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Abstract

A first contribution of this thesis is to propose causality as a language for problems of
distribution shift. First, we consider domain generalisation, where no data from the test
distribution are observed during training. What assumptions can be made regarding the
relation between train and test distributions for transfer to succeed? We argue that assuming
the data in both tasks originate from the same causal graph leads to a natural solution: use
only causal features for prediction, as the mechanism mapping causes to effects is invariant to
shifts in the probability distributions induced by the causal structure. We provide optimality
results when the test task is adversarial, and introduce a method for exploiting all remaining
features when data from the test task are observed. We motivate that learning such invariant
mechanisms mapping features to outputs leads to machine learning modules robust to transfer.

Second, we consider a classification problem where only few examples are available for
each label. How should an initial large dataset be leveraged to improve performance in this
task? We argue that such a dataset should be used to learn powerful features for batch
classification using a neural network. We present a framework which transfers between
classes by building a probabilistic model on the weights of the network. Our results suggest
that practitioners should use the original dataset for building features whose power can be
exploited during few-shot learning.

Finally, we extend causal discovery to solve problems such as distinguishing a painting
from its counterfeit. Given two such static entities, a proxy random variable introduces the
randomness necessary to construct two features of the static entities which preserve their
causal footprint, measurable by a standard causal discovery procedure. Experiments on
vision and language provide evidence that the causal relation between the static entities can
often be identified.
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Chapter 1

Introduction

Machine learning provides tools for making predictions in the world around us. When
learning with supervision, a machine or agent is given a training dataset of input-output
pairs (x, y), where x ∈ X is a feature representation of the data point, and y the output
value corresponding to the input x. The goal of the agent is to build a model M allowing
us to make predictions on new test data points x̃. It remains nonetheless unclear where the
new data point x̃ is coming from, and whether M can be used for prediction without further
modifications. Most standard approaches for supervised learning assume that the test data is
drawn from the same distribution P as the training data, thus circumventing this problem:
when testing on data coming from P , M may be deployed directly.

In practice, however, this assumption is often violated for a variety of reasons. The test
data may have been acquired on a subset of the population which is not well represented in
the training set. The labels present in the test set may be different from those abundant in
the training set. A robot having learned to play tennis well should in principle be able to
transfer knowledge to sports sharing some of the same skills, such as squash. In all these
situations and many more, we wish to learn models which can be transferred to the test
distribution.

A fundamental problem when learning a predictive model M is to learn a feature
representation

h : X → X̃

of the input data which better expresses the key attributes of the input necessary to solve the
task at hand. In standard multi-class image classification, the input to the model is usually a
vector of pixel intensities x ∈ Rd from which distinguishing labels is a difficult task. From
the machine’s perspective, x is a vector of numbers with little apparent regularity. Simply
rotating the image leaves the output trivially recognisable for humans, yet the resulting pixel
intensities look very different from the original x. Powerful machine learning models such as
kernel methods (Schölkopf et al., 2002) and deep neural networks (Goodfellow et al., 2016)
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build a linear model on top of a learned feature representations h(x), providing evidence
that it is possible to learn informative features leading to high classification accuracy with
linear models. One can understand, for instance, that a binary vector where each dimension
indicates if an attribute is present in the image (Is there a tail? Is there a chair?) is
significantly simpler to exploit for classification than the raw pixel representation. This thesis
analyses different problems in machine learning in which transfer occurs, and introduces
methods for learning appropriate representations and models.

But what kind of assumptions regarding the similarity between different distributions
can be made? A main contribution of this thesis is the formulation of regularity assumptions
between training and test distributions using ideas from the field of causal inference, see
Chapter 3. We motivate that learning representations which exploit causal properties of the
data generating process leads to attractive properties for transfer when the training and test
distributions shift. One fundamental axis of causality is thinking about how the data came
to be, what are the mechanisms underlying the generation of the data, which in turn explain
the statistical dependencies we measure. Exploiting such dependencies provides a powerful
tool for prediction under the same training and testing conditions, but can easily break under
distribution shift. We argue that only causal features of the target variable should be used
for prediction when no data from the test task are observed. This is an application of the
principle of independence between cause and mechanism (Peters et al., 2017): the function
or mechanism transforming causes to effect remains invariant to a change in the distribution
of the causes. Such an invariant mechanism mapping causes to effect can thus be re-used
for prediction in distributions which are drawn from the same causal graph, even when the
statistical properties of such distributions differ. A first objective of this thesis is thus to
show that invariant causal features provide a powerful framework to discuss distribution shift
problems. We further exploit this principle when a probability distribution P is modified
by several independent functions. This is the case, for instance, when a distribution over
natural images is transformed by different noisy processes and geometric transformations. We
show that given data from these transformed distributions, we can recover an approximate
mapping back to the original distribution P without supervision, and the learned mechanisms
generalise to new distributions altogether. This result further supports the re-usability of
models resulting from causal assumptions.

The success of deep learning methods in supervised learning problems requires large
amounts of labelled data. Often, as providing labels for a dataset is expensive, only a handful
of examples are available and these methods cannot be applied. The problem of few-shot
learning receives as input an initial large dataset abundant in labelled data, and a small
dataset containing new classes that are not present in the training set. From the perspective
of human learning, recognising new entities in the world around us seems to leverage two
key properties: first, we extract powerful visual features allowing us to focus on high level
attributes of the entities we want to recognise; and second, we are able to transfer information
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from similar entities we have encountered in the past. Learning to recognise a new type of
flower is made easier when we have seen many types of flowers before and are aware of the
features they share, and the ones which differentiate them. Inspired by this observation, we
propose to build representations using an initial large dataset with standard deep learning
approaches. If the new classes are similar to the training classes, we show empirically that
these representations transfer well and allow us to quickly learn new concepts, achieving
state-of-the-art results in the miniImageNet dataset. A second goal of this thesis is thus
to provide a framework for few-shot learning and motivate that better features for batch
classification transfer well to new few-shot learning classes.

Causal discovery algorithms aim to find the causal direction between variables given a
sample from their joint distribution. Inferring causality from purely observational data is
often not possible, and assumptions about the data generating process must be made for a
causal footprint to become identifiable. We present an extension of causal discovery motivated
by the following question: how can you teach a machine that the concept “virus” causes the
concept “death”? The causal direction is quite clear to us, but is based on an understanding
of biological processes, and how untreated infection can lead to death. From the point of
view of causal discovery, obtaining a sample from two such static entities x and y which
could be fed to a causal discovery algorithm is an ill-defined problem. Using an additional
source of randomness, we propose to build representations of x and y from which we can
infer the causal direction. A third objective of this thesis is thus to show empirically that we
can construct representations which transfer the causal footprint existing between the original
static entities. We introduce a dataset of human-designed, human-validated pairs of concepts,
and show that we can correctly identify over 75% of the causal directions using a causal
discovery algorithm.

1.1 Outline and Contributions

We provide an outline of this thesis, as well as the major contributions.

• Chapter 2 provides a brief introduction to causal inference and discovery, and describes
key properties which are exploited later in the thesis. In particular, Section 2.3
introduces the idea of invariant causal conditionals, and summarises some results on the
identifiability of the causes when data from different tasks are available. These ideas
motivate the methods for domain shift introduced in Chapter 3. Section 2.2 introduces
observational causal discovery, and methods for estimating the causal direction between
two variables given only an observational sample from their joint distribution. These
methods are used to identify the causal direction between static entities in Chapter 5.

• Chapter 3 focuses on the distribution shift problem. We introduce a relaxation of
covariate shift motivated by the notion of invariant causal features. Section 3.2 discusses
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the setting in which no data from the test task are observed. We motivate that using
only invariant features is optimal when the new task is chosen in an adversarial way.
Section 3.2.6 introduces a method for estimating an invariant subset from data. In
Section 3.3, we also provide a method to exploit this knowledge for prediction when some
data from the test task are observed. Both these scenarios are discussed in Rojas-Carulla
et al. (2018). Section 3.4 discusses a specific application of multi-task learning in which
we want to identify and invert a set of functions automatically and follows Parascandolo
et al. (2018). We show that MNIST digits transformed by a series of geometric and
noisy transformations can be mapped back to their canonical counterpart without
supervision. We further show that the learned mappings generalise to unseen datasets.

• Chapter 4 expands on Bauer et al. (2017). We propose a framework for few-shot
learning based on two insights: using features learned from a large image dataset makes
learning at few-shot time significantly easier, and the weights of the network contain
information about the classes and can be used to regularise the weight vectors of the
new classes. Our probabilistic method achieves state-of-the-art in a standard dataset
for few-shot learning, putting into context recent developments in the field arguing for
meta-learning methods.

• Chapter 5 focuses on the problem of causal discovery between two static entities, and
is based on Rojas-Carulla et al. (2017). How do we apply a causal discovery algorithm
to discover the relation between a painting and its counterfeit? In such case, only one
example of each paining is available, while a key ingredient of causal discovery methods
is having access to a large sample from which a causal footprint can be measured. We
introduce the notion of proxy variable to build representations of the static entities
from which the causal direction can be inferred. To assess the methods, we construct a
large dataset of pairs of causal concepts, such as “virus” and “death”.

All the work was done in collaboration with several colleagues, including Jonas Peters,
Richard Turner and Bernhard Schölkopf. Chapter 4 is based on equal contribution work with
Matthias Bauer, but I did not work on designing and training the neural networks for batch
classification. Section 3.4 is based on work to which I contributed in ideas and part of the
writing, but not in the implementation.

The papers cited previously are mentioned below.

Rojas-Carulla, M., Schölkopf, B., Turner, R., and Peters, J. (2018). Invariant models for
causal transfer learning. Journal of Machine Learning Research
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Bauer, M., Rojas-Carulla, M., Świątkowski, J., Schölkopf, B., and Turner, R. (2017).
Discriminative k-shot learning using probabilistic models. Bayesian Deep Learning Workshop
of the 31st Conference on Neural Information Processing Systems (NIPS) (equal contribution)

Parascandolo, G., Kilbertus, N., Rojas-Carulla, M., and Schölkopf, B. (2018). Learning
independent causal mechanisms. Proceedings of the 35th International Conference on Machine
Learning (ICML), 80:4033 – 4041

Rojas-Carulla, M., Baroni, M., and Lopez-Paz, D. (2017). Causal discovery using proxy
variables. Workshop of the International Conference on Learning Representations (ICLR)

During my PhD, I also worked on the following paper but do not discuss it in the thesis.

Kilbertus, N., Rojas Carulla, M., Parascandolo, G., Hardt, M., Janzing, D., and Schölkopf,
B. (2017). Avoiding discrimination through causal reasoning. In Proceedings of the 31st
Conference on Neural Information Processing Systems (NIPS), pages 656 – 666





Chapter 2

An Overview of Causal Inference

“I would rather discover a single causal law than be king of Persia”. These words by the
Greek philosopher Democritus attest to the long and challenging pursuit led by scientists and
philosophers in the field of causality. From a scientific perspective, being able to establish
with confidence the causal laws relating variables of interest remains a fundamentally difficult
question. It is nonetheless true that the scientific community is more often than not
interested in questions of a causal nature. What are the main causes of the obesity epidemic?
What is the effect of increasing interest rates on economic growth after a recession? These
questions are difficult because they require significantly more understanding of the true
underlying mechanisms than traditional predictive modelling. Indeed, performing an action,
or intervention, on the system of interest usually changes the distribution of the data, and
insights resulting from statistical dependencies previously measured should be carefully
revisited. It may be, for instance, that the amount of saturated fat in a person’s diet is highly
predictive of obesity. Concluding that saturated fat must be restricted solely on this premise
is a significant leap of faith with remarkable public health consequences. While the hypothesis
that high saturated fat causes obesity is valid, it is only one of many possible explanations. It
may be, for instance, that the amount of saturated fat is simply confounded by total calories
consumed, which fully explains obesity. It may also be that sugar is the culprit, and replacing
sugar calories for saturated fat calories at constant total calories decreases a person’s weight.
In order to test these assumptions, careful large scale experiments must be carried out.

The gold standard for establishing causal links are randomised experiments. Consider the
important problem of determining the effect of a new drug on recovery. The ideal experiment
would take the same sick patient, clone her, and apply the treatment only to one of the
copies. If only the treated individual recovers, the drug is a success. Since this imaginary
intervention is not possible, randomised experiments replace this idealised experiment by a
large scale experiment on subjects representative of the population in which the drug is to
be prescribed. This population is randomly divided into two groups, a control group and
an experimental group. The first group is given a placebo (sugar pill) and the second group
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the drug under consideration. The randomised aspect of the experiment is essential, as it
removes any possible effect of the treatment assignment on recovery (for example, the doctor
only assigning the drug to rich people, who recover more often anyway). If the difference
in recovery rates between both groups is statistically significant, the effect of the drug is
confirmed. It is important to realize that without this experiment, many possible explanations
for recovery cannot be ruled out with confidence.

While randomised experiments are a powerful tool for establishing causal links, they are
often infeasible for several reasons. A first reason is ethics. A researcher aiming to establish
the effect of abortions on some indicator of the woman’s future well-being will certainly
never carry out a randomised experiment. A second reason may be the pure impossibility of
carrying out an experiment: finding a population of countries willing to have their interest
rates tempered with is out of the question. The area of causal discovery emerged from
statistics and econometrics to tackle this issue. What can we say about the causal link
between quantities of interest based on the available data and the statistical dependencies
we measure, without carrying out experiments? Section 2.2 introduces observational causal
discovery, which aims to answer this question when the data available is purely observational
and i.i.d. The methods discussed are the causal discovery black-boxes used in Chapter 5.
Section 2.3 further assumes that some experimental data is available, and introduces the ideas
which constitute the backbone of the methods for transfer learning presented in Chapter 3.

2.1 Fundamental Technical Notions

2.1.1 From Statistical to Causal Dependence

Let X = (X1, . . . , Xp) be p random variables. Predictive modelling relies on statistical
dependencies, that is, properties of the joint distribution P (X1, . . . , Xp) are exploited for
prediction. Given a features X and a target variable Y we wish to predict from X, regression
models capture this dependency and build a model Ŷ = f(X). However, a statistical
dependence does not in general allow us to establish the causal relation between the variables
in X1, . . . , Xp and Y . Reichenbach (1956) attempted to formalise the relation between
dependence and causation:

Principle 1 (Principle of Common Cause) If two random variables X and Y are sta-
tistically dependent (X ̸⊥ Y ), then one of the following causal explanations must hold:

i) X causes Y (write X → Y ), or

ii) Y causes X (write X ← Y ), or

iii) there exists a random variable Z, such that X ← Z → Y . Such a variable Z is called a
confounder.
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In the third case, X and Y are conditionally independent given Z (write X ⊥⊥ Y |Z).

In practice, dependencies can be observed between random variables for different reasons
that the ones mentioned in Principle 1, and some examples are given in (Peters et al., 2017,
Chapter 1.4). Nonetheless, the implications of Principle 1 are strong when we wish to perform
interventions in a system and not only predict, and are in line with the well known warning
correlation does not imply causation. As a classic example, consider Messerli (2012), where
the authors find a significant correlation between X = Chocolate consumption, measured
per capita, and Y = Number of Nobel prize winners. A common reaction to this finding
often reads beyond the measured statistical dependency and attributes a causal meaning. In
other words, people assume that intervening by eating more chocolate will lead to increased
intelligence and thus, a higher probability of one day obtaining a Nobel prize. Even the
authors of the paper write “since chocolate consumption has been documented to improve
cognitive function, it seems most likely that in a dose-dependent way, chocolate intake
provides the abundant fertile ground needed for the sprouting of Nobel laureates. Obviously,
these findings are hypothesis-generating only and will have to be tested in a prospective,
randomised trial.” This hypothesis, however, seems far fetched and quite unlikely. Principle 1
provides a more likely explanation: there is a confounding variable Z which causes both X

and Y and explains the measured dependence. Z could be, for instance, a country’s wealth
which partly explains a larger disposable income and better quality education. In the absence
of a causal link from X to Y , intervening on the amount of chocolate eaten will have no
effect on Y . Similar statements are commonplace in the media and highlight the difference
between observing and doing (Pearl, 2009). We present some tools from the field of causal
inference developed to discuss interventions and the resulting distribution shifts.

2.1.2 Directed Acyclic Graphs, Structural Equation Models

The causal relation between the variables X1, . . . , Xp is often represented by a causal Directed
Acyclic Graph (DAG) G. An arrow Xi → Xj is present in G if Xi is a direct cause of Xj . A
DAG entails a causal factorisation of the joint distribution P (X):

P (X1, . . . , Xp) =
p∏

j=1
P (Xj |PAGj ), (2.1)

where PAGj is the set of parents of Xj in G. Let us consider a simple example with two
random variables X and Y where X is a cause of Y . Standard statistical analysis does not
a priori prefer any factorisation of the join distribution, since P (X, Y ) = P (Y |X)P (X) =
P (X |Y )P (Y ) are both valid equivalent factorisations. Only the first factorisation, however,
is a causal factorisation as in (2.1), and its modules can easily be interpreted when discussing
interventions on X and Y . As a concrete example, assume that X = time from birth
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and Y = height, where X is clearly a cause of Y . Given a young subject, a hypothetical
intervention which fast-forwards time and therefore ages her 10 years should also imply an
increase in height, just as transporting her back to her baby years will make her smaller. If
one could, on the other hand, intervene on height, there is absolutely no reason to expect
a movement in time. Despite both interventions being impossible in practice and fantastic
in nature, we can reason about them because of our knowledge of the biological mechanism
relating age to height.

Independence of cause and mechanism In the factorisation P (X, Y ) = P (Y |X)P (X)
in the previous example, the distribution of the cause X is independent of the conditional
P (Y |X). The opposite, however, does not hold: a change in the distribution P (Y ) often
modifies P (X |Y ). This is an instance of the Principle of Independent Mechanisms, which
Peters et al. (2017) define as follows:

Principle 2 (Independent Mechanisms) The causal generative process of a system’s
variables is composed of autonomous modules which do not influence each other. In the
probabilistic case, this means that the conditional distribution of each variable given its causes
does not inform or influence the other conditional distributions.

As mentioned in Peters et al. (2017), this principle is plausible when the conditionals in
(2.1) correspond to physical mechanisms in the world. Some attempts to formalize further the
notion of independent mechanisms has been proposed in Janzing and Schölkopf (2010) using
the notion of Kolmogorov complexity. However, the problem of quantifying independence
between mechanisms given data remains an open research question.

Structural equation models The causal relation between random variables can be
described by a Structural Equation Model (SEM). Although different definitions exist, we
use the one from Peters et al. (2014).

Definition 3 A Structural Equation Model is a tuple (E , P (N)), where E = (E1, . . . , Ep) is
a set of p equations:

Ej : Xj = f j(PAGj , N j), j = 1, . . . , p. (2.2)

PN is the joint distribution of the noise variables N, which are assumed to be jointly
independent. The vertices of PAj are the parents of Xj in the corresponding DAG G.

Each equation Ej for j ∈ {1, . . . , p} specifies the functional relation between Xj and
its parents. Standard methods for learning a causal graph from observational data include
conditional independence tests (Zhang et al., 2011) and additive noise models (Peters et al.,
2014).

Importantly, the equality in (2.2) should be interpreted as an assignment rather than an
algebraic equality: Ej allows us to compute Xj from changes in its parents, but modifying



2.2 Observational Causal Discovery 11

Xj does not trickle up to its parents in G. In other words, modifying an equation in the SEM
has an effect on the distribution of its descendants, but not its parents. This leads us to the
definition of interventions.

Definition 4 (Interventions) A hard intervention on Xj consists on setting Ej : Xj = x

for some x and using the SEM to recompute the value of all the descendants of Xj. Similarly,
a soft intervention sets Ej : Xj = Ñ for some random variable Ñ .

A hard intervention Xj = x is refered in Pearl (2009) as a do operation and is denoted
do(Xj = x). Similar notations are proposed for soft interventions.

Simple example. Consider the following simple bivariate example:

X = N1

Y = X + N2,
(2.3)

where N1 and N2 are two independent Gaussians, and N2 ∼ N (µ, σ2). Then trivially (X, Y )
follows a bivariate Gaussian distribution. Given the intervention do(X = 5), X becomes
a point mass distribution and Y ∼ N (µ + 5, σ2). The joint distribution arising from an
intervention is thus different from the observational distribution. A fundamental property
is that, despite the change in the joint distribution, the conditional P (Y |X = x) remains
the same before and after the invervention. Note, however, that the intervention do(Y = 5)
does not modify the distribution of X due to the asymmetrical assignment in the SEM. The
ability to model interventions is a key property of causal models.

2.2 Observational Causal Discovery

Significant efforts in causality have focused on the problem of observational causal discovery.
As discussed in the previous section, the gold standard for establishing causal relations is
randomised experiments, which heavily rely on experimentation. In many real world settings,
experiments are not feasible for ethical or practical reasons, yet discovering causal relations
remains important.

Observational causal discovery (OCD) attempts to establish causal relations from purely
observational data. Given a sample D iid∼ P (X1, . . . , Xp), OCD methods try to recover the
causal graph relating the random variables X1, . . . , Xp. In general, causation cannot be
inferred from purely statistical dependence, and assumptions regarding the data generating
process must be made for the causal graph to become identifiable from the observational
distribution. We present methods for bivariate causal discovery, and leave out a large family
of methods focusing on conditional independence properties which often assume that P is
Markov, as well as faithfulness, see Peters et al. (2017, Chapter 6) for further details. The
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Fig. 2.1 An Additive Noise Model (ANM).

application of additive noise models to more than two variables is discussed in Peters et al.
(2014).

Bivariate causal discovery aims at differentiating the three scenarios in Principle 1 given
a sample {(xi, yi)}ni=1

iid∼ P (X, Y ), i.e., we want to decide between X → Y , Y → X or
X ← Z → Y for some confounding variable Z. We present two families of methods for this
task. They both rely on different assumptions which lead to a measurable causal footprint in
the joint distribution.

2.2.1 Additive Noise Models

Additive noise models (Hoyer et al., 2009; Peters et al., 2014), or ANM, assume that in
the correct causal direction, the effect is computed as a function of the cause with added
independent noise. If we assume that X is a cause of Y , the ANM assumption implies that
there exists a function f such that

Y = f(X) + ϵ,

where ϵ ⊥⊥ X. The ANM assumption leads to the identifiability of the causal direction if
the converse does not hold, that is, there exists no function g such that X = g(Y ) + η with
η ⊥⊥ Y . Measuring a dependence between the noise term η and the input Y in the anti-causal
direction is the causal footprint which renders the causal relation identifiable from the joint
distribution P (X, Y ). An example of an identifiable ANM is provided in Figure 2.1. Note
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that additive noise models in the bivariate setting aim to distinguish X → Y from Y → X

and do not consider the confounded case.

Example of non-identifiability The follow example is borrowed from Peters et al. (2014).
Consider that the relation between X and Y is linear:

Y = βX + ϵ, (2.4)

where ϵ ⊥⊥ X and both X and ϵ are Gaussian. Then

X = β̃Y + ϵ̃,

where ϵ̃ ⊥⊥ Y , β̃ = βVar(X)
β2Var(X)+Var(ϵ) and ϵ̃ = X − β̂Y . The existence of a mapping with

independent noise terms in both directions makes linear relations with Gaussian noise non-
identifiable. Nonetheless, Peters et al. (2014) show that (2.4) becomes identifiable if the noise
variable ϵ is non-Gaussian, meaning that there exists no (β̃, ϵ̃) such that X = β̃Y + ϵ̃ with
ϵ̃ ⊥⊥ Y . Moreover, they provide further conditions for the identifiability of additive noise
models in the non-linear setting.

2.2.2 Training Based Methods

Often, the ANM assumptions are violated. For instance, the noise may be multiplicative or
heteroskedastic. Methods such as the randomised Causation Coefficient (RCC) (Lopez-Paz
et al., 2015) proceed by first training a classifier to predict the causal direction given as input
a sample from the joint distribution. RCC assumes that a training set D = {(Si, li)}ni=1 is
available, where Si = {(xi

j , yi
j)}

ni
j=1

iid∼ P i(Xi, Yi) is a sample from a distribution P i(Xi, Yi),
li = 1 if Xi → Yi and li = −1 if Yi → Xi. These training pairs can be simulated by generating
generic causal pairs or using real data. RCC creates a feature representation of each sample
Si using kernel mean embeddings (Smola et al., 2007), and learns a binary classifier using D
to identify the causal footprints necessary to classify samples from new distributions.

At test time, a sample {(xi, yi)}ni=1
iid∼ P (X, Y ) is given to RCC for prediction. One may

add a third class to the training data to allow for the confounded case. Similar methods
include the Neural Causation Coefficient (Lopez-Paz et al., 2017), which computes features
for Si using a neural network instead of kernel mean embeddings.

2.3 Causal Inference Using Invariant Predictions

The previous sections presented two families of methods and assumptions which make the
DAG identifiable from observational data. This section presents the approach from Peters et al.
(2016) which relies on invariance properties verified by causal variables when experimental
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data from several “tasks” is available. The ideas presented are related to the assumption
of independence of cause and mechanisms (Janzing and Schölkopf, 2010; Schölkopf et al.,
2012) and exogeneity (Zhang et al., 2015). These ideas motivate the approach for handling
distribution shift presented in Chapter 3.

Let Y ∈ R be a variable we wish to predict from features X = (X1, . . . , Xp). Moreover,
D different tasks, denoted as environments in Peters et al. (2016), are available at training
time and we denote by (Xk, Y k) the feature and target variables in task k ∈ {1, . . . , D}. In
the context of causal inference, these tasks may correspond to different interventions on the
p features (but not on the target variable), or to different experimental settings in which the
data was collected. We focus on linear SEMs with additive noise, but Peters et al. (2016)
present an extension to the non-linear case. Peters et al. (2016) assume that the D tasks are
related as follows:

Assumption 5 There exists a vector γ∗ ∈ Rp of linear causal coefficients such that:

∀k ∈ {1, . . . , D}, Y k = µ + (γ∗)tXk + ϵ, ϵ ∼ Pϵ, (2.5)

where ϵ has zero mean and finite variance. Let S = {u : γ∗u ≠ 0} and assume that XS is
independent of ϵ.

The variables XS are called causal predictors. Assuming that the underlying model
is truly linear, what are the implications of Assumption 5 and what are its consequences
for causal inference? Equation (2.5) is assumed to hold for all D tasks. In particular, the
distribution of ϵ does not depend on the task, thus the conditional distribution Y k |Xk

S is
invariant across all tasks. The invariance under interventions of SEM relates to the notion of
autonomy (Aldrich, 1989) or stability (Pearl, 2009), which state that modifying one equation
in the SEM does not affect the remaining equations, or in other words that the equations in
a SEM are autonomous. This assumption is realistic if the equations in the SEM are not
seen as an algebraic equality but as mechanisms which link a set of causes (the parents in
the corresponding DAG) to the value of the corresponding effect variable.

Peters et al. (2016) analyses the question of identifiability of the true causal parents of a
target variable Y given multiple tasks for which Assumption 5 holds. In particular, given a
set of interventions k ∈ {1, . . . , D} they define the set of identifiable causal predictors, which
is proven to be a subset of the true causal predictors as defined in Assumption 5. Moreover,
the number of identifiable coefficients grows as D increases, that is, observing more tasks
leads to better estimation of the true causal parents. For linear SEMs with Gaussian noise,
Theorem 2 in Peters et al. (2016) provides sufficient conditions for the identifiability of the
true causal predictors. They also propose two algorithmic approaches to build confidence
intervals on the set of identifiable causal predictors.
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2.4 Causality in Machine Learning

At first sight, it is unclear how causality can be useful in standard machine learning. Standard
learning theory assumes that in a supervised learning problem, the training and test data are
i.i.d. draws from the same distribution P (X, Y ) over features and target. This testing setting
does not require knowledge of the causal structure relating the variables under consideration,
as statistical dependence is sufficient for learning the optimal predictor in the population
case.

We claim that causality can be useful for machine learning when discussing non i.i.d.
problems, such as transfer learning and reinforcement learning, or when interpretability of
the features is a requirement. This thesis presents in Chapter 3 a method for distribution
shift inspired by invariance properties introduced in this chapter.

Reinforcement learning provides an intriguing test bed for causal assumptions. It is well
known that agents trained to play games using model free reinforcement learning do not
generalise when something as simple as the background of the game changes (Diuk et al.,
2008; Kansky et al., 2017). In part, this is probably partly due to a training protocol which
relies only on statistical dependencies to learn policies, and not on learning invariants of the
environment. A framework for reinforcement learning inspired by causality would rather
encourage learning a model of the world and understanding which modules are re-usable
in different scenarios. For a robot interacting with the world, learning invariant properties
of how objects react to physical laws and interactions with the robot should be of high
importance for generalising to new environments.

Causality can also contribute to problems where understanding decisions and features is
important. Often, we are not only interested in a prediction or a decision, but in why this
decision was made. This can be due to a variety of reasons, including regulatory constraints,
moral requirements or simply a desire for deeper understanding of the systems under study.
Causality has also been applied as a tool for thinking about fairness and discrimination in
automatic decision systems (Kilbertus et al., 2017).

More broadly, understanding and discovering causal laws is a key element in the develop-
ment of machine intelligence and reasoning.





Chapter 3

Invariant Causal Representations
for Transfer Under Distribution
Shift

Standard machine learning assumes that the training and test data are drawn from the same
distribution. Problems in which the test distribution differs are nonetheless ubiquitous in
practice, a phenomenon we refer to as distribution shift. Building a music recommendation
algorithm uses large amounts of data from a database of users, but not from a user new to
the service, whose taste is unique. Data may also be gathered using different instruments
or sources. In an image classification problem, the new test images may have been clicked
with a new camera. In language, an algorithm may be trained with large amounts of text
data coming from a large source such as Wikipedia, different from the language that will
be given as input by the end users. The context of the examples may also shift: animals in
an image training set may be depicted mostly in broad daylight, while the test set contains
shots taken in the evening. Algorithms for distribution shift aim to address this mismatch
between training and test distribution. A formal statement, as well as some of the standard
methods and assumptions for distribution shift, are introduced in Section 3.1.

The goal of this chapter is to build representations of the data which transfer when
the distributions shift. We introduce a new assumption for two specific modalities of
domain shift of increasing difficulty: multi-task learning, where data from the test task
are observed (Section 3.3), and domain generalisation, where no data from the test task
are available (Section 3.2). This terminology is arguably not standard, but will be kept
consistent throughout this chapter. In Baxter (2000) and several references therein, domain
generalisation is referred to as learning to learn. For transfer to be possible, assumptions
on how the training and test distributions are related must be made. We motivate that
representations of the data for these challenging settings can be built on top of assumptions
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motivated by causality. In particular, the notions of causal graph and intervention introduced
in Chapter 2 may be used to relate the training and test tasks: the same causal graph may
describe the generative process of the data in the different tasks, and each task corresponds to
different set of interventions on this graph. Under these assumptions, we show that the feature
mapping which simply selects a subset of causal features has attractive properties for domain
generalisation and multi-task learning. Importantly, these transferable representations may
have arbitrarily different distributions between tasks, yet the function or mechanism mapping
them to the target variable is preserved, as motivated by Principle 2 in Chapter 2.

Finally, Section 3.4 focuses on a specific application of multi-task learning in which each
task is computed by transforming a canonical distribution P via some mechanisms. In
the motivating example, the canonical distribution P is the standard MNIST distribution,
and the different mechanisms are simple transformations of these canonical digits such as
translation or noise addition. The main motivation is that understanding how the new
representations relate to the canonical distribution leads to re-usability: for instance, having
trained a classifier on P using labelled data, we wish to use it on the transformed digits as
well without gathering new labelled data. We provide an algorithm that learns approximate
mappings from the transformed examples back to their canonical counterpart without labelled
information. The transformed examples can be labelled by a classifier trained on the canonical
distribution P . Importantly, we find empirically that the learned inverse mappings generalise
to data from a new, unseen distribution, further enhancing their modularity and re-usability.
Both our contributions in domain generalisation and multi-task learning motivate the idea
that representations and models satisfying causal invariance properties are robust with respect
to changes in the statistical properties of a probability distribution.

3.1 An Overview of Distribution Shift

3.1.1 From Standard Machine Learning to Distribution Shift

The standard framework for supervised machine learning assumes that a dataset D =
{(xi, yi)}ni=1

iid∼ P (X, Y ) drawn i.i.d. from a probability distribution P (X, Y ) on X × Y is
available. The goal is to use D to build a model capable of predicting the target variable Y

given features X. Both regression and classification fall within this paradigm. Underlying this
process lies the motivation that this model will perform well on new instances {xi}mi=1

iid∼ P (X)
for which the target variable needs to be predicted. In practice, it is most often assumed that
the model will be tested on data drawn from the same distribution P (X, Y ). This assumption
is nonetheless strong and is often violated, which leads to a distribution shift.

Definition 6 (Distribution shift) A learning problem suffers from distribution shift if
the test data is drawn from a distribution P T different from the training distribution P .
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Spam detectors, for instance, are trained on emails from users which receive attacks of a
different nature than those experience by the end user. Even in problems typically associated
with the i.i.d. paradigm such as image detection the risk of dataset shift exists: if the training
images only contain dogs mostly resting in their bed, the model may perform arbitrarily bad
given a dog playing outside.

We first present some key ideas from the standard i.i.d. prediction setting. We then
introduce a framework for dataset shift introduced in Baxter (2000).

3.1.1.1 Overview of Standard Supervised Learning

The goal of standard supervised learning is to predict a target variable of interest Y ∈ Y
given features X ∈ X . Let P (X, Y ) be the corresponding joint distribution. In order to
move forward, we require both a measure of the gap between the predictions and the target,
and a specified set of functions to which we restrict our model. We measure how good our
predictions are using a loss function ℓ : Y × Y → R+. Moreover, we restrict our model to a
hypothesis class denoted H. H may correspond, for example, to the set of linear models in
Rd, or the class of functions induced by a neural network with a fixed architecture.

During learning, our goal is to learn a model h∗ ∈ H which minimises the expected loss
or risk:

RP (h) = EX,Y [ℓ (h(X), Y )] . (3.1)

In reality, we do not have access to the true data distribution P , but observe a sample
{(xi, yi)}ni=1

iid∼ P (X, Y ). Empirical risk minimisation (Vapnik, 1992) minimises instead the
empirical risk, defined as

R̂P (h) = 1
n

n∑
i=1

ℓ (h(xi), yi) .

A fundamental question which has interested practitioners and theorists alike is knowing
how large the available sample from P must be to guarantee good performance, or generalisa-
tion, on unseen data points drawn i.i.d. from P . From a theoretical perspective, this question
is well understood, and the convergence of the empirical risk to the true expected risk is
governed by the VC dimension of the hypothesis class H, see (Blumer et al., 1989; Vapnik,
1982) for convergence bounds and finite sample guarantees. The complexity of the hypothesis
class H plays a fundamental role in machine learning, as there is a trade-off between between
the bias and variance of the functions in the hypothesis class (Geman et al., 1992). Intuitively,
if the function class allows for too much freedom, a small empirical error may be achieved on
the training data at the expense of poor generalisation . Too poor a model class, however,
leads to poor predictive performance.
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Empirical risk minimisation does not deal with the common scenario in which the test
data is drawn from a distribution which differs from the training distribution. The following
section extends the previous setup to this important scenario.

3.1.1.2 Extension to the Multiple Task Problem

Let P be a set of joint probability distributions P (X, Y ) on X ×Y andM a distribution over
P .1 P may consist on a finite ordered set of probability distributions P = (P 1, . . . , P D), and
M draws an index in {1, . . . , D} according to some distribution and returns the corresponding
P .

Moreover, define a family of hypothesis H such that each H ∈ H is a set of functions
h : X → Y, similarly to the hypothesis classes in the previous section.

Definition 7 We say that P ∈ P is a task2, and M is a distribution over tasks.

Given a non-negative loss function ℓ : X × Y → R+, our goal is to find a family of
hypothesis H∗ which minimises the following expected risk over distributions drawn from M:

RM(H) = EP∼M

[
inf
h∈H
RP (h)

]
This problem is referred to in Baxter (2000) as the bias learning problem, or learning to

learn (Thrun and Pratt, 1998). The bias learner aims to find a hypothesis class, and not only
a function, which contains a good solution for tasks drawn according to M, and is closely
related to meta-learning (see for instance Lemke et al. (2015)).

Similarly to empirical risk minimisation, we do not have access to the true distribution over
tasks M. Hence, we are given a sample of tasks {P k}Dk=1

iid∼M and for each k ∈ {1, . . . , D},
a sample {(xk

i , yk
i )}nk

i=1
iid∼ P k. As a proxy of the true expected risk, one may minimise the

empirical risk R̂M(H) = 1
D

∑D
k=1 infh∈H R̂P k(h). Uniform convergence results of R̂M(H) to

RM(H) are established in Baxter (2000).
Learning theory in the i.i.d. setting analyses how many examples drawn from P need to

be seen during training in order for the solution h∗ ∈ H to generalise well to unseen examples
drawn from the same distribution P . In the multi-task setting, the main goal is no longer
to perform well in one specific task, but rather in any task drawn from M. The following
question becomes central for transfer learning in general, and remains a major challenge for
the machine learning community:

In the multiple task problem, how many tasks need to be observed in order to achieve good
generalisation performance for unseen tasks? Under which assumptions can such transfer
take place?

1See (Baxter, 2000) for a more rigorous mathematical description of M.
2In this work, we use the term task and domain interchangeably. Many authors make a distinction between

the two, see Pan and Yang (2010), but the distinction is not essential.
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method training data from test domain

Domain generalisation (DG) (X1, Y 1), . . . , (XD, Y D)
T := D + 1

(X1, Y 1), . . . , (XD, Y D), X̃D+1

Multi-Task Learning (MTL) (X1, Y 1), . . . , (XD, Y D) T=1,. . . ,D
(X1, Y 1), . . . , (XD, Y D), X̃1, . . . , X̃D

Table 3.1 Taxonomy for domain generalisation (DG) and multi-task learning (MTL). Each
problem can either be used without (first line) or with (second line) additional unlabelled
data.

Knowing which knowledge from other tasks can be used when observing a new task seems
particularly important. For instance, if all the tasks are completely unrelated, knowledge
transfer can be expected to fail, or even hurt performance, see for instance (Ben-David et al.,
2010; Rosenstein et al., 2005). As an illustration, consider standard image classification in
which the goal is to predict an image label from pixel features. If the tasks consist on a large
variety of images, taken from diverse cameras and in a representative set of backgrounds, the
availability of multiple tasks should make it easier to find features which are predictive of a
given label, and not simply correlated in a given dataset. On the other extreme, consider
a binary classification dataset drawn from an arbitrary distribution P , and consider the
distribution Q which has identical support to P but simply flips the labels. While each task
may be easy to solve independently, treating them together makes the problem significantly
harder, as it gets close to random guessing.

Setup. During training, we observe D probability distributions P 1, . . . , P D referred to
as training tasks. Moreover, a sample {(xk

i , yk
i )} iid∼ P k from each training task is available.

We define two different transfer learning problems depending on the nature of the test
distribution P T . Domain generalisation (DG) models are tested on a dataset drawn from a
new distribution P T = P D+1 which is not included in the training tasks. DG is a challenging
problem and assumptions regarding the similarity between tasks must be made for learning
to be possible. Multi-task learning (MTL) tests on unseen data drawn from one or several
of the training tasks. In this case, the goal is to exploit similarities between the training
tasks and perform better than learning each task independently. Both DG and MTL can get
access to unlabelled data from the test task during training. Table 3.1 presents a summary
taxonomy of DG and MTL.

The field of transfer learning considers a wider range of settings we do not discuss. These
include, among others, domain adaptation and learning to learn, see Pan and Yang (2010)
and references therein for further details.

We have mentioned that the distributions change between training and test, but have
not presented methods for measuring the difference between distributions given data. The
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following section provides tools for measuring distances between probability distributions.
While certainly not exhaustive, the presented methods are essential components of the DG
procedures introduced in Section 3.2.

3.1.2 Measuring Differences Between Distributions

We are studying problems in which distinct probability distributions are available. Since in
practice we do not have access to the probability distributions themselves, we require a method
to assess the distance between two probability distributions P and Q based on two samples
{xi}ni=1

iid∼ P and {yi}mi=1
iid∼ Q. In particular, we wish to perform a two sample test, which

tests the null hypothesis H0 : P = Q given the two samples. First, we introduce Levene’s
test for equality of variances (Levene, 1960), which tests for equality of the variances of
several distributions given only samples. We then introduce the Maximum Mean Discrepancy
(MMD) and a kernel two sample test. Finally, we propose a novel method for testing whether
D scalar samples are drawn from the same distribution, which becomes a key component of
the method introduced in Section 3.2. This is certainly not an exhaustive list, and such tests
are ubiquitous in machine learning. Two sample tests are particularly relevant for adversarial
generative models (Goodfellow et al., 2014), as the generative component of the network
is trying to fool a discriminator, which is essentially performing a two sample test between
the real data and the fake data generated by the model. This idea was already used for
estimating unnormalised parametric models with Noise Contrastive Estimation (Gutmann
and Hyvärinen, 2010). More recently, Lopez-Paz and Oquab (2016) introduce a two sample
test by training a binary classifier to discriminate between the two distributions.

3.1.2.1 Levene’s Test For Equality of Variances

Let P and Q be two real valued probability distributions. Two samples {xi}ni=1
iid∼ P and

{yi}mi=1
iid∼ Q are available. Let x = 1

n

∑n
i=1 xi and y = 1

m

∑m
i=1 yi be the empirical mean of

both samples. Let ui = |xi−x| and vi = |yi−y|, and denote by u and v for the corresponding
averages. Finally, denote by z the overall average 1

n+m

(∑n
i=1 ui +∑m

j=1 vi

)
.

We define the test statistic z as

z = (n + m− 2) n(u− z) + m(v − z)∑n
i=1(ui − u) +∑m

i=1(vi − v) ,

and we test the null hypothesis H0 : Var(P ) = Var(Q). Under H0, z follows an F-distribution
F (1, n + m− 2). The test rejects H0 at level α if z > Fα,1,n+m−2, where Fα,1,n+m−2 is the
upper critical value of the corresponding F distribution at level α.

For our purposes, Levene’s test is relevant when both distributions are Gaussian. If we
assume they both have zero mean, their variance completely determines the distribution, and
the test can be used as a two sample test. The test introduced in Levene (1960) is more
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general, as it can be applied to test the variances of the variance of D distributions. We
restricted the exposition to two distributions for clarity.

3.1.2.2 Kernel Two Sample Tests

Kernel methods provide an intuitive, theoretically grounded approach for non-linear machine
learning (Schölkopf et al., 2002). One of the most appealing properties of kernel methods
is that they render some linear methods non-linear by use of the kernel trick. A function
κ : X × X → R is called a positive definite kernel if for all n ∈ N, for all x1, . . . , xn ∈ X and

c1, . . . , cn ∈ R,
n∑

i=1

n∑
j=1

cicjκ(xi, xj) ≥ 0. A positive definite kernel is associated to a unique

Hilbert space H called Reproducing Kernel Hilbert Space (RKHS) with dot product ⟨. , .⟩.
There exists a feature map ϕ : X → H such that for any two x, y ∈ X , ⟨ϕ(x), ϕ(y)⟩ = κ(x, y).
The previous property lies at the heart of kernel methods: the feature representation of a data
point x ∈ X implied by the kernel κ is ϕ(x), which lives in a potentially infinite dimensional
space. If the algorithm only depends on dot products in the input space, it can often be
written in terms of the dot product in the RKHS, and the feature maps do not need to be
computed explicitly. This convenient trick is denoted the kernel trick and is at the core of
techniques such as non-linear support vector machines (e.g., Schölkopf et al. (2002)).

Recent efforts aim to extend the embedding of data points x ∈ X to an RKHS to embed
whole probability distributions P , see Sriperumbudur et al. (2010) and references therein.
Given a probability distribution P and a positive definite kernel κ, we define the mean
embedding of P as

µκ(P ) = EX∼P [ϕ(X)] .

µκ(P ) is such that for any function f ∈ H, ⟨f, µκ(P )⟩ = EX∼P [f(X)], so computing
expectations with respect to P becomes a linear operation in the RKHS.

But how can we use these mean embeddings to measure the distance between distributions?
Gretton et al. (2012) propose a two sample test based on this idea. If a kernel κ is characteristic
(such as the square exponential kernel with length scale σ: κ(x, y) = exp (∥x− y∥2/2σ2)),
the mean embedding is an injective mapping (Sriperumbudur et al., 2010). In other words,
given two probability distributions P and Q, µκ(P ) = µκ(Q) if and only if P = Q.

Define the Maximum Mean Discrepancy (MMD) of distributions P and Q given a set
of functions F as MMD(F , P, Q) = supf∈F (EX∼P [f(X)]− EY∼Q [f(Y )]). Gretton et al.
(2012) prove that

MMD(U(H), P, Q)2 = ∥µ(P )− µ(Q)∥2H , (3.2)

where U(H) is the unit ball of H and ∥.∥ is the dot product norm in the H. Given the
injectivity of the mean embedding, performing a two sample test is equivalent to testing

H0 : MMD(U(H), P, Q)2 = 0
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when a characteristic kernel is used.
If we are given two i.i.d. samples {xi}ni=1 and {yi}mi=1 from P and Q respectively, Smola

et al. (2007) prove that

M̂MD(U(H), P, Q)2 = 1
n(n− 1)

n∑
i=1

∑
j ̸=i

κ(xi, xj) + 1
m(m− 1)

m∑
i=1

∑
j ̸=i

κ(yi, yj)

− 2
nm

n∑
i=1

m∑
j=1

κ(xi, yj)
(3.3)

is an unbiased estimator of (3.2), which Gretton et al. (2012) use to construct a two sample
test.

Kernel two sample tests can be directly extended to test independence (Gretton et al.,
2005) by estimating the Hilbert Schmidt Independence Criterion (HSIC). HSIC applied
ideas closely related to the previous two sample test by embedding the joint distribution
P (X, Y ) and the product of the marginals P (X)P (Y ). Given a characteristic kernel, the null
hypothesis H0 : X ⊥⊥ Y is equivalent to H0 : MMD(U(H), P (X, Y ), P (X)P (Y ))2 = 0, which
can be estimated using the unbiased estimator in (3.3).

3.1.2.3 Testing Whether D Samples are Drawn From the Same Distribution

We introduce a method for testing whether D samples are drawn from the same scalar
distribution. More precisely, we want to test the null hypothesis

H0 : ∀k, k′ ∈ {1, . . . , D}, P k = P k′

given D scalar samples {xk
i }

nk
i=1 ∼ P k for k ∈ {1, . . . , D}.

We propose to test this null hypothesis by introducing a discrete random variable K

with values in {1, . . . , D} whose outcome indicates the index of the task corresponding to a
given data point. If all the examples are drawn from the same probability distribution, K is
independent of the data generating random variable X. This test is a direct application of
HSIC (Gretton et al., 2007) but to our knowledge, is novel.

Let K ∼ P (K) be a discrete random variable over {1, . . . , D} and let X be a scalar random
variable such that P (X, K) = P (X |K)P (K) with P (X |K = k) = P k. The outcome of K

corresponds to the index of the distribution from which X is sampled. It is straightforward
to see that, if X and K are independent, P (X |K = k) = P (X), thus for all k ∈ {1, . . . , D},
P k = P (X) and all the distributions are equal.

We pool all the data from the different distributions into a sample Z = (xi, ki)n
i=1 drawn

from P (X, K), and test for independence of X and K using HSIC. Two characteristic kernels
are used: a kernel κ for embedding the data and a trivial kernel d such that d(i, j) = δij

for K. Let therefore HSIC(Z) denote the value of the HSIC between X and K, and let
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HSICb(Z) be the corresponding test statistic. Then H0 is accepted if if leads to accepting
the null hypothesis of independence between X and K at level δ.

3.1.3 Assumption For Distribution Shift

In this section, we discuss some of the assumptions and methods which make transfer learning
possible, both in DG and MTL. The list is certainly not exhaustive, and more detailed
surveys can be found in Pan and Yang (2010).

3.1.3.1 Covariate Shift

An assumption which has been widely used for DS is covariate shift (CS). CS assumes that
the distribution of the covariates X changes between tasks, but the conditional mapping
P (Y |X) remains unchanged.

Definition 8 (Covariate Shift) We say that covariate shift holds for tasks P 1, . . . , P k, P T

if
∀k ∈ {1, . . . , D}, P k(Y |Xk) = P T (Y |XT ). (3.4)

The joint distribution of features and target in task k can be factorised as P k(X, Y ) =
P k(X)P k(Y |X) = P k(X)P T (Y |X). Therefore, covariate shift imposes important con-
straints on how the joint distribution differs between tasks, as it can only vary through
the marginal distribution of the features P k(X). Covariate shift arises naturally in many
problems and is attractive given its simplicity. An example in which CS could be applied is
spam detection. A spam classifier can be trained on emails from a large amount of users. At
deployment time, however, the classifier should perform well on emails from a new user for
which very few data points are observed. The distribution of emails received by the user is
very likely different from the training distribution, and this must be taken into account for
prediction.

We present two ways in which CS can be exploited in practice. This list is certainly not
exhaustive.

First, we can use importance sampling (Hammersley and Handscomb, 1965) to estimate
the expected loss in the test task when only an unlabelled sample is given. This problem is
common in domain adaptation, as a small labelled dataset may be available together with
a larger unlabelled dataset from the test distribution. One such example may be a small
labelled image classification dataset taken from a specific source, and a large dataset of
images crawled from the web without labels.

Consider a setting with one source task P 1 and one test task P T . A labelled sample
{(x1

i , y1
i )}n1

i=1 ∼ P 1 and and unlabelled sample {xT
i }

nT
i=1 are available. This setting is very

common in practice, as large amounts of data may be available, but only a few labelled
examples are available from a source distribution. Given the invariance of the mapping from
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X to Y , importance sampling aims to re-weight the examples in the test task in order to
make them more representative of the source task, for which labels are available. When
training to perform well on the test task, our goal is to minimise the expected loss on the
test task RP T defined in (3.1) in some predefined hypothesis class H.

RP T (h) = E(X,Y )∼P T (ℓ(h(X), Y ))

=
∫
X×Y

ℓ(h(x), y)pT (x, y)dxdy

=
∫
X×Y

ℓ(h(x), y)pT (x, y)
p1(x, y) p1(x, y)dxdy

= E(X,Y )∼P 1

(
pT (X, Y )
p1(X, Y ) ℓ(h(X), Y )

)

= E(X,Y )∼P 1

(
pT (X)
p1(X) ℓ(h(X), Y )

)
.

The simplification in the last line results from Definition 8. The idea behind importance
sampling is hence to replace the computation of the expected loss with respect to an
unavailable distribution for the expectation of pT (X)

p1(X) ℓ (h(X), Y ) with respect to the source
distribution P 1. The main caveat is that we generally don’t know pT

p1 . The naive approach
to this problem consists on doing density estimation of pT and p1 separately, and computing
the ratio for each example (for instance, using kernel density estimation, see Scott (2015)).
However, density estimation techniques are known to be difficult as the dimensionality of
the data increases (Bickel et al., 2007; Huang et al., 2007; Quionero-Candela et al., 2009;
Shimodaira, 2000; Sugiyama et al., 2008).

CS may also be exploited in a regression setting as it justified pooling the data. Given
samples {(xi, yi)}nk

i=1 for k ∈ {1, . . . , D}, one may pool the data in order to estimate the
conditional mean f(x) = E(Y T |XT = x). This increases the amount of available data, and
thus should lead to a better estimate of the population mean.

Both importance sampling and pooling suffer from estimation problems. Consider the
problem of learning a regression function f̂ as in the pooling example. It remains unclear
weather the estimated regression function f̂ has good predictive power in data from the test
task if it is not among the training tasks. Indeed, if P T (X) has probability mass in regions
not overlapping with the training tasks, no guarantees can be established. This problem is
not present for some simple model classes, such as linear models. It is important to note that
this is an estimation problem only, not a theoretical one, since domain extrapolation is a
difficult statistical problem. The same issue is present for importance sampling, since the
re-weighting method presented assumes that the distributions share the same support.
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3.1.3.2 Marginalised De-noising Autoencoders for Domain Adaptation

Chen et al. (2012) propose a method for distribution shift based on learning an autoencoding
of the data. In short, the goal of an autoencoder is to find a low-dimensional feature
representation of the data which achieves high reconstruction accuracy. In this regard, its
role is analogous to compression on the features, the underlying assumption being that the
original features are correlated, and the data features live in a lower dimensional space.
Similar assumptions are common in other transfer learning methods. A generic autoencoder
contains two components: an encoder function e : Rd → Rd′ with d′ < d and a decoder
function d : Rd′ 7→ Rd. The encoder e computes a low dimensional representation of the
input x, and d maps the compressed feature vector back to x. A standard autoencoder is
thus trained to minimise the expected reconstruction loss Ex

[
(x− d(e(x))2].

De-noising autoencoders (Glorot et al., 2011) (SDA) perform a similar task in the context
of transfer learning. Given a sample from the source distribution {x1

i }ni=1 ∼ P 1(X) and the
test distribution {xT

i }mi=1 ∼ P T , SDA corrupts the data in both samples with masking noise
and aims to reconstruct the un-corrupted input, where the encoder e and the decoder d are
parametrised by neural networks. While Glorot et al. (2011) perform stochastic gradient
descent to optimise the reconstruction loss, Chen et al. (2012) re-write the objective by
marginalising out the masking noise, leading to a closed form expression for the features.
This results in Marginalised De-noising Autoencoders for Domain Adaptation (mSDA).

The authors in Chen et al. (2012) motivate the success of mSDA with an example from
sentiment analysis. Assume that the test domain consists on reviews for books, and the
source domain reviews for cycling equipment. The word ‘gripping’ is relevant for classifying
book reviews in the test domain, but this word is rare in the context of cycling equipment.
By adding masking noise, the model should learn to use correlated features such as ‘good’
to reconstruct these domain specific words. SDA are extended to several layers in order to
encourage more flexible encoders and decoders, and can be generalised to more than two
source distributions.

3.1.3.3 Domain-Invariant Component Analysis

Muandet et al. (2013) propose Domain-Invariant Component Analysis (DICA) to address
the problem of DG. Similarly to the formalism introduced in Section 3.1.1.2, we denote by
P a family of joint distributions P (X, Y ) over X × Y. Each element of P is called a task.
LetM be a distribution over P . D training tasks P 1, . . . , P D sampled fromM are available,
as well as samples {(xk

i , yk
i )}nk

i=1 for k ∈ {1, . . . , D}. We denote by {(xi, yi)}ni=1 the pooled
sample, where n = ∑D

k=1 nk.
DICA aims to learn a transformation h : X → Y achieving the following:

i) the empirical distance between the distribution of the transformed features {h(xk
i )}nk

i=1,
for k ∈ {1, . . . , D} is small.
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ii) there is no loss of information regarding the conditional mapping from X to Y , such
that Y ⊥⊥ X |h(X).

In order to quantify the first condition, we require a distance measure between the
distribution of the transformed features h(X). Let P k(X) denote the marginal distribution of
the features in task k for k ∈ {1, . . . , D}. As a measure of distance between the distributions
of h(Xk), the authors propose to use distributional variance. For other measures of the
distance between probability distributions, see Section 3.1.2.

Definition 9 (Distributional Variance) Let P X = 1
N

∑D
k=1 P k(X) be the uniform mix-

ture of the marginals in the source distributions. Let M be a uniform distribution over the
source marginals. Let κ be a characteristic kernel on X and H the corresponding RKHS.

The distributional variance of M is

VH(M) = 1
N

D∑
k=1
∥µκ(P k(X))− µκ(P X)∥2. (3.5)

Moreover, Theorem 1 in Muandet et al. (2013) states that the distributional variance
is zero if and only if P 1 = . . . = P D. Theorem 2 in Muandet et al. (2013) introduces a
consistent estimator V̂H({xi}ni=1) of VH(M) given a pooled sample {xi}ni=1 drawn from tasks
in P . DICA learns a transformation of the data features for which the distributional variance
of the transformed features is small.

3.1.3.4 Multi-task Feature Learning

MTL can be tackled by learning low-dimensional features which are shared across the different
tasks. Given samples from D tasks, we wish to jointly learn D regression functions fk : X → Y
for the different tasks. As usual in MTL, the goal is to outperform learning all the tasks
independently. In Argyriou et al. (2007), the authors make the following assumption:

Assumption 10 (Multi-task Feature Learning) The D regression functions are a weighted
average of J feature representations:

∀k ∈ {1, . . . , D}, ∀x ∈ X , fk(x) =
J∑

j=1
ajkhj(x).

Moreover, the weight of most features is zero across all the tasks, that is, only the same
(small) set of features is used in all tasks.

The feature functions hj in Argyriou et al. (2007) are linear and X = Rd. Thus, the
feature representations can be written as hj(x) = ⟨uj , x⟩ where the vectors uj are orthonormal
and ⟨. , .⟩ denotes the usual dot product in Rd. This implies in turn the linearity of the
regression functions fk :
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η ϵ ξ

X1 Y X2

Fig. 3.1 Example of a causal DAG G.

∀k ∈ {1, . . . , D}, fk(x) = ⟨wk, x⟩,

where wk = ∑
j ajkuj . Let A, W and U be the matrices constructed by stacking vectors u, a

and w (therefore W = UA). The joint sparsity of the feature vectors implies that matrix W

has low rank, as matrix A has many rows which are identically zero. The goal of the MTL
algorithm is to learn the matrix of feature vectors U and the weights A for each of the tasks.
The authors encourage sparsity across tasks via grouped L1 regularisation:

E(A, U) =
D∑

k=1

nk∑
i=1

L(yk
i , ⟨ak, UT xk

i ⟩) + λ∥A∥22,1. (3.6)

Here, ∥.∥2,1 denotes de (2, 1)-norm defined by ∥A∥2,1 = ∑d
j=1 ∥aj∥2 where aj denotes the

rows of A. The regularisation term corresponds to computing the L2 norm of the rows of A

and then computing the L1 norm of the vector of those norms. The Lasso (Tibshirani, 1994)
corresponds to L1 regularisation in the single task problem, and is known to lead to sparse
weight vectors. If we denote by Od the set of orthogonal matrices in Rd (we assumed that
the vectors uj are orthogonal), the goal is to solve the following optimisation problem:

A∗, U∗ = {min E(A, U), U ∈ Od, A ∈ Rd×D} (3.7)

The authors prove that (3.7) is equivalent to a convex optimisation problem and define an
iterative algorithm to solve for A and U .

3.2 Invariant Models for Domain Generalisation

Motivation. We introduce a novel approach to DG based on invariant properties of causal
models. Consider the graphical model in Figure 3.1, and that the goal is to predict Y

given X = (X1, X2). At training time, we receive a sample {(xi, yi)}ni=1 drawn i.i.d. from a
distribution P , and we wish to learn a regression model which we can deploy on a dataset
{(x̃i, ỹi)}mi=1 drawn i.i.d. from some distribution P T ≠ P . Without any further regularity
assumptions between P and P T , this challenging DG problem cannot be tackled in a principled
way. Nonetheless, we assume that P and P T are both generated following the SEM depicted
in Figure 3.1, where the distribution of the variables in red differs in both tasks, while the
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distribution of ϵ remains the same. More specifically, we assume that

Y = αX1 + ϵ,

where ϵ ⊥⊥ X1 and α is the same in both tasks. Moreover, we assume that

X1 = η and X2 = γY + ξ,

where η and ξ have different distributions in both tasks, while γ ∈ R remains fixed. How
should one build a model that generalises to P T ?

One solution is to fit the least squares estimator β∗ = arg minβ

∑n
i=1(yi − βtxi)2, and

perform prediction in the test task using β∗. This solution works well if covariate shift
holds, that is, P (Y |X) = P T (Y |X) but the marginals P (X) and P T (X) differ. A second
possibility, following the observation that P (Y |X1) = P T (Y |X1), consists of using only X1

as a predictor, resulting in the estimator βG = (α, 0). This approach is motivated by the idea
of using a subset of predictors leading to invariant conditionals, see Section 2.3 in Chapter 2.

Given toy data generated from the DAG in Figure 3.1, we first compute the log
mean squared error on held-out test data from distribution P . As expected, we obtain
log(MSE(β∗)) = −2.94 and log(MSE(βG)) = −1.6, that is, the least squares predictor out-
performs βG . This is unsurprising, as β∗ approximates the conditional mean E[Y |X] which
is optimal for i.i.d. prediction.

Assume now that we generate 1000 test tasks P T by randomly sampling the variance of
η and ξ, and compute the log mean squared error on data from these tasks both with β∗ and
βG , see Figure 3.2.

In these test tasks, β∗ performs badly and leads to high variance in the errors, while βG

leads to small variance, and the errors are as expected close to E(ϵ2) in all the test tasks.
This observation is central to the contributions in this section. We will assume that the
source tasks and test tasks are related by the invariance of the conditional Y |XS∗ for some
subset S∗ of the covariates, corresponding to S = {1} in the toy example. We show that
under these assumptions, predicting using variables in S∗ is optimal in an adversarial setting,
which can intuitively be observed in Figure 3.2.

Properties of the invariance of mechanisms in causal systems motivate our approach to
DG. We assume a relaxation of covariate shift, which we assume holds only for a subset of
the features. In causal terminology, assuming invariance of conditionals makes sense if the
conditionals represent causal mechanisms (e.g., Hoover, 1990). Intuitively, we expect that a
causal mechanism is a property of the physical world, and it does not depend on what we
feed into it. In a simplistic model, a variable such as “performance at the workplace” could
be a function of the “years of quality education”, and it is sensible to assume that this hold
regardless of the country in which the data is measured. In these countries, however, the
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Fig. 3.2 Log mean squared errors of both predictors β∗ and βG on test tasks generated
randomly from the graph in Figure 3.1. In each task, the variances of η and ξ were randomly
sampled from an exponential distribution. The variance in the errors computed by predicting
with β∗ is large, while the errors incurred by βG have small variance and are centered around
log(E(ϵ2)).

distribution of years of quality education among the population might drastically differ. If
the input, which in this case coincides with the covariates, shifts, the mechanism should thus
remain invariant (Hoover, 1990; Janzing and Schölkopf, 2010; Peters et al., 2016). In the
anticausal direction, however, a shift of the input usually leads to a changing conditional
(Schölkopf et al., 2012), see for instance the toy experiment in Figure 3.2. In practice,
prediction problems are often not causal — we should allow for the possibility that the set of
predictors contains variables that are causal, anticausal, or confounded. We thus expect that
there is a subset S∗ of predictors, referred to as an invariant set, for which the covariate
shift assumption holds true, i.e., the conditionals of output given predictor Y k |Xk

S∗ are
invariant across k ∈ {1, . . . , D, T}.

While not directly discussed in this section, the relation to covariate shift implies that
once an invariant set is known, traditional methods for covariate shift can be applied as a
black box to features in the subset, see Figure 3.3.

3.2.1 Assumption for Domain Generalisation

Consider a DG regression problem with source tasks P 1, . . . , P D, where (Xk, Y k) ∼ P k for
k ∈ {1, . . . , D}.3

3We assume throughout this work the existence of densities and that random variables have finite variance.
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(A1): ∃S∗ ⊆ {1, . . . , p} : Y |XS∗ invariant.

Covariate shift holds: Y |X{1,...,p} invariant.

Use methods for covariate
shift, applied to S∗.

Here, (A2): linear model

Fig. 3.3 Assumption (A1) (blue) is a relaxation of covariate shift (orange): the covariate
shift assumption is a special case of (A1) with S∗ = {1, . . . , p}. Given the invariant set S∗,
methods for covariate shift can be applied.

Our main assumption is a relaxation of covariate shift, see Section 3.1.3.1. We propose to
learn a feature representation of the tasks which selects an invariant subset:

h(X) = XS∗ ,

where S∗ leads to invariant conditional mappings Y k |Xk
S∗ in all tasks. Since no data from

the test task are observed in DG, we assume that such invariance also holds in the test task
T . The regularity between tasks is made at the level of the mechanism Y k |h(Xk) which
remains the same in all tasks, and not on the distribution of the features h(Xk) = Xk

S∗

themselves. The distribution of the features h(Xk) is free to vary arbitrarily between tasks.
We now propose a formal statement of our assumptions for DG.

Assumption 11 (Invariant Feature Representations for DG) We make the following
assumptions regarding the tasks P 1, . . . , P D, P T :

(A1) There exists a subset S∗ ⊆ {1, . . . , p} of features such that

Y k |Xk
S∗

d= Y k′ |Xk′
S∗ ∀k, k′ ∈ {1, . . . , D}. (3.8)

We say that S∗ is an invariant set which leads to invariant conditionals. Here, d=
denotes equality in distribution.

(A1’) This invariance also holds in the test task T , i.e., (3.8) holds for all k, k′ ∈ {1, . . . , D, T}.

(A2) The conditional distribution of Y given an invariant set S∗ is linear: there exists
α ∈ R|S∗| and a random variable ϵ such that for all k ∈ {1, . . . , D},

[Y k |Xk
S∗ = x] d= αtx + ϵk,

that is Y k = αtXk
S∗ + ϵk, with ϵk ⊥⊥ Xk

S∗ and for all k ∈ {1, . . . , D}, ϵk d= ϵ.

In covariate shift, one usually assumes that (A1’) holds for the set of all features. There-
fore, (A1’) is a weaker condition than covariate shift, see Figure 3.3. We regard this assumption
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as a building block that can be combined with any method for covariate shift such as the
ones mentioned in Section 3.1.3.1, applied to covariates in the subset S∗. Section 3.1.3.1 also
discusses the difficulties encountered when applying covariate shift, especially in terms of
estimation. Studying the implications of Assumptions (A1), (A1’) and (A2) does not aim to
alleviate the difficulties of covariate shift, but rather to elucidate a relaxation of covariate
shift which may be more realistic when some of the covariates are causal, and some are not.
We concentrate on linear relations (A2), which circumvents the estimation problems discussed
in Section 3.1.3.1.

Sections 3.2.3 to 3.2.4 assume that we are given an invariant subset S∗ that satisfies (A1)
and (A2), and show how the knowledge of S∗ can be exploited for DG. Throughout this
section, we assume that additionally to (A1) and (A2), assumption (A1’) holds. Given that
no data from the test task are observed, this is a strong assumption which cannot be tested
during training. We believe nonetheless that no statement can be made about DG without
making assumptions about the test task and how it relates to the training tasks.

Section 3.2.6 discusses a method for learning an invariant subset from data. We further
discuss the implications of assumption (A1’) when doing estimation in Section 3.2.6.3.

3.2.2 Proposed Estimator

Here and below, we focus on linear regression using the squared loss

EP T (β) = E(XT ,Y T )∼P T (Y T − βtXT )2 (3.9)

(the superscript T corresponds to the test task, not to be confused with the transpose,
indicated by superscript t). We denote by EP 1,...,P D (β) the squared error averaged over the
training tasks k ∈ {1, . . . , D} for coefficient β.

The optimal predictor obtained by minimising (3.9) is the conditional mean

βopt := arg min
β∈Rp

EP T (β) = E
[
Y T |XT

]
, (3.10)

which is not available during training.
Given Assumption 11, we know that for all tasks k ∈ {1, . . . , D, T}, Y k |h(X) has the

same distribution, where h(X) = XS∗ for some invariant subset S∗ of features. This implies
that the conditional mean given an invariant subset of predictors is a reasonable estimator,
which can be approximated by pooling the data in the training tasks and including only
features in the invariant subset S∗.

More precisely, let S∗ be a invariant subset satisfying Assumption 11. Let βS∗ =
arg minβ∈R|S∗|(Y 1 − βtX1

S∗)2 be the vector obtained by minimising the squared loss in the
training tasks using only predictors in S∗. We propose as a predictor the vector βCS(S∗) ∈ Rp

obtained by adding zeros to βS∗ in the dimensions corresponding to covariates outside of
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S∗4. More formally, we propose to use as a predictor

Rp → R
x 7→ E[Y 1 |X1

S∗ = xS∗ ]
and write E[Y 1 |X1

S∗ = xS∗ ] =
(
βCS(S∗))t x. (3.11)

Given (A1), the conditional expectation in (3.11) is the same in all training tasks, that is,

∀k ∈ {2, . . . , D}, E[Y k |Xk
S∗ = xS∗ ] = E[Y 1 |X1

S∗ = xS∗ ]. (3.12)

In particular, βCS := βCS({1,...,p}) is the estimator obtained when assuming standard
covariate shift. The equality of the mappings or mechanisms in (3.12) is a fundamental
property for the generalisation of our method to difficult scenarios in which (A1’) holds true,
as it represents the invariant of our method for DG.

Estimation Consider D samples from the source distributions Dk = {(xk
i , yk

i )}nk
i=1 for

k ∈ {1, . . . , D}. We refer to the pooled training dataset as the sample D obtained by pooling
the samples D1, . . . ,Dk together. Given a subset S∗, βCS(S∗) can be estimated by performing
linear regression only on features in S∗ in the pooled dataset D.

3.2.3 Optimality in an Adversarial Setting

In DG, the test set may be drawn from a distribution which differs arbitrarily from the
training tasks. Given the relaxed covariate shift assumption (A1’), the test distribution will
be such that Y T = αtXT

S∗ + ϵT , where the noise ϵT follows the same distribution as in the
training tasks. The joint distribution P T (XT , Y T ) can otherwise vary arbitrarily, which
makes DG challenging. In the population case, predictor (3.11) is equal to α, and thus the
squared error in the test task equals E(ϵ2), regardless of how different the distribution is from
the training tasks. In an adversarial setting, predictor (3.11) satisfies the following optimality
condition.

Theorem 12 (Adversarial) Consider (X1, Y 1) ∼ P 1,. . ., (XD, Y D) ∼ P D and an invari-
ant set S∗ satisfying (A1) and (A2). The proposed estimator satisfies an optimality statement
over the set of distributions such that (A1’) holds: we have

βCS(S∗) ∈ arg min
β∈Rp

sup
P T∈P

EP T (β),

where βCS(S∗) is defined in (3.11) and P contains all distributions over (XT , Y T ), T =
D + 1, that are absolutely continuous with respect to the same product measure µ and satisfy
Y T |XT

S∗
d= Y 1 |X1

S∗.
4The superscript CS is a reference to covariate shift.
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We provide a proof for Theorem 12 in a wider, nonlinear setting. First, we introduce
the extension of the linear estimator we introduced to a nonlinear setting. Given a subset
S∗ leading to invariant predictions, the proposed estimator is defined as the conditional
expectation

fS∗ : Rp → R
x 7→ E[Y 1 |X1

S∗ = xS∗ ].
(3.13)

The following theorem states that fS∗ is optimal over the set of continuous functions C0 in
an adversarial setting.

Theorem 13 (Adversarial, non-linear) Consider D tasks (X1, Y 1) ∼ P 1,. . ., (XD, Y D) ∼
P D that satisfy Assumption (A1). Then the estimator fS∗ in (3.13) satisfies

fS∗ ∈ arg min
f∈C0

sup
P T∈P

E(XT ,Y T )∼P T

(
Y T − f(XT )

)2
,

where P contains all distributions over (XT , Y T ) that are absolutely continuous with respect
to the same product measure µ and satisfy Y T |XT

S∗
d= Y 1 |X1

S∗.

Proof Consider a function f that is possibly different from fS∗ , see (3.13). For each
distribution Q ∈ P, we will now construct a distribution P ∈ P such that∫

(y − f(x))2 dP ≥
∫

(y − fS∗(x))2 dQ .

In this proof, we assume that the probability distributions in P are absolutely continuous
with respect to Lebesgue measure. The extension to the case where they are absolutely
continuous with respect to a same product measure µ is straightforward. Let us therefore
assume that Q has a density (x, y) 7→ q(x, y). Define P to be the distribution that corresponds
to p(x, y) := q(xS∗ , y) · q(xN ), where xN contains all components of x that are not in S∗. In
the distribution P , the random vector XN is independent of (XS∗ , Y ). But then∫

(y − f(x))2 dP

=
∫

xN

∫
xS∗ ,y

(y − f(xS∗ , x))2 p(xS∗ , y) dxS∗ dy p(xN ) dxN

≥
∫

xN

∫
xS∗ ,y

(y − fS∗(xS∗))2 p(xS∗ , y) dxS∗ dy p(xN ) dxN

=
∫

x,y
(y − fS∗(xS∗))2 q(xS∗ , xN , y) dxS∗ dy dxN

=
∫

(y − fS∗(x))2 dQ.
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Fig. 3.4 The figure shows expected errors for the pooled approach and the proposed method,
see Equation (3.15). µ = 0. We consider two training tasks over 10, 000 simulations. In each,
we randomly sample the variance of each covariate in X, the variance of η, and γ. σ2 is the
same in all tasks. As predicted by Proposition Proposition 14 observe that the error from the
pooled approach (red) is systematically higher than the error from the prediction using only
the invariant subset (blue), and both the error and its variance become large as the variance
Σ2 of coefficients γk increases.

3.2.4 Comparison Against Pooling the Data

Section 3.2.3 provides an optimality statement for predictor (3.11) when the test set is chosen
in an adversarial fashion. In practice, we are often interested in average statements: how
well does an estimator perform on average over similar tasks? In our case, how well does
predictor (3.11) perform on average over distributions such that (A1’) holds true? This
question may be especially relevant when we do not expect adversarial test tasks, and rather
want to display good performance across the board. We present a result in a specific setting
in which predictor (3.11) outperforms all other linear predictors in expectation over tasks.

Let Xk
S∗ be a vector of independent Gaussian variables in task k. Let the target Y k

satisfy
Y k = αtXk

S∗ + ϵk , (3.14)

where for each k ∈ {1, . . . , D}, ϵk is Gaussian and independent of Xk
S∗ . We have Xk =

(Xk
S∗ , Zk), where

Zk = γkY k + ηk ,
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for some γk ∈ R and where ηk is Gaussian and independent of Y k. Moreover, assume each
training task is equally represented in the training, that is, the training tasks are balanced.
We compare properties of estimator βCS(S∗) defined in Equation (3.11) against the least
squares estimator obtained from pooling the training data, which corresponds to assuming
that standard covariate shift holds. Similarly to the toy example in 3.1, the tasks differ in
the coefficients γk, which are randomly sampled. In particular, the more γk varies between
tasks, the more these tasks will differ. We prove that the squared loss averaged over unseen
test tasks is always larger for the pooled approach, when coefficients γk are centred around
zero. In the case where they are centred around a non-zero mean, we prove that when the
variance between tasks (in this case, for coefficients γk) becomes large enough, the invariant
approach also outperforms pooling the data.

Proposition 14 (Average performance) Consider the model described previously. More-
over, assume that the tasks differ as follows: the coefficients γ1, . . . , γD, γT = γD+1 are i.i.d.
with mean zero and variance Σ2 > 0.5 The tasks do not differ elsewhere. In particular, the
distribution of Xk

S∗ is the same for all tasks. Then the least squares predictor obtained from
pooling the D training tasks βCS = (βCS

S∗ , βCS
Z ) satisfies:

EγT

(
EP T

(
βCS

))
≥ EγT

(
EP T

(
βCS(S∗)

))
= σ2. (3.15)

In particular, this implies the following:

Eγ1,...,γD,γT

(
EP T

(
βCS

))
≥ Eγ1,...,γD,γT

(
EP T

(
βCS(S∗)

))
= σ2. (3.16)

Moreover, if the coefficients γ1, . . . , γD, γT are i.i.d. with non-zero mean µ, (3.15) holds for
fixed γ1, . . . , γD if Σ2 ≥ P (µ), where P is a polynomial in µ.

Proof We consider three variables and the following generative process: Y k = αtXk
S∗ + ϵk,

Zk = γkY k + ηk, where ϵk ∼ N (0, σ2), ηk ∼ N (0, σ2
η) and (Xk

S∗)j ∼ N (0, (σX)2
j ). In this

model, γk is the parameter responsible for the difference between the tasks, while the other
parameters are shared between the tasks.

At training time, D tasks are available. We first aim to obtain an explicit formula for
the linear regression coefficients βCS = (βCS

S∗ , βCS
Z ) obtained from pooling all the training

tasks together. Denote by X, Y and Z the pooled training data. For fixed γ1, . . . , γD, the
5Here, Σ2 is the variance of the distribution of γ, not to be mistaken with σ2, the variance of ϵk.
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expected loss in the training data satisfies for coefficient β verifies:

E
((

Y − (βX)tX− βZZ
)2
)

= 1
D

D∑
k=1

E
(
Y k − (βX)tXk − βZZk

)2

= βt
Xdiag(σ2

X)βX + β2
Z

D

(
σ2

ηD + VY γ2
)

+ 2(βZ
γ̄

D
− 1)αtdiag(σ2

X)βX + VY − 2 γ̄

D
VY βZ ,

(3.17)

where VY = αtdiag(σ2
X)α + ϵ2. By differentiating (3.17) with respect to β, we obtain the

following expression for the pooled coefficients:

βCS
Z = γ̄σ2

V 2
Y γ2 + Dσ2

η −
γ̄2

D αtdiag(σ2
X)α

and βCS
S∗ = (1− γ̄

D
βCS

Z )α,

where γ2 = ∑D
k=1(γk)2 and γ = ∑D

k=1 γk. Consider now an unseen test task with coefficient
γT . The expected loss on the test task using the pooled coefficients is:

EP T (βCS) = E
(
(Y T − (βCS

X )tXT − βCS
Z ZT )2

)
=
(
βCS

X

)t
diag(σ2

X)βCS
X + (βCS

Z )2
(
VY (γT )2 + σ2

η

)
+ 2βCS

Z γT αtdiag(σ2
X)βCS

X + VY

− 2αtdiag(σ2
X)βCS

X − 2βCS
Z VY γT .

Therefore, the expectation with respect to γT is:

EγT

(
EP T (βCS)

)
= (βCS

X )tdiag(σ2
X)βCS

X + (βCS
Z )2

(
VY Σ2 + σ2

η

)
+ VY − 2αtdiag(σ2

X)βCS
X

Denote by EP T (βS) = σ2 the expected loss when using the invariant conditional predictor
βS∗ = (α, 0). Then:

EγT

(
EP T (βCS)

)
≥ EγT

(
EP T (βS∗)

)
⇔ (βCS

X )tdiag(σ2
X)(βCS

X ) + (βCS
Z )2

(
VY Σ2 + σ2

η

)
+ VY − 2αtdiag(σ2

X)βCS
X ≥ σ2

⇔ (βCS
Z )2

(
VY Σ2 + σ2

η

)
≥ 2αtdiag(σ2

X)βCS
X − (βCS

X )tdiag(σ2
X)βCS

X − αtdiag(σ2
X)α

⇔ (βCS
Z )2

(
VY Σ2 + σ2

η

)
≥ − γ̄2

D2 (βCS
Z )2αtdiag(σ2

X)α,

by replacing βCS
X = α− α γ

D βCS
Z . This inequality holds true for any value of the variance Σ2,

and the pooled coefficient leads to larger error in expectation.
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Consider now that the coefficients γk are fixed and centered around a non-zero value µ.
Then the expectation with respect to γT of the loss in the test task is the following:

EγT

(
EP T (βCS)

)
= (βCS

X )tdiag(σ2
X)βCS

X + (βCS
Z )2

(
VY (Σ2 + µ2) + σ2

η

)
+ 2βCS

Z αtdiag(σ2
X)βCS

X µ + VY − 2αtdiag(σ2
X)βCS

X − 2βCS
Z VY µ.

Then, if γ̄ ̸= 0 (if γ̄ = 0, both estimators coincide):

EγT

(
EP T (βCS)

)
≥ EγT

(
EP T (βS∗)

)
⇔ Σ2 ≥ P (µ),

where P (µ) = −µ2 − 2
βCS

Z

((
1− γ̄

D βCS
Z

)
αtdiag(σ2

X)α
VY

− 1
)

µ− γ̄2

VY D2 αtdiag(σ2
X)α + ση

VY
.

Figure 3.4 visualises Proposition 14 for two training tasks, it shows the expected errors
for the pooled and invariant approaches, see (3.15), as the variance Σ2 increases. Recall that
Σ2 corresponds to the variance of coefficients γk, and thus indicates how different the tasks
are. The expected errors are computed using the analytic expression found in the proof of
Proposition 14. As predicted by Proposition 14, the expected error of the pooled approach
always exceeds the one of the proposed method (the coefficients γk are centered around zero),
see Equation (3.15). As Σ2 tends to zero, γk is close to zero in all tasks, which explains the
equality of both the pooled and invariant errors for the limit case Σ approaching 0. For
coefficients γk centered around a non zero value, Equation (3.15) does not necessarily hold
for small Σ2.

Proposition 14 presents a setting in which the invariant approach outperforms pooling the
data when the test errors are averaged over γ, i.e., EγT

(
EP T

(
βCS

))
≥ EγT

(
EP T

(
βCS

))
.

It is also clear to see that the equality of the distribution of ϵk in Equation (3.14) for all
k ∈ {1, . . . , D} leads to Varγ

(
EP T

(
βCS(S∗)

))
= 0, thus our invariant estimator minimises

the variance of the test errors across all related tasks.

3.2.5 Relation to Causality

Consider the background material and notation introduced in Chapter 2, Section 2.3. Consider
a Structural Equation Model (SEM) over variables (X, Y ). Here, we do not specify the
graphical relation between Y and the other nodes: Y may or may not have children or
parents. Suppose further that the different tasks P 1, . . . , P D are intervention distributions of
an underlying SEM with graph structure G. If the target variable has not been intervened
on, then the set S∗ := PAGY satisfies Assumptions (A1) and (A1’). This means that as long
as the interventions will not take place at the target variable, the set S∗ of causal parents
will satisfy Assumptions (A1) and (A1’).
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Peters et al. (2016) have given several sufficient conditions for the identifiability of the
causal parents in the linear Gaussian framework. As an example, if the interventions take
place at informative locations, or if we see sufficiently many different interventions, the set of
causal parents is the only set S∗ that satisfies Assumptions (A1) and (A1’). If there exists
more than one set leading to invariant predictions, they consider the intersection of all such
subsets. In this sense, seeing more environments helps for identifying the causal structure. In
this work, we are interested in prediction rather than causal discovery. Therefore, we try to
find a trade-off between models that predict well and invariant models that generalise well to
other domains. That is, in the DG setting, we are interested in the subset which leads to
invariant conditionals and minimises the prediction error across training tasks.

3.2.6 Learning Invariant Conditionals

We have seen how a known invariant subset S∗ ⊆ {1, . . . , p} of predictors leading to invariant
conditionals Y k |Xk

S∗ , see Assumption 11, can be beneficial in DG, especially when the test
task is chosen in an adversarial way. In practice, such a set S∗ is not known a priori. We
now present a method that aims at inferring an invariant subset from data.

We make an explicit distinction between any subset of features, which we denote by S,
and an invariant set S+ (which is not necessarily unique) for which (A1) holds. Such a subset
S+ does not necessarily satisfy both Assumptions (A1) and (A1’). Indeed, in DG, only (A1)
is testable in the training data. More precisely, if several invariant sets which satisfy (A1) are
found, we cannot distinguish at training time those which also satisfy (A1’), since no data
from the test task are observed. Therefore, given a set of invariant subsets {S+

1 , . . . , S+
ℓ },

we need to choose a criterion used to select one of these subsets. The method we propose,
summarised in Algorithm 1, provides an estimator Ŝ for an invariant subset S+, which is
chosen as the subset satisfying Assumption (A1) which maximises predictive accuracy on a
validation set.

3.2.6.1 Learning an Invariant Subset from Data

Consider D training tasks, a target variable Y k and a vector Xk of p features in task k. For
β ∈ Rp, we define the residual in task k as:

Rk
β = Y k − βtXk, k ∈ {1, . . . , D}.

By Assumptions (A1) and (A2), there exists a subset S+ and some vector βCS(S+) such that
for all j /∈ S+, β

CS(S+)
j = 0 and R1

βCS(S+)
d= . . .

d= RD
βCS(S+) . Such a set S+ is not necessarily

unique. As stated in (Peters et al., 2016), the number of invariant subsets decreases as more
different tasks are observed at training time. In Section 3.1.2.3, we introduced a method for
testing whether D distributions are equal given D samples. We propose to do an exhaustive
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Algorithm 1: Subset search
Inputs: Sample {(xk

i , yk
i )}nk

i=1 for tasks k ∈ {1, . . . , D}, threshold δ for independence
test.

Outputs: Estimated invariant subset Ŝ.
1 Set Sacc = {}, MSE = {}.
2 for S ⊆ {1, . . . , p} do
3 linearly regress Y on XS and compute the residuals RβCS(S) on a validation set.
4 compute H = HSICb

(
(RβCS(S),i, Ki)n

i=1

)
and the corresponding p-value p∗ (or the

p-value from an alternative test, e.g., Levene test.).
5 if p∗ > δ then
6 compute ÊP 1,...,D (βCS(S)), the empirical estimate of EP 1,...,D (βCS(S)) on a

validation set.
7 Sacc.add(S), MSE.add(ÊP 1,...,D (βCS(S)))
8 end
9 end

10 Select Ŝ according to RULE, see Section 3.2.6.3 and 3.3.2.1.

search over subsets S of predictors and use this test to establish whether the residuals have
the same distribution in all the training tasks.

Among the accepted subsets, we select the subset Ŝ which leads to the smallest error
on a validation set. It is important to note that Algorithm 1 may select features which are
non causal, and selects the invariant set which performs well on a validation set, further
details are given in Section 3.2.7.2. On the other hand, Peters et al. (2016) care about causal
discovery and propose an algorithm with coverage guarantee on the causal parents. This
could lead to poor performance in DG: if all tasks are identical, it will choose the empty set
as an invariant set and perform mean prediction. In such case, our method outputs the full
set of features as an invariant set.

In many prediction problems, the number of features is large and full subset search is not
computationally feasible. In Section 3.2.6.2, we propose two solutions for situations where
the number of features p is too large for an exhaustive search: a greedy method and variable
selection. While the algorithms are presented using linear regression, the extension to a
non-linear framework is straightforward. In particular, linear regression can be replaced by a
nonlinear regression method.

3.2.6.2 Scalability to a Large Number of Predictors

When the number of features p is large, full subset search is computationally not feasible.
We propose two solutions for this scenario. If one has reasons to believe that the signal is
sparse, that is the true set S∗ is small, one may use a variable selection technique such as
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Algorithm 2: Greedy subset search
Inputs: Sample {(xk

i , yk
i )}nk

i=1 for tasks k ∈ {1, . . . , D}, threshold δ for independence
test.

Outputs: Estimated invariant set Ŝgreedy.
1 Set Sacc = {}, Ŝcurrent{}, MSE = {}.
2 for i ∈ {1, . . . , niters} do
3 Set statmin =∞.
4 for S ∈ SŜcurrent

do
5 linearly regress Y on XS and compute the residuals RβCS(S) on a validation set.
6 compute H = HSICb

(
(RβCS(S),i, Ki)n

i=1

)
and the corresponding p-value p∗ (or

the p-value from an alternative test, e.g. Levene test.).
7 if p∗ > δ then
8 compute ÊP 1,...,D (βCS(S)), the empirical estimate of EP 1,...,D (βCS(S)) on a

validation set.
9 Sacc.add(S), MSE.add(ÊP 1,...,D (βCS(S))),

10 set Ŝcurrent = S.
11 end
12 else if H < statmin then
13 set Ŝcurrent = S, statmin = H.
14 end
15 end
16 end
17 Select Ŝgreedy according to RULE, see Sections 3.2.6.3 and 3.3.2.1.

the Lasso (Tibshirani, 1996) as a first step. After a smaller initial set of features has been
chosen, Algorithm 1 may be used in the remaining features.

We first point out that the invariant set with best prediction in the training tasks can
be assumed to be a subset of the Markov blanket of Y in the corresponding DAG, that is,
the set of nodes necessary to predict Y and its children. The intuition is as follows. If the
tasks P k correspond to interventions in an SEM, we may construct an extended SEM with a
parent-less environment variable E that points into the intervened variables. Then, P k equals
the distribution of (X, Y ) |E = k, see (Peters et al., 2016, Appendix C). If the distribution of
(X, Y, E) is Markov and faithful with respect to the extended graph, the smallest set S that
leads to invariant conditionals and to best prediction is a subset of the Markov blanket of Y :
certainly, it contains all parents of Y ; if it includes a descendant of Y , this must be a child of
Y (which yields better prediction and still blocks any path from Y to E); analogously, any
contained ancestor of a child of Y must be a parent of that child.

Thus, if variable screening is satisfied with the Lasso and all relevant variables (and more)
are selected, the pre-selection step does not change the result of Algorithm 1 in the limit
of infinitely many data. For linear models with L1 penalisation, variable screening is a well
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studied problem, see for instance compatibility and the βmin conditions (Bühlmann and
van de Geer, 2011, Chapter 2.5).

Alternatively, one may perform a greedy search over subsets when full subset search is
not feasible. Given a subset S, let SS be the collection of sets obtain by adding or removing
exactly one of the features in S. SS is called the collection of neighbours of S. The algorithm
starts by considering the empty set as a candidate. At a given iteration, we proceed as
follows:

• if some of the neighbor sets in SS are accepted as invariant, we select the one which
leads to the smallest validation error,

• if no neighboring set is accepted as invariant, we continue with the subset in SS leading
to the smallest test statistic (or alternatively, the largest p-value) for the test of equality
of distributions.

The resulting algorithm is described in Algorithm 2. As most often for greedy methods,
there are no theoretical guarantees.

3.2.6.3 Subset selection in DG

In DG, among the accepted subsets, we select the set Ŝ which leads to the lowest validation
error. Using the notation of Algorithm 1, let Sacc be the set of subsets accepted as invariant,
and let MSE be the set of their corresponding squared errors on the validation set. The
following rule is used for selecting an invariant set in DG.

RULE for DG: Return Ŝ = Sacc[arg min MSE].

Given a set of D training tasks, a collection of sets Ŝ1, . . . , Ŝu (eventually empty) is
obtained, all of which lead to accepting the null hypothesis of equality of the distribution of
the residuals of the training tasks in DG. Our methods use the MSE on a validation set as a
criterion for selecting a subset among these u candidates. This is a design choice which is
dependent on the specific application, and can be modified. For instance, if being conservative
is important, the MSE may be an inappropriate choice. One may be then interested in
combining confidence intervals for the accepted sets. One idea is to consider all accepted sets
at the same time, one of which is, with probability 1− α, the set S∗ from Assumption (A1’).
These sets yield different predictions, one of which stems from S∗, again, with probability
1− α. In some settings, it might be helpful to output the whole set of predictions. If one is
interested in confidence intervals, these may be combined by taking its union. Heinze-Deml
et al. (2018) discuss this idea in the context of prediction under interventions.

Remark 15 (Choosing the Size of the Validation Set) Algorithms 1 and 2 impose a
trade-off between fitting a linear model and testing the equality of distributions. Indeed, we



44 Invariant Causal Representations for Transfer Under Distribution Shift

perform a test for equality of the distribution of the residuals on a validation set, and if more
validation data are available the result of the test is more reliable. On the other hand, using
too much data for validation leads to a shortage of training data for least squares regression,
leading to poor estimation of the regression parameters. This trade-off is common to other
problems such as binary two-sample tests (Lopez-Paz and Oquab, 2016).

For linear models, most of the data can be kept for validation, as the parameters can be
easily estimated. Careful experimentation on this trade-off would be necessary for non-linear
models.

3.2.6.4 Comparison to Other Methods for Transfer

Assumption 11 is motivated by the invariance of causal mechanisms, and focuses on linear
settings in which some of the features themselves are causal. The following observations
can be made regarding its relation to other common assumptions for transfer, as well as for
future directions.

First, many recent methods for transfer learning focus on learning a feature mapping h :
Rd → Rd′ such that the features h(Xk) contain no information about the task k ∈ {1, . . . , D}.
In other words, one cannot predict the task k from which Xk originates after it has been
transformed by h. This assumption performs well in many standard transfer problems. Our
assumption is nonetheless orthogonal to this: we aim to learn a feature transformation
which simply selects an invariant subset h(X) = XS∗ , and the distribution of h(X) can be
arbitrarily different between the tasks. The invariance lies not in the features, but rather
in the mechanism mapping input to target. Second, while our work is restricted to linear
models, one can extend it by trying to learn non-linear feature representations such that the
mapping Y |h(X) is the same in all tasks. This would be more realistic in many machine
learning settings. For instance, pixels in a vision task are not causal of a target variable,
since what is represented by a given pixel can vary arbitrarily between images. Nonetheless,
invariance properties could hold with respect to higher level features.

3.2.7 Synthetic Data Experiment

We compare our estimator to different methods, which are summarised in Table 3.2. βCS(cau)

uses the ground truth for S∗ when it is available, βCS(Ŝ) corresponds to full search using
Algorithm 1, βCS uses the pooled training data and corresponds to assuming standard
covariate shift, βDICA performs DICA (Muandet et al., 2013), see Section 3.1.3.3. For DICA,
which is a nonlinear method, the kernel matrices are constructed using an rbf kernel, and
the length-scale of the kernel is selected according to the median heuristic. βmSDA performs
mSDA (Chen et al., 2012) as described in Section 3.1.3.2.

We generate a synthetic data set in which the causal structure of the problem is known. For
all experiments, we choose δ = 0.05 as a rejection level for the statistical test in Algorithms 1
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estimator description
βCS(cau) Linear regression with true causal predictors (often unknown in practice).
βCS(Ŝ) Finding the invariant set Ŝ using full subset search and performing linear regression

using predictors in Ŝ. Ŝgreedy corresponds to finding the invariant set using a greedy
procedure. ŜLasso corresponds to doing variable selection using Lasso as a first step,
then doing full subset search on the selected features.

βCS Pooling the training data and using linear regression.
βdom Linear regression using only the available labelled sample from T .
βmDA Pooling the training data and an unlabelled sample from T , learning features using

mSDA (Chen et al., 2012) with one layer and linear output, then using linear regression.
Table 3.2 Methods used in the numerical experiments for DG.

and 2. The sensitivity to the choice of δ is discussed in Section 3.2.7.1. Moreover, we use
40% of the training data to fit the linear models in Algorithms 1 and 2, and the remaining
data to test the equality of distributions.

Generative process of the data For each task k ∈ {1, 2, . . . , D, T}, we sample a set of
causal variables from a multivariate Gaussian

Xk
S∗ ∼ N (0, Σk

S∗)

where the covariance matrix Σk
S∗ in each task is drawn from a Whishart distributionW(Uk

S∗ , p),
where Uk

S∗ is computed as V k(V k)t. Here, V k is a |S| × |S| matrix of standard Gaussian
random variables.

The target variable Y k is drawn as

Y k = αtXk
S∗ + ϵk

where ϵk ∼ N (0, 2) (the standard deviation of ϵk is 6 for the non sparse DG experiment with
30 predictors, see the bottom of Figure 3.5).

We sample the remaining predictor variables as

Xk
N = γkY k + βk(Xk

S∗)C + ηk

where ηk ∼ N (0, Σk
N ). (Xk

S∗)C is a subset of Xk
S∗ of size |C| which generates both the target

Y k and XN . γk of size |N | is computed as γk = (1− λ)γ0 + λgk, where λ ∈ [0, 1], γ0 is the
same in all tasks while gk is task dependent. Both γ0 and gk are drawn from a standard
Gaussian. Similarly to γk, βk is a (|C|, |N |) matrix computed as βk = (1− λ)β0 + λbk. Σk

N

is sampled similarly to Σk
S∗ . Finally, α is sampled from a standard Gaussian distribution.

Summary of the results We perform experiments both on a setting where full search is
feasible (Figure 3.5, top left) and settings where full search cannot be performed (Figure 3.5,
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Fig. 3.5 DG setting. Logarithm of the empirical squared error in the test task for the different
estimators in the DG setting. The results show averages and 95% confidence intervals for the
mean performance over 100 repetitions. We vary the number of tasks D available at training
time. Upper left: both S and N are of size 3, such that X is 6-dimensional. |C| is of size one.
Upper right: 30 noise variables are added to X. Variable selection using the Lasso is used
prior to computing βCS(Ŝ), while βCS(Ŝgreedy) uses all predictors. Bottom: both S and N
are of size 15. Full search is not computationally feasible in this setting and only the greedy
procedure can be used. Other methods such as βCS , βmSDA and βDICA often perform badly,
which explains why in comparison βmean appears to performs well.
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Fig. 3.6 Logarithm of the empirical squared error in the test task in the DG setting as a
function of the acceptance level of the statistical test δ in Algorithm 1. The setup corresponds
to T = 3 in Figure 3.5 (left), also over 100 repetitions. For δ = 0, all subsets are accepted, so
the full set of predictors, which minimises the validation squared error, is selected. Algorithm 1
then returns βCS . As δ increases, no subset is accepted, and Algorithm 1 returns the subset
with the largest p-value.
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Fig. 3.7 Covariates selected by Algorithm 1 when the training tasks contain interventions
only on some of the covariates. The bars represent the percentage of repetitions (out of
100) for which the corresponding covariates were selected. When there are no interventions
in the training tasks, meaning that all the training tasks follow the same distribution,
Algorithm 1 systematically selects all covariates for prediction. When more interventions are
performed, however, the corresponding covariates (in red) are excluded in a large number of
the repetitions.
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top right and bottom). The experiments presented in Figure 3.5 use 4000 examples per
training task on the top left and right plots, and only 1000 examples per task on the bottom
because of computational reasons. We report the log average empirical MSE over left out
test tasks. Two conclusions can be drawn.

i) How well can we estimate an invariant subset from data? As the number of training
tasks increases, the performance of βCS(Ŝ) and βCS(Ŝgreedy) approaches the performance
of the ground truth βCS(Ŝ). We conclude that invariant subsets can be learned from
data and can be better estimated as more training tasks are observed.

ii) How does invariant prediction perform against other approaches? When sufficiently
many training tasks are observed, methods using an invariant subset outperform the
competitors. Moreover, the variance of the error is very small, as the squared error is
equal to the variance of ϵk which is the same in all the tasks. βCS uses all features for
prediction and therefore performs badly, but does get better as the number of tasks
increases on the top left and top right. This result suggests the pooled approach still
down-weights features when significant variations are observed in the training tasks.
Finally, βDICA and βmSDA aim to learn a feature representation of the data in which
the training tasks are similar. This invariant does not a priori apply to this problem, on
the contrary, the distribution of XS∗ varies quite strongly between tasks, thus possibly
explaining the poor performance.

3.2.7.1 Sensitivity to the Acceptance Level δ

Both Algorithm 1 and its greedy version Algorithm 2 receive an acceptance level δ as input
for the statistical test. In our other experiments, we chose the standard value of δ = 0.05.
Figure 3.6 shows the error on the test tasks for both methods for different values of δ. The
setting is the same as in the left of Figure 3.5 for three training tasks. βCS and βCS(cau) are
provided as reference. For δ = 0, all subsets are accepted as invariant, thus both methods
behave like pooling the data. After a critical value of δ, no subset is accepted, and both
algorithms return the subset with the largest p-value.

3.2.7.2 Informativeness and Subset Estimation

The estimation of an invariant subset involves finding a subset for which the residuals have
the same distribution across tasks. It is desirable, however, that the selected subset is one
which explains the data best. This is ensured by selecting the subset which leads to the
smallest error on a validation set. Therefore, some features in N may be included in a selected
subset if there are no interventions on this features in the training tasks, where interventions
correspond to changing parameters in the data generating process for the different tasks.
More precisely, if including a feature does not lead to a statistically measurable difference in
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the distribution of the residuals between the training tasks, it is advantageous in general to
include it in the selected subset since the data is better explained.

We illustrate this in Figure 3.7 in a setting with p = 6 features. We estimate an invariant
subset using Algorithm 1 over 100 repetitions in the following scenarios: i) all the covariates
have the same distribution across tasks, ii) one, two or three covariates in N are subject to
interventions between the tasks.

We plot the proportion of repetitions for which each of the features is included in the
selected subset, see Figure 3.7. We see that, as expected, covariates in N for which there are
no interventions are included in the selected subset in a large portion of the repetitions, while
the other covariates are consistently excluded. This highlights that Algorithm 1 can only
exclude covariates whose distribution shifts between training tasks. If being conservative is
important for the problem at hand, one can modify Algorithm 1 accordingly, see the end of
Section 3.2.6.3.

3.2.7.3 Time Complexity

The most expensive component of Algorithms 1 and 2 is the estimation of the invariant
subset. With n = 4000 examples available for each of the 6 tasks, and p = 6 features, full
subset search takes 0.067 seconds and greedy search 0.037, where the results are averaged
over 100 repetitions. With p = 10, full search averages at 1.57 seconds, and greedy search
0.0396. With p = 30, where full search is not feasible, greedy search averages at 1.21 seconds.

3.2.8 Gene Perturbation Experiment

We apply our method to gene perturbation data provided by Kemmeren et al. (2014). This
data set consists of the m-RNA expression levels of p = 6170 genes X1, . . . , Xp of the
Saccharomyces cerevisiae (yeast). It contains both nobs = 160 observational data points and
nint = 1479 data points from intervention experiments. In each of these interventions, one
known gene (out of p genes) is deleted. In the following, we consider two different tasks.
The observational sample is drawn from the first task, and the pooled nint interventions are
drawn from the second task.

Motivation. In order to gain an intuition about the experiments we are presenting, consider
Figure 3.8. We select as a target a gene Y out of the p genes, and our goal is to predict the
activity of Y given the remaining p − 1 genes as features. Some of these p − 1 genes are
causal of the activation of Y . For example, Figure 3.8 shows on the x-axis the activity of two
genes (gene A on the left, gene B on the right) such that:

• The expressions of A and B are strongly correlated with the expression of Y .
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Fig. 3.8 Example of the expression of pairs of genes, where A is causal (left) and B is
non-causal (right) of target Y . The blue points are from the observational sample (task 1),
the red dots are the interventional sample (task 2), and the green point corresponds to the
single interventions in which A and B are intervened on respectively. On the left, a model
learned on the data in red and blue would still perform well on the intervention point, which
is not the case on the right.

• A is causal of Y (here, we use the definition of a causal effect proposed by Peters et al.
(2016)).

• B is non-causal of Y (anticausal or confounded).

In Figure 3.8 (left), the blue points correspond to the 160 data points from the observational
sample, which corresponds to the first task. The red dots are the 1478 data points from the
interventional sample, except for the single data point for which A is intervened on, and
constitute the second task. The plot on Figure 3.8 (right) is constructed analogously for B.
We can indeed see that in the pooled sample from task 1 and 2, A and B are both strongly
correlated with target Y .

The key difference between both plots are the green points. On Figure 3.8 (left), the
green dot corresponds to the single intervention experiment in which gene A is intervened
on. Similarly, the green dot on Figure 3.8 (right) is the single point in which B is intervened
on. Our goal is to consider the DG setting in which the test task consists on this single
intervention point.

For the causal gene A, one expects that a change in the activity of A should translate
into a proportional change in the activity of Y . We observe that, in the particular example
of the left plot, a linear regression model from A to Y trained only on the pooled data from
tasks 1 and 2 (blue and red in Figure 3.8) would lead to a small prediction error on the
intervened point (in green). That is, S∗ = {A} might be a good candidate for a set satisfying
Assumptions (A1), (A1’) and (A2). For the non-causal gene B, however, intervening on B

leaves the activity of Y unchanged, and the linear model learned on the data from tasks 1
and 2 performs badly on the test point in green. In such case, a candidate set is the empty
set S∗ = {}, leading to prediction using the mean of the target in the training data. A model
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which is aiming to test in these challenging intervention points should therefore include causal
genes as features, but exclude non-causal genes. In these experiments, we aim at testing
whether we can exclude non-causal genes such as B automatically.

Setup. We address the problem of predicting the activity of a given gene from the remaining
genes. We are looking at the following:

• We consider p different problems. In each problem j ∈ {1, . . . , p}, we aim at predicting
the activity Y = Xj of gene j using (Xℓ)ℓ̸=j as features.

• In each problem j ∈ {1, . . . , p}, two training tasks k ∈ {1, 2} are available. The data
from the first task is the observational sample, and the data from the second task are
all the nint interventions (we shall subsequently remove some points for testing, see
below).

The goal is now to apply our method to each of the problems and estimate an invariant subset.
Due to the large number of predictors, we first select the 10 top predictor variables using the
Lasso and then apply Algorithm 1 to select a set of invariant predictors Ŝ, see βŜLasso in
Table 3.2. We denote the indices of the features selected using Lasso by L = (L1, . . . , L10).

The procedure is then evaluated as follows: for each problem j ∈ {1, . . . , p}, we first find
the genes in (XL1 , . . . , XL10) for which an interventional example is available. Note that this
might not hold for all selected genes, since only nint < p interventions are available. We then
iterate the following procedure (this is within the context of the same problem): for each
gene in (XL1 , . . . , XL10) for which an intervention is available,

• we put aside the example corresponding to this intervention from the training data (in
the motivation example, this would correspond to the green point).

• we estimate an invariant subset Ŝ ⊆ L using Algorithm 1 with the remaining observa-
tional and interventional data.

• we test all methods on the single intervention point which was put aside.

We expect two different scenarios, as explained in the motivation paragraph above: (1) if
the intervened gene is a cause of the target gene, it should still be a good predictor; then, it
should be beneficial to have this gene included in the set of predictors Ŝ. (2) if the intervened
gene is anticausal or confounded (we refer to this scenario as non-causal), the statistical
relation to the target gene might change dramatically after the intervention and therefore, one
may not want to base the prediction on this gene. In order to see this effect and understand
how the different approaches for DG in Table 3.2 handle the problem, we consider two groups
of experiments.
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Fig. 3.9 Top left: In the causal problems, interventions are performed on causal genes. As
expected, the input genes continue to be good predictors, and βCS works well. In the
non-causal problems (top right), one of the inputs is intervened upon and becomes a poor
predictor, impairing the performance of βCS . The mean predictor βmean uses none of the
predictors, and therefore works comparatively well in this scenario. Our proposed estimator
βCS(Ŝ) provides reasonable estimates in both the causal and non-causal settings, while other
methods only perform well in one of the scenarios. βDICA performs similarly to βmean in
both scenarios, and is therefore outperformed by other methods in the causal problems (note
that βDICA uses all available features). Bottom: in the non-causal scenario (2), we plot the
number of test genes for which the squared error for βCS is larger than τ times the squared
error for βCS(Ŝ), and vice-versa, where τ is plotted on the x-axis. This plot shows the number
of genes for which one of the method does significantly worse than the other. By this measure,
βCS(ŜLasso) outperforms βCS for all values of τ .

(1) we select the target genes Y for which one of the features in L is causal for the activity
of Y and for which an intervention experiment is available. 39 problems fall in this
causal scenario.

(2) out of the remaining problems we chose target genes with (non-causal) predictors that
have been intervened on and — in order to increase the difficulty of the problem —
that are strongly correlated with the target gene. We therefore select 269 cases for
which a Pearson correlation test (the null hypothesis corresponds to no correlation)
outputs a p-value equal to zero.
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Results. Figure 3.9 shows box plots for the errors of the different methods for the causal
problems (1) on the top left and for the non-causal problems (2) in the top right. We do
not plot outliers in order to improve presentation. Figure 3.9 (top left) presents the causal
scenario. As expected, pooling does well in this setting. Figure 3.9 (bottom) shows that in
the non-causal problems (2), prediction using an invariant subset leads to less severe mistakes
on test genes compared to pooling the tasks.

For comparison, since we know which predictors are being intervened on at test time, we
included a method that makes use of causal knowledge: βCS(cau) uses all 10 predictors in
the causal problems (1) and all but the intervened gene in the non-causal problems (2). In
practice, this causal knowledge is often not available. We regard it as promising that the
fully automated procedure βCS(ŜLasso) performs comparably to βCS(cau).

These results reinforce the points made with the synthetic data experiment. From an
estimation perspective, Algorithm 1 often manages to recover an invariant subset from the
data. In terms of performance, using the knowledge of this invariant subset leads to results
robust to whether the intervention is on a causal or non-causal feature, and such model can
therefore be deployed with higher confidence in settings where the test task is difficult and
distribution shift is severe.

3.3 Learning Representations for Multi-task Learning

We have motivated the use of invariant representations in DG. Indeed we showed that learning
an invariant feature mapping h(X) = XS∗ which selects an invariant subset S∗ of features
performs well on average over tasks on an example, and performs at its best as the tasks
become more different, that is, when distribution shift is stronger. In practice, however, we
often observe a small labelled sample {(xT

i , yT
i )}nT

i=1 from the test task. Multi-task learning
(MTL) aims at combining the knowledge obtained from the training tasks with the available
sample from the test task to outperform training on the data from the test task alone. As
before, we are given an invariant set S∗ satisfying (A1) and (A2). In the MTL setting,
assumption (A1’) is no longer needed as we observe data from the test task and (A1) can be
tested from data.

In this section, we aim to build a feature representation h(X) of the original features which
outperforms learning on the test data alone. Given Assumption 11, this implies devising a
method that combines the test sample with the knowledge of the invariant subset S∗ in order
to use all features for prediction.

Given (A1) and (A2), the target satisfies Y k = αtXk
S∗ + ϵk, where the noise ϵk has zero

mean and finite variance, is independent of Xk
S∗ and has the same distribution in the different

tasks k ∈ {1, . . . , D, T}. Our objective is to use the knowledge gained from the training tasks
to get a better estimate of βopt defined in Equation (3.10). We describe below a way to tackle
this using missing data methods.
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3.3.1 Learning Features Via a Missing Data Approach

In this section, we specify how we tackle MTL by framing it as a missing data problem.
In order to motivate the method, assume that for each k ∈ {1, . . . , D, T}, there exists
another probability distribution Qk with density qk having the following properties: (i) when
restricted to (Xk

S∗ , Y k), Qk coincides with P k, (ii) the conditional qT (y |xS∗ , xN ) coincides
with pT (y |xS∗ , xN ) on the test task and (iii) q(y |xS∗ , xN ) := qk(y |xS∗ , xN ) is the same in
all tasks. Property (iii) does not hold for distributions P k, since this would imply that the
whole set of features is an invariant set and standard covariate shift holds.

Our goal is to learn a regression model from Y on XS∗ and XN in P T . Given property (ii),
this problem coincides with learning the same regression model in QT . Moreover, property
(iii) implies that we can pool the data from all tasks Qk since the conditionals match. This
is not possible, of course, for the given data, which we have received from the distributions
P k. However, we do have access to data from the marginal distribution Qk(Xk

S∗ , Y k) for
k ∈ {1, . . . , D, T} given that property (i) holds. If we consider the remaining values Xk

N as
missing, and we have a way to estimate them from data, we can exploit properties (i), (ii)
and (iii) to learn the conditional mapping E

[
Y T |XT

]
.

But now assume that in all training tasks, we only have access to the marginal (Xk
S∗ , Y k)

from Qk. Any method that addresses the regression under these constraints be used with the
data available because of (i). We first prove the existence of such distributions Qk:

Proposition 16 (Correctness of transfer) Let S∗ be an invariant set verifying (A1) and
(A2). For k ∈ {1, . . . , D, T}, denote by (x, y) 7→ pk(x, y) the density of P k. Then there exists
a function q : Rp → R+ such that for each k ∈ {1, . . . , D, T}, there exists a distribution Qk

with density qk such that for all (x, y) ∈ Rd+1, for all k ∈ {1, . . . , D, T},

i) qk(xS∗ , y) = pk(xS∗ , y),

ii) qT (y |xS∗ , xN ) = pT (y |xS∗ , xN ),

iii) qk(y |xS∗ , xN ) = q(y |xS∗ , xN ).

Proof For k ∈ {1, . . . , D, T}, let Qk be the probability distribution with density:

qk(xS∗ , xN , y) := pk(xS∗ , y)pT (xN |xS∗ , y). (3.18)
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In the test task T , we trivially have qT = pT . First, it is easy to see that qk and pk have the
same marginal distribution over xS∗ and y. Indeed:

qk(xS∗ , y) =
∫
R|N|

qk(xS∗ , xN , y)dxN

=
∫
R|N|

pk(xS∗ , y)pT (xN |xS∗ , y)dxN

= pk(xS∗ , y)
∫
R|N|

pT (xN |xS∗ , y)dxN = pk(xS∗ , y). (3.19)

Second, we prove that the conditional qk(y |xS∗ , xN ) is the same in all tasks. Indeed, by
applying Bayes’ rule:

qk(y |xS∗ , xN ) = qk(xN | y, xS∗) qk(y, xS∗)
qk(xS∗ , xN )

= pT (xN | y, xS∗) qk(y |xS∗)
qk(xN |xS∗)

= pT (xN | y, xS∗) pk(y |xS∗)∫
R qk(y, xN |xS∗)dy

= pT (xN | y, xS∗) pk(y |xS∗)∫
R qk(xN | y, xS∗)qk(y |xS∗)dy

= pT (xN | y, xS∗) pk(y |xS∗)∫
R pT (xN | y, xS∗)pk(y |xS∗)dy

.

We have used the fact that qk(xN | y, xS∗) = pT (xN | y, xS∗), which follows from (3.19). Since
the last equality leads to a term which is equal in all tasks (indeed, Assumption (A1) ensures
that pk(y |xS∗) is the same for all k ∈ {1, . . . , D, T}), we have the desired result.

Following the previous intuition, for the training tasks k ∈ {1, . . . , D}, we hide the data
of Xk

N and pretend the data in each task k ∈ {1, . . . , D, T} are drawn from Qk. Note that
some of the data are only missing for the training tasks. More precisely, Xk

N is missing
for k ∈ {1, . . . , D}, while because of (i) in Proposition 16, (Xk

S∗ , Y k) is available for all
tasks k ∈ {1, . . . , D, T}. We thus pool the data and learn a regression model of Y versus
(XS∗ , XN ) by maximising the likelihood of the observed data.

We formalise the problem as follows. Let (zi)n
i=1 = {(xS∗,i, xN,i, yi)}ni=1 be a pooled

sample of the available data from the training tasks and the test task, in which xN,i is
considered missing if xi is drawn from one of the training tasks. Here, n = ∑T

k=1 nk is the
total number of training and test examples. Denote by zobs,i the components of zi which are
not missing. More precisely, zobs,i = zi if i is drawn from the test task and zobs,i = (xS∗,i, yi)
otherwise. Moreover, let Σ be a (p + 1) × (p + 1) positive definite matrix, and Σi is the
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submatrix of Σ which corresponds to the observed features for example i. If example i is
drawn from a training task, Σi is of size (|S∗|+ 1)× (|S∗|+ 1), and (p + 1)× (p + 1) otherwise.
The log-likelihood based on the observed data for matrix Σ satisfies:

ℓ(Σ) = const− 1
2

n∑
i=1

det (Σi)−
1
2zT

obs,iΣ−1
i zobs,i, (3.20)

and our goal is to find Σ which maximises (3.20). This model for the likelihood assumes that
the data is multi-variate Gaussian with covariance matrix Σ.

When all data are observed, the least squares estimator βopt can be seen as the result of
a two step procedure. First, (3.20) is maximised for the sample covariance matrix. Then,
one computes the conditional mean E[Y |X = x] of the estimated joint distribution of
(X,Y ). In the case of missing data, however, the sample covariance matrix does no longer
maximise (3.20), see Section 3.3.1.1 below.

Chapter 11 in Little and Rubin (1986) provides the update equations for optimising
Equation (3.20) using Expectation Maximisation (EM) (Dempster et al., 1977). More
precisely, given an estimate Σr of the covariance matrix at step r, the algorithm goes as
follows.

E step: For an example i, we define

zr
i :=

zi if example i is from the test task,

(xS∗,i,E(xr
N | zobs,i), yi) otherwise.

Here, we are essentially imputing the data for xN in the training tasks by the conditional
mean given the observed data, using the current estimate of the covariance matrix Σr.
The conditional expectation is computed using the current estimate Σr and the Gaussian
conditioning formula:

E(Xr
N | zobs,i) = Σr

Nzobs
(Σr

zobs
)−1zobs,i,

where Σr
NZobs

is the submatrix of Σr corresponding to the cross-covariance between XN

and (XS∗ , Y ), and Σr
Zobs

is the submatrix corresponding to the covariance of (XS∗ , Y ). For
examples from the test task, we simply copy the example, since P T = QT . Moreover, define

Cr
N,i :=

0 if example i is from the test task,

Cov(xr
N | zobs,i) = Σr

N − Σr
Nzobs

(Σr
zobs

)−1Σr
zobsN otherwise.

M step: compute the sample covariance given the imputed data:

Σr+1 = 1
n
E
(

n∑
i=1

zr
i (zr

i )t | zobs,i, Σr

)
= 1

n

n∑
i=1

zr
i (zr

i )t + Cr
i ,
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where Cr
i is a (p + 1)× (p + 1) matrix whose submatrix corresponding to features in N is

Cr
N,i, and the remaining elements are 0. The intuition for the M step is simple: we compute

the sample covariance with the values imputed for xN . Since these values are being imputed,
matrix C adds uncertainty for the corresponding values.

Once the algorithm has converged, we can read off the regression coefficient from the joint
covariance matrix as E[Y |XS∗ = xS∗ ]. The whole procedure is initialised with the sample
covariance matrix computed with the available labelled sample from T .

Incorporating unlabelled data The previous method also allows us to incorporate
unlabelled data from the test task. Indeed, assume that an unlabelled sample xT =
{(xT

S∗,i, xT
n,i)}

nul
i=1 from the test task is also available at training time. This can be in-

corporated in the previous framework since the label Y can be considered to be missing
(as opposed to XT

N previously). We can then write zr
i = (xS∗,i, xN,i,E(Y r

i | zobs,i)) for the
unlabelled data, thus imputing the value of y in in the E-step by the conditional mean given
(xS∗,i, xN,i). The added covariance is then Cr

Y,i = Var(Y )r −Σr
Y zobs

(Σr
zobs

)−1Σr
zobsY . The rest

of the algorithm remains unchanged.

3.3.1.1 A Naive Estimator for Comparison

The following Proposition provides an analytic expression for βopt from (3.10) in terms of α

and ϵ.

Proposition 17 Assume that XS∗ follows an arbitrary distribution and that Assumptions (A1)
and (A2) hold. Let γ ∈ R|N | be the solution of an L2 regression from XT

N on Y T . Therefore,
we can write XT

N = γY T + η, with η uncorrelated to Y T , and the components of η can be
correlated. Then the regression coefficients βopt = (βopt

S∗ , βopt
N ) minimising the expected squared

loss in the test task satisfy

βopt
N = E(ϵ2)M−1γ , (3.21)

βopt
S∗ = α

(
1− (γT )tβT

N

)
− Σ−1

X,S∗ΣX,N βN , (3.22)

where M = E(ϵ2)γγt + ΣN − Σt
X,N Σ−1

X,S∗ΣX,N , and ΣN := E(ηηt), ΣX,S∗ := E(XS∗Xt
S∗),

ΣX,N := E(XS∗ηt) are the corresponding Gram matrices.6

6We dropped the superscript T to lighten the notation.
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Proof To simplify notation, we write Y T , XT
S∗ and XT

N as Y , XS∗ and XN . We compute
the gradients of the expected squared loss after replacing the expression for Y and XS∗ :

L = E(Y − βt
S∗XS∗ − βt

N XN )2

= (α(1− γtβN )− βS∗)tΣX,S∗(α(1− γtβN )− βS∗)
+ (1− βt

N γ)2E(ϵ2) + βt
N ΣN βN − 2(α(1− γtβN )− βS∗)tΣX,N βN

The gradients satisfy

∂L

∂βS∗
= −2ΣX,S∗(α(1− γtβN )− βS∗) + 2ΣX,N βN

1
2

∂L

∂βN
= ΣN βN − (1− γtβN )E(ϵ2)γ + γαtΣX,N βN

− γαtΣX,S∗(α(1− γtβN )− βS∗)− Σt
X,N (α(1− γtβN )− βS∗)

By setting these to zero, we find the stated values for βopt
S∗ and βopt

N .

In the population setting, Proposition 17 provides an expression for βopt as a function
of α and ϵ from Assumption (A2). As in the previous paragraph, one could try to estimate
the covariance matrix of (X, Y ) using the knowledge of α and ϵ from the training tasks, and
then read off the regression coefficients.

In the presence of a finite amount of labelled and unlabelled data from the test task, let
Σ̂X,Y be the sample covariance matrix in the test task. A naive approach would thus plug in
the knowledge of α and ϵ as follows:

• the entries of Σ̂X,Y that correspond to the covariances between XS∗ and Y are replaced
with Σ̂XS∗ · α,

• the entry corresponding to the variance of Y is replaced by αtΣ̂XS∗ α + Var(ϵ).

This, however, often performs worse than forgetting about α and using the data in the test
domain only, see Figure 3.10 (top left). Why is this the case? The naive solution described
above leads to a matrix Σ that does not only not maximise (3.20) but that often is not even
positive definite. One needs to optimise over the free parameters of Σ, which corresponds
to the covariance between XN and Y , given the constraint of positive definiteness. For
comparison, we modified the naive approach as follows. First, we find a positive definite
matrix satisfying the desired constraints. In order to do this, we solve a semi-definite
Program (SDP) with a trivial objective which always equals zero. Then, we maximise the
likelihood (3.20) over the free parameters of Σ with a Nelder-Mead simplex algorithm. The
constrained optimisation problem can be shown to be convex in the neighborhood of the
optimum (Zwiernik et al., 2017, Sec. 3) if the number of data in the test domain grows.
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While gradients can be computed for this problem, gradient-based methods seem to perform
poorly in practice (experiments are not shown for gradient based methods).

In an idealised scenario, infinite amount of unlabelled data in the test and labelled data
in the training tasks could provide us with ΣX, Σ(XS∗ ,Y ) and Var(Y ). We could then plug
in these values into Σ and optimise over the remaining parameters, see βCS(cau+,i.d.) in
Figure 3.10 (top left). In practice, we have to estimate ΣX, Σ(XS∗ ,Y ) and Var(Y ) from data.
Thus, the EM approach mentioned above constitutes the more principled approach.

3.3.2 Synthetic Data Experiment

estimator description
βCS(Ŝ+) Finding the invariant set Ŝ using full subset search and solve the optimisation problem

described in Section 3.3.1.1.
βCS(Ŝ♯) Finding the invariant set Ŝ using full subset search and maximising (3.20) for MTL

using EM.
βdom Linear regression using only the available labelled sample from T .
βMT L Multi-task feature learning estimator (Argyriou et al., 2007).
βCS Pooling the training data and using linear regression.
βmDA Pooling the training data and an unlabelled sample from T , learning features using

mSDA (Chen et al., 2012) with one layer and linear output, then using linear regression.
Table 3.3 Methods used in the numerical experiments for MTL.

The generative process for the data in this section is identical to the one used in the
experiments in Section 3.2.7. We compare our estimator to different methods, which are
summarised in Table 3.3. βMT L performs the Multi-task feature learning algorithm (Ar-
gyriou et al., 2007). We combine the subset invariance with task specific information by
optimising (3.20) using EM, resulting in regression coefficients βCS(Ŝ♯) and βCS(cau♯) when
the ground truth is known. Finally, βCS(cau♯,UL) indicates that unlabelled data from T was
also available. For reference, Figure 3.10 (left) provides results for βCS(Ŝ+) and βCS(cau+),
which correspond to the estimators obtained by solving the constrained optimisation problem
described in Section 3.3.1.1 (βCS(cau+) uses the ground truth for S∗ and α), while βnaive

imputes the covariance matrices but does not optimise the free parameters. βCS(cau+,i.d.)

(infinite data) also assumes that we know the ground truth for the entries of the covariance
matrix for the test task corresponding to the covariance of X, the covariance between XS∗

and Y , and the variance of Y .

Summary of the results.

i) The naive methods from Section 3.3.1.1 require too much data. In Figure 3.10 (top
left), large amounts of labelled data (36, 000) from the training tasks and unlabelled
data from the test task (50, 000) are available. Both S and N are of size 3, such that
X is 6-dimensional. For all experiments, 6 training tasks are available. We report the
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Fig. 3.10 Percentage of repetitions (out of 100) for which the corresponding method out-
performs βdom (or βCS(cau♯) for the top right plot). Both S and N are of size 3, such that
X is 6-dimensional. Upper left: This plot shows that the methods βCS(Ŝ+) and βCS(cau+)

presented in Section 3.3 perform well, but a large amount of data is necessary: 50, 000
unlabelled examples from T and 36, 000 training examples are available. The naive method
βnaive performs poorly. Upper right: we fix the number of training data (500 per task) and
vary the amount of unlabelled data available from the test task. We report the percentage of
scenarios in which the corresponding method outperforms βCS(cau♯) this time (which uses no
unlabelled data). While βmDA always performs worse than βCS(cau♯) and does not exploit
the unlabelled data, we see that βCS(cau♯,UL) performs better as the amount of unlabelled
data increases. Bottom: we vary the number of labelled examples available in each training
task. Here, significantly less labelled data was available in the training tasks (from 50 to
1000 per task). In this setting, the methods using unlabelled data were given 100 unlabelled
examples. Bottom left: logarithm of the empirical squared error in the test task for different
estimators. Bottom right: percentage of repetitions (out of 100) for which the corresponding
method outperforms βdom.
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Fig. 3.11 Left: 900 examples from each of the training tasks are available (this corresponds to
the data point furthest to the right in the bottom plot of Figure 3.10). We run 100 repetitions
and plot the histograms of ∆ = E(βdom)− E(βCS(cau♯)). The proposed estimator outperform
βdom: for a large proportion of the repetitions, ∆ > 0. More importantly, the distribution of
∆ is heavily skewed in the positive values. In other words, when βdom outperforms βCS(cau♯),
the difference in performance is small, while the difference is often larger for the converse.
Right: setting with 6 tasks and 900 examples per task. We plot the percentage of repetitions
(over 100) for which the given methods outperform βdom, as a function of the size of the
invariant set S∗. We see that as S∗ becomes larger, more information is transferred from the
training tasks, and as such the performance of βCS(cau♯) improves. When S∗ is the full set,
our method behaves like pooling the data.

percentage of repetitions for which the population MSE of a given approach outperforms
βdom. We see that βCS(cau+,i.d.) systematically outperforms βdom. Moreover, βCS(cau+)

and βCS(Ŝ+) also perform well, and positive transfer is effective. However, a prohibitively
large amount of labelled and unlabelled data is needed for these approaches, and the
differences become non-significant for all methods except βCS(cau+,i.d.). This shows the
limitation of this family of approaches.

ii) Our missing data approach is competitive with the best methods when the true invariant
subset is known, and still performs well when we learn it from data. We consider a more
realistic setting with only 900 examples per training task, we plot in Figure 3.11 (left)
the histogram of the error difference ∆ = E(βdom) − E(β) for βCS(cau♯). Figure 3.10
(top right) corresponds to the same setting, but we vary the number of unlabelled
data available (we only plot methods that use unlabelled data, and βCS(cau♯) is used
as reference instead of βdom). In Figure 3.10 (bottom left) we consider the setting in
which only 100 unlabelled data points are available, and only few labelled examples
are available in each task. Here, we see that βCS(cau♯), βCS(Ŝ♯) and βMT L perform
well, while other methods do not. In terms of MSE (bottom left), the difference in
performance between the top competing methods is not statistically significant.
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We conclude from these results that when the ground truth for an invariant set is
known, our method combines this knowledge with the data from the test task and
outperforms using only the data from the task in most repetitions, also performing on
par with the state-of-the-art βMT L. Given the uncertainty in correctly estimating an
invariant set from data, especially when little data are available in each task, βCS(Ŝ♯)

performs slightly worse than the ground truth, but still outperforms βdom.

3.3.2.1 Subset Selection in MTL

In DG, among the accepted subsets, we select the set Ŝ which leads to the lowest validation
error on the sample from the test task. In MTL, however, a labelled sample from the test
task T is available at training time. Therefore, Algorithm 1 is slightly modified. First, we
get all the sets for which H0 is accepted. Then, we select the accepted set Ŝ which leads
to the smallest 5 fold cross validation error. For each subset, we compute the least squares
coefficients using the procedure described in Section 3.3, and measure the prediction error on
the held out validation set.

RULE for MTL: Define CVacc = {}. For each set S ⊆ Sacc, do CVacc.add(CVS), where
CVS is the 5-fold cross validation error over the labelled test data obtained by optimising (3.20)
using EM with subset S.

Return Ŝ = Sacc[arg min CVacc].

3.3.2.2 Informativeness of the Subset Features

We analyse the effect of the informativeness of the subset in the MTL performance. In
Figure 3.11 (right) we consider the same setting as in the bottom of Figure 3.10, and we
compute the performance against βdom as the size of the invariant set increases. We see that
as the size of the invariant set increases, the performance of βCS(cau♯) improves, since more
information is being transferred from the training tasks. When p = 6, traditional covariate
shift holds, and βCS(cau♯) performs on par with βCS .

3.3.2.3 Time Complexity

In the MTL experiment in Figure 3.10 (bottom), the EM algorithm runs for 0.00105 seconds
on average over 100 repetitions. As a reference, in MTL, linear regression averages at 0.000301
seconds and mSDA at 0.0547 seconds.

3.4 Learning Independent Causal Mechanisms

Sections 3.2 and 3.3 present methods for DG and MTL based on causal assumptions restricted
to linear models. In this section, we present a method for transfer learning in a non-linear
context inspired by ideas from causality. Let P be a probability distribution on Rd called
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Fig. 3.12 Problem setting. The distributions Q1, . . . , QD are obtained by applying transfor-
mations M1, . . . , MD to a canonical distribution P . Our goal is to learn approximate inverse
mappings E1, . . . , ED.

the canonical distribution. Moreover, we assume that there exist D measurable functions
M1, . . . , MD from Rd to Rd such that the training tasks are computed as P k = Mk(P ) for
k ∈ {1, . . . , D}.7

At training time, we observe a sample DP = {xi}ni=1
iid∼ P and a sample D = {x̃i}mi=1

iid∼ Q,
where Q is a mixture distribution of P 1, . . . , P D. The setup is summarised in Figure 3.12.
Our goal is to identify the D functions M1, . . . , MD and approximate their inverse mappings
in order to map these example back to their counterpart drawn from P . Given a training
task P k, we wish to learn a feature mapping hk : Rd → Rd such that if X ∼ P k, hk(X) is
approximately distributed according to P .

Motivating example. Throughout this chapter, we focus on a dataset constructed using
MNIST digits. The canonical distribution P is the distribution of standard MNIST digits.
The functions Mk correspond to transformations of the digits, such as different translations,
contrast inversion and noise addition. At training time, we receive a sample DP of standard
MNIST digits, and a sample D of digits transformed by functions Mk. Our goal is to
learn a mapping from the transformed digits back to their counterpart from the canonical
distribution: a translated digit is to be centred, a noisy digit should be de-noised, etc. This
must be accomplished without knowledge of the number or nature of the mechanisms Mk, in
a completely unsupervised fashion.

Learning to invert back such mechanisms makes machine learning systems previously
trained on P re-usable. Current machine learning paradigms would tend to re-train a system
on the transformed digits, instead of leveraging a model already trained to perform well on
the canonical MNIST. This is wasteful, as the trained system is not used, and labels are in
general expensive to obtain for the new digits. If we know the inverse transformations, we

7Each training tasks P k is defined as the push-forward measure of P induced by Mk.
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can simply map the transformed examples back to the canonical distribution, and use the
trained model without further modification.

3.4.1 Learning Inverse Feature Mappings with Competition

The training machine is composed of D′ parametric functions Ek : Rd → Rd with trainable
parameters θ1, . . . , θD′ . We refer to these functions as the experts, which should each
approximate the feature mapping hk mapping task k back to the canonical distribution. Note
that we do not require D′ = D, since the number of mechanisms is unknown. The core of
our approach relies on a competitive procedure between the experts. Given an input x̃, the
D′ experts produce a candidate version of the canonical counterpart of x̃ in P . An objective
function c : Rd → R is evaluated on the D′ candidates, where c is high in the support of the
canonical distribution P , see Section 3.4.1.1 below. Intuitively, c(Ek(x̃)) is high if Ek(x̃) is
likely to be drawn from P .

We compute the value of the objective function on the output of all experts ck = c
(
Ek(x̃)

)
,

and select the winning expert k∗ = arg maxk(ck). Based on the objective function c, expert
k∗ manages the best to map x̃ to an example representative of P . The parameters of the
winning expert θk∗ are updated as to maximise c(Ek∗(x̃)), while the parameters of all other
experts remain unchanged. This greedy procedure has the goal of encouraging specialisation,
as the winning expert gets better at mapping back examples modified by the mechanism
which transformed x̃.

This greedy procedure aims to optimise a proxy of the following loss function:

θ∗1, . . . , θ∗D′ = arg max
θ1,...,θD′

EX̃∼Q

(
max

k∈{1,...,D′}
c(Ek(X̃))

)
. (3.23)

3.4.1.1 Using a Discriminator to Compute the Objective Function c

A key component of adversarial training for generative models is a discriminator function. In
standard generative adversarial networks (Goodfellow et al., 2014), or GANs, the discriminator
D : Rd → [0, 1] receives as input an image and should output a high score for images drawn
from the true data distribution PD and a low score for data generated by a generator function
G, trained to “fool” the discriminator.

We use as an objective function c : Rd → R the score of a discriminator network. This
discriminator is trained to distinguish examples drawn from the true canonical distribution P

from examples generated by the experts. In this context, the experts may be seen as GANs
conditioned on an input example rather than a noise vector. The function c thus depends
on parameters θc which are jointly trained with the experts: the discriminator is trained
to distinguish the output of all the experts from canonical examples, and only the winning
expert k∗ is updated using the gradients provided by D. The discriminator is trained to
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Algorithm 3: Learning independent mechanisms using competition of experts and
adversarial training

Inputs: D = {xi}ni=1
iid∼ P ; D̃ = {x̃i}mi=1

iid∼ Q; discriminator network Dθc ; N ′: number
of experts; T : maximum number of iterations;

1 initialise experts as approximately identity:
2 {Ei ←TrainAsIdentityOn(D̃)}D′

j=1
3 for t← 1 to T do
4 Sample minibatches:
5 x, x̃←Sample(D), Sample(D̃)
6 Scores from D for all outputs from the experts:
7 {cj ← D(Ek(x̃))}D′

j=1

8 Update D: θt+1
D ←Adam

(
θt

D,∇ log D(x) +∇(1/N ′
∑N ′

j=1 log(1− cj))
)

9 Update experts: {θt+1
Ej
←Adam(θt

Ej
,∇maxj∈1,...,N ′ log(cj))}N ′

j=1
10 end

Fig. 3.13 The top row contains 16 random inputs to the networks drawn from the distribution
of shifted digits Q. The bottom row shows the outputs from the highest scoring expert for
the corresponding input. The system has been trained for 1000 iterations. The digits in the
second row look like standard MNIST digits. Moreover, the digit is indistinguishable from
the corresponding digit on the first line.

optimise the following loss function:

max
θc

(
EX∼P log(Dθc(X)) + 1

D′

D′∑
j=1

EX̃∼Q

(
log(1−Dθc(Ej(X̃)))

))
, (3.24)

where the first term encourages a high score for true canonical examples drawn from P and
the second encourages a small score for examples generated by the experts. The algorithm is
summarised in Algorithm 3.

3.4.2 Experimental Results

We perform experiments where the canonical distribution P is the distribution of MNIST
handwritten digits, and the distribution Q is composed of 10 distribution P 1, . . . , P 10 corre-
sponding to 4 pixel translations in eight directions (four diagonals, up, down, left and right)
as well as contrast inversion and addition of noise. In order to ensure no matching ground
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Fig. 3.14 Value of the discriminator score of the experts on data from all transformations.
Each line color/style represents one expert. For each of ten different mechanisms (top left to
bottom right), the experts are being fed transformed digits. Each expert learns to specialise
on a different mechanism, as shown by the score approaching 1. Each curve is smoothed with
a moving average of 50 iterations.

truth between examples in P and Q, we split MNIST in half and only transform those in the
first half, while the second half is used as canonical digits.

As a preprocessing, we scale the pixel intensities to lie in [0, 1] and zero-pad the digits
into a 32× 32 image prior to modifying the canonical digits by the respective mechanism.

A key element for the specialisation of the experts is their initialisation. As a first step,
we initialise the weights of the experts randomly, and then train them to approximate the
identity in Q as an additional pre-training step. In other words, given an input D ∼ Q

randomly drawn from the transformed digits, the experts are pre-trained to minimise the
squared reconstruction loss Lr = ∑m

i=1(Ek(x̃i)− x̃i)2. We found that this improved the speed
and stability of training for reason we enumerate below.

Each iteration of training comprises the following. A mini-batch of size 32 drawn from the
transformed digits Q is fed to all the experts in parallel. Each expert produces a candidate
canonical digit, and the discriminator outputs a score for each candidate. Only the expert
with the highest scoring candidate gets updated, and the discriminator additionally receives
a mini-batch of canonical digits to update its parameters. Each experiment is run over 2000
such iterations. The experiments are repeated 10 times with different random initialisations
for the weights. Details on the architecture of the experts and the discriminator are provided
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Fig. 3.15 Accuracy of a pretrained CNN MNIST classifier on transformed test digits D after
being mapped back from our method, as a function of the number of training iterations.
Our system manages to invert the transformations, with the classifier accuracy quickly
approaching the accuracy for digits from the canonical distribution. Note that 600 iterations
correspond to having seen about a third of the dataset. The dashed line indicates the test
accuracy of the sample DP from the canonical distribution of MNIST digits.

Fig. 3.16 Each column shows how each expert transforms the input presented on top. We
arrange the tasks such that the diagonal contains the highest scoring expert for the input
given at the top of the column. The experts have learned the inverse mechanisms, consistently
applying them to previously unseen symbols.
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in Appendix A. We assume that D′ = D, i.e., that the number of experts is the same as the
true number of mechanisms. The setting in which these differ is discussed in Parascandolo
et al. (2018). The experts correctly specialised on inverting exactly one mechanism each
in 7 out of the 10 runs; in the remaining 3 runs the results were only slightly suboptimal:
one expert specialised on two tasks, one expert did not specialise on any, and the remaining
experts still specialised on one task each, thus still covering all the existing tasks. Figure 3.13
shows a randomly selected batch of inputs and corresponding outputs from the model. Each
independent mechanism was inverted by a different expert. We draw three main conclusions
from these experiments.

Each expert inverts a unique mechanism. After an initial phase of competition be-
tween the experts, each expert converges to a high score for the discriminator D on exactly
one mechanism, see Figure 3.14. Each expert thus specialises in mapping digits modified by
one of the transformations exclusively back to canonical digits. We plot the scores assigned
by the discriminator for each expert on one of the random runs. Each expert is represented
with the same color and linestyle across all 10 tasks. Most experts specialise quickly around
100 iterations. Others, such as the expert depicted in thick green, try to learn two similar
tasks (down and down-left translations) simultaneously until iteration 750, but eventually
specialise.

A standard MNIST classifier can be used on the transformed digits. We consider
a classifier trained on standard MNIST and achieving around 99% test accuracy. As training
progresses, we feed-forward all test transformed digits through the experts, select the winning
expert and feed the corresponding generated digit to the MNIST classifier. The accuracy
of this classifier on the transformed digits increases during training to reach close to 99%
accuracy, see Figure 3.15, corresponding to an upper bound on achievable performance. At
the beginning of training, 40% accuracy is achieved since the digits are initialised as the
identity, and thus do contain information about the classes despite a strong distribution shift.

The experts learn mechanisms that generalise to other distributions. The inverse
transformations learned by the experts generalise to other datasets for which no data are
observed during training. Following training on MNIST as described above, we transform
symbols from Omniglot (Lake et al., 2015) rescaled to 46 × 46 pixels using the same 10
mechanisms. The experts manage to transform these symbols back to their canonical Omniglot
counterpart, see Figure 3.16. A priori, the experts have no reason to generalise. One possible
strategy for the experts is to map a transformed digit back to a canonical digit, regardless of
which digit this is. In other words, an input 9 with noise addition could be transformed into a
canonical 1. The expert could also predict the class of the digit, and output a canonical digit
of the same class, which is not the same as in the input. Both these things do not happen,
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Fig. 3.17 First row: Omniglot letters that were transformed by a combination of transforma-
tions (noise, contrast inversion and translation up left). Second to fourth row: application of
denoising, contrast inverting and right down translating experts. Last row: ground truth.
Although the experts were not trained on a combination of mechanisms nor on Omniglot
letters, they can be used to recover the original symbols.

and the experts even perform well out of sample. We attribute this success to several design
choices of the procedure. First, the experts are initialised as the identity, which encourages
not deviating strongly from the example. Possibly the easiest way to output a canonical digit
is simply to invert the transformation. Second, the experts are fully convolutional and are of
moderate size, meaning that complex arbitrary mappings are unlikely to be learned.

Further experiments provide insight about the generalisation of the learned mechanisms.
First, we show that the learned inverse mechanisms can be combined. A main drawback of the
current training procedure is that the digits are modified by only one transformation. Ideally,
a sequence of transformations could be applied, but the nature of the greedy procedure
renders this difficult during training. We test whether the trained experts could undo several
transformations applied at once. For simplicity, we assume we know which transformations
were used. In Figure 3.17, we test on Omniglot letters transformed with three consecutive
transformations (noise, up left translation, contrast inversion) by applying the corresponding
experts previously trained on MNIST, and correctly recover the original letters.

Second, we analyse the effect of initialising the experts randomly instead of pre-training
them to the identity. With random initialisation of the experts, several experts fail to
specialise. Out of 10 new runs with random initialisation, only one experiment had arguably
good results, with eight experts specializing on one task each, one on two tasks, and the
last on none. The performance was worse in the remaining runs. The problem was not
that the algorithm takes longer to converge following a random initialisation, as with an
additional experiment for 10, 000 iterations the results did not improve. Instead, the random
initialisation can lead to one expert winning examples from many tasks at the beginning of
training, in which case it is difficult for the others experts to compete for data points.
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Third, we notice that training a single network instead of a committee of experts makes
the problem more difficult to solve. Using identical training settings, we trained a single
network with 32, 64, and 128 filters per layer respectively. None of the runs learned the
inverse mechanisms.8 Note that a single network with 128 filters per layer has about twice
as many parameters overall as the committee of 10 experts with 32 filters per layer each.
We also tried i) random initialisation instead of the approximate identity, ii) reducing the
learning rate of the discriminator by a factor of 10, and iii) increasing the receptive field by
adding two pooling and two up-sampling layers, without any improvement. While we do not
exclude that careful hyper-parameter tuning may enable a single network to learn multiple
mechanisms, we believe a competitive procedure between experts is more appropriate to solve
this problem.

Finally, requiring 30, 000 examples from the canonical is too large for many applications.
We reduce the number of examples from the original distribution to 64, and find that all
experts still specialise and recover good approximations of the inverse mechanisms, using the
exact same training protocol. Although the output digits turn out less clean and sharp, we
still achieve 96% accuracy on the pre-trained MNIST classifier.

Limitations and further directions The current experimental setup leaves some ques-
tions unanswered for which more research is needed. First, the nature of the transformations
and the choice of model class for the experts leads to some inductive bias. Indeed, translation,
noise additions and contrast inversion are such that a fully convolutional network can invert
them without much difficulty. We did not include simple transformations such as rotations
since they cannot be inverted within this model class. Adding fully connected layers to the
experts increases their capacity and may lead to generalisation problems.

Second, the supports of the transformed digits are reasonably disjoint, which may lead to
an easier specialisation. Experiments on different data modalities, such as audio, or on image
transformations for which the supports strongly overlap, may lead to increased difficulty in
specialisation. Nonetheless, we find encouraging that the experts specialise in this initial
experiment, and particularly that they generalise to very different, unseen distributions.

3.5 Conclusion

This chapter revisited the problem of distribution shift by relating the different tasks via
causal assumptions. For domain generalisation, where no data from the test task are observed
during training, we showed that learning an invariant representation of the data leads to
optimality in an adversarial setting, and provided experimental support in simulated and real
data. The learned representations for domain generalisation lead to an invariant mapping,
yet the distribution of the features themselves can differ between tasks. This partially

8Specifically, the network performs well on the contrast inversion task, and poorly on all others.
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explains the failure of other methods in our experiments and motivates further research
in this direction: representations transfer via the mechanism mapping them to the target,
and not the distribution of the representations themselves. While these assumptions are
intended for domain generalisation, we provide an algorithm for combining the knowledge of
an invariant representation with data from the test task in multi-task learning. Experiments
on synthetic data show that especially on the small data regime, the combined representations
transfer well and outperform learning only on the test task.

Finally, we provide an algorithm for mapping examples modified by different mechanisms
back to their counterpart drawn from a canonical distribution under which a classifier has
been trained. We show that the learned inverse mappings generalise to completely different
datasets and can thus be re-used as independent modules in other classification tasks.





Chapter 4

Learning Representations for
Few-shot Learning

4.1 Introduction

This chapter focuses on learning representations which transfer information from a large
dataset to a dataset where few examples are available for each class. Performance in supervised
learning problems has increased significantly with the proliferation of deep learning methods,
with the downside that significant amounts of data are required for training. The question
on how to leverage deep learning systems when learning with very few examples per class
remains a highly debated research question.

Humans learn to recognise new objects from only a handful of labelled examples. This
success may be due to several reasons, the first being that the powerful visual features
produced by our brains are very efficient at characterising visual scenes and allow us to easily
discriminate between objects. However, it is also likely that information about previously
learned objects is also leveraged when learning new concepts: when discovering a new type or
aircraft, leveraging the notions of wings and rotors is likely to facilitate learning. Similarly, we
may need to observe significantly more instances of a completely unknown object, abundant
in features which are foreign to us.

The goal of this chapter is to exploit both these ideas to build machine learning systems
for few-shot learning. More precisely, in situations in which the new classes share similarities
with the classes available in an initial training phase, we propose to use the initial classes to
build a strong feature extractor using standard deep learning techniques. We then leverage
these feature representations of the inputs of the new classes and information on the initial
classes for few-shot learning.
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Fig. 4.1 Summary of the few-shot learning task. At training time, a large dataset D̃ of
labelled examples is available, as well as a smaller dataset D with only few examples per
class. The goal of few-shot learning is to predict on examples drawn from classes found in the
small dataset D. Here, we aim to perform well at predicting helicopters, having previously
seen only a handful of examples.

4.1.1 Few-shot Learning Setting

Few-shot learning happens in two steps: first, a sample D̃ = {(ũi, ỹi)}Ñi=1
iid∼ P (U, Ỹ ) from

the training task is available, where the features U are in Rd and the label Ỹ ∈ {1, . . . , C̃}.
In image classification, U is a vector of pixel-intensities and C̃ distinct classes are available
for training. Second, we receive a sample from the test task D = {(ui, yi)}Ni=1

iid∼ P T (U, Y ),
where the classes Y ∈ {C̃ + 1, C̃ + C} are different from the training classes. To avoid
confusion, we refer to the test task P T as the few-shot distribution. Moreover, we assume
that only k examples from each of the C classes are available in D, where usually k = 1 or
k = 5, which is very small by neural network standards. At test time, we receive test points
u∗ ∼ P T (U) and our model outputs a class for the test point u∗.

Given an image u, our goal is to leverage both D and D̃ to learn a feature representation

X = h(U)

of the data, as well as a mapping to class probabilities, that leads to high predictive accuracy
in data drawn from the test distribution P T . This problem setting is summarised in Figure 4.1.
This chapter proposes a probabilistic framework for few-shot learning. We follow the intuition
given in the introduction of the chapter and use the initial dataset D̃ with a two-fold objective:

i) Learn a good feature representation h for image classification using the training dataset
D̃.
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ii) Learn weights W̃ mapping the computed features x to class probabilities, and use them
to regularise the weight vectors for the new classes at few-shot time.

We achieve both objectives by training a deep convolutional network on D̃. During
few-shot learning, the top-level softmax weights corresponding to the initial C̃ classes are
used to regularise the weights for the new C classes, see Section 4.3.1. As a special case, we
show that our method is equivalent to training an L2 regularised logistic regression on top of
the features learned in i), where the regularisation constant is set automatically using the
original weights. The regularisation constant is cumbersome to estimate with methods such
as cross-validation given the small number of examples available in each class.

We perform experiments on CIFAR-100 and miniImageNet, where we achieve state-of-
the-art results by around 6% both in 1 and 5-shot settings, see Section 4.4. Moreover, we
show empirically that architectures achieving higher batch classification accuracy also achieve
higher few-shot classification, further motivating the use of the initial dataset to build a good
feature mapping h, and confirming empirically that the weights W in the new classes can
be regularised using the initial weight matrix W̃. Our experiments also look closely at the
problem of calibration, that is, matching the class-probabilities computed by the network
to the real uncertainty about the true label, a key component for the interpretability of the
probabilities given by the model. We show empirically that our framework achieves a good
trade-off between calibration and accuracy. A large portion of the community focuses on
meta-learning methods for few-shot learning, see Section 4.2. The high performance of our
few-shot learning approach puts into context the success of these methods in problems where
the features transfer well between the training task P and the few-shot distribution P T .

4.2 Methods for Few-shot Learning

Few-shot learning has received significant attention from the community in the last few years.
The success of deep learning has allowed us to perform very well in classification tasks when
large amounts of labelled data are available, yet learning from few examples remains an open
challenge. In this section, we present some of the methods recently introduced to address this
problem. A key difference in these approaches is how the dataset D̃ from the training task is
used during an initial phase: meta-learning methods rather simulate the few-shot task during
training, while deep probabilistic methods use it to build features and transfer information
to the parameters of the new classes, analogously to the method we propose in this chapter.

4.2.1 Meta-learning Methods

Most few-shot learning methods are trained following a meta-learning approach. In short,
meta-learning shifts the focus from trying to learn one task to learning to solve tasks, in order
to learn new tasks faster. Meta-learning been applied to several areas of machine learning,
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including hyper-parameter optimisation and reinforcement learning (Feurer et al., 2015; Finn
et al., 2017).

We refer to the first family of methods for few-shot learning as embedding methods. Given
a small dataset D with C new classes, these methods embed the training points into an
embedding space Z. To compute a label at test time, the embedding of a new data point u
is computed and the distance in some metric to the embedding of the training points is used
for prediction.

It is common for few-shot learning methods using deep learning to be trained in an
episodic fashion. In such cases, the large dataset D̃ is used to simulate the few-shot task
during training. During an episode e, Ce classes are randomly chosen from D̃, and k examples
from each class are randomly selected. The classes play during training the role of the small
dataset D. Some unseen points from the Ce chosen classes are also selected for testing. The
training points from the classes in the episode are embedded using the model, the accuracy
on the test points is computed, and the model parameters are updated to maximise the loss
against ground truth labels.

A first example of such embedding methods are Matching Networks (Vinyals et al., 2016).
Given a training sample from an episode {(ũi, ỹi)}Ki=1, the un-weighted probabilities of the
different classes for a new data point u are computed as

ŷ =
k∑

i=1
a(ũi, u)ỹi, (4.1)

where a : X × X → R is a kernel measuring the similarity between the new data point and
the test points. Note that the kernel a fully specifies the performance of the classifier, and its
role may be seen as i) embedding points in space Z and ii) comparing the distances in this
space. The final prediction is then a weighted average of the training labels. For simplicity,
we only present one choice kernel. Let c(x, y) = xty/(∥x∥∥y∥) be the cosine similarity of
vectors x and y. Let fθ : X → Z be an embedding function parametrised by a neural network
with parameters θ. Then Matching Networks use

a(ũi, u) = ec(fθ(ũi),fθ(u))∑k
j=1 ec(fθ(ũj),fθ(u))

as a kernel function. The specific form of the embedding function fθ depends on the
application, as it may be a CNN for an image classification problem and a recurrent neural
network for text classification.

Prototypical Networks (Snell et al., 2017) are a streamlined version of Matching Networks,
and also proceed in an episodic fashion. As opposed to Matching Networks, Prototypical
Networks compute a mean embedding of the training points in each episode. Given Ce

classes, let Sk the the set of training points ui with label k. Ce average embeddings, or
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prototypes, are computed as ck = 1
|Sk|

∑
i∈Sk

fθ(ui), where fθ is once again an embedding
function parametrised by a neural network with parameters θ. Let d : X × X be a distance
function. Given a new example u, Prototypical Networks compute the probability of class k

as
p(y = k |u) = e−d(fθ(u),ck)∑Ce

j=1 e−d(fθ(u),cj)
. (4.2)

This method is essentially assigning the new test point to the closest mean embedding in Z
in terms of the distance function d. During training, random episodes are drawn similarly to
Matching Networks, and the negative log probability in (4.2) is used as a loss function. The
parameters of the network are updated via stochastic gradient descent. Other embedding
methods include Siamese Networks (Koch et al., 2015), which we do not present in detail.

Recent efforts have improved the performance of Matching Networks and Prototypical
Networks using data hallucination (Hariharan and Girshick, 2017; Wang et al., 2018) by
training them jointly with a generative model of the data. These embedding methods learn
representations for few-shot learning, but do not directly leverage concept transfer. More
precisely, the nature of episodic training leads to embedding functions which are good at
spreading the examples from different classes in the embedding space: the furthest different
classes are embedded, the easiest and less ambiguous a new classification becomes. This
does not exploit the fact that training and test classes may share a large number of features,
which can be exploited for prediction. For instance, if many dog breeds are classes in an
original dataset, the shared features could be used for classifying a new dog class.

A second example of meta-learning for few-shot learning is amortised optimisation meth-
ods (Ravi and Larochelle, 2017). These methods also consider a set of episodes constructed
from the training task, or meta-tasks. Contrary to embedding methods, these methods
consider that a neural network fϕ performs classification for each episode. However, this
neural network is not trained via gradient descent, but the updates are dictated by a recur-
rent network Mθ. Given an episode e, a neural network with parameters ϕe is trained for
classification. After a mini-batch of examples has been seen, the loss L and gradient ∆L

are computed, and the updated parameters ϕe are computed as Mθ(L, ∆L). At the end of
the episode, θ is updated given the test accuracy of the trained network on a held-out test
set. A similar method, which can be applied to a wider range of machine learning tasks, is
Model-Agnostic Meta-learning (Finn et al., 2017).

Importantly, both embedding and amortised inference methods improve when the system
is trained for a specific few-shot task: to perform well in 5-shot learning, training is carried out
with episodes containing 5 examples in each class. The general statement appears to be that
training specifically for few-shot learning is essential for building features which generalise
well at few-shot testing time. The approach proposed in this chapter is more flexible; it is
not tailored for a specific number of examples and, thus, does not require retraining when
switching the number of few-shot examples. Moreover, Snell et al. (2017) find that using a
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larger number of few-shot classes for the training episodes (e.g., train with 20 few-shot classes
per episode when testing on only 5 new few-shot classes) can be beneficial, and they choose
this number by cross-validation on a validation-set. This is in alignment with our finding
that training with more data and more classes improves performance at few-shot time.

4.2.2 Deep Probabilistic Methods

Deep probabilistic methods include the framework introduced in this chapter. In the introduc-
tion, we motivate that our framework uses the weights of the neural network trained on the
initial dataset D̃ to transfer information to the new classes. More precisely, given the weights
of the last layer of the network for the initial classes W̃, we build a probabilistic model for
the new weights

p(W | W̃).

The intuition is that deep learning will learn powerful feature representations, whereas
probabilistic inference will transfer top-down conceptual information from old classes. Rep-
resentational learning is driven by the large number of training examples from the original
classes making it amenable to standard deep learning. In contrast, the transfer of conceptual
information to the new classes relies on a relatively small number of existing classes and
few-shot data points, which means probabilistic inference is appropriate.

The idea of treating the weights of a model as data and build a probabilistic model on top
has been applied in multi-task learning (Bakker and Heskes, 2003). The work most closely
related to our own is a method for training CNNs with highly imbalanced classes (Srivastava
and Salakhutdinov, 2013). Nonetheless, it shares similarities with our methods since they
model the last layer weights of a neural network as a mixture of Gaussians and regularise
learning the weights for the classes with few examples using Maximum a Posteriori (MAP)
inference.

Burgess et al. (2016) propose an elegant approach to few-shot learning that is an instance
of the framework described here: a Gaussian model is fit to the weights and inference is
carried out using MAP. We present a more general framework and carry out a more thorough
empirical comparison of probabilistic models and inference procedures. While not using a
probabilistic approach, Qiao et al. (2018) develop a method for few-shot learning that trains
a recognition model to amortise MAP inference for the softmax weights which can then be
used at few-shot learning time. While this method trains the mapping from activation to
weights jointly with the classifier, and thus does not learn from the weights per se, it does
exploit the structure in the weights for few-shot learning.
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Fig. 4.2 Left: Shared feature extractor Φφ and separate top linear layers W and W̃ with
corresponding softmax units on old and new classes. Right: Graphical model for probabilistic
few-shot learning.

4.3 Probabilistic Few-shot Learning

Our approach to few-shot learning aims to learn a feature representation X = h(U) = Φφ(U)
by training a classification model with parameters φ using the large dataset D̃. We transfer
information to the new C classes by combining these features, which remain fixed after the
initial batch classification phase, with a simple probabilistic model on the weights of the
top level layer of the network. Bakker and Heskes (2003) propose a general probabilistic
framework for multi-task learning in which the different tasks share the parameters up to
the last layer of the network (which is essentially computing a new feature representation of
the data), while the last layer weights are task-dependent. In the following, we propose a
probabilistic framework for few-shot learning in this vein. Our framework comprises four
phases that we refer to as 1) representational learning, 2) concept learning, 3) k-shot learning,
and 4) k-shot testing, see Figure 4.2 (right).

Motivation. Training a deep model on a large dataset D̃ provides two tools which can
be used for few-shot learning. First, the activations in the last hidden layer of the network
can be used as standard features for new problems. This is true for data points drawn from
the training distribution, and it remains unclear to which extend these features can be used
for labels which have not been observed during training. Nonetheless, one can conjecture
that if the new labels share features with some of the training classes, the computed features
can also be leveraged. When large shifts occur, such as observing an animal label when no
animals were observed during training, several essential features may not be exploited.

Second, a classification model uses these features to compute softmax probabilities over
the labels. Given the value of the features in the last hidden layer x for some example, the
un-normalised log-probability of belonging to class j is softmax(W̃t

jx), where W̃j ∈ Rp is a
weight vector for class j. This linear operation specifies how the different dimensions of the
features x are used for classification. The main motivation for our few-shot learning methods
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Fig. 4.3 Left: t-SNE embedding of the CIFAR-100 weights W̃ trained using a VGG style
architecture. The points are coloured according to their respective superclass. The colouring
by superclass makes the structure in the weights evident, as t-SNE overall recovers the
structure in the dataset. For instance, oak tree, palm tree, willow tree and pine tree form a
cluster on the bottom right. Right: t-SNE embedding of the miniImageNet weights trained
using a ResNet-34 architecture. Structure is still present and we observe meaningful patterns,
even though the classes in miniImageNet are more unique than in CIFAR-100. For instance,
goose, house finch, toucan, Arctic fox, green mamba and other animals are clustered on the
top, with birds close to each other. Examples of other small clusters include poncho and
miniskirt, or organ and oboe. For readability, not all class names are plotted.

is that these weight vectors contain information about the classes themselves which is useful
for classification of new classes. More precisely, two classes which are similar (e.g., fox and
dog) exploit similar features for prediction, and their weight vectors should be closer together
than for two classes with a smaller overlap (e.g., dog and table). Following this intuition, our
method uses the training weights W̃ ∈ RC̃×p as data, consisting on C̃ i.i.d. examples drawn
from a p dimensional distribution. Given a prior distribution P (W) on the weights, we use
the training weights W̃ to compute the posterior P (W | W̃), which we can use to regularise
the weight vectors for the few-shot classes.

We embed the weight vectors trained on CIFAR-100 and miniImageNet in two dimension
with t-SNE, see Figure 4.3. The structure in the weight vector is apparent, as weights for
similar classes are clustered together. This is particularly clear for CIFAR-100 (left), since
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the clustering closely follows the super-classes defined in the dataset. In the following section,
we formalize our approach to few-shot learning.

4.3.1 A Framework for Probabilistic Few-shot Learning

In this section, we present our approach for few-shot learning. In summary, the method
proceeds in two steps. First, a feature extractor is trained using a large dataset, as well as
weight vectors W̃ mapping the new obtained features to class probabilities. Following the
intuition that these weight vectors W̃ carry information about the different classes, we fit a
probabilistic model on these weights and use this model to estimate a posterior distribution for
the new weight vectors W. Then, inference at test time is done by averaging the predictions
over this posterior.

4.3.1.1 Learning Representations for Batch Classification

During the first phase, we use the large dataset D̃ to train a classification model using
standard deep learning optimisation methods. The goal of this phase is two-fold. First,
we learn a rich feature representation x = Φφ(u) from the original features. This new
representation x is mapped to a softmax layer computing class conditional probabilities.
More precisely, the feature representation x = Φφ(u) is mapped to two sets of softmax
output units corresponding to the C̃ classes in the large dataset D̃ and the C classes in
the small dataset D, respectively. These separate mappings are parametrised by weight
matrices W̃ ∈ RC̃×p for the old classes and W ∈ RC×p for the new classes, where p is the
size of the feature representation in the last hidden layer. The first softmax units compute
p(ỹn | x̃n, W̃) = softmax(W̃x̃n) and the second p(yn |xn, W) = softmax(Wxn), see Figure 4.2
(left). Each row contains the weights that are associated with the corresponding class. Once
the feature extractor has been trained, it is fixed for the remaining of the few-shot task. In
particular, the feature extractor is not updated given new classes from the few-shot dataset
D. The softmax weights of the few-shot classes W are not trained during this phase, as the
small number of examples is not fit for standard deep learning training.

4.3.1.2 Probabilistic Modelling

The next goal is to build a probabilistic method for few-shot prediction that transfers structure
from the trained softmax weights W̃ to the new few-shot softmax weights W and combines it
with the few-shot training examples. Thus, given a test image u∗ during few-shot testing
(phase 4), we compute its feature representation x∗ = Φ(u∗), and the prediction for the new
label y∗ is found by averaging the softmax outputs over the posterior distribution of the
softmax weights given the two datasets,

p(y∗ |x∗,D, D̃) =
∫

p(y∗ |x∗, W)p(W | D, D̃)dW. (4.3)
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Computing (4.3) requires two steps:

i) How do we compute the posterior of the new weights p(W | D, D̃) given the data?

ii) How do we compute the integral over this posterior? When (4.3) cannot be computed
in closed form, an appropriate approximate inference method must be chosen.

Let us first address i) and compute the posterior p(W | D, D̃). We consider a general class
of probabilistic models in which the two sets of softmax weights are generated from shared
hyper-parameters θ, so that p(W̃, W, θ) = p(θ)p(W̃|θ)p(W|θ) as indicated in the graphical
model in Figure 4.2 (right). In this way, the large dataset D̃ contains information about θ

that in turn constrains the new softmax weights W. The initial dataset is first used to form
the posterior distribution over the hyper-parameters p(θ | D̃). Given the few-shot dataset, we
combine the information about the new weights provided by D̃ with the information in the
few-shot dataset D to form the posterior distribution

p(W | D, D̃) ∝ p(W | D̃)
∏
n

p(yn |xn, W) where p(W | D̃) =
∫

p(W | θ)p(θ | D̃)dθ. (4.4)

To see this, notice that

p(W | D, D̃) ∝ p(W,D, D̃) = p(D̃)p(W | D̃)p(D | D̃, W).

The graphical model in Figure 4.2 (right) entails that D is conditionally independent from D̃
given W, such that

p(D | D̃, W) = p(D |W) =
∏
n

p(yn |xn, W).

We recover (4.4) by adding p(D̃) to the constant of proportionality.
In order to answer i), Equation (4.4) still requires us to compute p(W | D̃). We make the

simplifying assumption that there is very little uncertainty on the weight vectors W̃ trained
during phase 1, see Section 4.3.1.1, which is motivated by the large size of the training dataset
D̃. This assumption in term implies that all the information we need to model the weights
given the initial dataset is condensed in the training weights W̃, which we treat as observed
data, and the dataset D̃ can thus be otherwise discarded. This results in the approximation

p(W | D̃) ≈ p(W | W̃).

We refer to this step as concept learning (phase 2) and note that all the freedom in terms of
probabilistic modelling happens in the definition of p(W̃, W, θ). We discuss possible models
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for p(W̃, W, θ) in Section 4.3.2. Finally, these approximations lead to the following for (4.4):

p(W | D, D̃) ≈ p(W | D, W̃)

∝ p(W | W̃)
N∏

n=1
p(yn|xn, W).

(4.5)

Computing (4.5) corresponds to few-shot learning (phase 3), where we combine the
posterior given the training weights p(W | W̃) with the few-shot dataset D to combine a new
posterior over the weights.

Given the approximation for the posterior of the weights, we need to answer ii) in order
to perform inference at test time. The posterior distribution over the new softmax weights
p(W | D, W̃) ∝ p(W | W̃)∏N

n=1 p(yn|xn, W) is generally intractable, and approximate inference
methods must be used. This corresponds to few-shot testing (phase 4).

4.3.1.3 Approximate Inference Methods for the Approximate Posterior

We present some possible approximation methods for the approximate posterior in (4.5).
A first possibility is Maximum A Posteriori (MAP) inference

WMAP = arg max
W

p(W | D, W̃).

This optimisation problem can be solved using gradient based methods such as L-BFGS (Liu
and Nocedal, 1989), since densities with respect to W of p(W | D, W̃) can be computed in
closed form. In such case, the predictive integral in (4.3) collapses to one single point, and

p(y∗ |x∗,D, D̃) ≈ p(y∗ |x∗,D, W̃)
≈ p(y∗ |x∗, WMAP).

(4.6)

As an alternative, one may consider sampling methods. The downside of considering
the MAP estimate of W is that it disregards any notion of uncertainty on the weights. In
principle, the small amount of labelled data from the few-shot tasks should lead to high
uncertainty on the weights, which may be a downside for MAP approach. Sampling methods,
such as Hybrid Monte Carlo (Neal, 2011), or HMC, return a sample {wi}Ni=1 of N weight
vectors sampled from the posterior distribution p(W | D, W̃). Then, (4.3) is computed by
averaging over these samples:

p(y∗ |x∗,D, D̃) ≈ p(y∗ |x∗,D, W̃)

≈ 1
N

N∑
i=1

p(y∗ |x∗, wi).
(4.7)
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The four phases presented comprise the pipeline we propose for few-shot learning. The
approximations made are a necessary step for inference, and result naturally from writing
down the predictive distribution in (4.3). From a modelling perspective, the main degree of
freedom remaining is the choice for the probability distribution of the weights p(W). In the
following section, we discuss different models which could be used for this purpose.

4.3.2 Choosing a Model for the Weights

The probabilistic model over the weights is key: a good model will transfer useful knowledge
that improves performance. However, the usual trade-off between model complexity and
learnability is particularly egregious in our setting as the weights W̃ are few and high-
dimensional and the number of few-shot samples is small. To emphasise, each distinct
class corresponds to a single “data point”, and we only have C̃ many data points to fit the
probabilistic model; at the same time, the dimensionality of each weight vector is determined
by the size of the last hidden layer, which can be very large in practice. With an eye on
simplicity, we make two simplifying assumptions. First, treating the weights from the hidden
layer to the softmax outputs as a vector, we assume independence. Second, we assume the
distribution between the weights of old and new classes to be identical,

p(W̃, W, θ) = p(θ)
C̃∏

c′=1
p(w̃c′ |θ)

C∏
c=1

p(wc|θ)

where p(w̃c′ |θ) d= p(wc|θ).

(4.8)

Remark 18 (Assumption of Independence of the Weights) Assuming independence
between the weight vectors may seem like a strong assumption. In practice, however, the
dependency between the weight vectors is not strong. Intuitively, once the low level layers are
fixed, it is reasonable to expect that a good weight vector for a given class will be aligned with
the average hidden activations before the softmax layer for that class, i.e., units with high
average activations should be used for prediction. Preliminary experiments show that when
the softmax weights are retrained multiple times when one class is fixed and the other classes
are randomly chosen, the weight vector obtained for the fixed class is always very similar.
This confirms that the activations for a class are more important than which other classes
are present during the optimisation.

Approximate inference methods for the prior parameters. As a starting point, our
method considers a probabilistic prior for the weights p(W | θ). After observing weights W̃
for the C̃ training classes , we compute the posterior

p(W | W̃) =
∫

p(W | θ)p(θ | W̃)dθ. (4.9)
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This integral is often intractable, and in such cases approximate inference methods must be
used. We compare the following approximation methods.

Maximum likelihood estimation (MLE) finds the parameters θMLE which maximise the
likelihood of the training weights. Given the independence assumption, MLE solves the
following optimisation problem:

θMLE = arg max
θ

p(W̃ | θ) = arg max
θ

C̃∏
i=1

p(w̃i | θ). (4.10)

MLE ignores information about the prior distribution of the parameters θ. Maximum
a posteriori (MAP) estimation finds instead the parameters which maximise the posterior
given the data:

θMAP = arg max
θ

p(θ | W̃) = arg max
θ

p(W̃ | θ)p(θ)

= arg max
θ

p(θ)
C̃∏

i=1
p(w̃i | θ).

(4.11)

Both for MLE and MAP inference, the integral in (4.9) collapses to a single point.

Gaussian prior. Arguably the simplest model for the weights is a Gaussian model where
θ = (µ, Σ) are the mean vector and covariance matrix and p(w | θ) = N (w |µ, Σ). We
choose as conjugate hyper prior the Normal-inverse-Wishart distribution p(θ) = p(µ, Σ) =
NIW(µ, Σ |µ0, κ0, Λ0, ν0) = 1

Z |Σ|−(ν0+p)/2+1e−
1
2 tr(Λ0Σ−1)−κ0

2 (µ−µ0)tΣ−1(µ−µ0), where Z is a
normalising constant. The prior parameters are weakly data-dependent, see Murphy (2012,
Chapter 4). Alternatively, the prior parameters can be chosen by cross-validation on the
observed weights W̃, but we found the results to be robust to changes of the hyper prior
parameters. Moreover, for the covariance matrix Σ, we consider isotropic, diagonal or full
covariance models in our experiments.

For the Gaussian prior, following Murphy (2012, Chapter 4), we have

p(W | W̃) =
∫
N (W |µ, Σ)p(µ, Σ | W̃)dµdΣ, (4.12)
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where p(µ, Σ | W̃) also follows a normal-inverse-Wishart distributionNIW(µ, Σ |µ
Ñ

, κ
Ñ

, Λ
Ñ

, ν
Ñ

)
with parameters

µ
Ñ

= κ0

κ0 + Ñ
µ0 + Ñ

κ0 + Ñ
µW̃

κ
Ñ

= κ0 + Ñ

Λ
Ñ

= Λ0 + S + κ0Ñ

κ0 + µW̃

(
µW̃ − µ0

) (
µW̃ − µ0

)t

ν
Ñ

= ν0 + Ñ ,

and S is the sample covariance of W̃ and µW̃ its sample mean.
During concept learning (phase 2), we need to compute the integral in (4.12). A first

solution consists on computing the MAP parameters θMAP = (µMAP, ΣMAP). In this case,
the integral collapses and p(W | W̃) = N (W |µMAP, ΣMAP).

Alternatively, (4.12) can be computed in closed form, resulting in a multivariate Student
t-distribution

p(W | W̃) = tν
Ñ
−p+1

(
µ

Ñ
,

Λ
Ñ

(κ
Ñ

+ 1)
κ

Ñ
(ν

Ñ
− p + 1)

)
.

The single mode structure of a Gaussian distribution may be a limiting factor, since a
multi-modal structure is likely in practice. A first extension is to consider mixture models.

Mixture of Gaussians (GMM) prior. A Gaussian mixture model can potentially lever-
age cluster structure in the weights. For instance, the weight vectors of classes corresponding
to animals may be similar to each other, and quite different to the weight vectors for classes cor-
responding to furniture. The mixture model has parameters θ = ({Σi}Si=1, {µi}Si=1, {πi}Si=1),
where S is the number of mixture components, µi, Σi are the mean and covariance of the ith
Gaussian for i ∈ {1, . . . , S} and πi is the weight of the given mode, with ∑S

s=1 πs = 1. The
conditional density now reads

p(W | W̃) =
∫ ( S∑

s=1
πsN (W |µs, Σs)

)
p(θ | W̃)dθ, (4.13)

where ∑S
s=1 πs = 1.

The integral in (4.13) is not tractable and approximate inference methods must be used.
We fit the proportion parameters {πi}Si=1 in two different ways. If structure in the data is
known, one may use this structure to initialise the proportions. For instance, the classes in
CIFAR-100 belong to 20 superclasses, with 5 classes in each of the larger groups. A possible
solution is then to fit the means and covariances using MAP inference within each of the
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clusters analogously to the Gaussian prior mentioned in the previous paragraph. A second
approximation method fits the parameters of the Gaussians and the cluster allocation jointly.
This can be achieved via maximum likelihood using the Expectation Maximisation (EM)
algorithm (Dempster et al., 1977).

Note that, similarly to the Gaussian model, we consider isotropic, diagonal or full
covariance models for the covariance matrices.

Laplace prior. As a final model, we discuss the Laplace prior. As opposed to the Gaussian
models, the Laplace model encourages sparse weight vectors. This feature may be useful
for our framework, as different classes may selectively rely on some of the features, and
disregard others completely as they become irrelevant for classification. We thus fit a product
of independent Laplace distributions, each corresponding to one of the p dimensions of the
feature representation. Here, there parameters are the means and scales of the distributions,
such that θ = ({λi}Si=1, {µi}Si=1), and the distribution of the weights is

p(W̃ | {µj}, {λj}) =
p∏

j=1

1
2λj

exp

− C̃∑
i=1

|W̃ij − µj |
λj

 .

Maximum likelihood is used to estimate the parameters µj and λj , which lead to the
following values:

µMLE,j = mediani(W̃ij) λMLE,j = 1
N

∑
i

|W̃ij − µj |,

such that p(W | W̃) = ∏p
j

1
2λMLE,j

exp
(
−
∑C

i
|Wij−µMLE,j |

λMLE,j

)
.

For completeness, we also consider an isotropic Laplace model with mean µ and scale λ,

with density function p(W̃ |µ, λ) = 1
2λ exp

(
−
∑

ij
|W̃ij−µ|
λ

)
, where µMLE = median(W̃) and

λMLE = 1
Np

∑
ij |W̃ij − µ|.

Section 4.3.3 highlights the relation between a Gaussian prior on the weights and L2

regularised logistic regression. One can similarly show that the Laplace prior is related to L1

regularised logistic regression, which is well known for encouraging sparse weight vectors.

4.3.3 Relation to Logistic Regression

Standard logistic regression is closely related to our framework when choosing a Gaussian
prior for the weights. Given a data point with features x, logistic regression with weights
W computes predictive probabilities over the labels via the softmax likelihood p(y |x, W) =
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softmax(Wx). The optimal weight vector is then found via maximum likelihood:

Wlr = arg max
W

n∏
i=1

p(yi |xi, W). (4.14)

In practice, L2 regularisation with constant Creg is used to avoid over-fitting. In such
case, the solution to the optimisation problem corresponds to the MAP solution of a model
with isotropic Gaussian prior on the weights with zero mean:

Wlr = arg max
W

N (W | 0,
1

2Creg
I)

n∏
i=1

p(yi |xi, W). (4.15)

This method is analogous to Equation (4.5), where p(W | W̃MAP) = N (W | 0, 1
2Creg

I). This
posterior on the weights is in turn related to the MAP solution of the Gaussian model
presented in Section 4.3.2. However, the probabilistic framework has several advantages.
First, the modelling assumptions and approximations are made explicit, and the relation with
the original dataset is clear. Second, logistic regression assumes a zero mean prior, while our
method can incorporate non-zero means µMAP. Finally, the probabilistic framework provides
a principled method for choosing the regularisation constant Creg using the trained weights
W̃: Creg = 2σ2

W̃
, where σ2

W̃
is the empirical variance of the weights W̃. Indeed, a standard

technique to estimate the regularisation constant would be cross-validation with the small
dataset D. Nonetheless, few examples are available per task and cross-validation suffers, and
cannot be used at all in one-shot learning.

While we do not write it explicitly, replacing the Gaussian by a Laplace prior with MAP
parameters θMAP is closely related to logistic regression with L1 regularisation. This can be
a desirable modelling assumption when the weight vectors are expected to be sparse.

4.3.4 Calibration of a Classifier

Calibration is an important property of a classifier which is often overlooked. Most classifiers
output a probability distribution over the output classes, and predict the class which maximises
this probability. Confidence calibration looks at whether these probabilities correspond to
the probability that the model is correct. Given a classifier M , consider it is possible to
sample data points x from the data distribution for which M predicts p(y = k |x) = 0.9 for
one of the output classes k. M is calibrated if M correctly classifies these points exactly 90%
of the times in the limit of infinite data. This mental experiment justifies the importance of
calibration in many sensitive applications. If an autonomous vehicle outputs a probability
of 1% of a pedestrian being in front of the car at a given time, we wish to interpret this
as the actual probability of the pedestrian being there. In an un-calibrated classifier, this
probability could in reality be significantly higher, which could have dramatic consequences.
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Let M be a classifier for C distinct classes, denote by M(x) ∈ RC the probabilities
assigned by the model to the C different classes, such that ∑C

j=1 M(x)j = 1. Moreover,
denote by Ŷ (x) = arg maxj M(xj) the class predicted by the model and Y the corresponding
true label. Then, a classifier is perfectly calibrated if

P (Ŷ (X) = Y |M(X) = p) = p ∀p ∈ [0, 1].

A calibration curve visualises the proportion of examples correctly classified as a function
of their predicted probability; a perfectly calibrated classifier should result in a diagonal line.
Similarly to Guo et al. (2017), we consider the log-likelihood of the few-shot examples and
the Expected Calibration Error (ECE) as scalar measures of calibration. In the population
case, we can measure the gap between confidence and accuracy as∫

p∈[0,1]
EX,Y

[
|P (Ŷ (X) = Y |M(X) = p)− p|

]
, (4.16)

which equals zero for a perfectly calibrated classifier.
Let us derive an estimator for (4.16) given a dataset D = {(xi, yi)}ni=1. We split the

interval [0, 1] in M equally sized bins, and denote by Bm the set of indexes of the data points
in D for which the predicted probability M(x) of the output class Ŷ falls in the interval
]m−1

M , m
M ]. The accuracy of the classifier on Bm is acc(Bm) = 1

|Bm|
∑

i∈Bm
1(M(xi) = yi).

Similarly, the average confidence of M for examples in Bm is conf(Bm) = 1
|Bm|

∑
i∈Bm

M(xi).
The following is an estimator of (4.16)

ECE =
M∑

m=1

|Bm|
n
|acc(Bm)− conf(Bm)|. (4.17)

4.4 Experiments on Image Classification Tasks

We perform experiments on two standard datasets: CIFAR-100 (Krizhevsky and Hinton,
2009) and miniImageNet. In phases 2 and 3 of our few-shot pipeline, different approximate
inference methods and models can be used. The goal of the experiments on CIFAR-100 is
to exhaustively compare these methods and analyse the implications of the approximation
choice and the modelling assumptions. On miniImageNet, we compare our approach against
state-of-the-art methods and show that we achieve the best performance by a wide margin.

4.4.1 Model Assessment on CIFAR-100

The goal of this section is to provide an extensive model comparison of our approach on
CIFAR-100. Phase 2 (concept learning) of our probabilistic framework requires both the
choice of a probabilistic model for the weights p(W | θ) and an approximate inference method
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Method name Phase 2: Concept learning
Prior distribution Inference

Gauss (iso) Gaussian isotropic covariance MLE
Gauss (MAP prior) Gaussian isotropic covariance MAP
Gauss (integr. prior) Gaussian full covariance Integrated
GMM (supercl.) GMM on superclasses iso. cov. MAP
GMM (3, iso) GMM on 3 clusters iso. cov. MLE
GMM (3, diag) GMM on 3 clusters diagonal cov. MLE
GMM (10, iso) GMM on 10 clusters iso. cov. MLE
Laplace (diag) Laplace diagonal covariance MLE

Table 4.1 Description of the inference for the parameters of the prior in phase 2 (concept
learning) for the models in Figure 4.4. This specifies the inference procedure for θ in p(w | θ)
after observing the training weights W̃.

for computing the p(W | W̃), see Sections 4.3.1.3 and 4.3.2. The different models considered
and corresponding inference methods can be found in Table 4.1.

During phase 4 (few-shot testing), computing the predictive distribution (4.3) is often
intractable. We perform approximate inference via MAP and Hybrid Monte Carlo (HMC)
sampling using NUTS (Hoffman and Gelman, 2014), see Table 4.2.

We report the log-likelihood of the weights under different models, as well as accuracy,
log-likelihood and calibration in a few-shot learning task. Tables 4.1 and 4.2 describe the
methods analysed for respectively phase 2 (concept learning) and phase 3 (few-shot learning)
of our few-shot pipeline described in Section 4.3.1.

Method name Phase 3: few-shot learning
Prior distribution Inference

Gauss (iso) MAP Gaussian MAP
Gauss (MAP prior) MAP Gaussian MAP
Gauss (MAP prior) HMC Gaussian HMC
Gauss (integr. prior) MAP Gaussian MAP
Gauss (integr. prior) HMC Gaussian HMC
GMM (supercl.) MAP GMM on superclasses MAP
GMM (3, iso) MAP GMM on 3 isotropic comp. MAP
Laplace (diag) HMC Laplace (diagonal) HMC
Laplace (diag) MAP Laplace (diagonal) MAP

Table 4.2 Methods and inference procedure during phase 3 (few-shot learning) for the models
used in Figure 4.4. This specifies the inference procedure used when computing p(W | D, W̃)
for the specified prior distribution.
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Model Optimised value of mean negative log probability

Gauss (iso) −175.9± 0.3
Gauss (MAP prior) −196.1± 0.5

Gauss (integr. prior) −200.6± 0.4
GMM 3-means (iso) −179.0± 0.3

GMM 3-means (diag) −181.2± 0.3
GMM 10-means iso −181.6± 0.4

GMM 10-means (diag) −181.6± 0.4
Laplace (iso) −173.8± 0.4

Laplace (diag)

0−100−200

−176.6± 0.5

Table 4.3 Held-out log probabilities on random 70/10-splits of the training weights for the
different models on CIFAR-100 (lower is better). Values are averaged over 50 splits.

Analysis of the models on held-out training weights. First, we analyse how well
the chosen prior models for the new softmax weights fits the C̃ training weights W̃. Given
training weights W̃ and new weights W ∈ RC×p, the inference methods discussed (MLE,
MAP and integration) allow us to compute the log likelihood of the new weights given the
training weights:

log
(
p(W | W̃)

)
=

C∑
i=1

log
(
p(wi | W̃)

)
.

We randomly exclude 10 of the training weights W̃ and evaluate their held-out negative
log likelihood given the remaining C̃ − 10 weights. This process is repeated over 50 random
splits and the results of the best optimised values with respect to the hyper-parameters of the
prior are shown in Table 4.3. We find that all models behave similarly but that multivariate
Gaussian models generally outperform other models. We attribute the good performance
of the simpler models to the small number of data points (C − 10 = 70 training weights)
and the high dimensionality of the space, which entail that fitting even simple models is
a difficult task. While more complex models may be better in the population setting, the
low data regime makes more complicated models difficult to fit, leading to no improvement
over the simpler models. Note that this approach constitutes a principled way to set the
hyper-parameters of the prior for the weights.

Performance in the few-shot task. We compute the accuracy of our approach on a
5-way classification task for k ∈ {1, 5, 10} examples per class, and average the results over 20
random splits of the 5 few-shot classes. Moreover, 10 repetitions are computed for each split
with different examples seen during training.
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Fig. 4.4 Results on CIFAR-100 for a VGG style architecture. We report accuracy, log-
likelihood and calibration for the methods and inference procedures presented in Table 4.2.
With the exception of GMM (10, iso) and Laplace, all methods are similar terms of accuracy
and log-likelihood. Gauss (integr. prior) HMC and Gauss (MAP) HMC are slightly better
calibrated than our proposed Gauss (MAP) iso, but require significantly more computation
for the sampling procedure.

Among the models considered, no statistically significant difference in accuracy is observed,
with the exception of Laplace MAP and GMM (iso), which consistently underperform. These
findings are consistent in terms of test log-likelihoods, see the first and second plots in
Figure 4.4.

Finally, we analyse the calibration of our methods, see Section 4.3.4 for further details.
Our methods are generally well calibrated, with Gaussian models generally better than
Laplace models. Moreover, all methods (with the exception of Laplace and GMM (10, iso))
have low ECE (lower is better) and high accuracy, see the third and fourth plots of Figure 4.4.
While Gauss (integr. prior) HMC and Gauss (MAP) HMC result in higher calibration
that Gauss (MAP), we believe the gain in calibration is not worth the significant increase
in computational resources needed for the sampling procedure. Interestingly, both GMM
approaches are not able to outperform the other, simpler models. This is in line with the
previous observation that the simpler models are better able to explain the weights. Again,
we attribute this inability of mixture models to use their larger capacity to the small number
of data points and the high-dimensionality of weight-space. These observations suggest
that the use of mixture models in this type of few-shot learning framework is not beneficial
and is in contrast to the approach of Srivastava and Salakhutdinov (2013), who employ a
tree-structured mixture model. The authors compare a model in which the assignments to
the superclasses in the tree are optimised over against a model with a naive initialisation of
the superclass assignments, and show that the first outperforms the second. However, they do
not compare against a simpler baseline such as a single Gaussian model. These conclusions
may be different when the number of training classes is larger than their dimensionality.
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Overall, we observe that there is no significant benefit of more complex methods over the
simple isotropic Gaussian, either in terms of accuracy, log-likelihood or calibration.

Remark 19 (Recommendation for Practitioners) The experiments carried out in CIFAR-
100 suggest that using a simple Gaussian model for the weights, as well as MAP inference,
performs well overall in terms of calibration and accuracy for few-shot learning. We therefore
recommend that these simple models and inference schemes be used for few-shot learning
to estimate all free parameters. As previously mentioned, this is true for similar scenarios
in which i) the features from the training tasks transfer well to the new few-shot classes
and ii) few training classes are available, thus providing few data points for the probabilistic
modelling. Settings in which these assumptions are violated, e.g., adversarial classes during
few-shot learning or large-scale classification problems, are left for further research.

4.4.2 Experiments on miniImageNet

miniImageNet has become a standard testbed for few-shot learning and is derived from
the ImageNet ILSVRC12 dataset (Russakovsky et al., 2015) by extracting 100 out of the
1000 classes. Each class contains 600 images downscaled to 84× 84 pixels. We use the 100
classes (64 train, 16 validation, 20 test) proposed by Ravi and Larochelle (2017). As our
approach does not require a validation set, we use both the training and validation data for
the representational learning. We compare our approach against the following baselines and
competing methods.

Baselines and competing methods. We compare against several baselines as well as
recent state-of-the-art methods mentioned in Section 4.2. The baselines are computed on the
features x = Φϕ(u) from the last hidden layer of the trained CNN: (i) Nearest Neighbours
with cosine distance and (ii) regularised logistic regression with regularisation constant set
by cross-validation. We also compare against three recent few-shot methods: (i) Matching
Networks1 (Vinyals et al., 2016), (ii) Prototypical Networks, with numbers reported from Snell
et al. (2017), (iii) Meta-learner LSTM, with numbers reported from Ravi and Larochelle
(2017) and iv) Model-agnostic Meta-learning, with numbers reported from Finn et al. (2017).

Our method. Experiments on CIFAR-100 in Section 4.4.1 show that the probabilistic
models we consider are comparable in terms of few-shot accuracy and performance. Therefore,
we use arguably the simplest model, a Gaussian distribution with isotropic covariance
p(w |µ, σ2I) = N (w |µ, σ2I). We estimate the parameters θMAP = (µMAP, σMAP) using
MAP inference, see Section 4.3.2, and approximate the predictive distribution in (4.3) also
via MAP inference, see Section 4.3.1.3. We note that, for the presented Gaussian model,

1as reimplemented and optimised by https://github.com/AntreasAntoniou/MatchingNetworks
to produce results that are superior to those originally published.

https://github.com/AntreasAntoniou/MatchingNetworks
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the transfer is limited to a small number of parameters but already has a beneficial effect.
The framework we present is general and also allows for more elaborate probabilistic models,
which lead to more ambitious concept transfer, such as the Gaussian latent feature model
proposed in Griffiths and Ghahramani (2011, Section 5.1).

Testing protocol. We evaluate the methods on 600 random few-shot tasks by randomly
sampling 5 classes from the 20 test classes and perform 5-way few-shot learning. Following
Snell et al. (2017), we use 15 randomly selected images per class for few-shot testing to
compute accuracies and calibration.

Representational learning. We employ standard CNNs that are inspired by ResNet-34
(He et al., 2016) and VGG (Simonyan and Zisserman, 2014) for the representational learning
on the C̃ base classes, see the description of phase 1 in Section 4.3.1.

These trained networks provide both the weight vectors for the original classes W̃ and
the fixed feature representation of the input data Φφ that can be exploited for few-shot
learning and testing. We employed standard data augmentation from ImageNet for the
representational learning but highlight that no data augmentation was used during the few-
shot training and testing. For details on the architecture, training, and data augmentation see
Appendix B. In addition to the full Gaussian model, we also consider the case of regularised
logistic regression with regularisation constant determined by the variance of the weights,
C = 2σ2

W̃
, as motivated by our probabilistic framework, see Section 4.3.3. This case is

commonly ignored in other works on few-shot learning and constitutes a proposed method
rather than a baseline.

4.4.2.1 Analysis of the results

The experts on miniImageNet lead us to the following conclusions.

Overall few-shot performance. We report performance on the miniImageNet dataset
in Table 4.4 and Figures 4.5 and 4.6. The best method uses as feature extractor a modified
ResNet-34 with a last hidden layer of size p = 256, trained with all 600 examples per training
class. As previously stated, we model the posterior p(W | W̃) as an isotropic Gaussian for
concept transfer from the original to the new classes. Despite its simplicity, our method
achieves state-of-the-art and beats Prototypical Networks by a wide margin of about 6%.
The baseline methods built on top of the new features x = Φφ(u) are also state-of-the-art
compared to Prototypical Networks and both logistic regressions show comparable accuracy
to our methods except for on 1-shot learning. In terms of log-likelihoods, Log Reg (C = 2σ2

W̃
)

fares slightly better, whereas Log Reg (cv) is much worse.
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ResNet-34 trained on 500 images per class
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VGG-style trained on 500 images per class
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Fig. 4.5 Results for the miniImageNet dataset using different network architectures and
representational training. Top: a ResNet-34 trained with all 600 examples per class; Middle:
a ResNet-34 trained with 500 images per class; Bottom: a VGG style network trained with
500 images per class. We highlight that for all three architectures the order of the different
methods as well as the main messages are the same. However, the general performance
in terms of accuracy and calibration differ between the architectures. The more complex
architecture trained on most images performs best in terms of accuracy, indicating that it
learns better features for few-shot learning. Both ResNets behave very similarly on calibration
whereas the VGG-style network performs better (lower ECE and higher log likelihood as well
as more diagonal calibration curve). This is in line with observations by Guo et al. (2017)
that calibration of deep architectures gets worse as depth and complexity increase.
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Method 1-shot 5-shot 10-shot

ResNet-34 + Isotropic Gaussian (ours) 56.3± 0.4% 73.9± 0.3% 78.5± 0.3%
Matching Networks (reimplemented, 1-shot) 46.8 ± 0.5% - -
Matching Networks (reimplemented, 5-shot) - 62.7 ± 0.5% -
Meta-Learner LSTM (Ravi and Larochelle, 2017) 43.4 ± 0.8% 60.6 ± 0.7% -
Prototypical Nets (1-shot) (Snell et al., 2017) 49.4 ± 0.8% 65.4 ± 0.7% -
Prototypical Nets (5-shot) (Snell et al., 2017) 45.1 ± 0.8% 68.2 ± 0.7% -
Model-agnostic Meta-learning (Finn et al., 2017) 48.7 ± 1.84% 63.11 ± 0.7% -

Table 4.4 Accuracy on 5-way classification on miniImageNet. Our best method, an isotropic
Gaussian model using ResNet-34 features consistently outperforms all competing methods by
a wide margin.
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5-shot

0.65 0.70 0.75
Accuracy

10-shot
Gauss (iso)
Log Reg (C = 2σ 2

W )

Log Reg (cross-val)
Nearest Neighbour

Fig. 4.6 Comparison of different network architectures and training set sizes on the few-shot
learning task: VGG style network (trained on 500 images per class) and ResNet-34 style
network (trained on 500 and 600 images per class, respectively). Both, deeper networks
and larger number of training images, give rise to features that transfer better to few-shot
learning.

Deeper features lead to better few-shot learning. We investigate the influence of
different feature extractors of increasing complexity on performance in Figures 4.5 and 4.6: i)
a VGG style network (500 train images per class), ii) a ResNet-34 (500 examples per class),
and iii) a ResNet-34 (all 600 examples per class). We find that the complexity of the feature
extractor as well as training set size consistently correlate with the accuracy at few-shot time.
For instance, on 5-shot, Gauss (iso) achieves 65% accuracy with a VGG network and 74%
with a ResNet trained with all available training data, a significant increase of almost 10%.
Moreover, Gauss (iso) outperforms Log Reg (C = 2σ2

W̃
) on 1-shot learning for all feature

extractors, and performs similarly on 5- and 10-shot. We attribute the difference to the
former’s ability to also model the mean of the Gaussian, whereas logistic regression assumes
a zero mean.

Importantly, this result implies that training specifically for few-shot learning is not
necessary for achieving high generalisation performance. On the contrary, training a powerful
deep feature extractor on batch classification using all of the available training data, then
building a simple probabilistic model using the learned features and weights achieves state-
of-the-art. Recent models that use episodic training cannot leverage such deep feature
extractors as for them the depth of the model is limited by the nature of training itself. We
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ran additional experiments with Matching Networks on miniImageNet in which we added
one or two additional convolutional layers to the architecture from the original paper. The
resulting test accuracy remained unchanged.

The reference baseline in the few-shot learning literature is nearest neighbours, which
performs on par with Gauss (iso) on 1-shot learning but is outperformed by all methods on 5-
and 10-shot. This is evidence that building a simple classifier on top of the learned features
works significantly better for few-shot learning than nearest neighbours.

Calibration. Following Guo et al. (2017), we consider the log likelihood on the few-shot
test examples ECE as summary measures of calibration. Details on calibration and an
introduction to the ECE can be found in Section 4.3.4. We find that Log Reg (C = 2σ2

W̃
)

and Gauss (iso) provide better accuracy and calibration than Log Reg (cross-validation),
see Figure 4.5. The difference in calibration quality for different regularisations of logistic
regression highlights the importance of choosing the right constant.

Choice of the regularisation constant for logistic regression. The results so far
suggest that training a simple linear model such as regularised logistic regression might be
sufficient to perform well in few-shot learning. However, while the accuracy at few-shot
time does not vary dramatically as the regularisation constant changes, the calibration
does, and jointly maximising both quantities is not possible. Indeed, the first two plots of
Figure 4.7 show that accuracy and log-likelihood are maximised for regularisation constants
which are orders of magnitude apart. The standard method to tune this constant is cross-
validation, which is not applicable in the 1-shot setting, and suffers from lack of data in 5 and
10-shot. Contrary, our probabilistic framework provides a principled way of selecting this
regularisation parameter by transfer from the training weights: Log Reg (C = 2σ2

W̃
) strikes

a good balance between accuracy and log-likelihood. The third plot in Figure 4.7 reports
log-likelihood as a function of accuracy and provides further visualisation of the achieved
trade-off between accuracy and calibration for Log Reg (C = 2σ2

W̃
), as well as the failure of

Log Reg (cross-validation) to achieve a good compromise in 5 and 10-shot.

Evaluation in an online setting. We also briefly consider the online learning setting,
for which catastrophic forgetting is a well known problem (French, 1999): We jointly test
on the 80 old and the 5 new classes. A Bayesian framework naturally extends to this online
case, as a Bayesian posterior distribution can always be treated as a new prior to incorporate
newly arriving data. During few-shot learning and testing we employ a softmax likelihood,
which includes both the new and the old weights, resulting in a total of 85 weight vectors;
note that we only update the weights for the new classes. We use the ResNet-34 trained on
500 images per class to retain 100 test images on the old classes for testing.
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Fig. 4.7 Choice of regularisation constant for logistic regression on few-shot learning. Note
that all three rows use the same raw data that are only visualised differently. Top: detailed
plot of ECE vs. accuracy. Bottom: detailed plot of log likelihood vs. accuracy. Results for
Creg = 2σ2

W̃
are drawn as black triangles. Dashed lines correspond to logistic regression with

cross-validated (changing) regularisation constant. Colour brightness of the markers ranges
from dark (C = 10−5) to bright (C = 10). In addition to Figure 4.7 we also provide results
for calibration in terms of ECE (lower is better), which are consistent with log likelihoods
(higher is better): The Bayesian inspired choice of the regularisation parameter strikes a
good balance between accuracy and calibration and consistently outperforms cross-validated
choice of the parameter.
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Fig. 4.8 Online learning with ResNet-34 features. Gauss (iso) and Log Reg (2σ2
W̃

) strike a
good trade-off between learning on new classes and forgetting of old classes. Unregularised
Log Reg (MLE) and Log Reg (2σ2

W̃
, only new), which has not been trained in the presence of

the old weights, either completely forget the old classes or do not learn anything, respectively.
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While the few-shot weights were modelled probabilistically, we fix W̃ for the old weights.
Accuracies are reported in Figure 4.8 for i) all the 85 classes, ii) the old 80 classes only, and iii)
the new 5 classes only. For 5 and 10-shot, Gauss (iso) and Log Reg (2σ2

W̃
) only lose a couple

of percent on the accuracy of the old classes, and perform well on the new classes, striking a
good trade-off between forgetting and learning at few-shot time. For unregularised (MLE)
logistic regression, the new weights completely dominate the old ones, highlighting that the
right regularisation is important. Yet, cross-validation in this setting is often very challenging.
When training Logistic Regression without including the old weights (“only new”), the new
weights are dominated by the old ones and fail to learn the new classes, making training in
the presence of the old weights an essential component for online learning. Our probabilistic
framework automatically enforces treatment of the old weights in the likelihood as we also
model them in the prior in this case.

4.5 Conclusion

This chapter introduced a framework for probabilistic few-shot learning. Fundamentally, it
uses an initial large dataset to learn feature representations of the data which achieve good
batch classification accuracy using standard deep learning techniques. The top-level weights
of a neural network for the new, few-shot classes are regularised probabilistically using the
network weights corresponding to the classes in the initial dataset. The main contribution of
this chapter is to show empirically that features which achieve higher classification accuracy
on the initial dataset also perform better on the few-shot learning classes. The conclusion
may differ if the few-shot classes are very different from the original classes, since the features
would not transfer well, but this setting is left for further research. Our findings send an
important message to practitioners who need to train models for few-shot learning, as it
implies that most efforts should be made in building strong features using the initial classes.





Chapter 5

Learning Representations
Preserving Causal Footprints

Observational causal discovery methods for two variables, introduced in Chapter 2, search for
causal footprints in a sample {(xi, yi)} iid∼ P (X, Y ) in order to decide between X → Y and
Y → X. In some situations, however, we are interested in discovering the causal direction
between entities for which a sample is unavailable, or a joint distribution is even ill-defined.
This is the case, for instance, if we want to distinguish an original painting x from its
counterfeit y, or an original document from its translated version. From the perspective of
Structural Equation Models (SEMs) presented in 2.1.2, the counterfeit y is computed by
applying some noisy transformation f to the original x, and this assignment is asymmetric,
as differences in the original translate to a different counterfeit, but not the converse. The
machinery of observational discovery can nonetheless not be applied, as causal discovery
methods require a large sample from which causal footprints can be detected.

In this chapter, we propose to learn representations of the static entities x and y which
preserve their implicit causal footprint. To accomplish this, we introduce the notion of proxy
variable. A proxy variable W provides a source of randomness from which we can build two
projections of x and y

A = π(x, W ) B = π(y, W )

using a projection function π. The two random variables A and B are representations of x

and y from which we can obtain a sample {(ai, bi)}ni=1
iid∼ P (A, B) via sampling the proxy

variable W . If the new features A and B preserve the same causal direction as x and y,
standard causal discovery methods can be applied to these new variables to infer the direction
between the static entities themselves. Section 5.1 introduces more formally the notion of
proxy variable, and provides a general template for constructing the induced random features
A and B. Relating back to the example of the painting x and its counterfeit y, the idea
of the proxy framework is to sample several (ai, bi) pairs from these images using a proxy



102 Learning Representations Preserving Causal Footprints

x y

W

A B

ππ

Fig. 5.1 The static entities (x, y) share a causal relation (thick blue arrow). A proxy variable
W , and a proxy projection π produce the random entities (A, B), who share the causal
footprint of (x, y) (dotted blue arrow). Note that no causal relation between the proxy W
and the static entities x and y is assumed.

variables, and then perform causal discovery tests on these newly computed pairs. This
specific example is discussed in more detail in Section 5.2.

Observational causal discovery finds causal footprints in a sample from the joint dis-
tribution of variables of interest, which is ill-defined in the case of static variables as we
define them. Nonetheless, the causal relation x→ y could in principle result in a measurable
causal footprint, present at a different level of abstraction. The goal of the introduced proxy
variables and projections is to provide a new view point on the objects x and y and to render
this footprint measurable. The framework we propose is very broad and we judge its success
by the ability of standard causal discovery methods to unveil the aforementioned causal
footprint. Empirically, we show promising results on two areas of machine learning regarding
the ability of the learned features to preserve the causal footprint of the original entities.

First, consider distinguishing cause from effect when given pairs of images x and y, where
y is a transformed version of x, see Section 5.2. In particular, we show that the proposed
method recovers the causal direction in over 70% of the pairs where y has been modified by a
style transfer algorithm. Moreover, given shuffled frames from a video, we manage to re-order
the video in time. A second application learns representations in language, see Section 5.3.
There, we are given a pair of concepts such as “virus” and “death”. We construct a proxy
variable using a large text corpus, and show that the resulting representations allow us to
recover 75% of the pairs in a dataset of causal word pairs created and scored by humans.
Theoretical guarantees for the identifiability of the causal footprint between static entities x

and y is left for future work.

5.1 The Concepts: Static Entities, Proxy Variables and Proxy
Projections

In the following, we consider two static entities x, y in some space S that satisfy the relation
“x causes y”. Formally, this causal relation manifests the existence of a (possibly noisy)
mechanism f such that the value y is computed as y ← f(x). This asymmetric assignment
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guarantees changes in the static cause x would lead to changes in the static effect y, but the
converse would not hold. No other assumption is made regarding the nature of x and y.

As mentioned previously, traditional causal discovery methods cannot be directly applied
to static entities. In order to discover the causal relation between the pair of static entities x

and y, we introduce two main concepts: proxy variables W , and proxy projections π.

1. A proxy random variable W is a random variable taking values in some set W, which
can be understood as a random source of information related to x and y. Specific
examples will be given in the different applications. No assumptions are made regarding
the causal relation between W and the static entities.

2. A proxy projection is a function π :W ×S → R.

Given a static entity x, a proxy projection π induces a random variable A = π(W, x) =
πx(W ) whose randomness is driven by the proxy variable W . A sample {ai}ni=1 thus provides
n different views of the static entity x obtained by computing a projection with n values
from the proxy {wi}ni=1.

We denote by A = πx(W ) and B = πy(W ) the two random variables induced by the
static entities x and y.

Definition 20 (Causal Proxy and Projection) A pair of proxy variable and projection
(W, π) is causal if the induced variables A and B share the same causal footprint1 as the pair
of static entities x and y.

If the proxy variable and projection are causal, we may estimate the cause-effect relation
between the static entities x and y in three steps.

i) Draw a sample {wi}ni=1
iid∼W .

ii) Compute the corresponding sample {(ai, bi)}ni=1
iid∼ P (A, B).

iii) Estimate the cause-effect relation between A and B given {(ai, bi)}ni=1.

iv) Conclude “x causes y” if A→ B, or “y causes x” if A← B.

The graphical model relating the components of the framework is found in Figure 5.1. A
priori, no causal relation is assumed between W , x and y.

Remark 21 (Nature of the Relation Between A and B) Chapter 2 discussed the im-
portance of interventions when discussing causality. If X is a cause of Y , then intervening
on X (by setting it to a fixed value or modifying its distribution) leads to a change in Y ,
while the converse is not true. The projections A and B built using the proxy variable cannot

1The notion of causal footprint is introduced in Chapter 2, Section 2.2.
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be causal in the interventional sense, since performing an intervention on A has no effect on
B as both A and B are constructed independently. However, a causal discovery algorithm
searches for a statistically observable causal footprint which can indeed be preserved between
A and B.

Remark 22 (A Generic Form for the Proxy Variable and Projection) We introduce
the concepts of proxy variable W and causal projection π in a very general setting. The
problem of establishing the causal relation between static entities is a challenging task, and
we frame it deliberately in a very wide context. Any theoretical guarantees at this level are
thus difficult to conceive. We believe nonetheless that keeping the framework general allows
us to discuss and frame the problem well. We analyse two different problems in vision and
language, for which concrete examples can be given. Since the defined proxy should preserve
the causal footprint of the original static variables, we expect that applying our framework to
new areas requires domain specific knowledge and extensive experimentation.

5.2 Causal Discovery Using Proxies in Images

Consider the two images shown in Figure 5.2. The image on the left is an unprocessed
photograph, while the one on the right is the same photograph after being stylised with the
algorithm of Gatys et al. (2016). We represent both images x and y as a vector of pixel
intensities in Rd. From a causal point of view, the unprocessed image x ∈ Rd is the cause of
the stylised image y ∈ Rd. Indeed, intervening on x would lead to a different output from
the style transfer algorithm, while the converse does not hold. If we wish to establish in an
automatic fashion which image is the cause and which is the effect, we face a problem with
two static entities x and y. How can we leverage the ideas of proxy variable and projection
from Section 5.1 to recover such causal relation using a standard causal discovery method?
The two degrees of freedom lie in the choice of the proxy W and the projection π.

Choice of proxy. The transformed image y is generated by modifying local patches of
the original image x using a CNN, indicating that the information necessary to recover the
causal direction between the two images is contained locally at the level of these patches. As
such, let W be a proxy variable selecting a patch of dimensions k× k in a d× d image. More
precisely, w ∼W is a d× d image with ones in a random k × k patch and zeroes elsewhere.

Choice of projection. We choose as a proxy projection the standard dot product between
vectors π(u, v) = ⟨u, v⟩. Given both images x and y and a sample w ∼ W from the proxy
variable, a = π(x, w) and b = π(y, w) are the sums of the pixel values in the k × k patch
selected by w in both images.

The following summarises the pipeline converting the two images x and y into scalar
projections drawn from two random variables A and B. For n≫ 1 and j = 1, . . . , n:
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x = original image y = stylized image

ai =
〈

,

〉
bi =

〈
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〉
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Fig. 5.2 Sampling random patches produces a proxy variable.

• Draw a mask-image wj , which contains ones inside a patch at random coordinates, and
zeroes elsewhere.

• Compute aj = ⟨wj , x⟩, and bj = ⟨wj , y⟩.

This process returns a sample {(aj , bj)}nj=1 drawn from P (A, B), the joint distribution of
the two scalar random variables (A, B). The conversion from static entities (x, y) to random
variables (A, B) is obtained by virtue of i) the randomness generated by the proxy variable
W , which in this particular case corresponds to random masks and ii) a causal projection
π, here a simple dot product. At this point, if the causal footprint between the random
entities (A, B) resembles the causal footprint between x and y, we can apply a regular causal
discovery algorithm to (A, B) to estimate the causal relation between x and y. It is important
to note that the specific form of W and π are relevant for this specific example, in which
the modifications to image x are made locally. This is the case of the stylisation algorithm
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of Gatys et al. (2016) and the applied filters, and explains why, in this case, selecting random
patches as a proxy makes sense.

The following formalises this idea, justifying the choice of proxy and projection under
some simplifying assumptions. The analysis of a fully general setting for images is left for
future work.

5.2.1 Analysis in a Special Case

The intuition behind causal discovery using proxy variables is that, although we observe
(x, y) as static entities, their high dimensional structure may contain footprints of the causal
relation between them. If the proxy variable is designed appropriately, this information
can be summarised using the projection π. But why should the causal footprint of these
summaries cue the causal relation between x and y?

We formalise this question for the specific case of an original image x and its modification
y, where the causal mechanism mapping x to y operates locally and linearly.

More precisely, assume that each k × k patch ySi in the stylised image is computed from
the k × k patch xSi in the original image, as described by the Additive Noise Model (ANM):

ySi = f(xSi) + ϵi,

where ϵi ∼ ϵ and ϵ is a noise variable which acts independently of the location of the subset.
The size k of each subset is a property of the mechanism generating the modified image.
Then, the filtered image is y = F (x) + ϵ, where F (x)Si = f(xSi). We further assume that f

is linear: f(xS) = βxS where β is a k × k matrix. Then, let P (W ) be a distribution over
masks extracting random k-subsets, and let π(·, ·) = ⟨·, ·⟩, to obtain:

A = π(W, x) = ⟨W, x⟩,

B = π(W, y) = ⟨W, y⟩

=
k∑

j,l=1
(βxS)jl + N

=
k∑

j,l=1

(
k∑

u=1
βjuxul

)
+ N

=
k∑

j,l=1
αj

k∑
u=1

xul + N

=

 k∑
j=1

αj

 ⟨W, x⟩+ N
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Experiment Correct causal directions detected

ImageNet, Laplace filter 70%
ImageNet, Prewitt filter 70%
Artistic style image pairs 72%

Table 5.1 Performance of ANM on detecting the original image from its modified version.
The proxy variable draws random patches from the images, and the projection computes the
average pixel intensity in the patch.

where N = ∑k
j,l=1(ϵS)jl, and where we assume that β is such that αj = βjl for all j ≤ k.

Since A ⊥ N , the pair (A, B) also follows an additive noise model which preserves the causal
direction x→ y. We leave the investigation on identifiability conditions for causal inference
using proxy variables in a more general setting to future work.

5.2.2 Numerical Experiments

We perform three experiments on images to test the efficacy of the chosen proxy to preserve
the causal footprint of the original and stylised images. In these experiments, we extract
n = 1024 square patches of size k = 10 pixels. Given the intuition from Section 5.2.1, we
estimate the causal direction between the constructed random variables A and B using
additive noise models (ANM), see Section 2.2.1 in Chapter 2. The results can be found in
Table 5.1

Filters on ImageNet. We select 1000 random images from ImageNet and modify them
using two transformations implemented in Scipy: Laplace and Prewitt filters. For each
transformation, we evaluate our method’s performance at distinguishing cause (original
image) from effect (filtered image).

Artistic style modifications. We downloaded the original and stylised image pairs made
using the algorithm of Gatys et al. (2016) available at https://deepart.io. This results in
2000 pairs of images. ANM recover 72% of the cause-effect relations. The results can be
found in Table 5.1.

Reordering shuffled frames from a video. We decompose a video of drops of ink mixing
with water into 8 frames {(xi)}8i=1, shown in Figure 5.3. For each pair of images (xi, xj) for
i, j ∈ {1, . . . , 8}, we construct a scalar projection using the proxy W and projection π, and
estimate the causal direction between xi and xj using ANM. Let M be a 8× 8 symmetric
matrix in which Mij = 1 if xi → xj according to the ANM and Mij = 0 otherwise. We
consider M to be the adjacency matrix of the graph defined by the 8 frames, and perform a
topological sort of the graph. We recover the unique true ordering among 40, 320 possibilities.

https://deepart.io
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Fig. 5.3 Causal discovery using proxy variables uncovers the causal time signal to reorder a
shuffled sequence of video frames. The original video can be found in http://goo.gl/sqdvu1

Remark 23 (On the Choice of Causal Discovery Algorithm) In the example in Fig-
ure 5.2, the additive noise model assumptions are violated, since the noise is not independent
from the input. Contrary to other algorithms such as RCC and NCC, ANM does not need
to be trained on causal data pairs. Both RCC and NCC are introduced in Section 2.2.2 in
Chapter 2. As such, better accuracy could be obtained by choosing a different causal discovery
algorithm accounting for non independent noise, but it is unclear on which datasets such an
algorithm should be trained. We find it encouraging that a simple approach such as ANM
achieves over 70% accuracy in the different experiments and correctly orders the video in
time.

5.3 Causal Discovery Using Proxies in Language

In this section, we tackle the challenging problem of discovering causal relations between
pairs of concepts such as “virus → death”, “sun → radiation”, “trial → sentence”, or “drugs
→ addiction”. We treat both words in a pair as static entities x and y, and assume that a
large corpus of text C is available.

This problem is challenging for several reasons. First, the causal relations being established
are not between words per se, but rather between higher levels concepts. The relation between
them involves processes which are often complex and require significant amounts of prior
knowledge. Consider for instance the pair “virus → death”. We are quick in establishing that
virus causes death since we are aware of a complex biological process underlying this causal
statement: a virus infects a living organism, and by multiplying and surviving ends destroying
it, which results in death. A second difficulty results form the diversity in the nature of
this causal relationships. While “virus → death” refers to a biological mechanism, “trial →
sentence” relates to an event and its consequence, and “musician → music” and “avocado →
guacamole” are yet other manifestations of causal relations of diverse types. Finally, while a
clear causal direction often appears, one can most of the times find specific contexts in which
the other direction becomes causal, such as “death → virus” in the multiple deaths in the
area further spread the virus. The causal direction we wish to discover is thus a prototypical
causal direction, that is, the direction which seems most natural to a human in absence of
a specific context. We aim to discover such causal relations by using generic observational
causal discovery methods, such as the ones described in Section 2.2 of Chapter 2.

http://goo.gl/sqdvu1
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Consider the end goal of establishing the causal direction between two concepts x and
y. Our first objective is to identify appropriate proxies and projections for this problem as
required by Section 5.1 from both the static entities x and y and the large corpus of text C. In
order to evaluate our methods, we introduce a novel human-generated dataset of causal word
pairs in Section 5.3.3, created by Amazon Mechanical Turk workers with detailed instructions.
Experimental results are presented in Section 5.3.4.

First, we survey previous efforts in causal discovery in Natural Language Processing
(NLP) in Section 5.3.1.

5.3.1 Causal Discovery in NLP

The NLP community has devoted much attention to the problem of identifying the semantic
relation holding between two words, with causality as a special case. Girju et al. (2009) discuss
the results of the large shared task on relation classification they organised (their benchmark
included only 220 examples of cause-effect). The task required recognising relations within a
given context, that is, the goal is to distinguish cause from effect given a sentence containing
both words. Nonetheless, as discussed by the authors, most contexts display the default
relation we are after here (e.g., “The mutant virus gave him a severe flu” instantiates the
default relation in which virus is the cause, flu is the effect). All participating systems used
extra resources, such as ontologies and syntactic parsing, on top of corpus data. They are
thus outside the scope of the purely corpus-based methods we are considering here.

Most NLP work specifically focusing on the relation of cause and effect relies on finding
words co-occurring with the target pair which are highly informative of the causal relation. A
clear and obvious example is exploiting the presence of the word “because” and the position
of both words relative to it in the sentence. These patterns are extracted and processed
with sophisticated methods, involving annotation, ontologies, bootstrapping and/or manual
filtering (see, e.g., Blanco et al. (2008); Hashimoto et al. (2012); Radinsky et al. (2012), and
references therein). We experimented with extracting linking patterns from our corpus, but,
due to the relatively small size of the latter, results were very sparse (note that patterns can
only be extracted from sentences in which both cause and effect words occur). Recent work
started looking at causal chains of events as expressed in text (see Mirza and Tonelli (2016)
and references therein). Applying our generic method to this task is a direction for future
work.

A semantic relation that received particular attention in NLP is that of entailment between
words (dog entails animal). As causality is intuitively related to entailment, we will apply
below entailment detection methods to cause/effect classification. Most lexical entailment
methods rely on distributional representations of the words in the target pair. Traditionally,
entailing pairs have been identified with unsupervised asymmetric similarity measures applied
to distributed word representations (Geffet and Dagan, 2005; Kotlerman et al., 2010; Lenci
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and Benotto, 2012; Weeds et al., 2004). We will test one of these related measures, namely,
Weeds Precision (WS). More recently, Santus et al. (2014) showed that the relative entropy
of distributed vectors representing the words in a pair is an effective cue to which word is
entailing the other, and we also look at entropy for our task. However, the most effective
method to detect entailment is to apply a supervised classifier to the concatenation of the
vectors representing the words in a pair (Baroni et al., 2012; Roller et al., 2014; Weeds et al.,
2014).

5.3.2 Static Entities, Proxies, and Projections for NLP

In the language of causal discovery with proxy variables, a pair of concepts denoted by words
is a pair of static entities: (x, y) = (virus, death). In order to discover the causal relation
between x and y, we need to design a proxy variable W and a projection function π.

Our intuition for this step relies on several observations. First, much can be said about
a word by its context, i.e., the words which appear next to it in a large corpus. This is
often referred to as the Distributional Hypothesis (Sahlgren, 2008). As such, we construct a
proxy which samples words from the corpus in a representative fashion. Moreover, word2vec
representations (Mikolov et al., 2013) are known to preserve information about the similarity
between words and the likelihood of words co-occurring in a corpus. We thus design projections
based on different comparisons of the embeddings of the words in question.

As a proxy, we denote by W a random variable sampling words from the vocabulary from
which the large corpus C is sampled. Moreover, the distribution of W is simply a unigram
distribution on C, that is, the frequency distribution of the words in the corpus. Words such
as “the” or “because” will have a large probability mass, while rare words such as “guacamole”
have a smaller mass.

Given two static entities x and y and a word w ∼W , we consider several projections π.
Mostly, these are based on word2vec representations of vx, vy and vw, such that π(x, w) =
f(vx, vw) and π(y, w) = f(vy, vw) for some scalar function f .2 A detailed description of the
projections is given in Section 5.3.2.1.

Once we have defined the causal projection π, we can proceed in the following way:

i) Sample words from the proxy w1, . . . , wn ∼ P (W ). Specifically, we estimate P (W ) from
a large corpus of natural language, and sample n = 10, 000 words without replacement.3

ii) Compute the projections ai = π(wi, x) and bi = π(wi, y) for i ∈ {1, . . . , n}.
2The nature of both the proxy and the projection differs greatly from the ones used in the vision experiments

in Section 5.2. This reinforces the point that the framework of proxy variables is flexible and requires domain-
specific knowledge, since no fit-for-all solution exists.

3This is equivalent to sampling approximately the top 10,000 most frequent words in the corpus. Due
to the extremely skewed nature of word frequency distributions (Baayen, 2001), sampling with replacement
would produce a list of very frequent words such as a and the, sampled many times.
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iii) Estimate the causal direction between A and B given the sample {(ai, bi)}ni=1 using a
causal discovery algorithm.

5.3.2.1 Causal projections

Throughout our experimental evaluation, we will use and compare different proxy projections.
Denote by vi

x ∈ Rd and vo
x ∈ Rd the input and output word2vec representations respectively

of word x.

1) πw2vii(w, x) = ⟨vi
w, vi

x⟩. The dot-product ⟨vi
w, vi

x⟩ measures the similarity in meaning
between w and x. Therefore, the dot product of the input embeddings of two very
similar words such as “cat and dog” or “cat and auto” will be large, while the dot
product is small for distant words such as “dog and pipe”.

2) πw2vio(w, x) = ⟨vi
w, vo

x⟩. The dot-product ⟨vi
w, vo

x⟩ is an un-normalized estimate of the
conditional probability p(x |w) (Melamud et al., 2015). Therefore, this projection is
more indicative of words that co-occur often in the corpus. For instance, regardless of
the similarity between the words, the dot product of the output embeddings of “dog
and food” should be high, while “because and thus” are often exclusive and thus lead
to a small dot product.

3) πw2voi(w, x) = ⟨vo
w, vi

x⟩, an un-normalized estimate of the conditional probability
p(w |x).

4) πcounts(w, x) = p(w, x), where the joint probability p(w, x) is directly estimated from
counting within-sentence co-occurrences in the corpus.

5) πprec-counts(w, x) similar to the one above, but only over sentences where w precedes x.

6) πpmi(w, x) = p(w, x)/(p(w)p(x)), where the probability distributions p(w), p(x), and
p(w, x) are estimated from counting words and (sentence-based) co-occurrences in the
corpus. The log of this quantity is known as point-wise mutual information, or PMI
(Church and Hanks, 1990).

7) πprec-pmi(w, x), similar to the one above, but only over sentences where w precedes x.

Applying the causal projections to our sample {wi}ni=1 from proxy W , we construct the
n-vector

Πx
proj = (πproj(w1, x), . . . , πproj(wn, x)), (5.1)

and similarly for Πy
proj, where

proj ∈ {w2vii, w2vio, w2voi, counts, prec-counts, pmi, prec-pmi.}. (5.2)
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Πx
proj is the vector of projections (a1, . . . , an), and Πy

proj = (b1, . . . , bn). We use the skip-
gram model of fastText (Bojanowski et al., 2017) to compute 300−dimensional word2vec
representations.

5.3.3 A Real-World Dataset of Cause-Effect Words

We introduce a human-elicited, human-filtered dataset of 10, 000 pairs of words with a known
causal relation. This dataset was constructed using Amazon Mechanical Turk (AMT) in two
steps4.

The first step is a creation step. AMT workers are given clear examples of word pairs
sharing a causal relation (e.g., “sun causes radiation”), and importantly words which are
simply associated but not causal (e.g., “knife” and “fork”). Moreover, the AMT workers have
a monetary incentive to create diverse word pairs. The detailed instructions given to the
workers are reported in Appendix C. This step results in n = 10, 000 word pairs {(xi, yi)}ni=1.

The second step is a voting step. Each of the pairs collected is shuffled and submitted to
20 AMT workers which did not participate in the creation step. Each worker was asked to
vote whether a pair of words (x, y) satisfies “x causes y”, “y causes x”, or “x and y do not
share a causal relation”. For more details, see Appendix C.2.

Both steps carried out by the AMT workers result in a dataset of 10, 000 word pairs, each
accompanied by three numbers: the number of turks that voted “x causes y”, the number of
turks that voted “y causes x”, and the number of turks that voted “x and y do not share a
causal relation”.

For our experiments below, we only consider the pairs for which at least 18 out of 20
AMT workers voted that x→ y. This results in N = 1, 970 word pairs. We do this selection
for two reasons. First, we want to be confident that the pairs considered are causal, and
worker confidence is taken as a measure of the prototypical causal direction we are interested
in discovering (that is, the strongest causal link as judged by a human in absence of a specific
context). Indeed, several of the obtained pairs are simply associated, such as “awful and
gross”, which is voted as associated by 80% of the workers. Moreover, given strong confidence
from the AMT workers, we can consider that the problem is binary. Therefore, our algorithm
must only output “x→ y” or y → x, and does not consider the possibility of a confounded
pair.

5.3.4 Experiments

We evaluate a variety of methods to discover the causal relation between two words appearing
in a large corpus of natural language. We study methods that fall within three categories:
baselines, distribution-based causal discovery methods, and feature-based supervised methods.
These three families of methods consider an increasing amount of information about the

4The dataset can be found in https://github.com/facebookresearch/CausalityProxyVariables

https://github.com/facebookresearch/CausalityProxyVariables
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Fig. 5.4 Results for all methods on the NLP experiment. Accuracies above 52% are statistically
significant with respect to a Binomial test at a significance level α = 0.05.

task at hand, and therefore exhibit an increasing performance up to 85% classification
accuracy. Our computations are based on the full English Wikipedia, as post-processed by
Matt Mahoney (see http://www.mattmahoney.net/dc/textdata.html). We now present in
more detail the three families of methods we implement.

5.3.4.1 Baselines

We consider a variety of unsupervised baselines, each of which computes two scores Sx→y and
Sx←y for both possible causal directions. A baseline then predicts x → y if Sx→y > Sx←y,
and x← y if Sx→y < Sx←y.

We now introduce the different baselines with their corresponding scores Sx→yand Sx←y:

• frequency: Sx→y is the number of sentences where x appears in the corpus C, and Sx←y

is the number of sentences where y appears in the corpus. frequency decides that x→ y

if x is more frequent than y in C.

• precedence: considering only sentences from the corpus where both x and y appear,
Sx→y is the number of sentences where x occurs before y, and Sx←y is the number of
sentences where y occurs before x. precedence implicitly assumes that the cause often
precedes the effect in a given sentence.

• counts (entropy): Sx→y is the entropy of Πx
counts, and Sx←y is the entropy of Πy

counts, as
defined in (5.1).

http://www.mattmahoney.net/dc/textdata.html
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• counts (WS): Using the WS measure of Weeds and Weir (2003), Sx→y = WS(Πx
counts, Πy

counts),
and Sx←y = WS(Πy

counts, Πx
counts).

• prec-counts (entropy): Sx→y is the entropy of Πx
prec-counts, and Sx←y is the entropy of

Πy
prec-counts.

• prec-counts (WS): analogous to the previous.

The baselines PMI (entropy), PMI (WS), prec-PMI (entropy), prec-PMI (WS) are analo-
gous to the last four, but use (Πx

(prec-)pmi, Πy
(prec-)pmi) instead of (Πx

(prec-)counts, Πy
(prec-)counts).

Figure 5.4 shows the performance of these baselines in blue.

5.3.4.2 Distribution-based Causal Discovery Methods

The methods in this section implement our framework of causal discovery using proxy
variables. They classify n samples from a 2-dimensional probability distribution as a whole.
Recall that a vocabulary {wj}nj=1 drawn from the proxy is available. Given N word pairs
(xi, yi), this family of methods constructs a dataset

D =
{

({(ai
j , bi

j)}nj=1, ℓi)
}N

i=1
,

where ai
j = πproj(wj , xi), bi

j = πproj(wj , yi), ℓi = +1 if xi → yi and ℓi = −1 otherwise. In
short, D is a dataset of N “scatterplots” annotated with binary labels. The i-th scatterplot
contains n 2-dimensional points, which are obtained by applying the causal projection to
both xi and yi, against the n vocabulary words from the proxy.

The samples {(ai
j , bi

j)}nj=1 are computed using a deterministic projection of iid draws from
the proxy, meaning that {(ai

j , bi
j)}nj=1 ∼ P n(Ai, Bi). Therefore, these methods search for

causal footprints at the 2-dimensional distribution level, and we term them distribution-based
causal discovery methods. The methods in this family first split the dataset D into a training
set Dtr and a test set Dte. Then, the methods train RCC on the training set Dtr, and test
its classification accuracy on Dte. This process is repeated ten times, splitting at random D

into a training set containing 75% of the pairs, and a test set containing 25% of the pairs.
Each method builds on top of a causal projection from (5.2) above. Figure 5.4 shows the test
accuracy of these methods in green.

5.3.4.3 Feature-based Supervised Methods for an Upper-bound on Test Perfor-
mance

Similarly to successful methods for other NLP applications such as entailment, we consider
treating this as a pure classification problem. More precisely, given the feature vectors in (5.1)
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and N word pairs (xi, yi), we create a dataset

D = {(ui, ℓi)}Ni=1,

where ℓi = +1 if xi → yi, ℓi = −1 if xi ← yi, and “proj” is a projection from (5.2), and
ui = (Πxi

proj, Πyi
proj) is a 2n dimensional feature vector obtain by concatenating the vectors

in (5.1) for x and y.
Next, we split the dataset D into a training set Dtr containing 75% of the pairs, and a

disjoint test set Dte containing 25% of the pairs. To evaluate the accuracy of each method
in this family, we train a random forest of 500 trees using Dtr, and report its classification
accuracy over Dte. This process is repeated ten times at random. The results are presented
as red bars in Figure 5.4. We also show the classification accuracy of training the random
forest on the raw word2vec representations of the pair of words (top three bars).

5.3.4.4 Discussion of the Results

The results from the three families of methods can be found in Figure 5.4. Some of the
baselines (in blue) obtain statistically significant results. The best performing baseline at
59% is precedence. We believe its success can be explained by the fact that the English
language is more often written in an active voice, and this baseline may perform badly on
another language. Frequency also performs above chance. This may be due to a bias in the
dataset, or simply to the strong relation between causality and entailment. It is likely that a
cause word leads to many possible effects, and thus that it appears more frequently. The
other baselines do not achieve above chance performance.

Distribution-based methods (in green) all achieve above chance performance, with w2vii
and w2voi performing best at 75% accuracy. Pairs are classified based on distributional
features of the sample {(ai, bi)}ni=1, and are thus robust to permutations and removals of the
samples. In our experiments, we use a fraction of the word pairs to fit RCC. Further research
could attempt to use a black-box causal discovery algorithm to classify the pairs, an extra
guarantee that the distributional signal used for classification is purely causal. Moreover,
this would allow for each pair to be classified independently of the size of the word pair
dataset. Nonetheless, developing a general classifier for causal discovery is still an open area
of research.

The feature-based methods (in red) perform best, with w2v input and w2v output reaching
up to 85% test classification accuracy. While we believe this result is impressive, it is not
possible to establish which signals are being exploited for classification, and in particular
whether the classifier has discovered a causal signal. Moreover, feature-based methods require
a labelled dataset of causal word pairs, and similarly to any i.i.d. supervised learning problem,
their performance heavily relies on the size of such dataset. We thus consider the performance
of this family of methods as an upper-bound on achievable test performance for this dataset.
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Fig. 5.5 RCC accuracy versus human confidence. The accuracy of RCC improves jointly with
the confidence of the human annotators, further evidence that our methods captures a notion
of the causal direction between concepts aligned with the one of the annotators.

5.3.4.5 Relation between RCC and human annotators

Out of the 10, 000 pairs, we compute the classification accuracy of distribution-based methods
successively on the pairs achieving over k% agreement between the AMT workers, for
k ∈ {0, 20, 40, 50, 60, 70, 80, 90}. For the small values of k, many of the pairs considered are
confounded or display an inverse causal direction. For larger values, however, only pairs
which align with the human notion of causality are considered. The performance of RCC is
strongly correlated with the notion of causality from human annotators, see Figure 5.5. We
consider this an encouraging sign that our proxy variables and projections arguably capture
a notion of causality aligned with the one of human annotators.

5.4 Conclusion and Thoughts for Proxy Variables in Broader
Machine Learning

This chapter framed the problem of causal discovery between static entities x and y, and
introduced the notions of proxy variable W and proxy projection π. The framework proceeds
as follows: a sample from the proxy variable is used to compute a sample {(ai, bi)}ni=1, on
which a causal footprint can be discovered by a causal discovery algorithm. We focused this
general framework into two specific problems.

First, we showed that we can identify an image from its modification by a variety of filters
and a style transfer algorithm. Moreover, we showed on one example that our algorithm
is able to order shuffled video frames into the correct time ordering. Second, we study an
exhaustive family of baselines and projections when establishing the causal relation between
pairs of concepts. In particular, we introduced a dataset of 10, 000 word pairs together with
human confidence on the correct causal direction, and manage to correctly classify up to 75%
of the pairs.
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Several exciting research questions remain open. First, obtaining theoretical guarantees
on the identifiability of the causal direction between x and y in specific examples remains a
challenging question, as well as constructing more systematic protocols for choosing proxies
and projections. It would be particularly interesting if we could establish conditions on W and
π such that the causal direction between x and y is preserved in A and B, as well as conditions
which render the causal direction not identifiable analogously to the bivariate Gaussian case
for standard causal discovery. Finally and more broadly, the notion of proxy variable could be
exploited in other contexts in broader machine learning. For instance, consider a supervised
learning problem mapping a feature random variable X into a target random variable Y . Such
problem is often solved by considering a sample {(xi, yi)}ni=1 ∼ P n(X, Y ). In this scenario,
we may contemplate an unpaired, external, proxy source of information w (such as a memory),
which might help solving the supervised learning problem at hand. One could incorporate
the information in the static source w by constructing the proxy projection wi = π(xi, w),
and add them to the dataset to obtain {((xi, wi), yi)}ni=1 to build the predictor f(x, π(x, w)).





Chapter 6

Discussion and Conclusion

This thesis introduced methods for building transferable representations for different areas of
machine learning. These include invariant feature mappings for distribution shift problems,
batch-based features for transfer to few-shot classes, and projections which preserve the
causal footprint between two static entities. We discuss some of the insights gained, as well
as future directions.

6.1 Causality as a Language for Transfer

This thesis motivates the use of causality as a natural language for transfer. When humans
learn to interact in the world, causal laws are a stable source of knowledge from which we can
transfer. Our knowledge of gravity is learned from interacting with the world and observing
how objects react to these interactions (Battaglia et al., 2013). When given the first frames
of a video in which a structure is collapsing, we are able to build a mental model of the
object and predict which part of the object lands in different parts of space. Our knowledge
of these invariants in the world is built on top of repeated observation of outcomes, and can
be re-used in different configurations of the world.

This motivates us to frame distribution shift under assumptions inspired by causality. We
assume that all training tasks, as well as the test task, are drawn from joint distributions
induced by the same causal graph. In a prediction problem with features X and target Y ,
we assume that a subset of the features S∗ leads to invariant conditionals

Y |XS∗ .

This conditional distribution represents a mechanism which is invariant between tasks and
corresponds to a fundamental causal property of the world.

We showed that using only features in an invariant set S∗ is optimal when the test task
is chosen adversarially. This notion of invariance could be useful in other areas of machine
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learning. The message implied in these results is that exploiting statistical dependencies for
prediction should be performed with care when the distribution of the data changes. This is
clear in problems such as reinforcement learning (Kansky et al., 2017). For instance, an agent
achieving very high scores on Atari games performs poorly when the background colour of
the image changes. This seemingly insignificant change modifies the joint distribution of the
input data and without any further assumptions, there is no reason to expect that the agent
should generalise to this new scenario. Two tasks with two background colours seem to be
very close in some metric, yet very distant in another one: all the principles and mechanisms
valid in one are valid in the other, yet the statistics of the input data differ. In order to
build agents which generalise to radically new settings, we expect that encouraging learning
invariant mechanisms, rather than only good features for i.i.d. prediction, should help.

Clearly, in most machine learning problems, a subset of the features does not cause the
target. It is plausible, nonetheless, that we can extend the assumption of this paper to the
existence of a feature mapping h∗ such that

Y |h∗(X)

is invariant between the different tasks. An invariant mechanism can thus be learned at the
level of the new features h∗(X).

Two interesting directions for further research are the extension of our assumptions to
classification and reinforcement learning problems. Classification leads to some difficulties
in terms of the assumptions themselves: how should be frame the invariance Y |XS∗ in
classification? Most classification problems are actually anticausal (Schölkopf et al., 2012):
in handwritten digit classification, the digit is the output of the guided intent of the author,
and therefore the label or intent cannot be written as a function of the hand written digit.
The label we predict on an input, nonetheless, is causal: intervening on the input image may
make us change our impression on the true label of the digit (for instance, adding a horizontal
line on top of a four rather looks like a nine). One could conceive a training protocol in which
an agent intervenes on the high level features of a classification network, and is rewarded
by how badly the network predicts. As long as the agent has a way to guarantee that the
intervened example belongs to the same class (for instance, it’s still a cat but with a very off
domain background), the network should be encouraged to learn features which are truly
predictive of a cat, and thus generalise to a larger image distribution.

Experimentation is at the core of reinforcement learning, and we believe this is the area
in which the invariance properties discussed could have the largest playing ground.
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6.2 Modularity of Causal Mechanisms and Assumptions

A key conclusion from Chapter 3 is that causal assumptions lead to modular, re-usable models
which are robust to distribution changes. We showed that the experts trained on MNIST
generalise to a new distribution, unseen during training. We believe this generalisation is
due to the training protocol, since the fully convolutional nature of the experts and the
initialisation to the identity in the transformed digits encourage generalisation. Certainly, we
need extensive experimentation regarding properties of the distributions in which the experts
could be readily deployed. Omniglot remains a single channel dataset with relatively simple
symbols, and the experts would most likely fail in a more complex dataset such as ImageNet.
Nonetheless, the evidence suggests that the model truly learned the functions mapping the
digits back to their counterpart. Since this is an image dataset, we can visually assess what
function each expert is performing, and use it for similar goals in different datasets. This
modularity is a fundamental property of models which transfer well to different distributions
and should be further investigated.

The modularity of a causal mechanism Y |XS∗ given an invariant subset S∗ further
supports this idea. We believe that building models which transfer to different distributions
requires careful thought about which assumptions relate the different tasks and the data
generating process. In particular, what are the invariants between the tasks which we can
exploit for prediction? This thesis suggests that one possible direction is learning feature
representations on top of which invariant mechanisms can be learned. While this objective
is causally motivated, causality should not be seen as a bottleneck in problems in which a
causal interpretation is difficult, on the contrary, exploiting invariance properties in transfer
learning and reinforcement learning is a promising direction for higher level generalisation in
our algorithms.

6.3 For Few-shot Learning, Learn the Best Possible Features

The results presented in Chapter 4 lead to direct advice to practitioners. The field of meta-
learning has recently come to dominate the few-shot learning literature, and often involves
training protocols which may be challenging for users to deploy. Our results on CIFAR-100
and miniImageNet suggest that this may not strike the best trade-off in terms of complexity
and accuracy. A key condition is that the few-shot classes can be differentiated by features
which are also present in the training classes. In such cases, our results suggest that focusing
on data augmentation and training deep, powerful features using the initial dataset achieves
a higher accuracy on the few-shot classes. While something as simple as a logistic regression
on top of these features performs well, the weight vectors from the training classes provide a
principled way to regularise the model. Our probabilistic framework also achieves a good
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trade-off in terms of accuracy and calibration, and importantly seems to strike a good balance
between forgetting the old classes and learning the new ones.

Several questions remain open. First, the Gaussian model does not seem a priori to be
the best fit for the weights, as the t-SNE embeddings display multi modality. Nonetheless,
the small number of training classes and the high dimensionality of the feature space lead to
a statistically difficult problem, where a simple model strikes a better balance. Investigating
more complex models and inference procedures on datasets with more classes such as ImageNet,
or datasets with large label spaces, may reveal further advantages to our framework. Second,
building features when the new classes are chosen adversarially (Motiian et al., 2017) is
a difficult problem, and probably requires the feature extractor to be updated using the
few-shot classes.

6.4 Empirically, Features Extracted from Static Entities Pre-
serve the Causal Footprint

The experiments in Chapter 5 show that, using proxy variables, we can construct a projected
sample

{(ai, bi)}ni=1

which preserves the causal footprint of two static entities x and y. This is true in two settings
with very different data modalities: vision and language. Further experiments could apply
these methods to other examples, such as identifying the original and translated versions
from a document and its translation. More importantly, the results of the language example
hint at the existence of causal signals in natural language, which could in turn be exploited
for reasoning. Interesting extensions include finding the causal direction when more complex
statements such as “The virus spread in the city” and “Everyone in the city developed a
strange set of symptoms”, are given as input to the system. These results are relevant to the
ongoing $45 million dollar Big Mechanism DARPA initiative (Cohen, 2015), which aims to
collect and combine causal relations from a large collection of medical documents, resulting
in potentially new, undiscovered causal links to different diseases. Currently, the difficulty in
applying our methods is two-fold:

• designing a proxy variable requires significant domain knowledge and can prove chal-
lenging,

• training general causal discovery algorithms able to discover a rich collection of causal
footprints is still an open research question.

We believe research in both directions could lead to large-scale applications using extensions
of the proxy framework.
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On an orthogonal note, theoretical results on the structure of valid proxies, as well as
identifiability guarantees, must be derived if proxy based methods are to be deployed with
confidence in sensitive applications.
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Appendix A

Architecture Details for the
Competition of Experts

Expert
Layers

3× 3, 32, BN, ELU
3× 3, 32, BN, ELU
3× 3, 32, BN, ELU
3× 3, 32, BN, ELU

3× 3, 1, sigmoid

Discriminator
Layers

3× 3, 16, ELU
3× 3, 16, ELU
3× 3, 16, ELU

2× 2, avg pooling
3× 3, 32, ELU
3× 3, 32, ELU

2× 2, avg pooling
3× 3, 64, ELU
3× 3, 64, ELU

2× 2, avg pooling
1024, FC, ELU
1, FC, sigmoid

Table A.1 Neural network architectures for the competition of experts.

This section presents the architecture of the experts and the discriminator for the
experiments in Section 3.4.2 of Chapter 3.

The experts are fully convolutional with five convolutional layers, 32 3× 3 filters per layer.
We use ELU (Clevert et al., 2016) activation functions, zero padding and batch-normalisation
(BN) (Ioffe and Szegedy, 2015). For further details on the architecture, see Table A.1.

The discriminator is CNN. Average pooling is applied after each two convolutional layers
and the number of filters is multiplied by two. The last layer is fully connected (FC). For
further details on the architecture, see Table A.1.

Both networks are optimised using Adam (Kingma and Ba, 2015) with the default
hyper-parameters.





Appendix B

Datasets and Architectures for
Few-shot Learning

B.1 Dataset Details for CIFAR-100

CIFAR-100 consists of 100 classes each with 500 training and 100 test images of size 32× 32.
The classes are grouped into 20 superclasses with 5 classes each. For example, the superclass
"fish" contains the classes aquarium fish, flatfish, ray, shark, and trout. Unless otherwise
stated, we used a random split into 80 base classes and 20 few-shot learning classes.

For few-shot learning and testing, we split the 100 classes into 80 base classes used for
network training and 20 few-shot learning classes as follows.

classes_base = [
0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 21, 22,
24, 25, 27, 28, 32, 34, 35, 36, 38, 40, 42, 43, 44, 45, 46, 48, 49,
50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
69, 70, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99

]
classes_heldout = [

8, 11, 12, 20, 23, 26, 29, 30, 31, 33, 37, 39, 41, 47, 57, 68, 71,
72, 81, 84

]



136 Datasets and Architectures for Few-shot Learning

B.2 Dataset Details for miniImageNet

To construct miniImageNet we use the same classes as initially proposed by Ravi and
Larochelle (2017) and used in (Snell et al., 2017), which is split into 64 training classes (see
Table B.1), 16 validation classes (see Table B.2), and 20 test classes (see Table B.3).

As we do not require a validation set, we combine the training and validation set to form
an extended training set. We extract 600 images per class from the ImageNet 2012 Challenge
dataset (Krizhevsky et al., 2012), scale the shorter side to 84 pixels and then centrally crop
to 84× 84 pixels, that is, we preserve the original aspect ratio of the image content. We use
these coloured 84× 84× 3 images as input for representational and few-shot learning and
testing.

In order to train very deep models, such as a ResNet, we perform data augmentation as
is the case when training full ImageNet. We use the following standard data augmentation
from ImageNet that we adapt to the size of the input images:

• random horizontal flipping

• randomly paste image into 100× 100 frame and cut out central 84× 84 pixels

• randomly change brightness, contrast, saturation and lighting

No data augmentation is done for few-shot learning and few-shot testing.

B.3 Network Architecture and Training: ResNet Inspired

The network architecture is inspired by the ResNet-34 architecture for ImageNet (He et al.,
2016) that uses convolution blocks, with two convolutions each, that are bridged by skip
connections. As a base, we utilise the example code1 provided by tensorpack (https:
//github.com/ppwwyyxx/tensorpack), a neural network training library built on top of
tensorflow (Abadi et al., 2015). We adapt the number of features as well as the size of the
last fully connected layer to account for the smaller number of training samples and training
classes. For details on the architecture, see Table B.4.

The network is trained using a decaying learning rate schedule and momentum SGD and
is implemented in tensorpack using tensorflow.

B.4 Network Architecture and Training: VGG Inspired

The network architecture was inspired by the VGG networks (Simonyan and Zisserman,
2014), but does not employ batch normalisation (Ioffe and Szegedy, 2015). We use expo-
nential linear units (ELU) as activation functions. To regularise the networks, we employ

1https://github.com/ppwwyyxx/tensorpack/tree/master/examples/ResNet

https://github.com/ppwwyyxx/tensorpack
https://github.com/ppwwyyxx/tensorpack
https://github.com/ppwwyyxx/tensorpack/tree/master/examples/ResNet
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dropout (Srivastava et al., 2014) and regularisation of the weights in the fully connected
layers. The networks are trained with the ADAM optimiser (Kingma and Ba, 2015) with
decaying learning rate. For details on the architecture, see Table B.5

The network is implemented in tensorpack using tensorflow.
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n03400231 frying pan, frypan, skillet
n02108551 Tibetan mastiff
n02687172 aircraft carrier, carrier, flattop, attack aircraft carrier
n04296562 stage
n13133613 ear, spike, capitulum
n02165456 ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle
n03337140 file, file cabinet, filing cabinet
n02966193 carousel, carrousel, merry-go-round, roundabout, whirligig
n02074367 dugong, Dugong dugon
n02105505 komondor
n04389033 tank, army tank, armored combat vehicle, armoured combat vehicle
n09246464 cliff, drop, drop-off
n03924679 photocopier
n03527444 holster
n04612504 yawl
n01749939 green mamba
n04251144 snorkel
n03347037 fire screen, fireguard
n04067472 reel
n03998194 prayer rug, prayer mat
n13054560 bolete
n02747177 ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin
n04435653 tile roof
n02108089 boxer
n03908618 pencil box, pencil case
n01770081 harvestman, daddy longlegs, Phalangium opilio
n03676483 lipstick, lip rouge
n03220513 dome
n04515003 upright, upright piano
n04258138 solar dish, solar collector, solar furnace
n04509417 unicycle, monocycle
n01704323 triceratops
n04443257 tobacco shop, tobacconist shop, tobacconist
n02089867 Walker hound, Walker foxhound
n01910747 jellyfish
n02111277 Newfoundland, Newfoundland dog
n04243546 slot, one-armed bandit
n01558993 robin, American robin, Turdus migratorius
n03047690 clog, geta, patten, sabot
n03854065 organ, pipe organ
n03476684 hair slide
n02113712 miniature poodle
n07747607 orange
n03838899 oboe, hautboy, hautbois
n07584110 consomme
n02795169 barrel, cask
n03017168 chime, bell, gong
n04275548 spider web, spider’s web
n04604644 worm fence, snake fence, snake-rail fence, Virginia fence
n02606052 rock beauty, Holocanthus tricolor
n01843383 toucan
n02457408 three-toed sloth, ai, Bradypus tridactylus
n03062245 cocktail shaker
n03207743 dishrag, dishcloth
n02108915 French bulldog
n06794110 street sign
n02823428 beer bottle
n03888605 parallel bars, bars
n04596742 wok
n02091831 Saluki, gazelle hound
n02101006 Gordon setter
n02120079 Arctic fox, white fox, Alopex lagopus
n01532829 house finch, linnet, Carpodacus mexicanus
n07697537 hotdog, hot dog, red hot
Table B.1 Training classes for miniImageNet as proposed by Ravi and Larochelle (2017)
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n03075370 combination lock
n02971356 carton
n03980874 poncho
n02114548 white wolf, Arctic wolf, Canis lupus tundrarum
n03535780 horizontal bar, high bar
n03584254 iPod
n02981792 catamaran
n03417042 garbage truck, dustcart
n03770439 miniskirt, mini
n02091244 Ibizan hound, Ibizan Podenco
n02174001 rhinoceros beetle
n09256479 coral reef
n02950826 cannon
n01855672 goose
n02138441 meerkat, mierkat
n03773504 missiles

Table B.2 Validation classes for miniImageNet as proposed by Ravi and Larochelle (2017)

n02116738 African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus
n02110063 malamute, malemute, Alaskan malamute
n02443484 black-footed ferret, ferret, Mustela nigripes
n03146219 cuirass
n03775546 mixing bowl
n03544143 hourglass
n04149813 scoreboard
n03127925 crate
n04418357 theater curtain, theatre curtain
n02099601 golden retriever
n02219486 ant, emmet, pismire
n03272010 electric guitar
n04146614 school bus
n02129165 lion, king of beasts, Panthera leo
n04522168 vase
n07613480 trifle
n02871525 bookshop, bookstore, bookstall
n01981276 king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica
n02110341 dalmatian, coach dog, carriage dog
n01930112 nematode, nematode worm, roundworm

Table B.3 Test classes for miniImageNet as proposed by Ravi and Larochelle (2017)
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ResNet-34 inspired for miniImageNet
Output size Layers

84× 84× 3 Input patch
42× 42× 32 5× 5, 32, stride 2

42× 42× 32
[
3× 3, 32
3× 3, 32

]
× 3

21× 21× 64
[
3× 3, 64
3× 3, 64

]
× 4

11× 11× 128
[
3× 3, 128
3× 3, 128

]
× 6

6× 6× 256
[
3× 3, 256
3× 3, 256

]
× 3

256 global average pooling
C̃ fully connected, softmax

Table B.4 Network architecture. All unnamed layers are 2D convolutions with stated kernel
size and padding SAME; the output of the shaded layer corresponds to Φφ(u), the feature
space representation of the image u, which is used as input for probabilistic few-shot learning.

VGG-style Network for CIFAR-100
Output size Layers

32× 32× 3 Input patch
16× 16× 64 2× (Conv2D, ELU), Pool
8× 8× 64 2× (Conv2D, ELU), Pool
4× 4× 128 2× (Conv2D, ELU), Pool
2× 2× 128 2× (Conv2D, ELU), Pool
2× 2× 128 Dropout (0.5)

256 FullyConnected, ELU
256 Dropout (0.5)
128 FullyConnected, ELU
C̃ FullyConnected, SoftMax

VGG-style Network for miniImageNet
Output size Layers

84× 84× 3 Input patch
42× 42× 32 2× (Conv2D, ELU), Pool
21× 21× 64 2× (Conv2D, ELU), Pool
11× 11× 128 2× (Conv2D, ELU), Pool
6× 6× 128 2× (Conv2D, ELU), Pool
3× 3× 128 2× (Conv2D, ELU), Pool
3× 3× 128 Dropout (0.5)

512 FullyConnected, ELU
512 Dropout (0.5)
256 FullyConnected, ELU
C̃ FullyConnected, SoftMax

Table B.5 Network architectures. All 2D convolutions have kernel size 3×3 and padding SAME;
max-pooling is performed with stride 2. The output of the shaded layer corresponds to
Φφ(u), the feature space representation of the image u, which is used as input for probabilistic
few-shot learning.



Appendix C

Instructions for Creating the
Dataset of Word Pairs

C.1 Instructions for Word Pair Creators

We will ask you to write word pairs (for instance, WordA and WordB) for which you believe
the statement “WordA causes WordB” is true.

To provide us with high quality word pairs, we ask you to follow these indications:

• All word pairs must have the form “WordA → WordB”. It is essential that the first
word (WordA) is the cause, and the second word (WordB) is the effect.

• WordA and WordB must be one word each (no spaces, and no “recessive gene → red
hair”). Avoid compound words such as “snow-blind”.

• In most situations, you may come up with a word pair that can be justified both as
“WordA → WordB” and “WordB → WordA”. In such situations, prefer the causal
direction with the easiest explanation. For example, consider the word pair “virus →
death”. Most people would agree that “virus causes death“. However, “death causes
virus” can be true in some specific scenario (for example, “because of all the deaths in
the region, a new family of virus emerged.”). However, the explanation “virus causes
death“ is preferred, because it is more general and depends less on the context.

• We do not accept word pairs with an ambiguous causal relation, such as “book - paper”.

• We do not accept simple variations of word pairs. For example, if you wrote down
“dog → bark”, we will not credit you for other pairs such as “dogs → bark” or “dog →
barking”.

• Use frequent words (avoid strange words such as “clithridiate”).
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• Do not rely on our examples, and use your creativity. We are grateful if you come
up with diverse word pairs! Please do not add any numbers (for example, “1 - dog
→ bark”). For your guidance, we provide you examples of word pairs that belong to
different categories. Please bear in mind that we will reward your creativity: therefore,
focus on providing new word pairs with an evident causal direction, and do not limit
yourself to the categories shown below.

1) Physical phenomenon: there exists a clear physical mechanism that explains why
“WordA → WordB”.

• sun → radiation (The sun is a source of radiation. If the sun were not present, then
there would be no radiation.)

• altitude → temperature

• winter → cold

• oil → energy

2) Events and consequences: WordA is an action or event, and WordB is a consequence
of that action or event.

• crime → punishment

• accident → death

• smoking → cancer

• suicide → death

• call → ring

3) Creator and producer: WordA is a creator or producer, WordB is the creation of
the producer.

• writer → book (the creator is a person)

• painter → painting

• father → son

• dog → bark

• bacteria → sickness

• pen → drawing (the creator is an object)
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• chef → food

• instrument → music

• bomb → destruction

• virus → death

4) Other categories! Up to you, please use your creativity!

• fear → scream

• age → salary

C.2 Instructions for Word Pair Validators

Please classify the relation between pairs of words A and B into one of three categories: either
“A causes B”, “B causes A”, or “Non-causal or unrelated”.

For example, given the pair of words “virus and death”, the correct answer would be:

• virus causes death (correct);

• death causes virus (wrong);

• non-causal or unrelated (wrong).

Some of the pairs that will be presented are non-causal. This may happen if:

• The words are unrelated, like “toilet and beach”.

• The words are related, but there is no clear causal direction. This is the case of “salad
and lettuce”, since we can eat salad without lettuce, or eat lettuce in a burger.

To provide us with high quality categorization of word pairs, we ask you to follow these
indications:

• Prefer the causal direction with the simplest explanation. Most people would agree
that “virus causes death”. However, “death causes virus” can be true in some specific
scenario (for example, “because of all the deaths in the region, a new virus emerged.”).
However, the explanation “virus causes death” is preferred, because it is true in more
general contexts.

• If no direction is clearer, mark the pair as non-causal. Here, conservative is good!

• Think twice before deciding. We will present the pairs in random order!
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Please classify all the presented pairs. If one or more has not been answered, the
whole batch will be invalid. PLEASE DOUBLE CHECK THAT YOU HAVE AN-
SWERED ALL 40 WORD PAIRS.

Examples of causal word pairs:

• “sun and radiation”: sun causes radiation

• “energy and oil”: oil causes energy

• “punishment and crime”: crime causes punishment

• “instrument and music”: instrument causes music

• “age and salary”: age causes salary

Examples of non-causal word pairs:

• “video and games”: non-causal or unrelated

• “husband and wife”: non-causal or unrelated

• “salmon and shampoo”: non-causal or unrelated

• “knife and gun”: non-causal or unrelated

• “sport and soccer”: non-causal or unrelated
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