
An algebraic perspective on the
convergence of vector-based routing

protocols

Matthew L. Daggitt

Jesus College

This thesis is submitted on December 18th, 2018 for the degree of Doctor of Philosophy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/200999434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An algebraic perspective on the convergence of vector-
based routing protocols - by Matthew L. Daggitt

This thesis studies the properties of vector-based routing protocols whose underlying
algebras are strictly increasing. Strict increasingness has previously been shown to be
both a sufficient and a necessary condition for the convergence of path-vector protocols.

One of the key contributions of this thesis is to link vector-based routing to a much larger
family of asynchronous iterative algorithms. This unlocks a significant body of existing
theory, and allows asynchronous protocols to be proved correct by purely synchronous
reasoning. As well as applying it to routing protocols, this thesis advances the asynchronous
theory in two ways. Firstly it shows that the existing conditions required for convergence
may be relaxed. Secondly it proposes the first model for “dynamic” asynchronous processes
in which both the problem being solved and the set of participants change over time.

The thesis’ attention then turns to models of routing problems, and presents a new
algebraic structure that is simpler and more expressive than the state of the art. In
particular this structure is capable of modelling routing problems that underlie both
distance-vector and path-vector protocols. Consequently these two families of vector-based
protocols may be unified for the first time. The new structure is also capable of modelling
protocols that use path-dependent conditional policy.

Next the work above is used to construct a model of an abstract vector-based protocol.
This is then used in the first proof of correctness for strictly increasing distance-vector
protocols and a new proof of correctness for strictly increasing path-vector protocols.
The latter is an improvement over previous results as it i) proves that convergence is
deterministic ii) does not assume reliable communication between nodes and iii) applies to
path-vector protocols with path-dependent conditional policy. The long standing question
of the worst-case rate of convergence for a strictly increasing path-vector protocol is then
answered by lowering the previous upper bound of O(n!) to a new tight bound of Θ(n2).

Finally all of the work has been formalised in the proof assistant Agda. Not only does
this significantly increase users’ confidence in the validity of the results, the resulting
Agda library may also be used to verify the correctness of protocol implementations. To
illustrate this, a formal proof of correctness is described for a path-vector protocol which
contains many of the features of the Border Gateway Protocol including: local preferences,
communities, an expressive conditional policy language and path inflation.

Declaration

This thesis is the result of my own work and includes nothing which is the outcome of
work done in collaboration except as declared within. Several of the results have been
published previously:

• An Agda Formalization of Üresin & Dubois’ Asynchronous Fixed-Point Theory, Ran
Zmigrod, Matthew L. Daggitt and Timothy G. Griffin, ITP 2018.

• Asynchronous Convergence of Policy-Rich Distributed Bellman-Ford Routing Proto-
cols, Matthew L. Daggitt, Alexander J.T. Gurney and Timothy G. Griffin, SIGCOMM
2018.

• Rate of convergence of increasing path-vector routing protocols, Matthew L. Daggitt
and Timothy G. Griffin, ICNP 2018.

This thesis is not substantially the same as any that I have submitted, or am concurrently
submitting, for a degree or diploma or other qualification at the University of Cambridge
or any other University or similar institution. I further state that no substantial part of
my dissertation has already been submitted, or is being concurrently submitted, for any
such degree, diploma or other qualification at the University of Cambridge or any other
University or similar institution. This thesis does not exceed the prescribed limit of 60 000
words.

Matthew L. Daggitt
18th of December, 2018

Acknowledgements

Foremost, I would like to express my deep gratitude to my supervisor Dr Timothy Griffin
for his support, enthusiasm and perseverance, both through the quiet times and the slightly
more stressful times. It is difficult to imagine having had a better supervisor, and there’s
not enough coconut water in the world to demonstrate my appreciation.

Thank you to my partner Ruby for persuading me to do a PhD in the first place.
As always you were absolutely right. I would also like to thank my friends in the lab
Hugo, Philip, Ian, Dylan, Simon and Aurore for making my time in the Computer Lab so
enjoyable. I am also grateful to my house mates Izabela, Kim and Becca, as well as Jesus
Badminton Club, for ensuring I had a life outside of the lab as well.

Finally I would like to thank EPSRC for funding the research and to Jesus College for
providing additional travel grants.

Contents

1 Introduction 15
1.1 The basics of algebraic routing . 15
1.2 Contributions . 18

1.2.1 Improvements to the model of routing problems 18
1.2.2 Improvements to the model of routing algorithms 19
1.2.3 New theoretical routing results . 20
1.2.4 Physical artifacts . 21

1.3 Thesis outline . 21

2 Routing algorithms 23
2.1 Next-hop forwarding . 23
2.2 Vector-based protocols . 25

2.2.1 Bellman-Ford algorithm for shortest paths 26
2.2.2 Distance-vector protocols . 26

2.2.2.1 Soft state vs hard state 27
2.2.2.2 Reliable vs unreliable communication 27
2.2.2.3 Count-to-convergence . 29

2.2.3 Path-vector protocols . 30
2.3 Example protocols . 30

2.3.1 RIP . 31
2.3.1.1 Problems . 31

2.3.2 BGP . 31
2.3.2.1 Problems . 32
2.3.2.2 Gao-Rexford conditions 33

2.4 Motivation for algebraic routing . 35

3 Asynchronous iterative algorithms 37
3.1 Iterative algorithms . 38

3.1.1 Synchronous iterations . 38
3.1.2 Asynchronous iterations . 40

3.2 Static asynchronous iterations . 41
3.2.1 Model . 41
3.2.2 Results . 42
3.2.3 Unstructured spaces . 46
3.2.4 Drawbacks of the static model . 48

3.3 Dynamic asynchronous iterations . 49
3.3.1 Model . 49
3.3.2 What does “correct” mean? . 51
3.3.3 Correctness conditions . 53
3.3.4 Dynamic ACO implies convergent 55

3.3.4.1 Closure lemmas . 56
3.3.4.2 Stability lemmas . 57
3.3.4.3 Progress lemmas . 58
3.3.4.4 Convergence . 60

3.3.5 Dynamic AMCO implies convergent 61
3.4 Conclusions . 63

4 An algebraic model for vector-based protocols 65
4.1 Routing problems as algebras . 65

4.1.1 Semiring algebras . 66
4.1.2 Sobrinho algebras . 68
4.1.3 Routing algebras . 70
4.1.4 Other algebras . 72

4.2 Vector-based routing . 72
4.2.1 Network and routing state . 73
4.2.2 A single iteration . 74
4.2.3 The asynchronous state function . 76

4.3 Moving paths from algorithm to algebra 76
4.3.1 What is a path? . 77
4.3.2 Algorithmic paths . 78
4.3.3 Algebraic paths . 79
4.3.4 Constructing path algebras . 79

4.4 Examples of routing algebras . 81
4.4.1 Shortest paths algebras . 81
4.4.2 Shortest widest paths algebra . 82
4.4.3 Stratified shortest paths algebra . 82
4.4.4 Other algebras . 83

4.5 Existing results . 83
4.5.1 Free networks . 84

4.5.2 Strictly increasing . 85
4.5.3 Distributivity . 86
4.5.4 Further discussion . 87

4.6 Open questions to be addressed . 89

5 Convergence 91
5.1 Distance-vector protocols . 92
5.2 Path-vector protocols . 96
5.3 Conclusions . 104

6 Rate of convergence 105
6.1 Measuring the rate of convergence . 105
6.2 Previous work . 106
6.3 Lower bound: Ω(n) to Ω(n2) . 107

6.3.1 Count-to-convergence induced by non-distributivity 107
6.3.2 An example of O(n2) convergence 109

6.4 Upper bound: O(n!) to O(n2) . 111
6.4.1 Additional definitions . 115
6.4.2 Main proof . 119

6.5 Conclusions . 123

7 Practicalities 125
7.1 Relaxation of assumptions on choice . 125
7.2 Path inflation . 127
7.3 Hierarchical paths . 128
7.4 Conclusions . 128

8 Agda: proofs and protocols 131
8.1 Advantages of formalisation . 131
8.2 The library . 132
8.3 An example algebra . 134

8.3.1 Path weights . 135
8.3.2 Choice . 135
8.3.3 Extension . 136
8.3.4 Path function . 138
8.3.5 Convergence . 138

9 Conclusion 141
9.1 Contributions . 141
9.2 Applications . 142

9.2.1 Protocol design . 142
9.2.2 Verifying BGP policies in data centres 142
9.2.3 Further afield . 143

9.3 Open questions . 143
9.3.1 Free networks . 143
9.3.2 Hidden information . 143
9.3.3 Further rate of convergence results 144
9.3.4 Translation to hard state protocols 144
9.3.5 Alternative forms of vector-based protocols 145

Bibliography 147

A General theory 153
A.1 Sets . 153
A.2 Operators . 153
A.3 Relations . 154
A.4 Functions . 155
A.5 Bachmann-Landau notation . 156

Chapter 1

Introduction

Large scale computer networks are ubiquitous in today’s world and underpin many aspects
of modern life. With the advent of the Internet of Things, the size of these networks
looks set to increase by orders of magnitude once again, and therefore routing protocols
that establish and maintain connectivity in a robust and scalable manner will continue
to be a priority for network operators. However, routing as a technology is still not as
mature as one might think. For example, even the Border Gateway Protocol (BGP), the
protocol that controls the flow of information around the internet, contains major flaws
that negatively impact connectivity [31, 32, 42, 49, 66].

One reason why such problems persist is that the networking community still lacks a
mathematical theory of routing in which to reason about the behaviour of routing protocols.
The field of algebraic routing is an attempt to develop such a theory, and this thesis will
address various open questions within it. Before discussing these contributions, a brief
introduction to both routing in general and the field of algebraic routing is now provided.

1.1 The basics of algebraic routing

A computer network consists of a collection of computers with communication links
between them and hence can be modelled as a graph.

Definition 1. A graph G = (V,E) is a set of nodes V linked by a set of pairwise
edges E.

The edges are assumed to be directed and each edge has an associated label which contains
information about the link (latency, bandwidth, reliability etc.). Figure 1.1 shows a visual
representation of such a network, similar to those used throughout this thesis.

The primary purpose of a computer network is to allow the transfer of information
between its nodes. Clearly it is desirable that such communication is efficient as possible
and this naturally leads to the formulation of the best-path problem.

15

0

1

2

3

4

5

6

(1,1) (1,3)

(2,3) (3,2)

(3,3)

(1,3)

(2,2) (1,1)

(2,3)

Figure 1.1: A graphical representation of a computer network.
In this particular instance, the edges are labelled with the link’s
length (latency) and width (bandwidth).

Definition 2 (The best-path problem). Given a network G and nodes i and j, what is
the best path in G from i to j?

Although the statement of the problem is simple, it is intentionally vague on what best
means. In practice which path is considered to be the best path depends on the aims of
the network operators. For example an operator might consider the best path to be: i) the
path with the lowest latency (known as the shortest-path problem), ii) the path with the
highest bandwidth (known as the widest-path problem), iii) the path with the highest
bandwidth that goes through node 3 or iv) the path that minimises some complex function
of latency, bandwidth, reliability, loss rate, hop count, financial cost and unspecified
political relationships between the different nodes in the network.

Clearly there are an infinite number of such best-path problems and each may be
solved using a variety of different routing algorithms (e.g. link-state, distance-vector, path-
vector). Despite the resulting combinatorial explosion of possible protocol implementations,
historically the most common approach has to been to model and reason about the
correctness of each protocol individually. In contrast a unified theory of routing should
allow correctness results to be proved once about entire families of protocols, and then
specialise these results to individual protocol implementations. The algebraic approach to
routing achieves this by decomposing routing protocols as follows:

Routing protocol = Algebra + Algorithm (1.1)

where the algebra specifies which problem is being solved (e.g. shortest-paths, widest-paths),
and the algorithm specifies how it’s being solved (e.g. link-state protocol, vector-based
protocol). By considering an abstract algebra, it is then possible to study how different

16

properties of the algebra affect the behaviour of a given algorithm.
For example, suppose that a node participating in a distance-vector routing computation

currently has a best route x to a destination d. If the node then receives a new route y
to d from one of its neighbours, it will first apply some policy f associated with that
neighbour and produce a new candidate route f(y). It will then compare x with f(y) to
determine which of the two routes is better. The comparison process will be represented
as ⊕, and so the outcome of this particular comparison will be written as x⊕ f(y). A very
simple example is the shortest-paths problem where i) x and y are simply natural numbers
representing distance, ii) f(x) = l + x for some weight l, and iii) x⊕ y = min(x, y).

Classical routing theory [4, 9, 26] always assumes the following equation (or something
equivalent) holds:

f(x⊕ y) = f(x)⊕ f(y) (1.2)

This property is referred to as distributivity. The left-hand side of the equation can be
interpreted as the result of the node’s neighbour deciding which route, x or y, to send to
the node, while the right-hand side is the result of the decision that would be made by the
node itself were it to receive both routes. The equality between the two sides implies that
a node’s choices always agrees with the choices of its neighbours, and consequently that
all nodes in the network agree with each other on what the best paths in the network are.
The classical theory proves that whenever the routing problem is distributive then routing
protocols will always arrive at a globally optimal solution where every node ends up using
the best possible path available.

However distributivity does not hold in many modern routing protocols. A clear
example of how distributivity violations might arise in routing can be seen in the use of
route maps which are functions (scripts) that take routes as input and return routes as
output. For example, if g and h are route maps, then another route map f can be defined
as:

f(x) = if P (x) then g(x) else h(x),

where P is some predicate on routes (such as “does this route contain BGP community 17?”).
To see how easily distributivity can be violated, suppose that:

P (x) = true,
P (y) = false,
x⊕ y = x,

g(x)⊕ h(y) = h(y).

Then the left-hand side of Eq 1.2 is:

f(x⊕ y) = f(x) = g(x),

17

while the right-hand side becomes:

f(x)⊕ f(y) = g(x)⊕ h(y)

For Eq 1.2 to hold we need g(x) = h(y), which may not be the case. Indeed, if g(x) = h(y)
were always true, then there is no point in defining f . Perhaps the most common example
of such conditional policies is route filtering, where h(x) is equal to the invalid route.

However, even if distributivity does not hold then it is still possible for protocols to
reach a routing solution. Sobrinho [62] showed that the following equation:

x = x⊕ f(x) 6= f(x)

holding is both a sufficient and necessary condition for a path-vector protocol to always
converge. This property is known as strict increasingness and states that a route is always
strictly preferred over any of its extensions, or equivalently, routes always get worse when
extended. In such a case the protocol will converge to a local optimum where every node is
assigned the best possible route given their neighbours’ choices. An immediate consequence
of Sobrinho’s result is that any path-vector protocol can be proved correct simply by
verifying that the underlying algebra is strictly increasing.

1.2 Contributions

The contributions of this thesis to the algebraic theory of routing can be divided into three
areas: i) improvements to how routing problems are modelled, ii) improvements to how
routing algorithms are modelled and iii) new results about the convergence properties of
strictly increasing vector-based routing protocols. Along the way it also builds on prior
work to develop a new, more general theory for asynchronous iterative algorithms, of which
vector-based routing is just one example.

1.2.1 Improvements to the model of routing problems

In algebraic routing, all routing problems are represented as a instances of a particular
algebraic structure. The set of routing problems that can be modelled therefore depends
on the structure chosen and its assumed properties.

Contribution 1. This thesis proposes a new structure that is simpler than the pre-
vious state of the art. In particular the new structure models routing problems using
only 5 primitives rather than the 7 primitives of Sobrinho algebras [62]. See Section 4.1
and [17, 18].

18

Contribution 2. The new structure is also more general as it can represent a wider
selection of routing problems. More specifically, it can model path-vector operations such
as path-based filtering, path inflation and tracking and removing looping paths. See
Sections 4.3 & 7.2 and [17, 18].

1.2.2 Improvements to the model of routing algorithms

The algorithmic component of a protocol describes how the routing problem is solved.
This includes how routes are discovered and shared between routers as well as the method
of communication between routers.

Contribution 3. Reasoning about any distributed algorithm is complicated by the
exponential explosion of possible message orderings between nodes. Furthermore links
may delay or drop messages between nodes, or even re-order or duplicate them. Taking all
of these factors into account greatly complicates correctness proofs of routing protocols.
This thesis demonstrates how to decouple the underlying routing algorithm from the
asynchronous environment in which it is running. In particular it uses the work of
Üresin & Dubois [64] and Gurney [35] on general asynchronous iterations to further refine
Equation 1.1 into:

Routing protocol = Algebra + Synchronous algorithm + Asynchronous environment

Their work is then used to derive conditions on the behaviour of the synchronous routing
algorithm that are sufficient to guarantee its correctness even when run in an asynchronous
environment. This significantly reduces the burden of proof, as only the synchronous
algorithm needs to be directly reasoned about. See Chapter 3 and [18].

Contribution 4. The drawback of Üresin & Dubois’s theory of asynchronous iterations
is that it only models a static process in which the both the set of participants and
the problem being solved remains constant over time. However these are unrealistic
assumptions for many “always on” asynchronous iterative processes such as routing and
consensus algorithms. This thesis therefore presents a new generalised theory of asyn-
chronous iterations for dynamic asynchronous processes in which both the participants
and the problem being solved may change over time. It then goes on to present conditions
that are sufficient for such a dynamic process to always converge if given a sufficient period
of stability. This new theory is in turn later used to construct a more accurate model of
routing than found in previous work. See Section 3.3.

Contribution 5. Distance-vector and path-vector protocols have always previously been
considered as different algorithms and therefore have required separate proofs of correctness.
This is partly because it is difficult to model the path-vector operations directly within

19

existing algebraic structures. As a consequence the algorithm has been required to explicitly
specify the implementation details for tracking and removing paths, which in turn reduces
the generality of the model. This thesis demonstrates for the first time that path-vector
operations can be abstractly modelled in the algebra rather than the algorithm. This unifies
the algorithms for path-vector and distance-vector protocols, allowing results on distance-
vector protocols to be immediately applicable to path-vector protocols. Furthermore as
the proposed algebraic model does not reveal implementation details, it can be applied to
a far wider range of protocol implementations. See Sections 4.3 & 7.2 and [18].

1.2.3 New theoretical routing results

The work above is then combined to prove several new results about the convergence of
strictly increasing vector-based protocols.

Contribution 6. The thesis presents the first proof that strictly increasing distance-vec-
tor protocols with finite path-weights always converge. This significantly enlarges the
classes of distance-vector protocol implementations that are known to be correct. One
inclusion of particular note is that it implies distance-vector protocols could be equipped
with conditional policy languages. See Section 5.1 and [18].

Contribution 7. The thesis presents a new proof that strictly increasing path-vector
protocols not only converge, but for the first time also converge deterministically. This
means that no matter which asynchronous interleaving of messages occurs, the protocol will
always reach the same final solution when run on the same network. This has significant
practical implications for traffic engineering where non-deterministic convergence is known
to cause routing problems that are extremely difficult to debug [28]. See Section 5.2
and [18].

Contribution 8. For the first time the above results have been proved without assuming
in-order reliable delivery of messages. Although BGP uses TCP to ensure reliable in-order
delivery of messages, these guarantees come at the cost of a significant increase in network
traffic. This new result shows that the use of such a heavyweight mechanism is not required
for correctness, and future protocols could use a more lightweight mechanism such as UDP.
See Section 5.2 and [18].

Contribution 9. This thesis proves that the worst-case convergence time for strictly
increasing path-vector protocols is Θ(n2), where n is the number of nodes in the network.
This is a significant improvement over previous results that only guaranteed it was at
best Ω(n) and at worst O(n!). More importantly it shows that even if the algebra is only
strictly increasing rather than distributive, the associated routing protocol still converges
in a feasible amount of time. This would not have been the case if the worst case had

20

turned out be non-polynomial. See Chapter 6 and [17].

Contribution 10. It is widely known that reasoning about asynchronous processes is
inherently tricky and a prominent source of bugs in both programs and proofs. All of the
above work, including that of Üresin & Dubois and Gurney, has therefore been formalised
in the Agda proof assistant. This allows the proofs to be checked by a computer, which
in turn greatly increases confidence in the results. During formalisation it was found
that two of Üresin & Dubois’s propositions were fundamentally incorrect. Although these
propositions were not directly on the proof path used by the thesis, it does serve a timely
demonstration of the utility of such formalisation efforts. See Chapter 8 and [19, 68].

1.2.4 Physical artifacts

In addition to the theoretical contributions described above, the thesis has also resulted in
some more tangible artefacts.

Contribution 11. The formalisation has been released as an Agda library that is capable
of quickly and efficiently verifying the correctness of both hypothetical vector-based proto-
cols and other dynamic iterative algorithms. The library provides the tools for users to
implement the algebra that underlies their proposed protocol and formally verify that the
resulting protocol will behave correctly in a matter of hours. Furthermore, it is designed
such that the user need not understand the details of the proofs contained within. The
library is available online [19] and the README file includes a guide to matching up the
contents of the thesis with the associated Agda code. See Chapter 8 and [68].

Contribution 12. BGP cannot be proved correct using the above library, as the protocol
implementation itself is incorrect. However using the library, this thesis does prove the
correctness of an algebra containing many of the features of BGP including: local pref-
erences, communities, conditional policies and path-inflation. This is not presented as a
solution to the problems with BGP, but as a useful demonstration of how far the theory
has come in that it is now capable of providing a formal proof of correctness for such a
complex protocol. See Section 8.3 and [18].

1.3 Thesis outline

Chapter 2 provides an overview of routing, including a description of the Bellman-Ford
algorithm and the mechanics of distance-vector and path-vector protocols. It then discusses
some of the problems that existing protocols suffer from.

Next Chapter 3 provides an overview of theory of static asynchronous iterative al-
gorithms and develops a new, more general theory of dynamic asynchronous iterative

21

algorithms. Chapter 4 describes both past and present attempts at an algebraic theory of
routing, and how distance-vector and path-vector protocols may be decomposed into an
algebra and an algorithm. It then proposes and discusses several new simplifications and
generalisations.

Chapter 5 uses the work from the previous chapters to prove new correctness results
for both distance-vector and path-vector protocols and Chapter 6 proves a new tight
worst-case convergence bound of Θ(n2) for strictly increasing path-vector protocols.

Chapter 7 discusses how some of the inconsistencies between the theory and real-world
protocols can be overcome. Chapter 8 describes the formalisation of the thesis’s results in
Agda, and as well as a formal proof of correctness for a new BGP-like algebra. Finally
Chapter 9 concludes by providing a summary of the current state of knowledge and
discusses future research directions.

22

Chapter 2

Routing algorithms

The problem of finding the shortest path between two points has had applications through-
out history, from searching for food in primitive societies to the design of modern supply
chains. Given this, it is perhaps surprising that the first deterministic procedures guaran-
teed to find the optimal path were only published in the late 1950s. Although there were
several variants proposed, two main algorithms emerged: Dijkstra’s algorithm [20] and the
Bellman-Ford algorithm [7, 21]. The key ideas behind these two algorithms went on to
form the basis of link-state and distance-vector routing protocols respectively. Schrijver
[61] provides an overview of the early years of the theory.

This chapter first discusses destination-based next-hop routing and some of the general
failure modes. It then describes the Bellman-Ford algorithm in the context of the shortest
paths problem and explains how the algorithm forms a basis for distance-vector and path-
vector routing protocols. This is followed by a high-level overview of Routing Information
Protocol (RIP), a distance-vector protocol, and the Border Gateway Protocol (BGP), a
path-vector protocol, along with a discussion of their properties and problems.

2.1 Next-hop forwarding

The dominant routing paradigm today is destination-based next-hop forwarding. Every
node in the network has a routing table in which address ranges are mapped to neighbours.
When a packet arrives at a node, the node looks up the neighbour associated with packet’s
destination in its routing table and then forwards the packet accordingly. This section
discusses some of the ways in which next-hop routing can fail, independently of the method
of populating the routing table.

Forwarding loops As suggested by the name, these occur when the next-hop choices of
several nodes result in a forwarding path that contains a loop. Consider Figure 2.1 which
shows the next-hop choices of nodes that are routing towards node 0. A message sent by

23

node 3 will be forwarded to node 2, who in turn will forward it to node 1. Unfortunately
node 1 will then forward it back to node 2, and the message will continue to circulate
between nodes 1 and 2 until it times out. Node 3 will therefore be unable to communicate
with node 0 until the routing loop is resolved.

0

1

2

3

Figure 2.1: An example of a routing loop. Arrows represent the
chosen next-hop towards node 0.

Routing loops come in two flavours: transient and persistent. Transient loops are
temporary and can be formed during a protocol’s processing of changes to the network
topology, and will result in brief losses of connectivity. Persistent loops occur when such
choices are permanent and result in a sustained loss of connectivity. They are therefore
more serious and their presence indicates a flaw in the design of the protocol.

Routing oscillations Similar problems occur when the routing protocol itself enters
a loop, and the next-hop decisions of the network continue to oscillate between several
different routing solutions indefinitely. Figure 2.2 shows such an oscillation. In it there are
two possible routing solutions. Either node 1 uses node 2’s route to node 0 or node 2 uses
node 1’s route. Depending on the timing of messages between the two nodes, the routing
protocol may continue to switch between the two solutions indefinitely.

⇐
⇒0

1 2

0

1 2

Figure 2.2: A routing oscillation

Routing oscillations may complicate the path a packet takes through the network and
hence introduce significant latency and may even cause it to time out. Additionally traffic
between a pair of nodes may be unpredictably split between multiple paths that may
have very different properties (latency, bandwidth etc.). This in turn may cause a further
increase in latency when reconstructing the sequence of packets at the destination.

24

Multiple stable states A third problem is multiple stable states. Even when the
protocol starts in the same initial state, it may be the case that the final solution reached
depends on the timings of the communication between nodes. An example is shown in
Figure 2.3. Unlike in a routing oscillation, the two final states are stable and so the
protocol cannot move between them. However which of the two states the network ends
up in is determined by the exact sequence and timing of messages between the nodes.

0

1 2

0

1 2

0

1 2

⇐
⇒

Figure 2.3: Multiple stable states

It may not be immediately obvious why this is a problem. The key insight is that
routing is not a passive process in many networks. For example network operators will
want to funnel traffic over cheaper, primary, high-capacity links and avoid heavy traffic
over more expensive links that are only installed for backup purposes. If the final next-
hop choices are non-deterministic then it becomes much harder for network operators to
guarantee ending up in the desired solution. In the context of inter-domain routing, this
problem is even worse because there is no one with the requisite global knowledge of the
network to debug the problem.

A properly designed protocol should therefore avoid the formation of permanent routing
loops and routing oscillations, as well as guaranteeing that the final next-hop choices are
deterministic.

2.2 Vector-based protocols

Vector-based protocols are one of the two main families of routing protocols that are used
to populate the routing tables for next-hop forwarding. It is based on the Bellman-Ford
algorithm, and comes in two flavours: distance-vector protocols and path-vector protocols.

25

Algorithm 1: The Bellman-Ford algorithm to calculate the shortest path to
a destination v0. The network topology is represented by the n × n adjacency
matrix, A, where Aij is the length of the link from i to j. Note that this is
implicitly hard-state since each node u remembers d[u], the best route it has ever
seen (see Section 2.2.2.1).
function BellmanFord (A, v0):
// Initialisation
for each node v do

d[v] =∞
d[v0] = 0
// Main calculation
for i from 1 to n do

for each edge (u, v) do
d[u] = min(d[u], d[v] + Auv)

2.2.1 Bellman-Ford algorithm for shortest paths

Given a source node v0 and an adjacency matrix A where Aij is a natural number that
represents the length of the link from node i to node j, the Bellman-Ford algorithm
computes the shortest distance from each node to v0. If there is no link from i to j then
this can be represented by setting the associated weight Aij to ∞. Algorithm 1 shows a
pseudocode implementation.

Like Dijkstra’s algorithm, the algorithm is based on the idea of relaxing edges. An
edge (u, v) is relaxed by checking if node u can obtain a shorter route than its current
shortest route by extending the route used by v. Unlike Dijkstra’s algorithm which uses
global knowledge of the network to pick an efficient sequence of relaxations, Bellman-Ford
applies the same sequence of relaxations regardless of the network topology. The sequence
chosen performs n iterations, where each iteration relaxes every edge in the network. The
time complexity for the algorithm is O(|V ||E|). Unsurprisingly, given that it does not
optimise the ordering of the relaxations, it is less efficient than Dijkstra’s algorithm which
can achieve O(|V | log |V |).

The Bellman-Ford algorithm can be shown to be correct by proving the following
statement “after k iterations d[v] will contain the weight of the best path to node 0 with at
most k hops” by induction over k. Consequently after n iterations d[v] contains the weight
of the best path with less than or equal to n hops, and in the absence of negative weight
cycles in the graph, this must therefore be the best path in the network between v and v0.

2.2.2 Distance-vector protocols

The Bellman-Ford algorithm only computes the best paths to a single source. Although
more efficient solutions exist, the algorithm can be run n times to obtain the best paths

26

between all pairs of nodes. Such a computation forms the basis of the family of distance-
vector routing protocols. Each node’s routing table stores one element from each of the
d[v] vectors. When a node transmits its routing table to its neighbours, the neighbour can
then perform the associated relaxation steps.

Unlike the Bellman-Ford algorithm, nodes exchange their routing tables with each
other asynchronously and so, even in identical networks, the order in which relaxations
occur will vary between executions. An example execution is shown in Figure 2.4 for the
computation of the shortest-paths towards node 0. Note that the asynchronous nature
of the protocol allows states to be reached that would never occur in the synchronous
Bellman-Ford computation. For example between steps 6 and 7 of the execution, node 2
temporarily uses the longest possible path in the network.

In general the number of possible orderings of messages grows exponentially in the
size of the network. Proving the correctness of vector-based protocols therefore requires
reasoning about all possible message orderings and hence is far harder than than proving
the correctness of the Bellman-Ford algorithm. Further complexity is added by the fact
that some protocols allow route advertisements to be lost, reordered or even duplicated
(see Section 2.2.2.2).

2.2.2.1 Soft state vs hard state

The content and timing of routing update messages varies from protocol to protocol.
Broadly there are two approaches: soft state and hard state.

In soft state protocols the entire routing table is retransmitted at regular intervals,
and so it is unnecessary for nodes to permanently store a neighbour’s routing table. Such
protocols are therefore better at recovering from node failures, as all relevant information
is regularly retransmitted. However they require more network resources as they transmit
larger messages more frequently.

In hard state protocols each node permanently stores the latest versions of their
neighbours’ routing tables. Therefore a node only needs to send an update message when
its own routing table changes, and even then it need only transmit the relevant changes
rather than the entire table. This reduces network traffic but makes recovering from
failures more difficult as the state needs to be regenerated.

2.2.2.2 Reliable vs unreliable communication

Another set of trade-offs is the mechanism for inter-node communication. Routing protocols
assume that connectivity across individual links is provided by a suitable transport-layer
protocol. However different transport-layer protocols provide different communication
guarantees.

27

0 1

2

3

1

1

4

2

Node
0 1 2 3
0 ∞ ∞ ∞
0 1 ∞ ∞
0 1 ∞ 5
0 1 7 5
0 1 2 5
0 1 2 4

1. Initially node 0 has a distance of 0, and every other node has no route (represented by a
distance of ∞). Node 0 then sends an update message to node 1, advertising that it has a
route to itself of distance 0.

2. Node 1 receives the advertisement from node 0, performs the relaxation step and installs a
distance of 1 in its routing table entry for node 0. Node 1 will then send out update messages
to nodes 0, 2 and 3.

3. Node 0 receives the advertisement of 1 from node 1. Node 0 will perform the relaxation but
rejects the route as 2 is longer than its current distance of 0.

4. Node 3 receives the advertisement of 1 from node 1, and accepts it and installs a distance
of 5 in its routing table. Node 3 sends update messages to nodes 1 and 2.

5. Node 1 receives the advertisement of 5 from node 3, but rejects it as 5 is longer than its
current route of 1.

6. Node 2 receives the advertisement of 5 from node 3, and accepts it as 7 is better than its
current value of ∞. Node 2 then sends update messages to nodes 1 and 3.

7. Node 2 receives the advertisement of 1 from node 1, and accepts it as 2 is better than its
current value of 7. Node 2 then sends updates messages to nodes 1 and 3.

8. Node 3 receives the advertisement of 7 from node 2, but rejects it as 9 is longer than its
current route of 7.

9. Node 3 receives the advertisement of 2 from node 2, and accepts it as 4 is better than its
current value of 7.

10. The remaining advertisements still in flight are received in some order and all rejected.

Figure 2.4: An example network and one possible execution order
of a distance-vector protocol. The table shows the routing table
entries for each node for destination node 0.

28

0 1

2

3

∞

1

4

2

Node
0 1 2 3
0 1 2 4
0 3 2 4
0 3 6 4
0 3 6 8
0 7 6 8
0 7 8 8
...

Figure 2.5: Count-to-convergence for the shortest-paths problem.
Starting from the state reached at the end of Figure 2.4, the link
between node 0 and node 1 has failed. The routing table entries
for the other nodes continue to count up to infinity.

Physical layer links are inherently unreliable. For instance messages may be dropped
if the link bandwidth is exceeded. Furthermore pairs of messages may arrive at their
destination in a different order than they were sent and the same message may even
arrive twice. Lightweight transport-layer protocols such as the User Datagram Protocol
(UDP) [54] make no effort to conceal this and instead provide best-effort communication.
Hence routing protocols built on top of UDP-like transport-layer protocols must necessarily
be robust enough to cope with such communication anomalies.

In contrast heavy-weight transport-layer protocols such as the Transmission Control
Protocol (TCP) [55] provide better guarantees. By using more complex mechanisms
such as packet sequence numbers and acknowledgement messages, TCP ensures that the
destination node can reconstruct the exact sequence of packets as they were sent by the
source node. These guarantees come at a higher cost in both terms of both network traffic
and latency.

One important consideration is the interaction between communication guarantees and
the state-model used by a protocol. A soft state protocol can handle missed messages as
the entire state is regularly retransmitted, and therefore can use either reliable or unreliable
delivery. In contrast, a hard-state protocol requires reliable communication as each update
is only sent once and hence lost or re-ordered updates cannot be recovered from.

2.2.2.3 Count-to-convergence

Naively designed distance-vector protocols suffer from the count-to-infinity problem which
generates both routing loops and routing oscillations. In the shortest paths problem,
count-to-infinity occurs when links in the network either fail or their length increases.

Figure 2.5 demonstrates an example of count-to-infinity. Initially the network is in

29

the final state reached in Figure 2.4. The link between node 0 and node 1 then fails.
Nodes 1, 2 and 3 therefore have no path to node 0. One might expect the protocol to
realise this. However in a basic distance-vector protocol this does not occur as nodes 1, 2
and 3 continue to advertise the route to each other even though it no longer exists. Node
1 adopts node 2’s route to 0, node 2 adopts node 3’s route, node 3 adopts node 2’s route
and so on. Every time the length of the “supposed” paths will increase. If the protocol
enforces a maximum path length then the protocol will eventually reach this upper limit
and then converge. In this case the problem is known as count-to-convergence. If not then
the protocol will continue to count to infinity without ever realising there is no longer a
route to node 0.

2.2.3 Path-vector protocols

A path-vector protocol is a particular type of distance-vector protocol designed to avoid
counting problems. Counting problems occur in distance-vector protocols because they
allow the indefinite propagation of junk routes that no longer exist in the network. Detecting
such routes immediately is impossible without global knowledge of the network topology.
Instead the insight is that if a node receives a route that it itself advertised, then that
route must be junk and so should be ignored.

Path-vector protocols therefore transmit the path along which the route was generated
as well as the route’s value. A node will automatically reject any route that already
contains itself in its path. This mechanism eventually halts the continued spread of
junk routes throughout the network. However transmitting the path and the value is
significantly more expensive than transmitting the value alone, and therefore path-vector
protocols may not be suitable for all situations.

2.3 Example protocols

This section presents a brief overview of two vector-based protocols. It is important to
stress that the aim of this thesis is not to reason about any particular protocol, but instead
to reason about the fundamental mathematical properties of the vector-based approach
to routing. Therefore this section omits many of the more intricate implementation
details particular to each protocol. Instead it only describes their operation and their
associated problems at a high-level, in order to motivate the fundamental questions posed
and answered later on in this thesis.

30

2.3.1 RIP

The Routing Information Protocol (RIP) [47] is one of the oldest examples of distance-
vector routing protocols. Its aim is to compute the path between two nodes with the
smallest number of nodes visited (referred to as the hop-count). This routing problem is
therefore an instance of the shortest-paths problem where every link has a length of 1. RIP
is a soft-state protocol and by default routers will locally broadcast their routing table to
their neighbours every 30 seconds. Accordingly it uses UDP for inter-node communication
and so there is no guarantee that routing advertisements are delivered reliably.

When the topology of the network changes, RIP may suffer from count-to-convergence.
RIP uses a combination of different techniques to combat this problem. It employs split-
horizons and poisoned chalice optimisations to reduce (but not eliminate) occurrences
of count-to-infinity. It then imposes a limit of 16 hop counts on all paths through the
network. This essentially turns the count-to-infinity problem into the count-to-convergence
problem. This small maximum hop-count means that after link failure it requires at most
8 update periods to re-converge.

2.3.1.1 Problems

Although it only requires 8 update periods, each period is 30 seconds long. This means
that in the worst case it will still require approximately 4 minutes to realise a node is
no longer reachable. Additionally the artificial imposition of the maximum hop-count of
16 means that the protocol can no longer be deployed in networks with diameter greater
than 16. Hence usually RIP is only deployed as a quick, light-weight solution for routing
in small, local networks.

2.3.2 BGP

The wider internet has a much richer structure than a typical network and in reality is
better viewed as a network of networks. As shown in Figure 2.6, the backbone of the
internet is made up of individual networks called Autonomous Systems (ASs). ASs are
usually privately owned by service providers and therefore have significant autonomy in
the routing protocols that they run locally. However to communicate with each other ASs
use the Border Gateway Protocol (BGP) [57]. BGP is a hard-state protocol which uses
TCP to guarantee reliable communication between routers, and is the main path-vector
protocol in use today.

However routing in such in an environment bears little resemblance to finding the
shortest path. Transmitting large volumes of traffic is expensive and an AS will not be
willing to carry the traffic from another AS for free and so routing decisions are often
affected by additional economic concerns. In order to facilitate such fine grained routing

31

a

b

c

d

e

fg

h

i

j

k

Figure 2.6: The internet is split up into Autonomous Systems
(ASs), each of which are independently owned networks.

decisions BGP has a policy language designed to allow network operators to write complex
methods of filtering and re-ordering a router’s preferences.

Correspondingly the associated procedure to choose between two alternative routes
is more complex than that of RIP and takes over 7 pages to describe [57]. Consequently
only a very high-level view of the process is described here.

1. First the route with the highest local preference is chosen. A route’s local preference
is simply a number that may be set at will by routers to signify how desirable they
find the route.

2. If tied then the route that goes through the smallest number of ASs is chosen.

3. If still tied then the route that was advertised from the AS with the smallest ID
number is chosen.

4. Finally if both routes originate from the same AS, the route with the lowest multi-exit
discriminator (MED) attribute is chosen. The MED attributes provide ASs with the
ability to influence how traffic from other ASs enter their network to reach certain
destinations.

2.3.2.1 Problems

Whereas RIP could be modelled within a sound theoretical framework for best-path
problems at the time of its development, BGP firmly lay outside of existing routing theory,

32

and to a certain extent still does. Like many complex systems engineered by very capable
people, it does a great job at solving a very complicated problem most of the time. However
over the years it has become increasingly clear that it suffers from both of the problems of
non-convergence and non-deterministic convergence described in Section 2.1.

Starting in the late 1990s, various work showed that it was possible for BGP to oscillate
forever. This was either caused by conflicting AS policies [32, 42, 49, 66] or by the
implementation of the MED attribute [31]. Furthermore Griffin and Huston [28] showed
that it was possible for a network running BGP to non-deterministically end up “stuck”
in a different stable state than that intended by the network operators. They named these
occurrences “BGP wedgies”. BGP wedgies are particularly pernicious as they arise from
the interaction of internal policies of multiple different ASs. Without a global view of the
network, it is very difficult for any one AS to diagnose their cause. Furthermore having
identified such problems, it still requires coordination between the competing ASs in order
to move the system from the problematic stable state to the desired stable state.

The question of how to guarantee that BGP always converges and ensure that it does so
in a deterministic manner has been an active subject of research over the last twenty years.
In the process of reasoning about BGP, this has triggered a revival in the much broader
field of algebraic path problems. Such research is applicable to all routing protocols, not
just BGP, and is capable of providing deeper insights into the very nature of routing
computations. A discussion of the algebraic routing literature can be found in Section 4.5.
This chapter will restrict itself to discussing the BGP-specific results.

2.3.2.2 Gao-Rexford conditions

The observation by Huston [38] that many typical inter-domain policies are based on
the commercial relationships between ASs has motivated much of the work on BGP. In
particular AS relationships often obey a customer-peer-provider model. In such a model
pairs of ASs are related in two ways: i) they may be in a customer-provider relationship
where the customer pays the provider for access to the wider internet or ii) they may be in
a peer-to-peer relationship, in which both ASs allow the other’s customer traffic to travel
across their network.

Gao and Rexford [23] showed that if these commercial relationships are universally
followed then it is sufficient to ensure the convergence of BGP. More precisely they state
that:

Theorem 1. If the customer-provider relation forms a directed acyclic graph then BGP
will always converge to a stable state, even after the removal of arbitrary nodes and links,
as long as all ASs’ policies obey the following rules:

1. A customer AS may only export its own routes and the routes of its customers to its

33

provider. It may not export routes learnt from its peers or its provider.

2. A provider AS may export any of its routes to its customers.

3. A peer AS may only export its own routes and the routes of its customers to its
peers. It may not export routes learnt from other peers or its provider.

4. An AS must always choose a route from a customer over a route from a peer or a
provider.

Proof. Theorem 5.1 in [23].

In other words if the conditions above hold then the oscillations in BGP are eliminated.
Importantly this still holds true after node and link failure. However there are several
drawbacks to the Gao-Rexford conditions:

Unnecessarily restrictive It is not necessarily the case that customer-provider and
peer-to-peer are the only economic relationships in the wider internet. For example, whilst
the constraint of always choosing a customer route over a peer or a provider route aligns
with economic incentives (as sending traffic through a customer is effectively free), it seems
unlikely that there is no conceivable circumstance in which an AS might prefer a customer
or a peer route. However, even if these are the only relationships in the internet today,
then this may not remain the case in networks in the future.

Subsequent work in algebraic routing (described in Chapter 4) has uncovered a more
fundamental reason why the Gao-Rexford conditions are sufficient for the convergence,
by showing that they are a special case of a much broader set of constraints on topology
and policies that are sufficient and necessary for a path-vector protocol to converge over a
particular network. One immediate consequence of this is that the Gao-Rexford conditions
therefore exclude many valid routing policies.

Global coordination Furthermore, even assuming that the conditions are liberal enough
to be globally adopted by every AS in the internet, it is still a non-trivial task to verify that
the conditions hold. For example the acyclicity of the customer-provider graph requires
global knowledge of the economic relationships between the ASs. In practice, ASs are
often reluctant to reveal this commercially sensitive information. Gao & Rexford suggest
a global internet registry that would store and analyse the commercial relationships in
order to prevent the formation of loops. Unfortunately, global coordination in the internet
is well known to be notoriously difficult to achieve, even when there are clear economic
incentives for all parties involved, e.g. the rollout of IPv6 [39].

34

Re-verification One subtlety is that the theorem imposes conditions on the topology
of the network, not just the AS policies. Consequently every time a new link or node is
added to the network, the conditions require reverification. In a network as large as the
internet this constant reverification might be a significant burden.

Non-deterministic convergence Lastly Theorem 1 only guarantees convergence to
some stable state rather than one specific stable state. Hence the result does not guarantee
that the network is free of BGP wedgies.

2.4 Motivation for algebraic routing

The short-comings of both BGP and Theorem 1 give rise to several of the motivating
questions for algebraic routing. In particular for a general vector-based protocol:

1. What is the weakest set of constraints on policies that guarantees the protocol
converges?

2. Can these constraints be made independent of the network topology so that global
coordination is not required?

3. How do different sets of constraints affect the rate of convergence of the protocol?

The following chapters will discuss prior work on these questions and present results that
provide new pieces to the puzzle.

35

36

Chapter 3

Asynchronous iterative algorithms

One of the key contributions of this thesis is the insight that vector-based routing protocols
are just one instance of a more general class of asynchronous iterative algorithms. This
unlocks a large, existing body of literature about conditions that are sufficient and
necessary for such algorithms to deterministically converge to a fixed point. Crucially
these conditions guarantee the convergence of the asynchronous iteration only using
properties of the synchronous iteration, hence removing the need to reason directly about
the asynchronous iteration.

Initially the chapter summarises the related literature and highlights some useful results.
Subsequently it describes two new contributions to the theory of asynchronous iterations.
First it demonstrates that the conditions required by existing convergence results may be
relaxed. In particular it shows that there is no need to prove that the underlying state
space of the iteration can be partitioned into a series of boxes nested inside each other.

The second contribution is a generalisation to the model of the iteration itself. The
existing literature only considers a single static iteration in which all nodes continue to
participate. However in routing (and in other applications such as consensus algorithms)
both the participants in the computation and the very computation itself will change over
time. Although at first glance it appears possible to incorporate this into the existing
static model, this chapter will explain why it is not possible to do so in practice.

To address this short-coming, the chapter develops a new, more general model for
dynamic asynchronous iterations in which both the set of participants and the underlying
iteration may change over time. Two new convergence results, based on generalisations of
existing results from the literature, are then proved for the dynamic model. This more
general theory of dynamic iterations will form the basis of the model of vector-based
protocols presented in Chapter 4 and the proofs of convergence will be used in Chapter 5
to prove new, stronger correctness results for vector-based protocols.

Appendix A contains some common definitions that may be useful to the reader. All
of the results in this chapter have been formalised in Agda.

37

3.1 Iterative algorithms

3.1.1 Synchronous iterations

One approach to computing a fixed-point of a function is to iterate by starting in some
initial state and then repeatedly applying the function to create progressively better
estimates of the fixed point. Assume there exists a set S and a function F : S → S.

Definition 3. The synchronous state function, σ : N→ S → S, is defined as follows:

σt(x) =

x if t = 0

F (σt−1(x)) otherwise

where σt(x) is the state of the iteration at time t having started in the initial state x1.

An iterative algorithm attempts to find a fixed point for F by starting at some initial
state x and computing the following sequence (also known as the orbit of x [41]):

σ0(x), σ1(x), σ2(x), σ3(x), ..., σk(x), σk+1(x), ...

If at any point σk(x) = σk+1(x) then σk(x) is the desired fixed point for F . Whether
or not a fixed point is ever reached depends on the properties of F and x. There is a
significant body of literature on such properties [12, 58].

One particular case is now considered. Suppose there exists a distance function
d : S × S → N 2. The function d is referred to as a distance function rather than a metric
as later in this chapter it may be assigned properties that are either weaker or stronger
than those of a standard metric. For the moment it is assumed that it need only obey
the equality axioms (i.e. d(x, y) = 0⇔ x = y) and is therefore a quasi-semi-metric (see
Appendix A for definitions).

Definition 4 (Definition 4.12.1 in [37]). A function F : S → S is strictly contracting
with respect to a distance function d over a set A ⊆ S if:

∀x, y ∈ A : x 6= y ⇒ d(F (x), F (y)) < d(x, y)

1In the dynamical systems literature [41] σt(x) is more commonly written as just x(t) or F t(x). However
the former notation makes it difficult to differentiate between the synchronous and asynchronous state
functions and the latter runs into problems after other superscripts are added to F in Section 3.3.

2It is more common for the image of d to be R+ rather than N. However later lemmas in this chapter
require that < is a well-founded relation over the image. Furthermore this thesis only considers sets S
which are discrete/equipped with non-dense orderings. In such a case it is unnecessary for the distance
between two elements to be a member of a densely ordered set such as R+.

38

The function F being strictly contracting with respect to d is sufficient to guarantee it
has a unique fixed point (see Lemmas 1 & 2). However, in practice the function being
strictly contracting is an unnecessarily strong condition, and there are occasions in this
thesis where it is impossible to construct a distance function for which F , the function of
interest, is strictly contracting. Accordingly several weaker notions of contraction that still
guarantee the existence of a unique fixed point are now considered.

Definition 5 (Definition 4.12.1 in [37]). A function F : S → S is strictly contracting
on orbits with respect to a distance function d over a set A ⊆ S if:

∀x ∈ A : x 6= F (x)⇒ d(F (x), F 2(x)) < d(x, F (x))

Lemma 1 (Simplification of Theorem 1 in [56]). If F is strictly contracting on orbits with
respect to d over a non-empty set A ⊆ S and A is closed over F then F has a fixed point.

Proof. Let x be an element in A. While F k(x) 6= F k+1(x), the strictly contracting on
orbits property can be used to construct the following chain:

d(x, F (x)) > d(F (x), F 2(x)) > d(F 2(x), F 3(x)) > ...

This is a decreasing chain in N and so must have finite length. Therefore there must exist
a time t such that F t(x) = F t+1(x) and so F t(x) is the required fixed point.

Definition 6 (Definition 4.12.1 in [37]). A function F : S → S is strictly contracting
on an element e with respect to a distance function d over a set A ⊆ S if:

∀x ∈ A : x 6= e⇒ d(e, F (x)) < d(e, x)

Lemma 2 (Simplification of Theorem 1 in [56]). If F is strictly contracting on a fixed
point x∗ with respect to a set A ⊆ S and A is closed over F then x∗ is the unique fixed
point in A.

Proof. Suppose there exists another fixed point y∗ such that x∗ 6= y∗ then the following is
immediately obtainable via the strictly contracting property:

d(x∗, y∗) = d(x∗, F (y∗))

< d(x∗, y∗)

This is clearly a contradiction and so x∗ = y∗.

39

Therefore to show that σ will always converge to a unique fixed point it is sufficient to
show that there exists a distance function for which F is strictly contracting on orbits and
strictly contracting on the resulting fixed point. Note that if a distance function is strictly
contracting then it is immediate from the definitions that it is both strictly contracting on
orbits and strictly contracting on every element.

3.1.2 Asynchronous iterations

An iterative algorithm is parallelisable if both the state space S and the function F are
decomposable into n parts:

S = S1 × S2 × ...× Sn
F (x) = (F1(x), F2(x), ..., Fn(x))

where each function Fi : S → Si takes a state and calculates the ith component of the new
state. This decomposition can be used to parallelise the iteration, either over several cores
on a single computer or over multiple computers. The theory is agnostic as to this choice,
and so going forwards each computational unit will simply be referred to as a “node”. Also
note that the model does not necessarily require every node to compute the same type of
data, as the set Si need not be the same as Sj.

In the parallelised iteration every node has its own view of the global state and the
ith node applies Fi periodically to generate an updated value for its own state. It then
broadcasts this new value to the other nodes for use in their calculations. If the nodes
collectively synchronise their updates and message timings then the end result will be
the same computation as σ, the original synchronous iteration (albeit a more efficient
version). However such synchronisation is expensive and may not always be practical.
In such situations the computation is carried out asynchronously, where no attempt is
made to synchronise a node’s update and message timings with those of the other nodes
participating in the iteration.

The properties of an asynchronous iteration may be different from that of its syn-
chronous counterpart. For example, in Section 2.2.2 it was shown that an asynchronous
routing computation may reach states that were previously unreachable by the associated
synchronous iteration. It is therefore possible for the synchronous version of an iteration
to always converge and yet the asynchronous version to diverge.

40

3.2 Static asynchronous iterations

3.2.1 Model

A mathematical model for asynchronous iterations was standardised by work in the 1970s
and 80s [5, 8, 63], although notation continues to vary. The notation and terminology
found in this thesis broadly follows that used by Üresin & Dubois [64]. It will be noted
explicitly where it does diverge from that of Üresin & Dubois, usually either to improve
clarity or to avoid clashes with other notation.

Assume that the set of times T is a discrete linear order. Each point in time marks the
occurrence of events of interest: for example a node computing an update or a message
arriving at a node. The set of times can be represented by N but for notational clarity T
will be used. Additionally let V = {1, 2, ..., n} be the set of nodes that are participating in
the computation.

Definition 7 (Definition 1 in [64]). A static schedule consists of a pair of functions:

• α : T → 2V is the activation function, where α(t) is the set of nodes which activate
at time t.

• β : T × V × V → T is the data flow function, where β(t, i, j) is the time at which
the latest message node i has received from node j at time t was sent by node j.

such that:

(SS1) ∀i, j, t : β(t+ 1, i, j) ≤ t

(SS2) ∀i, t : ∃k : i ∈ α(t+ k)

(SS3) ∀i, j, t : ∃t′ : ∀k : β(t′ + k, i, j) 6= t

The function α describes when nodes update their values, and the function β tracks how
the resulting information moves between nodes. Assumption (SS1) enforces causality by
stating that information may only flow forward in time. Assumption (SS2) guarantees
that every node continues to activate indefinitely and assumption (SS3) states that every
pair of nodes continues to communicate indefinitely. Note that although assumption (SS3)
guarantees that new messages will eventually arrive, it does not forbid the data flow
function β from delaying, losing, reordering or even duplicating messages. Schedules are
therefore capable of describing both reliable and unreliable communication between nodes
(see Section 2.2.2.2).

Note that in their original paper, Üresin & Dubois use a model in which the nodes
communicate via shared memory, and so their definition of β takes only a single node i.

41

However, in distributed processes (e.g. internet routing) nodes communicate in a pairwise
fashion. In the definition above β has therefore been augmented to take two nodes, a
source and destination. Üresin & Dubois’s original definition can be recovered by providing
a function β that is constant in its third argument.

Definition 8 (Definition 1 in [64]). Given a schedule (α, β) the asynchronous state
function, δ : T → S → S, is defined as follows:

δti(x) =

xi if t = 0

δt−1
i (x) else if i /∈ α(t)

Fi(δβ(t,i,1)
1 (x), δβ(t,i,2)

2 (x), ..., δβ(t,i,n)
n (x)) otherwise

where δti(x) is the state of node i at time t when the iteration starts from state x.

At time 0 the process is in the initial state x. At subsequent times t if node i is not in
the set of active nodes then its state remains unchanged. Otherwise if node i is in the
active set of nodes it applies its update function Fi to its current view of the global state.
For example δβ(t,i,1)

1 (x) is the state of node 1 at the time of departure of the most recent
message node i has received from node 1.

The synchronous state function, σ, can be recovered by using the synchronous schedule
where α(t) = V and β(t, i, j) = t− 1, (i.e. at each time step every node activates and all
messages only take a single time step to propagate).

Several generalisations to this basic model have been proposed previously. For example,
Miellou et al. [50] show how the model may be extended to the case where the application
of Fi is not atomic, and messages may be dispatched to other nodes during the middle of
an update. Although applicable to some asynchronous processes, this generalisation is
not relevant to routing where routers only dispatch update messages after having fully
processed the received route advertisement.

3.2.2 Results

Before discussing prior work on when δ converges, it is first necessary to establish what is
now meant by convergence in an asynchronous environment.

Definition 9. The asynchronous iteration converges non-deterministically over a set
X ⊆ S if for all schedules and starting states x ∈ X there exists a fixed point x∗ for F
and a time t such that δt+k(x) = x∗ for all k.

42

Definition 10. The asynchronous iteration converges deterministically over a set
X ⊆ S if there exists a fixed point x∗ for F such that for all schedules and starting
states x ∈ X there exists a convergence time t such that δt+k(x) = x∗ for all k.

Non-deterministic convergence only implies that the iteration will find one fixed point
out of many, and that the exact fixed point found may depend on the schedule and the
starting state. In contrast, deterministic convergence guarantees that the fixed point
found will be the same no matter the starting state and the schedule. Many of the
more recent correctness proofs in routing (see Section 2.3.2.2 & Section 4.5) only prove
non-deterministic convergence. However the literature on asynchronous iterations, and
therefore the remainder of this chapter, only considers the stronger and more desirable
notion of deterministic convergence.

The survey paper by Frommer and Szyld [22] provides an overview of the results in
the literature for this and other related models. Much of the work has been motivated
by iterative algorithms in numerical analysis and consequently many of the proofs of
convergence assume that the set S is equipped with a dense ordering. Unfortunately in
fields such as routing, consensus algorithms and others, the set S is discrete, and so many
of the more common results are inapplicable. However in the late 1980s Üresin and Dubois
[64] came up with one of the first conditions for the convergence of discrete asynchronous
iterations.

Definition 11 (Definition 2 in [64]). A function F is an asynchronously contracting
operator (ACO) if there exists a sequence of sets B(k) = B(k)1 ×B(k)2 × ...×B(k)n
for k ∈ N such that:

(SA1) ∀k : B(k + 1) ⊆ B(k).

(SA2) ∀k, x : x ∈ B(k)⇒ F (x) ∈ B(k + 1).

(SA3) ∃k∗, x∗ : ∀k : k∗ ≤ k ⇒ B(k) = {x∗}.

Theorem 2 (Theorem 1 in [64]). If F is an ACO then δ converges deterministically over
the set B(0).

Proof. See [64].

The ACO conditions require that the state space S can be divided into a series of nested
boxes B(k) where every application of F moves the state into the next box, and eventually
a box B(k∗) is reached that only contains a single element. See Figure 3.1 for a visualisation.
The reason why these conditions guarantee asynchronous convergence, rather than merely
synchronous convergence, is that each box must be decomposable over each of the n nodes.

43

B(0)
B(1)

B(2)
B(k∗)
x∗ F

F

F

Figure 3.1: If F is an ACO then the space S can be divided
up into a series of nested boxes B. Note that this figure is a
simplification, as each set B(k) is decomposable into B(k)1 × ...×
B(k)n and so in reality the diagram should be n dimensional.

Therefore the operator is always contracting even if every node hasn’t performed the same
number of updates locally. Note that Theorem 2 only guarantees δ will converge from
states in the initial set B(0). Hence B(0) can be thought of as a basin of attraction [51].
When applied to routing in Chapter 5, it is desirable to prove that the protocol will
converge from any state and hence the boxes will constructed such that B(0) = S.

Additionally there are two slight differences between Definition 11 and how it is stated
in [64]. Firstly the sets have been renamed from D to B to avoid conflicting with later
notation. Secondly for (SA1), Üresin & Dubois originally assumed ∀k : B(k + 1) ⊂ B(k).
This relaxation of this condition to ∀k : B(k+ 1) ⊆ B(k) is widely known and is used near
universally in later literature (e.g. [22]).

Some additional intuition about these conditions may be gained by considering the
example operators in Figure 3.2. There are two nodes participating in the iteration, and
the cells represent possible states. The arrow associated with each cell represents the
result of applying F to that state. The operator is an ACO if it is possible to construct a
sequence of contracting boxes such that:

1. Each box is a quadrilateral (otherwise the box is not decomposable).

2. Each box is contained inside the previous box (SA1).

3. Each newly excluded cell has an arrow into the current box (SA2).

4. The final box only contains the fixed point (SA3).

The advantage of the ACO conditions is that they are independent of both the asynchronous
state function and the schedule. Therefore proving that δ converges only requires reasoning
about the function F . Additionally, the ACO conditions are minimal at least some of the
time, as Theorem 2 in [64] proves that F being an ACO is also a necessary condition for
convergence when S is finite.

44

F1 F2 F3 F4

Operator

B(0)

B(1)

B(2)

B(3)

0 1 2
0

1

0 1 2
0

1

0 1 2
0

1

0 1 2
0

1

0 1 2
0

1

⇓

⇓

⇓

0 1 2
0

1

0 1 2
0

1

0 1 2
0

1

0 1 2
0

1

0 1 2
0

1

⇓

⇓

⇓

0 1 2
0

1

0 1 2
0

1

0 1 2
0

1

?

⇓

⇓

0 1 2
0

1

0 1 2
0

1

?

⇓

Figure 3.2: Examples of 2-node operators. The cells represent
possible states and the arrow associated with each cell represents
the result of applying the operator to that state. The operators F1
and F2 are ACOs as a sequence of nested boxes can be constructed
obeying all the required assumptions. F3 and F4 are not ACOs
as it is impossible to construct boxes B(2) and B(1) respectively
that obey (SA2).

45

However in practice the set of boxes B can be difficult and non-intuitive to construct.
Üresin & Dubois recognised this and provided several other conditions that are suffi-
cient to construct an ACO3. An alternative set of conditions were recently described by
Gurney [35].

Definition 12. A function F is an asynchronously metrically contracting operator
(AMCO) if for every node i there exists a distance function di such that:

(SU1) ∀i : di is an ultrametric

(SU2) ∀i : di is bounded

(SU3) F is strictly contracting on orbits w.r.t. D over S

(SU4) F is strictly contracting on x∗ w.r.t. D over S for any fixed point x∗

(SU5) S is non-empty

where D(x, y) = maxi di(xi, yi),

The definition of an ultrametric may be found in Appendix A. The AMCO conditions
require the construction of a notion of distance between states (SU1) such that there exists
a maximum distance (SU2) and that successive iterations become both closer together
(SU3) and closer to any fixed point (SU4). Note that in practice a unique fixed point must
exist by Lemmas 1 & 2. The assumption that S is non-empty (SU5) ensures that the
iterative argument in Lemma 1 has a starting point.

Gurney [35] proves that the AMCO conditions are equivalent to the ACO conditions
by constructing reductions in both directions. Consequently the following convergence
theorem holds.

Theorem 3 (Theorem 5 in [35]). If F is an AMCO then δ converges deterministically
over the set S.

Proof. See [35].

3.2.3 Unstructured spaces

Both the ACO and the AMCO conditions require that the space have regular structure.
For the ACO conditions this is encoded by the boxes being nested (SA1), and for the
AMCO conditions that S is an ultrametric space (SU1). However this thesis is the first to
note that the full power of these assumptions is not needed and so the conditions may

3Several of these conditions have since been shown to be wrong by Zmigrod, Daggitt & Griffin [68],
who demonstrated counter-examples that satisfied the conditions but did not converge deterministically.

46

B0

B1

B2

Bk∗

B0

B1
B2

Bk∗

Figure 3.3: Highlighting the change to the definition of the ACO
conditions. Whereas (SA1) required each set to be contained
within the previous set (left), the new assumption (SA1)’ does not
require this (right).

be relaxed so that the space is unstructured. In particular assumptions (SA1) and (SU1)
may be relaxed as follows:

(SA1) ∀k, x : B(k + 1) ⊆ B(k)

⇓

(SA1)′ ∀x : x ∈ B(0)⇒ F (x) ∈ B(0)

(SU1) ∀i : di is an ultrametric

⇓

(SU1)′ ∀i : di is a quasi-semi-metric

The definition of a quasi-semi-metric may be found in Appendix A. Figure 3.3 attempts
to provide a geometrical interpretation of what this relaxation means in the context of the
ACO conditions. The adjusted proofs of convergence for the static model will not be shown
here, and interested readers may consult the Agda code [19]. However the proof that these
relaxations are valid for the more general model of dynamic asynchronous iterations may
be found in the second half of this chapter.

Weakening these assumptions has the immediate benefit of lessening the burden of proof
on the user of these theorems. However a natural question to ask is that having removed
the requirement of structure on the space, is it now possible to prove the convergence of
new asynchronous processes for which it was not previously possible? Theorem 2 of [64]
suggests that there are no finite examples, as it shows that when the set S is finite then
the operator being an ACO is also a necessary condition for convergence. In the infinite
case it still remains an open question. It should be noted there are plenty of interesting
asynchronous iterations with infinite state spaces e.g. path-vector routing protocols.

A point of interest is that the formalisation of these proofs in Agda played an important
role in the discovery of these relaxations. In a pen-and-paper proof it is very difficult to
verify that certain assumptions have not been used implicitly. In contrast a proof assistant
such as Agda can instantly list every use of an assumption. This is discussed further in
Chapter 8.

47

It should also be noted that di, the distance functions in the AMCO conditions, are
now a very strange set of functions indeed. They need obey neither the symmetry law nor
any version of the triangle equality, and so are only quasi-semi-metrics. The quantity that
such functions measure perhaps does not deserve the epithet “distance”, however, for lack
of a better alternative, this thesis will continue to use the term.

3.2.4 Drawbacks of the static model

Even after incorporating the generalisations discussed in the previous section, there are
two main drawbacks to the standard model of asynchronous iterations. The first is that
the definition of a schedule assumes that the set of nodes is fixed (SS2) and that the links
between nodes continue to function indefinitely (SS3). While these liveness assumptions
may be reasonable when modelling a process being run on a multi-core computer, it is
unrealistic in many decentralised “always on” processes such as routing. For example the
global BGP system has been “on” since the early 1990’s. Since then countless links and
nodes have failed/been removed and at the same time the system has grown from a few
dozen routers to millions, all whilst the protocol continues to run.

It is possible to argue that a temporary (though not permanent) node failure can be
represented in the existing model by simply excluding a node from the set of active nodes
over the relevant period of time. However this is still unsatisfactory as many types of node
failure will result in the node’s state being erased (e.g. after replacing a faulty server in a
data centre). In reality after such an event the node is forced to revert back to the initial
state. This “rebooting” of a node cannot be described by the existing model.

Another issue is that the model assumes that the operator F remains the same over
time. This may not be the case if, for example, the function F depends on some process
external to the computation (e.g. link latency in routing) or if it depends on the set of
participants (e.g. resource allocation/consensus algorithms). This thesis therefore uses the
term static to refer to the asynchronous iterations discussed so far and dynamic to refer
to this new class of asynchronous iterations in which the set of participating nodes and
functions may change over time.

In many works (including the author’s own work [18]) it is informally argued (or even
implicitly assumed) that the correctness of dynamic iterations is an immediate consequence
of the correctness of static iterations. The reasoning runs that a dynamic iteration is really
a sequence of static iterations, where each new static iteration starts from the final state
of the previous static iteration in the sequence. However this reasoning is incorrect as it
does not take into account the messages from the previous iteration that will arrive during
the new iteration. For example if node 1 goes down, it may still have messages in flight
that node 2 will receive at some point in the future. However the static model does not
allow messages to arrive from outside the set of nodes V .

48

The second half of this chapter therefore proposes a new, more general model that can
describe both static and dynamic processes.

3.3 Dynamic asynchronous iterations

3.3.1 Model

Let V be the set of all the nodes that participate at some point during the iteration. It is
still assumed that V is finite, despite the aim to model a process in which an arbitrary
number of nodes may leave and join over time. The justification for this is that the only
cases in which V is infinite are if either an infinite number of nodes were participating at
the same time or an infinite amount of time has passed since the iteration began. Neither
case is of interest in reality.

Similar to before, there exists a product state space S = S1 × S2 × .. × Sn where
n = |V |. In order to capture the new dynamic nature of the process the concept of an
epoch is introduced. An epoch is a contiguous period of time in which both the function
being iterated and the set of participating nodes remain constant. The set of epochs is
denoted as E but as with time can be assumed to be an alias for N.

Instead of a single function F , it is now assumed that F is a family of indexed functions
where F ep is the function being computed in epoch e by participants p ⊆ V . Furthermore
it is assumed there exists a special non-participating state ⊥ ∈ S.

A schedule must therefore not only track the activation of nodes and the flow of data
between them but also the current epoch and the participants. Given these requirements
it is natural to redefine a schedule as follows:

Definition 13. A dynamic schedule is a tuple of functions (α, β, η, π) where:

• α : T → 2V is the activation function, where α(t) is the set of nodes which activate
at time t.

• β : T × V × V → T is the data flow function, where β(t, i, j) is the time at which
the information used by node i at time t was sent by node j.

• η : T → E is the epoch function, where η(t) is the epoch at time t.

• π : E → 2V is the participants function, where π(e) is the set of nodes participating
in the computation during epoch e.

such that:

(DS1) ∀i, j, t : β(t, i, j) < t – information only travels forward in time

49

(DS2) ∀t1, t2 : t1 ≤ t2 ⇒ η(t1) ≤ η(t2) – the epoch number increases monotonically

Note that the two problematic assumptions of node liveness (SS2) and link liveness (SS3)
have been dropped as they no longer make sense in the current form. For example, how can
it be guaranteed that a node will continue to activate indefinitely if the possibility exists
that it permanently ceases to participate? In their place is the assumption (DS2) that
epochs are monotonically increasing. Although not technically required, the assumption is
convenient as if there are two points in time in the same epoch then consequently every
point between them must also be in the same epoch. This assumption does not reduce
the expressive power of the model, as for any non-monotonic η it is possible to find a
suitable relabelling of epochs that recovers monotonicity. Another possible assumption
that might be made is that a node can only activate if it is participating in the iteration
(i.e. ∀t : α(t) ⊆ π(η(t))). However, although the assumption is reasonable, the dynamic
asynchronous state function δ will be defined in such a way that it will not be required.

Some additional notation is also defined for ρ(t), the set of nodes participating at time
t, and F t, the function being used at time t:

ρ(t) , π(η(t))

F t , F η(t)ρ(t)

It is now possible to redefine the asynchronous state function.

Definition 14. Given a schedule (α, β, η, π) the dynamic asynchronous state function
is defined as follows:

δti(x) =

⊥i if i /∈ ρ(t)

xi else if t = 0 or i /∈ ρ(t− 1)

δt−1
i (x) else if i /∈ α(t)

F t
i (δ

β(t,i,1)
1 (x), δβ(t,i,2)

2 (x), ..., δβ(t,i,n)
n (x)) otherwise

where δti(x) is the state of node i at time t starting from state x.

If a node is not currently participating then it adopts its non-participating state. If
it is participating at time t but was not participating at the time t − 1 then it must
have just (re)joined the computation and it therefore adopts its initial state. If the node
is a continuing participant and is inactive at time t then its state remains unchanged.
Otherwise, if it is active at time t, it updates its state in accordance with the data received
from the other nodes in the computation.

Note that at time t nodes can use data from any node in V rather than just ρ(t), the
current set of participants. Hence nodes that are currently participating may end up

50

processing messages from nodes that are no longer participating in the current epoch.
Also note that this new model is a strict generalisation of Üresin & Dubois’s static

model as the previous definition of δ is immediately recovered by setting η(t) = 0 and
ρ(t) = V .

3.3.2 What does “correct” mean?

Unlike static iterations, the definition of correctness for dynamic iterations is not imme-
diately obvious. Guaranteeing that such a process will always converge to a fixed point
is impossible as both the underlying computation and the participants may continue to
change indefinitely. Furthermore the epoch durations may be short enough that no fixed
point is ever reached, even temporarily. The natural intuitive notion in such circumstances
is to say that an iteration is convergent if whenever an epoch lasts “long enough” then δ
will converge to a fixed point for the remainder of that epoch.

Therefore the next question is what does “long enough” mean? Unlike in a static
schedule, the definition of a dynamic schedule does not constrain the activation or data
flow functions. Consequently there is no guarantee that a node will activate even once
during an epoch. One solution to this problem might be to enforce a restriction along the
lines of “there exists an m such that every participating node must activate at least every
m time steps”. However this condition would exclude an infinite set of schedules for which
convergence still occurs.

Instead this thesis turns its attention to some concepts that are used (implicitly rather
than explicitly) by Üresin & Dubois in their proof of static convergence.

Definition 15. A period of time [t1, t2] is an activation period for node i if η(t1) = η(t2)
and there exists a time t ∈ [t1, t2] such that i ∈ α(t).

Therefore an activation period is simply a contiguous period of time during an epoch in
which the node is guaranteed to activate at least once.

Definition 16. A period of time [t1, t2] is an expiry period for node i if η(t1) = η(t2)
and for all nodes j and times t ≥ t2 then t1 ≤ β(t, i, j).

After an expiry period the node is guaranteed to use only data generated after the start of
the expiry period. In other words, all messages in flight to node i at time t1 have either
arrived or been lost by time t2.

Definition 17. A period of time [t1, t2] is a pseudocycle if η(t1) = η(t2) and for all
nodes i ∈ ρ(t1) there exists a time t ∈ [t1, t2] such that [t1, t] is an expiry period for
node i and [t, t2] is an activation period for node i.

51

TimeExpiry
period

Activation
period

Expiry
period

Activation
period

Expiry
period

Activation
period

Pseudocycle Pseudocycle Pseudocycle

U&D pseudocycle U&D pseudocycle ConvergenceStart of
epoch

Figure 3.4: A sequence of pseudocycles comprised of alternating
activation and expiry periods.

Definition 18. A period of time [t1, tk] contains k pseudocycles if there exists times
ti for i ∈ [2, k − 1] such that the time periods [t1, t2], [t2, t3] , ..., [tk−1, tk] are all
pseudocycles.

The term “pseudocycle” refers to the fact that during such a period of time the asynchronous
iteration will make at least as much progress as that of a single step of the synchronous
iteration. This notion will be made formal later on by Lemma 9 in Section 3.3.4.

Note that the definition of a pseudocycle above differs from that of Üresin & Dubois
as they define a pseudocycle the other way around, i.e. an activation period and then
an expiry period. The reason for this change is that convergence occurs at the end of an
activation period, as will be implied by Lemmas 5 & 9. Furthermore, unlike in the static
model the dynamic model will require an extra expiry period at the front of the sequence
to flush stale information that originated in previous epochs. Consequently, as illustrated
in Figure 3.4, Üresin & Dubois’s definition of pseudocycle is misaligned with both the
start of the epoch and the time of convergence. Realigning the pseudocycles therefore
simplifies both the definition and the proof of convergence.

Using these new definitions, correctness can now be defined as follows:

Definition 19. A dynamic asynchronous iteration is deterministically convergent over
a set X ⊆ S if:

1. for every epoch e and set of participants p there exists a fixed point x∗ep and
number of iterations k∗ep.

2. for every starting state x ∈ X, schedule and time t1 then if the time period
[t1, t2] contains k∗η(t1)ρ(t1) pseudocycles then for every time t3 such that t2 ≥ t3 and
η(t1) = η(t3) then δt3(x) = x∗η(t1)ρ(t1).

The definition requires that there exists a fixed point x∗ep for every epoch e and set of
participants p. However it does not guarantee that the iteration will ever reach any of

52

these fixed points, even temporarily. Instead it only guarantees that the fixed point will
be reached if the current epoch contains at least k∗ep pseudocycles.

Why is the criterion of the time period being a pseudocycle the correct one?

1. Consider the consequences of an epoch not containing a pseudocycle. It implies
either a) one of the participating nodes never activated or b) one of the participating
nodes was still using information from the previous epoch at the end of the current
epoch. In either case, guaranteeing that δ will converge to the current fixed point is
impossible.

2. In the degenerate case of a static computation this is a strictly weaker condition
than the node and link liveness assumptions for static schedules. Node and link
liveness imply that there are infinite number of pseudocycles (Proposition 1 in [64]),
whereas this new notion of convergence requires only a finite number of pseudocycles.
Therefore one could argue that in the static theory, the default assumptions of node
and link liveness should be removed from the definition of the static schedule, and
instead be relegated to sufficient conditions.

3. Any intuitive liveness constraints on the activation and data flow functions result
in a “sufficiently long” time period being a pseudocycle. Some examples of such
liveness constraints are:

• There exists an m such that every participating node is guaranteed to activate
at least once every m time steps, and there exists a q such that every pair of
participating nodes succeeds in exchanging a message at least every q time
steps.

• There exists a final epoch in which every node and link continue to activate
indefinitely.

3.3.3 Correctness conditions

Equipped with a suitable definition of correctness, this section now considers how to gener-
alise the ACO and ACMO conditions. However before doing so, some additional definitions
are needed. As would be expected, information from non-participating nodes that is still
“in-flight” may interfere with the convergence of δ. Therefore some notion of a state only
containing information for the current set of participants is needed.

Definition 20. A state x is accordant with respect to a set of participants p if every
inactive node is assigned the inactive state, i.e. ∀i /∈ p : xi = ⊥i. The set of states that
are accordant with p is denoted as Ap.

53

It is also important to be careful about the notion of equality in the upcoming definitions.
Due to the changing set of participants there are now two possible definitions for equality
over states. Equality over the entire state:

x = y , ∀i : xi = yi

and equality with respect to p, the current subset of active nodes:

x =p y , ∀i ∈ p : xi = yi

Clearly if states x and y are accordant then x =p y implies x = y.
The concept of a dynamic ACO is now defined, and while it might be tempting to

simply require that every F ep be a static ACO, there are a couple of additional constraints
necessary.

Definition 21. The set of functions F are a dynamic ACO if for every epoch e and set
of participants p there exists a sequence of sets Bep(k) = Bep(k)1×Bep(k)2×...×Bep(k)n
for k ∈ N such that:

(DA1) ∀e, p, x : x ∈ Bep(0)⇒ F ep(x) ∈ Bep(0)

(DA2) ∀e, p, k, x : x ∈ Ap ∧ x ∈ Bep(k)⇒ F ep(x) ∈ Bep(k + 1)

(DA3) ∀e, p : ∃k∗ep, x∗ep : ∀k : k∗ep ≤ k ⇒ Bep(k) = {x∗ep}

(DA4) ∀e, f, p, q, i : Bep(0)i = Bfq(0)i

(DA5) ∀e, p, k, i : i /∈ p⇒ ⊥i ∈ Bep(k)i

Assumptions (DA1), (DA2) & (DA3) are generalised versions of (SA1)’, (SA2) & (SA3)
respectively. The only difference is that (DA2) has been weakened so that applying F
only advances a box when the state is accordant with the current set of participants. This
means that progress need not be made in the case when stale messages are still being
received from nodes that are no longer participating. The new assumption (DA4) requires
that all the initial boxes are equal and, when combined with (DA1), this ensures that the
iteration is always in the initial box of the current epoch. Finally (DA5) enforces that the
boxes respect the non-participating state.

The corresponding definition for the AMCO conditions is:

Definition 22. The set of functions F are a dynamic AMCO if for every epoch e and
set of participants p ⊆ V there exists a distance function depi such that:

(DU1) ∀e, p, i : depi is quasi-semi-metric

54

(DU2) ∀e, p, i : depi is bounded

(DU3) ∀e, p: F ep is strictly contracting on orbits w.r.t. Dep over Ap

(DU4) ∀e, p: F ep is strictly contracting on x∗ w.r.t. Dep over Ap for any fixed point x∗

(DU5) ∀e, p, x : F ep(x) ∈ Ap.

where Dep(x, y) = maxi∈p depi (x, y).

Again assumptions (DU1) – (DU4) are generalisations of (SU1)′ – (SU4). The crucial
difference is that everything is restricted to the set of participants: i) F ep need only be
strictly contracting over accordant states Ap, ii) the notion of equality used in (DU3) and
(DU4) is =p rather than =, and iii) the distance function D is defined as the maximum
over all participating states. Note that assumption (SU5) that S is non-empty is not
needed as the dynamic model assumes the existence of the non-participating state ⊥ ∈ S.
Instead the new assumption (DU5) ensures that the operator F respects the current set of
participants. This assumption was not stated explicitly in the dynamic ACO conditions
but can be derived from assumptions (DA2) and (DA5).

3.3.4 Dynamic ACO implies convergent

This section now proves that if F is a dynamic ACO then δ is convergent over B0{}(0).
Unless stated otherwise, it assumes the existence of some arbitrary schedule (α, β, η, π)
and starting state x ∈ B0{}(0). As with F t, a shorthand Bt , Bη(t)ρ(t) is used so that
the boxes may be indexed by time rather than by epoch and participants. Initially
some auxiliary definitions are introduced in order to improve the readability of the
proof.

Definition 23. The state of node i is in box k at time t if:

δti(x) ∈ Bt(k)i

This simply formalises what is meant by the statement that node i’s state is in box k.

Definition 24. The messages to node i are in box k at time t if:

∀s : (s > t) ∧ (η(s) = η(t))⇒ ∀j : δβ(s,i,j)
j (x) ∈ Bt(k)j

This ensures that any message arriving at node i after time t and before the end of the
current epoch is guaranteed to be in box k. An alternative way of viewing this condition
is that node i’s local view of the iteration’s state is (and will always be) in box k. This is
the first of the two preconditions necessary for (DA2) that will be needed by Lemma 7 to
prove that node i’s state permanently advances a box.

55

Definition 25. The messages to node i are well formed at time t if:

∀s : (s > t) ∧ (η(s) = η(t))⇒ ∀j : j /∈ ρ(s)⇒ δ
β(s,i,j)
j = ⊥j

This ensures that any message arriving at node i after time t from a non-participating
node j will always contain the non-participating state ⊥j. This is equivalent to stating
that node i’s local view of the state is accordant with the current of participants. This is
the second of the two preconditions necessary for (DA2) that will be needed by Lemma 7
to prove that node i’s state permanently advances a box.

Definition 26. The computation at node i is in box k at time t if:

1. the state of node i is in box k at time t.

2. the messages to node i are in box k − 1 at time t.

3. the messages to node i are well formed at time t.

This definition collects together the pre-conditions required to prove that the state of
node i will always be in box k for the remainder of the epoch (see Lemma 5). Finally this
definition is lifted to the whole computation as follows:

Definition 27. The computation is in box k at time t if for all nodes i ∈ ρ(t) then the
computation at node i is in box k at time t.

Note that the above definition does not place any requirements on non-participating
nodes. This is because by the definition of δ any non-participating node i is always in
the non-participating state ⊥i, which, by assumption (DA5), is in every one of the boxes,
including the final one.

The proof is now split into four parts. The first set of closure lemmas prove that the
state and the messages remain in box 0 even across epoch boundaries. The second set of
stability lemmas describe how after the computation reaches box k it remains in box k for
the remainder of the epoch. The third set of progress lemmas demonstrate how during a
pseudocycle the entire computation advances at least one box. Finally these three sets of
lemmas are combined to prove convergence.

3.3.4.1 Closure lemmas

Assumption (DA4) states that the initial boxes are all equal no matter which epoch or
set of participants they are parametrised by. In order to later apply the other ACO
assumptions, it is first necessary to establish that this initial box is closed over δ, i.e. that

56

the iteration never escapes the initial box. The following lemmas therefore prove that
both the state and the messages are always in the initial box of the current epoch.

Lemma 3. For every time t and node i then the state of node i is in box 0 at time t.

Proof. Consider an arbitrary time t and node i. The proof that δti(x) ∈ Bt(0)i proceeds
by induction over the definition of δ.
Case 1: i /∈ ρ(t)
Then δti(x) = ⊥i and ⊥i ∈ Bt(0)i by assumption (DA5).
Case 2: i ∈ ρ(t) and (t = 0 or i /∈ ρ(t− 1))
Then δti(x) = xi and xi ∈ B0(0)i by the initial assumption. Hence δti(x) is also in box
Bt(0)i by assumption (DA4) which states that B0(0)i = Bt(0)i.
Case 3: i ∈ ρ(t) and i ∈ ρ(t− 1) and i /∈ α(t2)
Then δti(x) = δt−1

i (x), and δt−1
i (x) ∈ Bt−1(0)i by the inductive hypothesis applied to

time t−1. Hence δti(x) ∈ Bt(0)i by assumption (DA4) which states that Bt−1(0)i = Bt(0)i.
Case 4: i ∈ ρ(t) and i ∈ ρ(t− 1) and i ∈ α(t)
Then δti(x) = F t

i (δ
β(t,i,1)
1 (x), ..., δβ(t,i,n)

n (x)). For each j then δ
β(t,i,j)
j (x) ∈ Bβ(t,i,j)(0)j by

the inductive hypothesis applied to time β(t, i, j). Furthermore Bβ(t,i,j)(0)j = Bt(0)j by
assumption (DA4). Hence F t

i (...) ∈ Bt(0)i by assumption (DA1) which states that Bt(0)
is closed under F t.

Lemma 4. For every time t and node i then the messages to node i are in box 0 at time t.

Proof. Consider an arbitrary time t and node i. Then for all times s ≥ t and nodes j it must
be shown that δβ(t,i,j)

j (x) ∈ Bt(0)j. This immediately follows as δβ(t,i,j)
j (x) ∈ Bβ(t,i,j)(0)j

by Lemma 3 and Bβ(t,i,j)(0)j = Bt(0)j by assumption (DA4).

3.3.4.2 Stability lemmas

Guaranteeing progress towards the fixed point in asynchronous iterations is complicated
by the fact that old and out-of-date messages from earlier in the epoch may arrive and
undo recent progress. The next series of lemmas examine what conditions are necessary to
guarantee that once the state and messages are in box k then they will always be in box k.

Note that from here on, the proof will only reason about the behaviour of δ within a
single epoch. Therefore going forwards every moment of time referenced by the proof is
assumed to belong to the same epoch e, unless explicitly stated otherwise. The dependency
of F and B on the time t are therefore dropped for notational clarity.

Lemma 5. If the computation at node i is in box k at time t then the state of node i is
in box k for every time s ≥ t.

57

Proof. Assume that the computation at node i is box k at time t for an arbitrary node i
and time t. It is then necessary to show that δsi (x) ∈ Bi(k) for any s ≥ t. The proof
proceeds by induction over time s and the definition of δ. If s = t then the state of node i
is in box k at time t by the definition of the computation at node i being in box k at
time t. Otherwise if s > t then consider the following cases:
Case 1: i /∈ ρ(s)
Then δsi (x) = ⊥i and ⊥i ∈ B(k)i by assumption (DA5).
Case 2: i ∈ ρ(s) and i /∈ ρ(s− 1)
As s− 1 is in the same epoch as s then ρ(s− 1) = ρ(s), contradicting the case assumptions.
Case 3: i ∈ ρ(s) and i ∈ ρ(s− 1) and i /∈ α(s)
Then δsi (x) = δs−1

i (x) and δs−1
i (x) ∈ B(k)i by the inductive hypothesis at time s− 1.

Case 4: i ∈ ρ(s) and i ∈ ρ(s− 1) and i ∈ α(s)
Then δsi (x) = Fi(δβ(s,i,1)

1 (x), ..., δβ(s,i,n)
n (x)). The arguments to Fi(...), (i.e. the latest

messages to arrive at node i from each node j) are all well formed and in B(k − 1)j,
thanks to the assumption that the computation at node i is in box k at time t. Hence
Fi(...) ∈ B(k)i by assumption (DA2).

Lemma 6. If messages to node i are in box k at time t then the messages to node i are
in box k for all times s ≥ t.

Proof. This is trivial by the definition of the messages to node i being in box k at time t.

3.3.4.3 Progress lemmas

Having established that i) the iteration is always in the initial box no matter the epoch
and ii) once the computation at node i has reached box k, it remains in box k, it is
next necessary to prove when the computation advances a box during an epoch. These
conditions are intimately tied to the notion of a pseudocycle.

Lemma 7. If the messages to node i are well-formed and are in box k at time t and [t, s]
is an activation period then the state of node i is in box k + 1 at time s.

Proof. The proof that δsi (x) ∈ B(k + 1)i proceeds by induction over the definition of δ
and time s. As activation periods are of non-zero length then s > t and so consider the
following cases:
Case 1: i /∈ ρ(s)
Then δsi (x) = ⊥i and ⊥i ∈ B(k + 1)i by assumption (DA5).
Case 2: i ∈ ρ(s) and i /∈ ρ(s− 1)
As s− 1 is in the same epoch as s then ρ(s− 1) = ρ(s), contradicting the case assumptions.
Case 3: i ∈ ρ(s) and i ∈ ρ(s− 1) and i /∈ α(s)
Then δsi (x) = δs−1

i (x). If s = t+ 1 then the initial assumptions are contradicted as i has

58

not activated during the period [t, s]. Therefore s > t+ 1 and hence δs−1
i (x) ∈ B(k + 1)i

by applying the inductive hypothesis at time s− 1.
Case 4: i ∈ ρ(s) and i ∈ ρ(s− 1) and i ∈ α(s)
Then δsi (x) = Fi(δβ(s,i,1)

1 (x), ..., δβ(s,i,n)
n (x)). By the assumptions that all the messages to

node i were well formed and in box k at time t then node i’s local view of the state at
time s is accordant and in box k. Hence Fi(...) ∈ B(k + 1)i by assumption (DA2).

Lemma 8. If the computation is in box k at time t and [t, s] is an expiry period for
node i then the messages to node i are in box k at time s.

Proof. Assume that the computation is in box k at time t and consider two arbitrary
nodes i and j. It is necessary to show that for all times r ≥ s then δβ(r,i,j)

j (x) ∈ B(k)j.
As [t, s] is an expiry period then t ≤ β(r, i, j) and therefore β(r, i, j) ∈ [t, r]. If j is not
participating then δβ(r,i,j)

j (x) = ⊥j and ⊥j ∈ B(k)j by assumption (DA5). Otherwise if j
is participating then the required result follows by Lemma 5 applied to times t and r and
the fact that the computation at node j is in box k at time t.

Lemmas 7 & 8 have shown that during activation and expiry periods the state and
the messages are guaranteed to advance at least one box respectively. The next lemma
combines them to prove that during a pseudocycle the whole computation progresses at
least one box, i.e. during a pseudocycle the asynchronous iteration makes at least as much
progress as a single step of the synchronous iteration.

Lemma 9. If the computation is in box k at time t and the period [t, s] is a pseudocycle
then the computation is in box k + 1 at time s.

Proof. As [t, s] is a pseudocycle then for each participating node i ∈ ρ(t) there exists a
time m such that [t,m] is an expiry period and [m, s] is an activation period.

• As the messages to node i are well-formed at time t then they are also well-formed
at times m and s.

• As [t,m] is an expiry period and the computation is in box k at time t, then the
messages to node i are in box k at time m by Lemma 8, and also therefore at time s
by Lemma 6.

• As [m, s] is an activation period and the messages to node i are well-formed and in
box k at time m (by the previous two points) then the state of node i in box k + 1
at time s by Lemma 7.

Consequently all three requirements for the computation at node i being in box k + 1 at
time s are fulfilled.

59

3.3.4.4 Convergence

Now that Lemma 9 has established that during a pseudocycle the whole computation
advances one box, one might think this can be repeatedly applied to prove convergence
immediately. Unfortunately however, the base case is still missing, as although Lem-
mas 3 & 4 proved that the state and the messages are always in box 0, the computation
as a whole is not necessarily in box 0. This is because the messages are not necessarily
well-founded, i.e. there may still be messages in flight from non-participating nodes. The
following lemma therefore establishes a base case by proving that after one pseudocycle
the computation is in box 1 (the trivial case when k∗ = 0 will be dealt with separately in
Theorem 4).

Lemma 10. If [t, s] is a pseudocycle then the computation is in box 1 at time s.

Proof. As [t, s] is a pseudocycle then for each participating node i ∈ ρ(t) there exists a
time m such that [t,m] is an expiry period and [m, s] is an activation period.

• As [t,m] is an expiry period then all messages arriving at node i from node j after
time m must be from the current epoch and hence the messages to node i are
well-formed at times m and s.

• The messages to node i are in box 0 at times m and s by Lemma 4.

• As [m, s] is an activation period and the messages to node i are well-formed and in
box k at time m (by the previous two points) then the state of node i in box 1 at
time s by Lemma 7.

Consequently all three requirements for the computation at node i being in box 1 at time s
are fulfilled.

Finally the main theorem may now be proved.

Theorem 4. If F is a dynamic ACO then δ is deterministically convergent over B0{}(0).

Proof. To prove that δ is convergent it is first necessary to construct a fixed point x∗ep
and iteration number k∗ep for every epoch e and set of participants p. Let these be the x∗ep
and k∗ep respectively as specified by assumption (DA3).

Next consider an arbitrary schedule, starting state x ∈ B0{}(0) and starting time t1
in epoch e = η(t1) with participants p = ρ(t1). It is now necessary to show that if [t1, t2]
contains k∗ep pseudocycles then δ will have converged to x∗ep by time t2. If k∗ep = 0 then it is
only necessary to show that the state is always in the initial box which holds trivially by
Lemma 3. Otherwise if k∗ep 6= 0 then after the first pseudocycle the computation is in box 1
by Lemma 10. Consequently after the remaining k∗ep − 1 pseudocycles, the computation

60

is in box k∗ep at time t2 by repeated application of Lemma 9. Hence for any subsequent
time t3 in epoch e, then δt3(x) ∈ Bep(k∗ep) by Lemma 5 and, as x∗ep is the only state in
Bep(k∗ep) by assumption (DA3), then δt3(x) = x∗ep.

3.3.5 Dynamic AMCO implies convergent

Although the dynamic ACO conditions are sufficient to guarantee convergence, they can
be a tricky to construct in practice as discussed previously in Section 3.2.2. As will be seen
in Chapter 5, the dynamic AMCO conditions are often easier to work with. This section
proves that the dynamic AMCO conditions also guarantee convergence by constructing a
reduction from the dynamic AMCO conditions to the dynamic ACO conditions. The main
thrust of the reduction is relatively simple. As F ep is strictly contracting on orbits & its
fixed points, it possesses a unique fixed point x∗ep. As all distances are bounded above by
depmax, the box Bep(k)i can then be defined as the set of the states which are at a distance
of no more than depmax − k from (x∗ep)i, the ith component of the fixed point.

Theorem 5. If function F is a dynamic AMCO then F is a dynamic ACO.

Proof. Consider an arbitrary epoch e and set of participants p. For notational clarity the
superscripts e and p will be dropped from F , di, dmax, D and B unless where explicitly
mentioned otherwise.

Using ⊥ as the accordant starting state, and as F is strictly contracting on orbits
(DU3) and on fixed points (DU4), then by Lemmas 1 & 2 there exists a unique fixed
point x∗ such that F (x∗) =p x

∗. This fixed point is necessarily accordant with p by (DU5)
and its method of construction, and hence the equality can be strengthened to F (x∗) = x∗.

The ith component for the kth box is then be defined as follows:

B(0)i , Si

B(k + 1)i ,

{⊥i} if i /∈ p

{xi | di(xi, x∗i) ≤ dmax − k} if i ∈ p

It is now necessary to verify that the boxes B fulfil the required conditions:

1. (DA1) – ∀x : x ∈ B(0)⇒ F (x) ∈ B(0)

Immediate from the definition of B(0).

2. (DA2) – ∀k, x : x ∈ Ap ∧ x ∈ B(k)⇒ F (x) ∈ B(k + 1)

Consider an accordant state x ∈ B(k) and an arbitrary node i. If i /∈ p then xi = ⊥i
by xi ∈ B(k)i , and hence xi is also in B(k + 1)i. Otherwise if i ∈ p it remains to

61

show that F (x)i ∈ B(k + 1)i or equivalently that di(x∗i , F (x)i) ≤ dmax − (k + 1). To
see why this inequality holds consider whether or not x =p x

∗.

If x =p x
∗ then the inequality follows directly:

di(x∗i , F (x)i) = di(x∗i , F (x∗)i) (as x =p x
∗)

= di(x∗i , x∗i) (as F (x∗) = x∗)

= 0 (by (DU1))

≤ dmax − (k + 1)

Otherwise if x 6=p x
∗ then di(x∗i , F (x)i) < dmax − k as:

di(x∗i , F (x)i) ≤ D(x∗, F (x)) (by definition of D)

< D(x∗, x) (by (DU4) & (DU5))

≤ dmax − k (as x ∈ B(k))

which implies that di(x∗i , F (x)i) ≤ dmax − (k + 1).

Hence in either case F (x)i ∈ B(k + 1)i.

3. (DA3) – ∃k∗, x∗ : ∀k : k∗ ≤ k ⇒ B(k) = {x∗}

Let k∗ = dmax and x∗ be the fixed point found above and consider a k ≥ dmax. If
k = 0 then dmax = 0 and so the result holds trivially as all points are equal by (SU2)
& (DU1). If k > 0 then suppose there exists a state x ∈ B(k). It must therefore be
shown that x = x∗. If i /∈ p then xi ∈ B(k)i implies xi = ⊥i and ⊥i = x∗i as x∗ is
accordant. Otherwise if i ∈ p then xi ∈ B(k)i implies d(xi, x∗i) ≤ dmax − k and as
k ≥ dmax then d(xi, x∗i) = 0 and hence xi = x∗i by (DU1).

4. (DA4) – ∀e, f, p, q, i : Bep(0)i = Bfq(0)i

Immediate from the definition of B(0).

5. (DA5) – ∀k, i : i /∈ p⇒ ⊥i ∈ B(k)i

If k = 0 or k 6= 0 then either way immediate from the definition of B.

Hence the conditions are satisfied and F is a dynamic ACO.

Theorem 6. If F satisfies the dynamic AMCO conditions then δ is convergent.

Proof. As F is a dynamic AMCO then F is a dynamic ACO by Theorem 4. Hence δ is
convergent by Theorem 5.

62

3.4 Conclusions

The purpose of this chapter has been to construct a mathematical theory for dynamic
asynchronous iterations that will form the basis of a new model for vector-based protocols
described in Chapter 4. Along the way it has made several contributions to the existing
theory.

Firstly it has relaxed the assumption that all asynchronous iterations that converge
must occur in spaces with nested structure. Secondly it has described a new more general
model for dynamic asynchronous iterations in which both the computation and the set
of participants may change over time. It has then generalised the existing ACO and
AMCO conditions for the static model and shown that the generalisations are sufficient to
guarantee the correctness of the dynamic model.

It is still an open question whether the dynamic conditions are now truly as general as
possible and therefore necessary as well as sufficient for the convergence of an asynchronous
iteration. Furthermore it would be interesting to find a real-world convergent asynchronous
iteration whose space does not have a nested structure.

63

64

Chapter 4

An algebraic model for vector-based
protocols

The philosophy of the algebraic approach to routing is that routing problems can and
should be specified separately from the algorithm used to solve them. Consequently classes
of routing problems with similar properties can be identified, and the behaviour of routing
algorithms may be reasoned about with respect to a class of routing problems rather than
a single, specific instance.

The first half of this chapter discusses the two algebraic structures that have historically
been used to model routing problems. Next it proposes a new structure that is both simpler
and more expressive than the previous state-of-the-art. In particular this new structure is
capable of modelling path-vector operations as part of the routing problem rather than
the routing algorithm, thereby unifying distance-vector and path-vector protocols. The
new structure can also model complex path-dependent conditional policy, such as route
filtering in BGP.

The second half of the chapter uses this new algebraic structure to construct a model
for a vector-based routing protocol over an abstract routing problem. Initially it defines
a single synchronous iteration, and subsequently it applies the work in Chapter 3 to
construct a fully asynchronous model. Finally the chapter provides an overview of the
existing results and open questions in the field of algebraic routing.

Once again Appendix A contains some basic definitions that may be of use to the
reader.

4.1 Routing problems as algebras

Before trying to formalise the notion of an abstract routing problem, it is first necessary
to identify the core components that all routing problems have in common. For example
every routing problem has a method of choosing between two alternative path weights: in

65

the shortest-path problem the path with the smaller length is chosen, in the widest-path
problem the path with the greater bandwidth. The corresponding choice procedures
for RIP and BGP are described in Section 2.3.2. In total there are five such routing
“primitives”:

1. A set of weights assigned to paths.

2. A method for choosing between two alternative path weights.

3. A method for calculating the new weight when extending a path along a new edge.

4. A path weight representing the absence of a valid route.

5. A path weight representing the trivial route from a node to itself.

The following sections now discuss three models for routing problems: semiring algebras
which held sway up until the early 2000s, a more general algebraic structure first proposed
by Sobrinho in 2005 and finally a new algebra which is both simpler and more expressive
than that of Sobrinho.

4.1.1 Semiring algebras

Shortly after the publication of the first deterministic algorithms for solving the shortest-
paths problem, it was noticed that the algorithms only required minor modifications in order
to solve many other interesting best path problems. Upon further investigation, it became
clear that many common routing problems such as shortest-paths, widest-paths, most-
reliable-paths etc. all formed instances of algebraic structures called semirings [25]. The
first proposed model for routing problems was therefore a (commutative) semiring [13, 26]
(S, ⊕, ⊗, ∞, 0)1 where:

• S is the set of path weights.

• ⊕ : S × S → S is the choice operator, which given two path weights returns the
preferred path weight.

• ⊗ : S × S → S is the extension operator, which given two path weights returns the
weight of the concatenation of the two paths.

• ∞ is the weight of the invalid path, i.e. a value representing no route.

• 0 is the weight of the trivial path, i.e. the route from a node to itself.
1Typically the semiring literature uses 0 and 1 instead of ∞ and 0 respectively. However there was

push-back from the networking community against the choice of 0 to represent the worst possible route,
and 1 to represent the best possible route. The overline is used to differentiate them from elements of N∞.

66

which obey the following axioms:

1. ⊕ is associative and commutative

i.e. both the order in which choices are made and the order of the path weights in
the choice are irrelevant. For example, for any path weights x, y and z choosing
between x and y and then choosing between the result and z is equivalent to choosing
between x and z and then choosing between the result and y.

2. ⊗ is associative

i.e. the order in which the weight of a path is calculated is irrelevant. For example
consider a path ABCD: starting at A and then extending the path to B, then to C
and then to D is equivalent to starting at B, extending the path forwards to C, and
then extending it backwards to A and then extending it forwards again to D.

3. ∞ is an identity for ⊕ and an annihilator for ⊗

i.e. any other route is preferred over the invalid route, and extending the invalid
route always results in the invalid route.

4. 0 is an annihilator for ⊕

i.e. the trivial route is always preferred over any other route.

5. ⊗ distributes over ⊕

This assumption is more nuanced than the others. Essentially it says that all nodes in
the network agree on which are the best paths through the network. This assumption
will be discussed in greater depth in Section 4.5.

It is important to note that not all semirings have a natural interpretation as a routing
problem. Indeed routing is just one of many fields in which semirings have been used.
However amongst the semirings that do have a routing interpretation, many also have the
additional property that ⊕ is selective:

∀x, y ∈ S : x⊕ y ∈ {x, y}

This guarantees that when choosing between two path weights, one of the original path
weights will be returned, and hence that ⊕ really does represent a choice. Routing problems
with non-selective ⊕ operators will be discussed in Section 4.1.4.

As discussed in Appendix A, any ⊕ that is associative, commutative and selective
induces/is induced by a total ordering≤ over routes where x ≤ y ⇔ x⊕y = x, i.e. route x is
less than or equal to route y if x is chosen over y. Correspondingly, assumptions (R2) & (R3)
imply that 0 and ∞ are the minimum and maximum elements of the order respectively.

67

As will be seen in the subsequent sections, the ordering ≤ is often used interchangeably
with ⊕.

Despite being a good model for many basic routing problems, semirings are not general
enough to capture all routing problems of interest. In particular:

⊗ is not expressive enough While the ⊗ operator is capable of expressing simpler
extension operations, it cannot model more complex operations. This is because the
model labels links with path weights and conditional policies such as “reject any path
with length greater than 4, otherwise add 1 to the length” have no natural representation
as path-weights. Fundamentally the issue is that edges should be labelled with methods
for transforming path weights rather than path weights themselves.

⊗ is associative Closely linked to the previous point is that requiring the extension
operator to be associative is both unnecessary and counter-intuitive. In practice paths
are traversed from start to finish, and therefore there is no physical interpretation for
calculating the weight of a path using an out-of-order traversal.

⊗ distributes over ⊕ Finally the requirement that ⊗ distributes over ⊕ does not
capture a fundamental aspect of routing. For example the shortest-widest path problem
(where routes are first compared using their bandwidth and then by their length) is not
distributive. Instead distributivity is simply one of several possible relationships that
may exist between the choice and the extension operators. This is discussed further in
Section 4.5.

4.1.2 Sobrinho algebras

Despite the problems outlined above, semirings remained the dominant model for routing
and other related path problems for the next 30 years [3, 10, 44, 46, 48, 60]. During this
time networks underwent a seismic shift in both scale and complexity. It was only after
the wide-scale deployment of BGP that it was realised that some modern routing protocols
could not be described within the existing semiring framework. In the case of BGP,
amongst other issues, its underlying algebra is not distributive and its complex conditional
policies cannot be adequately represented by the ⊗ operator. To address these problems,
Sobrinho [62] proposed a new set of algebraic routing primitives (S, L,Σ,≤, .,∞,Σ0, g)2

where:

• S is the set of path weights.
2Notation has been changed to make the parallels with other models clearer.

68

• L is the set of edge labels.

This set, distinct from the set of path weights, represents the set of policies that may
be associated with edges in the network.

• Σ is the set of signatures.

Sobrinho does not provide a justification for the inclusion of this set, nor a physical
interpretation of what part of a protocol it represents (see the discussion on “Unnec-
essary complexity” at the end of this section). The best interpretation available is
that these can be thought of as an intermediate language for describing path weights.

• ≤ is an ordering over S.

As discussed in the previous section and in Appendix A, this is simply an alternative
formulation of the choice operator ⊕ in the semiring model.

• . : L× Σ→ Σ is the extension operation.

Given an edge labelled with l and a path with a signature x then l .x is the signature
of the path extended by the edge. This replaces the ⊗ operator in the semiring
model.

• ∞ ∈ Σ is the signature of the invalid route.

• Σ0 ⊆ Σ is the set of trivial signatures, one for each node in the network.

Note that this component is not explicitly included by Sobrinho in the definition
of the algebra. However their existence is later assumed (referred to as s(u) in the
paper for some node u).

• g : Σ→ S is a function mapping signatures to path weights.

which obey the following axioms:

1. ≤ is a total order

Equivalent to ⊕ being associative, commutative and selective in the semiring model.

2. g(∞) is the maximal element for ≤ and ∀l ∈ L : l .∞ =∞

Equivalent to the invalid route ∞ being an identity for ⊕ and an annihilator for ⊗
in the semiring model.

3. For every trivial s ∈ Σ0 then g(s) is preferred over any other non-trivial path weight.

Equivalent to the trivial route 0 being an annihilator for ⊕ in the semiring model.
Note that this assumption is implicit in the design of the algorithm rather than
being stated explicitly in the algebra.

69

By associating edges with labels rather than path weights, the algebra is capable of
capturing a much wider range of possible extension operations. For example, when
modelling BGP, the set L could be thought of as the set of valid BGP routing policies.
The expression l . x would therefore represent the result of applying policy l to some
incoming route x. The resulting asymmetry of the extension operator, ., means that the
concept of it being associative no longer makes sense. Additionally the assumption of
distributivity has been removed. In the paper Sobrinho goes on to prove that distributivity
is not a fundamental property of routing problems, but instead is just one of several
possible optional properties, each of which affect the behaviour of the routing algorithms
in different ways. This is discussed in greater detail in Section 4.5.

However there still remain several issues with Sobrinho algebras as a model for routing
problems:

Path operations The edge labels have no dependency on the nodes that they link, and
hence it is impossible to formulate an assumption within the model that the extension
operator . correctly applies the operations associated with path-vector protocols. Suppose
there was a set of labels that correctly performed this operation. For example l might
be a label on a link from node 2 to node 3 that adds node 3 to the path stored within
the path weight when extending a route from node 2. However there would be no way
of preventing the label l from being assigned to a different link. As will be discussed in
Section 4.3, Sobrinho worked around this limitation by making the path operations part
of the algorithm rather than the algebra.

Conditional policy on paths Unfortunately the decision to make paths part of the
algorithm has further undesirable consequences. In particular the extension operator can
no longer inspect and make decisions according to the path associated with a route. For
example the policy “reject a route if it goes through AS 17" is not directly expressible
within the algebra. Such policies are regularly used in BGP.

Unnecessary complexity Finally, distinguishing between the set of signatures and the
set of path weights does not add any expressive power to the model. Therefore signatures
could theoretically be removed from the model.

4.1.3 Routing algebras

To address the problems listed above, this thesis proposes a third more general algebraic
structure which will be referred to as a routing algebra. The resulting algebra is much
closer to the original semiring model than the Sobrinho algebra. The only difference
between it and semiring algebras is how it models the extension operation. In this new

70

Component Semiring algebras Sobrinho algebras Routing algebras
Path weights S S, Σ, g S
Choice ⊕ ≤ ⊕
Extension ⊗ L, . E
Invalid route ∞ ∞ ∞
Trivial route 0 Σ0 0

Table 4.1: A comparison of the three models for routing problems.

structure edges are labelled with functions rather than labels or path weights. Extending
a route is therefore as simple as applying the function to the path weight. For instance the
weight of the result of extending a path of weight x along a link labelled with f is simply
f(x). While it might be tempting to have a single set of functions for labelling edges, in
practice the model assigns each hypothetical link its own set of allowable functions. See
Section 4.3 for an explanation for how this allows it to model path-vector protocol-like
operations.

Definition 28. A routing algebra is a tuple (S, ⊕, E, ∞, 0) where:

• S is the set of path weights.

• ⊕ : S × S → S is the choice operator.

• E : N × N → 2S→S is the set of edge function sets indexed by a source and
destination node.

• ∞ ∈ S is the invalid path weight.

• 0 ∈ S is the trivial path weight.

which obey the following axioms:

(R1) ⊕ is associative, commutative and selective.

(R2) 0 is an annihilator for ⊕.

(R3) ∞ is an identity for ⊕.

(R4) For all nodes i and j and functions f ∈ Eij then ∞ is a fixed point for f .

Assumptions (R1–R4) are all copied from the semiring algebras, where (R4) (which states
that the extension of an invalid route is always the invalid route) has necessarily been
adjusted to take into account that the extension operation is now modelled by functions.

Table 4.1 compares the three different algebraic models. It should be noted that
there is no fundamental reason why it would not be possible to initially define choice

71

in terms of ≤ rather than ⊕ as Sobrinho does. However the advantage of ⊕ is that it
has a clear computational interpretation as the actual decision making procedure that
occurs in routing protocols. It is hoped that this will make the model more intuitive for
future protocol designers. When reasoning about routing problems, in some situations it
is more convenient to use ⊕ and in others ≤ and so from here on the thesis will use both
interchangeably.

4.1.4 Other algebras

It is argued that the above definition of a routing algebra captures the essence of a routing
problem. Nonetheless there have been attempts to weaken some of the assumptions. In
particular, semirings without the selectivity assumption have been studied extensively.

Gurney [34] proposed a non-selective extension to the semiring model in order to
represent multi-path rather than single-path routing. To do this he used minset algebras
where ⊕ and ⊗ operate over sets of routes instead of individual routes. In such a case the
assumption of selectivity is relaxed to idempotence. In a similar vein Mohri [52] used even
weaker non-idempotent algebras to study the k-shortest paths problem.

These multi-path generalisations are in some sense orthogonal to the core problems of
single-path routing. It seems implausible that the multi-path version of a routing problem
has better convergence behaviour than the original single-path version. Given that there
exist many unanswered questions about single-path routing, this thesis will leave such
generalisations to future work.

4.2 Vector-based routing

The previous section has described how routing algebras can be used to represent routing
problems. This section now combines this representation with the theory of asynchronous
iterative computations developed in Chapter 3 to construct a model for an abstract vector-
based routing protocol. This model is significantly more general than previous attempts
as:

• it models the protocol as a single dynamic asynchronous process rather than a
sequence of static asynchronous processes (previously discussed in Section 3.2.4).

• it is capable of modelling both distance-vector and path-vector protocols (will be
discussed in Section 4.3).

Its construction can be split into three parts: i) the network and the routing state, ii) the
definition of a single step of the synchronous iteration, and iii) the definition of the full
asynchronous iteration.

72

4.2.1 Network and routing state

This section describes how the network topology and the routing state are modelled.
Although this thesis only considers vector-based protocols, this part of the model is
applicable to both vector-based and link-state protocols, as well as many other hybrid
next-hop routing schemes. Let (S, ⊕, E, ∞, 0) be the routing problem that the protocol
is trying to solve and consider some network in which the protocol is being run.

The topology of the network is assumed to vary over time: nodes and edges may be
added and removed and the weights of edges may fluctuate. As discussed in Section 3.2.4, it
is problematic to model the removal and addition of nodes directly as nodes that have been
removed may still have messages in flight. Instead the model assumes that membership
of the network is constant over time, but at a given point in time only a subset of nodes
may be actively participating in the protocol. Upon ceasing to participate, a node will no
longer be able to send new messages to the rest of the network.

Let n be the number of nodes in the network. As discussed in Section 3.3 each period of
stability is referred to as an epoch. Within an epoch e, the current topology is represented
by an n×n matrix Ne where Ne

ij ∈ Eij is the current function that the edge from node i to
node j is labelled with. The absence of an edge can be represented by f∞, the constantly
invalid extension function (i.e. f∞(x) ,∞).

However not all nodes participate during every epoch. Therefore Ne is not actually the
adjacency matrix for the routing problem being solved during epoch e, as non-participating
nodes should not accept or broadcast routes. Let e be the current epoch and p the current
set of participating nodes, then Aep, the n× n adjacency matrix for the actual routing
problem being solved, is defined as:

Aep
ij =

Ne
ij if {i, j} ⊆ p

f∞ otherwise

Hence nodes that are not participating are only capable of advertising the invalid route.
Next consider the state of a routing computation. Each node i has its own routing

table which will be assumed to contain an entry for every other node in the network.
Hence a routing table can be modelled as an element of Sn, i.e. a vector of size n over
the set of path-weights S. The global state of the computation is therefore comprised of
the routing tables of every node (including non-participating nodes) and is therefore an
element of Sn×n, i.e. an n× n matrix over S. Using this representation, and given a state
X ∈ Sn×n, then the row Xi is the current routing table of node i and Xij is the weight of
node i’s current path to node j.

Note that for brevity’s sake the entry Xij will often be referred to as i’s “route” to j.
This is a minor abuse of terminology as Xij is a path weight rather than a route/path.

73

When describing a sequence of nodes in the network the word “path” will be used instead.
Upon initialisation every node knows that it can route to itself via the trivial route

and otherwise has no knowledge of any other routes in the network. The initial state is
therefore represented by the identity matrix I where:

Iij ,

0 if i = j,

∞ otherwise.

4.2.2 A single iteration

In a vector-based protocol, a node always adopts the best extension of the routes being
advertised by its neighbours. Suppose X is the current state of the protocol, and the
current topology is represented by the adjacency matrix A. Then the iteration operator F
can be defined as:

F (X)ij ,

0 if i = j⊕
k Aik(Xkj) otherwise

(4.1)

The definition ensures that a node always uses the trivial route to route to itself, and for
every other entry in its routing table it chooses between all the possible extensions of its
neighbours routes. In the latter case, the resulting route is necessarily the best extension
available to node i (as proved formally by Lemma 12 at the end of this section).

The definition of F as stated above is a series of n2 equations, one for each pair of
nodes i and j. However it can be represented more succinctly as a matrix equation by
defining some traditional analogues to matrix addition and multiplication [4]. The sum of
two states X and Y is defined as:

(X⊕Y)ij , Xij ⊕Yij.

The application of the adjacency matrix A to a state X is defined as:

A(X)ij ,
⊕
k

Aik(Xkj)

Using this notation it is easy to verify that Equation 4.1 is equivalent to:

F (X) , A(X)⊕ I

The desired solution to the routing problem is therefore a state X∗ that is a fixed point
for F :

X∗ = A(X∗)⊕ I

74

or equivalently:

∀ij : X∗ij =

0 if i = j⊕
k Aik(X∗kj) otherwise

This characterisation of the fixed point X∗ as a state in which no node can improve by
unilaterally switching its routes, suggests that vector-based routing can be viewed as an
n player game. In such a game the set of functions assigned to incoming links corresponds
to a node’s (pure) strategy and for a given set of strategies then the fixed point X∗, if it
exists, can be characterised as a Nash equilibrium [59]. Although interesting, this thesis
will not explore this connection further.

Before moving on to defining the full asynchronous model for the protocol, a couple of
lemmas about F will now be proved that will be of use in later chapters.

Lemma 11. A node always routes to itself via the trivial route:

∀X, i : F (X)ii = 0

Proof. Immediate from the definition of F .

Lemma 12. A route adopted during an iteration is necessarily the best route available:

∀X, i, j, l :
⊕
k

Aik(Xkj) ≤ Ail(Xlj)

Proof. Consider an arbitrary state X and nodes i, j and l. Then the fact that⊕k Aik(Xkj)
is at least as desirable as Ail(Xlj) follows from assumption (R1) in the definition of a
routing algebra as:

⊕
k

Aik(Xkj) =
⊕
k 6=l

Aik(Xkj)
⊕Ail(Xlj) (⊕ is assoc and comm)

=
⊕
k 6=l

Aik(Xkj)
⊕ (Ail(Xlj)⊕Ail(Xlj)) (⊕ is selective)

=
⊕

k 6=l
Aik(Xkj)

⊕Ail(Xlj)
⊕Ail(Xlj) (⊕ is assoc)

=
(⊕

k

Aik(Xkj)
)
⊕Ail(Xlj) (⊕ is assoc and comm)

which is exactly the definition of ⊕k Aik(Xkj) ≤ Ail(Xlj) (see definition of ≤ in Ap-
pendix A).

75

4.2.3 The asynchronous state function

Having defined the operator for a single synchronous iteration, it is now possible to construct
an instance of the general dynamic asynchronous iteration described in Chapter 3. The
state space for the iteration is:

Sn×n = Sn × Sn × ...× Sn

The operator indexed by epoch e and participants p is F ep(X) = Aep(X)⊕ I where:

F ep(X) = (F ep(X)1, F
ep(X)2, ..., F

ep(X)n)

The non-participating state ⊥ is the identity matrix I. Hence the asynchronous state
function for starting state X and schedule (α, β, η, π) is defined as:

δt(X)ij =

Iij if i /∈ ρ(t)

Xij else if t = 0 or i /∈ ρ(t− 1)

δt−1(X)ij else if i /∈ α(t)⊕
k Aη(t),ρ(t)

ik (δβ(t,i,k)(X)kj)⊕ Iij otherwise

Although this function looks complex, Theorem 6 from Chapter 3 allows it to be reasoned
about purely by examining the properties of F . Only having to reason about F greatly
simplifies the resulting proofs and Chapter 5 will prove conditions for δ being deterministi-
cally convergent without ever reasoning about δ itself. In contrast Gao and Rexford [23]
and Sobrinho [62] reason directly about their equivalent of δ and, perhaps consequently,
make simplifying assumptions such as in-order, reliable delivery of messages.

4.3 Moving paths from algorithm to algebra

So far this chapter has avoided discussing whether it is modelling a distance-vector protocol
or a path-vector protocol. As described in Section 2.2.3, routing table entries in path-vector
protocols also store the path along which the path weight was generated. This is then used
to detect and eliminate path-weights generated along looping paths. These operations
have historically been modelled as part of the algorithm rather than as part of the algebra.
This section discusses the drawbacks of this approach, and then demonstrates that the
new definition of a routing algebra is expressive enough to model these path operations
within the algebra itself. This therefore unifies distance-vector and path-vector protocols
into a single algorithm for the first time.

76

4.3.1 What is a path?

In order to discuss path-vector protocols, it is first necessary to define what a “path” is.
This is not as straight-forward as one might initially think, as it is easy to unintentionally
conflate the paths in the current network topology with the representation of paths used
by the protocol. Although at first glance they might be similar, the fact that the network
changes over time means that the path associated with a path-weight may not correspond
to a path in the current adjacency matrix. Furthermore, and perhaps counter-intuitively,
the path associated with a path-weight may never have existed in any past adjacency
matrix, and instead may be constructed from fragments of real paths from various epochs.

A path is therefore defined to be a (possibly empty) list of arcs [(i, j), (j, k), ..., (l,m)]
where an arc (i, j) need not correspond to an edge in the current adjacency matrix. For
convenience an additional path, ⊥, will be defined that will correspond to the path of the
invalid route ∞. Accordingly ⊥ represents the absence of a path and the path [] is the
empty path from any node to itself. A path is simple if it never contains a node more than
once and the set of simple paths will be referred to as P . The invalid path ⊥ is considered
to be simple by convention.

Note that paths have been formalised as a list of arcs rather than a list of vertices due
to the ambiguity in the meaning of [] vs [i]. A convincing argument could be made that
both represent the trivial path of length 0 from node i to itself. Representing paths as list
of arcs neatly side-steps this issue.

Some additional notation for constructing paths is now defined. The concatenation of
an arc (i, j) to a valid path p is defined as follows:

(i, j) :: p ≡

[(i, j)] if p = []

[(i, j), (j, k), ...] if p = [(j, k), ...]

Note that the :: operator requires that the end of the arc aligns with the start of the
path. The “smart” concatenation operator, :̂:, over both valid and invalid paths avoids
this problem:

(i, j) :̂: p ,

⊥ if p = ⊥ or i ∈ p or j 6= source(p)

(i, j) :: p otherwise

The result of (i, j) :̂: p is the invalid path ⊥ if p is the invalid path or i is already in the
path or if the first node in p is not j, otherwise it returns (i, j) :: p. For example:

(5, 3) :̂: [(3, 4), (4, 5)] = ⊥
(2, 1) :̂: [(3, 4), (4, 5)] = ⊥
(2, 3) :̂: [(3, 4), (4, 5)] = [(2, 3), (3, 4), (4, 5)]

77

Consequently if p is a simple path then (i, j) :̂: p is also guaranteed to be a simple path.
Finally the weight of a path with respect to the current network topology, A, is defined

recursively as follows:

weightA(⊥) ,∞

weightA([]) , 0

weightA((i, j) :: p) , Aij(weightA(p))

4.3.2 Algorithmic paths

The problem with modelling path-vector protocols is that the internal structure of S, the
set of the path-weights, is opaque and so even if it is assumed that every path-weight
contains a path, the model provides no mechanism for extracting the path from the
path-weight. Sobrinho addressed this problem by defining the algebra over S and then
having the algorithm operate not over S but over S × P. The algorithm itself was then
altered to correctly extend paths and remove any routes that had looping paths. In the
model described so far in this thesis this would be equivalent to the operator F explicitly
checking for and removing looping paths. While this approach is workable, it has some
significant disadvantages in practice.

1. Firstly it makes modelling many common operations such as path filtering more
difficult. The choice and extension operators, ⊕ and E, operate on elements of S
rather than S ×P . Therefore natural routing operations such as path filtering (e.g.
reject all routes through node 7 or accept only routes with paths longer than 4) cannot
be easily performed as the operators have no access to the associated path. One
“hack” would be to duplicate the paths internally in S. However ensuring consistency
between the internal and external paths is theoretically messy. Furthermore it
somewhat unsatisfactory as a model, as duplicating the path information in this
fashion within a real protocol would be needlessly inefficient.

2. Secondly, adding paths to the algorithm results in distinct algorithms for distance-
vector and path-vector protocols. Consequently results proved about distance-vector
protocols cannot be applied directly to path-vector protocols. This is counter-
intuitive as the latter is a special case of the former, and so if a distance-vector
protocol is convergent then its path-vector counterpart should also be convergent.

3. Thirdly, proofs are now sensitive to how paths are implemented. Any modifications
to the implementation of the path operations results in a new algorithm and therefore
the old proofs no longer apply. For example AS padding in BGP duplicates nodes

78

within the path to artificially inflate the path length. Implementing this in Sobrinho’s
model would require all the proofs to be redone.

For these reasons this thesis argues that implementing paths within the algorithm breaks
the algebra + algorithm abstraction that is central to algebraic routing.

4.3.3 Algebraic paths

As one of the contributions of this thesis to the underlying model, it is now demonstrated
how the new routing algebra structure can be used to represent paths within the algebra.

Definition 29. A path algebra is a routing algebra (S, ⊕, E, ∞, 0) equipped with a
projection function path : S → P which has the following properties:

(P1) ∀x ∈ S : x = 0⇒ path(x) = []

(P2) ∀x ∈ S : x =∞⇔ path(x) = ⊥

(P3) ∀x ∈ S, ij ∈ V, f ∈ Eij : path(f(x)) =

⊥ if f(x) =∞

(i, j) :̂: path(x) otherwise

The key insight is that the projection function path does not force the algebra to reveal
how it stores and operates on the paths internally. Instead it only requires that the
associated path can always be constructed from a path-weight, and that the construction
obeys the natural properties one might expect. Note that this definition is the reason why
the definition of a routing algebra requires a set of extension functions per arc. If there
was only a single set of extension functions then it would be impossible to state (P3).

The notion of a path algebra addresses all the previously discussed disadvantages
of Sobrinho’s approach. Firstly path algebras are a subset of routing algebras and δ is
defined identically for both. Hence the same proof can apply to both distance-vector and
path-vector protocols. This property is used by Lemma 20 in Chapter 5. Secondly paths
are now stored within the path weight and hence the choice and extension operators can
inspect the paths and perform operations such as path filtering. Finally it is not specified
how paths are represented, only that one can extract a path from a path-weight. Therefore
changing the internal implementation only requires changing the path function, and hence
does not require redoing the proofs. Chapter 7 discusses how this can be used to quickly
and easily handle more complex path features such as path inflation.

4.3.4 Constructing path algebras

This section presents a general algebraic transformation P(·) to turn any routing algebra
into a path algebra. Obviously because of its generality, the resulting choice and extension

79

operators cannot make decisions based on the associated paths – something that was
highlighted in the previous section as a key advantage of path algebras. Nonetheless this
transformation is often useful as a quick way to transform an algebra such as shortest-
paths from a distance-vector routing problem to path-vector routing problem. It also
demonstrates that it is possible to satisfy the requirements of a path algebra.

Given a routing algebra A = (S, ⊕, E, ∞, 0) a path algebra can be defined as follows:

P(A) , (Sp, ⊕p, Ep, ∞p, 0p, path).

where:

• Path weights – path weights in the augmented algebra are either of the form (s, p),
where s is any valid path weight from the original algebra and p is a path, or ∞p, a
new invalid path weight.

Sp , (S × P) ∪ {∞p}

• Choice – First a choice operator for paths, ⊕̂, is defined as follows:

p ⊕̂ q ,

p if |p| < |q|

q if |q| < |p|

lex(p, q) otherwise

where lex(p, q) returns the smallest path in lexicographic order. This is subsequently
used to define ⊕p, the main choice operator, as follows:

∞p ⊕p (y, q) , (y, q)

(x, p)⊕p∞p , (x, p)

(x, p)⊕p (y, q) ,

(x, p) if x = (x⊕ y) 6= y

(y, q) if x 6= (x⊕ y) = y

(x, p ⊕̂ q) if x = y

• Extension – For every pair of nodes i and j and extension function f ∈ Eij then a
new extension function gf is defined as follows:

gf (∞p) ,∞p

gf (x, p) ,

∞p if f(x) =∞ or (i, j) :̂: p = ⊥

(f(x), (i, j) :̂: p) otherwise

• Trivial route – The new trivial route is the old trivial route paired with the empty

80

path:
0p , (0, [])

• Path function – The path function required by the path algebra is defined as follows:

path(∞p) , ⊥

path(x, p) , p

It is easy to verify that the resulting algebra P(A) obeys all the required axioms of a path
algebra, whilst preserving the properties required for to be a routing algebra. It should be
noted that there is nothing canonical about P(·)’s method of adding paths to a routing
algebra. It is just one of many possible methods of doing so.

The concept of a path algebra and the construction P(·) will be used in the next section
to build several example algebras that model the routing problems being solved by various
possible path-vector protocols.

4.4 Examples of routing algebras

This section will now present some examples of how common routing problems may be
represented as routing algebras. Some of the examples are designed to demonstrate the
flexibility of the model whilst others will be used as examples in later chapters.

4.4.1 Shortest paths algebras

The most familiar examples can be constructed around shortest path algebras of the
form (N∞, min, E,∞, 0) where E is some suitable collection of additive functions. The
notation fn will be used to denote the function fn(x) = x + n. Furthermore suppose
that P is a predicate over the weights in N∞ and let gn be defined as:

gn(x) =

fn(x) if P (x)

∞ otherwise

Here are few sets of functions that result in useful routing algebras:

E1 , {fn | n ∈ N∞} (shortest-paths)
E2 , {gn | n ∈ N∞} (shortest-paths with filtering)
E3 , {f1, f∞} (hop-count)
E4 , {g1, f∞} (hop-count with filtering)

81

Note that because none of these algebras perform any path operations the set of func-
tions Eij is the same for all nodes i and j. Any of these algebras can be transformed into
a path-algebra using the P(·) construction.

4.4.2 Shortest widest paths algebra

Another algebra of interest is the shortest widest paths algebra SWP. The aim of this
routing problem is to find the path with the maximum bandwidth and if there are multiple
such paths then ties are broken by the length of the path.

Path weights in SWP are of the form (b, d) where b is the bandwidth and d is the
length. Thus 0 , (∞, 0) is the weight of the trivial path, while ∞ , (0,∞) is the weight
of the invalid path. Path weights are chosen between by first comparing their bandwidth
and then breaking ties by their length:

(a, b)⊕ (c, d) ,

(a, b) if a = max(a, c) 6= c

(c, d) if a 6= max(a, c) = c

(a,min(b, d)) else if a = c

As with the shortest-path algebras, every edge is associated with an identical set of
extension functions. The extension function for an edge with bandwidth w and length l is
defined as follows:

fc,w(b, d) , (min(c, b), w + d).

One consequence of this definition is that the bandwidth component of a path-weight
represents the bandwidth of the bottleneck link along the path it was generated by. The
full set of extension functions is:

Eij = {fc,w | c, w ∈ N∞}

The shortest-widest-paths path algebra SWPP is then defined as P(SWP).

4.4.3 Stratified shortest paths algebra

Another interesting path algebra is the stratified shortest path algebra [27]. Its construction
starts with the increasing routing algebra:

INC , (N∞, min, Einc, 0, ∞),

where Einc
ij = {f | ∀x : x ≤ f(x)} is the set of non-decreasing functions. The path weights

of INC are referred to as levels and by definition the extension functions cannot decrease

82

the level. For notational convenience this thesis further restricts Einc
ij to only include

functions that can be represented as vectors over N∞. The application of the function
f = 〈s0, s1, . . . , sk〉 is defined as:

f(i) ,

si if i ≤ k

∞ if i > k

For example:

〈0,∞, 17, 3〉(i) =

0 if i = 0

∞ if i = 1

17 if i = 2

3 if i = 3

∞ if i > 3

This algebra can implement the customer/provider/peer policies from [23] & [38] which
were discussed in Section 2.3.2.2. Imagine that level 0 represents routes from customers,
level 1 represents routes from peers, and level 2 represents routes from providers. Then
[62] shows that the standard customer/provider/peer policy functions can be represented
as:

〈0, ∞, ∞〉 (towards customers)
〈1, ∞, ∞〉 (towards peers)
〈2, 2, 2〉 (towards providers)

The P(·) transformation can then be used to add paths to INC to form the full stratified
shortest paths algebra:

SPP , P(INC).

The stratified shortest paths algebra will used in Chapter 6 to construct an example of a
path-vector protocol that requires a quadratic number of iterations to converge.

4.4.4 Other algebras

An Agda formalisation of a more interesting and complex path algebra that contains many
of the core features of BGP such as communities, conditional policy, path inflation and
local preferences is described in Chapter 8.

4.5 Existing results

The field of algebraic routing underwent a revival after awareness of the problems with
BGP discussed in Section 2.3.2.1 began to increase. In particular it was motivated by the

83

question of which combination of BGP policies resulted in a stable protocol. This section
discusses the key recent results in the field.

One of the first of the new wave of results was by Griffin et al. [33] who showed that
the problem of deciding whether there exists a stable state for an arbitrary network and
routing problem is NP-hard. This was a blow for routing protocol designers as it implied
that it was infeasible to allow network operators the freedom to specify arbitrary policies
and then verify the correctness of the chosen policies on the fly. Consequently the search
then turned to finding some subset of networks and routing problems for which i) protocols
were guaranteed to converge and ii) the subset was equipped with an efficient decision
procedure for deciding membership.

A couple of years later Gao and Rexford [23] published the customer-peer-provider
conditions for BGP. As discussed in Section 2.3.2.2, while it is possible to verify if the
conditions hold, the process is expensive and requires global coordination between ASs.
Furthermore the conditions were BGP-specific and didn’t provide insight into the conditions
required more generally for convergence.

Shortly afterwards Sobrinho [62] produced the foundational paper for the post-semiring
phase of algebraic routing. In it he proposed the algebras described in Section 4.1.2 and
used them to construct a model for an abstract path-vector protocol. He then showed that
the assumption of distributivity in the semiring theory was merely one of several possible
relationships between the choice operator and the extension operator. In particular he
identified three types of routing problems: i) problems in free networks, ii) problems with
strictly increasing algebras and iii) problems with distributive algebras.

These types of routing problems are now explored in more depth. Note that in the
following definitions the path-weights x and y are arbitrary members of S and the extension
function f is an arbitrary member of some Eij for some arbitrary pair of nodes i and j.

4.5.1 Free networks

Definition 30. A network topology A is free with respect to a routing algebra if
for every cycle in the topology [(v0, v1), (v1, v2), ..., (vm−1, v0)] and set of valid weights
x0, x1, ..., xm−1, then there exists a k ≤ m− 1 such that:

xk < Avkvk+1(xk+1)

where k + 1 is calculated mod m.

Figure 4.1 shows a visualisation of this condition. Intuition can perhaps be gained by
considering a cycle that violates the condition. In such a cycle every node prefers to route
via its clockwise neighbour, and so a forwarding loop will form. As an example consider a
shortest-paths algebra where negative length edges are allowed. A network is free with

84

respect to this algebra if and only if there are no negative weight cycles. If there is a
negative weight cycle, then the nodes in that cycle will always prefer to continue routing
round the cycle indefinitely. The name “free” originates from the fact that the network is
free of such cycles.

v0

x0 v1

x1

v2

x2

v3

x3v4

x4

v5

x5

Av0v1

Av1v2

Av2v3Av3v4

Av4v5

Av5v0

Figure 4.1: A free network forbids cycles of the above form where
every node prefers to route via it’s clockwise neighbour.

Sobrinho showed that a network topology A being free with respect to a path algebra is
both a sufficient and necessary condition for the associated path-vector protocol to converge
over A. Consequently if A is not free then the protocol will diverge. Furthermore Sobrinho
showed that the Gao-Rexford conditions work because the restrictions on consumer-peer-
provider policies, combined with the requirement that the consumer-provider relationship
forms a directed acyclic graph, is sufficient to guarantee that the network topology is free
with respect to BGP’s algebra.

4.5.2 Strictly increasing

The next obvious question is what are the requirements on an algebra such that every
network is free with respect to it? The answer is that the algebra must be strictly
increasing.

Definition 31. A routing algebra is increasing if:

∀f, x : x ≤ f(x)

Definition 32. A routing algebra is strictly increasing if:

∀f, x : x 6=∞⇒ x < f(x)

85

i j kxf

Figure 4.2: The (strictly) increasing condition says that f(x),
the result of extending x, must always be worse than x itself.

Essentially an algebra is increasing if extending a route never makes it better and an
algebra is strictly increasing if extending a valid route always makes it worse.

Sobrinho showed that a path-vector protocol converges over all network topologies if and
only if the underlying Sobrinho algebra is strictly increasing. Equivalently if the algebra
is not strictly increasing then there exists a network for which the path-vector protocols
will not converge. Intuitively this makes sense, as to converge implies reaching a stable
state such that no node can improve its own route by unilaterally switching its routing
choices. If the algebra is not strictly increasing, then nodes can completely ignore each
other’s preferences and therefore the existence of a stable state cannot be guaranteed.

It should be noted that assumption (P3) in the definition of a path algebra ensures that
any path algebra that is increasing is also necessarily strictly increasing. This is because
the extension of a path can never have the same weight as the original path because the
former must have a longer path than the latter. Consequently the terms “increasing” and
“strictly increasing” can be used interchangeably for path algebras.

4.5.3 Distributivity

Finally Sobrinho examined the classical semiring property of distributivity.

Definition 33. A routing algebra is distributive if:

∀f, x, y : f(x⊕ y) = f(x)⊕ f(y)

In distributive algebras all nodes agree on which are the best paths through the network.
To see why this is the case consider Figure 4.3. Distributivity implies that it doesn’t
matter whether node j chooses between routes x and y and node i extends the resulting
route or node i gets to choose directly between the extensions f(x) and f(y).

Distributivity is not a necessary condition for a protocol to always converge. However
it is a necessary condition for the final state reached to always be a global optimum. A
state X∗ is a global optimum if for every pair of nodes i and j the route X∗ij is the best
possible route from i to j in the current topology. Distributivity is therefore a highly
desirable property for a routing algebra to possess.

Many simple routing problems are distributive, e.g. hop-count, shortest paths, widest
paths, most reliable path. However there exist several families of interesting routing

86

i j k

x

y

f

Figure 4.3: An algebra is distributive if node j chooses x over y
if and only if node i chooses f(x) over f(y) for all f , x and y.

problems that are not distributive. In particular, as illustrated by the introductory
example in Chapter 1, any algebra with conditional policy is unlikely to be distributive.

However conditional policy is not the only way of violating distributivity. For instance,
despite both the shortest path and the widest path algebras being distributive, the shortest
widest path algebra, described in Section 4.4.2, is not. This is because a link that acts as
a bandwidth bottleneck can hide other nodes’ bandwidth-based decisions. For example
consider some bandwidth k > 1 and let x = (1, 1), y = (2, k) and f = f1,1 (i.e. a link
with length 1 and bandwidth 1). Then:

f(x⊕ y) = f1,1((1, 1)⊕ (2, k))

= f1,1(2, k)

= (1, k + 1)

6= (1, 2)

= (1, 2)⊕ (1, k + 1)

= f1,1(1, 1)⊕ f1,1(2, k)

= f(x)⊕ f(y)

Node j prefers route y over route x, despite the fact that y is much longer, because
of y’s higher bandwidth. However the link from node i to node j only has bandwidth
1 and so from node i’s perspective it doesn’t matter what the bandwidth of j’s chosen
route is. Therefore their routing choices conflict as node i prefers to route via x due to its
shorter length and node j prefers to route via y due to its higher bandwidth.

4.5.4 Further discussion

This section now compares and contrasts the three different types of routing problems,
both in terms of their implications for the make-up of the network and their suitability as
correctness criteria.

87

Politics The three different types of routing problems can be seen as measuring the
degree of co-operation between nodes in the network.

• Distributivity = “consensus” – in a distributive algebra, the nodes are in agreement
over which are the best paths in the network and therefore their incentives are
aligned. Consequently a globally optimal solution can be reached where every node
is assigned the best possible route.

• Strictly increasing = “respect” – in a strictly increasing algebra, the nodes in the
network have differing opinions over which are the best routes, but nonetheless
respect each other’s opinions. If a node’s neighbour says that a route is bad than
the node will respect that neighbour’s decision and will not re-advertise its extension
as a good route to other neighbours. Consequently a locally optimal solution can
always be reached, however not every node will be assigned their best possible route.

• Non-strictly increasing = “chaos” – in a non-strictly increasing algebra, then not
only do nodes disagree about which are the best paths, but they also do not respect
each other’s opinions. A node may accept a route that a neighbour says is bad and
advertise it to its neighbours as a good route. Hence the protocol will only converge
in free networks where it happens that there exists no negative weight cycles.

Suitability as verification criteria The goal is to ensure that a routing protocol
always converges. The problem with using network freeness is that, as a consequence of the
work by Griffin et al. [33] discussed at the start of this section, in general deciding whether
a given network is free with respect to a protocol’s algebra is NP-hard. Furthermore
in a dynamic network, the freeness property must be rechecked every time a node or a
link is added. Consequently network freeness is not a practical criterion for guaranteeing
convergence.

In contrast, checking that a protocol is strictly increasing only needs to be done once
by the protocol designers, rather than every time the network changes. By virtue of being
a necessary condition for converging over all networks, the strictly increasing property is
also the minimal such property. Furthermore for most algebras it is possible to determine
whether or not it is strictly increasing simply by inspection of the choice and extension
operators. Consequently this thesis focuses on further exploring the properties of strictly
increasing algebras.

Other uses of algebraic routing Algebraic routing has been applied to other problems
in routing besides protocol convergence. For example it has been used to model oppor-
tunistic routing [45], interactions between different routing protocols [43] and mapping
demands from virtual networks to physical network resources [11]. Concurrently there has

88

a drive in the field of meta-routing [30] to better understand the ways in which routing
algebras may be constructed from smaller, simpler routing algebras [34, 36]. The P(·)
construction presented in Section 4.3.4 could be seen as a contribution to this work.

4.6 Open questions to be addressed

As mentioned in the previous section, this thesis will focus on the properties of protocols
with strictly increasing algebras. Although Sobrinho showed that strictly increasing
path-vector protocols always converge there are still several open questions:

1. Are strictly increasing distance-vector protocols guaranteed to converge as well? If
so then this would suggest that distance-vector protocols could be equipped with
conditional policy.

2. Do strictly increasing protocols always converge to the same stable state, or does the
state reached depend on the schedule and the routing state at the beginning of the
epoch? If so then convergence is deterministic, and this would have the immediate
consequence that problems such as BGP wedgies cannot occur in strictly increasing
protocols.

3. Does the convergence of strictly increasing protocols rely on the in-order reliable
delivery of messages between routers? Or is convergence still guaranteed when
messages between nodes can be dropped, duplicated and reordered? If the latter,
then new, lightweight vector-based protocols could be designed to use UDP rather
than TCP.

4. How fast do strictly increasing path-vector protocols converge? In the worst case,
distributive path-vector protocols are known to converge in Θ(n) time, where n is the
number of the nodes in the network. In contrast the best known bound for strictly
increasing path-vector protocols is O(n!). If this exponential bound is achievable
then this would have serious implications for the usability of strictly increasing
protocols.

The following chapters will answer these questions.

89

90

Chapter 5

Convergence

This chapter uses the general convergence theorems for asynchronous iterations from
Chapter 3 and the model constructed in Chapter 4 to prove new stronger results about
the convergence of vector-based protocols for strictly increasing algebras. In particular, by
constructing suitable distance functions over routing tables and routing states, it shows
that F is a dynamic AMCO and hence that Theorem 6 from Chapter 3 can be used to
prove that δ is deterministically convergent.

Another way the approach differs from that of Sobrinho is that initially only finite,
strictly increasing routing algebras are considered rather than infinite, increasing path
algebras. Such finite routing algebras correspond to the set of convergent distance-vector
protocols. This chapter shows for the first time that such algebras are convergent and
hence that distance-vector protocols can be equipped with expressive conditional policy.

In practice, and as will be discussed in greater depth at the beginning of the first
section, the finite condition is restrictive and so the the chapter proceeds to construct
analogous distance functions for increasing path algebras. Such algebras correspond to
the set of convergent path-vector protocols. The subsequent convergence result is an
improvement over the equivalent result by Sobrinho as:

1. The model more accurately describes protocols as a single dynamic iteration, rather
than a sequence of static iterations (see Section 3.2.4).

2. The model is expressive enough to capture protocols equipped with path-dependent
conditional policy (see Sections 4.3.2 & 4.3.3).

3. The result proves that convergence is deterministic and hence phenomena such as
BGP wedgies cannot occur (see Section 2.1).

4. The proof does not assume in-order, reliable delivery of messages (see Section 2.2.2.2).

5. The proof does not require reasoning directly about the asynchronous state function.
It is therefore in some sense simpler/more modular than Sobrinho’s proof.

91

All results in this chapter have been fully formalised in Agda.

5.1 Distance-vector protocols

This section proves that when a routing algebra (S, ⊕, E, ∞, 0) is finite and strictly
increasing then δ is deterministically convergent. To do so a distance function, d, is
constructed over routing tables. It is then shown that F is an AMCO with respect to d
and so satisfies the conditions for Theorem 6.

Note that in practice the finiteness condition is restrictive and excludes many routing
algebras of interest. For example even the shortest-path algebra uses N as the set of
path weights. However recall that Theorem 7 guarantees that, given a sufficient period of
stability, the protocol will reconverge even after changes to the network topology. On the
other hand shortest-path distance-vector protocols experience count-to-infinity problems
when the state at the start of the epoch contains junk routes generated along paths that
do not exist in the current topology. Hence finiteness is a necessary condition to prevent
count-to-convergence in distance-vector protocols. In the real world this is reflected in the
design of RIP which artificially imposes a maximum hop count to ensure that S is finite
(see Section 2.3.1).

Height of routes As S is finite, all upwards closed subsets under the relation ≤ must
also be finite. Consequently the height of a route can be defined as follows:

h(x) , |{y ∈ S | x ≤ y}|

Intuitively the height of a route is proportional to its desirability. The trivial route, 0, is
the most desirable route and so has the maximum height, referred to as H. The invalid
route, ∞, is the least desirable route and therefore is the route with the minimal height of
1. Therefore for every route x the following relationships hold:

1 = h(∞) ≤ h(x) ≤ h(0) = H

Distance between routes Next a distance function r : S × S → N between routes can
be defined as follows:

r(x, y) ,

0 if x = y

max(h(x), h(y)) otherwise

By this definition the distance between a pair of distinct routes is proportional to how
desirable the better of the two routes is. Intuitively this is a reasonable measure of distance

92

as better routes are more likely to be adopted by other nodes and hence be propagated
throughout the network. Consequently if two routing states disagree on the best route
from i to j, then, from a convergence perspective, the seriousness of the disagreement is
directly proportional to the desirability of the two conflicting routes.

Distance between routing tables The distance between a pair of routing tables is
defined to be the maximum of the pairwise distances between their entries:

d(x, y) , max
j

r(xj, yj)

If two routing tables are identical then they will have zero distance between them, otherwise
the distance between them is proportional to the most desirable route they disagree on.
For all nodes i, epochs e and participants p the function d will be the distance function
depi required by the AMCO conditions. Note that in this case, the same metric d is used
for all nodes i, epochs e and sets of participants p.

Also note that, thanks to the relaxations of the asynchronous fixed point theory found
in Section 3.2.3, the AMCO conditions only require d to be a quasi-semi-metric (see
Appendix A for definitions). The required property d(x, y) = 0⇔ x = y can immediately
be seen to hold by the definition of r and the prior inequality 1 ≤ h(x). This is therefore
an excellent illustrative example of the utility of the relaxations. Without them it would
also have been necessary to prove that d was an ultrametric and hence that it obeyed the
symmetry and max triangle inequality axioms as well (the latter of which is non-trivial to
prove).

Distance between routing states As required by the AMCO conditions, the distance
function over routing states is defined as follows:

Dp(X,Y) , max
i∈p

d(Xi,Yi)

where p is the set of participants. Again D measures the distance between states X and Y.
If all the elements of X and Y are equal then they occupy the same point in the space,
otherwise the distance between them grows in proportion to the most desirable route they
disagree on.

In order to show that F is an AMCO, it is necessary to prove that for all epochs e and sets
of participants p then F ep is both strictly contracting over orbits and strictly contracting
over the resulting fixed point with respect to the set of accordant states Ap. In fact in this
case F ep can be shown to be strictly contracting, which implies it is strictly contracting
over both orbits and any fixed points. Instead of proving this result immediately, a smaller
lemma will first be proved that shows that if the distance between all non-equal entries

93

of two states is less than or equal to v then the distance between any two entries after
F ep has been applied to both states must be strictly less than v. This lemma has been
separated out from the main proof that F ep is strictly contracting as it will later be reused
in Section 5.2 in the proof of convergence for path-vector protocols.

Lemma 13. For all states X and Y, nodes i and j, epoch e, set of participants p, and
natural number v > 0, then:

(∀k : Xkj 6= Ykj ⇒ r(Xkj,Ykj) ≤ v)⇒ r(F ep(X)ij, F ep(Y)ij) < v

Proof. The proof is independent of both the epoch and the participants, and hence for
notational clarity the dependency of F and A on e and p will be dropped.
Case 1: F (X)ij = F (Y)ij
Then the required inequality is immediate as:

r(F (X)ij, F (Y)ij) = 0 (by case 1 and def. of r)

< v (by lemma assumption)

Case 2: F (X)ij 6= F (Y)ij
Without loss of generality assume that F (X)ij is a more desirable route than F (Y)ij and
therefore:

F (X)ij < F (Y)ij (5.1)

Case 2.1: i = j

A node’s route to itself is always the trivial route by Lemma 11 in Chapter 4 and so if
i = j then F (X)ij = 0 = F (Y)ij which contradicts case 2’s assumption.

Case 2.2: i 6= j

Consequently by the definition of F :

F (X)ij =
⊕
k

Aik(Xkj)

and so as ⊕ is selective there must exist a node k such that:

F (X)ij = Aik(Xkj) (5.2)

i.e. F (X)ij is an extension of some route in X. If Xkj = ∞ then F (X)ij = ∞ which
contradicts (5.1) and therefore:

Xkj 6=∞ (5.3)

94

It cannot be the case that Xkj = Ykj as otherwise it would be possible to prove the
following:

F (X)ij = Aik(Xkj) (by 5.2)

= Aik(Ykj) (by assumption)

≥ F (Y)ij (by Lemma 12)

which again contradicts (5.1) and so:

Xkj 6= Ykj (5.4)

The required inequality can now be proved as follows:

r(F (X)ij, F (Y)ij)) = max(h(F (X)ij), h(F (Y)ij)) (by case 2 and def. of r)

= h(F (X)ij) (by 5.1)

= h(Aik(Xkj)) (by 5.2)

< h(Xkj) (by str. incr. & 5.3)

≤ max(h(Xkj), h(Ykj)) (by def. of max)

= r(Xkj,Ykj) (by 5.4 and def. of r)

≤ v (by 5.4 and lemma ass.)

Lemma 13 can now be used to prove that F ep is strictly contracting.

Lemma 14. For all epochs e and participants p, the operator F ep is strictly contracting
w.r.t. Dp over Ap.

Proof. Consider accordant states X and Y such that X 6=p Y. To prove that F ep is strictly
contracting, the following must be shown:

Dp(F ep(X), F ep(Y)) < Dp(X,Y)

As Dp(F ep(X), F ep(Y)) = maxi∈p,j∈V r(F ep(X)ij, F ep(Y)ij) it suffices to show for all nodes
i ∈ p and j ∈ V that

r(F ep(X)ij, F ep(Y)ij) < Dp(X,Y)

This can be achieved by applying Lemma 13 where v = Dp(X,Y). However first it
must be checked that 0 < Dp(X,Y) and that for all nodes k then Xkj 6= Ykj implies
r(Xkj,Ykj) ≤ Dp(X,Y).

95

The former holds as X 6= Y and so there must exist entries in X and Y which are
a non-zero distance apart. To show that the latter holds consider whether or not k is
participating. If k ∈ p then the required inequality holds simply from the definition of Dp.
Otherwise if k /∈ p then as X and Y are accordant then Xkj = Ykj =∞ and the inequality
holds trivially as r(Xkj,Ykj) = 0.

Finally all the pieces to show that F is a dynamic AMCO have now been assembled.

Theorem 7. If (S, ⊕, E, ∞, 0) is a finite, strictly increasing routing algebra then δ is
deterministically convergent.

Proof. First it will be shown that F is a dynamic AMCO. Let depi = d for all nodes i,
epochs e and participants p. Then the required conditions are fulfilled:

(DU1) d is a quasi-semi-metric

The required property ∀x, y : d(x, y) = 0⇔ x = y is immediate from the definition
of d and r.

(DU2) d is bounded

The height of a routes is bounded above by H and hence so is every distance.

(DU3) ∀e, p: F ep is strictly contracting on orbits w.r.t. Dep over Ap

An immediate consequence of applying Lemma 14 to X and F (X).

(DU4) ∀e, p: F ep is strictly contracting on X∗ w.r.t. Dep over Ap for any fixed point X∗

An immediate consequence of applying Lemma 14 to X and X∗.

(DU5) ∀e, p,X : F ep(X) ∈ Ap.

Immediate by the definition of F ep and Aep.

As F is an AMCO then Theorem 6 may be applied and so δ is deterministically convergent
over (S, ⊕, E, ∞, 0).

Theorem 7 therefore shows that, given a sufficient period of stability, any distance-vector
protocol over a finite, strictly increasing algebra will always converge to a unique solution
even in the presence of unreliable communication.

5.2 Path-vector protocols

As discussed at the start of the previous section, the requirement that the set of path
weights is finite proves very restrictive in practice. How do real vector-based routing
protocols get around this constraint? The principled approach is that of path-vector

96

protocols which track and remove routes generated along looping paths. These operations
are sufficient to guarantee that eventually the protocol will always reach a finite subset of
consistent routes from which it will then converge.

The concept of consistency will now be defined more rigorously. Consider a path
algebra (S, ⊕, E, ∞, 0, path) as defined in Section 4.3.3 and an adjacency matrix A.

Definition 34. A route x is consistent with respect to the topology A if and only if:

weightA(path(x)) = x

i.e. the route is equal to the weight of the path along which it was generated. One
consequence of this definition is that every consistent route is associated with at least
one simple path in the current network topology. The set of consistent routes, CA, can
therefore be defined as:

CA , {weightA(p) | p ∈ P}

where P is the set of simple paths as defined in Section 4.3.1. As P is finite so too is the
set of consistent routes, CA. Note that whereas a given route may or may not obey the
equality required for consistency, the converse equality:

path(weightA(p)) = p

always holds for every path p.

Definition 35. A routing state X is consistent with respect to the topology A iff:

∀i, j : Xij ∈ CA

i.e. every route in use is consistent with the current network topology. The following
lemmas show that consistency is preserved by the routing operations.

Lemma 15. If x, y ∈ CA then x⊕ y ∈ CA.

Proof. Immediate from assumption (R1) that ⊕ is selective.

Lemma 16. If x ∈ CA then Aij(x) ∈ CA for all nodes i and j.

Proof. Consider a consistent route x being extended along an arbitrary edge Aij. By
assumption (P3) from the definition of a path algebra, either path(Aij(x)) = ⊥ or
path(Aij(x)) = (i, j) :: path(x). In the former case Aij(x) is consistent by (P2), and in

97

the latter case:

weightA(path(Aij(x))) = weightA((i, j) :: path(x)) (by case assumption)

= Aij(weightA(path(x)) (by def. of weightA)

= Aij(x) (by consistency of x)

which is the required result.

Lemma 17. If state X is consistent with Aep then, for every epoch e and set of partici-
pants p, F ep(X) is also consistent.

Proof. This is an immediate from Lemmas 15 & 16 as every operation in F ep preserves
consistency.

One consequence of Lemma 17 is that applying an update never spontaneously introduces
new inconsistent routes into the routing state and hence that the only way inconsistent
routes can be introduced is by a change in the network topology. Figure 5.1 demonstrates
an example where this may occur.

0 1 2
f1 f1

0 1 2
f1 f2⇒

Epoch 0 Epoch 1

Epoch Time Node 0 Node 1 Node 2
0 0 (0, []) ∞ ∞
0 1 (0, []) (1, [(1, 0)]) ∞
0 2 (0, []) (1, [(1, 0)]) (2, [(2, 1), (1, 0)])
1 3 (0, []) (1, [(1, 0)]) (2, [(2, 1), (1, 0)])
1 4 (0, []) (1, [(1, 0)]) (3, [(2, 1), (1, 0)])

Figure 5.1: An example of an inconsistent route being introduced
into the routing state in a shortest-paths path-vector protocol
where the function fk(x) = x + k. At time 2 node 2’s route
x = (2, [(2, 1), (1, 0)]) is consistent with the topology of epoch 0
as weight(path(x)) = (2, [(2, 1), (1, 0)]). At time 3 the length of
the edge (2, 1) increases by 1 and hence epoch 1 begins. Node 2’s
route is no longer consistent at time 3 as now: weight(path(x)) =
(3, [(2, 1), (1, 0)]) 6= (2, [(2, 1), (1, 0)]) = x.

As in the previous section, in order to prove that δ converges over increasing path
algebras it is necessary to find a quantity that always decreases when applying F ep. The
key insight is that the set of consistent routes is finite and therefore it is possible to
reuse the distance functions defined in Section 5.1 when calculating the distance between

98

Distance vector

h(x)

r(x, y)

d(x, y)

D(X,Y)

Path vector

hc(x) hi(x)

rc(x, y) ri(x, y)

r(x, y)

d(x, y)

D(X,Y)

=

=

Figure 5.2: The structure of the distance functions in the paper.

two consistent states. Furthermore, as F ep preserves consistency, then F ep is strictly
contracting over this distance function with respect to the set of consistent states. The
remaining problem is to find a quantity that decreases when applying F ep to a routing
state that contains inconsistent routes. The solution is to consider the lengths of the
inconsistent paths in the state. Let s(X) be the length of the shortest inconsistent path in
the inconsistent state X.

Lemma 18. For all X such that F ep(X) is inconsistent then s(X) < s(F ep(X)).

Proof. The contraposition of Lemma 17 implies that the shortest inconsistent route in
F ep(X) must be an extension of some inconsistent route in X. By (P3) the paths of the
two routes must be of the form (i, j) :: p and p respectively and by definition s(X) ≤ |p|.
Hence s(X) ≤ |p| < |(i, j) :: p| = s(F ep(X)).

One simple consequence of Lemma 18 is that, in the absence of further topology
changes, eventually all inconsistent routes must be flushed from the state. This follows
as if the length of the path of the shortest inconsistent route continues to increase then
eventually all inconsistent routes must be of at least length n. Hence their path will
necessarily contain a loop and therefore they will be flushed from the routing state as
a consequence of assumption (P3). Hence after n applications of F ep the state must be
consistent.

By Lemma 18 then “n− s(X)” provides the required strictly decreasing quantity for
inconsistent states. The two separate strictly decreasing quantities can then be combined
to form a unified strictly decreasing distance function over both inconsistent and consistent
routes. Figure 5.2 shows how all the distance functions fit together.

99

Inconsistent height of routes With the above discussion in mind, the inconsistent
height of a route hi : S → N is defined as:

hi(x) ,

1 if x ∈ CAep

(n+ 1)− |path(x)| otherwise

where n is the number of nodes in the network. All consistent routes have the minimum
height 1, and the maximum height is n+ 1 as the path function only returns simple paths.
To explicitly highlight the parallels with the previous section, this maximum height will
be called Hi. Therefore for all routes x then the following relationships hold:

1 = hi(0) ≤ hi(x) ≤ n+ 1 = Hi

Inconsistent distance function The inconsistent height can be used to define the
inconsistent distance function ri : S × S → N as follows:

ri(x, y) , max(hi(x), hi(y))

This will always be used to compare routes at least one of which is inconsistent. Therefore
the inconsistent distance between two routes is proportional to the length of the shortest
inconsistent path. Note this definition does not contain a check for equality as in practice
it will never be used to compare two equal routes.

Consistent distance function As discussed, the set of routes consistent with the
current network topology is finite. Consequently the previous metric r from Section 5.1
may be used to compare consistent routes. This will be renamed to rc : CAep × CAep → N.
The maximum such consistent distance H will also be renamed to Hc.

Distance between routes Given both the consistent and inconsistent distance func-
tions, then the overall distance function over routes r : S × S → N is defined as:

r(x, y) =

0 if x = y

rc(x, y) if x 6= y and {x, y} ⊆ CAep

Hc + ri(x, y) if x 6= y and {x, y} * CAep

If the two routes are equal then the distance between them is zero. If the two routes are not
equal but both consistent then rc is used to compute the distance between them. Otherwise
at least one is inconsistent and ri is used instead. The maximum consistent height Hc is
added to ri(x, y) to later ensure that the required strictly contracting properties hold. In

100

particular the fact that the distance between inconsistent routes is always greater than the
distance between consistent routes guarantees that the distance is still strictly decreasing
when the last inconsistent route is flushed from the routing state.

Distance function over routing tables As before, the distance function over routing
tables can now be defined as:

d(x, y) = max
j

r(xj, yj)

The distance between two routing tables is therefore proportional to the length of the
shortest inconsistent route, or, if no such route exists, the desirability of the best consistent
route. As in Section 5.1 it is possible, but unnecessary, to show that d is an ultrametric.

Distance function over states Finally, as required by Theorem 6, the distance function
over routing states, Dp, is defined as follows:

Dp(X,Y) = max
i∈p

d(Xi,Yi)

where p is the set of participants.

Unlike the corresponding constructions in Section 5.1, the functions hi, ri, rc, r, d and
Dp all depend on the current topology Aep, and therefore the current epoch e and set of
participants p. Hence if being strictly accurate they should be written as hepi , repi , repc , rep,
dep and Dep. However for the sake of readability this dependency is left implicit.

As in the proof for distance-vector protocols, it will be shown that F ep is an AMCO.
However, unlike previously, F ep is not strictly contracting with respect to Dp. Therefore
it is is necessary to prove that F ep is both strictly contracting on orbits and strictly
contracting on the resulting fixed point separately. As before a couple of useful auxiliary
lemmas are proved first.

Lemma 19. For all epochs e and participants p if F ep(X)ij is inconsistent then there
exists a node k such that Xkj is inconsistent and Xkj 6= F ep(X)kj.

Proof. For clarity this proof omits the dependency of F and A on e and p. As the route
F (X)ij is inconsistent it must be an extension of some inconsistent route in X by Lemma 17.
Therefore there exists a node l such that F (X)ij = Ail(Xlj) and Xlj is inconsistent.

If Xlj 6= F (X)lj then l is the required node. Otherwise if Xlj = F (X)lj then F (X)lj
is inconsistent. Therefore the entire argument can be repeated with F (X)lj. However as
F (X)ij = Aij(Xlj) = Aij(F (X)lj) the path of F (X)lj must be strictly shorter than the
path of F (X)ij. The length of the path cannot decrease indefinitely and therefore this
argument must eventually terminate.

101

The next lemma corresponds to Lemma 13 in the proof of convergence for distance-
vector protocols and says that once again if the distance between all non-equal entries of
two states is bounded above by v then the distance between any two entries after F ep has
been applied must be strictly less than v.

Lemma 20. For every state X, nodes i and j, epoch e, set of participants p, and natural
number v > 0, then:

(∀k : Xkj 6= F ep(X)kj ⇒ r(Xkj, F
ep(X)kj) ≤ v)⇒ r(F ep(X)ij, (F ep)2(X)ij) < v

Proof. For clarity this proof omits the dependency of F on e and p.
Case 1: F (X)ij = F 2(X)ij
Then the inequality is immediate as:

r(F (X)ij, F 2(X)ij) = 0 (by Case 1 and def. of r)

< v (by lemma ass.)

Case 2: F (X)ij 6= F 2(X)ij and F (X)ij and F 2(X)ij are both consistent.
Case 2.1: X is consistent
If X is consistent then F (X) must also be consistent and so all routes involved are
consistent. As the path algebra is (strictly) increasing then the required inequality is
therefore immediate from Lemma 13 from the previous section.

Case 2.2: X is inconsistent
If X is inconsistent then there must exist nodes k and l such that Xkl is inconsistent and
Xkl 6= F (X)kl. To see why, consider whether F (X) is consistent. If F (X) is consistent
then any inconsistent entry in X will suffice. If F (X) is inconsistent, then there exists an
inconsistent entry F (X)ml in which case the required k may be obtained from Lemma 19.
The inequality then follows as:

r(F (X)ij, F 2(X)ij) = rc(F (X)ij, F 2(X)ij) (by Case 2 and def. of r)

< Hc + ri(Xkl, F (X)kl) (as rc is bounded by Hc)

= r(Xkl, F (X)kl) (by def. of r and Xkl 6= F (X)kl)

≤ v (by lemma ass. and Xkl 6= F (X)kl)

Case 3: F (X)ij 6= F 2(X)ij and F (X)ij or F 2(X)ij is inconsistent.
As either F (X) or F 2(X) is inconsistent then X must be inconsistent as well. Let Xkl be

102

the shortest inconsistent route in X. As all inconsistent routes in F (X) and F 2(X) are an
extension of inconsistent routes in X. Hence the path of Xkl must be shorter than the
path of all inconsistent routes in F (X) and F 2(X) and so ri(F (X)ij, F 2(X)ij) < hi(Xkl)
and Xkl 6= F (X)kl. The inequality then follows as:

r(F (X)ij, F 2(X)ij) = Hc + ri(F (X)ij, F 2(X)ij) (by Case 2 and def. of r)

< Hc + hi(Xkl) (by argument above)

≤ Hc + max(hi(Xkl), hi(F (X)kl)) (by def. of max)

= r(Xkl, F (X)kl) (by def. of r and Xkl 6= F (X)kl)

≤ v (by lem. ass. and Xkl 6= F (X)kl)

Hence the required inequality holds in all cases.

The required strictly contracting on orbits and strictly contracting on fixed point properties
can now be proved using the above lemma.

Lemma 21. For all epochs e and participants p the function F ep is strictly contracting
on orbits with respect to Dp over Ap.

Proof. Consider an arbitrary epoch e and set of participants p and state X ∈ Ap. Then it
must be shown that if X 6= F ep(X) then:

Dp(F ep(X), (F ep)2(X)) < Dp(X, F ep(X))

As Dp(F ep(X), (F ep)2(X)) = maxi∈p,j∈V r(F ep(X)ij, (F ep)2(X)ij) it suffices to show for all
nodes i ∈ p and j ∈ V that

r(F ep(X)ij, (F ep)2(X)ij) < Dp(X, F ep(X))

This can be proved by applying Lemma 20 where v = Dp(X, F ep(X)). However to apply
the lemma it must be verified that 0 < Dp(X, F ep(X)) and that for all nodes k then
Xkj 6= Ykj ⇒ r(Xkj, F

ep(X)kj) ≤ Dp(X, F ep(X)).
The former holds as X 6= F ep(X) and so there must exist entries in X and F ep(X)

which are a non-zero distance apart. To show that the latter holds consider whether or
not node k is participating. If k ∈ p then the required inequality holds simply from the
definition of Dp. If k /∈ p then, as X and F ep(X) are accordant, Xkj =∞ = F ep(X)kj and
therefore the inequality holds trivially as r(Xkj, F

ep(X)kj) = 0.

Lemma 22. If the path algebra is increasing then σ is contracting on its fixed point X∗.

Proof. The proof has the same structure as Lemmas 20 & 21. The only major difference
is that some of the cases in the corresponding version of Lemma 20 are redundant as

103

the fixed point X∗ is guaranteed to be consistent. This must be the case, as if X∗ was
inconsistent then applying F ep would increase the length of the shortest inconsistent path.
Interested readers can find the remaining details in the Agda formalisation [19].

Theorem 8. Given an increasing path algebra (S, ⊕, E, ∞, 0, path) then δ is deter-
ministically convergent.

Proof. First it will be shown that F is a dynamic AMCO. Let depi = d for all nodes i,
epochs e and set of participants p. Then the conditions are fulfilled as:

(DU1) d is a quasi-semi-metric

The required property ∀x, y : d(x, y) = 0⇔ x = y is immediate from the definition
of d and r.

(DU2) d is bounded

The maximum distance r, and therefore d, can return is Hc + n.

(DU3) ∀e, p: F ep is strictly contracting on orbits w.r.t. Dep over Ap

Proved in Lemma 21.

(DU4) ∀e, p: F ep is strictly contracting on X∗ w.r.t. Dep over Ap for any fixed point X∗

Proved in Lemma 22.

(DU5) ∀e, p,X : F ep(X) ∈ Ap.

By the definition of F ep.

As F is an AMCO then Theorem 6 may be applied and so δ is deterministically convergent
over (S, ⊕, E, ∞, 0, path).

5.3 Conclusions

This chapter has presented the first proof that finite, strictly increasing distance-vector
protocols are deterministically convergent. In particular this shows that RIP-like distance-
vector protocols can include BGP-like conditional policy. Secondly it has presented a new
proof that (strictly) increasing path-vector protocols are deterministically convergent. As
discussed, this proof has many advantages over the previous proof by Sobrinho includ-
ing: guaranteeing deterministic convergence, capturing protocols with path-dependent
conditional policy and not requiring an assumption of in-order reliable delivery of messages.

104

Chapter 6

Rate of convergence

The previous chapter proved the correctness of both finite, strictly increasing distance-
vector protocols and increasing path-vector protocols. However, as with any algorithm,
correctness is not the only consideration. It is easy to show that in the worst case the rate
of convergence for finite, strictly increasing routing algebras is Θ(|S|). However the rate of
convergence for increasing path algebras is only known to lie between Ω(n) and O(n!).

This chapter addresses this gap in the theory by first demonstrating an increasing path
algebra and a family of graphs which require Θ(n2) iterations to converge hence raising
the lower bound to Ω(n2). Secondly it presents a new proof of convergence that guarantees
that convergence will occur in at most n2 − n + 1 iterations hence lowering the upper
bound to O(n2). Together these results provide a new tight bound for the worst-case
of Θ(n2).

Note that while the upper bound of O(n2) has been formalised in Agda, the lower
bound of Ω(n2) is the only result in this thesis that has not been formalised. This is because
a) it is time consuming to formally reason about the entire execution trace of an abstract
family of graphs, b) being a lower bound there are less severe practical consequences if
it turns out to be incorrect and c) execution traces that exhibit convincing quadratic
behaviour have been generated using Python scripts.

6.1 Measuring the rate of convergence

Measuring the rate of convergence of asynchronous processes is always inherently tricky.
While it might be tempting to count the number of “events” that occur (e.g. messages
sent/received, routing table entries updated), this measure suffers from several problems.
Firstly, many of these events happen in parallel and therefore it is an inaccurate measure
for the actual time required to converge. Secondly it has been shown that even the simplest
routing problems, such as shortest-paths, may require an exponential number of events to
occur in the worst case [40]. Consequently, it is hard to make comparisons between the

105

different classes of algebras as everything requires an exponential number of events.
Instead this chapter measures the number of synchronous iterations required for

convergence i.e. the first k such that σk+1(X) = σk(X) for some starting state X.
This is equivalent to assuming that all nodes update and broadcast their routing tables
synchronously.

Why is this the right thing to measure? Firstly it separates out the complexity inherent
to the routing algebra from the complexity introduced by the asynchronous nature of the
computation. Secondly, Lemma 9 in Chapter 3 showed that the number of synchronous
iterations is proportional to the number of pseudocycles required for the convergence
of asynchronous iteration. The average length of a pseudocycle is dependent on the
update frequency and the delay and loss rates of the links. Several papers have used this
relationship to construct probabilistic models for the convergence time of asynchronous
iterations [14, 65].

One subtlety to note is that, as a routing protocol is an online algorithm, the rate of
reconvergence is much more interesting than the rate of convergence from some idealised
starting state. Consequently in the following analysis the synchronous iteration will be
assumed to start from some arbitrary state X rather than the initial state I.

6.2 Previous work

Table 6.1 shows the existing state of knowledge for convergence bounds.

Distance-vector Path-vector
Distributive Θ(|S|) Θ(n)
Strictly increasing Θ(|S|) Ω(n) ≤ ??? ≤ O(n!)

Table 6.1: Existing knowledge about the number of synchronous
iterations required for convergence in the worst-case. S is the set
of path-weights and n is the size of the network.

Distance-vector protocols For distance-vector protocols it is easy to show that regard-
less of whether or not the algebra is distributive or strictly increasing the worst-case rate
of convergence is Θ(|S|) where |S| is the size of the set of path weights. The lower bound
comes from the example of count-to-convergence shown in Figure 2.5 in Section 2.2.2.3.
The upper bound is a direct result of the proof in Chapter 5. This result is the main reason
why distance-vector protocols are generally considered to be impractical without either ar-
tificially limiting |S| or the addition of some mechanism of preventing count-to-convergence.
For example RIP artificially limits |S| to 16 (see Section 2.3.1).

106

Path-vector protocols Path-vector protocols scale much better than distance-vector
protocols and in the distributive world are guaranteed to converge in Θ(n) iterations
where n is the size of the network. However the corresponding result for increasing1

path-vector routing problems is still unknown. It is trivial to obtain a lower bound of Ω(n)
for the worst-case by considering a linear network. Likewise an upper bound of O(n!) is
easily obtainable from Lemma 21: every iteration the distance between states decreases by
at least 1 and the maximum distance is proportional to the number of consistent routes –
i.e. the number of paths in the current network topology.

Clearly if in the worst case n! iterations are actually required, then the time taken
for the protocol to converge is infeasible in all but the smallest networks. Consequently
any vector-based protocol based on either strictly-increasing algebras or free networks
would be of little use in the general case. However, in practice it is surprisingly difficult to
construct an example that does not converge in linear time. This provides circumstantial
evidence that the worst case is unlikely to be factorial.

6.3 Lower bound: Ω(n) to Ω(n2)

This section will construct a (strictly) increasing path algebra and a family of network
configurations Qn that take Θ(n2) iterations to converge, hence increasing the lower bound
for the worst-case from Ω(n) to Ω(n2). For simplicity this section only considers the
routing decisions for a single fixed destination, node 0, and therefore ignores all other parts
of the global routing state. Additionally, for notational brevity, paths are represented as
sequences of nodes, rather the sequences of edges used elsewhere in the thesis.

6.3.1 Count-to-convergence induced by non-distributivity

In order to construct a quadratic example it is first necessary to understand the relationship
between violations of distributivity and the phenomenon of count-to-convergence. As
described in Section 2.2.2.3, count-to-convergence is known to afflict distance-vector routing
protocols. In distributive algebras it only occurs after changes to the network topology
when nodes continue to exchange “junk routes” that are inconsistent with new topology.
However in non-distributive algebras these junk routes may be generated even in the
absence of changes to the network topology and so count-to-convergence may occur at any
point in the computation.

Figure 6.1 uses the non-distributive shortest-widest paths algebra (SWP) described
in Section 4.4.2 to demonstrate this. In particular it uses the example violation of
distributivity described in Section 4.5.3. Assume that k is some large even number.

1Recall that there is no difference between an increasing and a strictly increasing path algebra.

107

Shortest-widest paths

0

1

2 3 4

f2,k

f1,1

f2,1

f1,1f1,1 f1,1

Time 0 1 2 3 4
0 (∞,0) (0,∞) (0,∞) (0,∞) (0,∞)
1 - (2,k) (1, 1) (0,∞) (0,∞)
2 - - (2,k+1) (1, 2) (0,∞)
3 - - - (1, k+2) (1, 3)
4 - - - (1, 4) (1, k+3)
5 - - - (1, k+2) (1, 5)
6 - - - (1, 6) (1, k+3)
...
k - - - (1, k) (1, k+3)
k+1 - - - (1,k+2) (1, k+1)
k+2 - - - - (1,k+3)

Figure 6.1: Using a distributivity violation to induce count-to-
convergence in the shortest-widest-paths algebra. Green/red cells
indicate that the route has got better/worse since the last iteration.
Bold indicates that the node has converged.

Nodes 1 and 2 form what will be referred to as a latch. At time 1 node 1 opens the latch
by adopting the route generated along the path [1, 0]. At the same time node 2 loads the
route generated along path [2, 0]. Then at time 2 node 2 closes the latch by adopting
the higher bandwidth route along path [2, 1, 0]. But at the same time node 3 adopts the
junk route through [3, 2, 0] that it prefers due to the previously described distributivity
violation. After time 2 the junk route (and its extensions) are exchanged back-and-forth
between nodes 3 and 4. Finally, convergence is reached at time k + 2.

Path-vector protocols are designed to solve the count-to-convergence problem by
prohibiting nodes from adopting routes with a path containing themselves. For example
at time 4 the algebra P(SWP) would prevent node 3 from extending node 4’s junk route
as the resulting path [3, 4, 3, 2, 1, 0] would have a loop in it. Hence whereas SWP requires
k + 2 iterations to converge in this example, P(SWP) only requires 4 iterations.

Although path-vector protocols succeed in preventing count-to-convergence by guaran-
teeing that a junk routes will be removed after n iterations, this does not immediately
solve the rate of convergence question. As strictly increasing protocols can generate junk
routes at any point in the iteration, it is conceivable that each junk route could trigger an
exponentially-growing cascade of further junk routes. The question is how long can such
junk continue to be generated?

108

0

2i−1

2i

2i+1

2i+2

2i+3

n− 1

Latch i Loop i

Figure 6.2: The ith gadget in Qn. Junk routes are generated by
the latch and then continue to circulate for n− 2i− 1 iterations in
the loop.

6.3.2 An example of O(n2) convergence

This section uses the concept of the latch described in Figure 6.1 to construct a family
of network configurations {Qn | n ∈ N} designed specifically to repeatedly generate and
circulate junk routes as long as possible. The network Qn has n nodes labelled 0 to n− 1.
The nodes are connected in such a way as to form m gadgets where m = bn−1

2 c. The
ith gadget contains a latch formed by the nodes {2i − 1, 2i} and a loop formed by the
nodes {2i+ 1, · · · , n− 1}. Figure 6.2 illustrates the ith gadget. Each gadget is constructed
so that the junk generated by its latch circulates for as long as possible in its loop.

The operation of a gadget will now be described in detail. Let t be the activation time
of gadget i. At this time all the nodes from 1 to 2i− 1 are assumed to have converged
and latch i has just been opened and loaded. That is node 2i− 1 has opened latch i by
accepting the route generated along the path [2i− 1, 0] and node 2i has loaded the latch
by accepting the route generated along the path [2i, 0]. Epoch i then continues:

• At time t + 1 node 2i closes the latch by adopting the path [2i, 2i − 1, 0]. At the
same time all the nodes in loop i extend node 2i’s route with the path [2i, 0].

• At time t + 2 latch i is closed. Node 2i is advertising the route generated along
the path [2i, 2i − 1, 0] but due to a distributivity violation, all the nodes in loop
i prefer the extensions of the junk route of the path [2i, 0] that was advertised
at time t + 1. Each node in loop i will accept the extension of the junk route
through its counter-clockwise neighbour. For example, node 2i+ 1 takes the path
[2i+ 1, 2i+ 2, 2i, 0], while node n− 1 takes the path [n− 1, 2i+ 1, 2k, 0].

• This process continues with each node in loop i repeatedly accepting the junk routes
advertised by its counter-clockwise neighbour.

109

1 2

3 4

⇒

⇒

⇒

Converged Latch Loop

0 0

0 0

1 1

1 1

2 2

2 2

3 3

3 3

4 4

4 4

5 5

5 5

6 6

6 6

7 7

7 7

8 8

8 8

Figure 6.3: The structure of Q9 consisting of 4 gadgets. Each
gadget takes Θ(n) iterations to flush the junk route generated by
the latch from the loop before triggering the next gadget. Dashed
lines are the links forming the current gadget, while solid lines are
the final next-hop choices after the nodes have converged.

• At time t + n − 2i − 1, it is no longer possible for this to continue as the path of
the junk routes will contain every node in loop i. For example, node 2i + 1 takes
the path [2i+ 1, 2i+ 2, 2i+ 3, · · · , n− 1, 2k, 0], while node n− 1 takes the path
[n− 1, 2i+ 1, 2i+ 2, · · ·n− 2, 2k, 0].

• Therefore at time t+ n− 2i, these junk routes will be discarded and i+ 1th gadget
will be initialised.

Each gadget is designed so that flushing the junk route from its loop, opens the latch
of the next gadget. The overall structure can be seen in Figure 6.3 which shows the four
latches that comprise Q9.

Why does Qn require Θ(n2) iterations to converge? The distributivity violation of
latch i generates junk routes which propagate around loop i for Θ(n) iterations. When
these junk routes are finally flushed from loop i, they trigger latch i + 1. Quadratic

110

converge is then achieved because there are Θ(n) such gadgets.
More formally let T (n) be the convergence time of Qn. Consider the general case for

Qn+2, and the time taken for the 1st gadget to finish executing. It takes 1 iteration for
the junk route to escape the 1st latch, and n − 1 iterations for the junk route to then
be flushed from the 1st loop, giving a total of n iterations. Nodes 1 & 2 will then have
converged. After removing them from the graph and relabelling the remaining nodes, the
new graph is exactly Qn. Hence it is possible to formulate a recurrence relation for T (n)
as:

T (3) = 2, T (4) = 3, T (n+ 2) = n+ T (n).

This is clearly quadratic by inspection. Due to parity issues, solving it is messy, but it can
be simplified to:

T (n) = 1
4n

2 − 1
2n+ c

where c = 1 if n is even and c = 5
4 when n is odd.

The next question is whether this scheme is realisable within a strictly increasing
algebra? The answer is yes, but only if the algebra is suitably expressive. The algebra
that will be used is the stratified shortest paths algebra, SSP, described in Section 4.4.3.
This section does not provide a truly general description of the policies for each of the
links in Qn as they would be unintelligible and hence provide little insight.

Instead Figure 6.4 describes the polices required for just one member of the family, Q9.
It lists the entries of a matrix Bij from which it is possible to construct Q9’s adjacency
matrix Aij as follows. If the figure does not contain an entry for Bij, then Aij = f∞′ .
Otherwise, if Bij = f then Aij = gf as defined in Section 4.4.3. Note that for all edges
(i, 0) the policy Bi0 = 〈i− 1〉 ensures that the latch of the next gadget cannot activate
before the previous gadget has finished executing.

Figure 6.5 presents a full execution trace for the 17 iterations required for the conver-
gence of Q9. It is hopefully clear that having constructed the example for Q9 that it is
possible to generalise the policies to Qn in the obvious way.

6.4 Upper bound: O(n!) to O(n2)

The previous section explored an example of a strictly increasing path algebra which
converged in Θ(n2) iterations. Do there exist even more pathological algebras out there?
It turns out that the answer to this question is no. This section will present a proof that
every (strictly) increasing path algebra converges in at most n2 iterations.

The proof is in some sense similar to the corresponding proofs for distributive path
algebras (e.g. [16]). At each step the proof considers the set of nodes that have already
converged. Next it identifies the node with the best path into the set of converged nodes.

111

i j Policy Implements
1 0 〈0〉 opens latch 1
2 0 〈1〉 loads latch 1
2 1 〈0〉 closes latch 1
3 0 〈2〉 opens latch 2
3 2 〈∞, 1〉 distributivity violation 1
3 4 〈∞, 1〉 loop 1
4 0 〈3〉 loads latch 2
4 2 〈∞, 1〉 distributivity violation 1
4 3 〈∞,∞, 2〉 closes latch 2
4 5 〈∞, 1〉 loop 1
5 0 〈4〉 opens latch 3
5 2 〈∞, 1〉 distributivity violation 1
5 4 〈∞,∞,∞, 3〉 distributivity violation 2
5 6 〈∞, 1,∞, 3〉 loops 1, 2
6 0 〈5〉 loads latch 3
6 2 〈∞, 1〉 distributivity violation 1
6 4 〈∞,∞,∞, 3〉 distributivity violation 2
6 5 〈∞,∞,∞,∞, 4〉 closes latch 3
6 7 〈∞, 1,∞, 3〉 loops 1, 2
7 0 〈6〉 opens latch 4
7 2 〈∞, 1〉 distributivity violation 1
7 4 〈∞,∞,∞, 3〉 distributivity violation 2
7 6 〈∞,∞,∞,∞,∞, 5〉 distributivity violation 3
7 8 〈∞, 1,∞, 3,∞, 5〉 loops 1,2,3
8 0 〈7〉 loads latch 4
8 2 〈∞, 1〉 distributivity violation 1
8 3 〈∞, 1〉 loop 1
8 4 〈∞,∞,∞, 3〉 distributivity violation 2
8 5 〈∞,∞,∞, 3〉 loop 2
8 6 〈∞,∞,∞,∞,∞, 5〉 distributivity violation 3
8 7 〈∞,∞,∞,∞,∞, 5, 6〉 loop 3 and closes latch 4

Figure 6.4: Constructing the adjacency matrix of Q9. This
lists the entries of Bij . If Bij is not listed, then Aij = f∞p .
Otherwise, if Bij = f then Aij = gf as defined in Section 4.4.3.
The annotation “distributivity violation i” means that the policy
implements one of the distributivity violations in gadget i and
“loop i” means that the policy propagates the junk route around
in loop i.

112

Time Node Level Path Event
1 1 0 1, 0 open latch 1
1 2 1 2, 0 load latch 1
1 3 2 3, 0
1 4 3 4, 0
1 5 4 5, 0
1 6 5 6, 0
1 7 6 7, 0
1 8 7 8, 0
2 2 0 2, 1, 0 close latch 1
2 3 1 3, 2, 0 violation 1
2 4 1 4, 2, 0 violation 1
2 5 1 5, 2, 0 violation 1
2 6 1 6, 2, 0 violation 1
2 7 1 7, 2, 0 violation 1
2 8 1 8, 2, 0 violation 1
3 3 1 3, 4, 2, 0
3 4 1 4, 5, 2, 0
3 5 1 5, 6, 2, 0 junk circulates
3 6 1 6, 7, 2, 0 in loop 1
3 7 1 7, 8, 2, 0
3 8 1 8, 3, 2, 0
4 3 1 3, 4, 5, 2, 0
4 4 1 4, 5, 6, 2, 0
4 5 1 5, 6, 7, 2, 0 junk circulates
4 6 1 6, 7, 8, 2, 0 in loop 1
4 7 1 7, 8, 3, 2, 0
4 8 1 8, 3, 4, 2, 0
5 3 1 3, 4, 5, 6, 2, 0
5 4 1 4, 5, 6, 7, 2, 0
5 5 1 5, 6, 7, 8, 2, 0 junk circulates
5 6 1 6, 7, 8, 3, 2, 0 in loop 1
5 7 1 7, 8, 3, 4, 2, 0
5 8 1 8, 3, 4, 5, 2, 0
6 3 1 3, 4, 5, 6, 7, 2, 0
6 4 1 4, 5, 6, 7, 8, 2, 0
6 5 1 5, 6, 7, 8, 3, 2, 0 junk circulates
6 6 1 6, 7, 8, 3, 4, 2, 0 in loop 1
6 7 1 7, 8, 3, 4, 5, 2, 0
6 8 1 8, 3, 4, 5, 6, 2, 0

Figure 6.5: The execution trace for σ in Q9. Green cells indicate
that the route has improved. Red cells indicate the route has
gotten worse. The step in which a node has converged is shown
in bold, and after that the node’s state is no longer listed. In the
initial state at time 0 (not listed) only node 0 has converged and
all other nodes have routes ∞p. The notation “violation” stands
for distributivity violation.

113

Time Node Level Path Event
7 3 1 3, 4, 5, 6, 7, 8, 2, 0
7 4 1 4, 5, 6, 7, 8, 3, 2, 0
7 5 1 5, 6, 7, 8, 3, 4, 2, 0 junk circulates
7 6 1 6, 7, 8, 3, 4, 5, 2, 0 in loop 1
7 7 1 7, 8, 3, 4, 5, 6, 2, 0
7 8 1 8, 3, 4, 5, 6, 7, 2, 0
8 3 2 3,0 open latch 2
8 4 3 4, 0 load latch 2
8 5 4 5, 0
8 6 5 6, 0
8 7 6 7, 0
8 8 7 8, 0
9 4 2 4,3,0 close latch 2
9 5 3 5, 4, 0 violation 2
9 6 3 6, 4, 0 violation 2
9 7 3 7, 4, 0 violation 2
9 8 3 8, 4, 0 violation 2
10 5 3 5, 6, 4, 0
10 6 3 6, 7, 4, 0 junk circulates
10 7 3 7, 8, 4, 0 in loop 2
10 8 3 8, 5, 4, 0
11 5 3 5, 6, 7, 4, 0
11 6 3 6, 7, 8, 4, 0 junk circulates
11 7 3 7, 8, 5, 4, 0 in loop 2
11 8 3 8, 5, 6, 4, 0
12 5 3 5, 6, 7, 8, 4, 0
12 6 3 6, 7, 8, 5, 4, 0 junk circulates
12 7 3 7, 8, 5, 6, 4, 0 in loop 2
12 8 3 8, 5, 6, 7, 4, 0
13 5 4 5,0 open latch 3
13 6 5 6, 0 load latch 3
13 7 6 7, 0
13 8 7 8, 0
14 6 4 6,5,0 close latch 3
14 7 5 7, 6, 0 violation 3
14 8 5 8, 6, 0 violation 3
15 7 5 7, 8, 6, 0 junk circulates
15 8 5 8, 7, 6, 0 in loop 3
16 7 6 7,0 open latch 4
16 8 7 8, 0 load latch 4
17 8 6 8,7,0 close latch 4

Figure 6.5: The execution trace for σ in Q9. Green cells indicate
that the route has improved. Red cells indicate the route has
gotten worse. The step in which a node has converged is shown
in bold, and after that the node’s state is no longer listed. In the
initial state at time 0 (not listed) only node 0 has converged and
all other nodes have routes ∞p. The notation “violation” stands
for distributivity violation.

114

It then proves that after an additional k iterations this node will have converged. This
process can be repeated for each node giving a total of k(n− 1) iterations.

For distributive algebras it can be shown that k = 1, resulting in a total of n − 1
iterations. However in an increasing, non-distributive path algebra a single iteration may
not suffice because of the junk routes generated by distributivity violations. The key
insight is that junk routes capable of interfering with the convergence of the node with the
best path into the converged set, can only persist for at most n iterations before necessarily
containing a loop and hence being flushed. Hence k = n for strictly increasing algebras,
resulting in a total of n2 − n+ 1 iterations required for convergence in the worst case.

6.4.1 Additional definitions

Some of the terms such as “junk routes” used informally in previous sections will now be
rigorously defined. Let (S, ⊕, E, ∞, 0, path) be an increasing path algebra and consider
a network of n nodes represented by an adjacency matrix A. Let X be the initial state
and without loss of generality let j be the destination node.

The first concept that needs to be defined is that of a single node having converged. A
first attempt might be to say that a node is fixed at time t if it never again changes its
current route.

Definition 36. A node i is fixed at time t iff

∀s ≥ t : σs(X)ij = σt(X)ij

where Ft is the set of fixed nodes at time t.

As shown by the following lemmas, this definition has many desirable properties: the set
of fixed nodes is monotonically increasing over time, the source node is fixed at time 1
and that both the path and the path-weight of a fixed node are aligned.

Lemma 23. s ≤ t⇒ Fs ⊆ Ft.

Proof. Immediate by the definition of Ft and the transitivity of ≤.

Lemma 24. j ∈ F1.

Proof. Consider a time s ≥ 1. Then the required result:

σ(X)jj = F (X)jj = 0 = F (σs−1(X))jj = σs(X)jj

is immediate, with the middle two equalities holding by Lemma 11 in Chapter 4

115

Lemma 25. If path(σt(X)ij) = (i, k) :: p and i ∈ Ft then σt(X)ij = Aik((σt(X)kj) and
p = path(σt(X)kj).

Proof. As i ∈ Ft it must be the case that σt(X)ij = σt+1(X)ij and so path(σt+1(X)ij) =
(i, k) :: p. Assumption (P3) from the definition of a path algebra therefore implies that
σt+1(X)ij = Aik(σt(X)kj) and that p = path(σt(X)kj). Again as i ∈ Ft, it must be case
that σt(X)ij = Aik(σt(X)kj).

However Ft lacks one important property. Perhaps counter-intuitively, it is not the case
that all nodes in the path of a fixed node are necessarily fixed themselves. Therefore the
set of fixed nodes in Ft do not form a tree rooted at the source node j. This is a problem,
as some of the later proofs (in particular Lemma 30) will need to perform induction over
the tree of converged nodes.

0 1 2
f1,1 f1,1

Time Node 0 Node 1 Node 2
0 (∞, 0, []) (2, 1, [(1, 0)]) (1, 2, [(2, 1), (1, 0)])
1 (∞, 0, []) (1, 1, [(1, 0)]) (1, 2, [(2, 1), (1, 0)])
2 (∞, 0, []) (1, 1, [(1, 0)]) (1, 2, [(2, 1), (1, 0)])

Figure 6.6: Example of an unfixed node on the path of a fixed
node for the shortest-widest-paths algebra. The weight of the
(1, 0) arc has just changed from f2,1 to f1,1, i.e. the bandwidth of
the link has decreased by 1.

The underlying cause of this problem is that the iteration is starting from an arbitrary
state X rather than from the initial state I. For example consider Fig. 6.6 where the
bandwidth of arc (1, 0) has decreased from 2 to 1. Node 1 initially contains an inconsistent
route, but then adopts the new valid route at time 1. Hence node 1 is not in F0. However
the bandwidth of the arc (2, 1) acts as a bottleneck, and therefore node 2 never notices
the change in the bandwidth of node 1’s route. Hence node 2 is in F0 but node 1 is not.

Instead a stronger notion of convergence is required. Namely a node has con-
verged if all the nodes in its path to the source are fixed (this includes the node it-
self).

Definition 37. A node i has converged at time t iff:

∀k ∈ path(σt(X)ij) : k ∈ Ft

116

where Ct is the set of converged nodes at time t.

Again the set of converged nodes obeys the same desirable properties as the set of
fixed nodes, but also additionally fulfils the property that all of the nodes in the path of a
converged node have themselves converged.

Lemma 26. s ≤ t⇒ Cs ⊆ Ct.

Proof. Immediate by the definition of Ct and Lemma 23.

Lemma 27. j ∈ C1.

Proof. σ1(X)jj = F (X)jj = 0 by Lemma 11 in Chapter 4. As path(0) = [] by assump-
tion (P1) then the required result ∀k ∈ path(σ1(X)jj) : k ∈ F1 holds trivially.

Lemma 28. If i ∈ Ct and l ∈ path(σt(X)ij) then l ∈ Ct.

Proof. This is proved by induction over the path of i’s route at time t.
Case 1 & 2: path(σt(X)ij) = ⊥ or path(σt(X)ij) = []
Then there cannot exist a node l ∈ path(σt(X)ij) and so the statement is vacuously true.
Case 3: path(σt(X)ij) = (i, k) :: p
If l ∈ path(σt(X)ij) then either l = i or l ∈ p. In the former case then l ∈ Ct as i ∈ Ct.
In the latter case, Lemma 25 can be used to prove that path(σt(X)kj) = p. Therefore as
i ∈ Ct then all nodes in p are in Ft and therefore k ∈ Ct. Hence, as l ∈ path(σt(X)kj), the
induction hypothesis can be used to prove l ∈ Ct.

The term “junk route” was used informally in Section 6.3 to reason about count-to-
convergence. A junk route is a route whose path conflicts with the routing choices made
by the nodes along that path. For example consider latch 1 in the trace of Q9 in Figure 6.5.
At time 2, node 3’s route is junk because node 3 believes that its packets will travel along
the path (3, 2, 0). However this conflicts with the routing choice of node 2 and in reality
next-hop forwarding will ensure that the message travels along the path (3, 2, 1, 0).

In practice it’s easier to define when a route is not junk. Intuitively a route is real at
time t if all the routing decisions of nodes along its path are consistent with one another.

Definition 38. A node i is real at time t if

∀(k, l) ∈ path(σt(X)ij) : σt(X)kj = Akl(σt(X)lj)

where Rt is the set of real nodes at time t.

Similarly to the sets of fixed and converged nodes, the set of real nodes obeys some
desirable properties: the source node’s route is always real after time 1, if a node has
converged than it’s route is necessarily real and finally all the nodes along the path of a real

117

node are also real. However unlike F and C, the set of real nodes R does not necessarily
grow monotonically over time as distributivity violations can repeatedly generate fresh
junk routes.

Lemma 29. ∀t > 0 : j ∈ Rt.

Proof. By the same reasoning as in Lemma 27, the path of j is always [] and hence the
result holds vacuously.

Lemma 30. Ct ⊆ Rt.

Proof. Assume i ∈ Ct. It will now be proven that i ∈ Rt by induction on node i’s path.
Case 1 & 2: path(σt(X)ij) = ⊥ or path(σt(X)ij) = []
Then i ∈ Rt vacuously as there are no arcs in either path.
Case 3: path(σt(X)ij) = (i, k) :: p
Consider an arbitrary arc e ∈ path(σt(X)ij). Either e = (i, k) or e ∈ p. If the former
then the realness property σt(X)ij = Aik(σt(X)kj) holds by Lemma 25. If the latter, then
path(σt(X)kj) = p by Lemma 25. Hence k ∈ Ct by Lemma 28 and therefore the inductive
hypothesis can be applied to obtain the required property σt(X)lj = Alm(σt(X)mj) for
any arc (l,m) in p.

Lemma 31. For all nodes i and l and times t if i ∈ Rt then l ∈ path(σt(X)ij) implies
l ∈ Rt.

Proof. The result is proved by induction over the path of node i. If path(σt(X)ij) = [] or
⊥ then the result holds vacuously for all l. Likewise if i = l. Otherwise path(σt(X)ij) =
(i, k) :: p for some node k and path p, and as i ∈ Rt then p = path(σt(X)kj). Hence as
all the routing decisions along path(σt(X)ij) are correctly aligned so must every routing
decision along path(σt(X)kj). Therefore k ∈ Rt and l ∈ path(σt(X)kj) and so the result
holds by the inductive hypothesis.

Note that if the iteration started in the initial state I, it could be proved that Ft ⊆ Rt.
However this is not true when starting in an arbitrary state X. Figure 6.6 provides a
counterexample as at time 0, node 2 is fixed but not real.

To assist with notation, a time-indexed family of orderings over arcs is defined as
follows:

(i, k) �t (l,m) , Aik(σt(X)kj) ≤ Alm(σt(X)mj)

Later on Lemma 36 will require a proof that some node l permanently adopts the
route through one of its neighbour m. Intuitively (i, k) �t (l,m) means that the route
Aik(σt(X)kj) and some of its extensions may be capable of threatening l’s adoption of the
route through m at some point in the future.

118

6.4.2 Main proof

The main idea behind the proof of quadratic convergence is to keep track of P (t), the set
of nodes that can be proved to have converged at time t. This is a (possibly strict) subset
of Ct the nodes that have actually converged at time t. It will then be shown that while
there exist nodes not in P (t), then at least one such node can be proven to have converged
by time t+ n. This node can therefore be added to P (t+ n). The whole process is then
repeated until all n nodes have converged.

Consider a time τ ≥ 1 and assume j ∈ P (τ). Denote P (τ)’s complement as P (τ).
Let E(τ) be the set of all arcs going from P (τ) to P (τ) i.e. the in-cutset of P (τ). Let
emin(τ) = (imin(τ), kmin(τ)) be a minimal arc in E(τ) with respect to �τ (see Figure 6.7).
The aim is to show that imin(τ) ∈ Cτ+n and therefore that imin(τ) can added as a member
of P (τ +n). In order to improve readability, the dependency of emin(τ), imin(τ) and kmin(τ)
on τ will be dropped and instead they will be written as just emin, imin and kmin.

j

kmin

imin

P (τ)

P (τ)
emin

Figure 6.7: Construction of the arc emin = (imin, kmin). P (τ) is
the set of nodes that can be proven to have converged at time τ .
Dashed edges are members of E(τ), the cutset of P (τ) and P (τ).
The arc emin is a minimal member of E(τ) with respect to �τ .

What can stop node imin from routing through kmin? In the world of distributive
algebras nothing can, as the node imin either uses a route from P (τ) or P (τ). In the former
case, the route through kmin is by definition the best route out of P (τ). In the latter case,
any route out of P (τ) must necessarily be an extension of some route out of P (τ) and
hence distributivity ensures that any route through P (τ) cannot be better than the route
through kmin. However this line of reasoning does not hold for non-distributive algebras, as
junk routes generated before time τ may continue to persist in P (τ) after time τ . These
junk routes can prevent imin from adopting the route through kmin. The aim will now to
be show that such junk routes must have been flushed from the network after a further n
iterations, after which imin will necessarily permanently adopt the route through kmin.

Firstly it will be shown that a real node in P (τ) can never threaten emin.

119

Lemma 32. For all t ≥ τ if k ∈ Rt and k ∈ P (τ) then emin �t (i, k) for all nodes i.

Proof. The proof proceeds by induction on the path of σt(X)kj.
Case 1: path(σt(X)kj) = []
If the path is empty then it must be the case that k = j, and as k /∈ P (τ) then j /∈ P (τ).
This contradicts the assumption at the start of this section that the source node, j, is in
P (τ).
Case 2: path(σt(X)kj) = ⊥
Then the required inequality holds by the following reasoning:

Aiminkmin(σt(X)kminj) ≤ ∞ (by (R3))

= Aik(∞) (by (R4))

= Aik(σt(X)kj) (by (P2) and case 2)

Case 3: path(σt(X)kj) = (k, l) :: p for some node l
If l ∈ P (τ) then (k, l) is an element of the cutset E and, as emin is a minimal member of E,
then emin �t (k, l). Otherwise if l /∈ P (τ) then the inductive hypothesis can be applied as
l ∈ Rt by Lemma 31 and so again emin �t (k, l). Therefore in either case emin �t (k, l).

Hence the required inequality holds by the following reasoning:

Aiminkmin(σt(X)kminj) ≤ Akl(σt(X)lj) (by emin �t (k, l))

= σt(X)kj (by k ∈ Rt)

≤ Aik(σt(X)kj) (by F increasing)

One consequence of Lemma 32 is that the only nodes that are capable of preventing imin

from routing through kmin, are those that are not real and that have an extension that
threatens emin. Such routes will be referred to as dangerous.

Definition 39. A node k’s route is dangerous at time t ≥ τ if:

k /∈ Rt ∧ ∃i : (i, k) ≺t emin

where Dτt is the set of dangerous nodes at time t ≥ τ .

It is important to note that routes are dangerous only in relation to the current minimal
arc. It will now be shown that after time τ all dangerous routes must be an extension of
some other dangerous route. In other words fresh dangerous routes cannot be generated
after time τ .

120

Lemma 33. For all t ≥ τ and k ∈ Dτt+1 then there exists l such that σt+1(X)kj =
Akl(σt(X)lj) and l ∈ Dτt .

Proof. It is immediate that k /∈ Rt+1 from the definition of Dτt+1. As the routes 0 and ∞
are trivially real, k’s route cannot be either 0 or ∞. Therefore σt+1(X)kj = Akl(σt(X)lj)
for some node l. It is now shown that l ∈ Dτt by proving (k, l) ≺t emin and l /∈ Rt.

As k ∈ Dτt+1 then there exists a node i such that (i, k) ≺t+1 emin. The following chain
of reasoning can now be used to prove that (k, l) ≺t emin:

Akl(σt(X)lj) = σt+1(X)kj (by prev. reasoning)

≤ Aik(σt+1(X)kj) (by F increasing)

< Aiminkmin(σt+1(X)kminj) (by (i, k) ≺t+1 emin)

= Aiminkmin(σt(X)kminj) (by kmin ∈ Ct)

It remains to show that l /∈ Rt. Clearly k /∈ P (τ) as that would contradict k /∈ Rt+1 by
Lemma 30. If l ∈ P (τ) then (k, l) is an element of the cutset E and, as emin is a minimal
member of E, then emin �t+1 (k, l). Otherwise if l /∈ P (τ) then emin �t+1 (k, l) by applying
Lemma 32. Therefore either way emin �t+1 (k, l).

Assume l ∈ Rt. This can be shown to be a contradiction as it was assumed that
(i, k) ≺t+1 emin but it is now possible to show that emin �t+1 (i, k) as follows:

Aiminkmin(σt+1(X)kminj) = Aiminkmin(σt(X)kminj) (by kmin ∈ Ct)

≤ Akl(σt(X)lj) (by emin �t+1 (k, l))

= σt+1(X)kj (by prev. reasoning)

≤ Aik(σt+1(X)kj) (by F increasing)

Hence l /∈ Rt and so l ∈ Dτt .

Lemma 33 will now be used to prove that all dangerous routes must have been flushed
from the routing state by time t+ n.

Lemma 34. Dττ+n = ∅

Proof. By Lemma 33 the length of the paths of the dangerous routes must increase by 1
each iteration. Hence after n iterations the path of every dangerous route must necessarily
contain a loop. As routes containing looping paths are removed, after n iterations all
dangerous routes must have been eliminated from the routing state.

It will now be shown that at any time after τ + n the route through kmin is guaranteed to
be the best route on offer to imin.

121

Lemma 35. For every node t and time t ≥ τ + n then:

(imin, kmin) �t (imin, k)

Proof. Consider an arbitrary node k.
Case 1: k ∈ P (τ)
Then the inequality is immediate as emin is a minimal arc into P (τ).
Case 2: k /∈ Rt

Suppose the inequality does not hold. Then k’s route is dangerous. But by Lemma 34 no
dangerous routes exist at time t. Hence the inequality must hold.
Case 3: k /∈ P (τ) and k ∈ Rt

Then the inequality is immediate by Lemma 32.

Hence at any time t ≥ τ + n then imin must route through kmin.

Lemma 36. For every time t ≥ τ + n then :

σt(X)iminj = Aiminkmin(σt−1(X)kminj)

Proof. As imin /∈ P (τ) and j ∈ P (τ) then clearly imin 6= j. Hence the inequality can be
proved as follows:

σt(X)iminj =
⊕
k

Aimink(σt−1(X)kj) (by def of σ and imin 6= j)

= Aiminkmin(σt−1(X)kminj) (by Lemma 35)

It is now finally possible to prove that imin will have converged at time τ + n.

Lemma 37. imin ∈ Cτ+n

Proof. To prove that imin has converged at time τ + n it is necessary to prove that both it
and all the nodes on its path are fixed at time τ +n. Consider an arbitrary t ≥ τ +n then:

στ+n(X)iminj = Aiminkmin(στ+n−1(X)kminj) (by Lemma 36)

= Aiminkmin(σt−1(X)kminj) (by kmin ∈ Cτ)

= σt(X)iminj (by Lemma 36)

and hence imin is fixed at time τ + n.
It must now be shown that all nodes in imin’s path are fixed at time τ+n. By Lemma 36

imin routes through kmin for all times t ≥ τ + n. As kmin is in P (τ) then all nodes in its

122

path are fixed at time t as P (τ) ⊆ Cτ ⊆ Cτ+n ⊆ Ct ⊆ Ft. Hence all nodes in the path of
imin are fixed at time τ + n and so imin ∈ Cτ+n.

Theorem 9. For any increasing path algebra (S, ⊕, E, ∞, 0, path) and n×n adjacency
matrix then σ converges from any starting state X in at most n2 iterations.

Proof. Let P (t) be the set of nodes that can be proven to have converged at time t. Clearly
P (0) = ∅. At time 1 the source node j has converged by Lemma 27 and so let P (1) = {j}.
By fixing the current time as τ , it is possible to repeatedly generate a new node imin(τ)
not yet in P (τ) via the construction shown in Figure 6.7. Lemma 37 proves that imin(τ)
will have converged at time τ + n. Thus let P (τ + n) = P (τ) ∪ {imin(τ)}.

By repeating the process above n− 1 times, every node will necessarily be a member of
P (n(n−1)+1) and so every node has been proved to have converged at time n2−n+1.

6.5 Conclusions

This section has studied the rate of convergence of increasing path-vector protocols, and
proved a new, tight worst-case bound of Θ(n2). This has significant implications for
protocol design as it implies that even when the algebra is non-distributive then path-
vector protocols will still converge relatively quickly. This contrasts the best previous
upper bound which suggested the worst case might require as many as n! iterations.

Additionally, it is hypothesised that quadratic convergence is unlikely to occur in
practice. The example described in Section 6.3 is extremely sensitive to small changes
in the policies, with even small alterations drastically reducing the number of iterations
required for convergence. Furthermore, the policies in question require that every node in
the network participates in multiple global loops which seems unlikely to occur in today’s
networks given the hierarchical nature of many modern network architectures.

There remain several open questions in the area. Firstly it does not appear the case
that all increasing, non-distributive path algebras have a quadratic worst-case. For example
the shortest-widest paths algebra has the property that one distributivity violation can
never trigger a second distributivity violation and hence appears to only require 2n− 2
iterations to converge in the worst-case. Consequently it is hypothesised that there may
be a hierarchy of increasing path algebras whose worst-case convergence time ranges from
linear to quadratic.

Secondly the rate of the convergence of path-vector protocols in free networks is still
an open question. The proof presented in Section 6.4 fails at Lemma 32 for non-increasing
algebras. In such an algebra, real routes as well as junk routes may prevent imin from using
kmin’s route. Therefore it is not necessarily the case that imin will be the next node to
converge. It is possible that redefining what it means to be the minimal edge may provide

123

a path to a new proof. It seems unlikely however that the quadratic convergence bound
could be preserved in such a proof.

124

Chapter 7

Practicalities

In any mathematical model of a real-world system there is a fundamental tension between
adding implementation details to better describe a particular system, and preserving
generality so that it can describe many different systems. So far this thesis has very much
erred on the side of generality, and has reasoned about vector-based routing protocols in
a very abstract manner. The downside of this is that certain assumptions made in the
model may not match up exactly with the properties of real-world routing protocols.

For example, in BGP there exist valid routes x and y for which x ⊕ y 6= y ⊕ x, and
therefore technically ⊕ is not commutative as was assumed in the definition of a routing
algebra. However it is “morally” commutative in that the protocol will never be required to
choose between such a pair of routes. The naive response to this would be to generalise the
notion of a routing algebra in the right way and redo all the proofs. However depending on
the exact generalisation this might be quite a complex process and significantly complicate
the proofs. Furthermore each new generalisation would require redoing the proofs in their
entirety. To get around this problem the technique of bisimulation may be used: if the
behaviour of δ over a commutative algebra A is indistinguishable from the behaviour of δ
over a non-commutative algebra B then if A is convergent then B must also be convergent.

This chapter presents three examples of such small mismatches between the theory and
real world protocols and shows how each of them be addressed without altering the core
proofs. The techniques described will then be used in Chapter 8 to prove the correctness of
a protocol containing many of the features of BGP. In some sense this is an important test
of the model’s adequacy, i.e. that the level of abstraction required to ensure the generality
the proofs is not so high as to prevent it being applied to real-world protocols.

7.1 Relaxation of assumptions on choice

As described in this chapter’s introduction, the choice operators of a path-vector protocol
may only “morally” obey the properties required by a routing algebra. This is because

125

during the operation of the protocol a node need never choose between two routes
advertised by the same neighbour. Consequently a choice operator whose final tie-breaking
procedure involves comparing the neighbours’ IDs need not be commutative when used
to choose between two routes from the same neighbour. The notion of whether or not
a pair of routes can ever be compared during the execution of δ can be formalised as
follows.

Definition 40. Routes x and y are comparable if one of the following holds:

1. x = 0, y =∞ or x =∞, y = 0 or x =∞, y =∞.

2. one of x and y belongs to the set {0,∞} and there exists nodes i and j, function
f ∈ Eij and path-weight z ∈ S such that the other is equal to f(z).

3. there exists nodes i, j, k such that j 6= k, functions f ∈ Eij and g ∈ Eik and
path-weights w, z ∈ S such that x = f(w) and y = f(z).

where C is the set of comparable pairs of routes.

Even if the choice operator is only commutative for comparable pairs of routes, it is almost
always possible to construct an alternative choice operator that is fully commutative.
Consider a path algebra (S,⊕1, E,∞, 0, path) where ⊕1 is only commutative over the set
of comparable pairs. Suppose ⊕2 is an alternative fully commutative choice operator.
Then a composite choice operator ⊕3 can be defined as follows:

x⊕3 y =

x⊕1 y if (x, y) ∈ C

x⊕2 y otherwise

It is easy to show that ⊕3 is commutative over all pairs of routes, and that at the same
time its behaviour is indistinguishable from that of ⊕1 for all comparable pairs. Hence the
algebra (S,⊕1, E,∞, 0, path) should have exactly the same convergence properties as the
algebra (S,⊕3, E,∞, 0, path).

To formalise this, it is necessary to find a general relationship between two alge-
bras such that the resulting asynchronous iteration functions are bisimilar. In practice,
this simply requires a pointwise correspondence between each of the components of the
algebras:

Definition 41. Algebras A and B are bisimilar if there exists a relation ∼ between SA

and SB such that:

1. ∞A ∼ ∞B

2. 0A ∼ 0B

126

3. ∀w, x ∈ CA, y, z ∈ CB : (w ∼ y) ∧ (x ∼ z)⇒ (w ⊕A x) ∼ (y ⊕B z)

4. ∀x ∈ CA, y ∈ CB, i, j ∈ V, f ∈ EA
ij, g ∈ EB

ij : (f ∼ g) ∧ (x ∼ y)⇒ f(x) ∼ g(y)

Note that the algebras in this definition are not necessarily routing algebras in the technical
sense, as one or both of them may not obey the required properties. In the case of non-
commutative choice operators described above, SA = SB and therefore the relation ∼ is
simply equality.

Theorem 10. If algebras A and B are bisimilar then δ is deterministically convergent
over A if and only if δ is deterministically convergent over B.

Proof. The proof that δ preserves the bisimilarity relation ∼, and hence convergence,
proceeds by induction over the definition of δ and time t in the obvious way. See the Agda
library if interested in the full details of the proof.

Hence in the case of the non-commutative algebras described above, if it can be shown
that A = (S,⊕3, E,∞, 0, path) is an increasing path algebra and that is bisimilar to
B = (S,⊕1, E,∞, 0, path) then B is deterministically convergent, even if B is not an
increasing path algebra itself.

7.2 Path inflation

The choice operator in BGP first chooses the route with the highest local preference and,
in cases where the local preference is equal, next chooses the route with the shortest AS
path. Local preference values are assigned specific semantics within each AS and are
erased when the route is exported across AS boundaries. Therefore the question arises
how network operators in one AS can make one of its advertised routes more desirable
than another without relying on the local preference value. BGP solves this problem using
path inflation, where routers artificially lengthen the AS path by padding the beginning of
the path with copies of the current AS. The more the path is inflated, the less desirable it
becomes.

The problem with this process is that the inflated paths now have loops in them and
therefore are no longer simple. Furthermore, if the path function simply extracted the
path from the path-weight it would violate assumption (P3) which requires the following
to hold:

∀x ∈ S, ij ∈ V, f ∈ Fij : path(f(x)) =

⊥ if f(x) =∞

(i, j) :̂: path(x) otherwise

127

For example for a path weight x and a function f ∈ Eij then it is possible that the path
of the extension f(x) might be:

path(f(x)) = (i, i) :: (i, i) :: (i, j) :: path(x)

In reality this problem is easy to address as there is no requirement that the path function
must simply return the internal path. Instead it can be redefined to perform a pre-
processing step of deflating the path before returning it, thereby stripping out any extra
instances of the current AS. It is easy to show that this new implementation of path
obeys (P3).

7.3 Hierarchical paths

The final problem addressed is that BGP stores the path along which a route was generated
as two separate entries in the path-weight. The first entry contains the top-level AS path,
and the second entry contains the router level path within the current AS. A route is
discarded when a loop forms in either the AS path or the router path. Furthermore when
a route is exported across AS boundaries, the router level path is erased in order to avoid
revealing the internal topology of an AS’s network to its competitors.

As with path inflation, the erasure of the router level path violates assumption (P3)
in the definition of a path algebra. However, unlike path inflation which adds redundant
information to the path, erasing the router level path removes the information needed to
satisfy (P3). Therefore it is impossible to fix this problem by altering the definition of the
path function.

Instead, as with the problem of non-commutativity discussed earlier, it may be solved
by bisimulation. Imagine an almost identical algebra that did not erase the router level
path, but at the same time hid this additional information from the choice and extension
operators. This new algebra’s behaviour would by definition be indistinguishable to that
of the original algebra. Yet at the same time the full path could now be extracted by the
path function, hence allowing the new algebra to satisfy assumption (P3). This scheme
could even be generalised to networks that had more than the two level-hierarchy found
in BGP.

7.4 Conclusions

The definition of routing algebras and path algebras capture the core operations and
properties of idealised distance-vector and path-vector protocols. As with most models
however, real-life implementations differ from this idealised form. This section has shown

128

how non-commutative choice, path inflation and hierarchical paths can all be handled in
a principled manner, without the need to alter the proofs in the previous chapter. This
provides strong supporting evidence that the level of abstraction chosen for the model is
the right one.

129

130

Chapter 8

Agda: proofs and protocols

All of the work discussed thus far, with the exception of the execution trace of Qn, has
been formalised in Agda [53]. Agda is a dependently typed language that is expressive
enough that both programs and proofs may be written in it. It can therefore be used as
both a proof assistant and a functional programming language.

Initially this chapter discusses the advantages of having formalised the proofs. It
then provides a high-level overview of the resulting library, which is available online [19].
Finally it demonstrates how this library may be used to formally prove the correctness of
vector-based protocols. The example algebra chosen contains many of the features of BGP
including local preferences, communities, path-dependent conditional policy and path
inflation. Unlike BGP, the policies are defined in such a way that local preferences can
only increase. Consequently the protocol is guaranteed to be convergent. It is important
to note that this protocol is not being presented as the solution to the problems with BGP,
but merely as a demonstration of how far the theory has progressed.

8.1 Advantages of formalisation

The results presented in the previous chapters are relatively technical, and while they
have been checked by multiple people and most have undergone peer review, this does not
guarantee that they are correct. Üresin & Dubois’s paper on the theory of asynchronous
iterations [64] is an excellent example of this. Despite being an important and widely cited
result in the literature, during formalisation it was found that not only were the proofs of
Propositions 3 and 4 incorrect, but the claims themselves were untrue. This is discussed
in more detail in [68]. Formalising the proofs in Agda minimises the risk of such a scenario
by allowing them to be verified by a computer. This shifts the burden on the reader from
checking the correctness of the proofs to only checking that the statement of the proofs is
correct.

Every mathematical result in this thesis down to the most trivial lemma has been

131

formalised. This includes the generalisation of the work by Üresin & Dubois [64] and
Gurney [35]. The only exception is the claim that in the general case the family of
graphs Qn takes Ω(n2) iterations to converge. The reasons for this were explained in the
introduction to Chapter 6.

As well as increasing the reader’s confidence in the correctness of the work, formalisation
has several other advantages. Firstly the act of formalisation itself has been invaluable
in creating and shaping the proofs in this thesis. For example, the initial pen-and-paper
versions of the proofs in Chapter 5 that showed that the metrics were strictly contracting
were poorly structured and contained duplicated logic in several places. The process of
formalising them highlighted these inefficiencies and led to the much improved presentation
found in this thesis. Secondly, dependencies between assumptions and proofs may be
checked far more quickly and easily in a proof assistant. In a pen-and-paper proof it is
often difficult to be sure that an assumption that appears to be unnecessary has not been
used implicitly anywhere. It is doubtful that the relaxations of the ACO and AMCO
conditions, described in Section 3.2.3, would have been found without having formalised
them.

8.2 The library

This section presents an overview of the resulting Agda library, which is publicly available
online [19]. As part of the library, there exists a README file that matches up the proofs
and definitions in this thesis with the associated Agda code. It is hoped that the library
will be of use to others, either to extend the algebraic theory with new results or to verify
the design of new protocols.

The code for a few of the more important definitions from the previous chapters are now
shown in order to demonstrate how the code closely mirrors the mathematical definitions.
This thesis does not provide a tutorial in Agda but Agda’s use of unicode allows code to
closely match the naming conventions used throughout the thesis, and so it is hoped that
the code is understandable to non-experts. Interested readers may find several excellent
introductions to Agda online [2].

The underlying structure of a routing algebra is formalised as dependant record type
in the library:

record RawRoutingAlgebra : Set1 where
field

S : Set
⊕ : S → S → S
E : ∀ {n} → Node n → Node n → Set
0# : S

132

∞# : S

≈ : Rel S 0`
. : ∀ {n} {i j : Node n} → E i j → S → S

≈-decEq : IsDecEquivalence _≈_
⊕-cong : ∀ {w x y z} → w ≈ x → y ≈ z → w ⊕ y ≈ x ⊕ z
.-cong : ∀ {n} {i j : Node n} (f : E i j) {x y : S} → x ≈ y → f . x ≈ f . y

Although the first five fields of the RawRoutingAlgebra record match the notation used
in the definition of a routing algebra, there are a couple of extra fields needed in the
formalisation. Firstly because Agda uses type theory rather than set theory as a foundation,
it is difficult to directly capture the notion of a set of functions. The field _._ is therefore
the application operator, and f.x should be simply read as f(x). Secondly, equality is
usually taken for granted in written mathematics. However, in a proof assistant the notion
of equality _≈_ needs to be made explicit. The three additional assumptions ≈-decEq,
⊕-cong and .-cong ensure that the equality relation is a decidable equivalence and that
the choice and extension operations are well-behaved with respect to it.

The record IsRoutingAlgebra captures the concept of a RawRoutingAlgebra obeying the
required properties to be a routing algebra:

record IsRoutingAlgebra (algebra : RawRoutingAlgebra) : Set where
field
⊕-sel : Selective _⊕_
⊕-comm : Commutative _⊕_
⊕-assoc : Associative _⊕_
⊕-zeror : RightZero 0# _⊕_
⊕-identityr : RightIdentity ∞# _⊕_
.-fixedPoint : ∀ {n} {i j : Fin n} (f : E i j) → f . ∞# ≈ ∞#

Given a routing algebra and an adjacency matrix A then the iteration operator

F (X)ij =
⊕
k

Aik(Xkj)⊕ Iij

is defined in Agda as follows:

F : RoutingMatrix → RoutingMatrix
F X i j = foldr _⊕_ (I i j) (tabulate (ń k → A i k . X k j))

The final statement of the Theorem 8 which proves that strictly increasing path algebras
are convergent is formalised as:

133

increasingPathAlgebras-converge : ∀ (A : RawRoutingAlgebra) →
IsRoutingAlgebra A →
IsPathAlgebra A →
IsIncreasing A →
∀ {n : N} (N : Network A n) →
Convergent (F A N)

where the formal definition of Convergent is:

record Convergent (F : AsyncIterable) : Set where
field
k* : Epoch → Subset n → N
x* : Epoch → Subset n → S
x*-fixed : ∀ e p → F e p (x* e p) ≈ x* e p
x*-reached : ∀ (x0 : S) (s : Schedule n) {t1 t2 t3 : T} →

IsMultiPseudoperiodic s (k* (η s t1) (ρ s t1)) [t1 , t2] →
IsSubEpoch s [t2 , t3] →
δ F s x0 t3 ≈ x* (η s t1) (ρ s t1)

It should be noted that the formalisation has not been a trivial effort. The development
contains over 27,000 lines of code, 10,000 of which have been submitted to the Agda
standard library [67]. The routing library itself is split over 203 files and requires 2.5 minutes
to type check on a midrange laptop.

8.3 An example algebra

This section now presents an example of how the library can be used to develop a safe-
by-design routing protocol. The example chosen is a path-vector algebra that contains
many of the features of BGP such as local preferences, community values, path inflation
and conditional policies. The policies can perform various operations including path-
filtering and modifying local preferences and communities. The conditions themselves are
implemented using a simple language of predicates that have the ability to inspect the
entire route including the path and the communities. The algebra is a generalisation of
the Stratified Shortest Paths algebra described in Section 4.4.3.

It differs from the algebra underlying today’s BGP in two crucial ways. Firstly, BGP
allows ASs to hide their local preference values and set it to arbitrary values for routes
imported from other ASs. Consequently BGP’s algebra is not (strictly) increasing. The
algebra described below circumvents this problem by only allows policies to increase the
local preference value. Secondly, the algebra does not implement the MED attribute found
in BGP as the current implementation of MED is known to be non-associative [31].

134

Finally there is a small cosmetic change in the semantics of the local preference value.
Instead of higher local preference values being more desirable, as in BGP, in this algebra
lower local preference values are more desirable. To avoid the resulting ambiguity, the
name “level” is therefore used for these values instead of “local preference”. This is purely
a cosmetic change introduced for convenience in the formalisation, and could easily be
reversed, albeit at the cost of reducing the readability of the code.

Again it should be emphasised that this algebra is not being presented as a practical
solution to the problems in BGP. The open question of whether hidden information is
compatible with increasing algebras will be discussed in Section 9.3.2. Instead the aim is
to show that most of the features of BGP are inherently well-behaved. Furthermore it
provides a demonstration of how far the theory has progressed that it is now possible to
formally prove the correctness of such a complex protocol.

8.3.1 Path weights

Each path weight in the algebra contains i) a level, ii) a set of communities the route
belongs to and iii) the path along which the route was generated. This is defined in Agda
as follows:

data Route : Set where
invalid : Route
valid : Level → CommunitySet → Path → Route

where the invalid route is obviously:

∞# : Route
∞# = invalid

and the trivial route is the valid route with a level of 0, an empty set of communities and
the empty path:

0# : Route
0# = valid 0 ∅ []

8.3.2 Choice

Next the choice operator, ⊕ is defined. First the route with the lowest level is chosen. In
the event of a tie, the route with the shortest path is chosen. Finally if still tied then the
paths are compared lexicographically.

⊕ : Op2 Route
x@(invalid) ⊕ y = y

135

x ⊕ y@(invalid) = x
x@(valid l cs p) ⊕ y@(valid m ds q) with compare l m
... | tri< l<m = x
... | tri> m<l = y
... | tri≈ l=m with compare (length p) (length q)
... | tri< |p|<|q| = x
... | tri> |q|<|p| = y
... | tri≈ |p|=|q| with p ≤lex? q
... | yes p≤q = x
... | no q≤p = y

As discussed in Section 7.1, this operator is not necessarily commutative for routes that
originate from the same neighbour. This is because it never inspects the sets of communities
and therefore when choosing between a pair of routes which differ only in their community
sets, the order in which the routes are chosen between matters. Likewise the trivial
route is not strictly an annihilator for ⊕. However it is commutative for any two routes
coming from different neighbours, and likewise the trivial route is the annihilator when it
is compared against any extension of a neighbour’s route.

8.3.3 Extension

Next the set of extension functions will be defined. To start with, a simple yet expressive
language for conditions is constructed that can be used by the policy language to make
decisions.

data Condition : Set where
and : Condition → Condition → Condition
or : Condition → Condition → Condition
not : Condition → Condition
inPath : Node → Condition
inComm : Community → Condition
hasPref : Level → Condition

The semantics of the conditional language is defined by the evaluate function that deter-
mines whether a given condition is holds for a particular route.

evaluate : Condition → Route → Bool
evaluate (p and q) x = evaluate p x ∧ evaluate q x
evaluate (p or q) x = evaluate p x ∨ evaluate q x
evaluate (not p) x = not (evaluate p x)
evaluate (inComm c) (valid l cs p) = b c ∈? cs c

136

evaluate (hasPref k) (valid l cs p) = b k ?= l c
evaluate (inPath i) (valid l cs p) = b i ∈? p c
evaluate (inComm c) invalid = false
evaluate (hasPref k) invalid = false
evaluate (inPath i) invalid = false

The policy language is then defined as follows:

data Policy : Set1 where
reject : Policy
incrLevelBy : N → Policy
addComm : Community → Policy
delComm : Community → Policy
inflate : N → Policy
; : Policy → Policy → Policy
if_then_ : Condition → Policy → Policy

The semantics of the language is defined by the function that applies policies to routes:

apply : Policy → Route → Route
apply p invalid = invalid
apply reject x = invalid
apply (incrLevelBy x) (valid l cs p) = valid (l + x) cs p
apply (addComm c) (valid l cs p) = valid l (add c cs) p
apply (delComm c) (valid l cs p) = valid l (remove c cs) p
apply (inflate n) (valid l cs p) = valid l cs (inflate p n)
apply (p ; q) x = apply q (apply p r)
apply (if c then p) x = if (evaluate c r) then (apply p r) else r

For example a policy that increases the level of all routes through node 8 when the route
does not belong to community 2 and rejects all routes through node 3 can be written as:

policy : Policy
policy = if 8 inPath and not inComm 2 then

incrLevelBy 100 ; addComm 2 ;
if 3 inPath then

reject

One important point to note is that the policy language only provides the ability to
increase a route’s level, and hence it is impossible to define a non-increasing policy.

Next the set of edge functions is defined. Every extension function from i to j is
parametrised by a policy.

137

data E {n} (i j : Node n) : Set1 where
edge : Policy → E i j

The result of applying an extension function to a route is specified by the application
operator as follows:

. : ∀ {n} {i j : Node n} → E i j → Route → Route
. {_} {_} {_} _ invalid = invalid
. {_} {i} {j} (edge pol) (valid x cs p) with (i , j) ⇔? p | i ∈? p
... | no _ | _ = invalid
... | yes _ | yes _ = invalid
... | yes ij⇔p | no i∈p = apply pol (valid x cs ((i , j) :: p))

where (i , j) ⇔? p tests if the edge (i, j) is a valid extension of path p, i.e. if j = src(p),
and i /∈? p tests whether or not i already exists in p, i.e. if the resulting path would
contain a loop. Therefore the extension of the invalid route always results in the invalid
route, and the extension of a valid route is invalid if the resulting path is not a valid simple
path, and otherwise the path is extended and the specified policy is applied.

8.3.4 Path function

The path function required by the definition of a path algebra can be defined as follows:

path : Route → Path
path invalid = ⊥
path (valid _ _ p) = deflate p

Hence the invalid route gets mapped to the invalid path, and valid routes return the
deflated version of their internal path. As discussed in Section 7.2 the deflation step is
needed at otherwise the path wouldn’t obey assumption (P3) in the definition of a path
algebra.

8.3.5 Convergence

In order to prove that the algebra:

A = (Route,⊕,E,∞#, 0#, path)

is deterministically convergent it must be shown that either it is a strictly increasing
path algebra or it is bisimilar to such an algebra. The algebra is strictly increasing, as it
impossible to write a policy that decreases the level and the definition of the extension
function guarantees that the path length always strictly increases. It also satisfies all the

138

axioms of a path algebra. However it does not fulfil the requirements to be a routing
algebra, as ⊕ is only commutative over comparable pairs of routes. Likewise 0# is only
technically an annihilator when paired with a comparable route.

This problem can be overcome by the bisimulation technique described in Section 7.1.
First an alternative choice operator is defined that is identical to ⊕ except in the case
when the two paths are equal, in which case it then compares the set of communities
lexicographically. This new operator is commutative and observably indistinguishable
from ⊕ during the operation of the protocol. Hence it can be proved that this new algebra
is both bisimilar to A and is a strictly increasing path algebra. The Agda formalisation
of Theorem 8 from Chapter 5 and Theorem 10 from Chapter 7 can therefore be used to
prove that a path-vector protocol based on A is deterministically convergent.

What does this result mean? Consider a dynamic network in which network operators
have complete freedom to write any policy they like, and in which nodes and links are
constantly added and removed and individual policies may be altered at any time. The
result guarantees that if at any point in time the network experiences a sufficiently long
period of stability then the protocol will always converge to a fixed point. Furthermore
this fixed point is uniquely determined by the current network topology and is therefore
unaffected by both the state at the start of the period of stability and the distribution of
message arrival times.

139

140

Chapter 9

Conclusion

This chapter summarises the contributions this thesis has made to the theory of routing as
well as to that of asynchronous iterative algorithms in general. It then goes on to discuss
some possible applications of the results. Finally it describes some of the open theoretical
questions in routing.

9.1 Contributions

This thesis has made two contributions to the general asynchronous theory. Firstly it
has weakened the sufficient requirements for the static asynchronous processes to always
converge to a unique fixed point. Although it is unclear whether this allows any new
asynchronous processes to be proven to converge, at the very least it lessens the burden
of proof for users of the theorems. Secondly it has proposed a new more general model
for asynchronous processes in which both the set of participants and the underlying
computation may change over time. This is a more realistic model for “always on”
processes such as routing and consensus algorithms.

Type Property Convergence Deterministic Rate
Distance vector Free network ? ? ?

Str. increasing Local Yes Θ(|S|)
Distributive Global Yes Θ(|S|)

Path vector Free network Local ? ?
Str. increasing Local Yes Θ(n2)
Distributive Global Yes Θ(n)

Table 9.1: Current state of knowledge. Entries in bold are new
contributions by this thesis.

Table 9.1 shows the state of knowledge about the various classes of vector-based routing
protocols. This thesis has significantly reduced the unknowns around the behaviour of

141

vector-based protocols with strictly increasing algebras. This class contains all vector-based
protocols that are always guaranteed to converge. In particular the thesis has shown
for the first time that strictly increasing distance-vector protocols converge. It has also
shown that convergence for all such vector-based protocols is deterministic and so the final
routing solution reached does not depend on the ordering of messages exchanged or how
the current network configuration was reached. Finally it has proved a new, tight bound
of Θ(n2) on the worst case rate of convergence for such path-vector protocols. This is
significantly better than the previous upper bound of O(n!).

9.2 Applications

This section explores some of the applications of the work in this thesis.

9.2.1 Protocol design

The work has implications for the design of vector-based protocols. Firstly it demonstrates
that it is possible to add conditional policy to distance-vector protocols. This is mostly an
unexplored area.

Secondly, the guarantee of deterministic convergence implies that the underlying algebra
being strictly increasing not only ensures convergence but also guarantees that problems
such as BGP wedgies cannot arise. This means that no further measures would be needed
by network operators to avoid such problems.

Thirdly, the fact that the proofs of convergence do not assume reliable communication
between nodes, opens up the possibility of designing a new, lightweight path-vector protocol
that runs over UDP rather than TCP.

Finally, the accompanying Agda library may be used directly to quickly and easily
formally verify the algebra underlying a protocol design. This means that a formal proof
of correctness of a hypothetical protocol can be created in a matter of hours.

9.2.2 Verifying BGP policies in data centres

The unsolved problem of how to ensure strict increasingness without revealing policy means
that applying the work directly to BGP in the internet is a little way off. However BGP
and similar protocols are now commonly being deployed in local networks such as data
centres. In such environments, the network is owned and managed by a single operator
and so the hidden informations concerns do not arise. Therefore in such situations it
should be practical to ensure that all polices are indeed strictly increasing.

Furthermore, recently work such as Propane [6], has developed tools for the automatic
verification of policies. Such tools take high-level specifications of the desired traffic

142

flow and compile it down to BGP policies. These tools could incorporate an additional
verification step to check whether all the resulting policies were strictly increasing. If not,
then the tool could at the very least warn the user that convergence is not guaranteed.

9.2.3 Further afield

All of the algebras discussed in this thesis have been interpreted through the lens of routing
problems. However this does not mean that there do not exist other interpretations. The
matrix iteration:

F (X) = A(X)⊕ I

is reasonably general and it is not inconceivable to imagine that this equation appears in
other fields, either in Computer Science or beyond. It may be that the theory developed
in this thesis and other related work is applicable to other iterative algorithms in other
fields. Likewise, it may be that other fields may have insights into the iterative process
that would prove useful in routing.

9.3 Open questions

Finally some of the remaining open theoretical questions in routing are discussed.

9.3.1 Free networks

Obviously it would be useful to address the remaining gaps in Table 9.1 about the
convergence in free networks [62]. It seems likely that finite distance-vector protocols
will also converge in free networks to a local optimum. It is less clear what the worst
case rate of convergence for path-vector protocols would be in free networks and whether
convergence remains deterministic.

9.3.2 Hidden information

As discussed, the algebra of BGP is not strictly increasing because an AS will erase a
route’s local preference before advertising it externally to another AS. This is so as to
avoid exposing their own internal proprietary routing policies. At first glance it appears
impossible that any routing protocol that allows nodes to erase information that ⊕ uses
to make its decision can ever be strictly increasing. However it is conceivable that some
signalling mechanism, such as community values, could be used to allow ASs to coordinate
and avoid this problem. Therefore the more general question of whether or not a strictly
increasing algebra can hide information is still open. This question could be answered by
either finding a protocol with hidden information that is convergent over all networks and

143

yet does not require global coordination between the nodes or by proving that no such
protocol exists.

If the latter is the case then a different solution may be required to BGP’s problems.
For instance, although politically difficult, in such a case it might be necessary to make
local preferences visible and to have an industry standard describing the semantics of
different local preference values.

9.3.3 Further rate of convergence results

Not all non-distributive strictly increasing path algebras converge in O(n2). Consider the
shortest-widest algebra used as an example throughout this paper. Although it is not
distributive, nonetheless it is locally distributive as it satisfies the following property:

h(f(x)⊕ f(y)) ≤ a, b ≤ h(f(x⊕ y))⇒ g(a)⊕ g(b) = g(a⊕ b)

This says that any time there is a distributivity violation f(x)⊕ f(y) < f(x⊕ y), then
distributivity holds locally for any two routes sandwiched between any extension of this
violation. Hence junk routes generated by a distributivity violation cannot be used to
generate further junk routes. Although there is not yet a rigorous proof of this, it is
conjectured that the shortest-widest-paths path algebra always converges in 2n iterations.

Furthermore it seems likely there is an infinite hierarchy of such algebras between
distributivity and strict-increasingness. The notion of local distributivity can be generalised
as follows. Consider the total ordering implied by ⊕. Let Dk be the set of kth-level
distributive ranges defined as follows:

[a, b] ∈ D0 , a = b

[a, b] ∈ Dk , ∀x, y ∈ [a, b] : ∀f, h : [h(f(x)⊕ f(y)), h(f(x⊕ y))] ∈ Dk−1

It is hypothesised that if the range [0,∞] is kth-level distributive then the path-vector
protocol is guaranteed to converge in Θ(kn) iterations.

9.3.4 Translation to hard state protocols

Throughout this work, the asynchronous iterations have been modelled as soft-state
processes where nodes are assumed exchange messages at regular intervals. In a hard-state
protocol a node only sends information to its neighbours when the information changes.
Given the generalisations to schedules described in Chapter 3 that relaxed the requirement
that every node must continue to activate indefinitely, it should be relatively easily to
provide a general translation from a hard-state protocol to a soft-state protocol.

144

When it comes to routing there are a few extra complexities that could be added to
the hard-state model. For example BGP performs a process called rate limiting [29] where
routing updates are not sent immediately whenever a change in a node’s routing decision
is made. Instead there is a delay before sending out an update and any further changes to
the node’s routing decisions during this time can be merged into one routing update. This
has the effect of both saving bandwidth and damping down transient routing oscillations.

9.3.5 Alternative forms of vector-based protocols

Recently a new generation of distance-vector routing protocols, such as EIGRP [1] and
Babel [15], have emerged that alter the standard vector-based algorithm in order to prevent
the propagation of junk routes [24]. For instance Babel prevents routers from accepting
routes that do not obey its feasibility conditions. Any route is feasible if accepting it
cannot cause a forwarding loop. If accepting it could possibly cause a forwarding loop, then
the router will use packet sequence numbers to request confirmation from the originating
router that the route is safe.

Whilst the rejection of infeasible routes can be modelled by the current algebraic theory,
the requests for confirmation cannot. It would be interesting to see if the model described
in this thesis could be updated to apply to Babel and other similar protocols.

145

146

Bibliography

[1] R Albrightson, JJ Garcia-Luna-Aceves, and Joanne Boyle. EIGRP–a fast routing
protocol based on distance vectors. Technical report, CISCO Systems, 1994.

[2] Anonymous. Agda tutorials, 2018. URL https://wiki.portal.chalmers.se/agda/
pmwiki.php?n=Main.Othertutorials. Last accessed 07-12-2018.

[3] Roland C Backhouse and Bernard A Carré. Regular algebra applied to path-finding
problems. IMA Journal of Applied Mathematics, 15(2):161–186, 1975.

[4] John S Baras and George Theodorakopoulos. Path problems in networks. Synthesis
Lectures on Communication Networks, 3(1):1–77, 2010.

[5] Gérard M Baudet. Asynchronous iterative methods for multiprocessors. Technical
report, Department of Computer Science, Carnegie-Mellon University, Pittsburgh,
1976.

[6] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and David Walker.
Don’t mind the gap: Bridging network-wide objectives and device-level configurations.
In Proceedings of the 2016 ACM SIGCOMM Conference, 2016.

[7] Richard Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):
87–90, 1958.

[8] Dimitri P Bertsekas, John N Tsitsiklis, et al. A survey of some aspects of parallel
and distributed iterative algorithms. Technical report, Massachusetts Institute of
Technology, Laboratory for Information and Decision Systems, 1989.

[9] Dimitri P Bertsekas, Robert G Gallager, and Pierre Humblet. Data networks, volume 2.
Prentice-Hall International New Jersey, 1992.

[10] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Soft constraint logic pro-
gramming and generalized shortest path problems. Journal of Heuristics, 8(1):25–41,
2002.

147

https://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.Othertutorials
https://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.Othertutorials

[11] Juan F Botero, Miguel Molina, Xavier Hesselbach-Serra, and José R Amazonas. A
novel paths algebra-based strategy to flexibly solve the link mapping stage of VNE
problems. Journal of Network and Computer Applications, 36(6):1735–1752, 2013.

[12] Richard L Burden and J. Douglas Faires. Numerical analysis. Cengage Learning,
1985.

[13] Bernard A Carré. An algebra for network routing problems. IMA Journal of Applied
Mathematics, 7(3):273–294, 1971.

[14] Henri Casanova, Michael G Thomason, and Jack J Dongarra. Stochastic performance
prediction for iterative algorithms in distributed environments. Journal of Parallel
and Distributed Computing, 58(1):68–91, 1999.

[15] Juliusz Chroboczek. The BABEL routing protocol, RFC 6126. Quagga Routing
Software Suite, GPL licensed, 2011.

[16] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. In-
troduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009. ISBN
0262033844, 9780262033848.

[17] Matthew L Daggitt and Timothy G Griffin. Rate of convergence of increasing
path-vector routing protocols. In ICNP proceedings, 2018.

[18] Matthew L Daggitt, Alexander J T Gurney, and Timothy G Griffin. Asynchronous
convergence of policy-rich distributed Bellman-Ford routing protocols. In SIGCOMM
proceedings. ACM, 2018.

[19] Matthew L Daggitt, Ran Zmigrod, and Timothy G. Griffin. Routing library, 2019.
URL https://github.com/MatthewDaggitt/agda-routing/tree/thesis.

[20] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

[21] Lester R Ford Jr. Network flow theory. Technical report, RAND CORP SANTA
MONICA CA, 1956.

[22] Andreas Frommer and Daniel B Szyld. On asynchronous iterations. Journal of
computational and applied mathematics, 123(1):201–216, 2000.

[23] Lixin Gao and Jennifer Rexford. Stable internet routing without global coordination.
IEEE/ACM Transactions on Networking (TON), 9(6):681–692, 2001.

[24] Jose J Garcia-Lunes-Aceves. Loop-free routing using diffusing computations.
IEEE/ACM Transactions on Networking (TON), 1(1):130–141, 1993.

148

https://github.com/MatthewDaggitt/agda-routing/tree/thesis

[25] Jonathan S Golan. Semirings and their Applications. Springer Science & Business
Media, 2013.

[26] Michel Gondran and Michel Minoux. Graphs, dioids and semirings: new models and
algorithms, volume 41. Springer Science & Business Media, 2008.

[27] Timothy G Griffin. The stratified shortest-paths problem. In COMSNETS, pages
1–10, 2010.

[28] Timothy G Griffin and Geoff Huston. BGP wedgies. RFC 4264, The Internet
Engineering Taskforce, 2005. URL http://www.ietf.org/rfc/rfc4264.txt.

[29] Timothy G Griffin and Brian J Premore. An experimental analysis of BGP convergence
time. In Network Protocols, 2001. Ninth International Conference on, pages 53–61.
IEEE, 2001.

[30] Timothy G Griffin and Joäo L Sobrinho. Metarouting. In ACM SIGCOMM Computer
Communication Review, volume 35, pages 1–12. ACM, 2005.

[31] Timothy G Griffin and Gordon Wilfong. Analysis of the MED oscillation problem in
BGP. In Proceedings of 10th IEEE International Conference on Network Protocols,
pages 90–99. IEEE, 2002.

[32] Timothy G Griffin, F Bruce Shepherd, and Gordon Wilfong. Policy disputes in path-
vector protocols. In Network Protocols, 1999.(ICNP’99) Proceedings. 7th International
Conference on, pages 21–30. IEEE, 1999.

[33] Timothy G Griffin, F Bruce Shepherd, and Gordon Wilfong. The stable paths problem
and interdomain routing. IEEE/ACM Transactions on Networking (ToN), 10(2):
232–243, 2002.

[34] Alexander J T Gurney. Construction and verification of routing algebras. PhD thesis,
University of Cambridge, 2009. URL http://agurney.net/pubs/Gurney09.

[35] Alexander J T Gurney. Asynchronous iterations in ultrametric spaces. arXiv preprint
arXiv:1701.07434, 2017.

[36] Alexander J T Gurney and Timothy G Griffin. Lexicographic products in metarouting.
In 2007 IEEE International Conference on Network Protocols, pages 113–122. IEEE,
2007.

[37] Pascal Hitzler and Anthony Seda. Mathematical Aspects of Logic Programming
Semantics. CRC Press, 2016.

149

http://www.ietf.org/rfc/rfc4264.txt
http://agurney.net/pubs/Gurney09

[38] Geoff Huston. Interconnection, peering and settlements: Parts I & II. Internet
Protocol Journal (Cisco), 2, 1999.

[39] Geoff Huston. IPv6 – evolution or revolution. The ISP Column, 2006.

[40] Howard Karloff. On the convergence time of a path-vector protocol. In Proceedings
of the fifteenth annual ACM-SIAM symposium on Discrete Algorithms, pages 605–614.
Society for Industrial and Applied Mathematics, 2004.

[41] Anatole Katok and Boris Hasselblatt. Introduction to the modern theory of dynamical
systems, volume 54. Cambridge university press, 1995.

[42] Craig Labovitz, G Robert Malan, and Farnam Jahanian. Internet routing instability.
IEEE/ACM Transactions on Networking (TON), 6(5):515–528, 1998.

[43] Franck Le, Geoffrey G Xie, and Hui Zhang. Theory and new primitives for safely
connecting routing protocol instances. ACM SIGCOMM Computer Communication
Review, 41(4):219–230, 2011.

[44] Thomas Lengauer and Dirk Theune. Unstructured path problems and the making of
semirings. In Workshop on Algorithms and Data Structures, pages 189–200. Springer,
1991.

[45] Mingming Lu and Jie Wu. Opportunistic routing algebra and its applications. In
INFOCOM 2009, IEEE, pages 2374–2382. IEEE, 2009.

[46] Bruce M Maggs and Serge A Plotkin. Minimum-cost spanning tree as a path-finding
problem. Information Processing Letters, 26(6):291–293, 1988.

[47] Gary Malkin. RFC 2453: RIP version 2. Accessed November, 1998.

[48] Alberto Martelli. A Gaussian elimination algorithm for the enumeration of cut sets
in a graph. Journal of the ACM (JACM), 23(1):58–73, 1976.

[49] Danny McPherson, Vijay Gill, Daniel Walton, and Alvaro Retana. Border gateway
protocol (BGP) persistent route oscillation condition. RFC 3345, The Internet
Engineering Taskforce, 2002. URL http://www.ietf.org/rfc/rfc3345.txt.

[50] J Miellou, Didier El Baz, and Pierre Spiteri. A new class of asynchronous iterative
algorithms with order intervals. Mathematics of Computation of the American
Mathematical Society, 67(221):237–255, 1998.

[51] John Milnor. On the concept of attractor. In The theory of chaotic attractors, pages
243–264. Springer, 1985.

150

http://www.ietf.org/rfc/rfc3345.txt

[52] Mehryar Mohri. Semiring frameworks and algorithms for shortest-distance problems.
Journal of Automata, Languages and Combinatorics, 7(3):321–350, 2002.

[53] Ulf Norell. Dependently typed programming in Agda. In Proceedings of the 4th
International Workshop on Types in Language Design and Implementation, 2009.

[54] Jon Postel. User datagram protocol. RFC 768, 1980.

[55] Jon Postel. Transmission control protocol specification. RFC 793, 1981.

[56] Sibylla Priess-Crampe and Paulo Ribenboim. Fixed points, combs and generalized
power series. In Abhandlungen aus dem Mathematischen Seminar der Universität
Hamburg, volume 63, pages 227–244. Springer, 1993.

[57] Yakov Rekhter, Tony Li, and Susan Hares. A border gateway protocol 4 (BGP-4).
RFC, The Internet Engineering Taskforce, 2005.

[58] François Robert. Discrete iterations: a metric study, volume 6. Springer Science &
Business Media, 2012.

[59] Robert W Rosenthal. A class of games possessing pure-strategy nash equilibria.
International Journal of Game Theory, 2(1):65–67, 1973.

[60] Günter Rote. A systolic array algorithm for the algebraic path problem (shortest
paths; matrix inversion). Computing, 34(3):191–219, 1985.

[61] Alexander Schrijver. On the history of the shortest path problem. Documenta
Mathematica, 17:155, 2012.

[62] João L Sobrinho. An algebraic theory of dynamic network routing. IEEE/ACM
Transactions on Networking (TON), 13(5):1160–1173, 2005.

[63] Aydin Üresin and Michel Dubois. Generalized asynchronous iterations. In International
Conference on Parallel Processing, pages 272–278. Springer, 1986.

[64] Aydin Üresin and Michel Dubois. Parallel asynchronous algorithms for discrete data.
Journal of the ACM (JACM), 37(3):588–606, 1990.

[65] Aydin Üresin and Michel Dubois. Effects of asynchronism on the convergence rate of
a class of iterations. Technical report, CENG 95-05, USC, 1995.

[66] Kannan Varadhan, Ramesh Govindan, and Deborah Estrin. Persistent route oscilla-
tions in inter-domain routing. Computer networks, 32(1):1–16, 2000.

[67] Various. Agda standard library, 2019. URL https://github.com/agda/
agda-stdlib. Version 1.0.

151

https://github.com/agda/agda-stdlib
https://github.com/agda/agda-stdlib

[68] Ran Zmigrod, Matthew L Daggitt, and Timothy G Griffin. An Agda formalization of
Üresin & Dubois’ asynchronous fixed-point theory. 9th International Conference on
Interactive Theorem Proving (ITP), July 2018.

152

Appendix A

General theory

This appendix covers some of the more common mathematical concepts used in the main
thesis. The definitions are standard unless stated otherwise.

A.1 Sets

These common sets are used throughout:

• N is the set of natural numbers.

• N∞ = N ∪ {∞}.

• R is the set of real numbers.

• R+ = {x ≥ 0 | x ∈ R}.

• S is used as an abstract set.

• 2S is the power set of S.

• Sn is the set of vectors of size n over the set S.

• Sn×n is the set of n× n matrices over the set S.

A.2 Operators

Given a binary operator ⊕ over a set S, some common properties are as follows:

Definition 42. ⊕ is associative if ∀x, y, z : (x⊕ y)⊕ z = x⊕ (y ⊕ z).

153

Definition 43. ⊕ is commutative if ∀x, y : x⊕ y = y ⊕ x.

Definition 44. ⊕ is idempotent if ∀x : x⊕ x = x.

Definition 45. ⊕ is selective if ∀x, y : x⊕ y ∈ {x, y}.

Definition 46. e is an identity for ⊕ if ∀x : x⊕ e = x = e⊕ x.

Definition 47. e is an annihilator for ⊕ if ∀x : x⊕ e = e = e⊕ x.

A.3 Relations

Given a binary relation≤ over a set S, some common properties are as follows:

Definition 48. ≤ is reflexive if ∀x : x ≤ x.

Definition 49. ≤ is transitive if ∀x, y, z : x ≤ y ∧ y ≤ z ⇒ x ≤ z.

Definition 50. ≤ is antisymmetric if ∀x, y : x ≤ y ∧ y ≤ x⇒ x = y.

Definition 51. ≤ is total if ∀x, y : x ≤ y ∨ y ≤ x.

Definition 52. e is a minimal element for ≤ if ∀x : e ≤ x.

Definition 53. e is a maximal element for ≤ if ∀x : x ≤ e.

Definition 54. < is dense if ∀x, y : x < y ⇒ ∃z : x < z < y.

Definition 55. ≤ is a total ordering if ≤ is reflexive, transitive, antisymmetric and
total.

154

There is a correspondence between total relations and selective functions. Given a selective
operator ⊕, the relation, ≤, can be defined as

x ≤ y , x⊕ y = x

and given a total relation ≤, the natural choice operator, ⊕, can be defined as:

x⊕ y =

x if x ≤ y

y otherwise

The properties translate as follows:

⊕ is associative ⇒ ≤ is transitive
⊕ is commutative ⇒ ≤ is antisymmetric
⊕ is idempotent ⇒ ≤ is reflexive
⊕ is selective and commutative ⇒ ≤ is total

⊕ is associative ⇐ ≤ is transitive and antisymmetric
⊕ is commutative ⇐ ≤ is antisymmetric
⊕ is idempotent ⇐ ≤ is reflexive
⊕ is selective ⇐ ≤ is total

e is an identity for ⊕ ⇔ e is a minimal element for ≤
e is an annihilator for ⊕ ⇔ e is a maximal element for ≤

This thesis works with total orderings for the most part, and so this equivalence can be
used to swap between the two interchangeably depending on which form is more convenient
to reason with.

A.4 Functions

Definition 56. An element e is a fixed point for function f if f(e) = e.

Definition 57. A set S is closed over a function f if for all x ∈ S then f(x) ∈ S.

Definition 58. A quasi-semi-metric over a set S is a function d that satisfies:

1. : d(x, y) = 0⇔ x = y

155

Definition 59. A quasi-metric over a set S is a function d that satisfies:

1. d(x, y) = 0⇔ x = y

2. d(x, y) = d(y, x)

Definition 60. A metric over a set S is a function d that satisfies:

1. d(x, y) = 0⇔ x = y

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z)

Definition 61. An ultrametric over a set S is a function d that satisfies:

1. : d(x, y) = 0⇔ x = y

2. : d(x, y) = d(y, x)

3. : d(x, z) ≤ max(d(x, y), d(y, z))

Definition 62. A distance function d is bounded if:

∃ dmax : ∀x, y : d(x, y) ≤ dmax

A.5 Bachmann-Landau notation

The rate of growth of functions can be described using Bachmann-Landau notation.
Let f and g be functions from N→ R+ then:

Definition 63. f(n) ∈ Ω(g(n)) if there exists a c ∈ R+ and k ∈ N such that for all
n ≥ k then cg(n) ≤ f(n) – i.e. f ’s growth is asymptotically bounded below by g.

Definition 64. f(n) ∈ Θ(g(n)) if there exists c, d ∈ R+ and k ∈ N such that for all
n ≥ k then cg(n) ≤ f(n) ≤ dg(n) – i.e. f ’s growth is asymptotically the same as g.

Definition 65. f(n) ∈ O(g(n)) if there exists a c ∈ R+ and k ∈ N such that for all
n ≥ k then f(n) ≤ cg(n) – i.e. f ’s growth is asymptotically bounded above by g.

156

	Introduction
	The basics of algebraic routing
	Contributions
	Improvements to the model of routing problems
	Improvements to the model of routing algorithms
	New theoretical routing results
	Physical artifacts

	Thesis outline

	Routing algorithms
	Next-hop forwarding
	Vector-based protocols
	Bellman-Ford algorithm for shortest paths
	Distance-vector protocols
	Soft state vs hard state
	Reliable vs unreliable communication
	Count-to-convergence

	Path-vector protocols

	Example protocols
	RIP
	Problems

	BGP
	Problems
	Gao-Rexford conditions

	Motivation for algebraic routing

	Asynchronous iterative algorithms
	Iterative algorithms
	Synchronous iterations
	Asynchronous iterations

	Static asynchronous iterations
	Model
	Results
	Unstructured spaces
	Drawbacks of the static model

	Dynamic asynchronous iterations
	Model
	What does ``correct'' mean?
	Correctness conditions
	Dynamic ACO implies convergent
	Closure lemmas
	Stability lemmas
	Progress lemmas
	Convergence

	Dynamic AMCO implies convergent

	Conclusions

	An algebraic model for vector-based protocols
	Routing problems as algebras
	Semiring algebras
	Sobrinho algebras
	Routing algebras
	Other algebras

	Vector-based routing
	Network and routing state
	A single iteration
	The asynchronous state function

	Moving paths from algorithm to algebra
	What is a path?
	Algorithmic paths
	Algebraic paths
	Constructing path algebras

	Examples of routing algebras
	Shortest paths algebras
	Shortest widest paths algebra
	Stratified shortest paths algebra
	Other algebras

	Existing results
	Free networks
	Strictly increasing
	Distributivity
	Further discussion

	Open questions to be addressed

	Convergence
	Distance-vector protocols
	Path-vector protocols
	Conclusions

	Rate of convergence
	Measuring the rate of convergence
	Previous work
	Lower bound: linear to quadratic
	Count-to-convergence induced by non-distributivity
	An example of quadratic convergence

	Upper bound: factorial to quadratic
	Additional definitions
	Main proof

	Conclusions

	Practicalities
	Relaxation of assumptions on choice
	Path inflation
	Hierarchical paths
	Conclusions

	Agda: proofs and protocols
	Advantages of formalisation
	The library
	An example algebra
	Path weights
	Choice
	Extension
	Path function
	Convergence

	Conclusion
	Contributions
	Applications
	Protocol design
	Verifying BGP policies in data centres
	Further afield

	Open questions
	Free networks
	Hidden information
	Further rate of convergence results
	Translation to hard state protocols
	Alternative forms of vector-based protocols

	Bibliography
	General theory
	Sets
	Operators
	Relations
	Functions
	Bachmann-Landau notation

