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Abstract

In this dissertation I explore several topics in the field of gravitational wave astronomy.
By means of introduction, I review the historical evolution of humanity’s understanding of
the mechanics of gravity, and the events which eventually led to the first ever detection of
gravitational waves in 2015.

The first half of the thesis is dedicated to the effect which gravitational waves have on the
apparent position of stars on the sky. The astrometric shift caused by a gravitational wave
signal can be quantified, and precise astrometric measurements (from Gaia) can provide a
new method for searching for low-frequency GWs. This method is applied to searches for
signals from individually resolvable supermassive black hole binaries. The main obstacle
to performing efficient searches is the large size of the data sets, which consist of more
than one billion stars. A near-lossless compression which reduces the size of the data set
by a factor of 106 is discussed and implemented. Mock data sets are generated to simulate
detections of gravitational waves using this method, and the frequency and directional
sensitivities of the full-term Gaia mission are calculated. Parallels are drawn with the field
of pulsar timing searches for GWs. This knowledge of the astrometric response is used to
address the problem of searching for low frequency gravitational wave backgrounds using
astrometric measurements. The astrometric deflections due to a stochastic GW background
form a correlated vector field on the sphere (sky). Using a convenient decomposition of
the correlation matrix, the 2-point correlation functions are calculated and compared to
the redshift correlation in pulsar timing literature (and the Hellings-Downs curve). The
correlation between redshift and astrometric deflections is also considered.

The second part of the dissertation focuses on the problem of resonances in extreme
mass-ratio in-spirals (EMRIs). These events are prime candidates for GW detection in the
millihertz band (by detectors like LISA), and involve a stellar mass black hole (or a similar
compact object) merging with a supermassive black hole. Properties of the trajectory of the
lighter body are well known, however little is known about the behaviour of such systems
during resonance of the radial and polar motions. Two existing models for this behaviour are
described: the instantaneous frequency approach (developed by Gair, Bender, and Yunes) and
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the two timescales approach (proposed by Flanagan and Hinderer). Both methods depend
on exact treatment of the gravitational self-force, which is currently not available. The
results of Gair, Bender, and Yunes are extended to higher-order in the on-resonance flux
modification, and the instantaneous frequency approach is confirmed to be a valid treatment
of this problem. The algorithm for finding higher-order solutions is described, and further
directions for extending this research are proposed.
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1

Introduction

The ancient Greek philosopher Aristotle famously claimed that there is no motion without a
cause. Instead of postulating a universal force which commands the motion of bodies, he and
his contemporaries believed in the power of the four classical elements: earth, water, air, and
fire. The earthen masses were pulled by their “gravitas” towards the terrestrial centre of the
Cosmos, while fire, possessing less gravity, moved upwards [2]. While Aristotle believed
in a geo-centric universe, the Platonic-Pythagorean school of thought advocated that the
Earth was cube-shaped, and other forms rested flatly on its faces. According to them, as
well as the Chinese school of thought, the Cosmos was spherical with a cube – the Earth –
in the middle, and gravity was not the underlying cause for this world order, but rather an
unavoidable consequence of the structural shape of the earth element. The Roman scholars
took Aristotle’s idea further, believing that gravity depended on the inherent “nature” of
each substance. In summary, ancient thinkers theorised that the earth held together the entire
world, but disagreed with each other as to how exactly this mechanism worked, i.e., they had
diverging theories for the origin of gravity [3].

1.1 Newton’s theory

Centuries later, of course, these ancient beliefs were all found out to be false. This revolution
of thought arrived with the wave of Renaissance scholars and philosophers, who cast new
light on humanity’s understanding of the shape of the world and the mechanisms of gravity.
In the sixteenth century, Nicolas Copernicus formulated a new model of the Universe, putting
the Sun at its centre instead of the Earth. Galileo proposed the idea of universal gravitational
acceleration in the seventeenth century (as opposed to the ancient view that gravity depends
on the substance) [4]. The German astronomer and mathematician Johannes Kepler refined
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the work of Copernicus by carefully studying the orbit of Mars over an extended period of
time, and concluded that it was not a circle, but in fact an ellipse, and the Sun was not at the
centre, but rather resided at one of the foci of the ellipse (the same was later demonstrated for
the other known planets too) [5]. Kepler made another interesting discovery about the motion
of planets around the Sun: by observation he deduced that planets do not move at a constant
speed along their orbits, but rather in a way such that the radius vector between the Sun
and the planet sweeps a constant area in a given period of time (nowadays this is commonly
known as the law of angular momentum conservation) [5, 6]. He eventually came up with
another law relating the axes of the planets’ orbits and their orbital periods [5, 7]. These three
laws formulated by Kepler became a cornerstone of the Enlightenment era understanding of
the cosmic order.

In the late seventeenth century, English natural philosopher Robert Hooke first theorised
that the force of gravitational attraction is proportional to the inverse square of the distance
[8, 9]. In his famous work Philosophiæ Naturalis Principia Mathematica, Isaac Newton built
upon the works of Kepler and Hooke by formulating an expression for the gravitational force
that was also dependent on the masses of two bodies, and explains Kepler’s three laws of
planetary motion:

F = G
M1M2

R2 . (1.1)

The now famous law formed the basis of his theory of gravitation, which he developed
extensively and presented in Principia [10]. The constant of proportionality G in this formula
was measured only in 1797 after experiments by Henry Cavendish [11].

Newton’s theory soon amassed credibility, and gained popularity among the scientific
community, since it neatly explained the motion of all the known planets (Mercury, Venus,
Earth, Mars, Jupiter, and Saturn) around the Sun, as well as their known satellites around
them, and successfully predicted the existence of Neptune, which had not been discovered
yet [12]. Although there was a plagiarism dispute between Newton and Hooke regarding
the author of the original idea, it is now widely recognised that it was Newton who came up
with the idea for explaining the motion of the heavenly bodies in the form of a new theory of
gravity.

Even though this theory enjoyed much deserved success, owed greatly to its simplicity
and universality, by the end of the nineteenth century certain aspects of the theory led
physicists to believe that it was, in fact, incomplete [13]. This conclusion was drawn from
theoretical and observational findings. The main theoretical shortcoming of Newton’s theory
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is the lack of a mediator particle to act as the carrier of the field; this was clear even to Newton,
but he could not come up with a resolution [14]. Today, there is a massless, chargeless,
theoretical spin-2 particle called the graviton which mediates the force of gravity, however it
is impossible to observe gravitons with any current detector [15, 13]. A further issue with
Newtonian gravity is that it propagates instantaneously through space and time, which clearly
defies the modern understanding of causality [16].

The observations which defied Newton’s theory were naturally more convincing than the
theoretical concerns at the time of their discovery. One such observation was the precession
of the perihelion of planets’ orbits, and especially that of Mercury, which was first measured
in the nineteenth century [17]. Since no perturbing body could be found to account for the
planet’s perturbed orbit, it was prudent to conclude that there was a flaw in the theory of
gravity.

1.2 Einstein’s theory

Between 1907 and 1916, Albert Einstein laid down the foundations of general relativity,
a fundamentally novel theory of gravity, which managed to explain the discrepancies that
undermined Newton’s theory. Einstein’s breakthrough was the realisation that gravity is
the result of the interaction between matter and space-time [18]. According to this theory
of relativity, matter directs the curvature of space-time, and this curvature produces the
apparent gravitational field near massive objects [19]. The curved space-time commands the
movement of objects: free-falling observers traverse straight lines (geodesics) of the space-
time. Thus the gravitational force is rendered fictitious, and is the result of the curvature of
space-time [18]. While the gravitational interaction according to Newton is instantaneous,
requiring action-at-a-distance to be invoked, in Einstein’s theory there is a limit to the speed
of propagation of light and signals. This limit is now defined to be c = 299792458ms−1

[20]. This relationship between space-time and matter is expressed mathematically through
Einstein’s field equations, a set of ten simultaneous non-linear differential equations which
link the curvature of space-time to the mass and energy distribution [21]:

Gµν +Λgµν =
8πG
c4 Tµν . (1.2)

Here Gµν is the Einstein tensor, a measure of the curvature of space-time, G is the gravita-
tional constant (also appearing as the constant of proportionality in Newton’s law of gravity)
[22], and Tµν is the stress-energy-momentum tensor that describes the distribution and flux of
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energy and momentum in the four dimensions of space-time [13]. The extra term appearing
on the left-hand side of the equations was introduced later as a modification of Einstein’s
original formulation which resulted in an expanding Universe. The commonly accepted view
at the time was that the Universe was static, and this cosmological term fixed that conflict
[23]. Λ is the cosmological constant, and is measured to have a value of 1.11×10−52 m−2

which is consistent with an accelerating universe [24].
From now on, the system of natural units will be used, where units are measured based on

universal physical constants. These constants are defined so that their values are dimension-
less and (usually) set to 1. For example, in this case, c is a natural unit of speed. Furthermore,
the gravitational constant G is also a natural unit with value 1 in this system. Hence, in
further expressions, these constants will be omitted.

The general theory of relativity has proven to be extremely successful, particularly in
accounting for the effects which Newton’s theory could not explain. The remaining 8% of the
precession of Mercury’s orbit was accurately accounted for by Einstein’s field equations [21],
and the angle of light-ray deflection by the Sun was measured during the 1919 solar eclipse
and found to be accurately described by relativistic effects (Newtonian gravity predicted
only half the value of this angle) [25]. Einstein’s theory has since passed numerous further
tests which solidified its reputation as the best explanation of the large scale of the Universe
that we have to date. General Relativity (GR) has correctly predicted that time flows slower
in regions of lower gravitational potential (gravitational redshift), a proposition which was
confirmed conclusively by the GPS constellation of satellites [26]. Furthermore, the time
delay of light passing near massive bodies, known as the Shapiro delay, was predicted [27]
and later confirmed using signals from space probes [28].

Despite its many successes, it was realised around the middle of the twentieth century
that GR could not be a complete theory of gravity, since it could not be reconciled with the
theory of quantum mechanics which emerged in the preceding decades [29]. Attempts to
re-write the theory of relativity in the framework of quantum field theory have yielded little
progress so far. Therefore, despite its great success at explaining large-scale gravity, it is
believed that GR will be superseded by a more powerful theory, which should encompass
both the quantum and cosmic scales [30].

Even though it has been concluded that GR is incomplete, the theory has continued
to enjoy unprecedented success, and has been validated by numerous observations and
measurements thus far. Perhaps the most interesting, and recent testament to its validity to
date comes from the problem of gravitational radiation. It was explained by Einstein in a
1916 article that proposed energy is emitted and carried in the form of gravitational waves
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(GWs), which are (periodic) disturbances of space-time originating from certain accelerating
systems [31, 32].

1.3 Gravitational waves

In the theory of general relativity, the space-time is represented by a 4-dimensional manifold,
M , endowed with a metric gµν with a mostly-positive signature (−,+,+,+). The metric
encodes the structure of the space-time, including its curvature and symmetry.

The Einstein tensor, appearing on the left-hand side of the Einstein equations, is a function
of the space-time metric, Gµν = Gµν(g). The Einstein tensor can be expressed in terms of
the Ricci tensor Rµν and the Ricci scalar R = gµνRµν :

Gµν = Rµν −
1
2

Rgµν , (1.3)

and the Ricci tensor is a contraction of the Riemann tensor: Rµν = Rρ

µρν . The Riemann
tensor itself can be expressed as a function of the metric tensor as

Rµ

νρσ = ∂ρΓ
µ

νσ −∂σ Γ
µ

νρ +Γ
µ

ρλ
Γ

λ

νσ
−Γ

µ

σλ
Γ

λ

νρ
, (1.4)

where the Christoffel symbol Γ
µ

νρ is defined as

Γ
µ

νρ =
1
2

gµσ
(
∂νgσρ +∂ρgνσ −∂σ gνρ

)
. (1.5)

As pointed out above, the Einstein field equations are non-linear, and therefore, it is
usually impossible to find solutions for a generic matter-energy distribution. Gravitational
waves are solutions to the linearized Einstein equations, and to understand this statement
better I will outline the derivation of the wave equation.

Since the flat Minkowski space-time metric ηµν = diag(−1,1,1,1) is a solution of (1.2),
it makes sense to investigate linear-order perturbations to this solution of the form hµν . The
new metric of the space-time can be written as

gµν = ηµν +hµν (1.6)

This analysis is truncated at first order and therefore indices can be raised and lowered with
the background metric ηµν . The trace of the perturbation is h = ηµνhµν . The trace-reversed
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metric perturbation is defined for convenience as

h̄µν = hµν −
1
2

hηµν . (1.7)

The Einstein equations (1.2) can be written in terms of this quantity as

−1
2

∂ρ∂
ρ h̄µν +

1
2

∂µ∂
ρ h̄ρν +

1
2

∂ν∂
ρ h̄µρ −

1
2

∂
ρ

∂
σ h̄ρσ ηµν = 8π Tµν . (1.8)

Since the space-time is physically invariant under a change of coordinates, there is a gauge
freedom which allows the following coordinate transformation: xµ → x′µ = xµ +ξ µ , where
ξ µ is small arbitrary smooth vector field. Under this transformation the metric perturbations
transform as

hµν → h′µν = hµν −∂µξν −∂νξµ (1.9a)

h̄µν → h̄′µν = h̄µν −∂µξν −∂νξµ +∂ρξ
ρ

ηµν . (1.9b)

Since ξ µ is arbitrary by definition, it can be freely chosen so that ∂ µ h̄µν = 0 (this is called
the harmonic, or Lorenz, gauge). This renders the linearised Einstein equations in a wave
equation form:

∂ρ∂
ρ h̄µν =−16π Tµν . (1.10)

From the above equation it is obvious that Einstein’s equations permit a time-dependent
solution even in vacuum (Tµν = 0). Newton’s theory, in contrast, does not have this property.

There is residual gauge freedom which can be exploited to choose ξ 0 such that h̄′ = 0
(through eq. (1.9b)). In this sub-gauge h = 0 (traceless) and hence h̄µν = hµν , so the bar
notation can be dropped. Furthermore, eq. (1.9b) allows ξ i to be chosen such that h0i = 0.
Finally, the harmonic gauge condition ∂ µhµν = 0 implies that ∂ 0h00 = 0 and since only time-
dependent solutions are of interest, h00 can be set to 0. Therefore, the transverse-traceless
gauge can be defined through the following equations

h0µ = 0, (1.11a) hi
i = 0, (1.11b) ∂

ihi j = 0. (1.11c)
The equations can be solved using the ansatz hi j = Hi j exp

(
ikµxµ

)
, where Hi j is a constant

spatial tensor, and the wave vector kµ is null (according to the Einstein equations). The most
general solution involves a linear combination of the two basis tensors (polarization modes)
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in this gauge, which for kµ aligned with the z-axis are given by:

H+ =




1 0 0
0 −1 0
0 0 0


 , H× =




0 1 0
1 0 0
0 0 0


 . (1.12)

Gravitational waves are produced by accelerating systems which don’t exhibit spherical
symmetry. Those include, for example, two bodies orbiting each other, or a rapidly rotating
object, such as a neutron star, which is not exactly spherical. In the case of a compact source
of linear dimension ∼ R which orbits at a speed v ∼ ωR ≪ 1 the far-field limit |x| ≫ 1/ω of
the gravitational wave perturbation is

hi j(t,x) =
2G
|x| Ïi j(t −|x|/c), (1.13)

where the trace-free quadrupole moment tensor is defined as

Ii j =

∫
d3x T 00

(
xix j − 1

3
δ

i jxkxk

)
. (1.14)

The typical frequency of a gravitational wave system is given by f ∼ (M/R3)1/2, where
M is the mass of the system, and R is its length scale. This results in a broad spectrum,
namely in the range 10−16 Hz to 104 Hz [13]. Various sources of gravitational waves and
their (expected) frequencies are shown in Fig. 1.1.

Gravitational waves have proven to be the most elusive feature of Einstein’s theory of
Relativity. They were first confirmed indirectly in 1974 by Joseph Taylor and Russell Hulse,
who observed the first binary pulsar, and over a period of time concluded that the gradual
contraction of the time between arrival of the pulses is consistent with gravitational wave
emission from the binary system [33]. Hulse and Taylor were awarded the 1993 Nobel
prize in Physics for their discovery, which was the first confirmation that gravitational waves
exist. Direct detection of these phenomena did not occur for another four decades after their
discovery.

Most notably, in the late nineties, the Laser Interferometer Gravitational Wave Observa-
tory (LIGO) was built – a pair of earth-based detectors aimed at detecting gravitational waves
directly using the method of interferometry [34, 35]. Eventually, on 14 September 2015,
after a planned sensor upgrade to the Advanced LIGO detectors [36, 37], the first ever direct
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GW EVENT TYPE m1/M⊙ m2/M⊙ M/M⊙ DISTANCE/Mpc REFERENCE

GW150914 BH–BH 36 29 62 410 [38]

GW151226 BH–BH 14.2 7.5 20.8 440 [40]

GW170104 BH–BH 31.2 19.4 48.7 880 [41]

GW170608 BH–BH 12 7 18 340 [42]

GW170814 BH–BH 30.5 25.3 53.2 540 [43]

GW170817 NS–NS 1.81 1.11 2.82 40 [44]

Table 1.1 High-confidence gravitational wave detection events which have been detected so
far. Listed are the designation and the type of collision, as well as the masses of the two
bodies (m1 > m2), the mass M after the merger (all in units of solar masses) and the distance
from Earth. Note that only the values with highest likelihood have been included, each of
these numbers is associated with some varying degree of uncertainty, most prominent in
GW170817; consult the reference for each event for details.

observation of a gravitational wave signal was achieved by the teams of the LIGO and Virgo
Collaboration (LVC) [38].

The first ever GW event detection involved the merger of two black holes, one with mass
36M⊙ and the other with mass 29M⊙, and took place 410 Mpc away, roughly 1.4 billion
years ago1. The resulting black hole from this merger had a mass of 62M⊙, which means that
approximately 3 solar masses worth of energy (approximately 5.3×1047 J) were released in
the form of gravitational waves within less than 1 second of coalescence [38]. The discovery
was formally announced at a press-conference on 11 February 2016, a century after Einstein
first proposed the existence of gravitational waves, and later the 2017 Nobel Prize in Physics
was awarded in relation to this breakthrough [39].

Since then, five further detections of gravitational wave events using Advanced LIGO have
been announced, four of them involving pairs of black holes, and the fifth one involving a
binary with at least one neutron star. The latter constituted the first multi-messenger detection,
where the gravitational wave signal was accompanied by an electromagnetic wave signal.
All of them are summarised in Table 1.1 alongside some of their properties.

While the current rate of detection is of the order of a few events per year, future upgrades
to the LIGO detectors promise increased sensitivity which will increase the number of detected
events. The first official observing run (O1) took place between 12 September 2015 and 19
January 2016 [45], and was followed by the O2 observing run, which started on 30 November

1At that point of time, the most advanced life forms on Earth were single-cell eukaryotes.
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Fig. 1.1 Frequency spectrum of gravitational wave events and sensitivity of detectors [47].
The sensitivity of Gaia spans the region between 10−8 and 3×10−7 Hz.

2016 and finished on 25 August 2017. Following a new round of hardware upgrades, a
9-month observing run, O3, is scheduled to commence in early 2019. This process of
incremental improvement in the hardware will continue and the detectors will reach their
design sensitivity, currently projected for 2021 [46].

Since 2017, LIGO is, in fact, not operating alone. The Virgo detector, located in Italy and
operated by the Virgo Collaboration, was taken on-line after nearly 2 decades of planning,
building, and commissioning [48]. Even though it has the same design configuration as the
pair of LIGO detectors, the laser cavities of Virgo are 3 km in length (compared to 4 km for
LIGO) and the sensitive range achieved in O2 was lower by a factor of 10 [43]. During a joint
run Virgo successfully contributed to the detection of GW170814 and GW170817 [43, 44].
A major hardware upgrade is currently underway which promises to increase the sensitivity
of Virgo by a factor of 10 (compared to the initial configuration) by 2018 [49].

Additional LIGO-type detectors are currently being developed in several locations around
the globe. The Kamioka Gravitational Wave Detector (KAGRA) is under construction in
Japan and is expected to enter full-scale operation before 2020 [50–52]. The Indian Initiative
in Gravitational-wave Observations (IndIGO) is partnering with LIGO to install a further
detector in India, with a proposed start date of exploitation in 2024 [53].
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Other future gravitational wave detectors are also planned: the Laser Interferometer
Space Antenna (LISA) by the European Space Agency (ESA) is the most important of them,
and is projected to launch in 2034 [54]. This project involves a constellation of 3 space-crafts
on a Helio-centric orbit, relying on a method of direct detection using laser interferometry
[55]. TianQin is another proposed space-borne gravitational wave observatory; construction
began in 2016, and the launch is scheduled between 2025 and 2030 [56, 57]. The Deci-
Hertz Interferometer Gravitational wave Observatory (DECIGO) is a space-based Japanese
project which is still seeking appropriate funding [58]. The Einstein Telescope (ET) is a
next-generation ground-based detector which is still in the initial study phase [59]. The
sensitivities of some of these detectors, as well as their frequency ranges, are shown in
Fig. 1.1.

Much has been written about the events leading up to these detections, and numerous
articles have been published analysing the signals which have been detected thus far. I was
fortunate enough to start my academic research work shortly before this momentous event in
the history of astronomy. While detecting gravitational waves is a significant milestone for
the astronomical community, we are currently able to explore only a tiny portion of the entire
GW spectrum. Future missions are currently being designed to explore gravitational waves
originating from unexplored sources. While these planned efforts are important, they will
not bear results for another few decades. If one wants to explore the GW spectrum outside of
the sensitivity of LIGO, one needs to look at other missions currently producing data which
can be used to search for gravitational wave signals.



Part I

Gravitational waves and astrometry
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Astrometry and the Gaia mission

This is adapted from the introduction to [60], which was written in collaboration with

Christopher Moore and my supervisors.

The first direct detection of gravitational waves (GWs) from a binary black hole was
achieved in September 2015 by the LVC collaboration using the ground-based Advanced LIGO

detectors [38]. This event, as well as subsequent binary black hole detections [40, 41, 43, 42],
and the first multi-messenger observations of a binary neutron star merger [44], have paved
the way for the development of a host of new research topics in astronomy, astrophysics and
cosmology [61–64]. In particular, gravitational waves afford the possibility to test the theory
of general relativity (GR) in regimes which are inaccessible through light-based observations
(e.g. strong gravity), and to constrain the deviations from general relativity far better than
has previously been possible [65–67].

There are, however, GW tests of GR which are difficult or impossible to perform with
current instruments. For example, the geometry of the two LIGO detectors alone hinders
accurate determination of the GW polarization; this has been improved by the addition of
Virgo which helped constrain the polarization content of GW170814 [43]. However, there
may still exist combinations of GW polarizations (the transverse and longitudinal scalar
modes) which laser interferometers cannot distinguish [68, 69]. It is well known that pulsar
timing arrays (PTAs) provide one method which can distinguish between all 6 possible
GW polarizations [70] and can even have an enhanced response to some non-Einsteinian
polarisations [71].

The Gaia mission, launched in 2013 by ESA, is carrying out a thorough mapping of more
than a billion objects in the Milky Way [72]. As part of this survey, star positions, velocities,
and accelerations (among other observables) will be mapped with an unprecedented precision;
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this new map of the Milky Way objects will allow for an entirely updated understanding of
the dynamics and composition of our Galaxy and of the Local Group [73].

The idea of using high-precision astrometric measurements as an alternative avenue to
detecting gravitational wave signals is not new: [74] were the first to examine the physical
principles at play, and later [75] applied them to quasar proper motions. More recently [76]
published an in-depth analysis of the concept applied to astrometric measurements, [77]
evaluated the viability of finding this effect in detector data, and [78] discussed it in direct
relation to the Gaia mission. The approach has been investigated numerically in the context of
Gaia, and future Data Releases promise better sensitivity to single GW sources than existing
techniques in a certain frequency range [79]. This part of my thesis explores the possibility
of using such high-precision astrometric measurements to ascertain the polarization of a
stochastic GW background, and hence constrain modified theories of gravity.

Within GR, gravitational waves travel at the speed of light and carry a superposition of
two transverse, traceless polarization modes; usually denoted + and × [80]. Generic metric
theories of gravity have up to four additional polarization modes: a purely transverse scalar
mode, two vectorial modes with mixed transverse and longitudinal properties, and a purely
longitudinal scalar mode [69]. It should be noted that modified theories of gravity must now
satisfy the polarization constraints from the LIGO-Virgo observations (e.g. [43]) of compact
binary sources in the frequency range ∼ 101 −103 Hz. In general, these polarization modes
may travel at speeds different from the speed of light; while the speed of the transverse trace-
less modes is strongly constrained by the recent electromagnetic and GW multi-messenger
observations [67]. Detections of GWs using astrometric methods would allow for additional
constraints to be placed on their polarisation and speed. This Chapter considers all six GW

polarizations, but the discussion is restricted to waves travelling at the speed of light.
While still not explicitly detected, another possible target for gravitational wave detec-

tors is a stochastic gravitational wave background (SGWB) created by a large number of
random, uncorrelated, and individually unresolvable sources. According to the their origin,
backgrounds can be classed as astrophysical or cosmological. Astrophysical sources range
from supernovae and mergers of compact objects (BH-BH, BH-NS, and NS-NS binaries) to
supermassive black hole binaries. Backgrounds of this origin are generally believed to
have a power law spectrum and exist at frequencies above ∼ 10−12 Hz [81]. Cosmological
backgrounds, on the other hand, include early-Universe events like reheating or inflation, or
even more exotic alternatives like primordial black hole mergers or QCD phase transitions.
These generally have more unusual spectra, and are more powerful at lower frequencies
than astrophysical backgrounds. Astrophysical backgrounds, specifically SMBH binaries
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corresponding to galaxy mergers, are by far the most promising in the context of astrometric
and PTA-based methods for detection. The most constraining upper limits on the stochastic
GW background at frequencies of several nanohertz come from pulsar timing. The North
American Nanohertz Observatory for Gravitational Waves (NANOGrav) [82] and the Euro-
pean Pulsar Timing Array (EPTA) [83] placed 95% Bayesian upper limits on the amplitude
of a stochastic gravitational-wave background of 1.5×10−4 and 3.0×10−15 respectively at
a frequency of 1 year−1. Currently the most stringent limit comes from the Parkes Pulsar
Timing Array (PPTA) which placed a 95% upper limit on the amplitude of 1.0×10−15 at
a frequency of 1 year−1 [84] whilst the International Pulsar Timing Array (IPTA) [85] has
placed a 2σ upper limit of 1.7×10−15 at the same frequency.

This part of my dissertation analyses the astrometric response to a gravitational wave and
the detector cross-correlation functions (or overlap reduction functions) for an astrophysical
background in the context of all possible gravitational wave polarization states. In Section 3.1
the relativistic principles that are responsible for the periodic shift in a star’s apparent position
on the sky due to a gravitational wave are presented. Similar analyses have been published
previously (e.g. [76]), but it is repeated here with a focus on the astrometric response to
non-GR polarization states. Chapter 3 summarizes the mathematical formulation of GW

polarization tensors. The characteristic astrometric patterns produced by each polarization
are then plotted and analyzed in terms of the geometry of the astrometric response function.

Chapter 4 presents the numerical pipeline which can be used to search for GW signals in
a Gaia data sets, including the algorithm used for compressing the data sets while preserving
most of the sensitivity. The expected value of the correlation between the response function
of two independent detectors is defined and derived for each of the polarization states in
Chapter 5. Their significance and possible applications are also presented, alongside suitable
depictions of their geometry. Pulsar timing and astrometry are two techniques which are
capable of detecting GWs from similar sources. It is therefore interesting to consider the
possibility of combining PTA and astrometric data sets to achieve improved sensitivities. As a
first step in this direction, Section 5.2 considers the cross-correlation between the astrometric
deflection and the PTA measured redshift for each of the possible GW polarizations.

The astrometric correlations due to a stochastic background of GWs with non-Einsteinian
polarizations has not been explored previously. However, the redshift correlations due to
such backgrounds have been the object of previous work, in the context of pulsar timing
arrays. Notably, [70] sets out a thorough overview of the topic, and [86] calculates all relevant
correlations for scalar and vector backgrounds. Throughout this discussion, the astrometric
correlations derived will be compared with the existing results for the redshift correlations.





3

Astrometric response of a gravitational
wave

Material in this Chapter is the result of my collaboration with Christopher Moore and my

supervisors. It has been peer reviewed and published in Physical Review Letters as [79]

and Physical Review D as [60]. My work consisted of re-deriving the theory in this Chapter

subject to the constraints that are relevant to the analysis in subsequent Chapters.

3.1 Astrometric response of a gravitational wave

Astrometric measurements of any distant objects could, in principle, be used to detect GWs
(the term “star” will be used to refer to any such distant object, although the same reasoning
applies to any light source). The telescope used for the astrometric measurements will not be
at rest (Gaia orbits at the Sun-Earth L2 point, and moves on a Lissajous-type orbit) and it
will be necessary to correct for the detector motion; the term “Earth” will be used to refer to
the location of an idealized stationary observer, and for simplicity it will be assumed that the
necessary corrections in the data have already been made. Fig. 3.1 depicts the relationship
between the “star”, the gravitational wave source, and the “Earth”.

In this chapter the periodic astrometric deflection of a distant “star” as viewed from the
“Earth” due to a weak, plane-fronted GW signal is derived. The background space-time is
assumed to be flat (the mostly positive metric ηµν =diag(−,+,+,+) is used here) and only
leading-order terms in the metric perturbation are retained. We designate coordinates in
which the Earth is at the spatial origin, xµ

E (t) = (t,0), and the Star is at fixed spatial position,
xµ

S (t) = (t,xi
S), with xi

S ≡ const. While the results in this chapter are not new (in particular
our derivation is similar to that in [76]) it will be useful to re-derive them here, paying special
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Fig. 3.1 An illustration of the geometric setup under consideration. The star lies on the past
light cone of the Earth, and the two are linked by an unperturbed null geodesic with tangent
vector pµ and the apparent position of the star is given by nı̂. When the metric is perturbed
by a GW with wavevector kµ =−qµ , the tangent to the null geodesic is perturbed, pµ +δ pµ ,
along with the apparent position of the star, nı̂ +δnı̂. The apparent position of the GW source
is qı̂. Figure appeared in [60].

attention to the case of non-Einsteinian polarization states. The reader might be interested to
consult [87] for a simplified discussion of this effect and a comparison of the interferometric,
pulsar timing, and astrometric methods for GW detection.

In the absence of a metric perturbation the star and the Earth are joined by the following
one-parameter family of null geodesics in the flat space-time, labeled by t0,

xµ

t0(λ ) = (Ωλ + t0,−Ωλni). (3.1)

Here Ω is the unperturbed frequency of the photons coming from the star, −ni is a unit three-
vector in the direction of its propagation, the affine parameter λ varies from λS ≡−|xS|/Ω

to 0 between the star and the observer, and the tangent vector pµ ≡ dxµ/dλ = Ω(1,−ni)

(4-momentum) is null.
The observer (source) is equipped with a time independent orthonormal tetrad ε

µ

â (σ µ

â ),
satisfying ηµνε

µ

â εν

b̂
=ηµνσ

µ

â σν

b̂
=ηâb̂, where the time-like basis vector is taken to be the

4-velocity, ε
µ

0̂
=σ

µ

0̂
=(1,0,0,0). The tetrad is parallel-transported along the worldline of the

observer (source), who measures the following tetrad components (denoted with a hat) of the
4-momentum,

pâ = ηµν pµ
ε

ν
â =−Ω(1,nı̂) , where nı̂ ≡ ε

µ

ı̂ nµ , (3.2)

(and similarly for the source). The observed frequency is given by Ωobs≡−p0̂ whilst the
astrometric position is given by nı̂ ≡ pı̂/p0̂.
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Now consider perturbing this setup with a monochromatic, plane-fronted GW with angular
frequency ω radiated from a distant source in the direction of the vector qi, extending over a
region including the source and the observer (Fig. 3.1). The metric perturbation is given by

hµν

(
t,xi)= ℜ

{
Hµν exp

(
ikρxρ

)}
, (3.3)

where the Hµν are small complex constants satisfying Hµν = Hνµ , and the GW wavevector is
kµ = (ω,−ωqi), where qi is a 3-vector pointing from the Earth to the GW source. Hereafter,
the R is implicit in all complex expressions. Additionally, diffeomorphism invariance
allows a spatial gauge choice to be made for the metric perturbation, H0µ = 0. In GR it is
possible to further restrict to the well known “transverse-traceless” gauge; this is not done
here as our focus will be on alternative polarizations. The perturbed space-time metric is
gµν = ηµν +hµν , and its inverse gµν = ηµν −hµν . The connection coefficients for this
metric are

Γ
µ

νρ =
1
2

gµσ

(
∂ν gσρ +∂ρ gνσ −∂σ gµν

)
=

1
2

(
∂ν hµ

ρ +∂ρ h µ

ν −∂
µhνρ

)
+O

(
h2) ,

(3.4)

and the non-zero components are given explicitly by

Γ
0
i j =

1
2

∂0hi j , Γ
i
0 j = Γ

i
j0 =

1
2

∂0hi j ,

and Γ
i
jk =

1
2
(
∂khi j +∂ jhik −∂ih jk

)
.

(3.5)

The worldlines of the Earth (xµ
E (t) = (t,0)) and star (xµ

S (t) = (t,xi
S)) are geodesics in both

the unperturbed (ηµν ) and perturbed (ηµν+hµν ) metrics; in this gauge these worldlines are
unaffected by the GW. However, the null geodesics xµ

t0(λ ) and the tetrads ε
µ

â and σ
µ

â are
affected, and so are the tetrad components pâ defined in eq. (3.2).

Firstly, consider the tetrad along the Earth’s worldline; this is perturbed ε
µ

â 7→ε
µ

â +δε
µ

â (t)

according to the parallel transport equations (the 4-velocity is ε
µ

0̂
),

d
dt

δε
µ

â (t) =−Γ
µ

νρ ε
ν
â ε

ρ

0̂
+O

(
h2) , (3.6)

where the symbols Γ
µ

νρ are to be understood as being evaluated along the worldline of the
Earth, xµ

E (t). When integrating eq. (3.6) the constants of integration may be discarded as it
is the time-dependent change in astrometric position which we ultimately seek to measure.
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Substituting for the connection coefficients from eq. (3.5) and integrating eq. (3.6) along the
worldline of the observer shows that the only nonzero components of δε

µ

â (t) are

δε
j

ı̂ (t) =−1
2

H j
ı̂ exp(−iωt0) . (3.7)

Note that the time-like component of the tetrad is unaffected. Similar equations hold for the
deviation δσ

j
ı̂ (t).

Secondly, consider the null geodesics and their tangents; these are perturbed xµ 7→
xµ+δxµ(λ ) and pµ 7→ pµ+δ pµ(λ ) according to the geodesic equation,

d2

dλ 2 δxµ

t0(λ ) =
d

dλ
δ pµ

t0(λ ) =−Γ
µ

νρ pν pρ +O
(
h2) . (3.8)

In the above equation the symbols Γ
µ

νρ are to be understood as being evaluated along the
unperturbed trajectory xµ

t0(λ ) (corrections to this trajectory enter at order of h2). Substituting
for the connection coefficients from eq. (3.5) and for the metric perturbation from eq. (3.3)
gives

d
dλ

δ p0
t0(λ ) =

iωΩ2

2
Hi jnin j f (t0,λ ) , (3.9a)

d
dλ

δ pi
t0(λ ) =

iωΩ2

2

(
−2H i

j n j +
(

q jH i
k +qkH i

j −qiHjk

)
n jnk

)
f (t0,λ ), (3.9b)

where f (t0,λ )= exp
(
–iωΩλ

(
1−qini

)
− iωt0

)
. Provided qini ̸= 1, integrating eq. (3.9a)

with respect to λ with the initial condition that the emission frequency in the rest frame of the
star is unaffected by the GW (Ωemit≡ ηµνσ

µ

0̂
pν = Ω, which reduces to δ p0

t0(λS)=0 because
δσ

µ

0̂
= 0) gives

δ p0(λ )=
−Ω

2(1−qknk)
Hi jnin j( f (t0,λ )− f (t0,λs)

)
. (3.10)

Integrating eq. (3.9b) twice with respect to λ gives

δxi(λ ) =
−i

2ω(1−ql nl)2

(
−2H i

j n j +
(
q jH i

k + qkH i
j −qiH jk

)
n jnk

)
f (t0,λ )+λAi +Bi ,

(3.11)

where Ai and Bi are constants of integration. The boundary conditions needed to determine
Ai and Bi are:
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(a) The family of geodesics xµ

t0(λ )+δxµ

t0(λ ) remain null; at leading order this condition
becomes

hµν(Ωλ + t0,−Ωλni)pµ pν +2ηµν pµ
δ pν

t0(λ )=0. (3.12)

(b) The geodesics intersect the Earth’s worldline, the freedom to reparametrize the
geodesics λ 7→λ+λ0 may be used to ensure that the intersection occurs at λ = 0,
so this condition becomes δxi

t0(0)=0.

(c) The geodesics intersect the star’s worldline at some value λS +δλS (where δλS=O(h)),
so this condition becomes xi

t0(λS +δλS)+δxi
t0(λS +δλS)=xi

S.

Boundary condition (b) fixes the constants Bi leaving

δxi(λ ) =
−i

2ω(1−qℓ nℓ)2

(
−2H i

j n j +
(
q jH i

k +qkH i
j − qiH jk

)
n jnk

)
×

×
(

f (t0,λ )− f (t0,0)
)
+λAi .

(3.13)

Next, we decompose Ai = Ai
⊥+Ai

∥ in parallel and perpendicular directions to ni. It is
sufficient to enforce condition (a) at λ =λS (where it is most straightforward to do so because
δ p0

t0(λS)=0) as the norm of a tangent is automatically preserved along a geodesic; this gives

Ai
⊥ =

−Ωni

2(1−qℓ nℓ)
H jkn jnk f (t0,λS +qkH i

j) . (3.14)

Finally, condition (c) is applied to fix Ai
∥ and δλS, although only the former is needed here,

Ai
∥ =

i

2λSω
(
1−qℓ nℓ

)2

(
2H i

j n j −
(
q jH i

k +qkH i
j −qiHi j

)
n jnk −2niH jkn jnk

+niqmnmH jkn jnk
)(

f (t0,0)− f (t0,λS)
)
.

(3.15)

As discussed following eq. (3.2), the observed frequency is given by the temporal tetrad
component of the photon Ωobs ≡−p0̂,

Ωobs =
(
ηµν +hµν(t0,0)

)(
pµ +δ pµ

t0(0)
)(

ε
ν

0̂ +δε
ν

0̂ (t0)
)

=Ω

(
1− Hi jnin j

2(1−qknk)

(
f (t0,0)− f (t0,λS)

))
. (3.16)
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Therefore, the redshift, defined as 1+ z ≡ Ω/Ωobs, where Ω is the emitted frequency, is
obtained from eq. (3.16) as

z =
nin j

2(1−qknk)

(
hi j(E)−hi j(S)

)
. (3.17)

The redshift depends anti-symmetrically on the metric perturbations at the “emission”
and “absorption” events at the star and the Earth, respectively (hi j(E)≡ Hi j f (t0,0) and
hi j(S)≡ Hi j f (t0,λs)). This symmetry arises from the endpoints of the integral along the null
geodesic linking the star to the Earth. The redshift varies periodically in time due to the GW.
This redshifting, applied to a distant pulsar, causes individual pulses to arrive at the Earth
periodically early and late; it is this timing residual which is searched for by PTAs.

As discussed following eq. (3.2), the star’s astrometric position is given by nı̂≡ pı̂/p0̂

where p0̂ is the negative of Ωobs in eq. (3.16) and

pı̂ =
(
ηµν+hµν(t0,0)

)(
pµ+δ pµ

t0(0)
)(

ε
ν
ı̂ +δε

ν
ı̂ (t0)

)
. (3.18)

Combining the previous results gives the observed astrometric deflection of the star due to a
plane GW, this is the same result as was found in [76] (their eq. (36)) with minor changes in
notation;

δnı̂ =



({

1+
i(2−qrnr)

ωλSΩ(1−qℓnℓ)

(
1− exp(−iωΩλS(1−qsns))

)}
nı̂

−
{

1+
i

ωλSΩ(1−qℓnℓ)

(
1− exp(−iωΩλS(1−qsns))

)}
qı̂

)
H jkn jnk

2(1−qℓnℓ)

−
{

1
2
+

i
ωλSΩ(1−qℓnℓ)

(
1− exp(−iωΩλS(1−qsns))

)}
Hı̂ jn j


exp(−iωt0) .

(3.19)

As was found for the redshift, the deflection depends on the metric perturbations at the
star and at the Earth; although not symmetrically. This loss of symmetry is because the
deflection depends both on an integral along the null geodesic trajectory as per eq. (3.9b),
and an integral along the Earth’s worldline as per eq. (3.6).

In the PTA analysis of stochastic GW backgrounds it is common to drop the “pulsar term”
(which is called the “star term” here). This is possible because in the limit where the GW

wavelength is much shorter than the distance to the star, ωλSΩ ≫ 1, the overlap reduction
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function (ORF) tends to the result obtained by simply ignoring the “pulsar term” in eq. (3.17)
[88].

In the astrometric case the “star terms” can also sometimes be neglected, albeit for slightly
different reasons. Consider eq. (3.19) in the distant source limit ωλSΩ ≫ 1 (i.e. where the
star is many GW wavelengths distant from the observer). At leading order, only the first term
in each set of curly brackets remains, and the result becomes

δnı̂ =
1
2

(
nı̂ −qı̂

1−qℓnℓ
h ĵk̂(E)n ĵnk̂ −hı̂ ĵ(E)n ĵ

)
. (3.20)

Notice that in this limit all dependence on hi j(S) has been lost. Also notice that the distant
source limit was taken for the astrometric response of a single star, not for the statistical
response of a network (quantified via the ORF) as in the PTA case. In eq. (3.20) all contrac-
tions have been written using tetrad components; hereafter the hat notation denoting tetrad
components will be dropped, and the astrometric deflections in eq. (3.20) will simply be
denoted δni.

The sensitivity of Gaia to GWs comes largely from the fact that it observes a large number
of stars. These stars are generally well separated (by many gravitational wavelengths),
therefore the small star terms will be uncorrelated between stars. At small angular separation
many stars are at similar distances (star clusters); this needs consideration in any practical
application. In contrast, the larger Earth term is correlated between all stars; it is this that
Gaia will aim to detect. The independent star terms may be treated as an effective noise
source in the experiment. Including all the individual “star terms” would slightly increase
the sensitivity of Gaia to the lowest GW frequencies, however this would involve fitting for
the distance to every observed star individually.

A problem occurs with the distant source limit of the astrometric deflection when the
GW source is collinear with a star (i.e. when qini = 1); the expression in eq. (3.20) will, in
general, diverge. In fact, this is usually not a problem, because in GR the GW polarizations
are transverse (i.e. hi jq j = 0) which ensures that eq. (3.20) has a smooth limit as ni → qi.
However, the divergence is a problem when working with alternative polarizations with
a longitudinal component (i.e. when hi jq j ̸= 0). For the remainder of this work we work
with the distant source limit in eq. (3.20) whenever possible, and fall back on the full
(non-divergent) expression in eq. (3.19) when the distant source limit approximation breaks
down.
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Fig. 3.2 The fractional error, δ (see eq. (3.21)), in the distant source approximation as a
function of the distance to the star. The red and blue curves correspond to frequencies of
5×10−7 Hz and 5×10−9 Hz respectively; these are the upper and lower frequency limits of
Gaia’s GW sensitivity [79]. Also shown on the secondary y-axis is the cumulative distribution
of distances to objects in the Gaia DR1 catalog (simulated distances to stars taken from the
Gaia Universe Model Snapshot [89]). The distant-source limit is a good approximation for
the majority of stars in the catalog. Figure appeared in [60].

For a transverse GW the distant source limit does not diverge and we may study the
fractional error in the distant source approximation. The error is defined as

δ =
|δni −δnds

i |
|δni|

, (3.21)

where δni is given by eq. (3.19), and δnds
i by eq. (3.20). This quantity is plotted in Fig. 3.2

as a function of the distance to the source for two frequencies at the edges of the Gaia’s GW

bandwidth, (10−8 −3×10−7)Hz [79]. Also shown in Fig. 3.2 is the cumulative distribution
of the distances to stars in the Gaia catalog. Fig. 3.2 shows that even for the longest GW

wavelengths of interest to Gaia the error δ < 10−2 for 90% of stars in the Gaia catalog. This
justifies the use of the distant source limit eq. (3.20) whenever it is not divergent.

3.2 Gravitational wave polarizations

Whilst GR only allows for two GW polarization modes (the transverse and traceless + and ×
modes), alternative theories can include up to 4 additional modes. Besides the two GR modes,
there may be a transverse trace scalar mode, two vectorial modes with mixed transverse and
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longitudinal components, and a purely longitudinal scalar mode. For a detailed discussion
the reader is referred to [69].

In order to define the 6 GW polarization basis tensors we first introduce the orthonormal
coordinate basis associated with the spherical polar coordinates (r,θ ,φ);

êr
i = (sinθ cosφ , sinθ sinφ , cosθ), (3.22a)

êθ
i = (cosθ cosφ , cosθ sinφ ,−sinθ), (3.22b)

êφ

i = (−sinφ , cosφ , 0). (3.22c)

The symmetric spatial GW polarization tensor, Hi j, for a GW traveling in direction qi =− êr
i

can then be decomposed in terms of basis tensors as

Hi j = A+ε
+
i j +A×ε

×
i j +AS ε

S
i j +AXε

X
i j +AY ε

Y
i j +ALε

L
i j, (3.23)

where the 6 GW basis tensors, εP
i j, are defined as

ε
+
i j (qk)= êθ

i êθ
j −êφ

i êφ

j , (3.24a)

ε
×
i j (qk)= êθ

i êφ

j +êφ

i êθ
j , (3.24b)

ε
S
i j(qk)= êθ

i êθ
j +êφ

i êφ

j , (3.24c)

ε
X
i j(qk)= êθ

i êr
j+êr

i ê
θ
j , (3.24d)

ε
Y
i j(qk)= êφ

i êr
j+êr

i ê
φ

j , (3.24e)

ε
L
i j(qk)=

√
2 êr

i êr
j. (3.24f)

The factor of
√

2 in the definition of εL
i j(qk) is for normalisation convenience and accounts for

the fact that this tensor has only a single non-zero component, while all others have exactly
2. In the standard Cartesian coordinate system for q = (0,0,1) the generalized perturbation
tensor takes the form

H =




A++AS A× AX

A× −A++AS AY

AX AY

√
2AL


. (3.25)

Shown in Fig. (3.3) are the distant source limit astrometric deflection patterns for each
of the 3 transverse GW polarization states, and in Fig. (3.4) the exact astrometric deflection
patterns for the other 3 GW polarization modes with longitudinal components. The results in
Fig. (3.3) were calculated using eq. (3.20) for the +,×, and S polarization states, in Fig. (3.4)
using eq. (3.19) for the X ,Y, and L states. Polarization tensors Hi j = AP εP

i j with AP = 0.1
(unrealistically large for visualization purposes) were used throughout, and in the latter three
cases, all stars were placed 10 gravitational wavelengths away from Earth. If the distant
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+

×

S

Fig. 3.3 Orthographic projections of the Northern (left) and Southern (right) hemispheres of
the three transverse polarization modes. Randomly placed on the sky are 1000 stars. A GW

from a source located in the direction of the North pole (indicated by the red dots) is incident
on the Earth causing the stars to move periodically at the GW frequency. The blue lines show
the traces which each star would leave as it moves on the sky. For clarity, the incident GW

has the unphysically large characteristic strain amplitude A = 0.1. The + and × patterns are
related to each other by a rotation through π/4). The astrometric patterns for the two GR states
including the star terms are presented additionally in Appendix A. Figure appeared in [60].
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X

Y

L

Fig. 3.4 Orthographic projections of the Northern (left) and Southern (right) hemispheres
of the three modes with longitudinal components. Randomly placed on the sky are 1000
stars. A GW from a source located in the direction of the North pole (indicated by the red
dots) is incident on the Earth causing the stars to move periodically at the GW frequency.
The blue lines show the traces which each star would leave as it moves on the sky. For
clarity, the incident GW has the unphysically large characteristic strain amplitude A = 0.1,
and the star terms are included in the calculation of the astrometric deflection in order to
avoid it becoming divergent near the North pole. In these three samples, all stars are placed
at a distance of 10 gravitational wavelengths from the Earth. In reality, these neat elliptical
patterns would appear more chaotic, since the distances to each star are generally different.
The X and Y patterns are related by a rotation through π/2. Figure appeared in [60].
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source limit were used for the three longitudinal modes, the plots would incorrectly show a
divergence in the astrometric deflection pattern at the North pole due to the factor of 1−qℓnℓ
in the denominator of eq. (3.20).
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An astrometric search method for
gravitational waves

Material in this Chapter is the result of my collaboration with Dr Christopher Moore and my

supervisors. This work has been peer reviewed and published in Physical Review Letters

as [79]. My original contribution consisted of developing a parallel version of the original

pipeline (which is no longer supported), developing the Voronoi grids and the algorithm for

assigning stars to the Voronoi cells, and deriving the directional sensitivity pattern of Gaia.

This chapter is a summary of the letter [79].

4.1 Data analysis

The previous Chapter calculated the astrometric deflection due to a gravitational wave. It
is interesting to consider whether this effect can be detected in practice. In this Chapter I
describe a numerical methodology for searching for a monochromatic gravitational wave
signal in a Gaia-like astrometric dataset. The expected source of such a GW is a (circular)
supermassive black hole binary system in its post-Newtonian period of in-spiral, with total
mass of the system in the range 107–1010 M⊙. This period of the trajectory is characterized
by a weak gravitational field (since the bodies are far apart), which also ensures that the
system evolves slow enough and the frequency can be assumed to stay constant.

The metric perturbation for a plane, monochromatic gravitational wave may in GR be
written as

hi j
(
Ψ
)
=R

{(
A+H+

i j (q)eiφ+ +A×H×
i j (q)eiφ×

)
e2πi f t

}
, (4.1)
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where Ψ is a 7-dimensional parameter vector which characterizes the gravitational wave
completely: two amplitudes {A+, A×}, two phases {φ+, φ×}, the GW frequency f , and two
angles describing the direction q to the source, and H+

i j and H×
i j are the two GW basis tensors

from eq. (1.12).
A Gaia data set would consist (in principle) of N astrometric measurements (observations)

of M stars in the catalogue. For simplicity here the time between observations is assumed
to be the same, although this would not be a valid assumption for a real data set, and is not
necessary in this context:

S = {sI,J|I = 1,2, . . . ,M; J = 1,2, . . . ,N} . (4.2)

Each individual measurement sI,J signifies the position of a star on the sky (at a time tI,J),
which is a combination of the background star position nI(tI,J), the instrument noise rI,J , and
a possible GW signal h:

sI,J = nI(tI,J)+ rI,J +h
(
Ψ, nI(tI,J), tI,J

)
. (4.3)

Each measurement is a point on the sphere (sky), and can be represented in any one of a
number of coordinate systems, although for simplicity here it shall be assumed that the right
ascension and declination are used.

The background star position also contains the star’s proper motion; this is accounted
for and corrected by fitting a quadratic function to the set {⃗nI(tI,J)} and subtracting the
trend from the data. This procedure removes the background position, the velocity, and
the acceleration from the astrometric data, thus rendering it solely a combination of the
instrument noise and a gravitational wave signal, if such is present. The noise in each
instrument σ ≡σI,J is assumed to be identical and independent, although this is not necessary
for the method to yield results. Thus the expectation of the product of the noise at two stars
at two different times is

E
[
rI,J · rI′,J′

]
= σ

2
δII′δJJ′ . (4.4)

Given the above assumptions about the GW signal and the instrument noise, the likelihood
of detecting the signal in the dataset S may be written down as follows [90]

P
(
S |Ψ

)
∝exp

(
M

∑
I=1

N

∑
J=1

–
∣∣sI,J − h

(
Ψ, nI(tJ), tJ

)∣∣2

2σ2

)
. (4.5)
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The posterior probability is, according to Bayes’ theorem

P
(
Ψ|S

)
=

Π
(
Ψ
)

P
(
S |Ψ

)

Zsignal
, (4.6)

where Π
(
Ψ
)

is the prior for this type of event. For the purposes of this Chapter, the
priors used for the amplitudes {A+, A×} are log-uniform, the priors for the phase angles
{φ+, φ×} are uniform and periodic, the prior for the frequency is log-uniform in the range
f ∼U [1/T,N/2T ], and the prior for q is uniform on the sphere (sky). Zsignal is the Bayesian
signal evidence and is used to normalise the distribution in eq. (4.6):

Zsignal =
∫

dΨ Π
(
Ψ
)

P
(
S |Ψ

)
. (4.7)

The noise evidence Znoise, on the other hand, is evaluated using eq. (4.5) with h = 0. The
Bayes’ factor for the detection is defined as B ≡ Zsignal/Znoise and is a measure of the
detection likelihood: signals for which B > Bthreshold = 101.5 are assumed likely to be
detected, although this choice is somewhat arbitrary and depends on the specifics of the
problem at hand. In the development of this pipeline, the MULTINEST [91] implementation
of nested sampling [92] was used.

Since a final Gaia data set is not readily available, for the purposes of testing this pipeline
and testing possible future searches, a mock set of data was constructed as follows: N = 75
measurements of M = 105 stars on the sky were generated, spread evenly over a period of
T = 5 years (the nominal duration of the Gaia mission), with appropriate simulated noise
[93]. As a first step towards preparations for data analysis, the fitting procedure was carried
out, which removed zeroth, first, and second order trends in the data, as described above.
Additionally, a gravitational wave signal was injected into the data set: each black hole in the
binary has mass m1 = m2= 5×108M⊙, on a circular orbit of radius R = 1500au at a distance
of 20Mpc from the Earth (black hole spin is 0, and the angular momentum of the system is
aligned along the line-of-sight). This would yield a circularly polarized gravitational wave
with amplitude A+ = A× = 3×10−14 and frequency ω = 2π f = 2×10−7 Hz.

Using the method described above, the signal was recovered with B = 104.2 >Bthreshold.
The 1-dimensional marginalised posterior distributions are depicted in Fig. 4.1.
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Fig. 4.1 1–dimensional marginalised posteriors on Ψ (black lines indicate injected values).
The injected GW was circularly polarised (i.e φ+−φ×=π/2) so the φ× posterior is shifted
such that it overlaps with φ+. The Mollweide sky map is shown with the area of the 68%
credible region given. Figure appeared in [79].

4.2 Compressing the Gaia dataset

Searches using large number of stars (M = 105, or the full Gaia catalogue of 109 stars)
are too computationally expensive, and this renders the method described above intractable
for practical use. In order to make the method viable and efficiently explore this problem,
one needs to develop a near-lossless compression method for the astrometric data. For this
purpose, a set of “virtual stars” M̃(≪M) are placed on the sky, each virtual star defines a
Voronoi cell VĨ, Ĩ=1,2, . . . ,M̃ consisting of all points lying on the sphere which are closer
to that virtual star than any other [94]. Each star in the set M is then assigned to one of the
virtual stars according to the Voronoi cell in which the star is located. In order to compress
the data set, each virtual star is endowed with the averaged astrometric deflections of all the
stars in its corresponding Voronoi cell (a tilde here denotes the virtual data set)

s̃Ĩ,J =
1

|VĨ| ∑
I∈VĨ

sI,J ,
1

σ̃2
Ĩ,J

= ∑
I∈VĨ

1
σ2

I,J
, (4.8)
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Fig. 4.2 The horizon distance (relative to that for the uncompressed data) is reduced during
compression onto Voronoi grid n= 1,2, . . . ,10. Shown in red is an estimate of the loss
obtained by considering the angle between astrometric deflections for stars in the same
Voronoi cell. Figure appeared in [79].

where |VĨ| is the number of real stars in the Voronoi cell VĨ . This new “virtual” data
set S̃ = {s̃Ĩ,J|Ĩ=1, . . . ,M̃; J=1, . . . ,N} is now ready to be analyzed using the numerical
method described in the previous Section.

The compression from the “real” to the “virtual” data sets would be completely lossless
if two conditions were satisfied: (i) the instrument noise was independent (c.f. eq. (4.4)), and
(ii) the astrometric deflections in a given Voronoi cell were perfectly collinear. Condition
(i) cannot be expected to hold perfectly, although the data-taking method of Gaia works
favourably in this case: as the space-craft constantly rotates, separate measurements of the
same object will be taken with different parts of the CCD array. Furthermore, correlations for
co-located stars vanish for star separations of more than 0.7° [95]. The astrometric deflection
is a smooth vector field on the sphere, therefore for sufficiently small Voronoi cells, condition
(ii) above would become satisfied.

In this analysis, the Voronoi cells on the surface of the sphere were chosen to be geodesic
domes with icosahedron as the base polyhedron. The method for generating sub-divisions of
the icosahedron involved dividing the great circle arcs between its vertices into n=2,3, . . .
smaller arcs, and the constructing n2 near-isosceles spherical triangles on each face. The nth

Voronoi grid therefore has M̃ = 20×n2 virtual stars.
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Fig. 4.3 The thick black curves show the strain sensitivity of the final Gaia data release using
the different time samplings; T0 is the solid line, T1 is the dotted line, T2 is the dashed line, and
T3 is the dot-dashed line. The four curves are very similar. For comparison the thin coloured
lines show the 95% upper limits from the three PTA collaborations: NANOGrav ([96] red),
EPTA ([97] blue) and PPTA ([98] green). The curves in this plot show different quantities and
are only intended to allow for approximate comparissons; the NANOGrav curve is a Bayesian
95% upper limit, the EPTA and PPTA curves are frequentist 95% upper limits, while the Gaia
curves show the amplitude necessary to achieve a (conservative) threshold Bayes’ factor. It
should be noted that the PTA limits plotted are several years old and constraints improve
over time; Gaia’s sensitivity will not improve further. However, it is clear that, especially at
higher frequencies, Gaia promises to provide a useful complement to the existing limits from
pulsar timing. Figure appeared in [79].

In order to establish the loss of sensitivity due to compression, the original data set was
analysed after being compressed on each of the grids with n = 10,9, . . . ,1 separately, and
the resulting virtual data sets were each analysed with the method described above. The
reason for signal loss (smaller Bayes’ factor) for grids with lower n is the fact that astrometric
deflections are not parallel in larger Voronoi cells, and therefore the deflections partially
cancel each other out when averaged, and is depicted in Fig. 4.2. The reduction in the Bayes’
factor due to compression is effectively a reduction of the distance at which an event may be
successfully detected. This loss of sensitivity is less than 1% for grids with n ≥ 7, while the
reduction in size for the full data set would be of the order of 106.

Now that an efficient method for searching for gravitational waves has been established,
the sensitivity of Gaia can be explored in detail.
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4.3 Gaia’s frequency sensitivity

In order to examine the frequency sensitivity of Gaia, circularly polarized gws were injected
with varying amplitudes and frequencies, and the resulting data sets were compressed onto
the n = 10 Voronoi grid. For fixed values of the frequency in the range (10−8.5–10−6)Hz
several successive injections were performed and recovered in order to establish the minimum
amplitude necessary for a successful detection. Additionally, the effect of uniform vs. non-
uniform sampling was also explored. The uniform time sampling, T0, assumes N = 75
measurements spread over T = 5 years. The more realistic non-uniform time samplings
were constructed using the Gaia observing schedule applied to three points on the sky which
simulate the variability in the Gaia sampling function (these are denoted by Tα ,α ∈ {1,2,3}).

The strain sensitivity of Gaia is nearly flat in the region f ≳ 1/T , unlike PTAs whose
sensitivities degrade linearly with the increase of frequency. This effect can be explained by
considering how each of these methods work: PTAs rely on measuring the timing residual,
i.e. the integral over time of the redshift caused by the passing of the gravitational wave.
This integration over time suppresses the sensitivity of PTAs for frequencies f ≳ 1/T . On
the other hand, the astrometric search method relies on quantifying the astrometric deflection
which is proportional to the strain of the GW (eq. (3.20)). Eventually, when both methods are
applied to data and yield results, they would be able to complement each other in the high
frequency region, near f ≳10−7.5 Hz [79].

4.4 Gaia’s directional sensitivity

Since the distribution of stars in the Milky Way (and in the Gaia catalogue) is not uniform, it
is natural to expect that the sensitivity of Gaia as a GW detector will vary with the direction
of q. Here this directional sensitivity pattern of Gaia is investigated.

Let’s first consider the astrometric response for a GW source which lies on the positive
z-axis (q={0,0,1}) and a single star in the x− z plane (n={sinγ,0,cosγ}); the astrometric
shift as a function of the angle γ is given by (cf. eqs. (4.1) and (3.20))

|δ n⃗|= 1
2

√
A2
++A2

× sinγ . (4.9)

Evidently, the response is greatest in magnitude for stars which lie in a plane that is orthogonal
to the direction of propagation of the GW, and hence the peak sensitivity of Gaia is to be
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Fig. 4.4 The variation in Gaia’s sensitivity over the sky, F(θ ,φ). A sample of 60,000 stars
drawn randomly from the Gaia catalogue are shown as white dots. The sensitivity varies by
∼30% across the sky with minima at (and antipodal to) the galactic centre, and maxima at
the galactic poles. Figure appeared in [79].

expected for signals coming from directions which are orthogonal to regions of high stellar
density, i.e. from the two galactic poles.

In order to quantify this conclusion, GW signals were injected in the set of stars from
the first Gaia data release (https://www.cosmos.esa.int/web/gaia/dr1), and recovered using
the routine described above (the sampling was chosen to be uniform over the lifetime of
the mission). The process was repeated for 500 locations on the sky (each time the data set
was compressed onto the n = 5 Voronoi grid in order to expedite the search). The resulting
variation in sensitivity (antennae pattern) is plotted in Fig. 4.4.

https://www.cosmos.esa.int/web/gaia/dr1
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Gravitational Wave Backgrounds with
non-Einsteinian Polarizations

Material in this Chapter is the result of my collaboration with Dr Christopher Moore and

my supervisors. This work has been peer reviewed and published in Physical Review D as

[60]. As the first author of that publication, my contribution included all the theoretical

work, namely deriving the correlation functions in each case, and using code developed by

Christopher Moore to generate random realisations of the correlated stochastic backgrounds.

5.1 Correlated Astrometric Deflections

In Chapter 3 the astrometric response to a single monochromatic GW was derived. In
this Section the astrometric response to a stochastic background of GWs is considered. A
stochastic background of GWs generates a stochastic pattern of astrometric deflections over
the sky which is highly correlated at large angular scales. The pattern of this correlation
depends on the polarization of the GWs which make up the background. The general
framework for considering correlated vector fields on the sphere is introduced, and then
in Sections 5.1.1 to 5.1.4 below, the correlation for several different combinations of the
polarization states discussed in Section 3.2 are explicitly evaluated.

The discussion in this Chapter is restricted to stochastic GW backgrounds which are
Gaussian, stationary, isotropic and unpolarized (at this point we do not specify which
polarization states comprise the background, just that they are uncorrelated with each other
so the background is statistically unpolarized). The astrometric deflection is then a Gaussian
random vector field on the sphere, and the statistical properties of this field are described by
a correlation matrix. Adopting a convenient decomposition for this correlation matrix allows
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ûr
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Fig. 5.1 Geometrical setup of the vectors involved in the calculation of the overlap reduction
functions. A pair of stars, one of them nominally placed at the North pole, and a second
one at angular separation Θ (along the arc φ = 0) are considered. Each of them experiences
astrometric response due to a background of gravitational radiation. On the left-hand side of
the Figure are shown the Cartesian triad associated with the point n̂i (top) and the curvilinear
triad associated with the point m̂i (bottom). The astrometric deflection at point n̂i (m̂i) is a
vector in the tangent plane to the sphere, and can be decomposed in terms of just êx and êy
(êθ and êφ ). We are interested in the correlations between these vector components. Figure
appeared in [60].

for an intuitive visualization of key features of the correlation over the sphere of the sky. This
decomposition will also permit a clear comparison with the analogous calculations in the
pulsar timing literature.

Consider the correlation between the astrometric deflections at two different points on
the sky. The astrometric response is given by the distant source limit formula, eq. (3.20)
(specific examples when this formula is not valid will be considered later in this Section). In
this limit, the astrometric deflection depends only on the “Earth term” metric perturbation;
this time-dependent metric perturbation can be Fourier decomposed as

hi j(t)=R

{
∑

P

∫
∞

0
d f
∫

S2
dΩq AP(q, f )e–2πi f t

ε
P
i j(q)

}
, (5.1)

where f = ω/2π is the linear GW frequency, AP(q, f ) are the (complex) Fourier coefficients,
dΩq is the area element on the sphere, and q ≡ qi is the direction from which the GW

originates. The label P indicates the GW polarization which, at this stage, may be any of the
six states P ∈ {+,×,S,X ,Y,L} described in Section 3.2.
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The GW background is assumed to be Gaussian, zero-mean, stationary, isotropic, and
unpolarized. The expectation values of the Fourier coefficients in such a background satisfy

〈
AP(q, f )A∗

P′
(
q′, f ′

)〉
=C( f )δPP′ δS2(q,q′)δ ( f − f ′) (5.2a)

〈
AP(q, f )AP′

(
q′, f ′

)〉
= 0, (5.2b)

where angle brackets denote expectation values, and the function C( f ) is related to the
spectral energy density in the GW background [99].

The astrometric deflection is linear in the metric perturbation, and the response to each
Fourier mode may be calculated individually:

δni (n, t) =R

{
∑

P

∫
∞

0
d f e−2πi f t

∫

S2
dΩq AP(q, f )∆

jk
i (n,q)ε

P
jk(q)

}
, (5.3)

where we have defined

∆
jk

i (n,q) =
1
2

(
ni −qi

1−qℓnℓ
n jnk −δi

jnk
)
. (5.4)

The linearity of the astrometric deflection with the metric perturbation also ensures that
it will be a Gaussian random variable, and that its statistical properties depend only on
the two-point correlation. Using eqs. (5.2) and (5.3), it is straightforward to show that the
expectation of the product of astrometric responses δni and δmi of two stars, situated at two
different points on the sky, ni and mi, separates into a factor depending on the measurement
times and a factor depending on the locations of the stars on the sky,

〈
δni(n, t)δm j(m, t ′)

〉
= T (t, t ′)Γi j(n,m) . (5.5)

Because both δni(n, t) and δm j(m, t) have zero mean, this expectation is proportional to the
correlation between the two quantities. As is well known, the temporal correlation factor is
given by the cosine transform of the GW frequency spectrum;

T (t, t ′) =
1
4

∫
∞

0
d f C( f )

(
e2πi f (t−t ′)+ e−2πi f (t−t ′)

)
. (5.6)

The spatial correlation factor is a sum of integrals of products of vectors over the sphere for
each mode P (cf. the factor of δPP′ in eq. (5.2a)):

Γi j(n,m) = ∑
P

Γ
P
i j(n,m) , (5.7)
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where, for each polarization state, it has been defined

Γ
P
i j(n,m) =

∫

S2
dΩq δnP

i (n,q)δmP
j(m,q), (5.8)

where δnP
i (n,q) = ∆

jk
i (n,q)ε

P
jk(q) . (5.9)

Only the spatial part of the correlation, Γi j(n,m), depends on the polarization content of the
GW background. Hereafter, only spatial correlations will be investigated.

Since the background is isotropic, the sky sphere can be rotated into the most convenient
orientation. The first star, ni, is placed at the North Pole, and the second, mi, in the x-z plane
(for anisotropic backgrounds, this transformation is still possible, though in that case the
background needs to also be rotated into the new frame; see [86] for details). The stars have
coordinates

n = (0,0,1), (5.10a) m = (sinΘ,0,cosΘ). (5.10b)

The astrometric deflection vectors lie in the tangent plane of the sphere; it is now necessary
to introduce a pair of basis vectors at both points on the sphere. The choice of basis is of
course arbitrary; however, the following choice will prove to be convenient. For any pair of
points ni and mi there is a unique (shortest) geodesic on the sphere, γ , linking ni to mi; at
both ni and mi the unit tangent vector to γ and the unit vector pointing to the left of γ form
an orthonormal basis. For the values of ni and mi in eq. (5.10) the coordinate expressions for
these basis vectors are

ûx = (1,0,0), (5.11a)

ûy = (0,1,0), (5.11b)

ûθ = (cosΘ,0,−sinΘ), (5.12a)

ûφ = (0,1,0), (5.12b)

whilst the general definitions for two arbitrary points on the sphere are

ûx=
(n̂×m̂)×n̂√
1–(n̂ · m̂)2

, (5.13a)

ûy=
n̂×m̂√

1–(n̂ · m̂)2
, (5.13b)

ûθ =
(n̂×m̂)×m̂√

1–(n̂ · m̂)2
, (5.14a)

ûφ =
n̂×m̂√

1–(n̂ · m̂)2
. (5.14b)

The geometric setup is illustrated in Fig. 5.1.
The astrometric deflections may now be decomposed into this basis;

δnP
i (q) = δnP

x(q) ûx
i +δnP

y(q) ûy
i , (5.15a)

δmP
i (q) = δmP

θ (q) ûθ
i +δmP

φ (q) ûφ

i , (5.15b)
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where the scalar coefficients are given by

δnP
x(q)=δnP

i(q) ûi
x, (5.16a)

δnP
y(q)=δnP

i(q) ûi
y, (5.16b)

δmP
θ (q)=δmP

i(q) ûi
θ , (5.17a)

δmP
φ (q)=δmP

i(q) ûi
φ . (5.17b)

Substituting eqs. (5.15) into eq. (5.8) and expanding gives an expression for the spatial
correlation function as a sum of scalar integrals over the sphere,

Γ
P
i j(Θ) = ûx

i ûθ
j

∫

S2
dΩq δnP

x(q)δmP
θ (q) (5.18a)

+ ûx
i ûφ

j

∫

S2
dΩq δnP

x(q)δmP
φ (q) (5.18b)

+ ûy
i ûθ

j

∫

S2
dΩq δnP

y(q)δmP
θ (q) (5.18c)

+ ûy
i ûφ

j

∫

S2
dΩq δnP

y(q)δmP
φ (q) . (5.18d)

In fact, it can be shown that for any correlated vector field on the sphere which is
statistically invariant under both rotations and parity transformations the y-θ and x-φ terms
(i.e. (5.18b) and (5.18c)) vanish. These terms can also explicitly be shown to vanish for
each GW polarization considered individually in Sections 5.1.1 to 5.1.4 below. Therefore,
remarkably, the full spatial correlation matrix is always fully specified by just two real-valued
functions, and may be written as

Γ
P
i j(n,m) = Γ

P
xθ (Θ) ûx

i ûθ
j +Γ

P
yφ (Θ) ûy

i ûφ

j , (5.19)

where Θ = arccos(n ·m), the unit vectors are defined in terms of ni and mi in eqs. (5.13) and
(5.14) and the functions ΓP

xθ
(Θ) and ΓP

yφ
(Θ) are defined as the integrals in terms (5.18a) and

(5.18d) respectively. This result is the equivalent of eq. (71) in [76].
One advantage of the decomposition of the spatial correlation matrix in eq. (5.19) is that

the functions ΓP
xθ
(Θ) and ΓP

yφ
(Θ) have the clear interpretation as the scalar correlations of

the “parallel” and “perpendicular” components of the astrometric deflection. Here “parallel”
means tangent to the geodesic linking the two points, and “perpendicular” means pointing to
the left of this curve; see Fig. 5.1.

It is well known that any vector field vi on the sphere admits a unique Helmholtz
decomposition into gradient and curl parts; vi = ∇i φ +(∇∧)i ψ , where ∇ is the surface
gradient on the sphere, (∇∧) = r∧∇ is the surface curl, and φ and ψ are scalar fields on the
sphere. Another advantage of the spatial correlation matrix in eq. (5.19) is that the functions
ΓP

xθ
(Θ) and ΓP

yφ
(Θ) govern the statistical properties of the gradient and curl parts respectively.

By comparing components, it can be seen that the ΓP
xθ
(Θ) and ΓP

yφ
(Θ) terms in eq. (5.19) are
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Fig. 5.2 The astrometric and redshift correlations as a function of angular separation on
the sky in a background of tensorial, transverse-traceless GWs (i.e. + and ×). The well
known Hellings–Downs curve, H (Θ), determines the redshift correlations and is shown
here with the usual normalization limΘ→0 H(Θ) = 1/2 due to the presence of the pulsar term
in eq. (3.17). The astrometric correlations are similarly determined by a single function,
T (Θ), which is shown with the normalization T (0) = 1 as there is no star term in eq. (3.20).
The function T (Θ) is the astrometric analog of the Hellings–Downs curve. The function
P(Θ) is the redshift-astrometry analog of the Hellings–Downs curve and is introduced and
discussed in Section 5.2. Figure appeared in [60].

exactly the general divergence and curl kernels Ψdiv and Ψcurl defined in [100]. A random
vector field described by spatial correlation matrix with Γyφ = 0 will be a pure divergence,
and a vector field described by correlation matrix with Γxθ = 0 will be a pure curl.

5.1.1 Tensorial Transverse-Traceless Polarizations

This section considers the astrometric correlations arising in a background of just the two
GR polarization modes; i.e. P ∈ {+,×}. This calculation was considered previously in [76],
here this result is reproduced within the framework outlined in the previous section.

In Appendix B it is shown how to evaluate the integrals Γ
+
xθ

, Γ
+
yφ

, Γ
×
xθ

, and Γ
×
yφ

defined in
eq. (5.8). Following eq. (5.7), the spatial correlation matrix in a background with multiple
polarizations is the sum of the individual spatial correlations, so Γ

+,×
xθ

(Θ)=Γ
+
xθ
(Θ)+Γ

×
xθ
(Θ),

and similarly for Γ
+,×
yφ

(Θ). Remarkably, these two functions turn out to be equal in this
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Fig. 5.3 A random realization of the astrometric deflection field for a background of tensorial
+ and × waves. The position of each star is recorded twice, separated by a time ∆t. These
two position are shown here (in Mollweide projection) at the foot and head respectively of
each arrow. The length of each arrow is proportional to the total power in the GW background
at frequencies f < 1/∆t. The length of the arrows has been greatly scaled up here for clarity.
Figure appeared in [60].

particular case,

T (Θ) = Γ
+,×
xθ

(Θ) = Γ
+,×
yφ

(Θ) =
2π

3
− 14π

3
sin2(Θ/2)−8π

sin4(Θ/2)
1− sin2(Θ/2)

ln(sin(Θ/2)) .

(5.20)

Throughout this section all correlation functions are written in terms of sin(Θ/2). Therefore,
the correlated astrometric deflection field generated by a Gaussian, stationary, isotropic,
unpolarized GW background in GR is fully specified by a single real-valued function of the
angular separation on the sphere, T (Θ).

This function ought to be compared to the corresponding result for Pulsar Timing. The
spatial correlation between the redshift at two different points on the sky is given by the
well-known Hellings-and-Downs curve [101],

H (Θ) =
1
2
(1+β )− 1

4
sin2(Θ/2)+3sin2(Θ/2) ln(sin(Θ/2)) , (5.21)

where β = 1 for co-located pulsars and is zero otherwise. The standard PTA normalization
is limΘ→0 H (Θ) = 1/2; the β in eq. (5.21) comes from the expectation of the pulsar terms
in eq. (3.17) which is non-zero only for the autocorrelation. In the astrometric case there
are no star terms (see eq. (3.20)), so in the case of a total time correlation (T (t, t ′) = 1), the
normalization T (0) = 1 can be chosen. Regardless, it is the “shape” of these curves that is
of most interest here.
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Fig. 5.4 The astrometric and redshift correlations as a function of angular separation on the
sky in a background of scalar, “breathing” GWs (i.e. S). The functions which determine
the astrometric correlations (ΓS

xθ
(Θ) and ΓS

yφ
(Θ), see eq. (5.22)) are normalized so that

their maximum is unity. The PTA result for the correlated redshift in eq. (5.23) is plotted,
normalized to 1/2 at Θ = 0. Figure appeared in [60].

The well known Hellings–Downs curve governs the spatial correlation of the redshift
on the sky. Similarly, the function T (Θ) governs the spatial correlation of the astrometric
deflection on the sky. The function T (Θ) can therefore be considered as the astrometric
analog of the Hellings–Downs curve. Both T (Θ) and H (Θ) are shown in Fig. 5.2.

In order to gain a better understanding of what this vector field correlation over the sky
means it is useful to draw a realization of this random process and to plot the result. The
results are shown in Fig. 5.3, and an overview of the procedure used to produce the data in
this plot can be found in Appendix C.

5.1.2 Scalar “Breathing” Polarization

The astrometric correlations arising in a background of transverse scalar GWs (i.e. P ∈ {S})
is considered here. Appendix D shows how to evaluate the integrals ΓS

xθ
and ΓS

yφ
defined in

eq. (5.8); here only the results of these integrals are presented.

Γ
S
xθ (Θ) =

π

3
cosΘ ≡ π

3
− 2π

3
sin2(Θ/2) , (5.22a)

Γ
S
yφ (Θ) =

π

3
. (5.22b)
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Fig. 5.5 A random realization of the astrometric deflection field for a background of scalar
“breathing” S waves. This was produced in the same way as Fig. 5.3. It is clear from the plot
that the astrometric deflection vector field has a random dipole-like structure on the sphere;
the origin of this behavior is the fact that ΓS

yφ
(Θ)≡ constant, and the astrometric deflection

at any two points on the sky are perfectly correlated. Figure appeared in [60].

Again, this should be compared to the PTA result for the redshift correlation in a stochastic
background of “breathing" GWs. This was derived by [70] as

corr(Θ) =
1
2
(1+β )+

1
2
− 1

4
sin2(Θ/2) , (5.23)

the variable β is defined just after eq. (5.21). All three of these functions are plotted in
Fig. 5.4.

The most surprising aspect of astrometric correlation is the result for ΓS
yφ
(Θ); the “per-

pendicular” components of the astrometric deflection at any two points on the sky are always
perfectly correlated. This is an extremely strong constraint which any allowed realizations
of the vector field must obey. The interpretation of this becomes clearer when a random
realization of the correlation is drawn; this is shown in Fig. 5.5.

The random realizations of the astrometric deflections plotted in Figs. 5.3 and 5.5 are
qualitatively different. The transverse traceless polarisations of GR produce a distinctive curl-
like pattern at large angular scales, whereas the transverse-trace (or scalar) mode generates a
dipole-like structure on the sky. The polarization content of the stochastic GW background
determines the spatial correlations among the astrometric deflections. If Gaia, or some other
future astrometry mission, is able to measure the stochastic pattern of astrometric deflections
due to a background of GWs, the measured correlations will encode details of the polarization
content of the background and thereby enable a test of GR.
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5.1.3 Vectorial Polarizations

After analysing the tensorial modes and the scalar “breathing" mode, it is interesting to
consider the astrometric correlations arising in a background of just the two vectorial po-
larization modes; i.e. P ∈ {X ,Y}. These calculations have an additional complication over
those in the preceding sections as the vectorial polarizations have a longitudinal component
which introduces a singularity into the “Earth term”-only redshift and astrometric responses
(see eqs. (3.17) and (3.20)). In the case of the redshift correlation, as was found in [70], this
means the correlation curve diverges at Θ = 0;

Γ
X,Y
z (Θ) =−28π

3
+

32π

3
sin2 (Θ/2)−8π ln(sin(Θ/2)) . (5.24)

This result is plotted in Fig. 5.6. The divergence at the origin is a result of the use of the
“Earth term”-only redshift response. If the “star term” is included the result becomes finite,
and the correlation depends on the distance to the star. When including the star term the
integration must be performed numerically; the results of this numerical integration are also
shown in Fig. 5.6 for two pulsars at distances of 100 and 200 gravitational wavelengths
respectively.

In contrast, the divergence in the astrometric response is of a logarithmic nature (i.e., of the
type

∫
dx f (x)/x), and is regularized by the integral over the sky. This means that the resulting

correlation curve is non-divergent, even though the two individual astrometric responses
do diverge. Appendix E discusses how to evaluate the integrals ΓX

xθ
, ΓX

yφ
, ΓY

xθ
, and ΓY

yφ

analytically. Following eq. (5.7), the spatial correlation matrix in a background with multiple
polarizations is the sum of the individual spatial correlations: Γ

X,Y
xθ
(Θ) = ΓX

xθ
(Θ)+ΓY

xθ
(Θ),

and similarly for Γ
X,Y
yφ
(Θ). Again, these two functions turn out to be equal:

Γ
X,Y
xθ
(Θ) = Γ

X,Y
yφ
(Θ) =

4π

3
+

8π

3
sin2(Θ/2)+8π

sin2(Θ/2)
1− sin2(Θ/2)

ln(sin(Θ/2)) . (5.25)

This vectorial astrometric correlation function is also plotted in Fig. 5.6.

5.1.4 Scalar “Longitudinal” Polarization

The scalar longitudinal mode, on the other hand, is more interesting, as in this case the “Earth
term”-only astrometric correlation curves do diverge at Θ = 0. These functions are given by
(see Appendix F for details of the evaluation of the relevant integrals, and Fig. 5.7 for plots
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Fig. 5.6 The astrometric and redshift correlations as a function of angular separation on the
sky in a background of vectorial GWs (i.e. P ∈ {X ,Y}). The function which determines the
astrometric correlation (ΓX,Y

xθ
(Θ) = Γ

X,Y
yφ
(Θ), see eq. (5.25)) is normalized so that its maximum

is unity. The numerical redshift result (for pulsars at distances (100λGW,200λGW)) for the
correlated redshift is plotted (normalized to 1/2 at Θ = 0) along with the divergent result from
eq. (5.24). Figure appeared in [60].

of the two functions)

Γ
L
xθ (Θ) =− 10π

3
+

8π

3
sin2(Θ/2)−2π

ln(sin(Θ/2))
1− sin2(Θ/2)

, (5.26a)

Γ
L
yφ (Θ) =− 4π

3
−2π

ln(sin(Θ/2))
1− sin2(Θ/2)

. (5.26b)

Similarly to vectorial redshift correlation, the divergence is a result of using the “Earth term”-
only astrometric response in eq. (3.20). If instead, the full astrometric response in eq. (3.19)
is used the correlation is finite, although the integrals need to be evaluated numerically in this
case (see Appendix F.1 for details). When using the full astrometric response, the correlation
curves depend on the distance to the stars; two such curves are shown in Fig. 5.7 for stars at
distances of 100 and 200 gravitational wavelengths.

One conclusion which can be drawn from the curves in Fig. 5.7 is that that for a
longitudinally-polarized GW background there are only strong astrometric correlations be-
tween stars at small angular separations. This is in marked contrast to the GR case of a
tensorial {+,×} background, where correlations of order unity persist at all angular scales.

In order to better understand the behaviour at Θ = 0, it is useful to consider the full
(non-divergent) correlation including the distances to the stars at the point Θ = 0. At this
point the full integral can be evaluated analytically, giving a correlation which is a function
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Fig. 5.7 The astrometric and redshift correlations as a function of angular separation on the sky
in a background of scalar longitudinal GWs (i.e. L). The numerical curves which determine
the astrometric correlation (Lxθ (Θ) and Lyφ (Θ), see Appendix F.1) are normalized so
that their maximum is unity; the two analytical divergent curves ΓL

xθ
(Θ) and ΓL

yφ
(Θ) (see

eq. (5.26)) are also plotted. The numerical redshift result for the correlated redshift is plotted,
normalized to 1/2 at Θ = 0. Figure appeared in [60].

of just the distances dn and dm to the two stars. This function quantifies the cross-correlation
of the deflections of two stars which appear at the same point on the sky, but are separated in
distance by many gravitational wavelengths. A plot of this function is given in Fig. 5.8 and
an explicit expression for it is given in Appendix F.2.

5.2 Redshift-Astrometry correlations

As discussed above, a stochastic background of GWs can, in principle, be detected by both
pulsar timing or astrometric measurements. However, improved sensitivities can be obtained
by combining these two techniques. In addition to the straightforward increase in signal to
noise that comes with the increased amount of data, there is an additional benefit that comes
from now being able to search for GWs in the cross-correlation between the two data sets. It
is this redshift-astrometric correlation which is considered here.

As described above, an isotropic, unpolarized background of GWs causes a correlated
redshift pattern on the sky. The correlation at two points on the sky is described by a single
real-valued function of the angular separation (H (Θ), see eq. (5.21) and Fig. 5.2) known as
the Hellings–Downs curve [101]. This result is a very robust prediction within GR; it depends
only on the existence of the two polarizations predicted by the theory and the homogeneity
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Fig. 5.8 Surface plot of the astrometric longitudinal correlation at Θ = 0, given by ΣL(dn,dm)
for dm ≥ dn (see eq. (F.8) in Appendix F.2 for the precise expression. The two distances are
expressed in terms of gravitational wavelengths. A dot marks the point (dn,dm) = (100,200),
which is used for computing the numerical integral in Fig. 5.7. Figure appeared in [60].

and isotropy of the universe on scales comparable to the distance to the GW sources. It does
not depend on the dynamics of the individual sources generating the background. Detection
of a Hellings–Downs correlated redshift pattern via pulsar timing would be clear evidence
for a stochastic GW background.

Similarly, a background of GWs causes a correlated astrometric deflection pattern on
the sky. This correlation pattern is also fully specified by a single real-valued function of
the angular separation (T (Θ), see eq. (5.20) and Fig. 5.2) which was first derived in [76],
although not in the current form. This is the astrometric analog of the Hellings–Downs
curve; it is a similarly robust prediction of GR and detection of this pattern via astrometric
measurements would provide similarly clear evidence for a stochastic GW background.

Additionally, there is a correlation between the redshift and astrometric deflection. The
redshift of a pulsar in direction n is correlated with the astrometric deflection of a star in
direction m, δmi = δmθ ûθ

i +δmφ ûφ

i , via

〈
z(n)δmi(m)

〉
∝

∫
dΩq z(n)δmi(m)

∝

∫
dΩq z(n)

(
δmθ ûθ

i +δmφ ûφ

i
)

∝ Γzθ (Θ) ûθ
i +Γzφ (Θ) ûφ

i , (5.27)
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Fig. 5.9 The redshift-astrometric correlations as a function of angular separation on the sky,
given by eqs. (5.28), (5.30), and (5.31) for different polarizations. The numerical result
for the scalar longitudinal correlation is plotted too (see Appendix F.1). All functions are
normalized so that their maximum is unity. Figure appeared in [60].

where Θ = arccos(n ·m). General considerations again show that Γzφ always vanishes. For
a GW background of + and × waves the remaining function evaluates to

P(Θ) = Γ
+
zθ
(Θ) =

8π

3
sin(Θ/2)cos(Θ/2)+8π

sin3(Θ/2)
cos(Θ/2)

ln(sin(Θ/2)) . (5.28)

The basis vectors ûθ
i and ûφ

i are defined in Section 5.1 and illustrated in Fig. 5.1. From
eq. (5.27) it follows that the redshift of a pulsar is correlated with the “parallel component”
of the astrometric deflection of a star, and is uncorrelated with the “perpendicular component”
(see Fig. 5.1 for an illustration of the geometric setup).

Furthermore, the correlation between a pulsar and the response from a ×-polarized GW

vanishes,

Γ
×
zθ
(Θ) = Γ

×
zφ
(Θ) = 0; (5.29)

therefore the entire correlation between the redshift of a pulsar and the astrometric deflection
of a star for P ∈ {+,×} is governed by P(Θ) in eq. (5.28). This is shown, together with
the other curves relevant to GR, in Fig. 5.2, and with the other redshift-astrometry curves in
Fig. 5.9.

PTA-astrometry correlations like the one in eq. (5.28) can be found for the other polar-
ization states, too. In particular, the curves can be derived explicitly in the case of scalar
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“breathing" and vectorial modes:

Γ
S
zθ (Θ) =−20π

3
sin(Θ/2)cos(Θ/2)−8π

sin(Θ/2)
cos(Θ/2)

ln(sin(Θ/2)) , (5.30)

Γ
X
zθ (Θ) =

2π

3
sin(Θ/2)cos(Θ/2) , (5.31)

while the correlations ΓS
zφ

, ΓX
zφ

, ΓY
zθ

and ΓY
zφ

all vanish. The scalar longitudinal mode curve
cannot be derived explicitly using this method, and has therefore been computed numerically
(again, only the x−θ correlation is non-zero). Plots of all 4 curves can be found in Fig. 5.9.

Again, the redshift-astrometric correlation pattern is fully described by a single real-
valued function of the angular separation, P(Θ). This is the redshift-astrometric analog
of the Hellings–Downs curve, and is a similarly robust prediction within GR. The three
functions H (Θ), T (Θ) and P(Θ) provide a starting point for searching for a stochastic GW

background using a combination of pulsar timing and astrometric data; H (Θ) describes the
spatial correlations of the redshift over the sky, T (Θ) describes the astrometric correlations,
and P(Θ) describes the cross-correlation between the redshifts and astrometric deflections.
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Resonances in EMRIs
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Resonances in EMRIs

This chapter is adapted from the introduction to [1], which was authored by me in collabora-

tion with Jonathan Gair.

Systems which are expected to produce gravitational waves are those that are accelerating
and exhibit asymmetry in their configuration: for instance a binary [102], a supernova [103],
or a spinning star with a pronounced bulge. Among the range of binary celestial systems, we
focus on the case of a compact object (of several solar masses, usually a stellar-mass black
hole, or a neutron star) gradually spiralling towards a supermassive black hole (typically
between 105 and 1012 solar masses, although the ones of interest to us are between 105 and
107 M⊙, since these generate gravitational waves at frequencies in the range of sensitivity
of LISA [54, 104]). Since the mass m of the compact object is in the range of 100 −102M⊙,
the ratio of the masses is typically ε = m/M ∼ 10−6 to 10−4. Termed extreme-mass-ratio
inspirals (EMRIs), these binaries are expected to radiate gravitational waves with frequency in
the range 10−4 Hz to 10−2 Hz. This fact places them in a position to be likely candidates for
detection by the LISA mission. EMRIs reside near the centres of galaxies (where supermassive
black holes are situated [105]) and clusters of stars and stellar remnants are available for
capture by the black hole. Plenty of scientific effort has been invested into modelling the
evolution of EMRIs [106–109], computing their waveforms [110], predicting the rates and
timescales of inspiral [111, 112], and estimating the parameters of the orbit [106, 113].
Applications of gravitational wave observations of EMRIs to inference on astrophysical
populations [114], cosmology [115] and fundamental physics [116] have also been explored
in detail.

The mass of the compact object in an EMRI is typically at least 4 orders of magnitude
smaller than the mass of the supermassive black hole. This allows us to treat the presence
of the compact body in the background space-time of the central object as a perturbation.
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According to the uniqueness theorem for black holes, they can be uniquely characterised by
three parameters - mass, spin and charge. Since electromagnetic repulsion is much stronger
than gravitational attraction (about 40 orders of magnitude), we can assume that astrophysical
black holes have negligible net charge. Hence, we consider the Kerr metric, where black
holes are described only by their mass and spin. The Kerr space-time is well-known, with a
complete set of integrals of motion, and the geodesics can be characterised by three constants
([117] and Appendix H). For a point mass, the trajectory would be that of a geodesic around
the black hole, but while the point-mass notion is convenient mathematically, it does not
apply in the context of the current problem. Therefore, we need to address the finite size
and mass of the compact object. The deviation from geodesic motion can be quantified by
allowing for the gravitational self-force on the compact object, [118, 119], also known as the
gravitational radiation reaction force, since it is responsible for the gravitational radiation
emission from the object. There is a radiative component of the self-force that leads to
evolution of the orbital frequencies, as well as a conservative component that changes the
instantaneous values of the orbital frequencies. The trajectory can be modelled as a sequence
of geodesics, each one with lower energy than the previous one, and therefore (on average)
closer to the central object. This method is called the osculating element approach [120–122].
Individual orbits are well approximated as geodesics, however the defining parameters of
these geodesics are continuously changing, and this is what shapes the inspiral orbit. This
effect will be visible over a large number of orbits – typically over a timescale of O

(
ε−1).

As the test body progresses along its in-spiral, at certain points two of the three frequencies
of motion will become rational multiples of each other, putting the system into resonance
[123]. While in general the behaviour of the inspiral is well-studied and modelled [124],
during resonance the system exhibits unusual behaviour, accompanied by changes in the
orbital parameters [123]. The evolution of EMRIs during resonances, and their effect on
gravitational wave emission is currently an interesting topic in gravitational wave astronomy
[125].

There are two approaches in the literature that treat the behaviour of extreme-mass-ratio
inspirals on resonance. On one hand is the instantaneous value treatment by [114], with
manifestations in both frequency and phase formalisms, and on the other is the approach
by [123], which separates the timescales associated with the in-spiral into small and large
timescale. We will describe both methods here, but focus on extending the former approach
to higher order, as we anticipate the predictions of the latter to be consistent with the phase
formalism in the former. Developing these formalisms is important for understanding the
problem of resonances in EMRIs, which in turn bears significance for accurate waveform
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modelling of these events. High-quality waveforms are important for tackling the data
analysis challenges which future GW observatories (e.g. LISA) will present.

6.1 The Gravitational Self-force

The geodesic principle of General Relativity dictates that free point particles, traverse time-
like geodesics of the space-time. Unfortunately, while treating bodies in General Relativity
as point masses is mathematically convenient, in reality this approach is far from accurate,
and introduces immense difficulties to the problem we are considering. As the size R of a
body is scaled down to 0, its mass M should decrease accordingly, scaling to 0 at the same
time as the size of the body [126], otherwise a black hole solution would form before the
point-limit of the body is reached. We can account for the finite size and mass of the body if
we consider the effect of these on the deviation from geodesic motion. At leading order, we
ignore the presence of the space-time generated by the compact object in the background
space-time, and in this idealised system, the test body follows a time-like geodesic, whose
shape can be accurately computed (see Appendix I and Figure I.1 for details). The next order
accounts for the non-infinitesimal size and mass of the object, and this causes a deviation
from the geodesic motion described above. We quantify this phenomenon by introducing the
gravitational self-force, responsible for the inward spiral of the compact object [118, 123].
This force is at the same time responsible for dissipating the energy made available by the
inspiral motion in the form of gravitational radiation.

A proper treatment of the gravitational self-force is not the objective of this work.
The reader may wish to consult [127], as well as the more concise review [128]. Further
recommended reading is [118] and [129], or the more mathematical approach described in
[126].

In the context of this work, it is worth knowing that since the self-force is the perturbation
in the mass parameter to the geodesic, its leading order dependence on the mass of the test
body is linear. Further, the self-force will depend on the shape of the orbit, which for the
Kerr space-time is specified by three constants of the motion, for example the energy E ,
the 3rd component of the angular momentum Lz, and Carter’s constant, Q. Furthermore,
the individual components of this self-force will depend on the position of the test body
along the orbit, specified, for example, by the action-angle coordinates qα , where the
index α ∈ {t,r,θ ,φ} (this implies there are 4 separate action-angle coordinates, with 4
corresponding components of the self-force. In fact, only 3 of these force components are
independent, as can be verified by differentiating the condition gαβ uαuβ = 1 with respect
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to the proper time τ to obtain uαaα = 0 [121]). With this in mind, we can assume that the
linear order gravitational self-force can be written in the form [128, 130]

aα =
d2xα

dτ2 = ε Fα(q,J), (6.1)

where ε = m/M is the ratio of the compact object mass to the mass of the supermassive black
hole, and the vector J contains the three constants of motion defining the shape of the orbit.
The values of q and J in general depend on the way the orbit evolved before the moment at
which they are computed. Thus, it can be regarded that the instantaneous self-force is in fact
given by an integral over the past history of the orbit.

6.2 Orbital resonances

We already reasoned why the gravitational self-force depends on the shape of the orbit, i.e.
the values of the three constants of motion in the Kerr metric. These quantities can be mapped
to the three fundamental frequencies of orbital motion {ωr,ωθ ,ωφ} [131]. Therefore, instead
of eq. (6.1), we can write the expression for the self-force as ε F(q,ωωω). The fundamental
frequencies are another valid way to label orbits of the Kerr space-time, and can be used
in lieu of the geodesic constants of motion. It should be noted that the reverse substitution,
from ωωω to J is not always possible, on the account of the isofrequency pairs exhibited by
the proper time frequencies [132]. For the discussion in this Chapter, we can assume local
invertibility, however it should be noted that this is not universal.

The three fundamental frequencies evolve independently according to their equations
of motion. However, at certain points along the trajectory, two of the frequencies will
become commensurate, and the system will temporarily exhibit a qualitatively different
behaviour, a resonance, with a reduced number of degrees of freedom. Since the Kerr metric
(Appendix G and Figure G.1) does not depend explicitly on the azimuthal angle φ , the
corresponding fundamental frequency ωφ is not relevant for any resonant motion. While the
azimuthal frequency is trivial, the radial and the polar frequencies will have independently
varying values along the in-spiral. Resonance occurs when these two frequencies become
commensurate with each other, or, in more formal terms, when their ratio is a rational number
[133]:

ωr

ωθ

=
nθ

nr
, {nr,nθ} ⊂ Z. (6.2)
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During resonance, the apparent effect of the self-force on the orbit is modified, in particular
there is a fractional change of order O

(
ε0) to the dynamics of the in-spiral – the evolution rate

of parameters and the in-spiral rate [123]. A typical EMRI passes through several resonance
points before the two objects merge. Obviously, this complicates the numerical analysis of the
in-spiral, since one has to develop a formalism to account for the occurrence of resonances,
and to quantify the effects these have on the orbital dynamics [123].

In this part of my dissertation, I will first describe the two approaches to resonance
modelling that have appeared in the literature, which were suggested by [134] and [130]. I
will then describe what the differences in the model assumptions are, explain why there is a
preferred case of physical relevance to resonances in EMRIs, and argue that full knowledge
of the self-force is required to robustly identify the most relevant model. I will then extend
the results of [130] to obtain complete results describing the transition through resonance in
that model, at leading order in the mass-ratio.
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Instantaneous frequency approach

This literature review appeared in [1], which was authored by me in collaboration with

Jonathan Gair.

This method is described in detail in [130], although here we will give an outline of the
approach to aid further discussions. As explained above, individual orbits of the compact
object around the black hole can be thought of as tri-periodic geodesics with fundamental
frequencies {ωr,ωθ ,ωφ}. This encourages us to employ the “osculating element” formalism,
where the in-spiral is modelled as a sequence of geodesics, with the constants of motion
continuously evolving as the orbit approaches the black hole, and furthermore, the effect
of the compact body on the trajectory can be treated as a perturbation [120]. Since these
constants of the motion do not change on a given geodesic, at leading order, and only evolve
(continuously) as the object spirals into the supermassive black hole, we can argue that, to
leading order, this effect is driven by the self-force on the object. Hence, we can write the
evolution equation for Jµ = (E ,Lz,Q) as follows:

dJµ

dτ
= ε Fµ(q,J,F)+O

(
ε

2) , (7.1)

where Fµ is a function of the coordinates, the generalised coordinates, and the self-force,
which describes the rate of change of orbital parameters as the object moves along the inspiral.
We argued that the self-force is itself a function of the coordinates and the fundamental
frequencies (see Section 6.2), hence we can write Fµ = Fµ(q,ωωω). Similarly, the action-
angle coordinates of the system evolve proportionally to the fundamental frequencies, with a
correction owing to the self-force:

dqµ

dτ
= ωµ + ε Hµ(q,ωωω)+O

(
ε

2) . (7.2)
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We will not concern ourselves with the precise form of the functions Fµ and Hµ , but rather
will point out that they can be expanded in tri-harmonic Fourier series as discussed above,
which is valid without any loss of generality. ωµ is the instantaneous value of the frequency
at this moment along the trajectory. This is calculated according to eq. (7.1), and the value
is continuously updated to reflect the motion of the body along its inspiral and the effect of
the self-force. Without the self-force, the frequencies will, of course, remain constant, since
the trajectory would be that of a geodesic around the black hole, unaffected by gravitational
wave emission.

Before carrying out the Fourier mode expansion, we recall that a geodesic in Kerr space-
time is uniquely specified by three constants. Instead of the orbital parameters E , Lz, and
Q, we could use the set of fundamental frequencies – the radial frequency, ωr, the polar
frequency, ωθ , and the azimuthal frequency, ωφ , to specify the geodesics, as these are
constant along a given geodesic. Since these can be mapped to the aforementioned integrals
of the motion [131], we can use these maps to argue that the fundamental frequencies evolve
along the trajectory according to a differential equation of the same form as eq. (7.1):

dωµ

dτ
= ε Gµ(q,ωωω)+O

(
ε

2) . (7.3)

The two orbital frequencies relevant to the occurrence of resonances are the radial and
the polar (lateral) frequencies. As noted previously, the third frequency ωφ , that of azimuthal
motion, does not play a role in the occurrence of resonances due to the axisymmetric nature
of the Kerr space-time. We use this property to write a bi-periodic expansion for the function
of the self-force in Fourier modes of the two frequencies {ωr,ωθ}:

dωµ

dτ
= ε ∑

l,m

(
Alm cos

[
(lωr +mωθ )τ

]
+Blm sin

[
(lωr +mωθ )τ

])
+O

(
ε

2) . (7.4)

We can regard this equation as an adiabatic evolution equation – at leading order the terms
on the right-hand side are constant in time since they are taken along the same geodesic,
while the differential on the left-hand side expresses their evolution along the trajectory of
the compact object towards the black hole. Of course, the quantities on the right-hand side
are instantaneous, and their values are constantly updated through the evolution equations.
The sum is over the non-negative integers l and m. The coefficients of the expansion
depend smoothly on the constant parameters of the geodesic. Therefore, we can expand the
coefficients in orders of the mass ratio, and neglect all terms sub-leading in ε .
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Alternatively, instead of using the {ωµ} as the basis for the Fourier expansion, we could
rewrite the evolution equation in terms of the phase angle variables {φµ}. Phase variables
are related to the fundamental frequencies through φ̇µ = ωµ , and since on a geodesic the
frequencies remain constant, φµ =ωµτ . Changing variables from frequencies to phase angles
in eq. (7.4), we arrive at a second-order differential equation:

d2
φµ

dτ2 = ε ∑
l,m

(
Clm cos(lφr +mφθ )+Dlm sin(lφr +mφθ )

)
+O

(
ε

2) (7.5)

Geodesic resonances occur when the two frequencies become commensurate, or, more
precisely, when their ratio is a rational number (eq. (6.2)). Therefore, near resonance the term
(l0 ωr −m0 ωθ ) will approach 0 (for some l0 and m0 and their integer multiples), and the sum
will contain both slowly-oscillating resonance terms, and rapidly oscillating off-resonance
terms. Let us now restructure eq. (7.4) to change variables to ω̄ = l0 ωr −m0 ωθ , which is
small near a resonance. Now the arguments of the oscillating modes on the right-hand side
can be written as a linear combination of ω̄ and {ωµ} (we can use either of them, but choose
ωr for definitiveness):

dω̄

dτ
= ε ∑

l,m

(
Alm cos

[
(lω̄ +mωr)τ

]
+Blm sin

[
(lω̄ +mωr)τ

])
+O

(
ε

2) . (7.6)

Similarly, we can rewrite the phase equation in terms of φ̄ and φr, where φ̄ = l0 φr +m0 φθ

vanishes on resonance:

d2
φ̄

dτ2 = ε ∑
l,m

(
Clm cos

(
lφ̄ +mφr

)
+Dlm sin

(
lφ̄ +mφr

))
+O

(
ε

2) . (7.7)

Let us change variables to absorb the factor of the mass ratio appearing on the right-hand
sides, namely:

ω̂ =
ω̄√

ε
, x̂ =

√
ε τ in eq. (7.6)

and

φ̂ = φ̄ , φ̂r =
√

ε φr, x̂ =
√

ε τ in eq. (7.7).

Using this substitution, eqs. (7.6) and (7.7) become
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Fig. 7.1 Upper panel: the oscillating function sin(γx), for γ = 1,10,100 and 1000. It is
evident that as γ increases, the function oscillates more rapidly, crossing the horizontal axis
more times per unit interval. Middle panel: the integral of the functions in the upper panel,
of the form |(1/γ)(1− cos(γx))|, for the same values of γ . Lower panel: the double integral
of the functions in the upper panel. As we can see, both graphically and analytically, as γ

increases, the maxima of the integrals become smaller, and their amplitude decreases as 1/γ .
This allows us to neglect terms with γ ≳ 103 when compared to terms where γ ∼ 1. Figure
appeared in [1].
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dω̂

dx̂
= ∑

l,m


Alm cos

(
lx̂ω̂ +

mωrx̂√
ε

)
+Blm sin

(
lx̂ω̂ +

mωrx̂√
ε

)
+O(ε) , (7.8)

d2
φ̂

dx̂2 = ∑
l,m


Clm cos

(
lφ̂ +

mφ̂r√
ε

)
+Dlm sin

(
lφ̂ +

mφ̂r√
ε

)
+O(ε) . (7.9)

For any non-zero value of the index m, corrections to the frequency or phase equations are
of the form cos(γx+δ ), which oscillate rapidly owing to the γ ∼ ε−1/2 ∼ 103 factor both on
resonance and away from it (and therefore will average out to zero over the timescales under
consideration — this is illustrated in Figure 7.1). Hence, the correction to the first order
solution of the phase equation is of the form (1/γ2)cos(γx+δ ) and that of the frequency
equation is (1/γ)sin(γx+δ ). These are terms of order ε and ε

1/2, respectively. Hence, we
can perform an expansion to establish that they are corrections of higher order in the mass
ratio and hence can be ignored at the same level as the other higher order in mass ratio terms
that we have omitted. We can therefore consider only terms with m = 0, and relabel the
remaining modes by n, obtaining

dω̂

dx̂
= ∑

n

(
An cos(nx̂ω̂)+Bn sin(nx̂ω̂)

)
+O(ε) (7.10)

d2
φ̂

dx̂2 = ∑
n

(
Cn cos

(
nφ̂
)
+Dn sin

(
nφ̂
))

+O(ε) . (7.11)

We combine the two oscillating modes together, and this introduces a phase to the oscillating
term. This could sometimes be set to 0 by suitable choice of initial coordinates, however
it is not always possible, since the resonance phase depends on the prior evolution of the
binary system. To preserve generality of the problem, we will include it in our equations.
The presence of phase does not complicate the method of solution, only brings in additional
terms, as we will demonstrate later in Section 9. Hence

dω̂

dx̂
= ∑

n
An cos(nx̂ω̂ −δ χn)+O(ε) (7.12)

d2
φ̂

dx̂2 = ∑
n

Bn cos
(
nφ̂ −δψn

)
+O(ε) , (7.13)
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where

An =
√

A2
n +B2

n , Bn =
√

C2
n +D2

n ,

δ χn = arctan
(

Bn

An

)
and δψn = arctan

(
Dn

Cn

)
.

(7.14)

Finally, we split the first term from the sum, n = 0, which is constant (with respect to time or
phase, respectively):

dω̂

dx̂
=A0 cos(δ χ0)+∑

n>0
An cos(nx̂ω̂−δ χn)+O(ε) (7.15)

d2
φ̂

dx̂2 =B0 cos(δψ0)+∑
n>0

Bn cos
(
nφ̂−δψn

)
+O(ε) (7.16)

and make a suitable, final change of variables:

ω =
(
A0 cos(δ χ0)

)−1/2
ω̂

xω =
(
A0 cos(δ χ0)

)1/2 x̂
in eq. (7.15)

and

xφ =
(
B0 cos(δψ0)

)1/2 x̂

φ = φ̂

in eq. (7.16)

to bring the equations to their most simplified form:

ω
′ = 1+∑

n
κn cos

(
nxω ω −δ χn

)
(7.17a)

φ
′′ = 1+∑

n
λn cos

(
nφ −δψn

)
(7.17b)

where κn=(An/A0)sec(δ χ0) and λn=(Bn/B0)sec(δψ0) are in principle known constants,
dependent on the orbital parameters at resonance, prime denotes a derivative with respect
to the rescaled time x and the quantities {δ χi} and {δφ j} are constants. The sums over n

run from 1 to ∞, however we will later consider finite number of modes on the right-hand
side. In order to achieve convergence when solving these equations, we need to make the
assumption that the series {κn} and {λn} follow a power law of the form n−α , with α ≳ 2,
this is discussed in detail in Section 9.1. In this Chapter, we are attempting to find solutions
to eqs. (7.17a) and (7.17b) in increasing order of complexity. It is worth noting that while one



67

of them is a first-order equation, the other is of second order. They derive from equivalent
representations of the geodesics, however the first and second order equations are no longer
equivalent, because they make different assumptions about the expansion of the self-force.

Before proposing the respective solutions, we will focus on presenting an alternative
approach to describing the behaviour of an EMRI near resonance.





8

Two-timescale approach

This literature review appeared in [1], which was authored by me in collaboration with

Jonathan Gair.

An alternative approach to describing the transition of EMRIs through resonances was
first suggested by [134], and is often called the “two-timescale method” since it differentiates
between processes which occur on short (orbital) timescales, and those happening on long
(orbit evolution) timescales. A good overview is offered by [135].

Here we will present this method as described by [136], while it is also advisable that the
reader consults [137], and the original article by [134]. Again, we consider the motion of
a compact object spiralling towards a supermassive black hole, and describe the evolution
in terms of the perturbative parameter, the mass ratio ε . At leading order, we recover the
geodesic equations of motion, as before. At next order, we need to introduce corrections due
to the self-force acting on the compact object, in analogy with eq. (7.1) in the instantaneous
frequency approach:

dJµ

dτ
= ε Iµ(q,F)+O

(
ε

2) (8.1)

While the equations in [137] are presented in terms of the Mino time λ [138], we can map λ

to the proper time τ through a function involving the coordinates of the compact object. We
can absorb this dependence into the functions Iµ on right-hand side of eq. (8.1) and work
in terms of the proper time. As before, we can exchange the integrals of the motion J in
favour of the fundamental frequencies ωωω , since mappings between these exist [131], albeit
not invertable over the entire domain. Further we can implicitly write the self-force as a
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function of the coordinates and their corresponding frequencies (cf. eq. (7.3)) to obtain:

dωµ

dτ
= ε Jµ(q,J)+O

(
ε

2) (8.2)

Similarly, the action-angle variables evolve as per eq. (7.2):

dqµ

dτ
= ωµ (J)+ ε Kµ(q,J)+O

(
ε

2) . (8.3)

We construct the resonant frequency ν̄ = l0 ωr −m0 ωθ , and the corresponding action-angle
variable combination q̄ = l0 qr −m0 qθ . ν̄ is the analogous variable to ω̄ in Section 7, but we
use a different notation here to differentiate between the two methods. Again, we ignore the
third fundamental frequency ωφ , since the motion is axisymmetric. Let J̄ denote the action
conjugate to q̄, which can be mapped to ν̄ . Further, let us rescale the proper time to write
xν =

√
ε τ . We now expand the frequency and coordinate variables in powers of ε:

ν̄ (xν ,ε) = ν̄0 + ε
1/2

ν̄1(xν)+O
(
ε

2) (8.4a)

q̄(xν ,ε) = q̄0(xν)+ ε
1/2 q̄1(xν)+O

(
ε

2) . (8.4b)

Plugging these power laws into the (averaged) evolution equations (8.2) and (8.3) yields the
resonance equations:

dν̄1

dxν

= J̄ (q̄, J̄)+O(ε) (8.5a)
dq̄0

dxν

= ν̄1(xν)+O(ε) . (8.5b)

This relays the leading terms in the expansions (8.4). Further members of the series {ν̄n}
and {q̄n} can be found iteratively by substituting the results from eqs. (8.5) back into the
resonance evolution equations.

In [123], eq. (8.4a) was further simplified by expanding ν̄1 as a series in
√

ε xν . The
leading term is then ν1(xν − x0) for a constant ν1. Proceeding with the two timescale
expansion then yields a result accurate to first order in the resonant modification, {λn},
which agrees with the result obtained from the asymptotic Fourier series approach in [130].
Corrections at higher order in λn, but leading order in mass ratio, cannot be found in this way,
since the assumption of a linearly evolving frequency is only valid close to the resonance
point. The two-timescale approach can be extended to higher order by using a less restrictive
ansatz for ν̄1, which is given implicitly by eqs (23) and (25) in [136]. Explicit solutions
to higher order in the resonant modification at leading order in mass ratio have not been
computed in the two-timescale approach. However, we anticipate that these will agree with
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the phase version of the asymptotic Fourier series approach. The purpose of this work is to
extend previous calculations to higher order in resonant modification and to include multiple
modes in the resonance. To do this we will use the asymptotic Fourier series approach and
this will be the focus for the remainder of this part of my dissertation.





9

Solutions of the resonance equations

This chapter is adapted from [1], which was authored by me in collaboration with Jonathan

Gair. My contribution consisted of deriving the solutions to these equations and testing their

validity numerically.

We are now in a position to solve the instantaneous frequency approach equations that
we derived earlier in Section 7. Evolution of the action-angle coordinates according to
the instantaneous frequency of the system yields the 2 non-linear differential eqs. (7.17a)
and (7.17b), both of them describing the problem from different perspectives. Due to the
constant additive term on their right-hand sides, these equations cannot be solved exactly,
and therefore we need to come up with an alternative approach. In this Section we propose
solutions to these equations in an increasing order of complexity. Solutions for the single-
mode versions of eqs. (7.17) are provided in [130], we will start by re-deriving those to depict
how the order-by-order solution algorithm works. Following this, we relax the assumptions
which have been considered in [130] in order to build up solutions to the generalised source
equations.

9.1 Regime and domain of the variables

Before attempting to solve the resonance equations, we need to specify their domains and any
special limits we are taking. The time parameters x{ω,φ ,ν} range from −∞ to +∞, however
we are interested in the vicinity of x = 0 as this is when resonance occurs, hence where we
have specified the initial conditions. In this notation, −∞ corresponds to times long before
resonance, and +∞ to times when the resonance has had an effect on the orbit. Therefore, in
solving these equations, we will consider definite integrals of the form

∫ x
0 dx̄, where x can

take large positive or negative values. Since the equations are not coupled, and each rescaled
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Fig. 9.1 Visualisation of several types of series for the mode parameters ki = {κi,λi}. For
each of them, we take 4 different values of the initial parameter: k1 = 0.1 ( ), k2 = 0.05
( ), k3 = 0.01 ( ), and k4 = 0.005 ( ). Left panel: Logarithmic progression with base 2,
kn = k1/ log2(n+ 1), which is too slow to satisfy our conditions for convergence. Centre
panel: Power law kn = k1/nα , with α = 2.5, as suggested by [108] (the lower bound is α ≳ 2).
Right panel: Exponential series kn = k1/2n−1. It is expected that in reality, this progression
will start as a power law (centre panel) and will gradually evolve into an exponential series
for large values of n (right panel). This data is represented numerically in Table 9.1. Figure
appeared in [1].

time variable appears in the differential equation for its corresponding quantity, we will drop
the subscripts on x, and will keep track of them by the subject of the equation we are solving.

More attention needs to be devoted to the fractional resonance modifications, κi and λ j,
which are themselves functions of the orbital parameters. As discussed in [130], if these
modifications are of order unity, there can be a qualitative difference in the on-resonance
behaviour, with the possibility of sustained resonances. These were explored in more detail
in [136]. A complete study of the size of on-resonance flux modifications has not yet been
carried out. Some insight on the likely size of these corrections can be obtained by studying
solutions to the Teukolsky equation, which provide a decomposition of the off-resonance
energy flux into different Fourier modes. Such results can be found in [108]. Section I C
of that paper indicates that the size of the terms in this decomposition initially follows a
power law of the form ∼ n−α before eventually falling off exponentially (see Figure 9.1 for
an illustration different rates of fall off). From Fig. 3 of that paper it appears that α ≳ 2
for all n, but as a lower limit in our calculations we will use the value of α = 5/2. [108]
also indicate that the size of the first term in the series is less than unity, and in fact of order
κ1 ∼ λ1 ∼ 0.1. This implies that the resonance is likely to be “weak”, but the Teukolsky
results do not directly give the size of the on-resonance flux change. The size of the resonance
effect was assessed more carefully in [139], who computed the flux change for a number
of different resonances for a few systems and found that the resonant flux change was only
∼ 1% in all cases. This also suggests that κ1 and λ1 are small, typically ∼ 0.01. Based on
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Fig. 9.2 Numerical solution of the equation ω ′ = 1+κ cos(xω), with κ = 0.9, an exaggerated
value is used to demonstrate the notable features of the solution, namely the slope and the
decaying oscillations. The initial condition ω(0) depends on the initial phase of the resonance,
and has been set to 1 here. The line ω(x) = 1+x is plotted (in red dots) for reference. Figure
appeared in [1].

this evidence it seems unlikely that strong resonances will occur in practice and so in this
case we focus on the weak resonance case with κ1 ≪ 1, which will allow us to perform
an expansion in κ1. However, we should note that [139] did not thoroughly explore the
resonance parameter space and so it is still possible that there are regions of parameter space
where strong sustained resonances may exist. If this is possible, it would be very interesting,
as discussed in detail in [136].

Regarding the other relevant parameters, the mass-ratio ε is typically in the range ∼
10−6−∼ 10−3. The quantity ε1/2 is therefore O

(
10−3 −10−1.5). The phases on resonance,

δ χi and δψ j, are constants in the range [0,2π), which depend only on the coefficients of the
Fourier series in eqs. (7.4) and (7.5), and the index n.

9.2 Frequency resonance equation

Consider the generalised frequency resonance equation:

ω
′ = 1+∑

n
κn cos

(
nxω ω −δ χn

)
, (7.17a)

where prime denotes differentiation with respect to the rescaled time parameter xω . Before
attempting to solve this equation in the general case, we consider only the single oscillatory
mode (n = 1, besides the n = 0 mode) on the right-hand side, neglect the phase δ χ1, and as
agreed, drop the subscript on x. The resulting problem is not much simpler to solve, however
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Fig. 9.3 Analytical solution to the frequency equation for |x|< 1. Top panel: The solutions
at each order from 0 to 3 inclusive, plotted as a function of x. Bottom panel: The combined
solution at third order, eq. (9.12). Figure appeared in [1].

it will provide useful insight about the method:

ω
′(x) = 1+κ cos(xω) , (9.1)

where κ ≡ κ1. Inspired by the numerical solution of eq. (9.1), shown in Fig. (9.2), we split
the solution in two parts: the first for the region where the oscillations are still growing, and
the second where the oscillations gradually decay. After we establish appropriate solutions to
eq. (9.1) in each of these regions, we will come up with a way to match them on the boundary
region.

Let us initially look for a solution in the κ|x| ≪ 1 region. That is, find an expansion of
the frequency ω as a function of x in the region immediately around x = 0, in powers of the
fractional resonance modification κ:

ω(x) =
∞

∑
n=0

κ
n
ϖn(x). (9.2)

We remind ourselves that the parameter κ ≪ 1, as per the previous Section. In order to
find explicit forms of the functions {ϖn}, we substitute the expansion (9.2) in eq. (9.1) and
proceed to match terms on both sides. The results we now derive are plotted in Figure 9.3.
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At lowest order, we disregard all terms of O(κ) and higher:

ϖ
′
0(x) = 1 ⇔ ϖ0(x) = x, (9.3)

where it is important to note that the integration has been carried out between 0 and x. Further
terms in the series (9.2) will be reduced by one or more factors of κ ≪ 1, hence we can treat
them as a perturbation to ϖ0(x):

∞

∑
n=1

κ
n
ϖn(x) = κ cos

[
x2 +

∞

∑
n=1

κ
nxϖn(x)

]
. (9.4)

At the next higher order we find the equation for ϖ1(x):

κϖ
′
1(x)+O

(
κ

2)= κ cos
(
x2)+O

(
κ

2) . (9.5)

integrating the right-hand side yields the solution:

ϖ1(x) =
∫ x

0
dycos

(
y2)=

√
2π

2
C

(√
2x√
π

)
, (9.6)

where C(•) is the Fresnel cosine integral (see Appendix J and Figure J.1 for details). At
O
(
κ2), we find:

ϖ
′
2(x) =−

√
π√
2

x sin
(
x2)C

(√
2x√
π

)
. (9.7)

Solving this differential equation (which also involves a simple integration by parts) provides
the solution:

ϖ2(x) =

√
2π

4
cos
(
x2)C

(√
2x√
π

)
−

√
π

8
C

(√
4x√
π

)
− x

4
.

It is obvious that with increasing order the functional form of ϖn(x) become more and
more involved. It will become apparent later on why we do not need solutions at O

(
κ4) and

beyond. However, at third order, we find the following differential equation for the functional
ϖ3(x).
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ϖ
′
3(x) =−π

4
x2 cos

(
x2)C2

(√
2x√
π

)
− xsin

(
x2)

ϖ2(x).

We divide ϖ3 into two parts, ϖ3(x) = ϖ3a(x) +ϖ3b(x), defined via the two differential
equations:

ϖ
′
3a(x) =−π

4
x2 cos

(
x2)C2

(√
2x√
π

)
(9.8a)

ϖ
′
3b(x) =−xsin

(
x2)

ϖ2(x). (9.8b)

Unfortunately, the term ϖ3a(x) above is the only integral in our analysis which cannot be
performed analytically. However, we can proceed by expanding the Fresnel term on the right
hand side for small x and integrating the resulting terms. We then define ϖ3aapprox(x) to be the
terms arising from this integration, given analytically by eq. (9.10). This has the property
ϖ ′

3a(x)−ϖ ′
3aapprox

(x)∼ O
(
x9) and hence ϖ3a(x)−ϖ3aapprox(x)∼ O

(
x10). Finally, we need
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to verify that this is a valid approximation; we can do this by tabulating the function

I (x) =
∫ x

0
dyϖ

′
3a(y) (9.9)

for values of x between −1 and 1, and comparing this with our (approximate) analytical
result for the integral, eq. (9.10). The integrand, both functions, and the residuals of the
approximation are shown in Fig. 9.4.

The term in eq. (9.8b) can be integrated analytically, and the result is given by expression
(9.11). Gathering the above results together, we can write down an approximate solution to
the Frequency equation, which is given in eq. (9.12). We note that this is valid for κ|x| ≪ 1
up to O

(
κ2), while the result for ϖ3(x) is only valid when |x| ≪ 1. Later on, as the need

arises, we will find a solution for ϖ3(x) which is valid in other regimes.

ϖ3aapprox(x) =
33

√
2π

64
C

(√
2x√
π

)
− 33

32
xcos

(
x2)− 11

16
x3 sin

(
x2)

+
7

40
x5 cos

(
x2)+ 1

20
x7 sin

(
x2)

(9.10)

ϖ3b(x) =
√

π

16



√

2
2

cos
(
2x2)C

(√
2x√
π

)
− cos

(
x2)C

(√
4x√
π

)


+

√
π

32



√

6
6

C

(√
6x√
π

)
+

5
√

2
2

C

(√
2x√
π

)
− 1

8
xcos

(
x2)

(9.11)

ω(x) = x+κ

√
2π

2
C

(√
2x√
π

)
+κ

2



√

2π

4
cos
(
x2)C

(√
2x√
π

)
−

√
π

8
C

(√
4x√
π

)
− x

4




+κ
3

ϖ3(x)+O
(
κ

4) (9.12)

Before we continue with our analysis, let us consider the asymptotic value of this solution
in the limit of it’s validity, i.e. for 1 ≪ |x| ≪ κ−1. The non-oscillating part of solution (9.12)
can be written as

ω(x)∼ x+ f (κ). (9.13)
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Fig. 9.5 Graphical demonstration of the validity of solution (9.12). It is evident that the
residuals scale with the value of the resonance modification κ , and for each order n of the
solution, the remainder is of order O

(
κn+1). Figure appeared in [1].
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We see that any constant term in the solution for ω(x) is at least O(κ), rather than O
(
κ0).

To confirm the validity of solution (9.12) we compute the quantities

κn+1 =

∣∣∣∣∣
ωnum −ω(n)(x)

ωnum

∣∣∣∣∣ , (9.14)

where ω(n)(x) is eq. (9.12) restricted only to order n (e.g. ω(1)(x) = ϖ0(x) + κϖ1(x)).
If our solution is correct, then we would find that the fractional error, computed by the
above formula is O

(
κn+1). This scaling is evident in the plot of these functions, shown in

Figure 9.5.
Let us now seek a solution in the region of decaying oscillations, |x| ≫ 1. At lowest

order, the solution is

ω0(x) = x. (9.15)

At higher order, we attempt an ansatz, composed of a constant, a linear term, and a decaying
oscillating term. We allow for three undetermined constants, a1,b1 and c1, as suggested by
[130]:

ω1(x) = a1 +(1+b1)x+
c1

x
sin
[
a1x+(1+b1)x2

]
(9.16)

where the subscript “1" on the slope correction term indicates that it pertains to the solution
ω1(x), as this will change for higher-order solutions. When we substitute this ansatz into the
model eq. (9.1):

ω
′
1(x)∼ 1+κ cos(xω1) , (9.17)

we ignore O
(
x−1) terms and beyond, and use our knowledge of the behaviour of each

separate term to reason about the values of the undetermined constants in eq. (9.18) below.
Using standard trigonometric identities, we can expand the second term on the right-hand
side, as shown explicitly in eq. (9.19) below.

1+b1 +2(1+b1)c1 cos
[
ax+(1+b1)x2

]
+O

(
x−1)∼

∼ 1+κ cos
[

ax+(1+b1)x2 + c1 sin
[
x+(1+b1)x2

]] (9.18)
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b1 +2(1+b1) c1 cos
[
ax+(1+b1)x2

]
+O

(
x−1)∼

∼ κ cos
[
ax+(1+b1)x2

]
cos
[

c1 sin
[
ax+(1+b1)x2

]]

−κ sin
[
ax+(1+b1)x2

]
sin
[

c1 sin
[
ax+(1+b1)x2

]]
(9.19)

At this point we introduce a shorthand notation for the oscillating terms. Please refer to
Appendix K (and the plots in Figure K.1) for details.

Sn(x)≡ sin
[

n
(

ax+(1+b)x2
)]

(9.20a)

Cn(x)≡ cos
[

n
(

ax+(1+b)x2
)]

(9.20b)

Using these, we cast our last equation (9.19) in the form:

b1 +2(1+b1)c1C1(x)+O
(
x−1)∼ κ C1(x)cos

[
c1S1(x)

]
−κ S1(x)sin

[
c1S1(x)

]
(9.21)

Comparing terms on both sides of eq. (9.21), we notice that in order for this identity to hold,
it is necessary that c1 ∼ O(κ). We remind ourselves of the assumption that κ ≪ 1 which
justifies the small angle approximation we used above. Since the range of the sine function is
between −1 and 1, and c1 ∼O(κ)≪ 1, we can safely assume that c1 sin

[
ax+(1+b)x2]≪ 1

for all x and expand both trigonometric terms in eq. (9.21):

b1 +2(1+b1)c1C1(x)∼ κ C1(x)−κ c1S2
1(x) (9.22)

As we only retain the leading order terms in these expansions, we must disregard any O
(
κ3)

or higher terms in our further calculations. Since we exclude them at this stage, such terms
can no longer appear in the final solution for ω1(x). We match the coefficients of the two
O(κ) terms on either side of the relation (9.22): 2(1+b) c1 ∼ κ . Therefore:

c1 ∼
κ

2(1+b1)
. (9.23)

By using the double-angle trigonometric identities on the remaining term on the right-hand
side of (9.22), we find

b1∼−κc1

2
(
1−C2(x)

)
∼−κc1

2
. (9.24)
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Combining this with result (9.23), we establish that b1∼ O
(
κ2), i.e., 0 to linear order. This

result follows solely from the linear independence of the {Cn} terms. While they are not
orthogonal (this can be easily verified by analytical integration), they are linearly independent,
and therefore the coefficients on both sides need to match for eq. (9.24) to hold true. Similarly,
we obtain the revised result c1 ∼ κ/2+O

(
κ3). The additive constant a ≡ ω(0) can be

determined by comparing the limit |x| ≫ 1 of solution (9.12) to the ansatz (9.16) in the
regime κ|x| ≪ 1:

x±κ

√
2π

4
+κ

1
2

sin
(
x2)

x
+O

(
x−2)∼ a+ x+κ

1
2

sin
(
x2)

x
+O

(
κ

3) (9.25)

where on each side there are terms which we have ignored in the respective analysis. We
find that a =±

(√
2π/4

)
κ to linear order, and we can write down the leading-order solution

(9.26) to the frequency equation (for a single oscillatory mode and no initial phase). Note
that here, and for the rest of this work, whenever the symbols ±/∓ are used, the upper sign is
valid for x ≥ 0, and the lower for x ≤ 0. The function in question is thus defined piecewise,
but we will use this notation throughout for brevity.

ω1(x) =±
√

2π

4
κ + x+κ

1
2

1
x

sin
(
x2) (9.26)

Once we have established the suitability of this ansatz, we propose a further trial solution
by adding an extra term to eq. (9.16). It accounts for the terms in eq. (9.24) we ignored when
considering only first-order corrections:

c2

x
sin
[

2
(

ax+(1+b)x2
)]
. (9.27)

The full ansatz can now be written as:

ω2 (x) = a+(1+b2)x+
c1

x
S1(x)+

c2

x
S2(x). (9.28)

We substitute this into the source equation (9.1) and carry out a similar procedure to establish
the new values of the constants, as detailed below. On the left-hand side, we ignore terms of
O
(
x−1) in the derivative:

ω
′
2 ∼ 1+b2 +2(1+b2)c1C1 +4(1+b2)c2C2 , (9.29)
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while on the right-hand side, we need to unpack the argument of the cosine function. Previ-
ously we established that c1 ∼O(κ), and since we expect that the new terms originating from
ω2(x) will match the remaining term in eq. (9.24), we expect c2 ∼ O

(
κ2). This justifies the

further use of the small-angle approximation for the latter two terms. We point out that we
need to ignore non-constant terms of O

(
κ3) in this expansion, as they will not be matched

by a suitable term in the ansatz.

1+κ cos
[
ax+(1+b2)x2 + c1S1 + c2S2

]
∼ 1+κ C1 −κ c1S2

1 −κ c2 S1S2

= 1− κc1

2
+κ C1(x)−

κc1

2
C2(x)+O

(
κ

3)

(9.30)

Matching the coefficients of terms in eqs. (9.29) and (9.30), we obtain the coupled equations:

b2∼−κc1

2
, 2(1+b2)c1 ∼ κ, 4(1+b2)c2 ∼

κc1

2
. (9.31)

These imply that c1 ∼ κ/2+O
(
κ3) and b2 ∼ −κ2/4+O

(
κ4). The last equation above

determines the value of the newly introduced constant c2:

c2 ∼
κc1

8(1+b2)
∼ κ2

16(1+b2)
∼ κ2

16
+O

(
κ

4) . (9.32)

To find the constant a at second order, we need to match this solution to the O
(
κ2) part of

solution (9.12) in the buffer zone where both solutions are valid, as per eq. (9.33). Expanding
(9.12) for x ≫ 1 and the above ansatz for κ|x| ≪ 1 (both to order O

(
x−1) inclusive), we find

that all functional term match on both sides. The constant term is the value of a at second
order,

(
∓√

π/16
)
κ2. Combining these results together, we establish the improved solution

ω2(x), given by eq. (9.34).

√
2π

4
cos
(
x2)C

(√
2x√
π

)
−

√
π

8
C

(√
4x√
π

)
− 1

4
x

∣∣∣∣∣
x≫1

= a− 1
4

x+

√
2π

8
cos
(
x2)+ 1

16
sin
(
2x2)

x2 +O
(
x−2)

(9.33)
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ω2(x) =±
√

2π

4
κ ∓

√
π

16
κ

2 +

(
1− κ2

4

)
x

+κ
1
2

1
x

sin



(
±
√

2π

4
κ

)
x+ x2


+κ

2 1
16

1
x

sin
(
2x2)

(9.34)

At the next order, the task of finding appropriate terms becomes more complicated, since
we need to balance the terms in eq. (9.10). At this order there is a logarithmic trend, as well
as an oscillatory part, hence we propose the following ansatz which reflects the nature of the
solution:

ω3(x) = a+(1+b3)x+ c1
S1(x)

x
+ c2

S2(x)
x

+ c3
S3(x)

x
+d1

S1(x)
x2 +d2

S2(x)
x2 + l ln|x|.

(9.35)

The details of calculating the expressions for these constants are burdensome, hence we have
left them in Appendix L.1. The important message here is that we have still managed to find
a set of terms which satisfy the governing equation (9.1), without conflicting the previous
solutions (i.e. without producing new terms at O

(
κ,x−1)).

To determine the new value of the constant a, we again need to turn to our solution near
the origin. In particular, here we need an expansion of ϖ3(x) for large x. However, we used a
small-x approximation to obtain ϖ3aasymp(x) earlier, which is not valid in the buffer zone where
both solutions (9.12) and (9.35) are valid. We need to go back to the original problem (9.8a),
and instead of expanding in the small-x regime, we expand for |x| ≫ 1 (which is valid when
κ|x|≪ 1). To do this, we expand the Fresnel term on the right hand side of eq. (9.8a) for large
|x|, truncate the series at O

(
x−5) and then compute the integral of this series, the function

ϖ3aasymp given in eq. (9.38). This procedure ensures that ϖ3a(x)−ϖ3aasymp(x)∼ α +O
(
x−4).

The constant α is the asymptotic value of ϖ3a(x)−ϖ3aasymp(x), which may be found by
integrating ϖ3a(x)−ϖ3aasymp(x) from 0 to infinity

α =
∫ xc

0
dyϖ

′
3a(y)−ϖ3aasymp(xc)+

∫
∞

xc

dy
(
ϖ

′
3a(y)−ϖ

′
3aasymp

(y)
)
. (9.36)

The quantity xc is arbitrary, but by choosing a value xc ∼ 1/k1 ∼ 10 we may bound the
value of the second integral by 10−5. Numerical evaluation of the terms on the first line
of eq. (9.36) then give α = ∓0.00991. We deduce that, asymptotically, we may write
ϖ3(x) = α +ϖ3aasymp(x)+ϖ3b(x), with higher-order corrections which scale as x−4.
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Fig. 9.6 Graphical demonstration of the validity of solutions (9.15) – (9.40). The fractional
errors scale with the value of the resonance modification κ . At each order n of the solution,
the remainder is of order O

(
κn+1), as expected. Figure appeared in [1].
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Combining these resulting terms with the ones coming from eq. (9.11), we arrive at the
left-hand side of eq. (9.39). The right-hand side of eq. (9.39) is comprised of the terms in an
expansion of the ansatz (9.35) for small κ|x|.

The terms match nicely as we would expect, apart from the coefficients of sin
(
x2)/x

and cos
(
x2)/x. The reason for this is that to determine these terms accurately we need to

extend the asymptotic solution to the next order in 1/x. At that order we get a term of the
form C1(x)/x3 in the solution, and it is straightforward to deduce that, at leading order, the
coefficient in front of this term is −κ/4. This additional term contributes terms at order κ3

on the right hand side of eq. (9.39) and those terms are π cos
(
x2)/(64x) and −sin

(
x2)/(16x),

which are exactly what is needed to match the terms from the κ|x| ≪ 1 solution on the left
hand side of eq. (9.39).

We can now read off the third-order piece of the coefficient a from eq. (9.39)

a3 =

(
α ±

√
2π

32
±

√
6π

192
±

√
2π

3/2

128

)
κ

3 ≈±0.15255κ
3 (9.37)

The third-order solution ω3(x) is given in eq. (9.40). This is the most accurate solution to the
single-mode, zero-phase frequency equation that we will present. The lack of necessity for
higher order iterations will be explained when discussing the multi-mode frequency equation.

Once we have obtained these solutions, it is worthwhile to investigate their properties
visually. To confirm their validity, Figure 9.6 demonstrates that these solutions are correct at
their respective order by computing the quantities κn(x) defined in eq. (9.14), and showing
graphically that they have the expected magnitudes. Please note we have shown only the
region x> 0, with the region x< 0 being a mirror image of this one.

Figure 9.7 shows how the intercept a, the slope (1− b), and the coefficients of the
oscillating modes {cn} and {dn} vary with the parameter κ .

ϖ3aasymp(x) =±
√

2π

32
ln|x|−

√
2π

64
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(√
2x√
π

)
+

√
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3/2

64
S

(√
2x√
π

)
+

√
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192
C

(√
6x√
π
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− π

32
xsin

(
x2)±

√
2π

64
cos
(
2x2)±

√
2π

128
sin
(
2x2)

x2 − 1
64

cos
(
x2)

x3

− 1
192

cos
(
3x2)

x3 ∓
√

2π

64
cos
(
2x2)

x4 − 3
256

sin
(
x2)

x5 − 3
256

sin
(
3x2)

x5 (9.38)
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kn = k1/ log2(n+ 1) kn = k1/n
2.5 kn = k1/2

n−1

n 0.1 0.05 0.01 0.005 0.1 0.05 0.01 0.005 0.1 0.05 0.01 0.005

2 6.31−2 3.15−2 6.31−3 3.15−3 1.77−2 8.84−3 1.77−3 8.84−4 5.00−2 2.50−2 5.00−3 2.50−3

3 5.00−2 2.50−2 5.00−3 2.50−3 6.42−3 3.21−3 6.42−4 3.21−4 2.50−2 1.25−2 2.50−3 1.25−3

4 4.31−2 2.15−2 4.31−3 2.15−3 3.13−3 1.56−3 3.13−4 1.56−4 1.25−2 6.25−3 1.25−3 6.25−4

5 3.87−2 1.93−2 3.87−3 1.93−3 1.79−3 8.94−4 1.79−4 8.94−5 6.25−3 3.13−3 6.25−4 3.13−4

6 3.56−2 1.78−2 3.56−3 1.78−3 1.13−3 5.67−4 1.13−4 5.67−5 3.13−3 1.56−3 3.13−4 1.56−4

7 3.33−2 1.67−2 3.33−3 1.67−3 7.71−4 3.86−4 7.71−5 3.86−5 1.56−3 7.81−4 1.56−4 7.81−5

8 3.15−2 1.58−2 3.15−3 1.58−3 5.52−4 2.76−4 5.52−5 2.76−5 7.81−4 3.91−4 7.81−5 3.91−5

9 3.01−2 1.51−2 3.01−3 1.51−3 4.12−4 2.06−4 4.12−5 2.06−5 3.91−4 1.95−4 3.91−5 1.95−5

10 2.89−2 1.45−2 2.89−3 1.45−3 3.16−4 1.58−4 3.16−5 1.58−5 1.95−4 9.77−5 1.95−5 9.77−6

Table 9.1 The first 10 terms of the series {kn} for the three different series of interest, for
each of our 4 chosen numerical values: 0.1,0.05,0.01, and 0.005. These were plotted in
Figure 9.1. It should be noted that the numbers in this table are given using the scientific
notation a.bc

d ≡ a.bc×10d . The horizontal lines in the data represent numerical boundaries:
numbers below the first line in a column are smaller than k2

i , and numbers below the second
line are smaller than k3

i . Table appeared in [1].
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
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9.2 Frequency resonance equation 89

The solution can be made more accurate, by adding terms at higher orders, of the form
cnSn(x)/x and d jSn(x)/x2 to the ansatz (9.28). Below we see the general case of having
m oscillatory terms in the trial solution ωm(x), where m could be either a finite number or
infinity:

ωm(x) = a+(1+b)x+
m

∑
j=1

(
c j

S j(x)
x

+d j
S j(x)

x2

)
. (9.41)

We shall discuss later (after we solve the multimode version of the phase equation) why
there is no practical need for solutions beyond third order. If we seek to find lower-order
corrections in O(x−p), we add terms of the form:

∼ 1
xp

m

∑
j=1

(
c(p)

j S j(x)+d(p)
j C j(x)

)
. (9.42)

However, instead of following through with this procedure, we look at extensions of
eq. (9.1) to find the general solution of eq. (7.17a). Initially, we allow for multiple oscillation
modes, each with a different amplitude (parameter κi), and following this, we include a
non-vanishing phase in our calculations.

In the following we will use bold quantities, e.g., ωωω(x), to indicate values of the coef-
ficients in the multiple mode case. We note that these are not vectors, but the scalars that
appear in the multiple mode solution. To solve for the evolution of the frequency resonances,

ωωω
′(x) = 1+∑

n
κn cos(nxω ωωω) (9.43)

we can again look at the problem from two scales: small and large |x|. Near the origin, we
can write down a series expansion similar to eq. (9.2):

ωωω(x) =
∞

∑
m=0

∞

∑
n=0

κ
m
n ϖϖϖm,n(x). (9.44)

Similarly to before, we can derive solutions for n = 0,1:

ϖϖϖ0,n(x) = x (9.45a)

ϖϖϖ1,n(x) =
√

π√
2n

C

(√
2nx√
π

)
(9.45b)
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Further solutions are not going to be pursued, as higher orders of κn (for small n) would be
of the same size as κn for some larger n. Hence, ωωω(x) near the origin can be most completely
written down as

ωωω(x) = x+∑
n

κn

√
π√
2n

C

(√
2nx√
π

)
(9.46)

For |x| ≫ 1, we propose an extended ansatz of the form:

ωωω1(x) = aaa+(1+bbb1)x+∑
n

cccn
Sn(x)

x
(9.47)

with derivative

ωωω
′
1 = 1+bbb1 +∑

n
2n(1+bbb)cccnCn(x)+O

(
x−1) . (9.48)

We substitute this into the governing eq. (9.43) and proceed to match the relevant coefficients
on both sides of this relation. It is important to explain here that the leading order dependence
of each coefficient cccn will be the same as if considering its corresponding mode on its own
(see Appendix L.2 for derivation), with higher-order corrections due to cross-terms emerging
from the cosine term (see Appendix L.3), and therefore cccn ∼O(κn/n)∼O

(
κ1/nα+1). Thus,

each coefficient cccn is smaller than the previous one in the series, and we can expand the
trigonometric terms on the right-hand side, to obtain the form (9.49). Evidently, to be able
to match the constant term bbb on the left-hand side, we need to find a constant term on the
right-hand side too. Such a constant could only arise from the second term on the right-hand
side, in the case n = m, and yields eq. (9.50). The remaining terms must combine to form
an expression for cccn, and we match them using the linear independency of the functions
{Cn(x)}, yielding eq. (9.51). On the right-hand side of this equation, we omitted a pre-factor
of (1+bbb)−1 ∼ 1+O

(
κ2

1
)
, since we know that bbb ∼ O

(
κ2

1
)
.

bbb+2(1+bbb)∑
n

ncccnCn(x)∼ ∑
n

κnCn(x)−
1
2 ∑

n,m
nκn cccmCn−m(x)+

1
2 ∑

n,m
nκn cccmCn+m(x)

(9.49)

bbb ∼− 1
2 ∑

n
nκn cccn (9.50)

cccn ∼
κn

2n
− 1

4n ∑
m, p

mκm cccp δ|m−p|,n +
1
4n ∑

m, p
mκm cccp δ(m+p),n (9.51)
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We now proceed to demonstrate that the second and third terms in the relation (9.51) are
sub-leading compared to the first term, and therefore can be ignored in the final expression.
To do this, we remind ourselves of our assumption that κn ∼ κ1/nα , with α ≳ 2 and substitute
this into our expression for cccn. From the first term we can see that cccn ∼ O(κn/n). Using this,
the formula for cccn can be written down solely in terms of κ1. After applying the action of the
Krönecker delta operators, the second and third terms of eq. (9.51) become

Ξn(κ1) =− κ2
1

8n

∞

∑
p=1

1
(n+ p)α−1 pα+1 δ|m−p|,n (9.52)

and

ϒn(κ1) =
κ2

1
8n

n−1

∑
m=1

1
mα−1(n−m)α+1 δ(m+p),n. (9.53)

We need to inspect and bound each of these terms, in order to show they are sub-leading
compared to the first term in eq. (9.51), κ1/nα+1. In eq. (9.52), we split off the p = 1 term
from the sum, and bound the remaining terms from above by an integral over the index p:

∞

∑
p=1

1
(n+ p)α−1 pα+1 <

1
(n+1)α−1 +

∫
∞

1

dp
(n+ p)α−1 pα+1 (9.54)

We re-scale by writing p = np̃, and the integral becomes:

1
n2α−1

∫
∞

1/n

d p̃
(1+ p̃)α−1 p̃α+1 . (9.55)

We split the integration region in two intervals: from (1/n) to 1, and from 1 to ∞. The first
of the resulting integrals can be bounded as follows

∫
∞

1/n

dp̃
(1+ p̃)α−1 p̃α+1 <

∫
∞

1/n

dp̃
p̃α+1 =

nα −1
α

, (9.56)

while the second one can be solved and the solution expressed in terms of the hypergeometric
function 2F1, independently of the integration variable p̃. We find that the term Ξn(κ1) is
bounded above by (ξi are constants):

Ξn(κ1)<− κ2
1

8n

(
1

(n+1)α−1 +
ξ1

n2α−1 +
ξ2

nα−1

)
∼ κ2

1
nα
. (9.57)
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Considering the term in eq. (9.53), we can find a bound using a similar argument, albeit the
reasoning is slightly longer, as the sum has definite bounds on both ends, and the integrand is
not monotonic for the interval of integration. We strip off the first and last terms of the sum:
(n−1)−α+1 and (n+1)−α−1, respectively. The remainder can be bound from above by an
integral, and a suitable substitution can be applied to obtain:

1
n2α−1

∫ 1−1/n

1/n

dp̃
(1− p̃)α−1 p̃α+1 . (9.58)

We proceed to split the integral for some n> 1, say 2:

∫ 1/2

1/n

dp̃
(1− p̃)α−1 p̃α+1 +

∫ 1−1/n

1/2

d p̃
(1− p̃)α−1 p̃α+1 (9.59)

Each of the two integrals can be bounded as follows:

∫ 1/2

1/n

d p̃
(1− p̃)α−1 p̃α+1 <

1
(1− 1/2)α−1

∫ 1/2

1/n

dp̃
p̃α+1 (9.60a)

∫ 1−1/n

1/2

dp̃
(1− p̃)α−1 p̃α+1 <

1
(1/2)α+1

∫ 1−1/n

1/2

d p̃
(1− p̃)α−1 . (9.60b)

Evaluating these and putting everything back together, we conclude that a bound on the
term (9.53) is given by

ϒn(κ1) =
κ2

1
8n

n−1

∑
m=1

1
mα−1(n−m)α+1

<
κ2

1
8n

(
1

(n−1)α−1 +
1

(n+1)α+1 +
υ1

nα−1 +
υ2

nα+1 +
υ3

n2α−1

)
∼ κ2

1
nα

(9.61)

where υi are constants. We have found that the latter two terms in eq. (9.51) are of the order
of κ2

1/nα . We still need to determine how this compares to the magnitude of the first term in
this result, namely κ1/nα+1:

κ1

nα+1 ≳
κ2

1
nα

⇔ n ≲ κ
−1
1 . (9.62)

We can therefore say that for values of n smaller than κ
−1
1 the second and third terms

are much smaller than the first and can therefore be ignored. For values of n above this limit
all terms are of comparable magnitude. However, this n̄ can be related to the order of the
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parameter κ . Figure appeared in [1].
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Fig. 9.8 Variation of the components of the solution to the frequency resonance equation for
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parameters {κi}:

κn̄ =
κ1

nα
∼ κ

1+α

1 < κ
3
1 . (9.63)

and so ignoring these higher terms leads to an error smaller than κ3
1 . Therefore, we have

discovered that we are free to ignore the terms discussed above, and in general ignore the
interference between the magnitude of κ1 and the large values of the index n, as long as we
do not concern ourselves with corrections beyond third order. We may write:

ccc(n)1 ∼ κn

2n
. (9.64)

As before, the constant aaa in eq. (9.47) can be determined if we compare our multimode ansatz
to solution (9.46) in the buffer zone where both solutions are valid. This means expanding
(9.46) for large x, and comparing with eq. (9.47) (see eq. (9.67). This suggests that the value
of aaa is:

aaa =±∑
n

κn

√
π

2
√

2n
(9.65)

Our final solution with this ansatz is given by eq. (9.68).
To test the validity of this solution, we devise a test similar to eq. (9.14), but include the

presence of multiple modes in the definition of the quantifier:

κκκ2(m,x) =

∣∣∣∣∣
ωωωnum −ωωω(1)(x)

ωωωnum

∣∣∣∣∣
m

. (9.66)

Here, ωωω(x) is given by eq. (9.68), ωωωnum is the respective numerical solution, and the subscript
m signifies that all equations and solutions have been limited to the first m terms only. In
Figures 9.10 and L.1 we demonstrate graphically the validity of our solution for m =

{2,5,10,20} and in the intervals |x| ≤ 1 and 1 ≤ x ≤ 20, respectively.
We could try to extend this approach further, by naively including S2n(x) terms in the

ansatz. These terms, however, are redundant, as for n ranging from 1 to +∞, the set {2n} is a
subset of {n}, and therefore the latter terms in the sum can be absorbed into the former one.
Thus, eq. (9.47) is the only ansatz we can use for the equation with an infinite number of
modes. Finding higher-order solutions is also complicated by the fact that taking powers of
the infinite sum introduces an increasing number of cross-terms.
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Fig. 9.9 Visual representation of the integral bounds we use in the discussion of the multi-
mode frequency equation. Left panel: Graph of inequality (9.56). Right panel: Graph of
inequalities (9.60a) and (9.60b). Note that these plots show only the integrands, while the
integrals we discuss are given by the area between these curves and the p̃−axis. Figure
appeared in [1].

x+∑
n

κn

√
π√
2n

(
± 1

2
+

sin
(
nx2)

√
2πnx

)
+O

(
x−2)∼ aaa+ x+∑

n

κn

2n
1
x

sin
(
nx2) (9.67)

ωωω1(x) =±∑
n

κn

√
π

2
√

2n
+ x+∑

n
κn

1
2n

1
x

sin
(
nx2) (9.68)

Instead, we return to the single-mode version of the frequency equation and include a
non-zero phase δ χ:

ω
′(x) = 1+κ cos(xω −δ χ) . (9.69)

To find the solution for small |x|, we can expand the cosine term on the right-hand side of the
equation, and proceed in an analogous way to the zero-phase case:

ω
′(x) = 1+κ cos(δ χ)cos(xω)+κ sin(δ χ)sin(xω) . (9.70)

The zeroth-order solution is ϖ0(x) = x, while higher-order solutions will differ from our
previous results. The first-order function can be found from

ϖ
′
1(x) = cos(δ χ)cos

(
x2)+ sin(δ χ)sin

(
x2). (9.71)
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After integrating, we arrive at the following result:

ϖ1(x) =
√

π√
2


cos(δ χ)C

(√
2x√
π

)
+ sin(δ χ)S

(√
2x√
π

)
 . (9.72)

The next-order function obeys the differential equation

ϖ
′
2(x) =−x sin

(
x2 −δ χ

)
ϖ1(x), (9.73)

and its solution is given in eq. (9.84). The third-order function, ϖ3(x) deserves a little more
attention, as was the case for the zero-phase equation. Part of the derivative is again not
integrable analytically, but could be approximated for the cases |x| ≪ 1 and |x| ≫ 1, so we
split the solution in two parts, given in eqs. (9.74) and (9.75).

ϖ3a(x) =−π

4

∫ x

0
dyy2 cos

(
y2 −δ χ

)

cos2(δ χ)C2

(√
2y√
π

)
+ sin2(δ χ)S2

(√
2y√
π

)


(9.74)

and

ϖ3b(x) =−
√

π

4
√

2

∫ x

0
dyysin

(
2y2 −2δ χ

)

cos(δ χ)C

(√
2y√
π

)
+ sin(δ χ)S

(√
2y√
π

)


+

√
π

8

∫ x

0
dyysin

(
y2 −δ χ

)

cos(2δ χ)C

(√
4y√
π

)
+ sin(2δ χ)S

(√
4y√
π

)


+
1
4

∫ x

0
dyy2 sin

(
y2 −δ χ

)
(9.75)

To find a solution for ϖ3a(x), we proceed in an analogous way to the δ χ = 0 case, and take
the appropriate limits of interest of the Fresnel function. For |x| ≪ 1, the expansion is a
polynomial, finding an analytical approximation is straightforward, and the result is given by
eq. (9.85). Hence the third-order solution near the origin is

ϖ3(x) = ϖ3aapprox(x)+ϖ3b(x). (9.76)
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Fig. 9.10 Graphical demonstration of the validity of solution (9.68) for different number of
modes. Here the coefficients {κn} follow the power law κ1/n2.5. The fractional errors scale
with the value of the primary resonance modification κ1. Figure appeared in [1].
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We also calculate the asymptotic expression for ϖ3a(x), by expanding the Fresnel function
for |x| ≫ 1, the solution is given by eq. (9.86). The additive constant accounting for the value
of the integral at the origin is

α =∓0.00991cos3(δ χ)±0.08018cos2(δ χ)sin(δ χ)

∓0.00185cos(δ χ)sin2(δ χ)±0.03110sin3(δ χ)
(9.77)

The asymptotic expression for ϖ3(x) can be written as

ϖ3(x) = α +ϖ3aasymp(x)+ϖ3b(x). (9.78)

The validity of these solutions can be demonstrated in an analogous way to the zero-phase
case, by computing:

κn+1 =

∣∣∣∣∣
ωnum −ω(n)(x)

ωnum

∣∣∣∣∣ , (9.79)

where ω(n)(x) is the solution to eq. (9.69) for |x| ≪ 1, and ωnum is the respective numerical
solution. Plots of these functions for n = 0, . . . ,3 are given in Figure 9.12. No further
calculations are needed to find the constants {bi,c1,c2,c3,d1,d2, l}, since we can use modified
ansätze which include a phase term in their oscillating factors:

Sn(x)≡ sin
[

n
(

ax+(1+b)x2 −δ χ

)]
(9.80a)

Cn(x)≡ cos
[

n
(

ax+(1+b)x2 −δ χ

)]
. (9.80b)

To establish the constants {ai}, we match the ansatz against the new (asymptotic) solution:

ω(x) = ϖ0(x)+κϖ1(x)+κ
2
ϖ2(x)+κ

3
ϖ3(x), (9.81)

where the last term is the combination of terms (9.78) and α is given by eq. (9.77). The three
separate orders of the constant a as a function of the phase difference δ χ are:

a1 =±
√

2π

4
(
cos(δ χ)+ sin(δ χ)

)
(9.82a)
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Fig. 9.11 Plot of the components of the constant a, and plot of the combined constant for
κ = 0.1 as functions of δ χ . Figure appeared in [1].

a2 =∓
√

π

16
(
cos(2δ χ)+ sin(2δ χ)

)
(9.82b)

a3 =∓0.00991cos3(δ χ)±0.08018cos2(δ χ)sin(δ χ)∓0.00185cos(δ χ)sin2(δ χ)

±0.03110sin3(δ χ)±
√

2π

256
(
cos(3δ χ)− sin(3δ χ)+7cos(δ χ)+7sin(δ χ)

)

±
√

6π

768
(
3cos(3δ χ)+3sin(3δ χ)+ cos(δ χ)− sin(δ χ)

)

±
√

2π
3/2

128
(
cos(δ χ)− sin(δ χ)

)
(9.82c)

The constant a itself is given by

a = a1κ +a2κ
2 +a3κ

3 (9.83)

Plots of these functions are given in Figure 9.11.
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ϖ2(x) =
√

π

2
√

2
cos
(
x2 −δ χ

)

cos(δ χ)C

(√
2x√
π

)
+ sin(δ χ)S

(√
2x√
π

)


−
√

π

8


cos(2δ χ)C

(√
4x√
π

)
+ sin(2δ χ)S

(√
4x√
π

)
− x

4

(9.84)

ϖ3aapprox(x) =

=

(
33cos2(δ χ)− 35

3
sin2(δ χ)

)

√

2π

64


cos(δ χ)C

(√
2x√
π

)
+ sin(δ χ)S

(√
2x√
π

)


− 1
32

xcos
(
x2 −δ χ

)
− 1

48
x3 sin

(
x2 −δ χ

)



+

(
1
5

cos2(δ χ)− 1
9

sin2(δ χ)

)[
7
8

x5 cos
(
x2 −δ χ

)
+

1
4

x7 sin
(
x2 −δ χ

)
]

(9.85)

ϖ3aasymp(x) =±
√

2π

32
(
cos3(δ χ)+ sin3(δ χ)

)
ln|x|

∓
√

2π

64
sin(2δ χ)

(
cos(δ χ)− sin(δ χ)

)(
x2 +

3
4x2

)

−
√

2π

64


cos3(δ χ)C

(√
2x√
π

)
+ sin3(δ χ)S

(√
2x√
π

)


− 3
√

2π

128
sin(2δ χ)


cos(δ χ)S

(√
2x√
π

)
+ sin(δ χ)C

(√
2x√
π

)


+

√
2π

3/2

64


cos(δ χ)S

(√
2x√
π

)
− sin(δ χ)C

(√
2x√
π

)


+

√
6π

192
cos(2δ χ)


cos(δ χ)C

(√
6x√
π

)
+ sin(δ χ)S

(√
6x√
π

)


− π

32
xsin

(
x2 −δ χ

)

±
√

2π

64

(
1− 1

x4

)(
cos2(δ χ)cos

(
2x2 −δ χ

)
+ sin2(δ χ)sin

(
2x2 −δ χ

))
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±
√

2π

128
1
x2

(
cos2(δ χ)sin

(
2x2 −δ χ

)
− sin2(δ χ)cos

(
2x2 −δ χ

))

− 1
64

1
x3 cos(2δ χ)

(
cos
(
x2 +δ χ

)
+

1
3

cos
(
3x2 −δ χ

))

− 5
128

sin(2δ χ)
cos
(
x2 +δ χ

)

x5 − 3
256

1
x5 cos(2δ χ)

(
sin
(
3x2 −δ χ

)
+ sin

(
x2 +δ χ

))

(9.86)

ϖ3b(x) =

√
2π

32
cos
[
2(x2 −δ χ)

]

cos(δ χ)C

(√
2x√
π

)
+ sin(δ χ)S

(√
2x√
π

)


−
√

π

16
cos
(
x2 −δ χ

)

cos(2δ χ)C

(√
4x√
π

)
+ sin(2δ χ)S

(√
4x√
π

)


+

√
6π

192


cos(3δ χ)C

(√
6x√
π

)
+ sin(3δ χ)S

(√
6x√
π

)


+
5
√

2π

64


cos(δ χ)C

(√
2x√
π

)
+ sin(δ χ)S

(√
2x√
π

)
− 1

8
xcos

(
x2 −δ χ

)

(9.87)

ω3(x) =

=
(
a1κ +a2κ

2 +a3κ
3)+

(
1− κ2

4

)
x+κ

1
2

1
x

sin


(a1κ +a2κ

2)x+
(

1− κ2

4

)
x2 −δ χ




+κ
2 1

16
1
x

sin
[
2
(
a1κ x+ x2 −δ χ

)]
+κ

3 1
x

(
3

32
sin
(
x2 −δ χ

)
+

1
96

sin
[
3
(
x2 −δ χ

)]
)

∓κ
2
√

2π

16
1
x2 sin

(
a1κ x+ x2 −δ χ

)

±κ
3

(√
π

64
1
x2 sin

(
x2 −δ χ

)
−

√
2π

64
1
x2 sin

[
2
(
x2 −δ χ

)]
+

√
2π

32
ln|x|

)
. (9.88)

A more rigorous derivation of this result is presented in Appendix L.4. This paves the
way for finding a solution to the general equation with an infinite number of modes.

Before we proceed with this, we check graphically the validity of solution (9.88). Fig-
ure 9.12 depicts the fractional errors κ4(x) for the usual values of κ , and for 4 different
values of the initial phase offset.
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Fig. 9.12 Graphical demonstration of the validity of solutions ϖ0(x) = x, (9.72), (9.84), and
(9.76). In each plot we have used κ = 0.1. It is evident that the fractional errors scale with
the value of the resonance modification κ , and for each order n of the solution, the remainder
is of order O

(
κn+1). Figure appeared in [1].
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Finally, we consider the multi-mode frequency equation with a non-vanishing initial
phase:

ωωω
′(x) = 1+∑

n
κn cos(nxω ωωω −δ χn) , (7.17a)

where the array of constants {δ χn} is known and can in principle be computed from the
constants of motion through eq. (7.14). Before proceeding, we elect to write the equation out
in the following more revealing way

ωωω
′(x) = 1+∑

n
κn cos(δ χn)cos(nxω ωωω)+κn sin(δ χn)sin(nxω ωωω) . (9.89)

For small |x|, we find consecutively:

ϖϖϖ0(x) = x (9.90)

and

ϖϖϖ1,n(x) =
√

π√
2n


cos(δ χn)C

(√
2nx√
π

)
+ sin(δ χn)S

(√
2nx√
π

)
 (9.91)

As before, higher-order solutions are not necessary, so we can write the solution for |x| ≪ 1
as

ωωω1(x) = ϖϖϖ0(x)+∑
n

κ
n
ϖϖϖ1,n(x). (9.92)

Next we choose an elaborate ansatz of the form:

ωωω1(x) = aaa+(1+bbb)x+∑
n

cccn
Sn(x)

x
(9.93)

where we note that we neglect terms of O
(
x−2), which correspond to oscillations which die

out quickly with |x|. The derivative of this ansatz is given by

ωωω
′
1(x) = 1+bbb+2(1+bbb)∑

n
ncccn Cn(x). (9.94)

This needs to match the right-hand side of eq. (7.17a). We perform analysis similar to our
earlier discussion on the zero-phase multi-mode version to find the solution (9.97). Note that
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Fig. 9.13 Graphical demonstration of the validity of solution (9.88) for characteristic values
of κ and for sample values of δ χ . Figure appeared in [1].
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the slope correction is still zero at leading order, and we discover that the constants {δ χn}
only appear in the argument of the oscillation modes. The constant aaa is found by comparing
the above ansatz with the |x| ≫ 1 limit of solution (9.92).

aaa =±∑
n

κn

√
π

2
√

2n

(
cos(δ χn)+ sin(δ χn)

)
(9.95)

Validating these solutions can be done in the same manner as earlier, by computing
the quantities analogous to eq. (9.14) and eq. (9.66), but this time incorporating the phase
variable into the checks. These are depicted in Figures 9.14 and L.2. For these figures, we
have assumed that the phases {δ χn} cycle the set {0,π/2,π,3π/2},

δ χn =
(
δ χ1 +(n−1)π/2

)
mod 2π (9.96)

As before, it is very challenging to correctly determine higher-order solutions in terms
of the parameters {κn} as higher order corrections include contributions from cross-terms
between modes, which significantly complicate the analysis. Instead, we will focus on the
more interesting phase resonance equation, where this problem is avoided, and higher-order
solutions can still be found in the multi-mode case.

ωωω1(x) =±∑
n

κn

√
π

2
√

2n

(
cos(δ χn)+ sin(δ χn)

)
+ x+∑

n
κn

1
2n

1
x

sin
(
nx2 −δ χn

)
. (9.97)

This concludes our discussion of the frequency resonance equation. We have produced
a series of solutions with increasing generality, and have provided graphical evidence of
their validity. We note that some results have been intentionally left to the Appendix, since
they are simple extensions of less general cases presented within this Section. We can now
turn our attention to the phase resonance equation and its solutions before summarising our
findings in the Conclusion.

9.3 Phase resonance equation

The phase-resonance equation is derived in Section 7 and makes use of the action-angle
variables {qµ}, instead of the fundamental frequencies {ωµ} to write down the Fourier
modes of the self-force function. In the case of a multitude of modes in this expansion, as
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Fig. 9.14 Graphical demonstration of the validity of solution (9.97) for different number of
terms on the right-hand side and for values of {δ χn} given by eq. (9.96). In all panels we
have used κ1 = 0.1 with consecutive values given by κn = κ1/n2.5. Figure appeared in [1].
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well as a non-vanishing initial phase offset, the equation takes the form

φ
′′(x) = 1+ ∑

n>0
λn cos(nφ −δψn) . (7.17b)

Similarly to our approach to the frequency resonance equation, we examine the case in which
we ignore all higher-order modes beyond the first one (n = 1), and assume a zero initial
phase, so eq. (7.17b) simplifies to

φ
′′(x) = 1+λ cos

(
φ(x)

)
. (9.98)

The equation is again non-linear due to the additive constant, and an analytic solution cannot
be provided in the general case. Instead we employ an iterative approach to establish a series
of solutions in increasing order of the mode parameter λ ≡ λ1 ≪ 1. At first, we ignore the
term involving λ , and seek a solution to the equation:

φ
′′
0 (x) = 1+O(λ ) , (9.99)

which straightforwardly yields the zeroth-order solution to the phase resonance equation in
the current regime

φ0(x) =
x2

2
. (9.100)

Further solutions are obtained by substituting the current solution on the right-hand side
of the source equation (9.98), while on the left-hand side we include this solution plus the
next-order correction. In the general case, we would need to solve the equation (for n ≥ 1)

φ
′′
n (x) = 1+λ cos(φn−1(x)) , (9.101)

where φn(x) is the complete nth-order solution. We apply this iterative technique to find the
first-order correction: we use the function φ0(x) as the source for the next order solution
φ1(x) = φ0(x)+φ(1)(x). That means we write φ0(x) as the argument on the right-hand side,
while on the left-hand side we solve for φ1(x), a combination of the zeroth-order φ0(x) and
the first-order correction φ(1)(x). Throughout our current discussion, we shall use φn(x) to
denote the complete solution to order n, while φ(n)(x) would denote the nth-order correction
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to φ0(x), i.e. φn(x) = φ0(x)+φ(n)(x). Using this, we write:

φ
′′
1 (x) =

(
φ0 +φ(1)

)′′
= 1+φ

′′
(1) = 1+λ cos(φ0) . (9.102)

From this, we find a differential equation for φ(1)(x):

φ
′′
(1)(x) = λ cos

(
x2

2

)
. (9.103)

The details of finding this solution are described in Appendix M.1, here we only quote the
final result:

φ(1)(x) = λ


√π xC

(
x√
π

)
− sin

(
x2

2

)
 . (9.104)

Combining this with φ0(x), we find the complete first-order-in-λ solution to eq. (9.98), given
by (9.105). It is worth explaining that the solution has been rearranged into a form which
is more useful for our discussion later on. More specifically, we have grouped together
terms which oscillate around the value φ(x) = 0 – both (C(·)∓ 1/2) and sin(·) are such
functions (see Appendix J for details about the former). Moreover, we have collected the
terms proportional to x2 and x into a single quadratic term (by completing the square, which
inevitably introduces a further constant, however it is of second order in the mode parameter
λ , and not relevant here). Hence the solution is comprised of a modified (shifted along the
x-axis) quadratic term and a term ρ1 which oscillates around φ = 0, and whose frequency of
oscillations increases with the value of x.

A number of results in this section contain the symbols “±” and “∓”. Similarly to the
discussion of the solutions of the frequency resonance equation, these do not signify two
alternative equations, but rather that the lower signs are valid for x ≤ 0, while the upper signs
hold for x ≥ 0, both part of the same solution.

φ1(x) =
π

2

(
x√
π
± 1

2
λ

)2

+λ


π

(
x√
π

)(
C
(

x√
π

)
∓ 1

2

)
− sin

[
π

2

(
x√
π

)2
]


≡ π

2

(
x√
π
± 1

2
λ

)2

+λ ρ1

(
x√
π

)
. (9.105)
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Fig. 9.15 Evolution of the slope of the phase resonance solutions. The domain of the plot
shows all possible values for the mode parameter: 0 ≤ λ ≤ 1. Upper panel: the evolution
of the slope for all three solutions which have been calculated explicitly in the text. Lower
panel: the individual components which make up the slope function σ3(λ ). Figure appeared
in [1].

It is important to note that for large values of x, the oscillating terms become small, and the
approximate slope of φ1(x) is given by

√
π λ/2. We will see later how this slope evolves

when we add higher-order-in-λ terms, but for now let us denote σ1(λ ) = λ/2, which is the
shift in the position of the leading parabolic term.

Applying the same iterative approach, we use the combined function φ1(x) as the source
for the second-order asymptotic solution φ2(x) = φ0(x)+φ(2)(x), where the second-order
correction φ(2)(x) is comprised both of first- and second- order terms. This notation is
convenient since φ ′′

0 (x) = 1 cancels with the constant term on the right-hand side, and upon
integrating twice, we obtain an expression for φ(2)(x), the complete solution to second order
in λ , only without the zeroth-order quadratic term. On the right-hand side, we substitute the
complete first-order solution, φ1(x) = φ0(x)+φ(1)(x),

φ
′′
(2)(x) = λ cos

(
φ0 +φ(1)

)
. (9.106)



9.3 Phase resonance equation 111

In fact, from eqs. (9.103) and (9.106) we can infer the general form of this differential
equation (for n> 1):

φ
′′
(n)(x) = (φn −φ0)

′′(x) =

= λ cos(φn−1) = λ cos
(
φ0 +φ(n−1)

)
.

(9.107)

The details involved in solving eq. (9.106) are presented in Appendix M.1, together with the
full-form solution. Here, we omit these details, and simply quote the final combined result
φ2(x) = φ0(x)+φ(2)(x) in the form of a modified quadratic term, plus two terms, both of
them O

(
λ 2) that oscillate and remain small for all x.

φ2(x) =
π

2


 x√

π
±
[

1
2

λ −
√

2
4

λ
2

]


2

+λ ρ1

(
x√
π
±σ1(λ )

)
+λ

2
ρ2

(
x√
π

)
. (9.108)

We note some interesting features of this solution. Most notably, the shift in the quadratic
x term has changed from σ1(λ ) = λ/2 to σ2(λ ) = λ/2−

√
2λ 2/4 (and the slope for large

|x| has changed from
√

π σ1(λ ) to
√

π σ2(λ ). The term which is proportional to λ has the
same functional form as the corresponding term in solution (9.105), however we see that
in (9.108) each instance of x/

√
π has been modified by exactly ±σ1(λ ). We also have a

new class of terms, all of which also oscillate around the x-axis, and they are proportional to
λ 2. We will investigate the numerical performance of these solutions after we explore the
next-order solution.

The solutions presented in [130] do not continue further than this order. Since our goal is
to solve the multi-mode equation (7.17b), as a form of sanity check, we would like to present
the solution to third order in the single-mode parameter λ , i.e. the solution to the following
generating equation:

φ
′′
3 (x) = 1+λ cos

(
φ2(x)

)
(9.109)

The solution follows via the same technique as the previous two, and again it is not prac-
tical to present the details of the derivation here. Instead, the reader is invited to consult
Appendix M.1 for the technicalities of the calculation as well as the full solution without
abbreviations. With every successive iteration we obtain new terms, and we have grouped
them together in a similar fashion to before. Here we have terms which are proportional to
λ 3, as well as modified terms, originating from the lower-order solutions. The result (9.110)
is the complete solution to third order, for a single mode with amplitude λ , with vanishing
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initial phase δψ = 0.

φ3(x) =
π

2


 x√

π
±
[

1
2

λ −
√

2
4

λ
2 +

3
√

3−1
16

λ
3

]


2

+λ ρ1

(
x√
π
±σ2(λ )

)

+λ
2
ρ2

(
x√
π
±σ1(λ )

)
+λ

3
ρ3

(
x√
π

) (9.110)

In (9.110), the x-shift of the quadratic term is now

σ3(λ ) =
1
2

λ −
√

2
4

λ
2 +

3
√

3−1
16

λ
3, (9.111)

and consequently, the slope of the graph for large x is given by
√

π σ3(λ ). In fact [130]
numerically computed the change in the slope of the phase solution at λ 3 order:

φ
′
3(x)∼

√
π

2
λ −

√
π

2
√

2
λ

2 +0.4648λ
3 +O

(
λ

4) . (9.112)

As a form of consistency check, we can directly compare this with the (analytically derived)
factor multiplying the λ 3 term in the coefficient of x in eq. (9.110) and confirm that both
numerical values agree:

√
π × 3

√
3−1
16

λ
3 ≈ 0.4648λ

3. (9.113)

Moreover, we can notice a parallel between the terms proportional to λ in each of (9.105)
— (9.110): all three brackets have the same dependence on x, meaning that for λ = 0, they
would be equal. However, in each of them, each instance of x/

√
π is modified by a different

function of the mode parameter λ . Compared to (9.105), each x/
√

π in (9.108) is shifted
by ±σ1(λ ), and in (9.110), it is shifted by ±σ2(λ ). Similar evolution can be noticed in
the terms proportional to λ 2 in (9.108) and (9.110). In the latter, each instance of a term
involving x is shifted by σ1(λ ) compared to the former. While it is hard to predict what
terms at higher order would look like, because the x-dependence cannot be inferred from the
first three solutions, we can nevertheless expect that at fourth order, the term proportional
to λ 3 would look similar to its counterpart in (9.110), with each x/

√
π term modified by

±σ1(λ ), and so on. It is evident that the functions σn(λ ) play an important role in the phase
resonance solutions, and at least in the evolution of the slope of the graph for large |x|. In
Figure 9.15, we plot these functions and present what they look like for different values of λ .
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Fig. 9.16 Plot of the functions φ{1,2,3}(0) as functions of λ . Figure appeared in [1].

Let us investigate the properties of solutions (9.100) — (9.110): each of them contains a
quadratic term of the form π/2(x/

√
π ±σi)

2. Since the magnitudes of the rest of the terms
in each solution scale with λ n, the functions look similar when plotted together, as can be
seen in Figure M.3. It is hard to distinguish them in this plot, unless we zoom in closely on a
region. For example, if we focus on the region around x = 0 we see that while φ0(x) = x2/2
goes through the origin, the rest of the solutions deviate slightly from zero. This is due to
the fact that a perturbative solution of order n is only approximate, and is correct up to a
remainder of O

(
λ n+1). Indeed, if we consider each solution φ{1,2,3}(x) for x = 0:

φ1(0) =
π

8
λ

2,

φ2(0) = π

(
1−

√
2

8
λ

3 +
1

16
λ

4

)
,

φ3(0) = π

(
3
√

3−4
√

2+1
32

λ
4 − 3

√
6−4−

√
2

64
λ

5 +
28−6

√
3

512
λ

6

)

we find that they are indeed of the expected order in each case (see Figure 9.16 for a plot of
these functions). These expressions have further higher order corrections coming from sub-
leading order terms in the expansion of Fresnel cosine integrals (see eq. (J.4b) in Appendix J).
Since these solutions are hard to examine graphically, we need to employ other techniques
to compare the accuracy of the solutions. Specifically, we compare them with a purely
numerical solution of the phase equation.

A simple plot like the lower one in Fig. M.3 shows that our highest-order solution,
eq. (9.110), does indeed compare well — within O

(
λ 4)— to a purely numerical solution

[140]. We need to quantify the comparison between this numerical solution and our analytical
solutions as the mode parameter λ varies.
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Fig. 9.17 Graphical demonstration of the validity of the phase resonance solution for 4
different values of the parameter λ . The remainders {ϑn(x)} are normalised by x in order to
remove the linear trend. It is evident that the remainders scale with the value of the resonance
modification λ , and for each order n of the solution, the remainder is of order O

(
λ n+1).

Figure appeared in [1].
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It is important to demonstrate that each of the corrections φ(n)(x) appropriately captures
all of the behaviour of the solution up to order O(λ n), i.e., that the difference between the
full numerical solution φnum(x) and the correction is of order O

(
λ n+1) at most. To do this,

we employ a technique that allows us to solve numerically for that difference (instead of
naively subtracting each analytical solution from the numerical map, which results in worse
numerical solutions). Consider eq. (9.98) which is our initial source equation:

φ
′′(x) = 1+λ cos

(
φ(x)

)
. (9.98)

As per our recipe, we would substitute the highest-known-order solution φn(x) on the right-
hand side, and solve the equation for the next-order solution φn+1(x). In reality, the solution
we are looking for appears on either side of the equation, and furthermore the functions φ(x)

also contain the orders beyond n which we have so far been ignoring in eqs. (9.101) and
(9.107):

φ(x) = φ0(x)+φ(n)(x)+ϑn+1(x). (9.114)

Here, φ0(x) = x2/2 and φ(n)(x) is the correction to φ0. ϑn+1(x) is the remainder of the
complete solution which is not included into φn(x). We can easily find a generic equation
satisfied by the functions ϑn+1(x) by using expression (9.114) in eq. (9.98) and making use
of eq. (9.98). In general, ϑn+1(x) satisfies the differential equation

ϑ
′′
n+1(x) = λ cos(φn +ϑn+1(x))−φ

′′
(n)(x). (9.115)

For n = 0 we can find directly from the source equation

ϑ
′′
1 (x) = λ cos(φ0(x)+ϑ1(x)) . (9.116)

By solving for ϑn+1(x) and confirming that the result is O
(
λ n+1)∀x we verify that φn(x)

capture the complete O(λ n) behaviour. The plots for ϑn(x)/x (to remove the expected linear-
in-x general trend) are shown in Figure 9.17, where we have performed the computation for
4 distinct values of λ : 0.1,0.05,0.01, and 0.005.

The corrections φ(n)(x) themselves are plotted (for λ (1) = 0.1) in Figure M.4, found in the
Appendix. Similarly, plots of the oscillating functions ρ1(x), ρ2(x), and ρ3(x) can be found
in Figures M.5, M.6, and M.7, respectively, with other relevant discussions in Appendix M.2.
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Fig. 9.18 The third-order correction to the phase resonance equation for different values of
the mode number r. These solutions all have mode parameters λr = 0.1, so the graph only
reflects the effect which the number of the mode has on the solution. Figure appeared in [1].

Before moving on to the case of multiple modes, it is intriguing to look into several other
toy models. So far we have only looked at the resonance equation with a single mode n = 1.
We now consider the same equation, but with the sole mode n = r on the right-hand side.
The leading-order solution is still (9.100).

(
φ
(r)(x)

)′′
= 1+λr cos(rφ) . (9.117)

The explicit solution of the above equation is redundant, since it can be obtained from
eq. (9.98) by setting

φ 7→ φ
(r) = rφ , (9.118a)

x 7→ √
r x. (9.118b)

and therefore its corrections could be obtained from eqs. (9.105) – (9.110) by applying
these transformations. The explicit form of the solutions is presented in Appendix M.3. In
Figure 9.18 we show these solutions (at third order, i.e. complete) for different values of the
mode number r. The modified σ -terms are presented in Figure M.8, while the numerical
validation of these solutions can be found in Figure M.9.

Another toy model which deserves attention is the case of two distinct modes on the
right-hand side:

(
φ
(r,s)(x)

)′′
= 1+λr cos(rφ)+λs cos(sφ) . (9.119)

The leading-order solution is unchanged, while the higher-order corrections are presented in
Appendix M.4. We note that at first order, the correction is just the sum of the corrections
due to each of the separate oscillating modes on the right-hand side. This, however, is not the
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case at higher order, where cross-terms appear. It is important to note that these cross-terms
are not sub-leading to the other quadratic terms in the solution. This is in contrast to the
frequency-resonance equation, where these cross-terms were sub-leading in this respect (see
Appendix L.3). In Figure M.10 we can examine the σ -terms associated with this equation,
while the validity of the solutions is presented in Figure M.11.

Our objective in this and subsequent Chapters is to extend this approach beyond the scope
which has been developed thus far. So far we have explored the solution to third order in
the mode parameter. However, we are still limited to the case of a single mode, and we are
assuming that the initial phase is φ(0) = 0. We now relax the first of these restrictions and
allow for an infinite number of oscillating modes, each with a distinct parameter λi. This
is achieved through allowing for multiple modes in the Fourier expansion, thus lifting the
assumption that the contribution derives primarily from the first Fourier mode.

We derived the phase resonance equation in Section 7. In the regime of an unrestricted
number of oscillating modes, still assuming that the initial phase is 0, the form of the phase
resonance equation is given by (φφφ(x) denotes a solution to the multimode equation)

φφφ
′′(x) = 1+∑

n
λn cos(nφφφ) (9.120)

Similar to the previous equation under consideration, this is a second order non-linear
differential equation, and therefore finding an exact solution is not possible, and a perturbative
solution quickly grows to become heavily involved. For brevity, here we only present the
final solutions, while details about the solutions and relevant discussion are collected in
Appendix M. At zero’th order in the mode parameters {λn}, we ignore any oscillating
terms on the right-hand side, and the resulting differential equation is identical to that in the
single-mode case, eq. (9.99); the solution is obtained by integrating twice:

φφφ
′′
0 = 1 ⇔ φφφ 0(x) =

x2

2
(9.121)

Building onto this result, we construct the equivalent to eq. (9.101), which in the multi-mode
case is now given by

φφφ
′′
m+1(x) = 1+∑

n
λn cos

(
nφφφ m(x)

)
. (9.122)
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Fig. 9.19 Graphical demonstration of the validity of solutions (9.121), (9.124), (M.53), and
(M.55). All these solutions are for λ1 = 0.1, but include numbers of modes. The λ parameters
follow the law λn = λ1/n2.5. Figure appeared in [1].
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We will solve this consecutively for m = 0,1 and 2, and we will obtain the respective
solutions to the phase resonance equation for the multi-mode case. At first instance, we
use φφφ 0(x) = x2/2 as the argument of the trigonometric function on the right-hand side, and
investigate the solution to this equation to first order in {λn}, which will yield the first-order
correction φφφ (1)(x):

φφφ
′′
(1)(x) = ∑

n
λn cos(nφφφ 0) (9.123)

The details of finding the first-order correction can be found in Appendix M.5. Combining
φφφ (1)(x) with (9.121), we establish the complete first-order solution.

φφφ 1(x) =
π

2

(
x√
π
± 1

2 ∑
n

λn√
n

)2

+∑
n

λn

n
ρρρ

n
1

(
x√
π

)
. (9.124)

Here ρρρn
1(x) is an oscillating term proportional to |λ |, equivalent to ρ1(x), and given explicitly

in the Appendix. Compared to (9.121), eq. (9.124) has a modified quadratic term and a part
which oscillates around 0 for all x.

We apply the same technique to find the second-order solution, namely φφφ (2)(x), which
contains terms that are quadratic in the parameters {λn}. Similarly to previous iterations, we
use the current highest-order solution φφφ 1(x) to establish a differential equation for φφφ (2)(x).
The differential equation we want to solve is given by

φφφ
′′
(2)(x) = ∑

n
λn cos

(
nφφφ 1(x)

)
(9.125)

We should remark again that the solution of this equation would yield φφφ (2)(x), the second-
order correction to the quadratic solution. It will contain terms which are first-order in the
mode parameters, as well as other terms which are of second order. This is an artefact of
the method we use for asymptotically establishing higher-order corrections to our source
equation. In practice, we need to solve the equation

φφφ
′′
(2)(x) = ∑

n
λn cos

(
n
(

φφφ 0(x)+φφφ (1)(x)
))

(9.126)

Then, by adding the zero’th order part φφφ 0(x) to the solution of eq. (9.126) we will obtain the
complete solution to second order in {λn}. Solving this equation is rather involved, therefore
it is better to leave the practicalities of obtaining the solution to Appendix M.5. Here we only
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present the final solution:

φφφ 2(x) =
π

2


 x√

π
±
[

1
2 ∑

n

λn√
n
+ ∑

n,m

1
8

(
|n−m|3/2 − (n+m)

3/2
)

λn

n
λm

m

]


2

+∑
n

λn

n
ρρρ

n
1

(
x√
π
±σσσ1

)
+ ∑

n,m

λn√
n

λm√
m

ρρρ
nm
2

(
x√
π

) (9.127)

While the solution to second order is already quite involved, we continued our calculations
and derived the solution to third order, so we can draw a comparison with the single-mode
result eq. (9.110). The generating equation involves the new correction φφφ (3)(x) on the
left-hand side, and the current solution, φφφ 2(x) as the argument on the right-hand side:

φφφ
′′
(3)(x) = ∑

n
λn cos

(
nφφφ 2(x)

)
. (9.128)

The solution is rather long, and hence we have placed it, together with explanations, in
Appendix M.5. The correction at third order is given by eq. (M.55).

After having derived these solutions, it is important to verify their validity numerically,
using the same method as in the single-mode case. The results from this verification are
presented in Figure 9.19, where we have shown that the equation is valid for several different
values of the total number of modes. To depict the effect a larger number of modes has on
the solution, we have used the same initial value of the resonant flux modification λ .

So far we have solved the single- and multi-mode equations up to third order in the
parameters {λn}. It is important to carefully consider these solutions we have obtained thus
far, and evaluate the need for further iterations. Let us investigate the governing equation

φφφ
′′(x) = 1+∑

n
λn cos(nφφφ) (9.120)

and consider those terms for which the small-angle approximation for the trigonometric
functions breaks down:

cos

[
n
(

x2

2
+φφφ (i)(x)

)]
, φφφ (i) = ∑

m

λm

m
(•)+ . . . . (9.129)

This occurs when nλ1 ∼ 1. Therefore, we need to impose a restriction on the upper bound of
n:

n̄λ1 ≪ 1 ⇔ n̄ ≪ λ
−1
1 . (9.130)
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Although the cross-term corrections here are of the same magnitude as the single-mode
solutions, the bound is comparable to that in the frequency equation (cf. eq. (9.62)). We
invoke the coefficient scaling law which we discussed in Section 9.1 to link this to values of
λ1:

λn̄ =
λ1

n̄α
∼ λ

1+α

1 < λ
3
1 (9.131)

for the suggested values of 2< α < 3 [108]. We can therefore argue that beyond that order,
we would not be able to distinguish our solutions, valid in the regime where the small-angle
approximation can be applied, from effects which arise from the violation of this assumption.
For this reason, higher-order corrections cannot be easily calculated without restricting the
total number of modes n. Finally, proceeding beyond third order is pointless since for the
range of values we are investigating, λ 3 ∼ ε

1/2 ∼ O
(
10−3), hence in calculating further

corrections we need to account for terms arising from higher-order mass-ratio corrections.
In this dissertation, I only investigate solutions up to third order inclusive, and disregard
higher-order corrections.

We now return to the original differential equation (7.17b), and again consider a single
mode, however this time we allow for a non-vanishing initial phase δψ ̸= 0

ϕ
′′(x) = 1+λ cos

(
ϕ(x)−δψ

)
. (9.132)

The zero’th-order solution, when we ignore the term proportional to λ on the right-hand side,
is again given by ϕ0(x) = x2/2. To establish first- and higher-order corrections, we proceed
according to the same procedure as before, solving equations of the form:

ϕ
′′
(n+1)(x) = λ cos

(
ϕn(x)−δψ

)
. (9.133)

Using this, we find the first-order solution below.

ϕ1(x) =
π

2

(
x√
π
± 1

2
(
cos(δψ)+ sin(δψ)

)
λ

)2

+λ ρ1

(
x√
π

)
(9.134)

We notice that the new slope ς1(λ ) involves the constant δψ , and that the oscillating term
ρ1 has a different form, now involving a Fresnel sine term too. They reduce to their zero-
phase counterparts for δψ = 0. Following our established algorithm, we can easily derive
the second- and third-order corrections to ϕ0(x). Details of these derivations are left to
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Appendix M.5, here we only present the final results.

ϕ2(x) =
π

2


 x√

π
±


1

2
(
cos(δψ)+ sin(δψ)

)
λ

−
(√

2
4
(
cos(2δψ)+ sin(2δψ)

)
− 1

2
sin(δψ)

(
cos(δψ)− sin(δψ)

)
)

λ
2

]


2

+λ ρ1

(
x√
π
± ς1(λ )

)
+λ

2
ρ2

(
x√
π

)
(9.135)
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It is important to investigate how the slope of these solutions evolves with δψ . At each order
we encounter a different function of the initial phase. Figure 9.20 shows how these functions
behave over the range of δψ . Furthermore, we need to verify that these solutions are valid
for different values of the initial phase. We computed the quantities ϑn(x) for different values
of the initial phase (keeping λ constant) using the same method as before, and show the
results in Figure 9.21.

Finally, we approach the phase resonance equation in the most general regime: including
an infinite number of modes each with a different non-zero phase:

ϕϕϕ
′′(x) = 1+ ∑

n>1
λn cos

(
nϕϕϕ(x)−δψn

)
. (7.17b)
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Fig. 9.20 Upper panel: plots of the functions (of δψ) proportional to λ ,λ 2 and λ 3 in the
slope of solution (9.136). Lower panel: plot of the slope ς3(λ ) as a function of δψ for
λ = 0.1. Figure appeared in [1].

The details of the solution are too lengthy to be presented in enough detail here and can be
found in Appendix M.7: the first-order correction is given by eq. (M.61) and the second-order
correction by eq. (M.62). Upon closer examination these bear the same features of our
previously establishes solutions. Finally, we have established the third-order solution to this
equation, ϕϕϕ3(x). It is important to note that solution (9.137) is the most general solution
to the phase resonance equation that we could find. It allows for multiple modes and a
non-vanishing initial phase, and treats perturbations up to and including third order. The
third-order slope function ςςς3 is given by eq. (M.63) in Appendix M.7. Furthermore, each of
the three corrections are given by eqs. (M.64), (M.65), and (M.66).
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This is the final and most important result. While it is not easily usable in theoretical
calculations, it could find applications in modelling resonances in new kludge waveforms,
as this is not a feature currently implemented. We have provided a solution to the highest
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Fig. 9.21 Graphical demonstration of the validity of the solutions to the phase resonance
equation with a single mode and a non-zero initial phase, eq. (9.132). All these solutions
involve the same λ = 0.1, but have different initial phases δψ . Figure appeared in [1].
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possible order of perturbation, which is important for meaningful numerical simulations.
Furthermore, we have also provided solutions to simplified versions of this problem, which
could be employed in various theoretical calculations regarding EMRIs.





Part III

Conclusions
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Retrospect

This Chapter combines parts of the conclusions to references [79], [60], and [1], all of which

were either written by me, or with my direct contribution.

I was extremely fortunate to start my academic career on the brink of the new era
of gravitational wave astronomy. I shared in the excitement of the announcement on 11
February 2016 with my fellow students, colleagues, and supervisors. This moment marked
the beginning of a whole new direction in astronomical research with a broad scope for future
developments and explorations. Over the course of the past three years I started work on a
number of exciting projects, and the results from two of them have been described in detail
in this dissertation. In this chapter I summarise the progress which has been made so far, and
in the following chapter I present the scope for future developments.

Part I of my dissertation explored how gravitational waves cause the apparent position of
distant objects on the sky to oscillate with a characteristic pattern (see Fig. 3.3 and eq. (3.20)).
In Chapter 3 the change in the apparent position of a star, or astrometric response, caused
by an arbitrarily polarized gravitational wave has been considered and calculated. This
astrometric response depends, in general, on both the metric perturbation at the photon
emission and absorption events at the star and Earth, respectively. However, if the star is
located many gravitational wavelengths away from the Earth, and if the GW polarization is
transverse (i.e., +, ×, or S), then the star term can be neglected and the astrometric deflection
depends only on the metric perturbation near Earth.

The Gaia mission will produce a large number of ultra-accurate astrometric measurements
which could be utilised to search for low frequency GWs using the aforementioned effect.
Chapter 4 presented recent efforts to develop a data analysis pipeline to search for GWs in
Gaia-like data sets, which could recover the parameters of the gravitational wave signal with
high degree of certainty. A large astrometric data set may be compressed with little loss
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in sensitivity; which makes efficient and computationally cheap searches for GW signals
possible. Using a large number of injections into a mock dataset, the frequency and directional
sensitivities of Gaia were established (see Figs. 4.3 and 4.4). These tell us that Gaia may help
detect gravitational waves from supermassive black hole binaries of total mass 108−1010M⊙
during their post-Newtonian inspiral period, with frequencies of 10−9 −10−7 Hz.

Chapter 5 considered the correlated astrometric signal due to a stationary and isotropic
GW background. If the background is unpolarized, the correlation separates into a sum of an
integral over the sphere of the sky for each polarization state. These integrals we evaluated
for each of the 6 possible GW polarization states; although in one case the integration could
be performed only numerically. A new decomposition for the astrometric correlation matrix
was introduced. This decomposition has a clear geometric interpretation and enables a nice
comparison to be drawn with existing results for the redshift correlations from the pulsar
timing literature. In the special case of a tensorially polarized GW background, the astrometric
correlation is governed by a single function which can be thought of the astrometric analogue
of the Hellings-Downs curve.

Additionally, the cross-correlation between the redshift and astrometric signals was also
derived for all six GW polarizations. This may form the basis for a joint pulsar timing and
astrometric search for the low-frequency stochastic gravitational wave background.

Part II of my thesis investigated the problem of resonances in the in-spirals of extreme
mass-ratio binaries. In Chapters 7 and 8 the assumptions and conditions which form the
basis of two different methods for analysis of resonances in EMRIs are presented. The
two-timescale approach, described in [136] presumes that the functional dependence of
the orbital characteristics can be expanded in power series of the mass-ratio and time from
resonance. The instantaneous frequency model, as per [130], relies on the instant values of the
on-resonance frequencies as a basis for asymptotic analysis, and this is a more complicated
function of the (rescaled) time.

After describing the basic approach, Chapter 9 described in detail the solution to the
frequency and phase resonance equations derived in the course of describing the instantaneous
frequency approach. Some of these solutions were previously published in [130]. The
difference between the frequency and phase resonances lies in the assumption about the
phasing of the self-force. It is more natural that the phase will be determined by the
instantaneous orbital phase (as in the phase treatment) than the orbital phase at some fiducial
τ = 0 (as in the frequency investigation). Fully-detailed self-force calculations would be
needed to make an informed choice between the two, but it is likely that the phase approach
is physically relevant for the resonance problem. The frequency resonance solutions exhibits
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interesting effects, in particular the “memory” effect on the slope of the graph, which would
be interesting if it really occurred in any physical situation. Here I extended these results, by
including higher-order terms and a generalised form of the solutions. I have derived solutions
for the case of multiple oscillating modes, given by eq. (9.68). Working further, I relaxed
the assumption of a vanishing initial phase, and have presented the single-mode solution
in eq. (9.88). Finally, combining these results I presented the complete frequency solution,
eq. (9.97).

As mentioned in the text, the phase resonance equation is probably more relevant physi-
cally, as it describes the evolution of the phase coordinates near resonance, and its solutions
can be related to the two-timescale method results. It is also interesting from a mathematical
view point, since it is a second-order non-linear differential equation which can be approached
using asymptotic methods. I extended the previously established sequence of results by
deriving the third-order solution for the case of a single oscillating mode, eq. (9.110). I pre-
sented an order-by-order solution to the phase resonance equation with an arbitrary (possibly
infinite) number of modes, eqs. (9.124), (9.127), and (M.55). I have also derived the solution
in the most general case, allowing for an arbitrary (and possibly infinite) number of modes,
each with an individual initial phase. This solution was given in eq. (9.137). In the case that
there is only a single mode, this calculation agrees with the result given in [130], to leading
order in the parameter λ , which is equivalent to the order of G1(J) in the two-timescale
analysis.

Both the instantaneous frequency approach and the two-timescale analysis are valid
treatments of the EMRI problem — though their foundational assumptions appear different,
they both have the same computational complexity and arrive at equivalent conclusions.
Previous work on the two-timescale method has only been presented to the lowest order in
the mass ratio ε and the resonance flux change parameters {κ,λ}. As has been discovered,
in certain scenarios higher-order corrections in the latter can be more important than those
to the former, hence it is vital to investigate the form of these corrections. This is what the
current progress accomplishes.
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Future work

This Chapter combines parts of the conclusions to references [79], [60], and [1], all of which

were either written by me, or with my direct contribution.

The research which I described in this dissertation can be extended and taken forward in
many interesting directions. I already have plans for future work that will further build onto
these ideas and will present opportunities for even more exciting research. In this Chapter I
outline some prospects for the immediate future.

There is a long list of sub-projects which could be undertaken in order to better understand
the features of the astrometric search method for gravitational waves. One idea which I intend
to research and write about is the effect of gravitational waves with non-luminal speeds.
Sub-luminal gravitational waves could be related to a graviton with a non-zero mass, and
initial considerations show that they have the effect of changing the overall shape of the
overlap reduction functions. The changes to the value of the correlation at a given angle are
commensurate with the fractional difference between the speed of light and the speed of the
gravitational wave.

Another possible direction for further development of this project would be to map the
frequency and directional sensitivity of Gaia with respect to alternative (non-Einsteinian)
polarization states. Currently the sensitivity due to GR modes has been tested (Chapter 4),
however further work is needed to examine the problem in the context of the 4 further
polarization modes described in Chapter 3. This would be achievable by modifying and
reconfiguring the code developed by Christopher Moore and me, and the research will be
carried out in the near future.

Yet another possible avenue for further work is to expand the analysis to non-isotropic GW

backgrounds. Currently the 2-point correlation functions are computed only in the context of
isotropic backgrounds, however an interesting theoretical consideration is the possibility of
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non-isotropic backgrounds and their treatment in this context. Finally, as time progresses,
and future Gaia Data Releases become available, it would become possible to carry out all
these analyses with real-world data.

Further work on solving the phase-resonance equation would see these solutions utilised
in numerical waveform models. These could involve implementing a computationally cheap
approximate (kludge) model of EMRI waveforms which include resonance effects [106, 110].
At the moment such models lack the necessary features to predict the change in frequency
or phase during resonance, which is precisely what the results in [1] offer. Therefore, this
should be pursued in a future publication.
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Appendix A

Additional Astrometric Deflection
Patterns

In Figs. 3.3 and 3.4 of Section 3.2 the astrometric deflection patterns were plotted for all 6 GW

polarization states; for the three transverse modes (+, ×, and S) in Fig. 3.3 the distant source
limit formula (3.20) was used, whilst for the three modes with longitudinal components
(X , Y , and L) in Fig. 3.4 the full formula (including the star terms) eq. (3.19) was used. In
this Appendix the effect of including the star terms on the deflection patterns for the two
transverse GR modes (+ and ×) is illustrated. In Fig. A.1 the new astrometric deflection
patterns are plotted; these plots were produced in the same way as the two top rows of
Fig. 3.3 except eq. (3.19) was used in place of eq. (3.20) (all stars are placed 10 gravitational
wavelengths away from the Earth). The extra terms in the full expression for the astrometric
deflection introduce an additional oscillatory deflection pattern which is out of phase with
the Earth term pattern plotted in Fig. 3.3, this causes each star to trace out a small ellipse
on the sky. If the stars are further away from the Earth then the phase difference between
the two oscillations changes and the amplitude of the additional oscillation is reduced (the
ellipses appear rotated and their eccentricity is increased); in the limit of infinite distance the
patterns in Fig. 3.3 are recovered. In these figures the ellipses are aligned in a regular pattern
on the sky because the stars are all the same distance from the Earth. If all the distances were
different, the ellipses would all be misaligned and the extra motion from the full formula in
eq. (3.19) would appear to be a random noise superposed on the regular Earth term pattern
plotted in Fig. 3.3.
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+

×

Fig. A.1 Orthographic projections of the Northern (left) and Southern (right) hemispheres.
On the sky are chosen 1000 stars. A GW from a source located at the North pole (indicated
by the red dots) is incident on the Earth causing the stars to move periodically at the GW

frequency, according to eq. (3.19). All stars are placed at a distance of 10 gravitational
wavelengths from the Earth; in reality, these neat elliptical patterns would appear more
chaotic, since the distances to each star are generally different. The blue lines show the
resulting movement tracks. The incident GW has the unphysically large characteristic strain
amplitude A = 0.1. Figure appeared in [60].



Appendix B

The Tensorial Astrometric Integrals

In Sections 5.1.1 to 5.1.4 the details of the evaluations of the spatial correlation integrals for
the different polarization modes were omitted for brevity; the details are presented in this
Appendix B, and in Appendices D, E, and F.

In the main text the astrometric response at each of the two star positions was resolved in
the tangent plane along a pair of basis vectors. It was then shown how the spatial correlation
matrix can be written in terms of just two scalar integrals over the sky; one involving the x

and θ components, and one involving the y and φ components. In this Appendix these two
integrals will be evaluated, first for the + mode and then for the × mode.

Firstly, the x-θ term for the + polarized GW state is considered; the correlation integral is
defined in eq. (5.18a) as

Γ
+
xθ
(Θ) =

∫

S2
dΩq δn+x (q)δm+

θ
(q) =

∫ 2π

0
dφ

∫
π

0
dθ sinθ δn+x (θ ,φ)δm+

θ
(θ ,φ) , (B.1)

where the vector q = (sinθ cosφ ,sinθ sinφ ,cosθ) is the direction on the sky from which the
GW originates. The components of the astrometric deflections, δn+x (θ ,φ) and δm+

θ
(θ ,φ),

may be evaluated from the definitions in eqs. (5.16a) and (5.17a), using the formula for the
astrometric deflection in eq. (3.20), the expression for the GW basis tensor in eq. (3.24a), and
the expressions for the basis vectors tangent to the sphere in eqs. (5.11a) and (5.12a):

δn+x (θ ,φ) = − 1
2

sinθ cosφ , (B.2a)
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δm+
θ
(θ ,φ) =

1
1− cosΘcosθ − sinΘsinθ cosφ

(
3

16
sinΘ(1− cos(2θ))

+
1
4
(cos(2Θ)sin(2θ)−2cosΘsinθ)cosφ

+
1

16
(8sinΘ cosθ −3sin(2Θ)− sin(2Θ)cos(2θ))cos(2φ)

)
.

(B.2b)

The azimuthal integral over φ in eq. (B.1) may be evaluated using the result derived in
Appendix B.1 (previously published by [141] with a sign error). Using this result the double
integral in eq. (B.1) becomes the single integral

Γ
+
xθ
(Θ) =−2π

∫
Θ

0
dθ
(
cos4(θ/2)+ cos2(θ/2)−1

) sin3(θ/2)
cos(θ/2)

+2π

∫
π

Θ

dθ
(
sin4(θ/2)+ sin2(θ/2)−1

) cos3(θ/2)
sin(θ/2)

+2π cos2(Θ/2)
∫

Θ

0
dθ
(
2cos4(θ/2)+1

) sin3(θ/2)
cos(θ/2)

−2π sin2(Θ/2)
∫

π

Θ

dθ
(
2sin4(θ/2)+1

) cos3(θ/2)
sin(θ/2)

− 2π

sin2(Θ/2)

∫
Θ

0
dθ

sin5(θ/2)
cos(θ/2)

+
2π

cos2(Θ/2)

∫
π

Θ

dθ
cos5(θ/2)
sin(θ/2)

.

(B.3)

This integral may now be evaluated using standard techniques to give

Γ
+
xθ
(Θ) =

7π

3
− 14π

3
sin2(Θ/2)−4π

sin4(Θ/2)
1− sin2(Θ/2)

ln(sin(Θ/2))

+4π
cos4(Θ/2)

1− cos2(Θ/2)
ln(cos(Θ/2)) .

(B.4)

Secondly, the y-φ component term for the + polarised GW state is considered; the relevant
correlation integral was defined in eq. (5.18d) as

Γ
+
yφ
(Θ) =

∫ 2π

0
dφ

∫
π

0
dθ sinθ δn+y (θ ,φ)δm+

φ
(θ ,φ) . (B.5)

The components of the astrometric deflections may be evaluated from the definitions in
eqs. (5.16b) and (5.17b), using the formula for the astrometric deflection in eq. (3.20), the
expression for the GW basis tensor in eq. (3.24a), and the expressions for the basis vectors in
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eqs. (5.11b) and (5.12b):

δn+y (θ ,φ) =−1
2

sinθ sinφ , (B.6a)

δm+
φ
(θ ,φ) =

1
1− cosΘcosθ − sinΘsinθ cosφ

(
1
2
(cosΘ sinθ cosθ − sin(2Θ) sinθ)sinφ

+
1
8
(2sin(2Θ)cosθ −3sinΘ− sinΘcos(2θ)) sin(2φ)

)
.

(B.6b)

The integral for Γ
+
yφ
(Θ) in eq. (B.5) may be evaluated in the same way as that for Γ

+
xθ
(Θ)

above to give

Γ
+
yφ
(Θ) =−5π

3
−4π

sin4(Θ/2)
1− sin2(Θ/2)

ln(sin(Θ/2))−4π
cos4(Θ/2)

1− cos2(Θ/2)
ln(cos(Θ/2)) .

(B.7)

Thirdly, the two analogous integrals for the × GR polarization state are considered; these
correlation integrals are defined in eqs. (5.18a) and (5.18d):

Γ
×
xθ
(Θ) =

∫
π

0
dθ

∫ 2π

0
dφ sinθ δn×x (θ ,φ)δm×

θ
(θ ,φ), (B.8a)

Γ
×
yφ
(Θ) =

∫
π

0
dθ

∫ 2π

0
dφ sinθ δn×y (θ ,φ)δm×

φ
(θ ,φ). (B.8b)

The components of the astrometric deflection may be evaluated from the definitions in
eqs. (5.16a), (5.17a), (5.16b), and (5.17b), using the formula for the astrometric deflection in
eq. (3.20), the expression for the GW basis tensor in eq. (3.24b), and the expressions for the
basis vectors in eqs. (5.11a), (5.12a), (5.11b), and (5.12b). Due to the symmtetry between
the + and × modes, these components are closely related to those found above for the +

components:

δn×x (θ ,φ) = δn+y (θ ,φ) , (B.9a) δn×y (θ ,φ) =−δn+x (θ ,φ) , (B.9b)

δm×
θ
(θ ,φ) = δm+

φ
(θ ,φ) , (B.9c) δm×

φ
(θ ,φ) =−δm+

θ
(θ ,φ) . (B.9d)

The two integrals for Γ
×
xθ
(Θ) and Γ

×
yφ
(Θ) in eqs. (B.8a) and (B.8b) may be evaluated in the

same way as those for Γ
+
xθ
(Θ) and Γ

+
yφ
(Θ) above to give
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Γ
×
xθ
(Θ) =Γ

+
yφ
(Θ) , (B.10a) Γ

×
yφ
(Θ) =Γ

+
xθ
(Θ) . (B.10b)

As was described in the main text, for an unpolarised background containing equal power
of both + and × polarization states we may define the combined spatial correlation functions
Γ
+,×
xθ

(Θ) = Γ
+
xθ
(Θ)+Γ

×
xθ
(Θ) and Γ

+,×
yφ

(Θ) = Γ
+
yφ
(Θ)+Γ

×
yφ
(Θ). These new functions may

be evaluated by taking the sums of the expression in eqs. (B.4), (B.7), (B.10a), and (B.10b)
to give the result which appeared in the main text,

Γ
+,×
xθ

(Θ) = Γ
+,×
yφ

(Θ) =
2π

3
− 14π

3
sin2(Θ/2)−8π

sin4(Θ/2)
1− sin2(Θ/2)

ln(sin(Θ/2)) . (B.11)

The three functions Γ
+
xθ
(Θ) = Γ

×
yφ
(Θ), Γ

+
yφ
(Θ) = Γ

×
xθ
(Θ), and Γ

+,×
xθ

(Θ) = Γ
+,×
yφ

(Θ), are plot-
ted in Fig. B.1.

B.1 Azimuthal Integral

The following integral appears in most of the spatial correlation integrals;

In(θ ,Θ) =
∫ 2π

0
dφ

cos(nφ)

1− cosΘcosθ − sinΘsinθ cosφ

=R

{∫ 2π

0
dφ

einφ

1− cosΘcosθ − sinΘsinθ cosφ

}
.

(B.12)

The integral is tidied up by denoting the new variables

a(θ ,Θ) = 1− cosΘcosθ , (B.13a) b(θ ,Θ) =− sinΘsinθ

1− cosΘcosθ
. (B.13b)

If z = eiφ , then dφ = dz/(iz) and from z̄ = 1/z = cosφ − i sinφ , it can be found that
cosφ = 1/2

(
z+ z−1) and finally In(θ ,Θ) is expressed as a complex integral over the circle

γ = {|z|=−1/b}

In(θ ,Θ) =R

{
2
ia

∮

γ

dz
z|n|

bz2 +2z+b

}
. (B.14)

The modulus sign is needed since the cosine function is even. The integrand has 2 distinct
poles, each at z± =

(
−1±

√
1−b2

)
/b. The positions of those poles are determined by the

range of the function b(θ ,Θ). Both θ and Θ range from 0 to π; the substitution x = cosθ
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Fig. B.1 Plot of the tensorial correlation functions in eq. (B.11), normalized so that their
absolute maximum is unity. Also shown are the functions for each of the two GR modes,
given by eqs. (B.4), (B.7), (B.10a), and (B.10b), rescaled by the same normalization constant.
Figure appeared in [60].

and y = cosΘ leads to

b(x,y) =−
√

1− x2
√

1− y2

1− xy
. (B.15)

By investigating the derivatives of b(x,y), it can be established that the function ranges
between −1 and 0, which corresponds to z− ∈ [−1/b,+∞) and z+ ∈ (0,−1/b]. The value of
the contour integral is determined by the residue of the root which lies inside the contour γ;

2πiResz=z+

{
zn

bz2 +2z+b

}
= πi

zn
+

bz++1
. (B.16)

Plugging this back into eq. (B.14) yields a result for In.

In(θ ,Θ) =
2π

a
√

1−b2

(
−1+

√
1−b2

b

)|n|
(B.17a)

=
2π

|cosθ − cosΘ|

(
1− cosΘcosθ + |cosθ − cosΘ|

sinΘsinθ

)|n|
(B.17b)

=





2π

cosθ − cosΘ

(
(1+ cosΘ)(1− cosθ)

(1− cosΘ)(1+ cosθ)

)|n|/2

, 0 ≤ θ ≤ Θ,

2π

cosΘ− cosθ

(
(1− cosΘ)(1+ cosθ)

(1+ cosΘ)(1− cosθ)

)|n|/2

, Θ< θ ≤ π.

(B.17c)
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Appendix C

Random Realisations of the Astrometric
Deflections on the Sky

The Figs. 5.3 and 5.5 show one possible realization of the GW background for the GR and
transverse scalar polarizations respectively. In this appendix the method for producing such
realizations is described.

Pick N distinct arbitrary points (or “stars”) on the sky. The Cartesian coordinates of
the ith star are ni = (xi,yi,zi) and satisfy x2

i + y2
i + z2

i = 1. Consider the following vector of
length 3N formed from the Cartesian coordinates,

x = (x1,y1,z1,x2,y2,z2, . . . ,xN,yN,zN). (C.1)

The quantity one needs to find to find is the change in these coordinates, δδδx. Formally, this
is distributed as a zero mean Gaussian random variable,

δδδx ∼ N (0,C), (C.2)

with the 3N ×3N correlation matrix formed block-by-block from the 3×3 spatial matrices
defined in eq. 5.7;

C =




ΓΓΓ(n1,n1) ΓΓΓ(n1,n2) . . . ΓΓΓ(n1,nN)

ΓΓΓ(n2,n1) ΓΓΓ(n2,n2) . . . ΓΓΓ(n2,nN)
...

... . . . ...

ΓΓΓ(nN,n1) ΓΓΓ(nN,n2) . . . ΓΓΓ(nN,nN)



. (C.3)
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This is only valid formally, because the matrix C is not positive definite; in fact, it has N zero
eigenvalues. The origin of this behavior is that the 3 Cartesian coordinates are being used
to describe an intrinsically 2-dimensional process on the sphere. This can be rectified by
instead considering the changes in the polar coordinates of each star;

(
δθi

δφi

)
= Pi ·




δxi

δyi

δ zi


 , where Pi =




0 0 − 1√
1− z2

i

− yi

x2
i + y2

i

xi

x2
i + y2

i
0


 . (C.4)

⇒ δδδθθθ ≡ (δθ1,δφ1,δθ2,δφ2, . . . ,δθN,δφN) = ΠΠΠ ·δδδx where ΠΠΠ =




P1 0 . . . 0
0 P2 . . . 0
...

... . . . ...

0 0 . . . PN



.

(C.5)

The matrix ΠΠΠ has shape 2N ×3N. The vector δδδθθθ is also distributed as a Gaussian random
variable, δδδθθθ ∼N (0,C′), where the new covariance matrix C′ =ΠΠΠ ·C ·ΠΠΠT is strictly positive
definite. The parameter A is some overall amplitude chosen in Figs. 5.3 and 5.5 to be A= 0.01.
A random realization of δδδθθθ may now be obtained without an obstacle, and the vector δδδx can
be obtained by simple geometry.

The plots in Figs. 5.3 and 5.5 were produced using N = 1000 stars placed regularly on
the sky, and show the original star positions, x, and the new positions, x+δδδx, joined by a
smooth curves using the Mollweide projection.



Appendix D

The Transverse Scalar “Breathing”
Mode Astrometric Integrals

In this appendix the evaluation of spatial correlation integrals for the transverse scalar GW

polarization state, S, is briefly described. The integration is very similar to those for the +

and × states described in Appendix B. The relevant correlation integrals were defined in
eqs. (5.18a) and (5.18d) as

Γ
S
xθ (Θ) =

∫

S2
dΩq δnS

x(q)δmS
θ (q) =

∫ 2π

0
dφ

∫
π

0
dθ sinθ δnS

x(θ ,φ)δmS
θ (θ ,φ) , (D.1a)

Γ
S
yφ (Θ) =

∫

S2
dΩq δnS

y(q)δmS
φ (q) =

∫ 2π

0
dφ

∫
π

0
dθ sinθ δnS

y(θ ,φ)δmS
φ (θ ,φ) , (D.1b)

where the vector q = (sinθ cosφ ,sinθ sinφ ,cosθ) is the direction on the sky from which
the GW originates. The components of the astrometric deflections may be evaluated from the
definitions in eqs. (5.16a), (5.17a), (5.16b), and (5.17b), using the formula for the astrometric
deflection in eq. (3.20), the expression for the GW basis tensor in eq. (3.24c), and the
expressions for the basis vectors tangent to the sphere in eqs. (5.11a), (5.12a), (5.11b), and
(5.12b):

δnS
x(θ ,φ) =−1

2
sinθ cosφ , (D.2a)

δnS
y(θ ,φ) = δmS

φ (θ ,φ) =−1
2

sinθ sinφ , (D.2b)

δmS
θ (θ ,φ) =

1
2

sinΘcosθ − 1
2

cosΘsinθ cosφ . (D.2c)
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The azimuthal and polar integrals for ΓS
xθ
(Θ) and ΓS

yφ
(Θ) in eqs. (D.1a) and (D.1b) may be

evaluated in the same way as those for Γ
+,×
xθ

(Θ) and Γ
+,×
yφ

(Θ) in Appendix B to give the
results in eqs. (5.22a) and (5.22b) of the main text:

Γ
S
xθ (Θ) =

π

3
cosΘ ≡ π

3
− 2π

3
sin2(Θ/2) , (5.22a)

Γ
S
yφ (Θ) =

π

3
. (5.22b)



Appendix E

The Vectorial Astrometric Integrals

In this Appendix the evaluation of spatial correlation integrals for the vectorial GW polar-
ization states, X and Y , is briefly described. The derivation is very similar to those for the +

and × states described in Appendix B. What is interesting in this case is that even though the
standalone astrometric response in both vectorial polarizations is divergent at the origin (in
Fig. 3.4 the “star terms" were added to remove this divergence), the correlation functions are
perfectly regular and finite for all relevant values of Θ.

Firstly, the X mode is considered; the relevant correlation integrals were defined in
eqs. (5.18a) and (5.18d) as

Γ
X
xθ (Θ) =

∫

S2
dΩq δnX

x(q)δmX
θ (q) =

∫ 2π

0
dφ

∫
π

0
dθ sinθ δnX

x(θ ,φ)δmX
θ (θ ,φ) , (E.1a)

Γ
X
yφ (Θ) =

∫

S2
dΩq δnX

y(q)δmX
φ (q) =

∫ 2π

0
dφ

∫
π

0
dθ sinθ δnX

y(θ ,φ)δmX
φ (θ ,φ) , (E.1b)

where the vector q = (sinθ cosφ ,sinθ sinφ ,cosθ) is the direction on the sky from which
the GW originates. The components of the astrometric deflections may be evaluated from the
definitions in eqs. (5.16a), (5.17a), (5.16b), and (5.17b), using the formula for the astrometric
deflection in eq. (3.20), the expression for the GW basis tensor in eq. (3.24d), and the
expressions for the basis vectors tangent to the sphere in eqs. (5.11a), (5.12a), (5.11b), and
(5.12b):

δnX
x(θ ,φ) =

1
2
(1+2cosθ)cosφ , (E.2a)

δnX
y(θ ,φ) =

1
2
(1+2cosθ)sinφ , (E.2b)
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Fig. E.1 Plot of the vectorial correlation functions in eq. (5.25), normalized so that their
absolute maximum is unity. Also shown are the functions for each of the two GR modes,
given by eqs. (E.3a), (E.3b), (E.6a), and (E.6b), rescaled by the same normalization constant.
Figure appeared in [60].

δmX
θ (θ ,φ) =

1
1− cosΘcosθ − sinΘsinθ cosφ

(
1
8
(2sinΘsinθ −3sin(2Θ)sin(2θ))

+
1
2
(cosΘcosθ − cos(2Θ)cos(2θ))cosφ +

1
4
(sinΘ sinθ − sin(2Θ)sin(2θ))cos(2φ)

)
,

(E.2c)

δmX
φ (θ ,φ) =

1
1− cosΘcosθ − sinΘsinθ cosφ

(
1
2

cosΘ(cosθ − cos(2θ)) sinφ

+
1
4
(sin(2Θ)sinθ − sinΘsin(2θ)) sin(2φ)

)
.

(E.2d)

The equations for δmX
θ
(θ ,φ) and δmX

φ
(θ ,φ) diverge when Θ = 0. Nevertheless, the az-

imuthal and polar integrals for ΓX
yφ
(Θ) and ΓX

yφ
(Θ) in eqs. (E.1a) and (E.1b) may be evaluated

in the same way as those for Γ
+,×
xθ

(Θ) and Γ
+,×
yφ

(Θ) in Appendix B to give two results that
are regular for all values of Θ:

Γ
X
xθ (Θ) =

π

6
+

2π

3
sin2(Θ/2)+6π

sin2(Θ/2)
1− sin2(Θ/2)

ln(sin(Θ/2))

−2π
cos2(Θ/2)

1− cos2(Θ/2)
ln(cos(Θ/2)) ,

(E.3a)
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Γ
X
yφ (Θ) =

13π

6
+π sin2(Θ/2)+6π

sin2(Θ/2)
1− sin2(Θ/2)

ln(sin(Θ/2))

+2π
cos2(Θ/2)

1− cos2(Θ/2)
ln(cos(Θ/2)) .

(E.3b)

Secondly, the Y mode is considered; the relevant correlation integrals were defined in
eqs. (5.18a) and (5.18d) as

Γ
Y
xθ (Θ) =

∫ 2π

0
dφ

∫
π

0
dθ sinθ δnY

x(θ ,φ)δmX
θ (θ ,φ) , (E.4a)

Γ
Y
yφ (Θ) =

∫ 2π

0
dφ

∫
π

0
dθ sinθ δnY

y(θ ,φ)δmX
φ (θ ,φ) . (E.4b)

The components of the astrometric deflections may be evaluated from the definitions in
eqs. (5.16a), (5.17a), (5.16b), and (5.17b), using the formula for the astrometric deflection in
eq. (3.20), the expression for the GW basis tensor in eq. (3.24e), and the expressions for the
basis vectors tangent to the sphere in eqs. (5.11a), (5.12a), (5.11b), and (5.12b):

δnY
x(θ ,φ) =

1
2

cosθ sinφ , (E.5a)

δnY
y(θ ,φ) =−1

2
cosθ cosφ , (E.5b)

δmY
θ (θ ,φ) =

1
1− cosΘcosθ − sinΘsinθ cosφ

(
1
2
(cos(2Θ)− cosΘcosθ)cosθ sinφ

+
1
4

sinΘ(2cosΘ− cosθ)sinθ sin(2φ)

)
, (E.5c)

δmY
φ (θ ,φ) =

1
1− cosΘcosθ − sinΘsinθ cosφ

(
3

16
sin(2Θ)sin(2θ)

+
1
4
(1−2cosΘcosθ + cos(2Θ)cos(2θ)) cosφ

+
1

16
(sin(2Θ)sin(2θ)−8sinΘsinθ) cos(2φ)

)
.

(E.5d)

The integrals for ΓY
yφ
(Θ) and ΓY

yφ
(Θ) in eqs. (E.4a) and (E.4b) may be evaluated in the same

way as the integrals in Appendix B:

Γ
Y
xθ (Θ) =

7π

6
+2π

sin2(Θ/2)
1− sin2(Θ/2)

ln(sin(Θ/2))+2π
cos2(Θ/2)

1− cos2(Θ/2)
ln(cos(Θ/2)) ,

(E.6a)
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Γ
Y
yφ (Θ) =−5π

6
+

5π

3
sin2(Θ/2)+2π

sin2(Θ/2)
1− sin2(Θ/2)

ln(sin(Θ/2))

−2π
cos2(Θ/2)

1− cos2(Θ/2)
ln(cos(Θ/2)) .

(E.6b)

As was described in the main text, for a unpolarised background containing equal power of
both X and Y polarization states we may define the combined spatial correlation functions
Γ

X,Y
xθ
(Θ) = Γxθ (Θ)X +ΓY

xθ
(Θ) and Γyφ (Θ)X,Y = Γyφ (Θ)X +ΓY

yφ
(Θ). These new functions may

be evaluated by taking the sums of the expressions in eqs. (E.3a), (E.3b), (E.6a), and (E.6b)
to give the results which appeared in eq. (5.25) of the main text,

Γ
X,Y
xθ
(Θ) = Γ

X,Y
yφ
(Θ) =

4π

3
+

8π

3
sin2(Θ/2)+8π

sin2(Θ/2)
1− sin2(Θ/2)

ln(sin(Θ/2)) . (5.25)

The functions ΓX
xθ
(Θ), ΓX

yφ
(Θ), ΓY

yφ
(Θ), ΓY

xθ
(Θ), and Γ

X,Y
xθ
(Θ) = Γ

X,Y
yφ
(Θ), are plotted in

Fig. E.1.



Appendix F

The Scalar Longitudinal Astrometric
Integrals

In this Appendix the evaluation of spatial correlation integrals for the longitudinal scalar
GW polarization state, L, will be discussed. Using the method established in the previous
Appendices will yield divergent curves. These result are still useful, and reasons for the
anomaly are discussed in Section 5.1.4. A more careful calculation which removes the
divergence is presented in Appendix F.1. The integration is very similar to those for the +

and × states described in Appendix B. The relevant correlation integrals were defined in
eqs. (5.18a) and (5.18d) as

Γ
L
xθ (Θ) =

∫

S2
dΩq δnL

x(q)δmL
θ (q) =

∫ 2π

0
dφ

∫
π

0
dθ sinθ δnL

x(θ ,φ)δmL
θ (θ ,φ) , (F.1a)

Γ
L
yφ (Θ) =

∫

S2
dΩq δnL

y(q)δmL
φ (q) =

∫ 2π

0
dφ

∫
π

0
dθ sinθ δnL

y(θ ,φ)δmL
φ (θ ,φ) . (F.1b)

where the vector q = (sinθ cosφ ,sinθ sinφ ,cosθ) is the direction on the sky from which
the GW originates. The components of the astrometric deflections may be evaluated from
the definitions in eqs. (5.16a), (5.17a), (5.16b), and (5.17b), using the formula for the
astrometric deflection in eq. (3.20), the expression for the GW basis tensor in eq. (3.24f), and
the expressions for the basis vectors tangent to the sphere in eqs. (5.11a), (5.12a), (5.11b),
and (5.12b):

δnL
x =− 1√

2
sinθ cosθ cosφ

1− cosθ
, (F.2a) δnL

y =− 1√
2

sinθ cosθ sinφ

1− cosθ
, (F.2b)
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δmL
θ =

1√
2(1− cosΘcosθ − sinΘsinθ cosφ)

(
1
8

sin(2Θ)(1+3cos(2θ))

+
1
4

cos(2Θ)sin(2θ) cosφ +
1
8

sin(2Θ)(cos(2θ)−1)cos(2φ)

)
,

(F.2c)

δmL
φ =

1√
2(1− cosΘcosθ − sinΘsinθ cosφ)

(
1
2

cosΘsin(2θ)sinφ

+
1
4

sinΘ(1− cos(2θ)) sin(2φ)

)
.

(F.2d)

The integrals for ΓL
yφ
(Θ) and ΓL

yφ
(Θ) in eqs. (F.1a) and (F.1b) may be evaluated in the same

way as those for Γ
+,×
xθ

(Θ) and Γ
+,×
yφ

(Θ) in Appendix B to give the results presented in
Section 5.1.4 of the main text,

Γ
L
xθ (Θ) =−10π

3
+

8π

3
sin2(Θ/2)−2π

ln(sin(Θ/2))
1− sin2(Θ/2)

, (5.26a)

Γ
L
yφ (Θ) =−4π

3
−2π

ln(sin(Θ/2))
1− sin2(Θ/2)

. (5.26b)

As evident from Fig. 5.7, where these two curves are plotted, they diverge at Θ= 0. Obviously,
this implies that in the context of the scalar longitudinal mode, the method for calculating the
overlap reduction function is inapplicable. Below is presented a modified approach which
solves the issue of the divergent curves.

F.1 Numerical Correlation Integrals on the Sphere

The cause of the divergence in eqs. (5.26a) and (5.26b) is the use of the distant-source version
of the astrometric response in eq. (3.20). If the full astrometric response in eq. (3.19) is
used instead the resulting spatial correlation is always finite (although no longer analytically
tractable). All of the general discussion of the spatial correlation in Section 5.1 proceeds
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exactly as before, except eq. (5.4) now becomes the distance dependent expression

∆
jk

i (n,q,d) =

({
1+

i(2−qrnr)

d(1−qℓnℓ)

(
1− exp(−id(1−qsns))

)}
nı̂

−
{

1+
i

d(1−qℓnℓ)

(
1− exp(−id(1−qsns))

)}
qı̂

)
n jnk

2(1−qℓnℓ)

−
{

1
2
+

i
d(1−qℓnℓ)

(
1− exp(−id(1−qsns))

)}
δi

jnk ,

(F.4)

where d = ωλSΩ is a measure of the distance to the star (in gravitational wavelengths). With
this form of ∆

jk
i , the integral becomes regular for all relevant values of Θ. The correlation

curve is now a 3-parameter function of the angle on the sky Θ and the distances to both stars,
dn and dm:

Γ
L
xθ (Θ,dn,dm) =

∫

S2
dΩq δnL

x(q,dn)δmL
θ (q,dm)

=
∫ 2π

0
dφ

∫
π

0
dθ sinθ δnL

x(θ ,φ ,dn)δmL
θ (θ ,φ ,dm) ,

(F.5a)

Γ
L
yφ (Θ,dn,dm) =

∫

S2
dΩq δnL

y(q,dn)δmL
φ (q,dm)

=
∫ 2π

0
dφ

∫
π

0
dθ sinθ δnL

y(θ ,φ ,dn)δmL
φ (θ ,φ ,dm) .

(F.5b)

The vector q = (sinθ cosφ ,sinθ sinφ ,cosθ) is the direction on the sky from which the
GW originates. The components of the astrometric deflections may be evaluated from the
definitions in eqs. (5.16a), (5.17a), (5.16b), and (5.17b), using the formula for the astrometric
deflection in eq. (3.19), the expression for the GW basis tensor in eq. (3.24f), and the
expressions for the basis vectors tangent to the sphere in eqs. (5.11a), (5.12a), (5.11b), and
(5.12b). Unfortunately, the integrals in eqs. (F.5a) and (F.5b) can no longer be solved using
the same method as above, and need to be evaluated numerically. Let Lxθ (Θ) be the result of
numerically evaluating ΓL

xθ
(Θ) and Lyφ (Θ) be the result of numerically evaluating ΓL

yφ
(Θ).

In Fig. 5.7 two curves Lxθ (Θ) and Lyφ (Θ) are shown as examples of these integrals for
(dn,dm) = (100,200). It becomes evident that the numerical curves tend to the two analytic
functions (5.26a) and (5.26b) for large Θ.
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F.2 Correlation integrals for stars in the same direction on
the sky

Integrals (F.5a) and (F.5b) can be solved analytically for the case Θ = 0 (and also for Θ = π)
to give a 2-parameter family of functions which quantifies the correlation between the
astrometric deflections of stars with the same position on the sky but located at different
distances,

Σ
L(dn,dm) =

∫ 2π

0
dφ

∫
π

0
dθ sinθ δnL

x(dn,θ ,φ)δmL
θ (dm,θ ,φ)

∣∣∣∣
Θ=0

=
∫ 2π

0
dφ

∫
π

0
dθ sinθ δnL

x(dn,θ ,φ)δnL
x(dm,θ ,φ).

(F.6)

The derivation involves a simple azimuthal integral which yields another straightforward
polar integral. The components of the astrometric deflections (at Θ = 0) may be evaluated
from the definitions in eqs. (5.16a), (5.17a), (5.16b), and (5.17b), using the formula for the
astrometric deflection in eq. (3.19), the expression for the GW basis tensor in eq. (3.24f), and
the expressions for the basis vectors tangent to the sphere in eqs. (5.11a), (5.12a), (5.11b),
and (5.12b):

δnL
x(d,θ ,φ) = δnL

y(d,θ ,φ) =− 1√
2

(
cos3(θ/2)
sin(θ/2)

− sin(θ/2)cos(θ/2)
)

cosφ

+
1

2
√

2d

(
3−2cos2(θ/2)

)(cos3(θ/2)
sin3(θ/2)

− cos(θ/2)
sin(θ/2)

)
sin
(
2d sin2(θ/2)

)
cosφ .

(F.7)

The integral for ΣL(dn,dm) in eq. (F.6) may be evaluated using a computer algebra package
to give

Σ
L(dn,dm) = π γ +π ln(2)− 29π

30
+

33π

d4
n

+
33π

d4
m

+
11π

2d2
n
+

11π

2d2
m
− 90π

(d2
n −d2

m)
2 +π ln(dndm)

−π
(dn +dm −2)(dn +dm +2)

4dndm
ln(dn +dm)

+π
(dn −dm −2)(dn −dm +2)

4dndm
ln|dn −dm|

−π Ci(2dn)−π Ci(2dm)−
9π

2dn
Si(2dn)−

9π

2dm
Si(2dm)

+π
(dn +dm −2)(dn +dm +2)

4dndm
Ci(2(dn +dm))
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−π
(dn −dm −2)(dn +dm +2)

4dndm
Ci(2|dn −dm|)

+
15π (dn +dm)

4dndm
Si(2(dn +dm))−

15π (dn −dm)

4dndm
Si(2|dn −dm|)

)

−π
5d2

n −54
2d4

n
cos(2dn)−π

5d2
m −54
2d4

m
cos(2dm)+π

d4
n +11d2

n −60
2d5

n
sin(2dn)

+π
d4

m +11d2
m −60

2d5
m

sin(2dm)

− 10π

(d2
n −d2

m)
2 cos(2dn)cos(2dm)

−π

(
d2

n −d2
m
)3 −12

(
d2

n −d2
m
)2

+100
(
d2

n +3d2
m
)

4(d2
n −d2

m)
3 dm

cos(2dn)sin(2dm)

+π

(
d2

n −d2
m
)3

+12
(
d2

n −d2
m
)2 −100

(
d2

n +3d2
m
)

4(d2
n −d2

m)
3 dn

sin(2dn)cos(2dm)

+
π

8dndm

(
20

(dn +dm)
2 +

20

(dn −dm)
2 +31

)
sin(2dn)sin(2dm) . (F.8)

Here, γ = 0.57722 is the Eüler-Mascheroni constant, and Ci(•) and Si(•) are the cosine and
sine integrals, respectively.





Appendix G

Kerr space-time

Since the background we consider in this part of the dissertation is exclusively the Kerr
space-time, it is worth providing a summary of the metric for a rotating non-charged black
hole. Alternatively, a charged and spinning black hole is described by the Kerr-Newman
metric, while a non-rotating charged black hole solution is given by the Reissner-Nordstöm
background. The Kerr metric, in Boyer-Lindquist coordinates [142] (t,r,θ ,φ), is given by:

ds2 =−∆−a2 sin2
θ

Σ
dt2 −2asin2

θ
r2 +a2 −∆

Σ
dtdφ

+

(
r2 +a2)2 −∆a2 sin2

θ

Σ
sin2

θdφ
2 +

Σ

∆
dr2 +Σdθ

2

(G.1a)

where

∆(r) = r2 −2Mr+a2 , (G.1b)

Σ(r,θ) = r2 +a2 cos2
θ , (G.1c)

and a = Lz/M is the specific black hole spin parameter. This metric is singular at the points
where θ = {0,π}, however these are the usual coordinate singularities associated with the
spherical polar system, remedied by the introduction of a second coordinate system. Further,
we encounter coordinate singularities at the points where ∆(r) = 0, i.e., for values of the
radial coordinate r± = M ±

√
M2 +a2. To demonstrate that these are merely coordinate

singularities (and not an inherent curvature singularity of the metric), it is customary to make
the change to Kerr coordinates (v,r,θ ,χ), given by [143]:
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θ = 0

θ = π

event horizon
ergosurface
ergosphere
ring singularity

Fig. G.1 Visualisation of the Kerr space-time for a/M = 0.95. Figure appeared in [1].

dv = dt +
r2 +a2

∆
dr , (G.2a)

dχ = dφ +
a
∆

dr . (G.2b)

This shows that the metric could be analytically continued through the surface r± to the
region 0< r < r+:

ds2 =− ∆−a2 sin2
θ

Σ
dv2 +2dvdr−2asin2

θ
r2 +a2 −∆

Σ
dvdχ

−2asin2
θdχdr+

(
r2 +a2)2 −∆a2 sin2

θ

Σ
sin2

θdχ
2 +Σdθ

2.

(G.3)

The surface r = r+ = M+
√

M2 −a2 is a null hypersurface with normal 4-vector given by

ξ
a =

(
∂

∂v

)a

+
a

a2 + r2
+

(
∂

∂ χ

)a

=

(
∂

∂v

)a

+ΩKerr

(
∂

∂ χ

)a

(G.4)

and the region r ≤ r+ is (part of) the black hole region. Ω is the angular velocity of the
black hole with respect to an observer at infinity. There are several important surfaces in the
Kerr space-time. Firstly, the curvature singularity r = 0 is in fact a ring singularity, which
can be explained as follows. A rotating black hole would not be spherically symmetric,
as matter would bulge around the equator, the effect quantified by the spin parameter a.
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Since a point singularity cannot support angular momentum, the lowest-dimensional shape
required is a ring. This is evidenced by substituting t ≡ const., r = 0, θ = π/2 (i.e., the
singularity associated with Σ(r,θ) = 0) in eq. (G.1a), obtaining ds2 = a2dφ 2, i.e., a ring of
radius a. Another important surface is the event horizon r+ = M+

√
M2 −a2. To understand

the final feature of interest, we consider the norm of the Killing vector field (∂/∂ t)a in
Boyer-Lindquist coordinates:

(
∂

∂ t

)2

=−∆−a2 sin2
θ

Σ
=−1+

2Mr
r2 +a2 sin2

θ
(G.5)

and notice that it is space-like ((∂/∂ t)2 < 0) in the following region outside the event horizon
r = r+:

M+
√

M2 −a2 < r <M+
√

M2 −a2 cos2 θ . (G.6)

This region is called the ergosphere, and its outside surface is named the ergosurface, which
intersects the event horizon at the poles θ = 0,π . These surfaces are illustrated on the Kerr
black-hole schematic on Fig. G.1.





Appendix H

Geodesic constants

One immediately notices that the Kerr metric does not depend on the time coordinate, t, or
the azimuthal angle, φ . Therefore, using the Euler-Lagrange equations, it can be shown that
the conjugate momenta pµ = ∂L /∂ q̇µ associated to those coordinates are constant with
respect to the affine parameter of the geodesic:

d
dτ

(
∂L

∂ q̇µ

)
=

∂L

∂qµ
⇔ dpµ

dτ
=

∂L

∂qµ
= 0 ⇔





pt ≡ const.

pφ ≡ const. ,
(H.1)

where in general relativity, the Lagrangian is formally given by L (q, q̇) = 1/2 gµν q̇µ q̇ν . Thus
we have identified 2 quantities which are constant along geodesics of the Kerr space-time.
These are related to the energy of the orbit E , and the axial component of the angular
momentum Lz, respectively:

E =−pt =−gtν q̇ν =
∆−a2 sin2

θ

Σ
ṫ + asin2

θ
r2 +a2 −∆

Σ
φ̇ (H.2)

L3 = pφ = gφν q̇ν =−asin2
θ

r2 +a2 −∆

Σ
ṫ +

(
r2 +a2)2 −∆a2 sin2

θ

Σ
sin2

θ φ̇ (H.3)

For equatorial geodesics (θ = π/2), these two constants are sufficient to uniquely determine a
given geodesic. However, for general geodesics with 3 spatial degrees of freedom, we can
identify a third constant of the motion, which is not associated with a linear symmetry of the
background space-time.

Apart from the two Killing vectors associated with the Kerr metric, there exists a second-
order Killing tensor for this background, Qµν . This Killing tensor gives rise to another
conserved quantity, which was originally discovered in 1968 as a consequence of the sep-
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arable Hamilton-Jacobi equation. This quantity is called the Carter’s constant, and can be
written as [117]:

Q = Qµν pµ pν = p2
θ + cos2

θ

(
a2(m2 −E 2)+

(
Lz

sinθ

)2
)
. (H.4)



Appendix I

Geodesics of the Kerr metric

The equatorial geodesics of the Kerr metric can be characterised by the constants E and
Lz, combined with the Hamiltonian, which is an additional integral of motion. General
3-dimensional geodesics, however, require the introduction of a further integral of motion,
Carter’s constant, discussed in Appendix H. The equations of motion for a massless particle,
as per [13], are given by

dt
dτ

=
1
∆



(

r2 +a2 2Ma2

r

)
E − 2Ma

r
L 2

z


 (I.1a)

dr
dτ

=±1
Σ

√(
E
(
r2 +a2

)
−aLz

)2
−∆

(
Q+(Lz −aE )2

)
(I.1b)

dθ

dτ
=±1

Σ

√√√√Q+ cos2 θ

(
a2E 2 − Lz

sin2
θ

)
(I.1c)

dφ

dτ
=

1
∆



(

1− 2M
r

)
Lz +

2Ma
r

E


 (I.1d)

In the general case, these equation cannot be solved analytically to find a closed form of the
shape of the geodesic. However, it is possible to integrate the equations numerically to find
an approximate shape for a Kerr geodesic, and one possible solutions is shown in Fig. I.1.
The Kerr geodesics are not closed, but rather fill the entire parameter space rMIN < r < rMAX,
θMIN < θ < θMAX, 0< φ < 2π (which has the shape of a torus) before returning to the starting
(r,θ ,φ). Moreover, the plane of inclination of the orbit is not stationary, but precesses around
the black hole. In the case of a resonance, when two of the frequencies become commensurate,
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this configuration breaks down and the geodesic becomes a (simpler) closed curve around
the black hole, defined only by 2 parameters.
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(a) Projections of the geodesic on the principal planes.
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Fig. I.1 A geodesic of the Kerr metric, and several projections, evolved for a period of 2×105

s ≈ 5.56 hours. The orbit has eccentricity e = 0.6 and semi-latus rectum 10M, while the
central black hole has mass M = 106M⊙ and spin 0.9M2. All distances are in units of the
black-hole mass M. The angle of inclination is ι = 45◦, and the plane of inclination precesses.
Figure appeared in [1].





Appendix J

Fresnel integrals

In the course of solving the phase resonance equations, as well as in the presentation of
the frequency resonance solution, we encounter integrals of trigonometric functions with
quadratic arguments:

∫ x

0
dy sin

(
πy2

2

)
and

∫ x

0
dy cos

(
πy2

2

)
. (J.1)

These are known as the Fresnel integrals, after the French engineer and physicist Augustin-
Jean Fresnel, who used them in optics. Here, we have adopted the notation where the
argument of the integrand is premultiplied by π/2. Please note that this definition is equivalent
to the one used in [114]:

C(x) =

√
2√
π

∫ x

0
dy cos

(
y2) . (J.2)

These integrals are not directly solvable analytically, and therefore other methods for inte-
gration must be used. One approach to finding the two integrals in (J.1) is by expanding the
integrands in converging Taylor series:

S(x) =

∫ x

0
dysin

(
πy2

2

)

=
∞

∑
n=0

(−1)n

(2n+1)!

∫ x

0
dy

(
πy2

2

)2n+1

=
∞

∑
n=0

(−1)n π2n+1

(2n+1)!(4n+3)22n+1 x4n+3,

(J.3a)
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Fig. J.1 Upper panel: the integrands of the two Fresnel integrals, the functions cos
(
πx2/2

)

and sin
(
πx2/2

)
, and the axis y = 0 around which they oscillate. The frequency of oscillation

increases with the absolute value of x. Lower panel: numerical integration of the functions
above gives the desired graphs of C(x) and S(x). They converge towards the line y =±1/2.
Figure appeared in [1].

C(x) =

∫ x

0
dycos

(
πy2

2

)

=
∞

∑
n=0

(−1)n

(2n)!

∫ x

0
dy

(
πy2

2

)2n

=
∞

∑
n=0

(−1)n π2n

(2n)!(4n+1)22n x4n+1.

(J.3b)

Often, a symbol like the ones appearing on the left-hand sides of eqs. (J.3) are used in lieu of
the actual series solutions. Hence, it is useful to know the first few terms of the series for
each of the integrals:

S(x) =
π

6
x3 − π3

336
x7 +O

(
x11) , (J.4a) C(x) = x− π2

40
x5 +O

(
x9) . (J.4b)

The integrands and the integral functions are plotted in Fig. J.1. I make note of several
features: at x = 0, S(x) starts flat, and progresses as ∼ x3, while C(x) is linear. For positive
or negative infinity, both functions tend to ±1/2, and can be represented by an asymptotic
expansion for large absolute values of x:

S(x) =
sgn(x)

2
− 1

πx
cos

(
πx2

2

)
− 1

π2x3 sin

(
πx2

2

)
+

3
π3x5 cos

(
πx2

2

)
+O

(
x−6
)
, (J.5a)
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C(x) =
sgn(x)

2
+

1
πx

sin

(
πx2

2

)
− 1

π2x3 cos

(
πx2

2

)
− 3

π3x5 sin

(
πx2

2

)
+O

(
x−6
)
. (J.5b)





Appendix K

Shorthand trigonometric notation

In eqs. (9.20) we define the following to make the discussion regarding the frequency mode
equation easier to read:

Sn(x)≡ sin
[

n
(

ax+(1+b)x2
)]

(9.20a) Cn(x)≡ cos
[

n
(

ax+(1+b)x2
)]
. (9.20b)

for some arbitrary constants a and b.
Please note that these are different from the Fresnel integrals, denoted by the same letters,

but without subscripts, discussed in Appendix J. These functions are plotted for several
representative values of n in Fig. K.1. It is worth noting several identities which we make
use of, but do not derive explicitly. These follow directly from the product-to-sum formulae
and the double angle formulae in trigonometry.

Sn(x)Sm(x) =
1
2
(
C(n−m)(x)−C(n+m)(x)

)
(K.2a)

Sn(x)Cm(x) =
1
2
(
S(n+m)(x)−S(n−m)(x)

)
(K.2b)

Cn(x)Cm(x) =
1
2
(
C(n−m)(x)+C(n+m)(x)

)
(K.2c)

S2
n(x) =

1
2
(1−C2n(x)) (K.2d)

C2
n(x) =

1
2
(1+C2n(x)) (K.2e)

I only consider positive values of the subscripts, with the following rules for negative
values: S−n(x) =−Sn(x) and C−n(x) =Cn(x). It is important to note that these functions are
linearly independent, i.e., they form a basis in functional space. This is most easily verified
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Fig. K.1 The functions Sn(x) and Cn(x) for several values of n. As we can see, the functions
oscillate (away from the region around x = 0) more rapidly as n increases. I have used values
of a = 1 and b = 0.0025 for the constants. Figure appeared in [1].

by considering the Wronskian for the sequence of functions

f0(x) = 1, f1(x) = S1(x), f2(x) =C1(x), f3(x) = S2(x), f4(x) =C2(x) and so on.
(K.3)

For { f0(x), f1(x), f2(x)}, the Wronskian is −(a+2(1+b)x)3, while for the first 5 functions
in the series, it is 72(a+ 2(1+ b)x)10, both of which do not vanish in the general case.
Since their Wronskian does not vanish, we can conclude that these functions are linearly
independent over R\{0}:

W ( f0, f1, f2, . . .)(x) = det

∣∣∣∣∣∣∣∣∣∣∣

f0(x) f1(x) f2(x) f3(x) f4(x)

f ′0(x) f ′1(x) f ′2(x) f ′3(x) f ′4(x) · · ·
f ′′0 (x) f ′′1 (x) f ′′2 (x) f ′′3 (x) f ′′4 (x)

... . . .

∣∣∣∣∣∣∣∣∣∣∣

̸= 0. (K.4)

It should be noted that these functions are not orthogonal. First, we show how to integrate a
single factor of Sn(x):

∫
∞

−∞

dxSn(x) = lim
L1→−∞

L2→+∞

∫ L2

L1

dx sin


π

2

(√
2n(1+b)

π

(
x+

a
2(1+b)

))2

− na2

4(1+b)



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= lim
L1→−∞

L2→+∞

√
π

2n(1+b)


cos

[
na2

4(1+b)

]
(
S (L2)−S (L1)

)
− sin

[
na2

4(1+b)

]
(
C (L2)−C (L1)

)



=

√
π

n(1+b)
cos

[
na2

4(1+b)
+

π

4

]

or similarly, a single factor of Cn(x):

∫
∞

−∞

dxCn(x)

= lim
L1→−∞

L2→+∞

√
π

2n(1+b)


cos

[
na2

4(1+b)

]
(
C (L2)−C (L1)

)
− sin

[
na2

4(1+b)

]
(
S (L2)−S (L1)

)



=

√
π

n(1+b)
sin

[
na2

4(1+b)
+

π

4

]
.

Here, S(x) and C(x) are the Fresnel integrals, whose properties and limits are discussed in
Appendix J. Using these results, we can easily demonstrate that these functions do not form
an orthogonal basis:

∫
∞

−∞

dxSn(x)Sm(x) =
1
2

∫
∞

−∞

dx
(
C(n−m)(x)−C(n+m)(x)

)
=

=
1
2

√
π

1+b


 1√

|n−m|
sin

[
|n−m|a2

4(1+b)
+

π

4

]
− 1√

n+m
sin

[
(n+m)a2

4(1+b)
+

π

4

]
 ,

(K.5)

which does not vanish in general. Similar expressions can be obtained for integrals of
Sn(x)Cm(x) and Cn(x)Cm(x).





Appendix L

Solutions to the Frequency resonance
equation

L.1 Third-order solution

In the body of the dissertation we derived in detail the solution to the single-mode frequency
resonance equation (9.1) up to second order in the parameter κ . Here we extend the same
solution method to derive the behaviour of ω(x) to O

(
κ3). Building onto our previous

ansätze, eqs. (9.16) and (9.28), we suggest the third-order function

ω3(x) = a+(1+b3)x+ c1
S1(x)

x
+ c2

S2(x)
x

+ c3
S3(x)

x
+d1

S1(x)
x2 +d2

S2(x)
x2 + l ln|x|.

(9.35)

where S3(x) = sin
[
3
(
ax+(1+b)x2)] and we assume that c3 ∼ O

(
κ3), since it needs to

match terms of O
(
κ3) in eq. (9.30). I substitute this proposed solution into our governing

equation (9.1), and following rearrangement of both sides using familiar techniques, but this
time keeping terms O

(
x−1), we find

b+2(1+b3)c1C1(x)+4(1+b3)c2C2(x)+6(1+b3)c3C3(x)+
l
x

+
(
c1a3 +2(1+b3)d1

)C1(x)
x

+
(
2c2a3 +4(1+b3)d2

)C2(x)
x

+
(
3c3a3 +6(1+b3)d3

)C3(x)
x

+O
(
x−2)∼

∼−κc1

2
+

(
κ − κc2

1
8

− κc2

2

)
C1(x)+

κc1

2
C2(x)+

(
κc2

1
8

+
κc2

2

)
C3(x)
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− κd1

2
1
x
+

(
−κc1d1

2
− κd2

2

)
C1(x)

x
+

κd1

2
C2(x)

x
+

κd2

2
C3(x)

x
+O

(
κ

4) . (L.1)

Matching terms on both sides yields a system of coupled equations, which determines the
coefficients:

b ∼−κc1

2
, 2(1+b)c1 ∼ κ − κc2

1
8

− κc2

2
, 4(1+b)c2 ∼

κc1

2
,

6(1+b)c3 ∼
κc2

1
8

+
κc2

2
, l ∼−κd1

2
, c1a3 +2(1+b3)d1 ∼−κc1d1

2
− κd2

2
,

2c2a3 +4(1+b3)d2 ∼
κd1

2
, 3c3a3 +6(1+b3)d3 ∼

κd2

2
.

(L.2)

These yield the following expressions for the undetermined coefficients of the anzats,
eq. (9.35):

b ∼−1
4

κ
2 , c1 ∼

1
2

κ +
3

32
κ

3 , c2 ∼
1

16
κ

2 , c3 ∼
1

96
κ

3 ,

d1 ∼∓
√

2π

16
κ

2 ±
√

π

64
κ

3 , d2 ∼∓
√

2π

64
κ

3 , l ∼±
√

2π

32
κ

3

and the solution to third order in κ can be written as

ω3(x) = a+

(
1− κ2

4

)
x+κ
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

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√
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4
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


+κ
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16
1
x
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±
√
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4
κ

)
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

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+κ

3 1
x

(
3
32
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(
x2)+ 1

96
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(
3x2)

)

∓κ
2
√

2π

16
1
x2 sin



(
±
√

2π

4
κ

)
x+ x2




±κ
3

(√
π

64
1
x2 sin

(
x2)−

√
2π

64
1
x2 sin

(
2x2)+

√
2π

32
ln|x|

)
(9.40)

The value of the initial value parameter a3 is determined in the main body of the thesis.
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L.2 Frequency resonance equation with n ̸= 1

In Section 9.2 we solved the single-mode frequency resonance equation to obtain the solution
(9.26). Instead of including the first oscillatory mode n = 1, we now solve this equation for
n = r:

ω
′(x) = 1+κr cos(rxω) . (L.3)

I propose a version of the ansatz (9.16), with a modified oscillating term, reflecting the
modified governing equation:

ωr(x) = a+(1+b)x+ c(r)1
sin
(
r
(
ax+(1+b)x2))

x
+O

(
x−1)

= a+(1+b)x+ c(r)1
Sr(x)

x
+O

(
x−1) .

(L.4)

Upon substitution and carrying out the derivative and the Taylor expansion (valid since
rκr ∼ 1/rα−1), we obtain:

b+2r(1+b)c(r)1 Cr(x)∼−1
2

rκrc
(r)
1 +κrCr(x)+ TERM INVOLVING C2r(x) (L.5)

Matching the respective coefficients in the manner already familiar from above, we obtain
the following expressions:

b ∼−κ2
r

4
, (L.6a) c(r)1 ∼ κr

2r
. (L.6b)

I have shown that b ∼ O
(
κ2

r
)

and c1
(r) ∼ O(κr/r) for the rth oscillating mode. Note that

since [108] propose a value of α ≳ 2, the series c1
(n) converge, and our use of the Taylor

expansion is valid.

L.3 Frequency resonance equation with two distinct modes

If we investigate the same equation with two distinct modes on the right-hand side, say
n = {r,s}, with r < s:

ω
′ = 1+κr cos(rxω)+κs cos(sxω) , (L.7)
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Fig. L.1 Graphical demonstration of the validity of solution (9.46) for different number
of terms on the right-hand side. The coefficients {κn} follow the power law κ1/n2.5. It is
evident that the fractional errors scale with the value of the primary resonance modification
κ1. Figure appeared in [1].
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Fig. L.2 Graphical demonstration of the validity of solution (9.92) for different number of
oscillating terms and for values of {δ χn} given by eq. (9.96). In all panels we have used
κ1 = 0.1 with consecutive values given by κn = κ1/n2.5. Figure appeared in [1].



190 Solutions to the Frequency resonance equation

then the solution would include two leading-order terms associated with each of the two
separate oscillating terms, with corrections at sub-leading order due to cross-terms between
these. Specifically, we find c1

(r) ∼ κr/2r(1+b) and c1
(s) ∼ κs/2s(1+b), which implies that

the coefficient b is given by the expression

b ∼−1
2

r κr c(r)1 − 1
2

sκs c(s)1 ∼−κ2
r +κ2

s
4

, (L.8)

and consequently

c(r)1 ∼ κr

2r
, (L.9a) c(s)1 ∼ κs

2s
, (L.9b)

where each expression also includes sub-leading terms of order O(κrκs). This proves the
important result that for the frequency equation with 2 distinct modes, all mixed terms (which
depend on both κr and κs) are of sub-leading order compared to the quadratic contributions
originating from the individual modes as found earlier.

L.4 Frequency equation with a non-vanishing phase term

Let us consider the frequency equation with a single oscillating mode but with a non-vanishing
phase term δ χ:

ω
′(x) = 1+κ cos(xω −δ χ) , (9.69)

and let us expand the cosine term on the right-hand side to obtain the following differential
equation:

ω
′(x) = 1+κ cos(δ χ)cos(xω)+κ sin(δ χ)sin(xω) . (L.10)

I may naively try the ansatz which previously proved suitable for the zero-phase version
of the equation, given by eq. (9.16), however it will not work this time, as there will be
unmatched terms left on the right-hand side. Instead, we suggest the following alternative
ansatz, including an extra term proportional to C1(x)

ω1(x) = a+(1+b)x+ c1
S1(x)

x
+d1

C1(x)
x

. (L.11)
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Upon differentiating and substituting on both sides of eq. (9.69), we obtain a more involved
relation than before:

b+2(1+b)c1C1(x)−2(1+b)d1S1(x)∼−1
2

κ c1 cos(δ χ)− 1
2

κ d1 sin(δ χ)

+κ cos(δ χ)C1(x)−κ sin(δ χ)S1(x).
(L.12)

Making the informed assumption that b ∼O(κ), we find the constants c1 and d1 by matching
terms on both sides:

c1 ∼
κ

2
cos(δ χ) , (L.13a)

d1 ∼−κ

2
sin(δ χ) , (L.13b)

which is different from the previously found value of c1. These yield the same value of the
slope correction b as before:

b ∼−1
2

κ c1 cos(δ χ)+
1
2

κ d1 sin(δ χ) =−κ2

2
(
cos2(δ χ)+ sin2(δ χ)

)
=−κ2

2
. (L.14)

If we substitute these into our proposed ansatz, we see that we recover the proposed alternative
ansatz:

ω1(x) = a+ x+
κ

2
1
x
(S1(x)cos(δ χ)−C1(x)sin(δ χ))

≡ a+ x+
κ

2
1
x

sin


ax+

(
1− κ2

2

)
x2 −δ χ


 ,

(L.15)

where the sine factor in the last term is identical to S1(x), as defined in eq. (9.80a).





Appendix M

Solutions to the phase resonance
equation

In Section 9.3, we explain our algorithm for finding iterative solutions to the phase resonance
equation, and present the solutions to third order in the parameter λ . However, we omit
the details of finding these solutions, since these are often too tedious and irrelevant to our
discussion. Here, we present these solutions in more detail. The zeroth-order equation (9.99)
is straightforward to solve, by integrating both sides twice.

M.1 Phase equation with a single mode and zero phase

We source the first-order correction from the zeroth-order solution, and arrive at eq. (9.103).
Integrating both sides between 0 and x, making use of the Fresnel integrals, with initial
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√
π ± σ1(λ)
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±√π σ2(λ)x λ2 ρ2(x)

Fig. M.1 Graphical comparison of the
terms in the argument on the right-
hand side of eq. (M.6). Evidently the
term λ ρ1 stays close to 0 for all posi-
tive x. Figure appeared in [1].

Fig. M.2 Graphical comparison of the terms
in the argument on the right-hand side of
eq. (M.19). We can see that both terms, λ ρ1
and λ 2ρ2, are small compared to the other terms
in the argument. Figure appeared in [1].
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condition φ ′(0) = 0, we find:

φ
′
(1)(x) = λ

∫ x

0
dy cos

(
y2

2

)
=
√

π λ C
(

x√
π

)
. (M.1)

Integrating once again, using the method of integration by parts, we obtain an initial form of
the first-order correction:

φ(1)(x) =
√

π λ

∫ x

0
dy C

(
y√
π

)
=
√

π λ


xC

(
x√
π

)
− 1√

π
sin

(
x2

2

)
 . (M.2)

While this is indeed a valid result, we prefer to re-arrange it in a form which is more useful for
our tasks. If we look at the graph of this result for λ = 0.1 (Fig. M.4), we can notice several
features. First of all, since there are no constants dependant on λ in eq. (M.2), it vanishes
at x = 0. Furthermore, we immediately notice that the solution is a linear function which is
modified by a decaying oscillating function. Therefore, we split the solution into two parts: a
linear part, whose coefficient is a function of λ , and another part, a collection of periodic
and quasi-periodic functions (trigonometric functions and Fresnel integrals) that collectively
oscillates around φ = 0, and whose magnitude is small compared to the linear term. Since
the graph is symmetric relative to the vertical axis, it is necessary to write down solutions for
both cases x > 0 and x < 0. The Fresnel integrals oscillate around the value ±1/2 (instead
of 0) for large ±x, so we subtract this value from each of them in the rapidly oscillating
terms. Finally, we note of an emerging pattern: the argument of the Fresnel integral is x/

√
π ,

therefore we express the linear term and the remaining factors of x in terms of this scaled
variable. The upper sign is for positive x, while the lower sign is for x< 0.

φ(1)(x) =±π

[
1
2

λ

](
x√
π

)

︸ ︷︷ ︸
LINEAR TERM

+λ


π

(
x√
π

)(
C
(

x√
π

)
∓ 1

2

)
− sin

[
π

2

(
x√
π

)2
]


︸ ︷︷ ︸
OSCILLATING TERM PROPORTIONAL TO λ

. (M.3)

We note that this result is strictly first order in the mode parameter λ . To construct the
complete solution of the phase resonance equation to first order in λ , eq. (9.105), we combine
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eq. (M.3) with the zeroth-order function (9.100):

φ1(x) =
π

2

(
x√
π
± 1

2
λ

)2

+λ


π

(
x√
π

)(
C
(

x√
π

)
∓ 1

2

)
− sin

[
π

2

(
x√
π

)2
]
+O

(
λ

2) .

(9.105)

We have combined the quadratic and linear terms into a single quadratic term, by implicitly
adding the constant term (πλ 2/8), which is nevertheless ignored at linear order in the mode
parameter, thus obtaining the form (9.105):

π

2

(
x√
π

)2

± π

2
λ

(
x√
π

)
+O

(
λ

2)= π

2

(
x√
π
± 1

2
λ

)2

+O
(
λ

2) . (M.4)

Finally, we make note of the functional form of the oscillating term, which will be investigated
in detail later together with the functions incurred at higher order (let X = x/

√
π and see

Appendix M.2 for plots and discussion):

ρ1(X) = π X
(

C(X)∓ 1
2

)
− sin

(
π

2
X2
)

(M.5)

The above result allows us to solve the equation at the next higher order, which is discussed
below.

Finding the solution up to second order in λ involves substituting φ1(x) = φ0(x)+φ(1)(x)

on the right-hand side of the source equation (9.98), and solving for φ(2)(x). Explicitly,
eq. (9.106) is (we use the variant (M.2) of φ(1)(x)):

φ
′′
(2)(x) = λ cos


x2

2
±

√
π

2
λ x+λ


√π x

(
C
(

x√
π

)
∓ 1

2

)
− sin

(
x2

2

)



 . (M.6)

We write the last term in the argument of the cosine as λ ρ1
(
x/
√

π
)

and invoke our knowledge
of trigonometric identities to write the right-hand side as:

φ
′′
(2)(x) = λ cos

(
x2

2
±

√
π

2
λ x

)
cos

(
λ ρ1

(
x√
π

))
−λ sin

(
x2

2
±

√
π

2
λ x

)
sin

(
λ ρ1

(
x√
π

))

(M.7)
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The function ρ1
(
x/
√

π
)

oscillates around 0, and further, is pre-multiplied by the coefficient
λ ≪ 1, hence we can assume that it is always small (compared to the quadratic and linear
x-terms, see Figure M.1 for comparison of the relative magnitude of the terms), and use this
fact to substitute the trigonometric functions involving ρ1 for Taylor series to leading order in
λ . We ignore all terms of O

(
λ 3) and higher, since they are not included at the current order.

φ
′′
(2)(x) = λ cos

(
x2

2
±

√
π

2
λ x

)
(
1+O

(
λ

2))−λ sin

(
x2

2
±

√
π

2
λ x

)(
λ ρ1

(
x√
π

)
+O

(
λ

3)
)

(M.8)

We carry out the same procedure with the term multiplied by λ 2, and neglect resulting terms
proportional to λ 3:

λ
2 sin

(
x2

2
±

√
π

2
λ x

)
ρ1

(
x√
π

)
= λ

2 sin

(
x2

2

)
ρ1

(
x√
π

)
+O

(
λ

3) . (M.9)

Thus, we are left with the integral below, which can be easily performed using standard
techniques, integration by parts and utilising the Fresnel integrals notation. We keep in mind
to throw out terms of O

(
λ 3) and higher.

φ
′
(2)(x) =

∫
x

0

dy
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2
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√
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C
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)
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2

)


(M.10)

=
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π
± λ

2

)
∓C
(
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2
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+
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π λ
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− 1√

2
C

(√
2x√
π

)
∓ 1

2
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(
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2
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± 1

2


 .

(M.11)

We need to integrate this further once again, keeping track of the initial condition, φ(0) = 0.
We obtain the following expression for the correction, where again the upper sign is valid for
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Fig. M.3 Upper panel: All four solutions (9.100) – (9.110) represented on the same plot.
Evidently, they are all very close to each other, and cannot be easily distinguished in this
manner. The three insets show features of the plot. At the origin, the solutions vanish up to a
small deviation of magnitude comparable with the next respective order. Upon zooming in
closer, one can distinguish the graphs from each other. Lower panel: Visual comparison of
the highest-order solution, φ3(x), and the numerical solution of the phase resonance equation.
In all calculations and simulations we have used value of λ = 0.1. Figure appeared in [1].

x> 0 and the lower for x< 0:
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(M.12)

We have obtained an expression which gives the correction to the quadratic term to second
order in λ , which can be seen plotted in Figure M.4. Again, we seek to express this in a
modified form where the linear term is explicit, and all the oscillating terms are grouped by
order of the parameter λ , which allows for better understanding of the solution.
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(M.13)

We note that some of these terms, if expanded, would be O
(
λ 3) or higher, but we leave them

in for presentational purposes. We simplify the coefficient of the linear term (the slope of the
derivative φ ′

2 (x)), by writing the Fresnel integral in power series, and retaining only its linear
term (the next higher-order term is of fifth order):

λ

2
−λ C

(
λ

2

)
+

√
2−1

2
√

2
λ

2 =
λ

2
− λ 2

2
+

√
2−1

2
√

2
λ

2 +O
(

λ
6
)
≈ 1

2
λ −

√
2

4
λ

2. (M.14)

When we combine this with the zeroth-order function φ0(x) = x2/2, we find the complete
second-order solution, given by eq. (9.108). Specifically, we can complete the square with
the quadratic, linear, and constant terms, to obtain

x2

2
±
√

π

[
1
2

λ −
√

2
4

λ
2

]
x+

π

8
λ

2 =
π

2


 x√

π
±
[

1
2

λ −
√

2
4

λ
2

]


2

+O
(
λ

3) . (M.15)

In deriving this solution, we have used familiar integration techniques, and the definition of
the Fresnel integrals, however it is useful to quote one of the “tricks" for the benefit of the
reader who wishes to replicate these results:

∫ x/
√

π ± f (λ )

± f (λ )

dycos
(

π

2
y2
)
=C

(
x√
π
± f (λ )

)
∓C
(

f (λ )
)
. (M.16)
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Fig. M.4 Graphical comparison of the three corrections φ(1)(x), φ(2)(x), and φ(3)(x) for
λ = 0.1. At the origin, φ(1)(0) = 0 as it does not involve a constant term, while φ(2)(0)
and φ(3)(0) do not vanish, but rather obey the condition to O

(
λ 3) and O

(
λ 4), respectively,

which is within their errors: |φ(2)(0)|< λ 3 and |φ(3)(0)|< λ 4. Figure appeared in [1].

It is important to pay attention to the two oscillating terms in eq. (M.13): the first one, has
the same functional form as the oscillating term in eq. (M.3), and can in fact be related to
ρ1(X) in the following way:

OSCILLATING TERM PROPORTIONAL TO λ = ρ1

(
x√
π
± 1

2
λ

)
. (M.17)

The second oscillating term has not been encountered before, and will be investigated in
detail in Appendix M.2:

ρ2(X) =
π
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(
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2
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2

(√
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)(
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2
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1
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As we can see, the second-order solution φ2(x) = φ0(x)+φ(2)(x) is already heavily involved.
Extending the results in [114], we use this function to source the third-order solution, see
below for details.

Substituting the expression (9.110) for φ2(x) into eq. (9.109) gives the equation we need
to solve at third order:
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and ρ2
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It is important to realise that λ ρ1(•) and λ 2ρ2(•) are small in magnitude compared to the
other terms, as is obvious when these are plotted on the same graph, see Figure M.2. Hence
we can treat these as a perturbation to the rest of the argument. This becomes obvious when
the functions are plotted on the same graph, see Figure M.2. This prompts us to expand
the cosine term using the sum-to-product formulae, and expand the terms containing the
perturbation:
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We have combined both third-order terms together, since it makes the integration more
straightforward. Integrating the expression (M.24), subject to the boundary condition φ ′(0) =
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0 gives the derivative of the third-order correction:
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Integrating this again, using a combination of integration by parts, substitution, double-angle
formulae and other trigonometric identities, finally applying the current boundary condition
φ(0) = 0, we arrive at an expression for the third-order correction to the solution (9.100).
Below is given an initial form of the solution, and as before the upper sign holds for positive
x, while the lower sign is valid for negative x (see Figure M.4 for a plot of this function):
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As before, we re-arrange this form of the solution to obtain groups of terms which oscillate
around 0 (both for negative and positive x) and beside them, terms which are either linear or
constant with x, but are otherwise functions of λ .
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Fig. M.5 Plots of the two functions ρ(1)(x) and ρ1
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)
. We see that both branches (for

positive and negative x) are comprised of oscillations which peter out as we increase distance
from the origin. Figure appeared in [1].
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A useful trick that we use in evaluating these integrals is the following: if f ∼ O(λ ) is a
polynomial function of the mode parameter, we can establish which terms are relevant at
each order of the solution:
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The linear and constant terms can be simplified by expanding the sine function and the
Fresnel integral (see eq. (J.4b)):
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Combining eq. (M.27) with φ(0)(x) = x2/2, we obtain the complete solution to third order in
λ , eq. (9.110). In particular, we have combined the quadratic, linear, and constant terms into
a single quadratic term:

x2

2
± π

[
1
2

λ −
√

2
4

λ
2 +

3
√

3−1
16

λ
3

](
x√
π

)
+π

[
λ 2

8
− λ 3

4
√

2

]

=
π

2


 x√

π
±
[

1
2

λ −
√

2
4

λ
2 +

3
√

3−1
16

λ
3

]


2

+O
(
λ

4) .
(M.30)

Finally, we pay attention to the form of the oscillating terms. If we compare eq. (M.27) to
eqs. (M.3) and (M.13), we can immediately notice how the oscillating terms proportional to
λ and λ 2 are related to previous results:
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Fig. M.6 Upper pannel: Graphical representation of the two functions ρ2(x) and ρ2
(
x/
√
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)
.

Lower panel: The same functions, however here the highest-order guide function is removed
to reveal the oscillations. It is evident from the deviation from y = 0, especially around
the origin, that there are lower-order contributions to the guide function. From both panels,
however, we see that the function ρ2(X) oscillates more rapidly and decreases in magnitude
away from the origin. Figure appeared in [1].
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We are in a position to establish the functional form of the third-order oscillating term,
ρ(3)(X):
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M.2 Supplementary plots and remarks

The corrections have been plotted in Figure M.4 for value of λ = 0.1. Interesting is their
behaviour around the origin: even though we have imposed the condition φ(0) = 0 at each
order of the solution, it is important to note that they have corrections of the next-higher order
of λ : φ(1)(x) is accurate up to O

(
λ 2), φ(2)(x) to O

(
λ 3), and so on. Therefore, at the origin

x = 0, φ(1)(x) satisfies the initial condition and goes through (0,0), since it does not contain
any constant terms in λ (cf. eq. (M.3)). The next-order correction, φ(2)(x), however, does
not go through the origin: we can see this both from eq. (M.13) and from Figure M.4. Note
that this is not only due to the constant term πλ 2/8, but also because the oscillating term
proportional to λ in eq. (M.13) does not go through the origin. Similarly, |φ(3)(0)| ∼ O

(
λ 4),

and the third-order correction is also valid.
As we can see, certain function emerge in the arguments of the phase functions: the coeffi-

cients of the linear x term in each of the phase corrections can be written as ±√
π σ{1,2,3}(λ ),

where the functions are given by:
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These have been plotted (for λ = 0.1) in Fig. 9.15, and discussed in more detail in Section 9.3.
The last issue we will discuss in this section is the functional form of the oscillating

terms ρ{1,2,3}(X), given by eqs. (M.5), (M.18), and (M.32). These represent the functions
which arise as the oscillating terms at first, second, and third orders, respectively. Two of

−20 −16 −12 −8 −6 −4 0 4 6 8 12 16 20

0.0001

−0.0001

0.0001

−0.0001−0.15

0

x

ρ3(x)

ρ3
(
x/
√
π
)

Fig. M.7 Plots of the two functions ρ3(x) and ρ3
(
x/
√

π
)
. We see that both branches (for

positive and negative x) are comprised of oscillations which peter out as the distance from
the origin increases. Figure appeared in [1].
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them, ρ1(X) and ρ3(X), oscillate around the abscissa, and are depicted in Figure M.5 and
Figure M.7. The magnitude of the oscillations decreases with |X |, while their frequency
increases, which means that they can safely be treated as perturbations to terms which grow
quadratically or linearly with X . The function ρ2(X) differs slightly from the others in that it
does not oscillate around the abscissa, but rather around the curve 1/4πX2, as can be seen
from analytically expanding the function for large values of |X | (i.e., |X |> 1):
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(M.35)

The details about ρ2(X) are plotted on Figure M.6, and we can see that despite the dissimilar-
ities to the other two functions, it still decreases in magnitude with increasing |X |, and can be
treated as a perturbation to the other terms.

M.3 Phase resonance equation with n ̸= 1

If we consider the source equation (7.17b) in the single-mode version again, however this
time instead of keeping the mode with n = 1, we include only the rth mode, then we need to
solve the following differential equation:

(
φ
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)
. (M.36)

The algorithm for solution is identical to the one presented above for the case with r = 1,
hence we only quote the results at each order. The zeroth-order correction is left unchanged,
given by eq. (9.100). The first-order correction is:
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Fig. M.8 Evolution of the slope of the phase resonance solution (for large |x|) with changing
number of the mode n = r. Figure appeared in [1].

In the second-order correction we begin to notice the evolution of the terms from the original
solution eq. (M.13):
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We can already notice some ways in which this result differs from the second-order correction
with r = 1, for instance the change of variables from x/

√
π to

√
r x/

√
π , and the factor of

1/r added to the multipliers of the oscillating terms. Before we explain how this arises from
the governing equation, we present the third-order result:
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These results can be obtained from the ones involving λ1 ≡ λ by transforming eq. (9.98)
with a change of variables:

φ 7→ φ
(r) = rφ (M.40a) x 7→ √

r x, (M.40b)

which yields eq. (M.36), hence the solutions to this equation can be found from eq. (9.98)
by applying a change of variables. It is interesting to see how the number of the mode r

affects the graphical behaviour of the solution. In Figure 9.18 we have plotted the effect of
the mode number r on the correction φ3

(r)(x), and in Figure M.8 we see the effect of r on the
slope of the solution. The validity of solutions (M.37) – (M.39) is confirmed graphically in
Figure M.9.

M.4 Phase resonance equation with two distinct modes

As an interlude to solving the multi-mode version of the phase resonance equation, we present
the solution for two modes on the right-hand side, labelled by integers r and s. Without loss
of generality, we can let let r < s.

(
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= 1+λr cos(rφ)+λs cos(sφ) . (9.119)

The zeroth-order solution remains unchanged, φ
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0 = x2/2. The first-order correction can

be written in the form:
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Fig. M.9 Graphical validation of the phase resonance equation with a single n ̸= 1 mode:
solutions (M.37) – (M.39). Figure appeared in [1].

i.e., the two separate solutions do not mix at first order, and effectively φ
(r,s)
(1) (x) = φ

(r)
(1)(x)+

φ
(s)
(1)(x).

At next order, however, mixing occurs, since we need to substitute the above expression
(M.41) in both terms on the right-hand side of eq. (9.119). The second-order correction to
the original solution can be found to be a combination of (modified) single-mode corrections
plus a new mixing term at second order.
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Here, l̄ denotes the element of the set {r,s} which is currently not l. It is best to interpret
these results graphically.

Finally, we present the third-order solution for a source equation with two distinct modes.
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Fig. M.10 Slope of the phase solution with two different oscillating modes, r and s, for
several different combinations of the mode numbers, and for 0 ≤ λr,λs ≤ 1. Figure appeared
in [1].
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M.5 Multi-mode phase equation

We know by designation that the correction φφφ (1)(x) will be of first order in the {λn}. There-
fore, we ignore any terms of second or higher order when solving the differential equation
(9.123), as they belong to higher-order corrections:

φφφ
′′
(1)(x) = ∑

n
λn cos(nφφφ 0) . (9.123)
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Fig. M.11 Graphical demonstration of the validity of the solutions to the phase resonance
equation with two distinct modes r and s, for several different number combinations. In all
these cases, we use λ1 = 0.1, and then consecutive coefficients are calculated by λn = λ1/n2.5.
We can see that in all cases, the remainder is an order of magnitude smaller than the larger
coefficient λr. Figure appeared in [1].
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Substituting for φφφ 0(x) from eq. (9.121), we obtain the differential equation whose solution is
the first-order correction:

φφφ
′′
(1)(x) = ∑

n
λn cos

(
nx2

2

)
. (M.45)

We integrate once to find the first derivative (we have to apply the appropriate boundary
condition φφφ

′(0) = 0), keeping in mind that the integral of a sum is simply a sum of the
integrals. We obtain the following result:
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′
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√
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)
. (M.46)

Integrating this once again, and keeping track of the boundary condition φφφ(0) = 0 yields the
first-order correction:
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(M.47)

As we can see, in exactly the same way as solution (M.41), this first-order result exhibits
no mixing between the solutions for different values of n, which means it can be expressed
as a sum over many single-mode solutions of the form (M.37). Combining this with the
zeroth-order solution, eq. (9.121), we can write down the complete solution of the phase
equation to first order in the case of an infinite number of Fourier-like coefficients {λn}. As
before, it is beneficial to combine the terms proportional to x2 and x into a single term, again
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retaining only terms linear in {λn}:
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(9.124)

The second-order correction to eq. (9.120) requires us to solve eq. (9.126). The argument
of the trigonometric function on the right-hand side is given by the first-order correction,
eq. (M.47) combined with the zeroth-order solution:
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Even though the process is more involved than before, the method of solution here is the
same: consecutively integrating the right-hand side twice, while observing the boundary
conditions. After the first integration, we obtain
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(M.50)
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While performing this integration, we encounter some unusual integrals, hence we quote the
results here:
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∫
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(M.51)

Similarly, when we integrate the expression (M.50), we encounter the following integral,
whose solution is made possible by the fact that we are summing over both indices n and m,
and hence we can re-label them interchangeably.
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(M.52)

Using this, the second-order correction is found to be as follows (remember that we are using
φφφ
′(0) = φφφ(0) = 0).
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It is important to note that this is consistent with our previous results. For n = m = 1,
we retrieve the second-order single-mode solution, eq. (M.13) while if we choose n,m =

{r,s}, we find the second-order solution for an equation with 2 distinct modes, namely the
voluminous eq. (M.42). Moreover, we recognise that the oscillating terms here have similar
form to the ones in the single-mode solution, hence we can introduce the notation {σσσn} and
{ρρρm

n (x)}.
To obtain the third-order correction, we need to solve the following multi-mode second-

order differential equation:
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(M.54)

Following through with two rounds of integration yields the following solution for the
third-order correction:

φφφ (3)(x) =±π
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 . (M.55)

As with the second-order result, this one reduces to the appropriate previous expressions for
n = m = p = 1, or for n = m = p = {r,s}. Moreover, it is easy to recognise the generalised
form of the terms proportional to λ n and how they reduce to their single-mode counterparts.
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A more detailed discussion about the features and validity of these solutions for different
mode counts is presented in the main text.

M.6 Phase equation with a single mode and non-zero phase

Having considered the multi-mode zero-phase equation, we revert back to the single mode
case and introduce a non-zero phase δψ:

ϕ
′′(x) = 1+λ cos

(
ϕ(x)−δψ

)
. (9.133)

The first-order solution is ϕ0 = x2/2, and we substitute it into eq. (9.133) to obtain the
differential equation for ϕ(1):

ϕ
′′
(1)(x) = λ cos(ϕ0 −δψ) . (M.56)

The method of solution is identical to expand the trigonometric function on the right-hand
side:

ϕ
′′
(1)(x) = λ cos(δψ)cos(ϕ0)+λ sin(δψ)sin(ϕ0) . (M.57)

We now proceed to integrate this exactly as before, only this time there are twice as many
terms that need to be integrated. The final solution can be presented in a fashion similar to
before, however this time we have δψ-dependence both in the slope and in the oscillating
terms.
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(M.58)
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This solution can be used again in the source equation to find the second-order correction:
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
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sin(δψ)


 (M.59)

We can apply the same technique to find the third-order solution. The third-order
correction is given below.

ϕ(3)(x) =±π
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Details about these solutions are discussed in the main text. We can now address the
final problem, namely that of a phase equation with many oscillating modes, each with an
independent initial phase.

M.7 Multi-mode phase equation with non-zero phase

The solutions to the phase resonance equation with an infinite number of modes and non-zero
phases

ϕϕϕ
′′(x) = 1+ ∑

n>1
λn cos

(
nϕϕϕ(x)−δψn

)
. (7.17b)

can be found using the established algorithm. Note this is the most complete solution to the
phase resonance equation. The first-order correction to the zeroth-order solutions is given by
the expression below.
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(M.61)

Similarly, we can find the second-order correction, given here.
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Finally, we get to the point where we can derive the most complete solution to the problem
we are considering in this work. The third-order solution in this case is given by eq. (9.137).
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) (9.137)

In this solution, ςςς3 is the third-order slope function, dependent on the resonance flux parame-
ters {λn} and the mode numbers {n} (this solutions does not require the mode numbers to be
consecutive). The lower-order functions ςςς1 and ςςς2 are given as part of the corrections ϕϕϕ(1)

and ϕϕϕ(2), respectively.

ςςς3 = ∑
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1
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√
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√
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(
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(M.63)

The three oscillating functions {ρρρ i} are given below.
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n
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(
√
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± ςςς2

])
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 , (M.64)
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