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We consider the steady flow of a granular current over a uniformly sloped surface that
is smooth upstream (allowing slip for x < 0) but rough downstream (imposing a no-
slip condition on x > 0), with a sharp transition at x = 0. This problem is similar to
the classical Blasius problem, which considers the growth of a boundary layer over a flat
plate in a Newtonian fluid that is subject to a similar step change in boundary conditions.
Our discrete particle model (DPM) simulations show that a comparable boundary layer
phenomenon occurs for the granular problem: the effects of basal roughness are initially
localised at the base but gradually spread throughout the depth of the current. A
rheological model can be used to investigate the changing internal velocity profile. The
boundary layer is a region of high shear rate and therefore high inertial number I;
its dynamics are governed by the asymptotic behaviour of the granular rheology for
high values of the inertial number. The µ(I) rheology (Jop et al. 2006) asserts that
dµ/dI = O(1/I2) as I →∞, but current experimental evidence is insufficient to confirm
this. We show that this rheology does not admit a self-similar boundary layer, but that
there exist generalisations of the µ(I) rheology, with different dependencies of µ(I) on
I, for which such self-similar solutions do exist. These solutions show good quantitative
agreement with the results our of DPM simulations.
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1. Introduction

Granular currents are flows of dense granular materials down inclines, driven by gravity
and resisted by internal and basal friction. Such materials include sand, gravel, powders
and freshly-fallen snow, all of which consist of discrete particles. Granular currents include
snow avalanches and landslides, which are responsible for over 7,000 deaths annually,
causing economic and social damage especially in developing countries (Petley 2012).
To increase our understanding of these devastating flows, and aid with prediction and
mitigation, it is essential to develop detailed mathematical models of such flows.

It is often desirable to approximate granular flows as continua. Granular currents in
nature tend to be shallow: their depths are small compared to the lengthscales over which
they extend and vary. Continuum models of granular currents commonly exploit this low
aspect ratio by using a depth-averaged approach (Savage & Hutter 1989; Pouliquen &
Forterre 2002; Gray & Edwards 2014), similar to the shallow water models of hydraulics
(Peregrine 1967; Chow 1959). This approach discards information about the depthwise
dependence of the flow. These models provide a simple set of governing equations, but
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they are unsatisfactory when there are topographical features that change the depthwise
profile or the flow, affecting the amount of resistance or dissipation experienced by the
current.

Depth-averaged models for granular currents typically feature equations for mass and
momentum conservation, of the form

∂h

∂t
+

∂

∂x
(hu) = 0, (1.1a)

∂

∂t
(hu) +

∂

∂x

(
1

2
hu2 +

1

2
gh2 cos θ

)
= gh(sin θ − µ cos θ) +

∂

∂x

(
D
∂u

∂x

)
, (1.1b)

where θ is the inclination, h(x, t) is the current’s depth, u(x, z, t) is the streamwise
velocity, and an overbar indicates a depth-average so that, for example,

u = u(x, t) =
1

h(x, t)

∫ h

0

u(x, z, t) dz.

Equation (1.1b) is a depth-integrated momentum balance equation; its right hand side
contains three accelerative terms: gravitational driving gh sin θ, Coulomb frictional re-
sistance µgh cos θ, and a viscous-like term with a possibly variable viscosity D. For
θ = µ = D = 0, one recovers the Saint-Venant equations governing shallow water flows
with negligible viscosity or drag. (For currents on a varying slope it is necessary to
introduce extra terms to account for the curvature from nonconstant θ.)

In order to close the system (1.1), one must relate u2, µ and D to the dynamical
variables h and u. To this end, the u2 term is expressed in terms of u through a ‘shape
factor’ (e.g. Woodhouse et al. (2016)), defined by

χ(x, t) = u2/u2. (1.2)

The shape factor characterises different velocity profiles: χ = 1 for a uniform (or plug)
flow and χ > 1 for all other profiles. Determining the value of χ is difficult because
experimental techniques such as particle image velocimetry (Lueptow et al. 2000) cannot
give any information about the internal velocity profile, only the surface velocity. A
common modelling approach is therefore to assume that χ is constant, implying that the
internal velocity profile conserves its functional form along the current, such that

u(x, z, t) = u(x, t)S

(
z

h(x, t)

)
(1.3)

for some profile function S. Furthermore, many studies take χ = 1, which implies a plug
flow with S = 1. When χ is taken to be constant, and further closures have been specified
for µ and D, the depth-averaged equations have a relatively simple hyperbolic form and
may be solved numerically or analytically.

Various closure models for µ and D have been proposed (Gray & Edwards 2014; Savage
& Hutter 1991; Gray et al. 1999), but all of them assume a velocity profile of the form
(1.3) so that χ is constant. Such models do not account for any streamwise changes in the
velocity profile, as occurs, for example, when the current experiences inhomogeneities in
the streamwise direction due to topographical variation, or changes in the basal boundary
conditions.

In this work, we model the evolution of the velocity profile, and therefore of χ, when
a current is subject to a simple change in its basal boundary conditions. We shall study
the setup sketched in figure 1(a). A steady current of a granular material is made to
flow first over a surface that is smooth for x < 0 and bumpy for x > 0, where x is a
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streamwise coordinate. The surface is inclined at constant angle θ to the horizontal, so
that the material is driven by a streamwise component of gravity. Individual grains may
freely slip along the smooth surface, but the presence of bumpiness causes a transfer
of horizontal momentum, reducing the mean streamwise velocity of the grains; in the
continuum limit, this can be described as a ‘no-slip’ condition. As illustrated in figure
1, this problem has some similarities to the classical Blasius problem for a Newtonian
fluid flow incident onto a blade (Acheson 1990), and we shall refer to it in this article as
the ‘granular Blasius problem’. In both problems, the sudden imposition of the no-slip
condition for x > 0 causes a distortion in the velocity profile that initially takes place in
a narrow boundary layer at the bottom of the flow.

There are three major differences between the classical and the continuum limit of
the granular Blasius problems. Firstly, the classical Blasius problem assumes that the
blade is immersed in an infinite volume of fluid, but the present problem concerns a
current of finite depth, and so a free surface is present, as sketched in figure 1(b). The
development of the boundary layer has an effect on the outer flow, displacing the free
surface upwards introducing a perturbation to the outer flow, which in turn feeds back
on the boundary layer (Tsang et al. 2018). A second difference between the two problems
is that the entire system in the granular problem is inclined at an angle θ > 0. Gravity
therefore drives the flow forwards and opposes the basal drag. The boundary layer does
not grow indefinitely but ‘saturates’ when its thickness becomes comparable to that of the
current, after which point the current is governed by a balance between gravity and drag,
with the incident inertia having been spent. Finally, the Navier–Stokes equations, which
govern the classical problem with Newtonian fluids, must be replaced with equations for
a rheological model of dense granular flows.

For a rheological model, we use a generalisation of the µ(I) rheology (Jop et al. 2006),
a model that has successfully described granular currents and associated phenomena,
such as granular fingering and roll waves on uniform surfaces (Andreotti et al. 2015;
Pouliquen et al. 1997; Gray & Edwards 2014; Baker et al. 2016). In this work, we shall
give analytical solutions to the equations of motion under this rheology, predicting the
velocity field inside a granular current, from which the evolution of the shape factor may
be found.

We describe the granular Blasius problem in detail in §2 and give the mathematical
formulation in §3. We then analyse the equations of motion in §4, eventually providing
approximate analytical and numerical solutions for the development of the velocity profile
along the current. In §5 we illustrate the discussion with results from discrete particle
method (DPM) simulations, which agree well with the approximate solutions. We shall
discuss the applicability of this work and possible future extensions in §6 and §7.

2. Problem description

We work in two dimensions throughout this article. As noted above, we consider a rigid
surface that is inclined at a constant slope θ and use rotated coordinates (x, z), which
are taken such that x is in the streamwise direction and x is perpendicular to the surface.
The surface z = 0 is smooth for the region x < 0, but for x > 0 the surface is made rough
using randomly positioned fixed particles of the same size as the grains in the flow. The
vectors î and k̂ shall denote the Cartesian unit vectors, and the components of velocity
shall be written as u = uî+ wk̂.

A granular material is introduced at x = xmin at a constant flow rate q, flows down the
surface, and finally falls off the end of the surface at x = xmax. Provided that θ lies within
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Figure 1. (a) The granular Blasius problem. (b) The free-surface boundary layer problem
studied in Tsang et al. (2018). (c) The classical Blasius problem.

a suitable range of values, a statistically steady dense flow will develop. In this steady
state, the depth h(x), density ρ(x, z) and velocity (u(x, z)), w(x, z)) are determined.

The behaviour of the flow will depend on the depth H and speed U of the incident
flow. The flow rate, defined as

q =

∫ h(x)

0

u(x, z) dz, (2.1)

is constant and equal to HU along the flow, because the flow is steady. This is equivalent
to (1.1a). By analogy with shallow water flows, we define the incident flow’s Froude
number as

Fr =
U√
gH

.

For an inviscid fluid, the Froude number is the ratio of the incident flow velocity to
the speed of long (or shallow) waves (Acheson 1990; Billingham & King 2001; Chow
1959). In this article, we restrict attention to flows with Fr > 1. Such a flow is said
to be ‘supercritical’, and for such flows no linear waves may propagate indefinitely far
upstream; consequently, the far-upstream conditions are not affected by any dynamics
due to the region x > 0 (Tsang et al. 2018). Rather, the values of H and q may be
specified and controlled by some mechanism at x = xmin, such as a sluice gate. If instead
Fr < 1 then it would not be possible to impose these steady upstream conditions. We
also assume that the flow remains supercritical after the transition regime, so that the
downstream boundary at x = xmax has only localised effects on the flow.
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In the analysis that is to come in §4, we will in fact assume that Fr � 1, and find
asymptotic solutions that apply in this limit. The limit of high Froude number is relevant
for modelling snow avalanches (Hákonardóttir 2004; Hogg & Jóhannesson 2016), but flows
at high Froude numbers have proven difficult to implement in laboratory experiments,
since it is necessary to have a large quantity of material at hand in order to maintain a fast
steady flow (the mechanism described in Holyoake (2011) and Holyoake & McElwaine
(2012) being a notable example of an experimental setup that provides high Froude
number flows). Discrete particle method (DPM) simulations also face difficulties at high
Froude numbers, as high-speed collisions in such flows must be resolved using a high
particle stiffness, which in turn requires a small time step in order to maintain numerical
accuracy.

The actual realisation of a constant depth and flow rate in a DPM simulation is
described in §5.

3. Mathematical formulation

3.1. The µ(I) rheology

The dynamics of granular flows are fundamentally governed by laws on particle
collisions and contacts. However, the flows encountered in environmental or industrial
applications typically contain huge numbers of irregular grains and it would not be
possible to use these microscopic laws to describe the flow as a whole. Instead, we
describe the granular flow in terms of continuum fields such as density ρ(x, t) and velocity
u(x, t). These continuum fields represent ensemble averages or local spatial averages of
the particles’ masses, positions and momenta, which are discrete data. The averaging
process required to yield a continuum field approximation from a single realisation is
known as ‘coarse-graining’ and is defined formally in Weinhart et al. (2013). The density
field ρ is sometimes called the ‘bulk density’, to distinguish it from the ‘intrinsic density’
ρ∗ of the grains; the ‘packing fraction’ is defined as φ(x, t) = ρ(x, t)/ρ∗.

The continuum laws of mass conservation and momentum balance,

∂ρ

∂t
+∇· (ρu) = 0, (3.1a)

∂u

∂t
+ u ·∇u =

1

ρ
∇·σ + g, (3.1b)

must be satisfied, where σ is the Cauchy stress tensor and g is the gravitational
acceleration (or other body force). We assume that the packing fraction φ and therefore
the bulk density ρ are constant, so that (3.1a) reduces to the incompressibility condition

∇·u = 0. (3.2)

In reality, granular materials are not incompressible, and a static granular material under-
goes Reynolds dilatation when subjected to a shear (da Cruz et al. 2005). Nonetheless,
(3.2) appears to be well-supported experimentally for steady chute flows (GDR MiDi
2004). Figure 4 of Barker et al. (2017) shows that the corrections due to compressibility
are small except at the free surface. In this article, we are interested in the dynamics at
the base of the flow, away from the free surface, so for the analysis in §4 we assume that
(3.2) holds. We note, however, that compressibility is present in our DPM simulations,
as will be seen in §5.1.

As noted in §1, the problem is not yet closed as we have not yet specified a constitutive
relation relating the stress tensor σ to the velocity field u(x, t), and boundary conditions
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on the fields. No universally valid constitutive relation is known for dry granular flows, but
the µ(I) rheology (Jop et al. 2006) is the most commonly-used model of dense granular
flows (Andreotti et al. 2015). We summarise it below using our notation, which is based
on that of Gray & Edwards (2014).

Under the µ(I) rheology, the stress tensor consists of an isotropic part due to pressure
p = p(x, t), and a deviatoric part due to friction. The pressure field is determined from the
incompressibility condition (3.2). Similar to the Coulomb friction model, the deviatoric
stress has magnitude µp, where µ is a coefficient of friction, and the deviatoric stress acts
in the direction that opposes the strain rate. The full stress tensor is therefore given by

σ = p (−1 + µs) , (3.3)

where 1 is the identity tensor and s = D/||D|| is defined as the ‘shear direction tensor’,
with D = (∇U +∇UT)/2 being the strain rate tensor, and the magnitude of a rank 2

tensor defined as ||T || =
√

1
2 trace (T 2). Putting the constitutive relation (3.3) into the

momentum equation (3.1b) gives

ρ
Du

Dt
= ρg −∇ p+∇· (µps) , (3.4)

which is analogous to the Navier–Stokes equations for a Newtonian fluid.
The µ(I) rheology is named for its assertion that the coefficient of friction µ is a

function solely of the inertial number I, defined by

I =
2d||D||√
p/ρ

, (3.5)

where d is the mean diameter of the grains (and we assume that σd � d, where σd is
the standard deviation of particle diameters). This is in contrast to the basic Coulomb
friction model, in which µ is constant for a given material. The function µ(I) must
be experimentally determined, and depends on the properties of the granular species,
such as shape, size dispersity, and intrinsic material properties such as the coefficient of
restitution and the contact friction. Mathematical expressions for µ(I) are fitting curves
against experimental data, and the most commonly used expression for µ(I), introduced
by Jop et al. (2005, 2006), is

µ(I) = µ1 +
µ2 − µ1

I0/I + 1
(3.6)

for O(1) dimensionless fitting parameters µ1, µ2 and I0. We shall refer to (3.6) as the Jop
fit. Experimental evidence strongly supports an affine dependence of the form µ(I) ∼
µ1 +mI for O(1) values of I, with arctan(µ1) being the dynamic angle of repose of the
material. However, the asymptotic behaviour of µ(I) for I � 1 is not determined by
current experimental evidence (Saingier et al. 2016). We shall show in §4.3 that, in the
granular Blasius problem, the boundary layer thickness and velocity profile depend on
the asymptotic properties of µ(I) for I � 1. Crucially, we shall show in §4.5 that the
asymptotic behaviour embodied in (3.6) does not permit the growing boundary layers
that are observed in DPM simulations. We will therefore contend that we must replace
(3.6) with an alternative expression for µ(I), at least for I � 1.

Writing out (3.4) in components and substituting the appropriate form for σ, one
obtains the equations of motion for steady flow,

u
∂u

∂x
+ w

∂u

∂z
= g sin θ − ∂p

∂x
+

∂

∂x

(
µ(I)psxx

)
+

∂

∂z

(
µ(I)psxz

)
, (3.7a)
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u
∂w

∂x
+ w

∂w

∂z
= −g cos θ − ∂p

∂z
+

∂

∂x

(
µ(I)psxz

)
+

∂

∂z

(
µ(I)pszz

)
, (3.7b)

supplemented with (3.2). Here, the sij are the components of the shear direction tensor.

3.2. Boundary conditions

The equations of motion in §3.1 must be supplemented by boundary conditions on the
base and at the free surface.

The free surface boundary conditions at z = h(x) are very similar to those for a
Newtonian fluid. For a steady flow, the kinematic boundary condition states that

u
dh

dx
= w at z = h(x). (3.8)

When combined with (3.2) and the basal no-penetration condition, discussed below, (3.8)
is equivalent to the conservation of flux (2.1). Given the velocity profile u(x, z), (2.1) can
be used to calculate the evolution of h(x) along the current.

The free surface dynamic boundary condition σ · n = 0 implies that the pressure p
vanishes on the free surface. The pressure appears in the denominator of the definition
(3.5) for the inertial number I; to avoid a singular behaviour for I, one must also impose
the condition that ||D|| = 0.

The lower boundary at z = 0 is rigid, so that the no-penetration condition w = 0
applies everywhere on the boundary. The no-slip boundary condition applies for the
bumpy region x > 0, but slip is allowed over the smooth region x < 0. We must note
that, while the no-penetration condition is a kinematic condition, the no-slip condition is
a dynamic condition and requires some considerations on the geometry of the basal
bumpiness and on the nature of contact forces, especially the frictional interaction
between the grains and the wall (Jing et al. 2016). The statement that the base is located
at z = 0 is an approximation when the base is bumpy, but if the amplitude of the bumps
is O(d), rather than O(H), then the true location of the base may be linearised to z = 0.

Indeed, the problem as stated is locally ill-posed at x = z = 0 due to the infinite
velocity gradient |∂u/∂x| = ∞ there. We shall discuss the applicability of the no-slip
condition in §6.1. For now, we shall note that the DPM simulations in §5 show that the
no-slip condition holds in x > 0, except within a short transition region, in which the
slip velocity decays but does not immediately vanish, as illustrated in figure 6.

4. The depthwise velocity profile

In order to learn about the development of the internal velocity profile of the flow, we
now discuss solutions to the µ(I) equations of motion in the limit of high Froude number
Fr� 1. First, in §4.1 we calculate the flow profiles far upstream and far downstream from
the transitional point x = 0. Then in the following two subsections we study the region
in x > 0 in which the flow transitions between its upstream and downstream profiles,
on account of the newly-imposed no-slip boundary condition. It is here that a boundary
layer develops. We find an approximate solution for the boundary layer velocity profile
in §4.3. Having done that, we shall consider how the properties of the boundary layer
depend on the asymptotic behaviour of the function µ(I) as I → ∞, and in particular
show that the form (3.6) does not permit the formation of a boundary layer.

4.1. Bagnoldian solutions

Consider a shear flow with absolutely no dependence on x. The coarsed-grained velocity
takes the form u = u(z)î, and the pressure p = ρg(h − z) cos θ is exactly lithostatic. In
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this case, the Cauchy momentum equation (3.1b) together with the constitutive relation
(3.3) imply that µ(I) = tan θ everywhere.

Following GDR MiDi (2004), we invert for I, expand using the definition (3.5) and
integrate, obtaining a family of velocity profiles

u(z) = us +
2I(θ)

3d
(g cos θ)1/2

(
h3/2 − (h− z)3/2

)
, (4.1)

where the slip velocity us = u(z = 0) is a constant of integration that parameterises
the family of solutions. In this limit of a parallel shear flow, the value of I is constant
throughout the current and has no dependence on z, but is a function of θ, and we have
denoted it as I(θ) = µ−1(tan θ).

If the no-slip condition is applied at z = 0, then us = 0 and (4.1) becomes the
celebrated ‘Bagnold velocity profile’ or ‘Bagnoldian velocity profile’ (GDR MiDi 2004),
which is analogous to the Nusselt velocity profile of a film of viscous fluid (Ruschak &
Weinstein 2003; Schlichting & Gersten 2017). We shall refer to the more general form
of (4.1) for arbitrary us as a ‘Bagnold-with-slip’ profile. In contrast to the approach for
viscous fluids, we do not yet impose the no-slip condition, since it is possible for grains
to slide or roll along a wall, even if the contact between them be frictional. Nonetheless,
there is a stress between the grains and the wall. As will be shown in §5.2, a slip velocity
is indeed present in x < 0 where the base is smooth. The depth h and the slip velocity
us are related through the condition (2.1) that the flow rate is q, so we may write the
slip velocity as a function of depth:

us =
q

h
− 2I(θ)

5d
(g cos θ)1/2h3/2, I(θ) = µ−1(tan θ). (4.2)

Velocity profiles approximately of the form (4.1) apply when the inertial terms on the
left hand side of (3.7a) are negligible; for these profiles, the flow is governed internally
by a balance between friction and gravity. This is the case sufficiently far from the
transition point at x = 0. An analysis of the depth-averaged equations (1.1) shows
that inertial effects decay downstream over a lengthscale Fr2H. Although the flow is
downstream, the transition affects the flow just upstream of x = 0, and it can be shown
from (1.1) that the upstream influence affects a region of lengthscale Fr−2H; however,
since (1.1) are not valid over streamwise lengthscales smaller than H, we use H as a
looser bound on the lengthscale over which upstream influence is present. Therefore, we
estimate that Bagnold-with-slip profiles (4.1) hold in the upstream region x� −H, and
the far-downstream region x� Fr2H.

The far-upstream and far-downstream profiles differ on account of the no-slip condition
imposed for x > 0 but not for x < 0. Far downstream, the no-slip condition us = 0 applies,
so the velocity field adopts the Bagnold profile and the depth is given by the ‘Bagnoldian
depth’

h = hBag =

(
5dq

2I(θ)(g cos θ)1/2

)2/5

. (4.3)

Meanwhile, far upstream, a slip velocity is present. The flow far upstream has h = H by
definition, and q = HU , so us is given by

us = U − 2I(θ)

5d
(g cos θ)1/2H3/2. (4.4)

We assume that the flow rate is sufficiently high that us > 0. When it is present, the slip
term us in (4.1) adds a uniform speed to the profile. The second term is a velocity gradient
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due to the shear stress from internal friction. This term is of magnitude O(g1/2H3/2/d). In
the limit Fr� 1 with d/H fixed, the first term in (4.4) dominates the second. Therefore,
in this limit, the incident flow may be approximated as a plug flow.

4.2. The transitional region 0 < x� Fr2H
We next consider the transitional region 0 < x � Fr2H. In this region, the inertia

terms on the left hand side of (3.7a) are not as small and can influence the dynamics
of the flow. Therefore, while the far-field dynamics is given by a simple balance between
gravity and friction; the transitional region is also affected by the inertia of the current
that is carried from upstream.

We shall use an approach similar to Prandtl’s analysis of the classical Blasius problem
(Prandtl 1905; Acheson 1990; Schlichting & Gersten 2017), formulated mathematically
as the method of matched asymptotic expansions (Hinch 1991). We divide the flow into
two regions. The ‘outer layer’ is the main body of the flow, which is largely unaffected by
the no-slip condition owing to the inertia of the current. Meanwhile, the newly-imposed
no-slip boundary condition affects a ‘boundary layer’ near z = 0, in which the inertia is
balanced against friction, so that the no-slip condition may be imposed on the velocity
profile.

To the leading order we assume that the presence and growth of the boundary layer has
no effect on the outer flow, and therefore assume that the outer flow retains its incident
depth h = H and upstream slip velocity us given by (4.4). This assumption is needed to
make progress for now, but its validity will be discussed in §4.6 and §6.2. Since the depth
is assumed to remain constant at leading order, the pressure p = ρg(h− z) cos θ remains
lithostatic, and in particular there is no streamwise pressure gradient at z = 0. These p
and us values give matching conditions between the boundary layer and outer problems.

To study the boundary layer, it is expedient to work in terms of nondimensionalised
quantities. We define

(x, z, h) = (Hx̃, εHz̃,Hh̃), (u,w) = (U ũ, εUw̃), (4.5a)

(Dxx, Dxz, Dzz) =
U
H

(
D̃xx, D̃xz, D̃zz

)
=
U
H

(
∂ũ

∂x̃
,

1

2

[
1

ε

∂ũ

∂z̃
+

1

ε

∂w̃

∂x̃

]
,
∂w̃

∂z̃

)
(4.5b)

d = Hδ, p = ρgHp̃, q = HU q̃ (4.5c)

where ε is a scaling for the boundary layer thickness at x = H, which is to be determined.
The actual boundary layer thickness Λ(x) will be proportional to ε but will grow with x.
We assume that ε� 1; this will be verified shortly. Note that, for incompressibility (3.2)
to be satisfied, the perpendicular velocity w must scale as εU .

When these substitutions are made, the incompressibility condition (3.2) reads

∂ũ

∂x̃
+
∂w̃

∂z̃
= 0. (4.6)

The streamwise momentum equation (3.7a) reads

Fr2
(
ũ
∂ ũ

∂x̃
+ w̃

∂ũ

∂z̃

)
∼ sin θ +

1

ε

∂p̃

∂z̃

(
µ− 1

2

dµ

dI
I

)
+

1

ε
p̃

dµ

dI
I
∂2ũ/∂z̃2

∂ũ/∂z̃
, (4.7)
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and the inertial number is

I =
1

ε

δFr

p̃1/2
∂ũ

∂z̃
, (4.8)

when written in terms of these rescaled quantities. Details of the derivation of (4.7) are
given in appendix A. In the above, we have dropped a number of subdominant terms;
in particular, the pressure may be treated as being approximately constant across the
boundary layer, and ∂p̃/∂z̃ = O(ε). The pressure is therefore given by its lithostatic value
from the outer layer, p̃ = cos θ.

We shall refer to (4.7) as the ‘granular Blasius equation’, governing the velocity in the
boundary layer near z = 0 in the transition region. This name reflects its similarity to
the classical Blasius equation,

u
∂u

∂x
+ w

∂u

∂z
= − dp

dx
+

1

Re2
∂2u

∂z2
, (4.9)

governing the boundary layer in the classical problem (Schlichting & Gersten 2017). The
terms on the right hand side of (4.9) represent, respectively, the effect of a pressure
gradient and of viscosity. Comparing with (4.7), we see that gravity plays the role of a
favourable pressure gradient, while friction plays that of an adverse pressure gradient.
Meanwhile, the term in (4.7) containing the second derivative (the last term) has a similar
effect to the viscous term in (4.9), but it is multiplied by a prefactor that is non-constant
but depends on ∂u/∂z̃.

In the absence of a rheology, to discriminate between the relative importance of the
terms in the general equation (4.7) we need to retain all the terms in (4.7). In the next
subsection we shall introduce a rheology (4.10) in which the first two terms of (4.7),
corresponding to the pressure gradient ∂p/∂x in (4.9), become subdominant, giving a
balance between the terms on the left and the final term on the right.

4.3. Similarity solutions for the granular boundary layer

When the streamwise pressure gradient term is removed, the classical Blasius equa-
tion (4.9) admits a similarity solution and predicts a boundary layer that grows with
thickness Λ(x) = (x/Re)1/2. We now discuss analogous results for the granular Blasius
equations (4.6)–(4.8), when suitable approximations are made. Of central importance is
the observation that, of the terms on the right hand side of (4.7), the final ‘viscosity-like’
term is O(1/ε) larger than the other two terms. We first find the boundary layer thickness
scaling ε in terms of the other parameters, in such a way that (4.7) admits a dominant
balance. We do this by considering the sizes of the terms containing µ(I) and dµ/dI.

To make any progress, we must specify the function µ(I) to be used in (4.7). It is
evident from (4.8) that the inertial number is large in the boundary layer, on account
of the O(1/ε) prefactor. This reflects the high shear rate in that layer: the dimensional
velocity must adjust from zero at the no-slip boundary to the outer flow’s O(U) slip
velocity, over the short depth O(εH). The behaviour of solutions to (4.7) are therefore
dependent on the high-I asymptotic behaviour of the function µ(I).

Motivated by the Jop fit (3.6), we consider functions with asymptotic behaviours of
the form

µ(I) ∼ µs +mIα as I →∞, (4.10)

where µs, m and the exponent α are constants, with αm > 0 to ensure that µ(I) increases
with I; indeed,

dµ

dI
I = αmIα > 0. (4.11)
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If α < 0, then µ(I) → µs is bounded as I → ∞; if α > 0, then µ(I) is unbounded.
The asymptotic behavior of (3.6) may be recovered from (4.10) by taking α = −1,
m = −(µ2−µ1)I0 < 0, and µs = µ2. The form (4.10) has the advantage that dµ/dI has
a power-law dependence on I, so that a similarity solution is possible.

Substituting this form for µ(I) and dµ/dI into (4.7), writing I out using (4.8), and
dropping the subdominant terms, we obtain

Fr2
(
ũ
∂ ũ

∂x̃
+ w̃

∂ũ

∂z̃

)
∼ 1

ε1+α
αm cos θ

[
δFr

(cos θ)1/2

]α
∂2ũ/∂z̃2

(∂ũ/∂z̃)1−α
. (4.12)

The boundary layer thickness scale ε may be chosen in terms of the other parameters
that appear. Taking

ε =

αm cos θ

Fr2

[
δFr

(cos θ)1/2

]α1/(1+α)

(4.13)

reduces (4.12) to

ũ
∂ ũ

∂x̃
+ w̃

∂ũ

∂z̃
∼ ∂2ũ/∂z̃2

(∂ũ/∂z̃)1−α
. (4.14)

We must check whether εFr � 1, as this assumption is made in the derivation of (4.7),
given in appendix A. The conditions under which εFr � 1 are established in appendix
B. If α > 0, then it can be shown that εFr � 1 is satisfied either automatically, or in
practice for realistic values of δ and Fr. For α < 0, whether εFr � 1 depends rather
strongly on the value of α and the relative sizes of δ and Fr. As we shall see in §4.5, the
cases α 6 −1 predict nonphysical behaviour for the boundary layer, even if ε� 1.

Supplemented by the incompressibility condition, a similarity solution to (4.14) may be
found, using similar techniques as for the classical Blasius problem. This solution takes
the form

ũ = f ′(ζ), ζ = x̃−1/(1+α)z̃, (4.15)

where f is the solution to the boundary value problem

f ′′′ +
1

1 + α
(f ′′)2−αf = 0, f(0) = f ′(0) = 0, lim

ζ→∞
f ′(ζ) = 1, (4.16)

with the boundary conditions at ζ = 0 imposing the no-penetration and no-slip condi-
tions, and the condition as ζ → ∞ ensuring that the matching condition be satisfied.
The numerical solution to (4.16) with α = 0.34 is shown in figure 2. This value of α is
appropriate for our DPM simulations (see table 1). Note the rescaling on the vertical
axis: when visually inspecting the thickness of a boundary layer from simulation or
experimental results, it is convenient to quote the boundary layer thickness in terms
of the ‘displacement thickness’ ζdispΛ(x), where

ζdisp = lim
ζ→∞

(
ζ − f(ζ)

)
. (4.17)

For α = 0.34, the numerical solution to (4.16) has ζdisp ≈ 4.35.

Reverting to dimensional coordinates, the similarity solution shows that the boundary
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similarity profile for boundary layer (α = 0.34)

Figure 2. Numerical solution to (4.16) for α = 0.34. The vertical axis has been rescaled by
ζdisp ≈ 4.35 to make visual inspection more convenient. The solution was found using the
shooting method, with f ′′(0) ≈ 0.164.

layer thickness Λ(x) is given by

Λ(x) = εH
(
x

H

)1/(1+α)

. (4.18)

Moreover, from (4.13), we have

ε ∝
(
dαg1−α/2U−(2−α)H1−3α/2

)1/(1+α)
, (4.19)

after dropping O(1) nondimensional constants, and so

Λ(x) ∝
(
dαg1−α/2U−(2−α)H1−α/2x

)1/(1+α)
. (4.20)

In the next two subsections we will explore two specific cases for the exponent α.

4.4. The case α = 1

As previously mentioned, the value of α is a fitting parameter for empirical data on
the behaviour of the function µ(I). The case α = 1 is not necessarily consistent with any
particular granular material, but we consider it here for demonstration purposes, since
the above discussion is particularly simple in this case.

Suppose that α = 1, so that µ(I) takes the affine form

µ(I) ∼ µs +mI as I →∞. (4.21)

The boundary layer equation (4.12) reduces to

ũ
∂ ũ

∂x̃
+ w̃

∂ũ

∂z̃
∼ ∂2ũ

∂z̃2
. (4.22)

This takes exactly the same form as the classical Blasius equation (4.9) for zero stream-
wise pressure gradient. The boundary layer thickness scale ε is calculated from (4.13)
as

ε =

[
m(cos θ)1/2δ

Fr

]1/2
,
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and the boundary value problem (4.16) becomes

f ′′′ +
1

2
ff ′′ = 0, f(0) = f ′(0) = 0, lim

ζ→∞
f ′(ζ) = 1, (4.23)

which governs the velocity profile of the classical Blasius boundary layer in the absence
of a pressure gradient (Prandtl 1905; Acheson 1990). The boundary layer thickness Λ(x)
is given by

Λ(x)/H = εx̃1/2

=
1

(cos θ)1/4

(
mδ

Fr
x̃

)1/2

Λ(x) = (Hx/ReGB)1/2. (4.24)

Here

ReGB =
Fr(cos θ)1/2

mδ
=
UH1/2(cos θ)1/2

mg1/2d
,

which we term the ‘granular Blasius Reynolds number’, plays the role that had been
played by the Reynolds number in determining the boundary layer thickness in the
classical problem.

In summary, the µ(I) rheology with the linear asymptotic behaviour (4.21) predicts a
boundary layer with the same profile and the same x1/2 scaling as the classical Blasius
boundary layer, in the transitional region 0 < x � Fr−2 where the outer layer may be
treated as uniform.

4.5. The cases α 6 −1

The case α = −1 is the asymptotic behaviour of the Jop fit (3.6). However, in contrast
to the α = 1 case in the previous subsection, the cases α 6 −1 do not give physically
reasonable similarity solutions for the boundary layer profile.

With α = −1, the exponent of x in (4.18) takes the undefined value of 1/0. Moreover,
for α < −1, the boundary layer thickness (4.18) decays with x. This behaviour is
qualitatively distinct from the solution found in the preceding subsection, from the results
of DPM simulations, and from what we might intuitively expect, in which the boundary
thickness grows with x. The non-existence of physically-realistic similarity solutions for
α 6 −1 should nonetheless be interpreted with caution: the non-existence of a similarity
solution does not imply that no solution exists at all.

Further investigation shall be needed to determine whether the cases α 6 −1 admit any
non-self-similar solutions that correctly describe the boundary layer growth. Although
the form (3.6) was chosen as a convenient fitting curve, and although it might have
seemed reasonable that the exact mathematical form of such a fitting curve should have
no effect on the qualitative behaviour of the system, the analysis of the present section
shows that this may not be the case. Therefore, future work should also aim to establish
why the non-existence of a similarity solution should be specific to the case α = −1.

4.6. Evolution of the shape factor

As discussed in §1, our motivation for this work was to study the evolution of the
velocity profile along the current after a point of transition, and in particular to find the
evolution of the shape factor χ, defined in (1.2). For a fixed flow rate q, the shape factor
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may be written as

χ =
h(x)

q2

∫ h(x)

0

u(x, z)2 dz. (4.25)

In the preceding subsections we have given asymptotic descriptions for the velocity profile
throughout the current for Fr2 � 1, which may be summarised as follows. The incoming
flow’s velocity profile is Bagnold-with-slip. For high Fr, the slip velocity is large compared
to the Bagnoldian velocity, and the incident profile is approximately a plug flow, with
χ ∼ 1. The shape factor increases throughout the transitional regime 0 < x� Fr2 as the
velocity profile evolves between the far-upstream and far-downstream behaviours. Within
this transitional region, the velocity profile may be divided into a boundary layer, in which
basal friction resists the inertia of the incident flow, and an outer layer. The boundary
layer has a self-similar profile (§4.3) with a thickness that grows according to (4.18).
The outer layer initially remains plug-like, but experiences a perturbation flow from the
growth of the boundary layer, described in §6.2. Eventually, the boundary layer saturates
as its thickness becomes comparable to that of the whole current. After saturation, the
entire current is then governed by a balance between basal friction and gravity, with the
inertia of the incident flow having been spent. The velocity profile is then Bagnoldian
without slip, and so χ→ 5/4 as x→∞. As illustration, figure 8 illustrates the evolution
of velocity profiles using data from our DPM simulations, described in §5.

An exact formula for the growth of the shape factor cannot be obtained without
calculating the perturbation to the outer flow induced by the boundary layer. Following
the notation of Tsang et al. (2018), let the perturbation flow at leading order in ε be
denoted as (εu(1), εw(1)), and the perturbation depth and pressure as εh(1) and εp(1),
respectively. These perturbations were calculated for a Newtonian current in Tsang et al.
(2018): in that problem, w(1) satisfies ∇2 w(1) = 0 and exact solutions may be found in
terms of Fourier integrals and special functions. The same calculation under the µ(I)
rheology is outside the scope of the present article, as the perturbation variables here
satisfy a more complicated system of equations, given in appendix C, which cannot be
solved analytically. The equations are nonetheless semilinear, and by scaling arguments
we may estimate the growth of χ from the approximate solution found in §4.3. The
boundary layer thickness (4.24) and the incompressibility condition (4.6) together imply
that the perpendicular displacement velocity from the boundary layer has magnitude

εw(1) = O
(
UΛ(x)/x

)
= O

(
ε
(
x/H

)−α/(1+α))
.

This displacement velocity is transmitted into the outer flow w(1). By (3.2), the stream-
wise perturbation flow in the outer layer is of magnitude

εu(1) = O
(
εw(1)x/H

)
= O

(
ε
(
x/H

)1/(1+α))
,

this perturbation being negative as the flow is decelerating. The kinematic free surface
boundary condition (3.8) implies that

h′(x) = O
(
ε
(
x/H

)−α/(1+α))
, so that h(x)/H = 1 + cε

(
x/H

)1/(1+α)
+ o(ε),

for some constant c. Together, these imply that

χ− 1 ∝ ε
(
x/H

)1/(1+α)
, (4.26)

as the incident flow has shape factor 1, assuming that the Froude number is high enough
that the slip velocity dominates any internal profile.
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Figure 3. A sketch (not to scale) of the setup of DPM simulations.

Although we do not have the constant of proportionality, this knowledge of χ is
nonetheless useful for improving a depth-averaged model (1.1b). Using (4.26), u2 may be
expressed as

u2 =
(

1 + cε
(
x/H

)1/(1+α))
u2, (4.27)

where c is the unknown constant of proportionality. This result may be useful for depth-
averaged modelling of more general topography in which an abrupt change in basal
roughness is present.

5. DPM simulations

The continuum models developed above may be validated by comparison with em-
pirical results. It is difficult to obtain information about the internal structure of a
velocity profile in a laboratory experiment, so we resort to discrete particle method
(DPM) simulations (O’Sullivan 2014). For this we use the software package MercuryDPM
(Weinhart et al. 2017; Thornton et al. 2013, 2012; Weinhart et al. 2012).

We present a series of DPM simulations in two dimensions, using the setup sketched in
figure 3. The particles are introduced from a reservoir by means of a recirculating system
known as a ‘Maser’ (Denissen et al. 2019; Weinhart et al. 2017). The Maser consists of
two edges, separated by a lengthM, marked in figure 3 as a pair of repeat signs. When a
particle is introduced at the right hand edge, leaving the reservoir, a copy of the particle
is introduced at the left hand edge. The speed of the particles inside this reservoir is kept
constant by applying a drag force that counteracts the acceleration due to gravity. The
slope θ, the depth of the reservoir and the incident speed are varied.

The reservoir is placed on a smooth boundary at a distance 3M upstream of the
transition point x = 0. Particles are deleted as they cross the boundary at x = 50M:
this is chosen to be at least 2.5Fr2H for all the cases that we study. This deletion boundary
influences the flow immediately upstream of it, but convergence studies show that,
provided Fr is sufficiently high, the flow towards the end of the chute is supercritical, and
so the effects from the deletion boundary are localised. Since we are instead interested in
the region near the transition, we are not concerned as to whether the deletion boundary
faithfully represents the end effects of a chute flow.

In these simulations, the depths of these currents are usually H ≈ 50d. A smaller value
of d/H would make the continuum approximation more appropriate, but this was too
computationally costly. The bumpy base z = 0 for x > 0 is generated by fixing half-discs,
all of diameter d =M/30 and of the same material as the moving discs, to the base. The
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nth particle forming the rough base (n = 1, 2, 3, . . . ) has its centre at

(xn, zn) =

(
4dn,

d

2

[
tanh(xn/M)− 1

])
, (5.1)

so that they are spaced equally in the x-direction. The ‘mollification’ provided by the
tanh profile partially addresses the ill-posedness mentioned in §3.2: instead of imposing
a sudden no-slip condition, the roughness is gradually introduced so that the flow slows
down gradually, as shown in figure 6 and discussed in §5.2.

The value of U is defined as the maximum slip velocity in the region x < 0, and
the value of H is defined as the depth of the current at that position. Note that U
and H depend on the distance of the reservoir from the transition point, since the flow
accelerates and thins in the region x < 0. The depth and velocity in the reservoir may
be controlled exactly, but H and U are controlled only indirectly.

In these simulations, we shall work in units in whichM = 1 and g = 1; in these units,
the time unit is (M/g)1/2. The simulations reach a quasi-steady state after running for
a duration of T = 45. They are then allowed to run for a further duration ∆T = 40
in this steady state, during which time-averaged quantities were computed (sampled at
intervals of 0.5). To verify that the flow is quasi-steady, the variations of h and χ with
time, sampled at a particular point x = 10, are shown in figure 4 for four different
runs. Although the flow is quasi-steady, there is some variability with time, which can
be quantified as a Reynolds stress (Hinze 1975), defined in appendix D. Reynolds stress
has the same dimensions of momentum flux. As we show in appendix D, the trace of the
Reynolds stress is small compared to the time-averaged momentum flux, confirming that
the assumption of quasi-steadiness is acceptable.

In §5.1 we state the details of the particle-to-particle interactions, and determine the
function µ(I) for these particles, as well as assessing the incompressibility assumption
(3.2). In §5.2 we check the validity of the no-slip boundary condition. In §5.3, we verify
that the DPM simulations demonstrate the predicted self-similarity in the boundary layer
when the Froude number is sufficiently high. Finally, in §5.4, we consider the evolution
of the outer flow, and therefore the growth of the shape factor.

5.1. Material properties

Particle interactions in these simulations are governed by a linear spring-dashpot
(viscoelastic) model, with a coefficient of restitution of 0.1. There are no grain-to-grain
tangential forces: energy is dissipated through the inelasticity of grain-to-grain contacts,
rather than by friction. The coefficient of restitution is rather lower than that of real
collisions between sand or glass, but the increased dissipation compensates for the two-
dimensional geometry of the simulations, in which fewer collisions occur compared to
a three-dimensional system. Rajchenbach (2005) has noted that in a dense flow, the
rheological behaviour is independent of the coefficient of restitution, due to the large
number of contacts and because grains remain in contact with each other for long periods
of time.

In order to compare simulation results against the predictions of the µ(I) rheology,
we need to determine the function µ(I) for the materials used in these simulations. We
note that the quantity µ(I) expresses the bulk friction of the material, which is nonzero
despite individual contacts being frictionless. The calibration of µ(I) is based on a setup
by GDR MiDi (2004). We let the discs flow under gravity in a sloped periodic domain
with a bumpy base, and measure the steady flow rate that develops as a function of the
slope θ. In a steady flow, µ(I) = tan θ and the inertial number I may be estimated from
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Figure 4. A plot of (a) h/M and (b) χ against time (g/M)1/2t, sampled at x = 10M, for
four different settings of θ and H.

the flow rate and the depth of the current, according to the formula

I =
5dq

2(gh5 cos θ)1/2
,

which appears as equation (19) in GDR MiDi (2004). We perform this test for different
values of θ. The results are shown in figure 5, together with linear (4.21), Jop (3.6) and
power-law (4.10) fitting curves, fitted for I > 0.5. The fitting parameters are shown in
table 1. We observe from figure 5 that all three curves agree well in the I > 0.5 region.

We also examined the dependence of the packing fraction φ on I in these simple tests.
As expected, φ decreases with I, due to Reynolds dilatation. For the granular Blasius
problem, the DPM results shown in figure 11 indicate that φ is approximately constant,
except in a localised region at the bottom of a flow for 0 6 x < 0.5FrH: as shown in
figure 6(b), this corresponds with the position before which the no-slip condition does
not apply well. There appears to be no residual effect for x > 0.5FrH, after which the
approximation of constant φ is reasonable. Note also that a non-constant value of φ
may be compatible with incompressibility (3.2), provided that φ remains constant on
streamlines so that (u · ∇)φ = 0.

5.2. Validating the no-slip boundary condition

Whether or not the no-slip condition in fact applies to the base of a granular current
flowing over rough or bumpy topography is a complicated issue, which we discuss in more
detail in §6.1. For the present, we plot the slip velocity against position in figure 6, for
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Figure 5. (a) Results from calibration tests (see text) for the function µ(I) for the particles
used in our DPM simulations, together with linear (4.21), Jop (3.6) and power-law (4.10) fitting
curves, fitted for I > 0.5. The fitting parameters are shown in table 1. (b) The packing fraction
φ against θ, together with the linear best fit φ(I) = 0.81− 0.19I for I > 0.5.

fit equation parameters

linear (4.21) (µs,m) = (tan 19.57◦, 0.20)
Jop (3.6) (µ1, µ2, I0) = (tan 16.83◦, tan 54.08◦, 3.25)

power law (4.10) (α, µs,m) = (0.34, 0, 0.56)

Table 1. Fitting parameters for the three fits to µ(I), as shown in figure 5(a).
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Figure 6. Slip velocity us(x) plotted against x, for various values of U and therefore of Fr. The
velocity is scaled against U . The horizontal coordinate x is scaled in (a) against H, and in (b)
against FrH. See text for discussion.



The granular Blasius problem 19

four simulations in which the incident speed U was varied. We verify that slip is indeed
possible for x < 0, and that the no-slip condition is approximately satisfied for x > 0 far
from the transition point. We note however that the no-slip condition is violated in that
region of x > 0 just downstream of the transition. This is owing both to the mollified
basal roughness (5.1), and to the inertia carried by the incident grains.

We see from figure 6(b) that the slip velocity decays to almost zero for x ≈ 0.5FrH.
The no-slip condition is not applicable just to the right of x = 0. This, together with
the behaviour of φ discussed in §5.1, suggests that the analysis of §4 does not apply
in 0 6 x < 0.5FrH, but we expect the similarity solutions found in §4.3 to hold for
0.5FrH 6 x 6 Fr2H.

5.3. Evolution of the velocity profile

We first discuss the velocity profiles in the boundary layer region. While there is no
definite cutoff between the boundary layer and the outer layer, for the sake of description
we focus on the region ζ/ζdisp < 2; this is reasonable because 2ζdisp is approximately the
90th percentile of f , as f(2ζdisp) ≈ 0.9. Figure 7 shows the velocity profiles from a set of 8
DPM simulation in which θ and U were varied. In each panel of figure 7 we plot the scaled
velocity u/U against the similarity variable ζ/ζdisp = z/(ζdispΛ(x)) at different values of x
along the flow, where Λ(x) is calculated from (4.18). We mark also the predicted similarity
profile f ′(ζ) (continuous; black online) and the profiles at x = 0.5FrH (dot-dash; blue
online) and at x = Fr2H (dotted; blue online).

In most of the panels, the profiles at x = 0.5FrH and at x = Fr2H collapse very well
onto each other, indicating that the boundary layer velocity profiles between these two
positions exhibit the predicted self-similarity. Except for panels (a) and (e), which have
the two lowest Froude numbers, the profiles near x = 0.5FrH also align well with the
predicted similarity profile f ′(ζ). Subsequent profiles begin to diverge from the black
curve, especially after x = Fr2H, as the boundary layer thickness grows and becomes
comparable with the depth of the current, interacting with the free surface. With the
lower Froude numbers, the fit is less good: the assumption that Fr � 1, made in §4.3,
does not apply very well.

In the outer layer ζ/ζdisp > 2, the velocity is approximately uniform at the more
upstream (darker curves; red online) positions, especially at higher Froude numbers, but
this is less so at the more downstream (lighter curves; orange online) positions, where the
division into a boundary layer and an outer layer becomes invalid. The velocity in the
outer layer does not remain constant, but gradually increases. This is due to streamwise
acceleration due to gravity, which is greater in panels (e)–(h) than in panels (a)–(d), due
to the larger value of θ.

For the simulations presented in figure 7, we show also the evolution of the velocity
profile in figure 8, in which we plot u/u against a scaled perpendicular coordinate η =
z/h(x). In each panel, the current progresses towards a Bagnoldian profile (continuous
black curve), but this is not reached by the position x = Fr2H or even by x = 2.5Fr2H.
This suggests that the decay of the incident inertia takes place over a longer lengthscale
than the O(Fr2H) that would be predicted by depth-averaged models and our scaling
arguments in §4.1.

5.4. Evolution of the shape factor

As mentioned in §1, each velocity profile may be characterised by the shape factor χ.
The evolution of χ along the current in the various simulations is shown in figures 9 and
10.
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Figure 7. (Colour online) Velocity profiles from a set of 8 DPM simulations in which θ and
U were varied. Each panel shows the streamwise velocity profile u/U (horizontal axis) plotted
against the similarity variable ζ/ζdisp = z/(ζdispΛ(x)) (vertical axis) at various values of x (see
text). The thin coloured lines go from x = 0.5FrH (red) up to x = 2.5Fr2H (yellow) at intervals
of 0.1Fr2H. (Not all panels reach this distance, due to the finite domain length.) The blue
dot-dashed line shows the profile at x = 0.5FrH, and the blue dotted line shows the profile at
x = Fr2H. The continuous black line indicates the predicted similarity profile f ′(ζ).



The granular Blasius problem 21

0 0.5 1 1.5

0

0.5

1

η
=

z
/h

(x
)

(a) θ = 12 ◦, H/d = 50.2, Fr = 2.34

0 0.5 1 1.5

0

0.5

1

(b) θ = 12 ◦, H/d = 50.7, Fr = 3.09

0 0.5 1 1.5

0

0.5

1

η
=

z
/h

(x
)

(c) θ = 12 ◦, H/d = 50.7, Fr = 3.87

0 0.5 1 1.5

0

0.5

1

(d) θ = 12 ◦, H/d = 50.7, Fr = 4.64

0 0.5 1 1.5

0

0.5

1

η
=

z
/h

(x
)

(e) θ = 16 ◦, H/d = 49.7, Fr = 2.38

0 0.5 1 1.5

0

0.5

1

(f) θ = 16 ◦, H/d = 50.2, Fr = 3.12

0 0.5 1 1.5

u(x, z)/u(x)

0

0.5

1

η
=

z
/h

(x
)

(g) θ = 16 ◦, H/d = 50.6, Fr = 3.87

0 0.5 1 1.5

u(x, z)/u(x)

0

0.5

1

(h) θ = 16 ◦, H/d = 50.7, Fr = 4.64

Figure 8. (Colour online) Evolution of the velocity profiles from a set of 8 DPM simulations
in which θ and U were varied. Each panel shows the streamwise velocity profile u/U (horizontal
axis) plotted against a scaled coordinate η = z/h(x) at various values of x. The thin coloured
lines go from x = 0 (red) up to x = 2.5Fr2H (yellow) at intervals of 0.1Fr2H. The blue lines
are the profiles at x = 0 (dashed), x = 0.5FrH (dot-dashed) and x = 2.5Fr2H (dotted). The
continuous black line indicates the Bagnold velocity profile (4.1) with us = 0.
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Figure 9. (Colour online) The evolution of the shape factor for two settings for θ and two
settings for H, with U ≈ 3. (a) Shape factor χ against x/(Fr2−αH). (b) A log-log plot of χ− 1
against x/(Fr2−αH) for x > 0, with triangles indicating the power law predicted in (5.3).

The behaviours for a fixed value of U ≈ 3 and two settings for each of θ (colours) and
H (line styles) are shown in figure 9(a). In each case, the incident current in x < 0 has
χ ≈ 1, as expected. The same data is shown as a log-log plot of χ−1 against x/(Fr2H) in
figure 9(b), which allows a comparison against the predicted power law growth for χ− 1
(4.26). For each setting of H, the two curves for that setting (with the same line style)
collapse onto each other in the region 10−1Fr2H < x < Fr2H; moreover, all four curves
are approximately parallel to each other.

In each of the four cases, the shape factors tend towards constants χ∞ as x → ∞,
indicating that velocity profiles become saturated. For the deeper currents (dotted lines),
χ∞ ≈ 5/4, appropriate for a Bagnoldian profile: in these simulations, in which H/d ≈ 50,
the current is sufficiently deep that such a profile is adopted. For the shallower currents
(solid lines), χ∞ > 5/4, indicating a profile other than the Bagnoldian one. This excess
is due to the grain size being too large compared to the depth, and we discuss this issue
further in §6.3. The drops in χ near the end of each profile is an artefact from the deletion
boundary at the end of the domain.

In figure 10, we compare the evolutions of χ for four different values of U and therefore
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Figure 10. The evolution of the shape factor for θ = 16◦ and H/d ≈ 50, and four different
values of U , shown as a log-log plot of χ−1 against x/(Fr2−αH) for x > 0. The triangles indicate
the power law predicted in (5.3).

Fr, with θ = 16◦ fixed and H ≈ 50d kept approximately constant. These correspond to
panels (e)–(h) in figures 7 and 8.

Using the formula (4.13) for ε and noting that H and d are fixed, (4.26) predicts that

χ− 1 ∼ constant× Fr(−2+α)/(1+α)(x/H)1/(1+α),

and so

log(χ− 1) ∼ 1

1 + α
log
(
x/H

)
− 2− α

1 + α
log Fr + constant (5.2)

≈ 0.75 log
(
x/(Fr1.66H)

)
+ constant (5.3)

when we set α = 0.34. Therefore, in figure 10 we use a log-log plot of χ− 1 against the
rescaled streamwise coordinate x/(Fr2−αH). We show also the slope that (5.3) predicts.
The curves collapse reasonably well onto each other and match with (5.3). However, as in
§5.3, the lowest Froude number (with Fr = 2.38, continuous line, corresponding to panel
(e)) does not agree as well, as the assumption that Fr � 1 is not sufficiently satisfied
here.

6. Discussion

6.1. Applicability of the no-slip condition

We saw in §5.2 that the basal topography’s transition from smooth to bumpy reduces
and eventually eliminates the slip velocity of the current, but we also saw that the slip
velocity does not immediately vanish when the incoming flow is sufficiently fast. Thus, the
no-slip condition is an appropriate assumption for much of the bumpy region x > 0, but
the two are not equivalent. This is unsurprising from a continuum standpoint, because
the boundary conditions in §3.2 lead to an ill-posedness around the origin (x, z) = (0, 0).
The sudden imposition of the no-slip condition would imply that

∣∣∂u/∂z∣∣ = ∞ at that
point, which by incompressibility would imply a singular value for w. The issue must be
resolved by noting both that the flow is in fact slightly compressible, and that ‘no-slip’,
in a continuum sense, is not synonymous with ‘bumpy base’.

In a continuum model of a granular flow, a no-slip condition is expressed simply as a
boundary condition on the velocity field imposed on a surface; here, the boundary z = 0
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for x > 0. This condition does not come from first principles, and does not necessarily
describe the motion of discrete grains against a wall, when flows are realised either in lab
experiments or in DPM simulations. At the discrete level, an individual grain may be
able to slide or roll along the wall. The problem is comparable to the no-slip condition
for viscous fluids, which also does not follow from first principles but from observations
of fluids. As noted by Acheson (1990), early fluid dynamicists were hesitant to impose
this condition for high Reynolds number flows. As an example, simulations by Morris
et al. (1992) suggest that a dilute viscous gas moving against a smooth wall exhibits a
slip velocity us which can be interpreted as

us ∝ λ
∂u

∂z
∝ λσxz

η
, (6.1)

where λ is the mean free path of the gas molecules, ∂u/∂z is the velocity gradient at the
wall, σxz is the shear stress on the wall, and here η is the dynamic viscosity of the gas
(Hui et al. 1984). The first proportionality in (6.1) was postulated by Maxwell (1879).
The second proportionality comes from the Newtonian law σxz/η ∝ ∂u/∂z, although
‘the viscosity [of a gas] in the Knudsen layer is lower in comparison with the viscosity
in the bulk fluid’ (Fichman & Hetsroni 2005), where the Knudsen layer is the region of
thickness λ from the wall.

For a dense granular flow, whether or not the no-slip condition holds at a wall depends
both on the geometric roughness of the wall and on the intrinsic friction between the
wall and a grain moving against it. All materials have asperities, at the microscopic level,
that provide a frictional resistance to sliding motions. In this article, by ‘roughness’ or
‘smoothness’ we refer to features on lengthscales comparable to the grain size, which give
a geometrical constraint on the motion of grains.

The motion of a single circular grain moving against a geometrically smooth but
frictional wall was considered through discrete simulations in Artoni et al. (2009). There,
the grain was subject to random applied forces that represent the effect of all the other
grains in the system. It was shown that the motion of the grain depends on whether the
applied tangential force exceeds a certain threshold, which is proportional to the friction
between the grain and the wall. It was shown that if the applied tangential force does
not exceed this threshold, then the particle does not move at all; otherwise, the particle
translates intermittently with a positive mean velocity, exhibiting a stick-slip behaviour.

The simulations of Artoni et al. (2009) and Morris et al. (1992) considered only
geometrically smooth walls. When the walls have geometric roughness of amplitude
comparable to the grain size, this greatly reduces the mean free path of any grains
moving against the wall. This effects a no-slip condition by confining grains from rolling
or sliding along the surface. This may happen even if the is no intrinsic friction, as with
the simulations described in this article.

Recent DPM simulations by Bharathraj & Kumaran (2017) have shown that for
currents flowing over frozen-particle bumpy bases, the no-slip condition applies if and
only if the amplitude of the bumpiness exceeds a certain critical value. Jing et al. (2016)
have proposed a nondimensional parameter that quantifies the roughness of a frozen-
particle base, in terms of the relative sizes of the diameters of the flowing and basal
particles, and the density and geometric arrangement of the basal particles.

However, despite the large volume of work studying boundary conditions on granular
flows using discrete particle methods (Artoni et al. 2009; Morris et al. 1992; Bharathraj
& Kumaran 2017; Jing et al. 2016), it is unlikely that any continuum model will ever
satisfactorily describe the decay of slip velocity immediate at a transition in basal
topography, as seen in figure 6. We found that this decay depends sensitively on the
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precise nature of the transition, in preliminary simulations in which we did not use
the mollified transition (5.1), but instead a step change in bumpiness (equivalent to
substituting tanh(xn/M)− 1 with 0 in (5.1)).

6.2. Perturbation to the outer flow

In order to make progress in §4.2, we assumed that the outer flow retains its incident
velocity and pressure, with no streamwise pressure gradient. In reality, the streamwise
deceleration in the boundary layer leads to a displacement velocity w > 0 in the depthwise
direction, which induces a perturbation to the outer flow, causing the outer flow to slow
down and the free surface to be displaced upwards as x increases. This is in contrast to
the classical Blasius problem, in which the outer flow is imposed and its behaviour is not
coupled to that of the boundary layer.

When analysing the boundary layer, neglecting the perturbation to the outer layer is
appropriate only if this perturbation has a subdominant effect on the boundary layer.
For a Newtonian current under a free surface with Reynolds number Re and Froude
number Fr, the perturbation was calculated in Tsang et al. (2018), and was found to be
small in the limit Re → ∞ with Fr fixed, but not if the Froude number is sufficiently
close to 1. We have not shown that the same is true in the granular case, since we
have not calculated the perturbation to the outer flow. Nonetheless, the boundary layer
self-similarity (4.15) implied by this assumption appears to match well with the results
of DPM simulations at Froude numbers Fr > 3.07 (see figure 7). This is reasonable,
since, informally, a high Froude number flow carries the ‘information’ from far upstream.
Indeed, in both problems, the Froude number represents the speed of the characteristics
(Evans 2010) in the depth-averaged governing equations.

In the transitional region containing the boundary layer, the scaling laws (4.26) and
(4.27) for the shape factor appear to be supported by the results of figures 9 and 10, even
though they were obtained from simple arguments that did not require the computation of
the perturbation to the outer flow. However, such a computation would give the constant
of proportionality c that appears in (4.27). This constant c could be found by solving the
system of equations that govern the perturbation to the outer flow, given in appendix C.

6.3. Alternative rheological models

The analysis above focused on the µ(I) rheology and straightforward generalisations,
but this problem could be studied under different rheological models of dry granular
flows. The granular boundary layer equation (4.7) resembles the classical boundary layer
equation (4.9) on account of the second derivative ∂2u/∂z̃2 in the final terms of both
equations. This term appears in obtaining (4.7) from (3.7a) because the shear stress term
σxz = µ(I)ptxz has a dependence on ∂u/∂z through the inertial number I. We therefore
expect a similar structure of equations in any rheology where the shear stress depends
on the local strain rate. For such rheologies, it will be possible to perform boundary layer
analyses similar to that of §4. Most rheological models are strain rate-dependent, with
a notable exception being the Mohr–Coulomb rheology (Andreotti et al. 2015), in which
σxz = µptxz for a constant coefficient of friction µ.

Under the µ(I) rheology, we assume that the grain size d, or its nondimensionalised
value δ = d/H, affects the system only through its appearance in the inertial number
(3.5). While δ affects the boundary layer thickness (4.24), it is treated merely as a material
parameter. The µ(I) rheology is ‘local’, in the sense that the stress tensor at a point
(3.3) depends only on the local values of the pressure and shear rate, and not on their
derivatives. Perhaps unsurprisingly, experimental work has shown that this approach
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is unsatisfactory when there are gradients over distances comparable to d (Kamrin &
Henann 2015). In particular, inclined chute flows stop if the depth h falls below a certain
value hstop(θ) = O(d). In contrast, the µ(I) rheology gives excellent comparisons with
experiments when h� hstop (or equivalently when δ � 1), but not when the flow is not
sufficiently deep compared to the grain size. This has motivated the development of a
number of ‘nonlocal’ constitutive relations, which modify the µ(I) rheology by allowing
the stress tensor to depend on gradients of I over lengthscales proportional to d. Such
models include the ‘cooperative model’ (Kamrin & Henann 2015; Henann & Kamrin
2013) and the ‘gradient model’ (Bouzid et al. 2013).

Under the cooperative model, the stress tensor σ depends not only on I, but also on
∇2I. Since I in turn depends on velocity gradients, ∇·σ gives a term depending on
∇4u in (3.1b). This extra term represents nonlocal effects, and it could give rise to an
‘inner-inner layer’, that is, a second boundary layer with a thickness proportional to the
grain size, in addition to the one that has been studied in this article.

The aforementioned models all concern dry granular flows where the medium between
grains has no dynamical importance. For mixtures of particles in water, Longo & Valiani
(2014) have conducted an experimental study of a similar problem, involving a three-
dimensional free-surface flow onto a blade that is aligned vertically and along the flow.
As in the classical and granular Blasius problems, the blade in Longo & Valiani (2014)
imposes a no-slip condition that creates a boundary layer near the blade. These boundary
layers are also self-similar, with a different profile from that of the classical Blasius
boundary layer or those discussed in this paper, owing to the different rheological
properties of the suspensions.

7. Conclusions

We have considered a steady granular current flowing down a slope. The basal condition
is free-slip in the upstream region x < 0 but no-slip for x > 0. This problem is a
prototypical example of a small-scale topographical change affecting a granular current.
The change in basal boundary condition creates a change in the internal velocity profile,
which cannot be captured under a depth-averaged model.

The sudden imposition of a no-slip condition makes this problem analogous to the
classical Blasius problem, but the Navier–Stokes equations of the classical problem are
replaced by the µ(I) rheology for a granular material. The µ(I) rheology predicts that
for a rapid incident flow, the velocity profile is asymptotically plug-like for x→ −∞ and
Bagnoldian for x → ∞. As in the classical Blasius problem, the no-slip condition for
x > 0 induces a distortion in the velocity profile, in a boundary layer initially localised
near the base z = 0, but whose thickness grows along the streamwise direction.

We have used a Prandtl-like analysis of the µ(I) equations to study the development
of the boundary layer in a transitional region x� Fr2H. We showed that the boundary
layer thickness and velocity profile are determined by the asymptotic behaviour of µ(I)
as I → ∞, and that the Jop fit (3.6) does not yield a valid boundary layer scaling.
However, certain alternative behaviours of the form (4.10) give self-similar solutions for
the velocity profile in the boundary layer, and the scalings match well with results from
2D DPM simulations.

While it would be interesting to conduct more realistic but computationally more costly
DPM simulations in 3D, we have nevertheless shown that simple simulations in 2D with
H/d ≈ 50 are sufficient to produce boundary layers that give a good agreement with
theory. This agreement opens up the possibility of exploring more complex scenarios.

As we have shown in this work, there are various theoretical aspects of this problem
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that should be considered in the future. More accurate expressions for χ and h(x) might
be obtained by finding the perturbation to the outer flow induced by the boundary layer
(§6.2). Alternative rheological models could give more accurate expressions when the
grain size d is not sufficiently small (§6.3), and the approach taken in the present work
could be used to study boundary layers in other non-Newtonian fluids.

Appendix A. Derivation of the granular Blasius equation (4.7)

Here we derive (4.7) from (3.7a, 3.7b). Under the scalings (4.5a) for the boundary layer,
the strain direction tensor s is greatly simplified at leading order in O(ε), with

sxx = O(ε), szz = O(ε), sxz = szx = 1 +O(ε2). (A 1)

From this we estimate the size of each term of (3.7b):

εFr2
(
ũ
∂w̃

∂x̃
+ w̃

∂w̃

∂z̃

)
= − cos θ − 1

ε

∂p̃

∂z̃
+
∂(µ(I)p̃sxz)

∂x̃
+
∂(µ(I)p̃szz)

∂z̃
(A 2)

⇒ εFr2
(
ũ
∂w̃

∂x̃
+ w̃

∂w̃

∂z̃

)
= −1

ε

∂p̃

∂z̃
+O(1) (A 3)

⇒ O
(
ε2Fr2

)
= − ∂p

∂z̃
+O(ε). (A 4)

We postulate εFr � 1, but must later confirm the validity of this assertion (see §4.3
and appendix B). The assumption Fr � 1 therefore requires ε � 1. Then according to
(A 4),

∣∣∂p̃/∂z̃∣∣ is small in the boundary layer, so that the pressure across the boundary
layer being given by the pressure from the outer flow, which is the lithostatic pressure
p̃ = h̃ cos θ. If the depth h is taken to be locally constant (as discussed in the main
text), then ∂p̃/∂x̃ vanishes as well, so that, to leading order, p is constant throughout
the boundary layer. By definition, the depth of the incident flow is H, so h̃ = 1 and we
write p̃ = cos θ.

We now consider (3.7a). When the rescalings (4.5a) are applied, (3.7a) becomes

Fr2
(
ũ
∂ ũ

∂x̃
+ w̃

∂ũ

∂z̃

)
= sin θ +

1

ε

∂(µ(I)p̃)

∂z̃
+O(ε), (A 5)

= sin θ +
1

ε
µ(I)

∂p̃

∂z̃
+

1

ε
p̃

dµ

dI

∂I

∂z̃
(A 6)

the other terms being subdominant. To proceed, we calculate the inertial number. To
leading order, the magnitude of the shear rate tensor is

||D̃|| = 1

2ε

∂ũ

∂z̃
+O(ε),

so the inertial number (3.5) is

I ∼ δFr

εp̃1/2
∂ũ

∂z̃
,

and

1

I

∂I

∂z̃
∼ − 1

2p̃

∂ p̃

∂z̃
+
∂2ũ/∂z̃2

∂ũ/∂z̃
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Expanding the derivative on the right hand side of (A 5) yields

Fr2
(
ũ
∂ ũ

∂x̃
+ w̃

∂ũ

∂z̃

)
∼ sin θ +

1

ε

∂p̃

∂z̃

(
µ− 1

2

dµ

dI
I

)
+

1

ε
p̃

dµ

dI
I
∂2ũ/∂z̃2

∂ũ/∂z̃
, (A 7)

which is (4.7), as required.

Appendix B. Conditions under which εFr� 1

The derivation of (4.7), given in appendix A, is valid only if the boundary layer
thickness scale ε satisfies εFr� 1, which was to be checked a posteriori.

The boundary layer thickness scale for ε was given in (4.13). When it is stripped of
O(1) constants, we have

ε ∝
(
δαFr−(2−α)

)1/(1+α)
,

and so

εFr ∝
(
δαFr2α−1

)1/(1+α)
. (B 1)

Assuming that α > 0, the required condition for εFr� 1 is that

δαFr2α−1 � 1. (B 2)

We note first that (B 2) is satisfied automatically if α = 0 or α = 1/2, provided that
δ � 1 and Fr > 1. For intermediate values 0 < α < 1/2 (B 2) becomes

Fr� δα/(1−2α),

which is automatically satisfied provided that δ � 1, as we insist that Fr > 1.
If instead α > 1/2, (B 2) becomes

Fr� δ−α/(2α−1). (B 3)

Our analysis is invalid if Fr is large enough to violate (B 3), but since δ � 1 the upper
bound is large and the above condition is almost always satisfied in practice. For example,
for α = 1, we have α/(2α− 1)1, and if δ = 1/30 then (B 3) holds up until Fr ≈ 30.

We also consider the cases α < 0. For −1 < α < 0, (B 1) implies that

Fr� δα/(1−2α). (B 4)

This imposes a large lower bound on Fr. On the other hand, for α < −1, (B 1) is
equivalent to

Fr� δα/(1−2α), (B 5)

which, like (B 2), imposes an upper bound on Fr. Note, however, that the case α < −1
predicts an incorrect behaviour for the boundary layer (see §4.5). Finally, the case α = −1
is singular, owing to the power 1/(1 + α) in (B 1): the inequalities (B 4) and (B 5) have
opposite signs.

To summarise, the condition εFr � 1 is automatically satisfied for 0 6 α 6 1/2. For
realistic values of δ, the condition is usually satisfied for α < −1 or α > 1/2, and not
satisfied for −1 < α < 0.
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Appendix C. Equations governing the perturbation to the outer flow

For simplicity, work in nondimensional units, scaling velocity components u and w by
U , coordinates x, z and h by H, and pressure p by ρgH, and drop tildes. To leading order
in ε, let the outer flow velocity, pressure and depth be

u = u(0)(z) + εu(1), w = εw(1),

p = p(0)(z) + εp(1) h = 1 + εh(1),

where p(0)(z) = cos θ(H− z) is the lithostatic pressure, and u(0)(z) is the Bagnold with
slip profile (4.1) of the incident flow. The shear rate tensor has magnitude

||D|| = 1

2

du(0)

dz
+

1

2
ε

[
∂u(1)

∂z
+
∂w(1)

∂x

]
,

the shear direction tensor is

s =


2ε
∂u(1)/∂x

du(0)/dz
1

1 2ε
∂w(1)/∂z

du(0)/ dz

 , (C 1)

the inertial number is given by

I

δFr
=

(
(p(0))−1/2 − 1

2
ε(p(0))−3/2p(1)

)du(0)

dz
+

1

2
ε

[
∂u(1)

∂z
+
∂w(1)

∂x

] (C 2)

= (p(0))−1/2
du(0)

dz
(C 3)

+ ε

(p(0))−1/2

[
∂u(1)

∂z
+
∂w(1)

∂x

]
− 1

2
(p(0))−3/2

du(0)

dz
p(1)

 (C 4)

=
1

δFr

(
I(0) + εI(1)

)
, (C 5)

and the friction coefficient is

µ(I) = µ(I(0)) + εµ′(I(0))I(1) (C 6)

= tan θ + εµ′(I(0))I(1), (C 7)

all up to o(ε) error terms.

The equations governing the perturbation variables are the linearised momentum
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equations,

u(0)
∂u(1)

∂x
+

du(0)

dz
w(1) = − ∂p(1)

∂x
+ tan θ

∂p(1)

∂z

+
∂

∂z

(
µ′(I(0))p(0)I(1)

)
+ 2p(0) tan θ

∂2u(1)/∂x2

du(0)/ dz
(C 8a)

u(0)
∂w(1)

∂x
= − ∂p(1)

∂z
+ tan θ

∂p(1)

∂x

+ µ′(I(0))p(0)
∂I(1)

∂x
+ 2

∂

∂z

(
∂w(1)/∂z

du(0)/ dz

)
, (C 8b)

together with the incompressibility condition

∂u(1)

∂x
+
∂w(1)

∂z
= 0. (C 8c)

The linearised boundary conditions at the free surface are that

w(1) =
∂h(1)

∂x
,

∂u(1)

∂z
= − ∂w(1)

∂x
, and p(1) = h(1) cos θ at z = 1, (C 9a)

and the basal boundary condition on the perturbation flow is that

w(1) = wdisp(x) = ζdispu
(0)(0)Λ′(x), at z = 0, (C 9b)

where wdisp(x) is the displacement velocity due to the boundary layer.
Although the system (C 8) and (C 9) is semilinear in the perturbation variables,

no further analytical progress is possible, unlike the linear equations that arise for a
Newtonian fluid as given in Tsang et al. (2018).

Appendix D. Density and temperature profiles

Figure 11 shows the profile of the packing fraction φ for the simulations presented in
figures 7 and 8. Figure 12 shows the profile of the granular temperature, defined as the
trace T = trR of the Reynolds stress tensor,

R = 〈φuu〉 − 〈φu〉 〈φu〉
〈φ〉

(D 1)

(Hinze 1975), where angle brackets

〈f〉 =
1

t2 − t1

∫ t2

t1

f(t) dt (D 2)

denote the time-average of a function f . The plots in figure 12 are normalised by T0 =
traceR0, where

R0 =
〈φu〉 〈φu〉
〈φ〉

. (D 3)
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Figure 11. (Colour online) The packing fraction φ for the simulations presented in figure 8.
The coloured lines are defined in the caption of figure 8.
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