natsuko Sato‐Mito, Satoshi Sasaki, Kentaro Murakami, Hitomi Okubo, Yoshiko

Takahashi, Shigenobu Shibata, Kazuhiko Yamada, Kazuto Sato, Freshmen in Di‐

etetic Courses Study II group, et al. The midpoint of sleep is associated with di‐

142

etary intake and dietary behavior among young Japanese women. Sleep medicine,

12(3):289–294, 2011.

[153] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the

nonlinear dynamics of learning in deep linear neural networks. In International

Conference on Learning Representations, 2014.

[154] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and

Gabriele Monfardini. The graph neural network model. IEEE Transactions on

Neural Networks, 20(1):61–80, 2009.

[155] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska‐

Barwinska, Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & Com‐

press: A scalable framework for continual learning. In Proceedings of the 35th

International Conference on Machine Learning, volume 80 of Proceedings of Ma‐

chine Learning Research, pages 4528–4537, Stockholmsmässan, Stockholm Swe‐

den, 10–15 Jul 2018. PMLR.

[156] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and

Tina Eliassi‐Rad. Collective classification in network data. AI magazine, 29(3):93,

2008.

[157] Chao Shang, Qinqing Liu, Ko‐Shin Chen, Jiangwen Sun, Jin Lu, Jinfeng Yi, and

Jinbo Bi. Edge Attention‐based Multi‐Relational Graph Convolutional Networks.

arXiv preprint arXiv:1802.04944v1, 2018.

[158] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel‐

vam, Marc Lanctot, et al. Mastering the game of Go with deep neural networks

and tree search. Nature, 529(7587):484, 2016.

[159] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolu‐

tional networks: Visualising image classification models and saliency maps. arXiv

preprint arXiv:1312.6034, 2013.

[160] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large‐scale image recognition. In International Conference on Learning Represen‐

tations, 2015.

[161] Alessandro Sperduti and Antonina Starita. Supervised Neural Networks for the

Classification of Structures. Trans. Neur. Netw., 8(3):714–735, May 1997.

143

[162] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[163] Nitish Srivastava and Ruslan R Salakhutdinov. Multimodal learning with deep

boltzmann machines. In Advances in neural information processing systems, pages

2222–2230, 2012.

[164] Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very deep

networks. In Advances in neural information processing systems, pages 2377–

2385, 2015.

[165] Aravind Subramanian, Pablo Tamayo, Vamsi K Mootha, Sayan Mukherjee, Ben‐

jamin L Ebert, Michael A Gillette, Amanda Paulovich, Scott L Pomeroy, Todd R

Golub, Eric S Lander, et al. Gene set enrichment analysis: a knowledge‐based

approach for interpreting genome‐wide expression profiles. Proceedings of the

National Academy of Sciences, 102(43):15545–15550, 2005.

[166] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with

neural networks. In Advances in neural information processing systems, pages

3104–3112, 2014.

[167] Jan Svoboda, Jonathan Masci, Federico Monti, Michael Bronstein, and Leonidas

Guibas. PeerNets: Exploiting Peer Wisdom Against Adversarial Attacks. In Inter‐

national Conference on Learning Representations, 2019.

[168] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In

International Conference on Learning Representations, 2014.

[169] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

Line: Large‐scale information network embedding. In Proceedings of the 24th

International Conference on World Wide Web, pages 1067–1077. International

World Wide Web Conferences Steering Committee, 2015.

[170] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5‐rmsprop: Divide the gradient

by a running average of its recent magnitude. COURSERA: Neural networks for

machine learning, 4(2):26–31, 2012.

[171] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for

model‐based control. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ

International Conference on, pages 5026–5033. IEEE, 2012.

144

[172] Gregor Urban, Krzysztof J Geras, Samira Ebrahimi Kahou, Ozlem Aslan, Shengjie

Wang, Rich Caruana, Abdelrahman Mohamed, Matthai Philipose, and Matt

Richardson. Do deep convolutional nets really need to be deep and convolutional?

In International Conference on Learning Representations, 2017.

[173] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In

Advances in Neural Information Processing Systems, pages 5998–6008, 2017.

[174] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. Graph Attention Networks. International Conference on

Learning Representations, 2018.

[175] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Ben‐

gio, and R Devon Hjelm. Deep Graph Infomax. In International Conference on

Learning Representations, 2019.

[176] Petar Veličković, Duo Wang, Nicholas D Lane, and Pietro Liò. X‐CNN: Cross‐

modal convolutional neural networks for sparse datasets. In Computational Intel‐

ligence (SSCI), 2016 IEEE Symposium Series on, pages 1–8. IEEE, 2016.

[177] Petar Veličković, Laurynas Karazija, Nicholas D. Lane, Sourav Bhattacharya,

Edgar Liberis, Pietro Liò, Angela Chieh, Otmane Bellahsen, and Matthieu Vegre‐

ville. Cross‐modal Recurrent Models for Weight Objective Prediction from Multi‐

modal Time‐series Data. In Proceedings of the 12th EAI International Conference

on Pervasive Computing Technologies for Healthcare, PervasiveHealth ’18, pages

178–186, New York, NY, USA, 2018. ACM.

[178] Petar Veličković and Pietro Liò. Molecular multiplex network inference using

Gaussian mixture hidden Markov models. Journal of Complex Networks, 2015.

[179] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order Matters: Sequence to

sequence for sets. In International Conference on Learning Representations, 2016.

[180] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In

Proceedings of the 22nd ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 1225–1234. ACM, 2016.

[181] Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. Nervenet: Learning struc‐

tured policy with graph neural networks. In International Conference on Learning

Representations, 2018.

145

[182] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. Com‐

munity Preserving Network Embedding. In AAAI, pages 203–209, 2017.

[183] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and

Justin M Solomon. Dynamic graph CNN for learning on point clouds. arXiv

preprint arXiv:1801.07829, 2018.

[184] SineadWatson, Jayne VWoodside, Lisa J Ware, Steven J Hunter, AlannaMcGrath,

Christopher R Cardwell, Katherine M Appleton, Ian S Young, and Michelle C

McKinley. Effect of a web‐based behavior change program on weight loss and car‐

diovascular risk factors in overweight and obese adults at high risk of developing

cardiovascular disease: Randomized controlled trial. Journal of medical Internet

research, 17(7), 2015.

[185] Boris Weisfeiler and AA Lehman. A reduction of a graph to a canonical form and

an algebra arising during this reduction. Nauchno‐Technicheskaya Informatsia,

2(9):12–16, 1968.

[186] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory Networks. In Inter‐

national Conference on Learning Representations, 2015.

[187] Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert. Deep learn‐

ing via semi‐supervised embedding. In Neural Networks: Tricks of the Trade,

pages 639–655. Springer, 2012.

[188] Jiajun Wu, Erika Lu, Pushmeet Kohli, Bill Freeman, and Josh Tenenbaum. Learn‐

ing to see physics via visual de‐animation. In Advances in Neural Information

Processing Systems, pages 153–164, 2017.

[189] Weiping Yang, Jingjing Yang, Yulin Gao, Xiaoyu Tang, Yanna Ren, Satoshi Taka‐

hashi, and Jinglong Wu. Effects of Sound Frequency on Audiovisual Integration:

An Event‐Related Potential Study. PLoS ONE, 10(9):1–15, 09 2015.

[190] Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Revisiting Semi‐

Supervised Learning with Graph Embeddings. In Proceedings of The 33rd Inter‐

national Conference on Machine Learning, volume 48 of Proceedings of Machine

Learning Research, pages 40–48, New York, New York, USA, 20–22 Jun 2016.

PMLR.

[191] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,

and Jure Leskovec. Graph Convolutional Neural Networks for Web‐Scale Recom‐

mender Systems. In Proceedings of the 24th ACM SIGKDD International Con‐

146

ference on Knowledge Discovery & Data Mining, KDD ’18, pages 974–983,

New York, NY, USA, 2018. ACM.

[192] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, and

Jure Leskovec. Hierarchical Graph Representation Learning with Differentiable

Pooling. In Advances in Neural Information Processing Systems, pages 4805–

4815, 2018.

[193] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R

Salakhutdinov, and Alexander J Smola. Deep sets. In Advances in Neural Infor‐

mation Processing Systems, pages 3391–3401, 2017.

[194] Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor

Babuschkin, Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart,

Murray Shanahan, Victoria Langston, Razvan Pascanu, Matthew Botvinick, Oriol

Vinyals, and Peter Battaglia. Deep reinforcement learning with relational inductive

biases. In International Conference on Learning Representations, 2019.

[195] Amir R Zamir, Alexander Sax, William Shen, Leonidas Guibas, Jitendra Malik,

and Silvio Savarese. Taskonomy: Disentangling Task Transfer Learning. In Pro‐

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 3712–3722, 2018.

[196] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network

regularization. arXiv preprint arXiv:1409.2329, 2014.

[197] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit‐Yan Ye‐

ung. GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal

Graphs. In Uncertainty in Artificial Intelligence (UAI), pages 339–349, 2018.

[198] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi‐supervised learning

using gaussian fields and harmonic functions. In Proceedings of the 20th Interna‐

tional conference on Machine learning (ICML‐03), pages 912–919, 2003.

[199] Peiye Zhuang, Alexander G Schwing, and Oluwasanmi Koyejo. Hallucinating

brains with artificial brains. 2018.

[200] Marinka Zitnik and Jure Leskovec. Predictingmulticellular function throughmulti‐

layer tissue networks. Bioinformatics, 33(14):i190–i198, 2017.

147

	Introduction
	The successes and pitfalls of deep learning
	Reintroducing structural inductive biases
	Research questions and contributions
	List of publications

	Deep neural networks
	Mathematical notation
	Essentials
	The perceptron
	Multilayer perceptrons
	Learning the MLP parameters
	Initialisation
	Optimisation
	Regularisation

	Hyperparameter tuning

	Structured neural networks for grids, sequences and sets
	Convolutional neural networks
	Convolutional layers
	Pooling layers
	Residual networks

	Recurrent neural networks
	The recurrent layer
	SimpleRNN and vanishing gradients
	Long short-term memory
	LSTM regularisation

	Self-attention

	Graph neural networks
	Node classification
	Random walk-based node embeddings
	Graph convolutional networks

	Cross-modality through early fusion
	Methodology
	Cross-connections
	X-CNN
	X-LSTM
	Hyperparameter tuning
	Xsertion

	Experimental setup
	Datasets and preprocessing
	Model architectures
	Evaluation protocol

	Results
	Quantitative results
	Qualitative results

	Generalisations: XFlow
	Summary

	Attentive graph convolutions
	Prior approaches
	What's in a graph convolution?
	The self-attentional solution
	GAT architecture
	Graph attentional layer
	Theoretical properties

	Evaluation
	Datasets
	Baseline methods
	Experimental setup
	Results

	Extensions and applications
	Mesh-based parcellation of the cerebral cortex
	Neural paratope prediction
	Additional related work

	Summary

	Local-global mutual information maximisation on graphs
	Preliminaries
	Unsupervised graph learning
	Mutual information estimation and maximisation
	Related work

	DGI methodology
	Graph-based unsupervised learning setup
	Local-global mutual information maximisation
	Theoretical motivation
	Overview of DGI

	Classification performance
	Datasets
	Experimental setup
	Results

	Qualitative analysis
	Embedding space visualisation
	DGI learning mechanism

	Corruption function robustness
	Summary

	Conclusions
	Summary of contributions
	Structural inductive biases meet reinforcement learning

	Bibliography

