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ABSTRACT

Ocean turbulence contributes to the basal melting and dissolution of ice

shelves by transporting heat and salt towards the ice. The meltwater causes

a stable salinity stratification to form beneath the ice that suppresses turbu-

lence. Here we use large-eddy simulations motivated by the ice-shelf/ocean

boundary layer (ISOBL) to examine the inherently linked processes of turbu-

lence and stratification, and their influence on the melt rate. Our rectangular

domain is bounded from above by the ice base where a dynamic melt condi-

tion is imposed. By varying the speed of the flow and the ambient temper-

ature, we identify a fully turbulent, well-mixed regime and an intermittently

turbulent, strongly stratified regime. The transition between regimes can be

characterised by comparing the Obukhov length, which provides a measure

of the distance away from the ice base where stratification begins to dominate

the flow, to the viscous length scale of the interfacial sublayer. Upper limits

on simulated turbulent transfer coefficients are used to predict the transition

from fully to intermittently turbulent flow. The predicted melt rate is sensitive

to the choice of the heat and salt transfer coefficients and the drag coefficient.

For example, when coefficients characteristic of fully-developed turbulence

are applied to intermittent flow, the parameterized three-equation model over-

estimates the basal melt rate by almost a factor of ten. These insights may

help to guide when existing parameterisations of ice melt are appropriate for

use in regional or large-scale ocean models, and may also have implications

for other ice-ocean interactions such as fast ice or drifting ice.

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

2



1. Introduction31

Ocean-driven melting of ice shelves around Antarctica has the potential to play an important32

role in accelerating sea level rise (Jacobs et al. 2002; Rignot and Jacobs 2002; Rye et al. 2014;33

Harig and Simons 2015). Ice shelves are the floating extensions of ice sheets that act to buttress34

land-bounded ice and prevent it sliding into the ocean. The thinning of ice shelves can reduce the35

resistance to the flow of ice upstream (Schoof 2007; Gudmundsson 2013) or melt basal channel36

cavities that weaken the entire shelf (Rignot and Steffen 2008; Alley et al. 2016), resulting in37

calving events and land ice moving into the ocean, thereby raising the sea level. The regions38

near Antarctic ice shelves are also important for the modification of water masses, such as in39

the formation of the densest water mass in the ocean (Antarctic Bottom Water) which feeds the40

downwelling limb of the global meridional overturning circulation (Nicholls et al. 2009; Purkey41

and Johnson 2012). Changes in the interaction between ice sheets and the ocean could affect the42

dense water formation rate and influence the global transport of heat and hence the climate (Snow43

et al. 2018). Key to predicting future climate scenarios is understanding the processes governing44

the ice shelf melt rates and response to changes in ocean circulation.45

Observations of ice shelf melt and the underlying ocean circulation show contrasting behaviour46

at different locations around Antarctica. Data taken by drilling through the Larsen C ice shelf47

on the Antarctic peninsula show well-mixed profiles of temperature and salinity up to 20− 30 m48

beneath the basal surface with an underlying weakly stable stratification, a high current speed and49

a strong tidal signal (Nicholls et al. 2012). The temperature difference between a few metres depth50

and the ice-ocean interface, known as the thermal driving, is small (∆T = 0.08◦C) and the basal51

melt rate is modest at 1.9 m/yr. This picture of energetic flow with a weak stratification has also52

been observed beneath the Ronne ice shelf (Jenkins et al. 2010), Fimbul ice shelf (Hattermann53
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et al. 2012) and Ross ice shelf (Arzeno et al. 2014). In contrast, the water column beneath the54

George VI ice shelf is highly stratified with a low current speed and a weak tidal signature (Kimura55

et al. 2015). Here, the thermal driving is large (∆T = 2.3◦C) but the melt rate, measured using56

upward-looking sonar, remains modest at 1.4 m/yr (Kimura et al. 2015). Borehole measurements57

near the grounding line of the Ross ice shelf also show strong stratification in quiescent flow58

and low melt rates (Begeman et al. 2018). Other strongly stratified layers have been observed59

beneath the Pine Island Glacier ice shelf, where data from an Autonomous Underwater Vehicle60

(AUV) show a sharp temperature gradient maintained close to the ice shelf and a slow horizontal61

current speed (Kimura et al. 2016). In a different area under the Pine Island Glacier ice shelf,62

borehole measurements also show a stratified boundary layer, but here the flow is dominated by63

melt-generated buoyancy acting on the sloping base of the ice shelf (Stanton et al. 2013). The64

extreme Antarctic environment means that observations are sparse and lack the resolution to fully65

characterise the processes controlling the melt rate when the oceanic boundary layer is turbulent66

compared to when it is more strongly stratified.67

The structure of the ocean boundary layer beneath the ice is often characterised by an interfacial68

sublayer (of order mm to cm) where molecular viscosity or roughness dominates the flow, followed69

by a surface later (a few metres) where the logarithmic “law-of-the-wall” scaling applies, and70

finally an outer planetary boundary layer (tens of metres) where the Earth’s rotation limits the71

mixing length (Holland and Jenkins 1999; McPhee 2008). If the flow is strongly stratified, the72

law-of-the-wall scaling will not hold in the surface layer and stratification will limit the maximum73

mixing length in the outer layer. In cases of very strong stratification and weak shear, the dynamics74

may be dominated by free convection (Martin and Kauffman 1977; Keitzl et al. 2016) or double-75

diffusive layers, the latter of which is theorised to apply to regions of the ocean boundary layer76

below the George VI (Kimura et al. 2015) and Ross (Begeman et al. 2018) ice shelves. The picture77
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becomes more complicated when there is a buoyancy-driven plume adjacent to the ice, which78

can occur when the ice is significantly sloped such as near the grounding line, and entrainment79

into the plume determines the heat transferred to the ice and hence the melt rate (Jenkins 2016;80

McConnochie and Kerr 2018). Here, we focus on the ISOBL without a significant slope to be81

consistent with ice shelf observations further from the grounding line (e.g. Nicholls et al. 2012;82

Kimura et al. 2015).83

In most ocean models, computational limitations mean that the ISOBL cannot be fully resolved84

and must be parameterised to achieve a realistic melt rate. There are a wide range of parameter-85

isations but none completely capture the dynamics of the ocean boundary layer and its response86

to the melt rate. One common parameterisation, known as the three-equation model, is based on87

the relatively simple concept of parameterising the turbulent fluxes of heat and salt into transfer88

coefficients (Holland and Jenkins 1999; McPhee 2008). Comparing the parameterisation against89

observations, the three-equation model works reasonably well in some locations such as the Ronne90

ice shelf (Jenkins et al. 2010). However, the three-equation model does not work in other locations91

such as the George VI ice shelf where it overestimates the true melt rate by more than an order of92

magnitude (Kimura et al. 2015). This is likely because the influence of stratification on turbulence93

is not included in this parameterisation. The three-equation model is also known to poorly esti-94

mate the melt rate in regions where the ice is significantly sloped and there is a buoyancy-driven95

plume (McConnochie and Kerr 2017).96

Monin–Obukhov similarity theory was formulated to describe the influence of stratification ef-97

fects on a turbulent boundary layer (Monin and Obukhov 1954). The Obukhov length is a measure98

of the distance away from the ice where stratification starts to dominate the flow (Obukhov 1946).99

Here, building on previous work (McPhee 2008; Deusebio et al. 2015; Scotti and White 2016;100

Zhou et al. 2017), we find that the Obukhov length provides a useful way to characterise the in-101
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fluence of density stratification on turbulence in the law-of-the-wall region of the ISOBL. Large102

values of the Obukhov length imply that stratification does not affect the near-ice flow, while small103

values imply that more of the ISOBL is susceptible to stratification effects. If the Obukhov length104

is comparable to the viscous sublayer thickness, then there is no region of the flow free of either105

viscous or stratification effects, both of which damp out turbulence (Pope 2000; Flores and Riley106

2011). In this case the law-of-the-wall scaling is not expected to hold and the flow is susceptible107

to laminarisation. The ratio of the Obukhov length to the thickness of the viscous sublayer has108

been used to describe the transition between turbulent, intermittent and laminar flow in a stable109

atmospheric boundary layer (Flores and Riley 2011) and stratified plane Couette flow (Deusebio110

et al. 2015; Zhou et al. 2017).111

The present study is motivated by ocean-driven melting beneath ice shelves. We use large-eddy112

simulations (LES) with a state-of-the-art turbulent parameterisation (Rozema et al. 2015; Abkar113

et al. 2016) to examine steady, unidirectional flow with an unstratified free stream as a model114

of a small region near the ice. As outlined in §2 the model is designed to resolve the viscous115

sublayer and surface layer, only parameterising the smallest scales of turbulence. Our focus is116

on turbulence very near the ice. Our computational domain can be viewed as a small region117

embedded within the deeper planetary boundary, so for simplicity we do not include the Earth’s118

rotation. The majority of simulations use a flat ice base, perpendicular to the direction of gravity.119

Scaling theory for the viscous sublayer and surface layer is outlined in §3, along with the three-120

equation parameterisation. The results in §4 explore different far-field currents that generate shear121

turbulence, and a range of imposed far-field temperatures. The focus is on understanding the122

influence of stratification associated with the input of melt water on turbulence and the subsequent123

feedbacks on the melt rate. A summary of the results is in §5. In §6 we discuss the applicability124

of our results to the ocean. While the motivation for this study was the ice-shelf/ocean boundary125
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layer, the simulations are idealised enough that they also have implications for other applications,126

including the boundary layer beneath sea ice.127

2. Model design128

Here, we model the ocean boundary layer under an ice shelf in a rectangular domain of length129

Lx, width Ly and height h (Figure 1). The flow is bounded from above by the base of the ice shelf130

which is assumed to be flat. The upper and lower boundaries are impenetrable, while the two131

horizontal directions are periodic. A no-slip condition is imposed on the upper boundary (the ice132

base) and a free-slip condition on the lower boundary. For most of the simulations, we assume133

that the ice-shelf is horizontal with gravity perpendicular to the ice-ocean interface and no rotation134

term. Simulations with small basal slope angles are discussed in Appendix A and give very similar135

results to the simulations with a flat ice base.136

The simulations solve the incompressible, non-hydrostatic Navier-Stokes momentum equation137

under the Boussinesq approximation along with the conservation of mass, heat and salt, and a138

linear equation of state, respectively:139

Du
Dt

=− 1
ρ0

∇p+ν∇
2u+F i+

∆ρ

ρ0
gk−∇ ·τττ, (1)

140

∇ ·u = 0, (2)
141

DT
Dt

= κT ∇
2T +RT −∇ ·λT , (3)

142

DS
Dt

= κS∇
2S+RS−∇ ·λS, (4)

143

∆ρ

ρ0
=−α(T −T0)+β (S−S0), (5)

where u = (u,v,w) is the velocity vector, (x,y,z) is the position vector, t is time, p is pressure, T144

is temperature, S is salinity, ∆ρ = ρ −ρ0 is the departure of density ρ from the reference value145

ρ0, T0 is the reference temperature and S0 reference salinity, g = 9.81 ms−2 is the gravitational146
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acceleration, i and k are the unit vectors in the x and z directions, and α = 3.87×10−5 ◦C−1 and147

β = 7.86× 10−4 psu−1 are the coefficients of thermal expansion and saline contraction respec-148

tively (Jenkins 2011). We use realistic values of the molecular viscosity ν = 1.8×10−6m2s−1 and149

the molecular diffusivity of heat κT = 1.3× 10−7m2s−1 (Prandtl number Pr = ν/κT = 14) and150

salt κS = 7.2×10−10m2s−1 (Schmidt number Sc = ν/κS = 2500).151

A far-field current is produced by imposing a mean pressure gradient in the x-direction. In equa-152

tion (1) this constant driving force appears as F =−(1/ρ0)∂ p/∂x, where p is the mean pressure.153

In an equilibrated state the net momentum input by the pressure gradient must be balanced by the154

wall shear stress τb = ρ0ν |∂u/∂ z|b,155

−
∫ h

0

∂ p
∂x

dz = τb, (6)

where the subscript “b” refers to the ice-ocean boundary. By imposing a pressure gradient, we156

are effectively setting the wall shear stress and hence the friction velocity u∗ =
√

τb/ρ0 in equili-157

brated state. Two values of the pressure gradient are chosen to produce equilibrated state friction158

velocities of u∗ = 0.05 cm/s and u∗ = 0.1 cm/s which result in far-field velocities of u∞ = (1−9)159

cm/s. Here, the far-field means the maximum depth in the domain of z = h and is indicated by the160

subscript “∞”.161

To maintain the far-field temperature and salinity, the lower quarter of the domain is relaxed on162

a timescale of τ to chosen far-field temperature T∞ and salinity S∞ values. In the heat (3) and salt163

(4) conservation equations, the relaxation terms are164

RT =−1
τ
(〈T 〉−T∞)e−(C f (h−z)/h)2

, (7)

165

RS =−
1
τ
(〈S〉−S∞)e−(C f (h−z)/h)2

, (8)
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respectively, where the angle brackets imply a horizontal average and the stretching factor C f = 7.166

The relaxation time scale is based on a far-field velocity of u∞ ∼ 1 cm/s such that τ = h/u∞ ∼ 200167

seconds on the basis that eddies will mix the scalar fields on a similar timescale.168

The governing equations (1)–(5) are discretised using Fourier modes in the two horizontal di-169

rections and second order finite differences in the vertical direction (see Taylor 2008). Note that170

equations (1)–(5) are the grid-filtered equations where u, T and S are the resolved fields. A recently171

developed LES parameterisation known as the anisotropic minimum dissipation model (Rozema172

et al. 2015; Vreugdenhil and Taylor 2018) is used to evaluate the sub-filter stress tensor τττ and sub-173

filter scalar fluxes of heat λT and salt λS (see Appendix B for more details). The time-stepping174

uses a low-storage third-order Runge–Kutta method for the nonlinear terms and a semi-implicit175

Crank–Nicholson method for the viscous and diffusive terms. A 2/3 dealiasing rule is applied176

moving from Fourier back to physical space (Orszag 1971).177

A no-flux boundary condition is applied to the temperature and salinity at the lower boundary178

and a melting ice condition at the upper ice-ocean boundary. The volume input of water due to179

ice melting is expected to be very small compared to the current velocity, hence we assume zero180

volume input (Holland and Jenkins 1999). The salinity of ice and the conduction of heat through181

the ice are also assumed to be zero. Very low, near zero salinities are typically observed in ice182

shelves (Oerter et al. 1992; Eicken et al. 1994). The condition of no heat conducted through the183

ice shelf has been used regularly in past studies on the assumption that the conducted heat flux is184

small compared to the latent heat flux (Determann and Gerdes 1994; Jenkins and Bombosch 1995;185

Grosfeld et al. 1997; Williams et al. 1998; Holland and Jenkins 1999; Gayen et al. 2016; Mondal186

et al. 2019). The resulting equations at the ice-ocean boundary are the conservation of heat and187
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salt, along with the liquidus condition,188

cwρwκT
∂T
∂ z

= ρiLim, (9)

189

ρwκS
∂S
∂ z

= ρiSbm, (10)

190

Tb = λ1Sb +λ2 +λ3P, (11)

which are solved for the melt rate m, temperature Tb and salinity Sb at the ice-ocean boundary191

(see Appendix C for numerical method) following similar methods to Gayen et al. (2016). The192

subscript “w” refers to parameters corresponding to water and subscript “i” to parameters cor-193

responding to ice. The specific heat capacity of water is cw = 3974 J kg−1 ◦C−1, the latent194

heat of fusion is Li = 3.35× 105 J kg−1, and λ1 = −5.73× 10−2 ◦C, λ2 = 8.32× 10−2 ◦C and195

λ3 = −7.53× 10−4 ◦C dbar are coefficients in a linearised expression for the freezing point of196

seawater (Jenkins 2011). The locally hydrostatic background pressure due to the depth of the ice197

base below sea level P = 350 dbar is chosen to be broadly consistent with the Larsen C ice shelf198

(Nicholls et al. 2012).199

The domain size for all runs was set to Lx×Ly× h = 5× 5× 2 m. The computational grid for200

the u∗ = 0.05 cm/s case was 128×128×145 and for the u∗ = 0.1 cm/s case was 256×256×289.201

These grids were chosen to be consistent with the criteria outlined in Vreugdenhil and Taylor202

(2018) for resolved LES. One exception was that a 1/8 vertical-to-horizontal grid cell aspect ratio203

at the edge of the viscous layer was found to work just as well as a 1/4 aspect ratio, thus the204

former was chosen to allow more grid stretching in the vertical direction. The vertical grid was205

stretched to place more grid cells adjacent to the ice to resolve the near-ice conductive and diffusive206

sublayers which are thin because of the realistic values of κT and κS. The grid stretching function207

is zk = h tanh(S f (k− 1)/Nz)/ tanh(S f ) where k is the grid cell number, Nz is the total number of208
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grid cells and S f = 3.5 is the grid stretching. This resulted in ∆zmin = 0.019 cm, ∆zmax = 4.9 cm209

for the u∗ = 0.05 cm/s cases and ∆zmin = 0.009 cm, ∆zmax = 2.5 cm for the u∗ = 0.1 cm/s cases.210

A range of far-field temperatures T∞ are chosen to achieve thermal driving of ∆T = (0.0005−211

0.43)◦C (Table 1). The far-field salinity was set to S∞ = 35 psu for all cases. Additional passive212

scalar runs were conducted at each friction velocity by setting the gravity term in (1) to zero213

(g = 0). These runs were designed to examine the transport of heat and salt when the scalars do214

not influence the flow. The simulations were run with chosen values of T∞ to result in ∆T and a215

particular melt rate. However, as outlined in §4, in the passive scalar case the melt rate is dependent216

only on ∆T (for a particular u∗ and S∞) and so the chosen value of T∞ is arbitrary. Hence values217

of T∞, ∆T and the melt rate have not been included for the passive scalar cases in Table 1 because218

the runs apply more generally.219

Each melting scenario is initialised from an equilibrated fully turbulent flow, with uniform tem-220

perature and salinity profiles set to the chosen far-field values T∞ and S∞. The initialising fully221

turbulent flow is a well-studied fluid dynamics problem known as “open channel flow” (Pope222

2000). The flow quickly becomes stratified with a fresh, cold layer forming under the ice (Figure223

1). The run is continued to an equilibrated state where the time-averaged melt rate and all other224

flow properties are statistically steady, which generally took∼ 50 hours of model time. For several225

runs with very strong thermal driving the flow approached equilibrated state very slowly and had226

not equilibrated even after 400 hours. These runs are referred to as quasi-equilibrated. Once in227

equilibrated state the simulations are run for a further 10 hours to allow time-averaging of statis-228

tical properties. The quasi-equilibrated runs generally require a longer averaging interval of > 50229

hours (as discussed in §4).230
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3. Scaling theory231

a. Viscous, conductive and diffusive sublayer scaling232

Immediately below the ice is a viscous sublayer where the flow is laminar. A conductive tem-233

perature and a diffusive salinity sublayer also form below the ice. The viscous, conductive and234

diffusive sublayer scalings are235

U+ ∼ z+, T+ ∼ z+Pr, S+ ∼ z+Sc, (12)

where the distance, velocity, temperature and salinity are expressed in wall units (indicated by the236

plus superscript),237

z+ =
zu∗
ν

, U+ =
U
u∗

, T+ =
(T −Tb)

T∗
, S+ =

(S−Sb)

S∗
, (13)

and T∗ = κT |∂T/∂ z|b/u∗ and S∗ = κS|∂S/∂ z|b/u∗ are the friction temperature and salinity re-238

spectively (where the boundary values and gradients are calculated from the formulated boundary239

conditions in Appendix C). The conductive and diffusive sublayers are thinner than the viscous240

sublayer because the diffusivities of heat and salt are smaller than viscosity (Pr, Sc > 1).241

b. Law-of-the-wall and Monin–Obukhov scaling242

Further away from the ice, at the edge of the viscous layer, small-scale turbulent structures243

form and drive larger scale turbulent eddies in the “surface layer”. The solid boundary of the ice244

influences the size of the turbulent eddies in the surface layer. When the effects of stratification245

are weak, the shear (∂U/∂ z) is expected to depend on the strength of turbulence (in the form of246

the friction velocity u∗) and the distance from the boundary (z). Dimensional analysis then gives247

∂U/∂ z∼ u∗/z, known as the “law-of-the-wall” scaling.248
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For stratified flow, Monin–Obukhov theory predicts similarity between the form of the shear and249

the vertical scalar gradients as250

∂U
∂ z

=
u∗
kmz

Φm(ξ ),
∂T
∂ z

=
T∗
ksz

Φs(ξ ),
∂S
∂ z

=
S∗
ksz

Φs(ξ ), (14)

where km = 0.41 and ks = 0.48 are the von Kármán constants for the momentum and scalars,251

respectively, following Bradshaw and Huang (1995). The Monin–Obukhov functions Φm and Φs252

are dependent on the normalised distance from the ice ξ = z/L, where L is the Obukhov length,253

L =− u3
∗

kmB
, (15)

and the vertical buoyancy flux at the ice-ocean interface is B = g(ακT |∂T/∂ z|b−βκS|∂S/∂ z|b).254

When stratification is weak, Φm = Φs = 1 and (14) reverts to the law-of-the-wall scaling.255

For flow that is strongly affected by stratification, the form of the Monin–Obukhov function256

is still debated, with significant work done on this question in the atmospheric boundary layer257

community (e.g. Businger et al. 1971; Kaimal et al. 1976; Foken 2006). One common form is a258

linear function of ξ ,259

Φm(ξ ) = 1+βmξ , Φs(ξ ) = 1+βsξ , (16)

where the constants are βm = 4.8 and βs = 5.6 (Wyngaard 2010; Zhou et al. 2017).260

Integrating equations (14) with (16) and writing in terms of wall units,261

U+ =
1

km
ln(z+)+

βm

km
ξ +Cm, (17)

262

T+ =
1
ks

ln(z+)+
βs

ks
ξ +CT , (18)

263

S+ =
1
ks

ln(z+)+
βs

ks
ξ +CS, (19)

where the constant Cm = 5.0, following Bradshaw and Huang (1995). The scalar CT and CS are264

theorised to be functions of Pr and Sc, respectively. The form (e.g. Schlichting and Gersten 2003)265

CT = 13.7Pr2/3−7.5, CS = 13.7Sc2/3−7.5, (20)

13



has been found to work well for stratified plane Couette flow with Prandtl number around unity266

(Deusebio et al. 2015; Zhou et al. 2017). Kader and Yaglom (1972) derived a very similar ex-267

pression to (20) for flow past a hydraulically smooth boundary, but with slightly different constant268

values (see discussions in McPhee et al. 1987; Holland and Jenkins 1999).269

c. Three-equation parameterisation270

A common parametrisation for the dynamics in the entire surface layer, including the sublayers271

and melt condition, is the three-equation model (McPhee et al. 1987; Holland and Jenkins 1999).272

The turbulent fluxes of heat and salt toward the ice are parameterised by heat ΓT and salt ΓS transfer273

coefficients multiplied by the friction velocity. The three equations are then the conservation of274

heat and salt,275

cwρwu∗ΓT (T∞−Tb) = ρiLim, (21)
276

ρwu∗ΓS(S∞−Sb) = ρiSbm, (22)

respectively, and the liquidus condition (11). The three-equation model was first conceptualised277

in terms of u∗ (McPhee et al. 1987). However, for use in a system with only far-field velocity278

data available, a drag coefficient Cd = (u∗/u∞)
2 can be introduced to act as the third undetermined279

coefficient, resulting in280

cwρwC1/2
d u∞ ΓT (T∞−Tb) = ρiLim, (23)

281

ρwC1/2
d u∞ ΓS(S∞−Sb) = ρiSbm. (24)

In the observational context, the far-field velocity u∞ is the free-stream current below the surface282

layer that is independent of the distance from the ice, with the far-field temperature and salinity283

measured at the same depth. Values for ΓT , ΓS and Cd must be prescribed in this model. Observa-284
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tions from beneath the Ronne ice shelf give drag coefficient Cd = 0.0097, heat transfer coefficient285

ΓT = 0.011, and salt transfer coefficient ΓS = 3.1×10−4 (Jenkins et al. 2010).286

The diffusive conservation equations at the boundary (9–10) coupled with the three-equation287

conservation equations (21–22) give, by definition (McPhee 2008),288

ΓT =
κT |∂T

∂ z |b
u∗(T∞−Tb)

=
1

T+
∞

, ΓS =
κS|∂S

∂ z |b
u∗(S∞−Sb)

=
1

S+∞
, (25)

where T+
∞ and S+∞ are the normalised temperature and salinity differences (13) between the ice and289

the far-field. Similarly the drag coefficient is290

Cd =

(
u∗
U∞

)2

=

(
1

U+
∞

)2

(26)

where U+
∞ is the normalised far-field velocity.291

4. Results292

a. Mean flow properties and melt rate293

Vertical profiles of horizontally-averaged velocity, temperature and salinity show the influence of294

the imposed far-field temperature on the flow structure (Figure 2). Immediately below the ice lies295

the interfacial sublayer where the viscous scaling is consistent with the measured velocities (Figure296

2a). The lower edge of the viscous boundary layer is an important region for the formation of297

small-scale turbulent phenomena which go on to produce turbulence throughout the flow. Further298

away from the ice, the case with weaker thermal driving (dark blue line) has a velocity profile299

similar to the logarithmic law-of-the-wall scaling (dashed) but with a modest increase in the far-300

field velocity. The increase in far-field velocity is very large in the case with stronger thermal301

forcing (cyan line). Increases in far-field temperature lead to a stronger temperature stratification302

(Figure 2b) and hence larger thermal driving. This increases the melt rate, freshening the water303

and producing a stronger salinity stratification (Figure 2c). The density stratification is dominated304
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by the salinity component in all the runs presented here. Hence the stabilising salinity stratification305

damps out some of the small-scale turbulence at the edge of the viscous boundary layer, and as a306

result the drag decreases. However, as the friction velocity is prescribed (via imposing the pressure307

gradient) the equilibrated state wall shear stress must remain the same no matter the imposed far-308

field temperature, and so the reduction in drag results in an acceleration of the far-field velocity.309

Vertical profiles of velocity, temperature, and salinity are plotted in terms of wall units in Figures310

2d, e, f where the results all closely match their respective sublayer scalings, indicating that the311

resolution is sufficient to fully resolve these sublayers. It is important to adequately resolve the312

sublayers to ensure that the resulting melt rate is correct. The Monin–Obukhov scaling (17–19)313

does reasonably well predicting the velocity profiles, even when the flow is strongly influenced by314

the stratification (Figure 2d). The scaling is consistent with the temperature profile for weak strat-315

ification but departs significantly from the strongly stratified profile (Figure 2e). For the salinity316

profiles, the scaling is reasonable for the passive scalar results (not shown here) but departs from317

the LES results for even the most weakly stratified case (Figure 2f). Note that the Monin–Obukhov318

scaling for the salinity profile (19) is dominated by the huge Schmidt number in the CS term and319

is barely influenced by the stratification term (βsξ/ks). A further Schmidt number dependence320

could be introduced in the Monin–Obukhov scaling for strong stratification, to adjust the scaling321

when the stratifying element has molecular diffusivity much smaller than the molecular viscosity.322

However, it is beyond the scope of this paper to derive a new scaling.323

At the ice base there can be large instantaneous spatial variability in the melt rate (Figure 3) with324

peaks of up to five times the mean. These peaks are correlated with small-scale turbulent structures325

that form at the edge of the viscous boundary layer. Turbulent structures such as near-wall streaks326

are effective at transporting heat across the viscous boundary layer and hence a signature of these327

structures appears in the melt rate snapshots.328
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The mean melt rate is shown in Figure 4 for all the runs in Table 1. The melt rates have been329

horizontally averaged across the ice base and averaged in time for 10 hours, except for Runs 1–3330

and 10–11 which were averaged for > 50 hours. The passive scalar cases (g = 0) are included331

as lines in Figure 4 since these results apply for any imposed ∆T (for a particular u∗). This is332

because the advection-diffusion equation (3) is linear in temperature and, for the passive scalar333

case, there is no influence of the stratification on the flow, meaning that the melt rate in (9) is334

also a linear function of the temperature gradient. This is consistent with the Monin–Obukhov335

scaling (18) which predicts that, when the scalar is passive (stratification term βsξ/ks = 0) and336

u∗ unchanged, the wall-normalised temperature at a particular depth T+ is constant. Therefore337

increases in imposed ∆T are compensated for by a linear increase in ∂T/∂ z|b and hence a linear338

increase in the melt rate (9). The passive scalar simulations were used to calculate the ΓT = 1/T+
∞339

associated with each u∗ case (Runs 9 and 16 in Table 1) which, using (21), resulted in the lines on340

Figure 4.341

For stronger thermal driving, the melt rate departs from the value for passive scalars as the stable342

stratification inhibits turbulence and its ability to mix heat toward the boundary and melt the ice.343

At very strong thermal driving, the melt rates appear to become largely independent of ∆T . The344

point at which thermal driving and the stable salinity stratification become strong enough to damp345

turbulence is dependent on the friction velocity – higher friction velocities have more energetic346

turbulence and so stronger stratification is required to reduce the heat transfer and melt rate.347

b. Evolution of boundary layer turbulence348

The response of the flow at early times in the simulations (Figure 5) provides insight into the349

boundary layer turbulence. Recall that the initial condition consists of fully turbulent flow with350

uniform temperature and salinity, T∞ and S∞. After a few hours, the flow becomes stratified in351
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temperature and salinity and the stable stratification acts to reduce the turbulent kinetic energy352

(TKE) at the edge of the viscous layer. For weak thermal driving the flow remains turbulent353

and reaches the equilibrated state after ∼ 50 hours (Figure 5a). When thermal driving is strong,354

the stratification damps the turbulence for long periods of time between episodic turbulent events355

(Figure 5b). These intermittent cases do not reach equilibrated state in 50 hours and must be356

continued for long periods of time to equilibrate.357

One intermittently turbulent case (Run 3) is shown in more detail in Figure 6 to better understand358

the nature of the turbulent bursts. The TKE and friction velocity are both small during intervals359

of laminar flow before rapidly increasing when the flow goes turbulent. The bulk flow accelerates360

when the flow is laminar and the turbulence and friction velocity are small and exert less drag on361

the far-field current. The trace of TKE through time with friction velocity and driving temperature362

(Figure 6g) begins when the flow is laminar. At the time immediately before a turbulent burst363

(t = 338.3 h) the stratification near the ice is very weak (Figure 6f), allowing turbulent structures364

form at the edge of the viscous sublayer. When a turbulent burst begins, the friction velocity and365

TKE rapidly increase to their maximum values (t = 339.3 h). The turbulence mixes more heat366

across the sublayer, increasing the temperature at the ice base, Tb, while decreasing ∆T = T∞−Tb367

(at t = 340 h). The melt rate increases in response to the increase in heat. In the salinity field368

(which dominates the density) the increased melt rate results in a decrease in the salinity at the369

boundary, resulting in a decrease in density near the ice as shown in Figure 6f. As the turbulence370

continues, the density at the boundary reduces further until eventually the stable stratification is371

strong enough to damp turbulence. The trailing edge of the loop at smaller ∆T (t = 354 h) shows372

the continued smaller levels of turbulence which eventually die out as the system becomes laminar373

again. As the turbulence intensity decreases, less heat is transferred to the ice and so ∆T begins to374

slowly increase (t = 366 h). The density at the boundary slowly increases towards the pre-turbulent375
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maximum, weakening the stratification under the ice again to eventually set off another turbulent376

burst.377

Similar turbulent events occur in Runs 1, 2, 10 and 11, although when thermal driving is very378

strong the turbulent portion of the trajectory in ∆T , u∗ space is shorter as turbulence dies out379

more quickly. In terms of time scales, these bursts occur quasi-regularly every 50 hours or so,380

with similar timescales in Runs 1 and 2. While similar turbulent bursts occur for simulations with381

imposed u∗= 0.1 cm/s that have large thermal driving (Runs 10 and 11) it is more computationally382

expensive to run these for long intervals, hence there are fewer events to examine and the time383

interval of reoccurrence is unclear. The intermittently turbulent runs show that the TKE is not just384

a function of friction velocity and that the time history matters.385

In an effort to quantify whether the system is fully or intermittently turbulent, we calculate the386

time-averaged TKE along with the standard deviation away from this mean (Figure 7). For the387

smaller thermal driving (Runs 4–8 and 12–15), the flow is fully turbulent and the TKE has small388

standard deviation. For larger thermal driving, the standard deviation increases significantly and389

there is a decrease in the total TKE as the flow becomes intermittently turbulent.390

c. Three-equation parameterisation and Obukhov length391

Here we examine whether the turbulent fluxes can be approximated by transfer coefficients as392

assumed in the three-equation model. For each simulation the drag coefficient (26) and the transfer393

coefficients for heat ΓT and salt ΓS (25) are calculated. As thermal driving increases, all coeffi-394

cients decrease as the flow becomes less turbulent (Figure 8). The exception is the salt transfer395

coefficient which has a short plateau when moving from fully turbulent to intermittent flow. The396

ratio of ΓT/ΓS = 34 in Figure 8d matches the more turbulent simulations and is broadly consistent397

with past predictions of ΓT/ΓS between 35 and 70 (McPhee et al. 2008).398
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The passive scalar cases are shown as horizontal lines in Figures 8a-c. There is very little399

dependence of ΓT and ΓS on the friction velocity for the passive scalar cases. The drag coefficient400

decreases by a small amount with increasing friction velocity, which is a known result for turbulent401

channel flow (Dean 1978; Pope 2000). The lack of dependence of ΓT and ΓS on the friction402

velocity suggests that constant transfer coefficients are a good approximation for strongly turbulent403

flow. It also begs the question of whether there is a normalising factor that would collapse the404

results when the flow is less strongly turbulent and allow prediction of whether the flow will be405

turbulent or intermittent.406

The Obukhov length (15) can be interpreted as the distance away from the ice where stratification407

begins to strongly affect the flow. For a distance much larger than the Obukhov length (z�408

L) stratification strongly affects the flow. Conversely for z� L stratification effects are weak.409

Molecular viscosity is important in the viscous sublayer that extends to approximately 50δν , where410

δν = ν/u∗ is the viscous length scale (Pope 2000). We can define the frictional Obukhov length411

as the ratio of L to the viscous length scale,412

L+ = L/δν . (27)

When L+ is sufficiently small there is no region of the flow where turbulence is free from the413

suppressing effects of stratification or viscosity. Previous work has found that flow in a stratified414

boundary layer becomes laminar when L+ < 100 (Flores and Riley 2011). Simulations of stratified415

plane Couette flow indicate that the flow is fully turbulent when L+ > 200 and intermittently416

turbulent when 100 < L+ < 200 (Deusebio et al. 2015). It is worth noting that there is some417

ambiguity on how to define the thickness of the viscous boundary layer, as the effects of viscosity418

continue to decrease moving away from the boundary (Pope 2000). This leads to some ambiguity419
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in the L+ thresholds, so they should be interpreted as general guidelines rather than definitive420

regime changes.421

The variance in TKE is plotted as a function of the time-averaged L+ (from calculating L+ at422

each time-step and then time-averaging) in Figure 9. For large L+, stratification effects are weak423

and the flow is fully turbulent with small variance around the mean TKE. As L+ decreases, the424

variance in TKE increases as the flow becomes intermittently turbulent and eventually laminar for425

long intervals with turbulent bursts. Note that here the time-averaged L+ is larger than 200 even426

for large thermal driving (see Table 1) because of the feedback effect between the melt condition427

and the stable stratification (as discussed in detail in §4b). Stratified flows without this feedback428

can reach less than 100 and become completely laminar (Deusebio et al. 2015; Zhou et al. 2017).429

The frictional Obukhov length L+ generally does well describing the transition from turbulent to430

intermittent flow in the ISOBL, although there appears to be some remaining dependence of the431

TKE variance on u∗.432

Crucially, L+ collapses the transfer coefficients for different imposed friction velocities (Figure433

10). The drag coefficients for different friction velocities do not fully collapse, partly because the434

passive scalar values vary with friction velocity. Normalising by the passive scalar values improves435

the collapse of the u∗ curves as a function of L+ (Figure 10d). Also included in Figure 10 is the436

Monin–Obukhov similarity scaling prediction for the coefficients. Far-field values of U+, T+ and437

S+ (defined in 13) are solved for using the Monin–Obukhov similarity scaling (17–19) as functions438

of L+ and u∗. The resulting U+
∞ , T+

∞ and S+∞ are used to calculate the transfer (25) and drag (26)439

coefficients. The Monin–Obukhov prediction is reasonably consistent with the diagnosed Cd and440

ΓT (Figure 10). However, the Monin–Obukhov similarity scaling does not capture the dependence441

of ΓS on L+. Note that other suggestions for constant values in the Monin–Obukhov scaling were442
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also tested (e.g. Kader and Yaglom 1972; McPhee et al. 1987) but the presented scaling with443

constants from Schlichting and Gersten (2003) showed the best fit to the simulations.444

For fully turbulent flow with large L+, the transfer coefficients asymptote to the upper limit445

given by the passive scalar case (ΓT = 0.012 and ΓS = 3.9×10−4). These results are very similar446

to observations (ΓT = 0.011 and ΓS = 3.1× 10−4) by Jenkins et al. (2010). That the ΓT and ΓS447

results for different u∗ collapse to the same L+ curves is evidence that these results may apply to a448

larger range of u∗ and ∆T . Using the maximum limiting values of ΓT = 0.012 and ΓS = 3.9×10−4,449

the three-equation model (21–22) can be solved to predict the melt rate and Sb as functions of450

both ∆T and u∗. These melt rate and Sb values are then used in the molecular flux equations451

(9–11) to give the buoyancy flux, yielding a prediction of L+ as a function of ∆T and u∗. The452

predicted L+ from the three-equation model (coloured background) is compared against the time-453

averaged L+ from the LES (symbols) in Figure 11a. Similarly, Figure 11b compares the predicted454

melt rate from the three-equation model (coloured background) with the time-averaged melt rate455

from the LES (symbols). The size of the symbols is proportional to the TKE variance with larger456

symbols corresponding to high levels of TKE variance (from Figure 9) and intermittent turbulence,457

while small symbols indicate low TKE variance and fully turbulent flow. In the fully turbulent458

simulations, the measured u∗ matches the expected u∗ (set by imposing the pressure gradient)459

because the flow has come to equilibrated state. For intermittently turbulent flow, the evolution to460

equilibrated state was extremely long (> 400 h) hence the simulations were cut off and considered461

quasi-equilibrated – these cases have measured u∗ that do not yet match the imposed u∗.462

The L+ = 100 and L+ = 200 contours are highlighted on Figure 11 to show the predicted regime463

transitions. They curve upwards at very strong thermal driving (∆T ≈ 5◦C) where the heat flux464

starts to noticeably contribute to the buoyancy flux in L+. Following the L+ = 200 contour, the465

maximum predicted melt rate for a turbulent flow is then 0.05 m/yr for u∗= 0.05 cm/s and 0.9 m/yr466
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for u∗ = 0.1 cm/s, the latter of which is close to geophysically relevant values (Nicholls et al. 2009;467

Kimura et al. 2015). Comparing the predicted L+ = 200 contour with the simulation results shows468

that our approach does well predicting the transition from fully turbulent to intermittently turbu-469

lent flow. The simulated flow does not become fully laminar for predicted L+ < 100 but remains470

intermittently turbulent even at very strong thermal driving. The measured L+ in Table 1 are cal-471

culated using a long time-average that, when the flow is intermittently turbulent, includes laminar472

and turbulent events. Hence, the mean L+ remains above about 200, even when thermal driving is473

large and the L+ from the three-equation model is predicted to be less than 100. Instantaneously,474

smaller values of L+ occur in the LES.475

Using smaller values of either ΓT or ΓS three-equation model results in a shift of the predicted476

L+ transition curves to the left on Figure 11 (not shown here). Physically this is because a decrease477

in ΓT means less heat transferred to melt the ice, while a decrease in ΓS means less salt and hence a478

higher melting temperature, both of which result in smaller melt rates and a decrease in the stabil-479

ising stratification that suppresses turbulence. As mentioned previously, there is some ambiguity480

in the onset of intermittent flow, which is not necessarily abrupt. The L+ = 100,200 predictions481

are not hard transitions but more general guidelines on when the flow might be expected to be fully482

turbulent. As such, using the upper limits on ΓT and ΓS indicates the area where the three-equation483

model works (with these specific upper limit values of the transfer coefficients) and when it has484

the potential to not work well. The prediction matches well with the change from fully to inter-485

mittently turbulent flow found in the simulations, where the level of turbulence in the simulations486

is indicated by the size of the symbols in Figure 11 (with smaller symbols corresponding to more487

turbulent flow).488

The three-equation model with the upper limits of ΓT and ΓS also does well predicting the489

melt rate for the fully turbulent cases (Figure 12). But, as we might expect when using the large490
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values of the transfer coefficients, it overestimates the melt rate by almost an order of magnitude491

for the intermittently turbulent simulations. One extension to this work could be to incorporate492

the dependence of ΓT , ΓS on L+ (seen in Figure 10) into the three-equation model to improve493

the predicted melt rate when flow is intermittently turbulent. The Monin–Obukhov scaling (red494

lines on Figure 10) is already reasonably successful at predicting the drop-off in ΓT and Cd but495

with some deficiency in the prediction of ΓS. Improving the Monin–Obukhov scaling or finding496

another parameterisation that captures ΓT , ΓS and Cd behaviour would be useful, but is beyond497

the scope of the current paper. As it stands, caution should be used when trying to apply constant498

transfer coefficients to a flow that is not fully turbulent.499

5. Summary500

Large-eddy simulations were used to model the upper region of the ocean boundary layer be-501

neath a melting ice shelf. Increases in thermal driving enhance the melt rate until the flow be-502

comes strongly stratified in salinity. Turbulence is then suppressed by the stable stratification and503

no longer efficiently mixes heat across the interfacial sublayer, causing the melt rate to plateau504

with further increases in thermal driving. At this point the flow becomes intermittently turbulent505

in time, with long periods of laminar flow followed by abrupt turbulent bursts.506

The transition between turbulent and intermittent regimes is well-described by the ratio of the507

Obukhov and viscous layer thicknesses, L+. Monin–Obukhov similarity scaling for stratified flow508

does reasonably well predicting the drag and heat transfer coefficients for the three-equation pa-509

rameterisation as the simulations move into intermittent turbulence. For the salt transfer coeffi-510

cient, the Monin–Obukhov scaling is consistent with the weakly stratified simulations, but over-511

estimates the coefficient when the stratification is strong and the turbulence becomes intermittent.512

Crucially, the transfer coefficients asymptote at large L+ (fully turbulent flow) for simulations with513
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different friction velocities, giving us confidence to extend the simulated results to larger friction514

velocities and thermal driving that may be more geophysically relevant. These upper limits on the515

transfer coefficients are also consistent with observed ice shelf values.516

The L+ transition can be used to predict when the three-equation model (with upper limit values517

of transfer coefficients) is likely to work well in observations and ocean models. Understanding518

the direct influence of stratification induced by melting on shear driven turbulence, and the conse-519

quent feedback on the melt rate, is essential to improving parameterisations in ocean models and520

planning for future climate scenarios.521

6. Discussion522

Applying the L+ regime prediction to the upper region of the deeper planetary boundary layer in523

real-world scenarios will help to anticipate when the three-equation parameterisation will work in524

observations and ocean models. The thermal driving and friction velocities inferred from observa-525

tions are generally larger than those explored here using large-eddy simulations. Simulations with526

larger friction velocity are computationally expensive due to increasing grid resolution require-527

ments. Nevertheless, because the simulated results collapse for different u∗ and approach limiting528

values of transfer coefficients at large L+, the flow regime prediction has been extended to a wider529

range of parameters in Figure 13 to allow comparison with observed conditions. For u∗ > 0.2 cm/s530

the flow remains turbulent even at large thermal driving.531

The Obukhov to viscous length ratio L+ = L/δν is connected to the mixing length scale λ532

that has been used in ice-ocean studies (McPhee 2008). The mixing length is hypothesised to533

increase with depth until it saturates at a maximum value λmax. Stratification causes the flow in534

the boundary layer to become laminar when λmax < RckmL, where Rc ≈ 0.2 is the critical flux535

Richardson number (McPhee 2008). Following the arguments in §4c, for turbulence to exist (in536
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the wall-bounded shear flow examined here) the mixing length must be much larger than the537

viscous length λmax � δν . The mixing length condition then requires L+ � 1/(Rckm) or L+ =538

12.5 for turbulence. Requiring at least an order of magnitude difference between the mixing and539

viscous length scales results in L+ = 125 being the minimum value of L+ for which the flow540

can be turbulent. This regime transition is consistent with the L+ = 100 transition predicted by541

comparing the Obukhov layer thickness to the thickness of the viscous layer (Flores and Riley542

2011). Again we note that past work on stratified boundary layers has found completely laminar543

flow for L+ < 100, but here the feedback between turbulence, stratification, and ice melting keeps544

the simulated flow intermittently turbulent.545

The turbulent transfer coefficients for heat and salt diagnosed from our fully turbulent simula-546

tions with weak stratification are in good agreement with those empirically inferred from beneath547

the Ronne ice shelf (Jenkins et al. 2010). The drag coefficient is a factor of three smaller in the548

simulations compared to the Ronne ice shelf observations. This could be due to additional pro-549

cesses such as ice roughness which can increase the friction velocity or because, as Jenkins et al.550

(2010) notes, the drag coefficient is less well constrained than the transfer coefficients for this set551

of observations. Observations of turbulent flow under sea-ice also give transfer coefficients con-552

sistent with the simulations (Sirevaag 2009). Note that the friction velocity (or drag coefficient)553

needs to be prescribed in the three-equation model, but it is difficult to observe and can vary sig-554

nificantly in space and time. Uncertainty around the friction velocity is perhaps the most difficult555

step in applying our results to observations or ice-melt parameterisations in ocean models.556

The turbulent transfer and drag coefficients in the LES are consistent with those predicted by557

Monin–Obukhov similarity scaling, but the scaling significantly overestimates the salt transfer in558

stratified conditions. An improved model may require a modification to the Monin–Obukhov func-559

tion Φs (see Equation 16) to address this additional stratification effect when the Prandtl/Schmidt560
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number is large. Additionally, a roughness length scale can be included in the Monin–Obukhov561

similarity scaling in place of the viscous length scale (e.g. Yaglom and Kader 1974).562

The intermittently turbulent simulations are thought to be dynamically different from the highly563

stratified ISOBL observed in the ocean. This is because the prescribed pressure gradient in the564

simulations accelerates the far-field current for cases with strong thermal driving. In contrast, the565

strongly stratified flow under the George VI ice shelf is observed to have low current speeds with566

evidence for double-diffusive steps (Kimura et al. 2015). Work in the atmospheric boundary layer567

community may give insight into other dynamical processes that could become important when568

the flow is strongly stably stratified (see review by Mahrt 2014).569

Our focus has been on simulating regions of ice shelves that do not have a significant slope.570

In the weakly sloped case of a few degrees away from the horizontal, plume theory predicts that571

there will be negligible effects of an upslope current (Kerr and McConnochie 2015; McConnochie572

and Kerr 2018). Here, small slopes were found to have very little affect on the flow turbulence573

(see Appendix A), making our results applicable to small slope angles. Steeper slopes occur near574

the grounding line which is an important region for ice-sheet dynamics. In such cases an upslope575

plume may be the primary source of turbulence and is likely to influence ice-ocean interactions576

(McConnochie and Kerr 2017; Mondal et al. 2019).577

The present study was motivated by the ice shelf/ocean boundary layer. However, many results578

from the simulations can apply more generally to other ice-ocean interactions including land-fast579

and drifting sea ice. The formation of ice from seawater can result in a small ice salinity, commonly580

observed to be 3-7 psu for land-fast ice (Gerland et al. 1999; Vancoppenolle et al. 2007). Increasing581

the ice salinity in the simulations from the fresh ice shelf to saltier fast ice values is expected to582

modestly increase the melting temperature, but otherwise the results and conclusions will be very583

similar. It would be reasonably straightforward to include a constant Sice value in the melting584
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equation (10). Drifting ice can generate shear-driven turbulence as it moves across the ocean, but585

this could be modeled in a reference frame moving with the ice with a possibly time-dependent586

current imposed in the ocean. Perhaps the most problematic assumption made here when applied587

to sea ice is the assumption that the ice-ocean interface is flat and smooth. It is possible to include588

a roughness length in the Monin–Obukhov scaling (Yaglom and Kader 1974), but large roughness589

elements such as leads and ice keels would be more challenging to simulate.590

Future work will focus on simulations with larger thermal driving and friction velocities to get591

closer to real-world scenarios. There are also many other processes that are likely to affect the592

melt rate such as roughness of the ice, tides and basal slope. The simulations here were designed593

to model a subset of the larger planetary boundary layer – future work could include the Earth’s594

rotation and to have both a surface layer and an outer layer. While it is significantly more difficult595

to simulate, the changing topography of the melting ice and the formation of channel cavities will596

be important in directing the melt outflow. We have not considered effects such as allowing the597

thermal expansion coefficient to vary with temperature, however this is unlikely to have much598

influence unless temperature differences become large. Other complicated flow phenomena such599

as double-diffusive layers will also be relevant for ice melting.600
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APPENDIX A606

Sloped runs607
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In additional runs, the influence of small basal slope angles on the turbulent flow is examined608

(Table A1). The momentum equation (1) was changed for a slope in the x-direction,609

Du
Dt

=− 1
ρ0

∇p+ν∇
2u+F i+

∆ρ

ρ0
g(sinθ i+ cosθk)−∇ ·τττ, (A1)

or a slope in the y-direction,610

Du
Dt

=− 1
ρ0

∇p+ν∇
2u+F i+

∆ρ

ρ0
g(sinθ j+ cosθk)−∇ ·τττ. (A2)

The gravity term in (A1–A2) leads to a mean component that can drive an upslope plume by611

forcing the mean momentum equation. However, we want to ensure that the only contribution to612

the friction velocity is from the imposed pressure gradient so that the equilibrium state friction613

velocity is consistent across results with different slopes. To do this, the mean density gradient in614

the horizontal and vertical directions is subtracted off the momentum equation (A1–A2). This has615

no effect on the stability but does not allow for the formation of an upslope plume. However, the616

imposed forcing, F , can be viewed as the upslope component of an imposed hydrostatic pressure617

gradient. Therefore, it is just the feedback between changes in mean density and the upslope618

buoyancy force that are neglected. This is not expected to have a strong affect in cases with small619

slopes, especially where the flow is dominated by shear turbulence such as the cases examined620

here.621

Three fully turbulent runs from Table 1 were selected as base cases, with the direction of gravity622

angled to produce an ice slope of either 1◦ or 5◦ from the horizontal in the streamwise x or cross-623

stream y direction. The tilt of gravity does not have much, if any, influence on the turbulence in this624

system, as is shown by the results in Table A1. Future work will be to simulate the full boundary625

layer including the upslope acceleration for more strongly sloped cases. We note that there can be626

important feedbacks between melting and slope that act on larger scales (Jenkins 2016) that has627

not been ruled out here.628
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APPENDIX B629

Anisotropic minimum dissipation model for large-eddy simulations630

The large-eddy simulations have sub-filter stress tensor τi j = uiu j−ui u j with the deviatoric part631

of the stress tensor τd
i j modelled as632

τ
d
i j = τi j−

1
3

ei jτkk =−2νSGSSi j, (B1)

where Einstein summation is implied, ei j is the delta function, νSGS is the sub-grid scale eddy633

viscosity and Si j =
1
2

(
∂iu j(x, t)+∂ jui(x, t)

)
is the resolved rate-of-strain tensor. The overbar de-634

notes filtering at the resolved spatial scale which for our purposes corresponds to the resolved grid635

scale. The sub-filter scalar fluxes of heat λT, j = uiT −ui T and salt λS, j = uiS−ui S are modelled636

respectively as637

λT, j =−κT,SGS∂ jT , λS, j =−κS,SGS∂ jS, (B2)

where κT,SGS and κS,SGS are the sub-grid scale scalar diffusivities for heat and salt respectively.638

For ease of reading we now drop the overbar, recalling that spatial filtering is implied.639

The anisotropic minimum-dissipation (AMD) model was derived by Rozema et al. (2015). Ex-640

tending this model to a stratified scenario following Abkar and Moin (2017) but modified to fulfil641

the Verstappen (2016) requirement (by normalising the displacement, velocity and the velocity642

gradient by the filter width δ to ensure that the resulting eddy dissipation properly counteracts the643

spurious kinetic energy transferred by convective nonlinearity) gives sub-grid scale viscosity,644

νSGS = (Cδ )2 max{−(∂̂kûi)(∂̂kû j)Ŝi j + êi3g(∂̂kûi)∂̂kρ,0}
(∂̂l ûm)(∂̂l ûm)

, (B3)

where C is a modified Poincaré constant,645

x̂i =
xi

δi
, ûi(x̂, t) =

ui(x, t)
δi

, ∂̂iû j(x̂, t) =
δi

δ j
∂iu j(x, t), êi3 =

ei3

δ3
, (B4)
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where δi is the filter width in the direction of xi, and the normalised rate-of-strain tensor is646

Ŝi j =
1
2

(
∂̂iû j(x̂, t)+ ∂̂ jûi(x̂, t)

)
. (B5)

For flows that are not very strongly stratified (Vreugdenhil and Taylor 2018) the second term in647

(B3) is small and the sub-grid scale viscosity becomes648

νSGS = (Cδ )2 max{−(∂̂kûi)(∂̂kû j)Ŝi j,0}
(∂̂l ûm)(∂̂l ûm)

. (B6)

The AMD model was extended by Abkar et al. (2016) to provide a sub-grid scalar diffusivities649

for heat and salt650

κT,SGS = (Cδ )2 max{−(∂̂kûi)(∂̂kT )∂̂iT,0}
(∂̂lT )(∂̂lT )

, κS,SGS = (Cδ )2 max{−(∂̂kûi)(∂̂kS)∂̂iS,0}
(∂̂lS)(∂̂lS)

. (B7)

For the filter width δ we follow the suggestion of Verstappen (2016) to use651

1
δ 2 =

1
3

(
1

δ 2
x
+

1
δ 2

y
+

1
δ 2

z

)
(B8)

where the filter widths in each direction are (δx,δy,δz) and the Poincaré constant is C2 = 1/12.652

In the vertical direction, where the second order finite differences scheme is used for the grid653

discretisation, the filter width is defined as δz = (zk+1− zk−1), where k is the grid cell (Verstappen654

2016). In the two horizontal directions the grid is discretised using Fourier modes and a 2/3655

dealiasing rule is applied moving from Fourier back to physical space. The filter widths are then656

δx = (3/2)(xi+1−xi−1) = 3∆x and δy = (3/2)(zk+1− zk−1) = 3∆y where i and j are the grid cells657

and ∆x and ∆y are the grid cell size in each respective direction (Vreugdenhil and Taylor 2018).658

APPENDIX C659

Implementation of melting boundary conditions660

In the vertical direction (z) the numerical solver has a grid for the vertical velocities (named G661

for base grid) and a staggered grid (named GF for fractional grid) for the horizontal velocities and662
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scalars (Taylor 2008). The staggered grid is halfway between neighbouring points of the base grid663

such that, for grid point k, the staggered grid is GFk = (1/2)(Gk+1 +Gk). This staggering ensures664

that neighbouring pressure values are coupled. The working volume is comprised of N grid points665

in the vertical direction, along with ghost cells at the base and top (0 and N + 1). We define the666

top of the working volume as the grid point GN where the vertical velocity is zero (impermeable667

boundary condition). As GN is the location of the ice base, Tb, Sb and the melt rate m are also668

defined at GN .669

Recalling that the numerical discretisation is second order finite difference in the vertical direc-670

tion, the scalars and scalar gradients at the top boundary can be expressed as671

Tb = Tb,int =
1
2
(TN +TN−1) , Sb = Sb,int =

1
2
(SN +SN−1) ,

672

∂T
∂ z

=

(
∂T
∂ z

)
int

=
TN−TN−1

∆zN
,

∂S
∂ z

=

(
∂S
∂ z

)
int

=
SN−SN−1

∆zN
, (C1)

where the subscript “int” refers to the interpolated value and ∆z is the grid spacing. The above673

form assumes that the vertical grid spacing of neighbouring points is unity; a more accurate version674

could be used for highly stretched grids. The melting equations (9–11) become675

cwρwκT

(
∂T
∂ z

)
int

= ρiLim, (C2)

676

ρwκS

(
∂S
∂ z

)
int

= ρiSb,intm, (C3)

677

Tb,int = λ1Sb,int +λ2 +λ3P. (C4)

Each time step, TN−1(x,y) and SN−1(x,y) from the working volume are used to solve the quadratic678

equation resulting from (C2–C4) for TN(x,y), SN(x,y), and the melt rate m(x,y). Dirichlet bound-679

ary conditions are used to implement TN(x,y) and SN(x,y) on the staggered grid, resulting in680

Tb(x,y) and Sb(x,y) at the ice boundary on the base grid.681
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TABLE 1. Run summary varying friction velocity u∗ (set by imposing a chosen pressure gradient) and far-field

temperature T∞. Results are the time-averaged measured friction velocity u∗, thermal driving ∆T = T∞−Tb, melt

rate, drag coefficient Cd , transfer coefficients for heat ΓT and salt ΓS, and Obukhov length scale ratio L+. Runs

9 and 16 have g = 0.

838

839

840

841

Run u∗ set T∞ u∗ meas. ∆T Melt rate Cd ΓT ΓS L+

(cms−1) (◦C) (cms−1) (◦C) (m/yr)

1 0.05 −2.00 0.0451 0.1405 0.0357 7.75e−5 1.47e−3 1.05e−4 214

2 0.05 −2.07 0.0457 0.0857 0.0331 8.43e−5 2.19e−3 1.45e−4 225

3 0.05 −2.10 0.0469 0.0641 0.0408 1.49e−4 3.53e−3 2.41e−4 268

4 0.05 −2.15 0.0499 0.0242 0.0214 3.68e−4 4.60e−3 2.23e−4 486

5 0.05 −2.17 0.0497 0.0093 0.0116 7.53e−4 6.51e−3 2.16e−4 881

6 0.05 −2.18 0.0497 0.0031 0.0051 1.30e−3 8.54e−3 2.28e−4 2002

7 0.05 −2.184 0.0496 0.00101 0.0021 1.96e−3 1.09e−2 2.97e−4 4957

8 0.05 −2.185 0.0502 0.00047 0.00105 2.24e−3 1.17e−2 3.30e−4 10101

9 0.05 0.0498 2.53e−3 1.25e−2 3.91e−4 ∞

10 0.1 −1.60 0.0783 0.4319 0.333 8.11e−5 2.56e−3 1.57e−4 207

11 0.1 −1.80 0.0903 0.2810 0.391 1.50e−4 4.00e−3 2.39e−4 300

12 0.1 −1.90 0.0953 0.2087 0.294 2.46e−4 3.83e−3 2.34e−4 488

13 0.1 −2.00 0.1007 0.1236 0.242 3.23e−4 5.03e−3 2.28e−4 734

14 0.1 −2.10 0.0990 0.0496 0.132 6.35e−4 6.98e−3 2.21e−4 1235

15 0.1 −2.18 0.1000 0.00337 0.0147 1.55e−3 1.13e−2 3.58e−4 11491

16 0.1 0.0997 2.11e−3 1.20e−2 3.93e−4 ∞
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Table B1. Summary of additional runs with slope of ice changed from horizontal. Parameters are as in Table

1 with magnitude and direction of slope change also indicated.

842

843

Run Slope u∗ set T∞ u∗ meas. ∆T Melt rate Cd ΓT ΓS L+

θ (cms−1) (◦C) (cms−1) (◦C) (m/yr)

4 None 0.05 −2.15 0.0499 0.0242 0.0214 3.68e−4 4.60e−3 2.23e−4 486

4A 1◦ in x 0.05 −2.15 0.0498 0.0248 0.0221 3.62e−4 4.70e−3 2.43e−4 469

4B 1◦ in y 0.05 −2.15 0.0501 0.0246 0.0222 3.57e−4 4.70e−3 2.39e−4 476

4C 5◦ in x 0.05 −2.15 0.0500 0.0253 0.0219 3.44e−4 4.50e−3 2.50e−4 482

4D 5◦ in y 0.05 −2.15 0.0507 0.0248 0.0229 3.74e−4 4.70e−3 2.46e−4 486

8 None 0.05 −2.185 0.0502 0.00047 0.00105 2.24e−3 1.17e−2 3.30e−4 10101

8A 1◦ in x 0.05 −2.185 0.0501 0.00044 0.00106 2.23e−3 1.18e−2 3.37e−4 9861

8B 1◦ in y 0.05 −2.185 0.0499 0.00044 0.00106 2.22e−3 1.18e−2 3.38e−4 9760

13 None 0.1 −2.00 0.1007 0.1236 0.242 3.23e−4 5.03e−3 2.28e−4 734

13A 1◦ in x 0.1 −2.00 0.1004 0.1244 0.239 3.11e−4 5.00e−3 2.29e−4 733

13B 1◦ in y 0.1 −2.00 0.1008 0.1240 0.240 3.16e−4 5.00e−3 2.27e−4 742

844

42



LIST OF FIGURES845

Fig. 1. Setup of the numerical simulations which model the upper region of the ocean boundary846

layer beneath an ice shelf. Vertical profiles of velocity (blue curve), temperature (red) and847

salinity (green) have been horizontally averaged across the domain. The profiles are from a848

run with friction velocity u∗ = 0.05 cm/s, far-field temperature T∞ = −2.18◦C and salinity849

S∞ = 35 psu (Run 6 in Table 1). The resulting thermal driving is relatively weak ∆T =850

0.0031◦C. Note that the vertical z direction is defined as positive downwards and domain851

sizes are in metres. . . . . . . . . . . . . . . . . . . . . . 45852

Fig. 2. Vertical profiles of u∗ = 0.05 cm/s cases with weak thermal driving ∆T = 0.00101◦C (Run853

7; blue) and strong thermal driving ∆T = 0.0641◦C (Run 3; cyan). The results are taken854

in equilibrated (or quasi-equilibrated) state and are horizontally averaged across the domain855

and time-averaged for > 50 hours (Run 3) and 10 hours (Run 7). The profiles are (a) velocity,856

(b) temperature and (c) salinity with depth. Wall-normalised profiles of (d) velocity U+, (e)857

temperature T+ and (f) salinity S+ are shown against depth in wall units z+. In (d–f) the858

spacing of the symbols indicates the grid spacing. The viscous, conductive and diffusive859

boundary layer scalings (12) are shown as the unbroken black lines. The Monin–Obukhov860

scalings (17-19) are shown as the broken lines coloured to match the runs and the black861

broken curve indicates the passive scalar case. . . . . . . . . . . . . . 46862

Fig. 3. Snapshots of the melt rate at the base of the ice for two weak thermal driving cases with (a)863

u∗ = 0.05 cm/s, ∆T = 0.0031◦C (Run 6) and (b) u∗ = 0.1 cm/s, ∆T = 0.1236◦C (Run 13). . . 47864

Fig. 4. Melt rate against thermal driving for all runs in Table 1. The passive scalar g = 0 cases with865

u∗ = 0.05 cm/s (Run 9; unbroken line) and u∗ = 0.1 cm/s (Run 16; broken line) are also866

shown. . . . . . . . . . . . . . . . . . . . . . . . . 48867

Fig. 5. Adjustment of the turbulent kinetic energy (m2s−2) from fully developed unstratified turbu-868

lence to turning on the melt condition. The evolution is shown for u∗ = 0.05 cm/s with (a)869

weak thermal driving ∆T = 0.0031◦C (Run 6) and (b) strong thermal driving ∆T = 0.0641◦C870

(Run 3). Note the different time windows shown. . . . . . . . . . . . . . 49871

Fig. 6. Laminar to turbulent transition for imposed u∗ = 0.05 cm/s with strong thermal driving872

(time-averaged ∆T = 0.0641◦C; Run 3). (a) Volume-averaged turbulent kinetic energy with873

time, where the dotted box shows zoom in on an interval of (b) volume-averaged turbulent874

kinetic energy, (c) friction velocity u∗, (d) bulk velocity, and (e) melt rate. (f) Density at the875

top region of the domain, immediately beneath the ice-ocean boundary at various times, and876

(g) the progression of the thermal driving and friction velocity through time, with colour877

axis showing the volume-averaged turbulent kinetic energy. . . . . . . . . . . 50878

Fig. 7. Turbulent kinetic energy against thermal driving. Results have been time-averaged for 10879

hours, excepting cases where the turbulence was intermittent (the higher ∆T values shown880

by open symbols) where the flow was averaged for longer (> 50 hours) to achieve accurate881

representation of the flow becoming turbulent and then relaminarising, as shown in Figure882

6. The vertical bars show the standard deviation of the turbulent kinetic energy around the883

mean and the dotted line shows the zero turbulent kinetic energy value. Closed symbols884

show runs that are fully turbulent, open symbols show runs that are intermittently turbulent. . 51885

Fig. 8. Transfer coefficients of (a) heat ΓT and (b) salt ΓS, and (c) drag coefficient Cd against thermal886

driving. The lines on (a, b, c) show the the passive scalar g = 0 cases (Run 9, unbroken line887

and Run 16, broken line). The variation of ΓS with ΓT is shown in (d) with Cd shown on888
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the colour axis. Open symbols are the passive scalar cases and the curve is fitted to the fully889

turbulent cases with a slope of 1/34. . . . . . . . . . . . . . . . . 52890

Fig. 9. Variance in turbulent kinetic energy against the ratio of Obukhov to viscous length scale891

L+. The time interval considered was 10 hours, except in cases when the turbulence was892

intermittent where the flow was averaged for longer (> 50 hours) as in Figure 7. Closed893

symbols show runs that are fully turbulent, open symbols show runs that are intermittently894

turbulent. . . . . . . . . . . . . . . . . . . . . . . . 53895

Fig. 10. Transfer coefficients of (a) heat ΓT and (b) salt ΓS, and (c) drag coefficient Cd against896

Obukhov length scale ratio L+. In (d) the drag coefficient has been normalised by that897

measured for the passive scalar case. The lines are for the the passive scalar g = 0 cases898

(Run 9 u∗ = 0.05 cm/s, blue unbroken and Run 16 u∗ = 0.1 cm/s, cyan broken) and for899

the Monin–Obukhov similarity scaling (17–19) coupled with (25) and (26) to predict the900

transfer coefficients (u∗ = 0.05 cm/s, red unbroken and u∗ = 0.1 cm/s, red broken). . . . . 54901

Fig. 11. Predicted (a) Obukhov to viscous length scale ratio L+ and (b) melt rate (m/yr) varying with902

friction velocity u∗ and thermal driving ∆T . Colour contours show (a) L+ values and (b)903

melt rates predicted by the three-equation model with ΓT = 0.012 and ΓS = 3.9×10−4 (the904

maximum limiting values found in the simulations). The black lines highlight the L+ = 100905

(dashed) and L+ = 200 (unbroken) contours. The u∗ = 0.05 cm/s (circles) and u∗ = 0.1 cm/s906

(triangles) results are calculated from the LES, with measured values of u∗ on the horizontal907

axis. The dotted lines show the equilibrated state values of u∗= 0.05 cm/s and u∗= 0.1 cm/s.908

The LES that have measured u∗ less than the dotted line have not yet come to equilibrated909

state. The size of the symbol reflects the amount of variance in TKE, with lower variance910

(smaller symbols) found for more turbulent runs as in Figure 9. . . . . . . . . . 55911

Fig. 12. The ratio of the melt rate predicted by the three-equation model to that measured in the912

simulations, against L+. As in Figure 11, the maximum limiting transfer coefficients found913

in the simulations ΓT = 0.012 and ΓS = 3.9×10−4 are used in the three-equation model. . . 56914

Fig. 13. Regime diagram showing the predicted transition between laminar, intermittent and fully915

turbulent flow with friction velocity u∗ and thermal driving ∆T . The curves show the L+ =916

100 (broken) and L+ = 200 (unbroken) contours predicted by the three-equation model with917

ΓT = 0.012 and ΓS = 3.9× 10−4 (the maximum limiting values found in the simulations).918

The u∗ = 0.05 cm/s (circles) and u∗ = 0.1 cm/s (triangles) results are calculated from the919

LES, with measured values of u∗ on the horizontal axis. . . . . . . . . . . . 57920
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FIG. 1. Setup of the numerical simulations which model the upper region of the ocean boundary layer be-

neath an ice shelf. Vertical profiles of velocity (blue curve), temperature (red) and salinity (green) have been

horizontally averaged across the domain. The profiles are from a run with friction velocity u∗ = 0.05 cm/s, far-

field temperature T∞ = −2.18◦C and salinity S∞ = 35 psu (Run 6 in Table 1). The resulting thermal driving is

relatively weak ∆T = 0.0031◦C. Note that the vertical z direction is defined as positive downwards and domain
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FIG. 2. Vertical profiles of u∗ = 0.05 cm/s cases with weak thermal driving ∆T = 0.00101◦C (Run 7; blue)

and strong thermal driving ∆T = 0.0641◦C (Run 3; cyan). The results are taken in equilibrated (or quasi-

equilibrated) state and are horizontally averaged across the domain and time-averaged for > 50 hours (Run 3)

and 10 hours (Run 7). The profiles are (a) velocity, (b) temperature and (c) salinity with depth. Wall-normalised

profiles of (d) velocity U+, (e) temperature T+ and (f) salinity S+ are shown against depth in wall units z+.

In (d–f) the spacing of the symbols indicates the grid spacing. The viscous, conductive and diffusive boundary

layer scalings (12) are shown as the unbroken black lines. The Monin–Obukhov scalings (17-19) are shown as

the broken lines coloured to match the runs and the black broken curve indicates the passive scalar case.
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FIG. 10. Transfer coefficients of (a) heat ΓT and (b) salt ΓS, and (c) drag coefficient Cd against Obukhov

length scale ratio L+. In (d) the drag coefficient has been normalised by that measured for the passive scalar

case. The lines are for the the passive scalar g = 0 cases (Run 9 u∗ = 0.05 cm/s, blue unbroken and Run 16

u∗ = 0.1 cm/s, cyan broken) and for the Monin–Obukhov similarity scaling (17–19) coupled with (25) and (26)

to predict the transfer coefficients (u∗ = 0.05 cm/s, red unbroken and u∗ = 0.1 cm/s, red broken).
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and u∗ = 0.1 cm/s (triangles) results are calculated from the LES, with measured values of u∗ on the horizontal

axis. The dotted lines show the equilibrated state values of u∗ = 0.05 cm/s and u∗ = 0.1 cm/s. The LES that have

measured u∗ less than the dotted line have not yet come to equilibrated state. The size of the symbol reflects the

amount of variance in TKE, with lower variance (smaller symbols) found for more turbulent runs as in Figure 9.
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FIG. 12. The ratio of the melt rate predicted by the three-equation model to that measured in the simulations,

against L+. As in Figure 11, the maximum limiting transfer coefficients found in the simulations ΓT = 0.012

and ΓS = 3.9×10−4 are used in the three-equation model.
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FIG. 13. Regime diagram showing the predicted transition between laminar, intermittent and fully turbulent

flow with friction velocity u∗ and thermal driving ∆T . The curves show the L+ = 100 (broken) and L+ = 200

(unbroken) contours predicted by the three-equation model with ΓT = 0.012 and ΓS = 3.9×10−4 (the maximum

limiting values found in the simulations). The u∗ = 0.05 cm/s (circles) and u∗ = 0.1 cm/s (triangles) results are

calculated from the LES, with measured values of u∗ on the horizontal axis.
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