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Clonal replacement and heterogeneity in breast
tumors treated with neoadjuvant HER2-targeted
therapy
Jennifer L. Caswell-Jin 1, Katherine McNamara 1,2,3, Johannes G. Reiter 4, Ruping Sun 1,2,3, Zheng Hu1,2,3,

Zhicheng Ma1,2,3, Jie Ding1,2,3, Carlos J. Suarez5, Susanne Tilk6, Akshara Raghavendra7, Victoria Forte8,9,

Suet-Feung Chin 10, Helen Bardwell10, Elena Provenzano11, Carlos Caldas 10, Julie Lang 9,12, Robert West5,

Debu Tripathy 7, Michael F. Press9,13 & Christina Curtis 1,2,3

Genomic changes observed across treatment may result from either clonal evolution or

geographically disparate sampling of heterogeneous tumors. Here we use computational

modeling based on analysis of fifteen primary breast tumors and find that apparent clonal

change between two tumor samples can frequently be explained by pre-treatment hetero-

geneity, such that at least two regions are necessary to detect treatment-induced clonal

shifts. To assess for clonal replacement, we devise a summary statistic based on whole-

exome sequencing of a pre-treatment biopsy and multi-region sampling of the post-

treatment surgical specimen and apply this measure to five breast tumors treated with

neoadjuvant HER2-targeted therapy. Two tumors underwent clonal replacement with treat-

ment, and mathematical modeling indicates these two tumors had resistant subclones prior

to treatment and rates of resistance-related genomic changes that were substantially larger

than previous estimates. Our results provide a needed framework to incorporate primary

tumor heterogeneity in investigating the evolution of resistance.
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Breast tumors exhibit cell-to-cell, spatial, and temporal
heterogeneity, with important implications for the use of
targeted therapies1–4. Several studies have suggested that

tumors may change substantially from diagnosis to surgery
over the course of only a few months of neoadjuvant (pre-
operative) therapy4–8. The three established breast cancer
expression biomarkers—estrogen receptor (ER), progesterone
receptor (PR), and HER2—are discordant between the primary
tumor and the residual tumor after neoadjuvant therapy in
5–40% of cases that do not achieve a pathologic complete
response (pCR, defined as absence of remaining invasive cancer)5,6.
Sequencing of triple-negative4,8 and ER-positive7 breast
cancers has suggested that breast tumors can undergo major
shifts in genomic aberrations with neoadjuvant therapy. These
results raise the possibility that treatment-induced selective
pressure may lead to the outgrowth of resistant subclones
undetected in the pre-treatment tumor9. Such an evolutionary
model would have implications for treatment, including whether
adjuvant therapies should be targeted based on the genetic
composition of the post-treatment rather than the pre-treatment
tumor10,11.

Importantly, however, it is not clear whether and when
observed tumor changes with neoadjuvant therapy reflect
treatment-induced clonal evolution rather than pre-existing
intra-tumor heterogeneity (ITH). Existing sequencing studies
typically use a single sample from the pre- and post-treatment
time points4,8, but, based on targeted sequencing panels, pri-
mary breast tumors may exhibit substantial spatial ITH at a
single time point2. Given the possibility of extensive pre-
existing ITH within the tumor, it may not be readily apparent
whether a genomic shift across time reflects geographically
disparate sampling or a true evolutionary change in the tumor’s
composition. In order to understand how breast tumors evolve
with therapy, an analytical framework that considers ITH is
needed.

Early-stage HER2-positive breast cancers afford the optimal
setting to study genomic changes in breast tumors treated with
targeted combination therapy. Many stage II–III HER2-positive
breast cancers are treated with neoadjuvant HER2-targeted
therapy combined with chemotherapy, with improved rates of
response at time of surgery compared to chemotherapy alone12.
Patients with residual disease after neoadjuvant therapy tend to
have worse outcomes than those who obtain a pCR13. However,
the value of genomic profiling of residual disease in these patients
—to identify causes of resistance or predict effect of future
treatments—remains unclear.

To assess and account for baseline primary breast ITH, we
analyzed multi-region whole-exome sequencing data from 15
untreated primary breast tumors across clinical subtypes. We
then performed whole-exome sequencing on a separate, non-
overlapping cohort of a single pre-treatment diagnostic core
biopsy and multiple regions of the post-treatment surgical
specimen from five archival HER2-positive breast tumors that
were treated with neoadjuvant HER2-targeted therapy com-
bined with chemotherapy and did not achieve a pCR. We use
these data to determine evolutionary trajectories and mathe-
matical modeling to define evolutionary parameters that could
lead to these trajectories. The picture we uncover is one of high
and markedly variable heterogeneity that is present in both
untreated and treated primary breast tumors, even as a subset
of tumors undergo vast shifts in clonal architecture with
treatment. We also infer wide variability in evolutionary para-
meters across breast tumors, including the rate of mutation and
copy number change as well as the number of available paths to
resistance, that dictate in large part the outcomes of neoadju-
vant therapy.

Results
Untreated breast tumors exhibit high spatial heterogeneity. To
understand the potential impact of ITH in interpreting
treatment-induced genomic change, we first assessed ITH in
untreated primary breast tumors. We analyzed whole-exome
sequencing data from four multi-region sampled primary breast
tumors generated for this study, as well as data from 11 tumors
from four previous studies that performed genome or exome
sequencing of high-quality multi-region samples from primary
breast tumors2,14–16 (Supplementary Data).

We quantified regional ITH in these 15 primary breast tumors
using two complementary statistics: Wright’s fixation index (Fst)
(Eq. (1))17,18 and high-frequency regional (HFR) (Eq. (2)),
defined here as the percentage of high-frequency mutations
(cancer cell fraction (CCF) > 0.5) from a single region that are
absent or rare (CCF < 0.1) in a second, spatially disparate region
(Supplementary Fig. 1a). HFR uses mutations with drastic, and
therefore reliable, differences in CCF between two samples and is
thus robust to moderate differences in purity and sequencing
coverage between samples19. Conversely, Fst uses subclonal
mutations and is independent of the number of truncal
mutations, many of which occurred prior to transformation.
While Fst therefore informs the tumor’s post-transformation
evolutionary history, HFR provides direct information on the
clinical utility of multi-region sampling, corresponding to the
percentage of possibly clonal mutations found to be subclonal
when analyzing a second region of the tumor (Methods).

Both Fst and HFR were highly variable across the 15 primary
breast tumors, with some tumors with very low heterogeneity and
others with higher levels of heterogeneity than has been seen in
other tumor types17,20–25 (Fig. 1a, b). We did not observe
significant differences between breast cancer clinical subtypes,
though numbers within each subtype were limited (n= 6 ER-
positive/HER2-negative, n= 2 HER2-positive, and n= 7 triple-
negative). Mean HFR was 26% (range 1–70%), and was
significantly higher in breast tumors than other tumor types
(Fig. 1b). Breast tumors also had modestly lower purity (62% vs
78%, two-sided t-test p= 2.6 × 10–4) and coverage (90× vs 115×,
two-sided t-test p= 0.05) than other tumor types, but in a
multivariate model including purity, coverage, and tumor type
(breast vs other), only tumor type remained significant (multi-
variate t-test p= 0.015 vs p = 8.5 × 10−5 in univariate analysis).
Mutations in the canonical breast cancer drivers PIK3CA and
TP53 were clonal in all regions when present (n= 11). However,
other drivers26 or putative targets of therapy27 could be either
clonal in all regions (n= 14), subclonal in one or more regions (n
= 29), or clonal in one region but absent in another (HFR) (n=
8) (Supplementary Data).

We next adapted our previously described spatial tumor
growth models17,20 to simulate thousands of realistically sized
virtual tumors (composed of 109 cells) in order to infer
evolutionary parameters that could lead to the patterns of ITH
observed in the primary breast tumors (Methods). Higher ITH as
measured by mean HFR resulted both from tumor growth under
selection (s ≥ 0.05, where s corresponded to the change in the
cell’s growth rate when an advantageous mutation arose, with s=
0 reflecting neutral evolution) (Fig. 1c) and under greater spatial
constraints (smaller deme sizes, with a deme corresponding to a
well-mixed tumor cell subpopulation, such as a neoplastic gland)
(Supplementary Fig. 3). Fourteen of 15 primary breast tumors
had ITH levels inconsistent with neutral growth when compared
with simulated tumors using a statistical inference framework
based on Approximate Bayesian Computation (ABC) (Supple-
mentary Fig. 2). The high variability in ITH that was observed in
the patient tumors was also recapitulated by the virtual tumors
that grew under selection (Fig. 1c).
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Fig. 1 Intra-tumor heterogeneity of untreated primary breast tumors. a Average pairwise Fst between regions in fifteen breast tumors vs other
untreated primary tumors: colon adenocarcinoma20, glioma/gliobastoma (brain)21,22, lung adenocarcinoma23,24, and esophageal adenocarcinoma25.
*p < 0.05, **p < 0.01 (two-sided t-test). b Average pairwise HFR (high-frequency regional) in breast vs other tumors. HFR corresponds to the percentage of
high-frequency mutations from one region that are absent or rare in a second region. c HFR across tumors simulated with varying degrees of selection
conferred by driver mutations. Local samples were taken from the same octant of the virtual tumor and distant samples were from distinct octants. d In
virtual tumors, the mean proportion of apparently clonal (cancer cell fraction > 0.5) mutations in one region that were reclassified as definitively subclonal
(cancer cell fraction < 0.1) upon sampling 1–19 additional regions at random, with varying degrees of selection. e Schematic demonstrating how, in
tumors with high intra-tumor heterogeneity, geographic sampling may mimic tumor evolution. The different colored tumor cells represent distinct clones
within the tumor and the silver circles indicate sampled regions. BC breast cancer, TN triple-negative. Source data for panels a–d are provided as a
Source Data file
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We next used the virtual tumors to assess the impact of
different sampling approaches on classifying mutations as
clonal or subclonal, a task with implications for precision
oncology. In tumors that grew under neutral evolution, a second
region rarely provided additional information, whether that
region came from within the same octant (local sampling) or
from a different octant (distant sampling) (mean HFR= 0.03
for both sampling schema). In tumors that grew under high
levels of selection, a second biopsied region frequently showed
clonal differences from the first region, and these differences
were modestly greater with distant sampling (mean HFR= 0.35)
than with local sampling (mean HFR= 0.27) (two-sided t-test
p < 1E-15) (Fig. 1c). We similarly used the virtual tumors to
assess the value of obtaining additional samples in mutation
classification. In tumors that grew under selection, on average
31% of the mutations identified as having CCF > 0.5 in a first
region were identified to be definitively subclonal (CCF < 0.1 in
other regions) with one additional region and 36% with two
additional regions. Continued diminishing gain in reclassification
up to 47% was observed with 20 regions (Fig. 1d, Supplementary
Fig. 4). In the five untreated patient tumors with sequencing data
from more than two regions, we again saw a substantial increase
in the percentage of clonal mutations from the first region that
were rare in a second, and a more modest increase with additional
regions (Supplementary Table 1). In other words, in both virtual
and patient tumors, while substantial information about the
clonal status of mutations was gained from obtaining two regions
from a tumor, diminishing gain was obtained with three or
more regions.

The findings from both the patient and virtual tumors
suggested that if two biopsies are obtained randomly from a
primary breast tumor at diagnosis, more than a quarter of the
clonal mutations observed in one biopsy would be absent in the
other simply due to the ITH present prior to treatment. In other

words, the high level of ITH in breast tumors has substantial
implications for understanding changes in tumor composition
over time, including with therapy, as geographic genetic
differences can mimic genetic divergence observed under clonal
evolution (Fig. 1e).

Heterogeneity is high in bulky tumors after treatment. We next
turned to treated tumors to understand how heterogeneity may
change with neoadjuvant therapy. We began with a set of 20
archival stage II–III primary HER2-positive breast tumors that
were treated with neoadjuvant chemotherapy combined with
HER2-targeted therapy: for each, we performed whole-exome
sequencing on one pre-treatment region (from the diagnostic
core needle biopsy), one post-treatment region (from the surgical
specimen), and matched normal tissue (from the surgical
specimen). Approximately half (45%) of the initial cohort had
cellularity at time of surgery too low to allow interpretable
bulk whole-exome sequencing (Supplementary Fig. 5, Methods).
As expected, excluded tumors tended to be smaller at time of
surgery than those with adequate cellularity for downstream
analysis (Supplementary Table 2). In the five tumors with
adequate post-treatment cellularity/sequencing coverage and
available tissue for multi-region sampling, we sequenced an
additional 1–5 regions from separate pathology blocks of
the surgical specimen (Supplementary Data). The tumor infor-
mation, treatment courses, and sampling schema are provided
in Fig. 2.

Among these tumors with relatively bulky residual disease,
HFR was similar between multi-region sampled pre- (26%, range
1–70%) and post- (28%, range 10–54%) treatment tumors
(Supplementary Fig. 6). As in pre-treatment tumors, mutations
in the canonical breast cancer driver genes, PIK3CA and TP53,
were generally clonal within each region pre- and post-treatment
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5.1 × 3.9 × 4.2 cm 
tumor

Lesion 1: 1.5 × 1.4 × 1 cm
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0.5 x 1 × 2.5 cm, 1.7 × 1 × 1.2 cm, 
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Lesion 1: 4 × 3 × 1.5 cm, 
Lesion 2: 2 × 2 × 1 cm

Lesion 1: 1.9 × 1.4 × 1.2 cm, 
Lesion 2: 1.2 × 0.8 × 0.7 cm 

A11
A12

A14

A8

A9

A7
A9

A17

A19

A23

A21

A3

A22

A3
A5

A1

A2

B1
B4

B5

Fig. 2 Longitudinal multi-region HER2-positive breast cancer cohort. Pre-treatment tumor sizes were determined from the medical oncologist’s initial
measurements. Post-treatment (or in P6, surgical) tumor sizes were determined from the pathologist’s report of the surgical specimen. Tumors are drawn
to scale and approximate locations of the tumor blocks from which the multi-region samples are shown. TCH docetaxel/carboplatin/trastuzumab. Tumor
shapes from BioRender
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(Fig. 3A, Supplementary Data). However, one tumor had two
distinct PIK3CAmutations with one absent in one region and one
tumor had a TP53 deletion event present in all post-treatment
regions that was absent pre-treatment (Supplementary Data).
ITH in other driver26 and putatively targetable27 protein-altering
mutations was high: within each of the five post-treatment
tumors, 50–75% of the protein-altering driver or targetable
mutations present in any post-treatment region were found in
only one region (Fig. 3A, Supplementary Data). Across all five

tumors, the majority of region-specific driver or targetable
mutations (n= 26) were present at low frequency, but four were
high frequency (CCF > 0.5) and thus used to compute HFR.

Clonal replacement can occur with neoadjuvant treatment.
Despite the generally high HFR between pairs of regions of post-
treatment samples, two of the five tumors (P1 and P5) had a
cluster of mutations that was clonal (CCF > 0.5) in all post-
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Fig. 3 Intra-tumor heterogeneity and clonal replacement in treated primary breast tumors. a Heterogeneity of protein-altering mutations in driver and
targetable genes pre- and post-treatment, with multi-region sampling. b Cellular prevalence of inferred mutational clusters across treatment in P5
(PyClone). T1 is pre-treatment and T2 is post-treatment. The purple cluster reflects truncal mutations and the pink cluster reflects a new clone arising post-
treatment. c Schematic describing geographic killing and clonal replacement. Untreated primaries must have regions of high homogeneity for geographic
killing to mimic clonal replacement. d Values of tHFR in patient-treated tumors (dashed lines) compared to distributions of tHFR in virtual untreated
tumors. For each case, tHFR is computed using 1, 2, and, when possible, 3 post-treatment samples (averaged over all possible combinations of subsets of
post-treatment samples) to compare to the distribution derived from the virtual tumors for 1, 2, and 3 post-treatment samples. tHFR corresponds to the
percentage of clonal mutations across all post-treatment samples that are absent or rare in a single pre-treatment sample. P1 and P5 exhibited tHFR values
consistent with clonal evolution (not geographic killing). In certain cases, at least two post-treatment samples were necessary to discriminate between pre-
treatment heterogeneity (P3) and clonal evolution (P5), as demonstrated within the simulation framework. Source data for panels a, b, and d are provided
as a Source Data file
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treatment regions and absent or rare (CCF < 0.1) in the pre-
treatment region (Fig. 3B, Supplementary Fig. 7). In theory,
tumors with high heterogeneity between distant regions, but low
heterogeneity within local regions, could generate such a cluster
by geographic killing rather than treatment-induced clonal evo-
lution (Fig. 3c); in such a scenario, the residual post-treatment
tumor would represent a homogeneous area that had been pre-
sent in the pre-treatment tumor. It was not feasible to sample the
primary breast tumors with adequate granularity to determine if
there were areas of high homogeneity within a heterogeneous
tumor, especially recognizing the great variability seen in both the
patient and virtual tumors. We therefore turned to the virtual
untreated tumors to assess geographic killing as a possible
explanation for the observed clonal shifts, as these recapitulated
primary breast tumor heterogeneity (Fig. 1b, c). For each virtual
tumor, we took one region from an octant as the pre-treatment
sample and two regions from the octant on the opposite side of
the tumor as the post-treatment samples (Supplementary Fig. 8a).
We then defined a new statistic temporal high-frequency regional
(tHFR) (Eq. (3)) to represent degree of clonal change across time
much as HFR represents degree of clonal change across space
(Supplementary Fig. 1b): tHFR here was equal to the proportion
of mutations with CCF > 0.5 in all post-treatment regions that
were absent or rare (CCF < 0.1) in the pre-treatment region of the
tumor. This analysis confirmed that the clonal cluster seen post-
treatment in P1 and P5 was statistically unlikely to have resulted
from pre-existing heterogeneity in the untreated tumor (P1:
tHFR= 0.65, >99.9th percentile of virtual tumors; P5: tHFR=
0.30, >90th percentile, both tHFR values computed with the
maximal number of post-treatment samples available) (Fig. 3d).
In other words, geographic killing alone was unlikely to explain
the degree of clonal change observed across treatment, and so
treatment-induced clonal evolution was likely to have contributed
at least in part. The other three cases, as expected, had tHFR
values consistent with heterogeneity in the untreated tumor (P2:
0.12, P3: 0.06, and P4: 0.09). Importantly, while the drastic clonal
change across treatment was suggested with only one post-
treatment region for P1 (>98th percentile of virtual tumors),
multiple regions were needed to discriminate between pre-
treatment heterogeneity (P3) or treatment-induced change (P5)
for other tumors (Fig. 3d).

Notably, when the sampling scheme is known more precisely, it
is possible to sample from the virtual tumors in accordance with
that scheme. In particular, in P5, it was known that two of each of
the four post-treatment regions came from opposite quadrants of
the tumor (Fig. 2). We therefore generated a distribution of tHFR
values in accordance with this sampling scheme (Supplementary
Fig. 8B) and observed that the degree of clonal change seen in P5
was statistically unlikely to have resulted from pre-existing
heterogeneity (tHFR > 99th percentile) (Supplementary Fig. 9).
Thus details of the tissue sampling scheme, even if somewhat
coarse, can be valuable in assessing for clonal evolution.

We next assessed if the clonal similarity seen among post-
treatment samples in P1 and P5, as compared to the pre-
treatment sample, was detectable using copy number aberrations
rather than mutations (Supplementary Fig. 10). For this purpose,
we calculated the copy number distance28 between each pair of
regions in the tumor, within and across timepoints. In the three
tumors that, based on mutational data, did not appear to have
undergone clonal replacement (P2, P3, and P4), the copy number
distance between pairs of post-treatment samples and between
pre- and post-treatment samples was similar, indicative of
ongoing regional copy number heterogeneity. Conversely, in the
two tumors that appeared to have undergone clonal replacement
(P1 and P5), there was a trend toward a smaller copy number
distance between post-treatment samples than between pre- and

post-treatment samples (two-sided t-test p= 0.06 for both P1
and P5).

While we only identified two clones consistent with clonal
replacement (in P1 and P5), the genetic alterations contained
within them represent candidate drivers of resistance, and are
provided (Supplementary Data).

Evolutionary trajectories during neoadjuvant treatment. We
estimated the range of possible pre-treatment resistant clone sizes
that could lead to clonal replacement over the course of neoad-
juvant therapy in P1 and P5. Assuming exponential growth at
rates consistent with the literature on breast tumors29–31, the
resistant cell populations for both tumors made up 0.02–12.5% of
the overall pre-treatment cell population (Fig. 4a). Notably, these
estimates of resistant tumor clone size were substantially larger
than those from models in other cancer types predicting ~1 in 1
million cells to be resistant prior to treatment9,32. They were also
consistent with our observation that a subset of the mutations
comprising the resistant clone in P5 were present at a CCF of
approximately 0.05 in the pre-treatment biopsy (Fig. 4b). The
large size of the resistant clones prior to treatment suggested that
they arose early in the evolutionary history of the tumor (Fig. 4c).

If resistant clones were present pre-treatment, the mutational
processes33,34 contributing subclonal mutations should be similar
to those contributing mutations newly detected after treatment.
Indeed, we found that while truncal mutations were associated
with a unique set of mutational processes, subclonal and post-
treatment mutations shared a similar set of mutational signatures
(Supplementary Fig. 11). For example, in P5, the top two
mutational signatures among truncal mutations, contributing to
71% of all such mutations, represented APOBEC activity, while
the top two mutational signatures among both subclonal and
post-treatment mutations, contributing to 66% and 72% of such
mutations respectively, represented defective mismatch repair.
The lack of a new signature post-treatment supported the view
that the clones detected post-treatment were present pre-
treatment, and suggested that the treatment itself was unlikely
to be significantly mutagenic.

The tumors we analyzed post-treatment had, by definition,
bulky residual disease and therefore likely larger resistant clone
size prior to treatment than typical across the range of possible
breast tumors. To more broadly characterize the evolutionary
parameters that could lead to clonal replacement or other possible
outcomes over a few months of neoadjuvant therapy, we used a
stochastic mathematical branching model of exponential tumor
growth9,35–38 (Methods). Unlike our model of spatial tumor
growth employed to assess between-region genetic divergence,
this model was designed to assess the impact of baseline tumor
sensitivity to therapy as well as rates of accumulation of
resistance-causing aberrations on treatment outcome; these
simulated tumors had no spatial structure. Each tumor was
grown to 10 billion cells with a range of possible rates of
accumulation of resistance-causing aberrations, and then treated
for 150 days with resistant cells dying at the same rate as pre-
treatment and sensitive cells dying at a range of possible rates. We
defined four possible outcomes after treatment: pCR (<10,000
residual tumor cells), and if no pCR, sensitive residual disease (at
least 80% of the residual tumor comprised of sensitive cells),
clonal replacement (at least 80% of the residual tumor comprised
of one resistant clone), and polyclonal resistant residual disease
(less than 80% of the residual tumor comprised of sensitive
cells, and multiple resistant clones) (Fig. 5a). Sensitive residual
disease and pCR both occurred only at lower effective resistance
aberration rates; sensitive residual disease occurred at the
lower sensitive cell death rates and pCR at the higher sensitive
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cell death rates (Fig. 5b). At higher effective resistance aberration
rates, polyclonal resistance and clonal replacement became
increasingly frequent, with polyclonal resistance always more
frequent than clonal replacement. Clonal replacement resulted
when the time between the birth of the first and second resistant
subclones was adequately long: this occurred at a stochastic rate
of ~10% across a wide variety of effective resistance aberration
rates (Fig. 5b).

We next used the mathematical model to infer the effective
resistance aberration rates that would lead to the specific patterns
observed in P1 and P5: clonal replacement with residual tumors
10–50% the pre-treatment size (Methods). For these tumors, we
inferred effective resistance aberration rates between 6.0 × 10–6

and 3.4 × 10−4 (Fig. 5c). As a point of comparison, previous
estimates of approximately 50 sites in the genome conferring
resistance9,35 and mutation rates of 10−9 to 10−7 35,39,40 translate
to effective resistance aberration rates of 5 × 10−8 to 5 × 10−6.
Notably, with such a high effective resistance aberration rate, pCR
would be impossible (Fig. 5b). Since both pCR and clonal
replacement (with a large residual tumor) can occur, these
simulation studies suggest that different breast tumors must
possess markedly different effective resistance aberration rates,
whether through higher rates of genomic change, higher numbers
of sites in the genome conferring resistance, or both.

Discussion
In this study, we assessed ITH of untreated and treated breast
tumors, finding it to be on average higher and more widely
variable in breast tumors than in other tumor types. The high
ITH we observed in breast tumors could be related to high

selective pressure during primary tumor growth17, as we model
here, or potentially other factors such as differences in the
microenvironment, spatial boundaries within the tumor, or dif-
fering modes of growth. Alternatively, technical differences in
how the tumors were collected might have contributed to
observed differences in ITH. Regardless of the cause, the presence
of high pre-existing ITH meant that multi-region sampling of the
post-treatment tumor was sometimes necessary to detect clonal
replacement.

Our findings have implications in the era of personalized
medicine as tumors increasingly undergo panel41 or whole-exome
sequencing27 to identify potential targets of therapy or clonal
antigens42. In particular, our results suggest that efforts to target
therapies based on mutations in primary breast tumors, whether
treated or untreated, would benefit from the analysis of at least
two regions of the tumor. We find that, on average, one additional
sample, even if from the same local region, adds the majority of
clinically meaningful value over a single sample, though some
additional value is gained with additional regions and with more
geographically disparate sampling. In this study, we performed
multi-region sampling of the treated tumors by sequencing dif-
ferent blocks from the surgical specimen, an approach that would
be readily reproducible in future clinical studies.

We find that it is possible for the set of clonal mutations to shift
dramatically over only a few months of combination che-
motherapy and HER2-targeted therapy, such that one-third or
more of the clonal mutations across the post-treatment tumor
were rare in the pre-treatment biopsy. Such a shift occurred in
two of the five tumors we analyzed, and we predict based on
mathematical modeling that clonal replacement will occur in
approximately 10% of cases across a variety of evolutionary
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Fig. 4 Growth of resistant subclones during therapy. a The change in overall tumor size (blue) and resistant subclone size (red) is shown for P1 and P5,
assuming exponential growth and clonal replacement. Across a range of feasible growth rates, the resistant subclone was prevalent in the pre-treatment
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parameters. The frequency with which we observe and predict
that such a drastic change occurs across neoadjuvant treatment
suggests there may be some clinical benefit to characterizing the
post-treatment tumor rather than the pre-treatment tumor in
future clinical studies exploring adjuvant targeted therapy based
on genomic biomarkers. Analogously, discordance between the
primary tumor and the metastasis with regard to ER, PR, or
HER2 status (in 10–50% of cases)3,43 and actionable drivers (in
>50% of cases)44,45 has led to the recommendation to biopsy
metastatic sites at recurrence to help determine appropriate
treatment46. Furthermore, among those patients who have high-
risk disease after neoadjuvant treatment, including those in this
cohort, there may be prognostic implications to the different
evolutionary paths their tumors have followed.

We inferred high effective resistance aberration rates in the two
tumors that underwent clonal replacement, representing either
high rates of genomic alteration (through mutation, copy number
change, or epigenetic modification), or high numbers of potential
resistance-causing aberrations, or both. In other words, it may be
remarkably easy for certain tumors to acquire resistance in the
context of their (epi)genomic and microenvironmental back-
ground. Other tumors, including those that undergo pCR, appear
to be fundamentally different from these tumors from their ear-
liest stages of development, both in how sensitive their founding
cells are to the treatment, but also in their ability to acquire
resistance. One explanation would be that tumors with different
genomic backgrounds (such as the presence or absence of a
certain driver mutation or copy number aberration) have

differing paths, and differing numbers of paths, to therapeutic
resistance. We note that it is possible that factors not modeled
here—including spatial differences in the impact of treatment or a
subset of resistance-conferring changes that also confer a selective
advantage in the absence of treatment—may also affect tumor
outcome.

Approximately one-half of the tumors we initially profiled pre-
and post-treatment were not analyzable with bulk whole-exome
sequencing because of low cellularity, consistent with previous
work in triple-negative breast cancer8. In other words, the evo-
lutionary trajectories of the majority of HER2-positive breast
tumors that either experience pCR or significant reductions in
cellularity can be modeled, as described here, but not directly
assessed at time of surgery. Earlier time points of sampling—for
example, with tissue biopsies or cell-free DNA—may shed light
on the patterns of evolution that lead to these favorable responses,
as well as their impact on tumor heterogeneity. Similarly, using
bulk multi-region whole-exome sequencing data, we were only
able to identify with confidence tumors that had undergone
clonal replacement: we were not able to distinguish between
post-treatment tumors composed of multiple resistant clones
(polyclonal resistance) and those comprised of mostly sensitive
residual disease, though the mathematical modeling suggested
that polyclonal resistance may be more common than clonal
replacement. Delineation of polyclonal resistance would require
multi-region sampling of the pre- as well as post-treatment
tumor, ideally with concomitant single-cell profiling, to detect
shifts in subclones across treatment.
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In conclusion, multi-region sampling from untreated and
treated primary breast tumors revealed substantial heterogeneity
throughout treatment with chemotherapy and HER2-targeted
therapy, even while major clonal sweeps took place in a minority
of tumors. Many tumors that do undergo clonal sweeps have very
large resistant clones present prior to treatment. The high infer-
red resistance aberration rates in these tumors suggest that
additional studies of post-treatment tumors may uncover far
greater numbers of mechanisms of therapeutic resistance than
previously known. Multi-region sampling of breast tumors both
pre- and post-neoadjuvant therapy may reveal the tumor’s evo-
lutionary path and, especially as increasing numbers of molecular
and immune therapeutic targets are identified, provide clinical
benefit.

Methods
Patient cohort, sequencing, and multi-region sampling. The institutional
review boards (IRBs) of the University of Southern California and Stanford
University approved the collection and analyses described in this study. The
study complied with all ethical regulations for work with human participants;
informed consent was waived by the IRBs given analysis of archival, retrospectively
collected samples. We collected formalin-fixed paraffin-embedded (FFPE) core
diagnostic biopsies and surgical specimens from 21 patients with HER2-positive
breast cancer who were treated at the University of Southern California: 20 of
these patients received neoadjuvant therapy in between the time the core
needle biopsy and surgical specimens were obtained without achieving a pCR,
and one patient (P6) was not treated prior to surgery. We also obtained normal
breast tissue from the surgical specimen or normal lymph node for each case.
DNA was isolated using the QIAamp DNA FFPE Tissue Kit (Qiagen) and
subjected to library preparation using the Agilent SureSelect Human All Exon
kit (Agilent). From each region, 200 ng of DNA was used for whole-exome
sequencing. Paired sequencing reads were aligned to human reference genome
build hg19 with BWA 0.7.10.

We imposed stringent quality filters to ensure robust downstream analyses: in
particular, reduction in cellularity with treatment can lead to bias when comparing
pre-treatment and post-treatment tumor samples. We removed cases with, after
read duplicate removal, <10× mean coverage in the normal sample or <15× mean
coverage in the tumor (n= 3), cases where both pathology and computational
(PurBayes47) estimates of purity were <50% (n= 7), and cases with <10 mutations
in the post-treatment sample with a variant allele fraction (VAF) > 0.1 (ref. 48) (n
= 2) (Supplementary Fig. 5). An additional three tumors that passed these quality
filters did not have additional regions from the surgical specimen for analysis and
were not studied further.

For the untreated and five remaining treated HER2-positive tumors, we
obtained an additional 1–5 regions from the surgical specimen for sequencing
as above, with each region selected from a different, spatially distinct FFPE
block of tumor tissue (Supplementary Data). All sections were reviewed by a
board-certified pathologist (CJS) to select areas of high cellularity, with
microdissection performed to increase estimated cellularity above 80%,
wherever possible. These regions were sequenced as above, except that library
preparation was performed with the Illumina Nextera Rapid Capture Exome kit
(Illumina).

For analysis of untreated primary breast tumors, we selected 2–3 regions from
each of three FFPE tumors from the METABRIC cohort49 that had available
matched normal tissue; one region was a core from a tumor block and 1–2 regions
were spatially disparate sections from the same block (Supplementary Data).
Sequencing was performed as above with the Agilent SureSelect Human All Exon
kit. In selecting multi-region sampled whole-genome or whole-exome sequenced
untreated breast primaries from the existing literature to analyze, we required
estimated tumor purity of at least 40% and at least 40 mutations with coverage of at
least 20 reads across all regions to ensure accurate assessment of mutational
differences between regions (Supplementary Data).

Variant and copy number calling. Somatic single-nucleotide variants (SNVs) were
called using Mutect 1.1.7 (ref. 50). We then followed the variant assurance (filtering
and rescuing) pipeline (VAP)17. In addition to stringent filtering for FFPE and
other artifacts, the VAP uses multi-region sequencing data to borrow information
across tumor regions to salvage false-negatives due to limits of the variant caller.
VAFs were then calculated for the detected and rescued variants by dividing the
number of reads carrying the variant by the total number of reads spanning that
position. Mutations covered by less than 20 reads in any sample were removed, as
were mutations where the alternate allele was not supported by at least four reads
in at least one sample. Short insertions and deletions were detected using Strelka51

(isSkipDepthFilters= 1). We salvaged filtered indels when the identical indel was
identified (and not filtered) in other samples from the same case.

TitanCNA52 was used to determine local copy number and purity of the tumor
samples. For tumors P1–P6, the ploidy input was set based on the average value of

four centromeric FISH probes (chromosomes 8, 10, 11, and 17) measured on 100
cells in one sample from the surgical specimen. We assumed a single clone. Purity
estimates from Titan (copy number-based) and Treeomics53 (mutation-based)
were compared as validation (correlation 0.92). Observed VAFs were adjusted for
local copy number and purity following the framework presented in CHAT54 to
generate CCF estimates for each mutation in each sample. The nine new tumors in
this study were analyzed in this way, as were three of the tumors from existing
cohorts14,16. The non-breast (colon, brain, lung, and esophageal) tumors used as
comparison in Fig. 1 were also processed using the same pipeline. For the other
eight tumors from existing cohorts, we used the published CCF values2,15. Results
for the nine tumors new to this study are available (Supplementary Data). Genomic
data are deposited in the European Genotype Phenotype Archive (EGA):
EGAD00001004306.

We used a robust workflow to identify copy number aberrations that were
uniquely present before or after treatment in the tumors that underwent clonal
replacement (P1 and P5). First, to define the post-treatment copy number
aberrations, we used the highest quality post-treatment tumor sample, defined as
the sample with the lowest average variance between log-ratio values within each
Titan-called copy number segment. We did not use all the post-treatment regions
due to differences in quality of the copy number calls derived from the whole-
exome data and evidence for copy number similarity among the post-treatment
regions in P1 and P5 as described in the Results (Supplementary Fig. 10). We
defined a copy number segment as amplified in one time point and not the other if
the segment was at least 100 base pairs in length with absolute copy number 4–8,
with the amplified sample having at least twice the absolute copy number value of
the other sample.

Measurement of intra-tumor heterogeneity. We measured pairwise mutational
heterogeneity between samples using Fst17,18 as well as HFR (Supplementary
Fig. 1A).

Fst was computed per case by averaging the pairwise Fst statistics computed for
each pair of samples in the case and using all subclonal SNVs (those with CCF < 0.5
in at least one sample, with CCF cut-off chosen because of its good performance in
defining subclonality based on simulated virtual tumors14). SNVs with varying
patterns of loss of heterozygosity between regions were not included in the pairwise
Fst calculations14. For each pairwise comparison between regions, SNVs were
defined as being either shared or region specific. For two regions a and b,
mutations m1 to mt

FstHudson ¼
Pmt

m¼1 ðf ma � f mb Þ2 f ma ´ ð1 � f ma Þ
dma �1 � f mb ´ ð1 � f mb Þ

dmb �1
Pmt

m¼1 f
m
a ´ ð1� f mb Þ þ f mb ´ ð1� f ma Þ

; ð1Þ

where f ma is the VAF for SNV m and dma is the sequencing depth for SNV m in
region a14.

HFR we define as follows:

R1= R1þ Cð Þ½ � þ R2= R2þ Cð Þ½ �=2; ð2Þ

where R1 is the number of mutations with CCF > 0.5 in sample 1 and CCF < 0.1 in
sample 2; R2 is the number of mutations with CCF > 0.5 in sample 2 and CCF <
0.1 in sample 1; and C is the number of mutations with CCF > 0.5 in both sample 1
and sample 2.

To measure heterogeneity between one sample and multiple other samples
collected at a different timepoint, we define tHFR (temporal HFR) (Supplementary
Fig. 1B) as follows:

tR= tR þ tCð Þ; ð3Þ

where tC is the number of mutations with CCF > 0.5 in all samples; and tR is the
number of mutations with CCF > 0.5 in each of the second set of samples (here,
post-treatment) and CCF < 0.1 in the first sample (here, pre-treatment).

We used the MEDICC28 pairwise distance calculations to measure copy number
heterogeneity between pairs of samples.

We used PyClone55 to define mutational clusters and assess changes in cluster
frequencies across samples. PyClone’s Dirichlet process clustering was carried out
on the filtered list of mutations for each sample. The pyclone beta binomial model
was run using default parameters with 10,000 iterations with a burn-in of 1000.
Due to a greater number of mutations, cases P1 and P5 were run for 20,000
iterations with a burn-in of 2000 and analysis was limited to the 1000 mutations
with the highest coverage. For visualization of each case, we plotted PyClone
clusters comprising at least 1% of the total number of utilized mutations.

Classification of mutations and mutational signatures. We classified mutations
as driver variants (variants that confer a proliferative advantage leading to out-
growth of the subclone containing them) based on a previously curated list in
breast cancer26 or target variants (variants in genes that may have therapeutic or
prognostic implications for patients) using the TARGET database27. We used
Polyphen-2 (ref. 56) to predict which missense mutations were damaging. For those
mutations that were unique to and clonal within the post-treatment tumor in P1
and P5, which underwent clonal replacement, we used Cancer Genome Interpreter
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to annotate plausible drivers of resistance57. We used the SomaticSignatures
package58 to identify COSMIC mutational signatures33,34, dividing mutations into
those that were truncal (mean CCF > 0.6 across all regions, and >0.25 in each
region), subclonal (present in the pre-treatment sample with CCF < 0.4, or absent
in at least one post-treatment sample), or post-only (absent in the pre-treatment
sample). We analyzed the mutation sets from P1 and P5 separately, and grouped
P2, P3, and P4 together given smaller mutation loads in these tumors.

Spatial computational modeling. We used a spatial agent-based model17,20 to
simulate tumor growth and mutation accumulation. We simulated 109 cell virtual
tumors with a range of selection coefficients (s= 0; 0.05; 0.1; 0.2; 0.4; 0.5) ranging
from effectively neutral evolution to strong selection, and also a range of deme sizes
(1000; 5000; 10,000; 50,000). The simulated tumors grew under a model of
glandular fission; each freely mixing deme corresponded to a neoplastic gland that
filled to its prespecified size and then divided into two demes that continued to
grow. We recorded the mutational frequency distributions from a total of 20
regional samples taken across all octants of the tumor to allow for subsampling
when calculating summary statistics; each sample was composed of ~106 cells.
The deme-based spatial computational model used here is well established17,20,59

and parallels the glandular structures often found in epithelial tumors60. In line
with our previously described model17,20, our simulated tumors increase in size
in a peripherally dominated growth model, consistent with studies describing
the higher degree of proliferation present in peripheral cancer cells compared to
those at the tumor core61. During each cell division, somatic alterations arose via a
Poisson process at a rate of 2 × 10−8 per base pair, with a probability of conferring
a driver (selectively advantageous) phenotype of 10−5. We used previously
established values for the growth parameters (a birth rate of 0.55 and a death rate
of 0.45), somatic alteration rate (0.6 new mutations per cell division across the
exome), and driver alteration rate (1 in 105 mutations causing a growth advantage)
17. In line with the genomic data from our clinical cohort, for each tumor, we
assumed a mean sequencing depth of 100×, and assigned 50 SNVs to represent pre-
transformation truncal mutations. In calling mutations, we used the same
criteria regarding number of total reads and variant reads as for the patient tumors.

We used ITH metrics as summary statistics for inference in conjunction with
our simulated tumors: fHsub, fHSs, fHrs, Fst, and KSD (Code availability)17. We
used Approximate Bayesian Computation (ABC)20,62,63 to infer the deme size and
selection coefficients for the primary breast tumors. Specifically, we obtained
posterior parameter distributions for both deme size and selection coefficients by
comparing the summary statistics derived from simulations encompassing the
entire range of deme sizes and selection coefficients to those from the clinical cases
with multi-region sampled genomic data within the ABC framework64. Given that
this analysis indicated that neutral evolution and a deme size of 50,000 were
unlikely to have led to the patterns of ITH observed in the primary breast tumors,
in subsequent analyses we included only simulated tumors with s= 0.05; 0.1; 0.2;
0.4; or 0.5, and deme size= 1,000; 5,000; or 10,000.

Mathematical modeling. In estimating the size of the resistant clone prior to
treatment, we assumed exponential growth with growth rates ranging from
0.65% to 2.8%. This corresponds to the median to upper 95% confidence
interval growth rates and is based on two studies of HER2+ breast tumors29,30;
we used higher growth rates given the large size of the tumors studied (we note
that lower growth rates would lead to even larger estimations of the resistant
clone size at baseline). We also took into account a ±25% uncertainty in
volumetric tumor measurements. We assumed that the resistant clone represented
90–100% of the overall post-treatment tumor size, consistent with PyClone
mutational clustering results (Supplementary Fig. 7). To convert between volume
and cell-based tumor sizes, we used the approximation that a 1 cm3 contains
1 billion cells65,66.

We used a continuous-time, multi-type branching process to model tumor
growth and evolution with treatment9,35–38,67. During the growth phase, all cells
divide at rate b= 0.15 and die at rate d= 0.13, setting a growth rate of 2% per day,
consistent with that observed in multiple studies of breast cancer29–31. Tumor
growth starts from a single sensitive cancer cell. Cells accumulate genomic
aberrations that confer resistance at a rate of μ, and we consider a range from 10−2

to
10−10. The growth phase continues until the tumor reaches 10 billion cells. The
tumor is then treated for 150 days, consistent with the duration of treatment
observed in our neoadjuvant treated cohort. During treatment, no new mutations
are generated; resistant cells continue to die at rate d, while sensitive cells die at a
rate of d′
(b < d′), which we set to be 0.16, 0.2, or 0.25. For each set of parameters, we
performed 100,000 simulations, and noted the size (in cells) of the total tumor and
of each of the resistant clones throughout each simulated tumor’s growth and
treatment. To infer the most likely effective resistance aberration rate for P1 and
P5, we assessed for each d′ -value′ the μ-values that would lead to both clonal
replacement (>80% of the residual cells deriving from one resistant clone) and
shrinkage of the tumor to 10–50% of its initial size, and report the 5–95% interval
of these μ-values.

Code availability. Code used for mutation filtering, assessment of heterogeneity,
and simulation studies is available on: https://github.com/cancersysbio/
BreastCancerITH.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Whole-exome sequencing data generated for this study are deposited at the European
Genotype Phenotype Archive (EGA) at EGAD00001004306. Data from previously
published studies are available at: EGAS00001002153, EGAD00001000965,
EGAD00001000898, EGAD00001001394, EGAD00001000714, EGAD00001000900,
EGAD00001000984, EGAD00001001113, EGAS00001002947, and EGAS00001002737.
The source data underlying Figs. 1, 3, 4b and 5b, c, as well as Supplementary Figs. 2–4, 6,
7, and 9–11, are provided as a Source Data file.
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