
Snape: The Dark Art of Handling Heterogeneous Enclaves
Zahra Tarkhani

University of Cambridge, UK
zahra.tarkhani@cl.cam.ac.uk

Anil Madhavapeddy
University of Cambridge, UK

anil.madhavapeddy@cl.cam.ac.uk

Richard Mortier
University of Cambridge, UK
richard.mortier@cl.cam.ac.uk

Abstract
Code executing on the edge needs to run on hardware plat-
forms that feature different memory architectures, virtual-
ization extensions, and using a range of security features.
Forcing application code to conform to a monolithic API
such as POSIX, or ABI such as Linux, ties developers into
large, complex platforms that make it difficult to use such
hardware-specific features effectively as well as coming with
their own baggage and the attendant security issues. As edge
computing proliferates, handling increasingly sensitive and
intimate data in our everyday lives, it becomes important
for developers to be able to use all the hardware resources of
their particular platform, correctly and efficiently.

To this end, we propose Snape, an API and composable
platform for matching applications’ needs to the available
hardware features in a heterogeneous environment. Unlike
existing solutions, Snape provides applications with a flexible
trust model and replaces untrusted host OS services with
corresponding hw-assisted secured services. We report experi-
ence with our proof-of-concept implementation that enables
Solo5 unikernels on Raspberry Pi 3 boards to make effective
use of ARM TrustZone security technology.

CCS Concepts • Security and privacy → Systems security;
Virtualization and security; • Computer systems organiza-
tion → Cloud computing.

Keywords unikernels, enclaves, secure execution
ACM Reference Format:
Zahra Tarkhani, Anil Madhavapeddy, and Richard Mortier. 2019.
Snape: The Dark Art of Handling Heterogeneous Enclaves. In
2nd International Workshop on Edge Systems, Analytics and
Networking (EdgeSys ’19), March 25, 2019, Dresden, Germany.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3301418.3313945

1 Introduction
Computing at the edge is proliferating and, due to high
variability in the deployment environment and application
demands, the hardware available is highly heterogeneous.
With growing awareness of the likelihood and cost of security
and privacy breaches, many such hardware platforms now
support one of several different security features that can be

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
EdgeSys ’19, March 25, 2019, Dresden, Germany
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6275-7/19/03. . . $15.00
https://doi.org/10.1145/3301418.3313945

Source Code

ELF Binary

Monolithic
OS Kernel

Hardware

Source Code + Application Manifest

Platform Manifest

LibraryOS

Boot
loader

Device
Drivers

CPU &
Memory

tpm iommu
trustzone

keystone

trustzone

Isolated
Peripherals

sgx
trustzone

Trusted
Enclaves

Secure
Boot

arm64 /
trustzone

x86_64 /
sgx + vt-x

risc-v /
capabilities

key store serial logger data input

Hardware

Snape
Tools

Hardware
Maker

App
DeveloperApp

Developer

OS
Provider

Hardware
Maker

Hardware
Maker

Traditional Edge
Application

Snape-tailored Application
with Trusted Hardware

MMU

secure
extensions

idle

POSIX
ABI

process
model

Figure 1. Snape vs Traditional application layout

used to create a secure execution environment for applications,
e.g. encrypted memory [3, 13] or secure peripherals [4]. These
provide extra layers of protection to prevent attackers, who
may have full access to the hardware and privilege software,
from accessing confidential application data once the host
operating system (OS) or hypervisor is compromised. Table 1
gives some examples of recent CVEs issued against common
host OSs and hypervisors where a malicious host OS or
hypervisor could gain access to private application data or
code.

Given the significant amount of research into security
hardware features for protecting applications on untrusted
hosts [6, 9, 10, 12, 14, 20], it is likely that the heterogene-
ity of edge hardware will continue to increase. At the same
time, most of these hardware platforms expose their features
through relatively large, monolithic, inflexible Trusted Com-
puting Bases (TCBs), whether in the form of a hypervisor or
an in-enclave library OS (LibOS). For example, Haven [6] and
trustshadow [10] show how unmodified applications can be
executed inside a secure enclave either by linking against an
in-enclave libOS or using in-enclave mechanism for trap-and-
verifying untrusted system calls. As the number of different
hardware features continues to grow, we believe this approach
is not a long term solution and will lead to unresolved se-
curity, efficiency, and compatibility problems that will be
particularly acute at the edge.

We propose an alternative: Snape is a declarative platform
mapping applications’ fine-grained security requirements to
available hardware features. Figure 1 depicts Snape’s high-
level architecture: applications need not trust the underlying

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/200999322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3301418.3313945
https://doi.org/10.1145/3301418.3313945
https://doi.org/10.1145/3301418.3313945

EdgeSys ’19, March 25, 2019, Dresden, Germany Zahra Tarkhani, Anil Madhavapeddy, and Richard Mortier

execution environment as a monolithic whole. Instead, by
configuring a manifest that expresses their trust requirements,
they can choose (i) the data objects they want to protect,
(ii) the OS components that need to be protected, and (iii) the
isolation level of trusted services they will rely upon. Snape
compartmentalizes sensitive components in separate enclaves
to provide protection against breach of in-enclave compart-
ments.

In this paper, after giving the motivation and background
to Snape (§2), we describe the design of Snape and in partic-
ular the threat and trust models we assume (§3). Snape pro-
vides fine-grained utilization of the underlying hardware secu-
rity features for security-critical applications. Our approach
allowing applications to easily manage, limit, or extend their
trust depending on available heterogeneous hardware. We
then present our proof-of-concept (PoC) implementation that
contains a tiny microkernel-style hypervisor or unikernel mon-
itor, and uses ARM TrustZone to offer different levels of iso-
lation for applications enabling developers to appropriately
balance their security and performance requirements (§4).
Finally, we present some initial evaluation of Snape using
ARM TrustZone on Raspberry Pi 3 boards (§5) before dis-
cussing related work (§6) and concluding (§7). In doing so
we show how performance overhead depends on the Snape
users’ trust model and isolation levels and so it should be
possible for the user to control that balance.

2 Motivation & Background
We now discuss the motivations behind Snape and the neces-
sary technical background.

2.1 The need for fine-grained flexible trust
Current efforts on building OS and runtime support for
hardware-enclaves shows the limitations and differences in
the various implementations, and designing an efficient and
secure software abstraction for these enclaves is challenging.
Snape’s finer-grained security model is motivated by many
unresolved issues in previous work [6, 10, 23].

∙ Handling heterogeneity: Snape does not have a single
inflexible monolithic TCB and contains relatively stan-
dalone security services depending on the host hard-
ware features. For example, some application modules
such as in-enclave file systems can be supported on
more hardware platforms than other modules such as
secure peripherals. But providing a lightweight declar-
ative model is the first step to secure execution on the
heterogeneous environment

∙ Fragile security: The approach of shielding entire appli-
cation inside a protected environment result in a large
complicated TCB that includes the language runtime1

and most of the applications’ dependencies2 that may
not even have access to sensitive information. Porting
these dependencies into the isolated environment re-
duces the number of interfaces to the untrusted world.
On the other hand, this makes the secure world more
and more similar to the untrusted world; a single breach

1https://github.com/oscarlab/graphene/issues/396
2https://github.com/oscarlab/graphene/issues/325

CPU core

Secure Monitor Mode (EL3)

Kernel Mode(EL1)

User Mode(EL0)User Mode(EL0)

Kernel Mode(EL1)

Hyp Mode (EL2)

SMC SMC

Normal World Secure World

A
XI

 B
U

S

TZASC

TZMA

SRAM

DRAM

TZPC

Peripherals

GIC

CP Registers

Figure 2. TrustZone in ARMv8-A systems:

and it is vulnerable to a variety of attacks [1, 2] that
fails in exactly the way our current commodity OS
fails. Also, there is no way of limiting access from one
sensitive module to another one, or any mechanism
for limiting the scope of damage when a breach occurs
and the enclave is no longer fully trusted. Snape is
motivated by the fact that hardware-enforced compart-
mentalization of underlying TCB can resolve some of
these security issues[7].

∙ Inefficiency & fixed performance overhead: An inflex-
ible trust model forces applications to only use the
limited resources inside the enclave–e.g. insufficient
protected memory, or inefficient disk IO, networking
access and multithreading. This is especially bad form
when an application only needs to trust a small part
of the host OS, for example, an application that needs
a trusted filesystem should not incur a large overhead
on networking or UI.

2.2 ARM TrustZone overview
Our prototype uses ARM trustZone because of its rich sup-
port of secure hardware features including secure IO path
and peripherals that helps to consider various scenarios of
applications requirements.
As a short description of the ARM security extensions [5]
or TrustZone, this System-On-Chip (SoC) security mecha-
nism introduced with ARMv6 in most ARM Cortex-A and
Cortex-M processors. The TrustZone hardware architecture
can be seen as a dual-virtual system that allows partitioning
of all hardware resources including the CPU, memory, and
peripherals into two execution environments (see Figure 2).
The resource partitioning to secure and non-secure modes
(S/NS) can be done using TrustZone AXI components. For
example, the TrustZone Address Space Controller (TZASC)
partitions a single AXI slave such as an off-SoC DRAM, while
TrustZone Memory Adapter (TZMA) is used for partitioning
on-SoC memory such SRAM. The TrustZone Protection Con-
troller (TZPC) signal configures peripherals. The Generic
Interrupt Controller (GIC) supports both Secure and Non-
secure prioritized interrupt sources. Both worlds have their

https://github.com/oscarlab/graphene/issues/396
https://github.com/oscarlab/graphene/issues/325

Snape: The Dark Art of Handling Heterogeneous Enclaves EdgeSys ’19, March 25, 2019, Dresden, Germany

Unikernel application

Platform Manifest

LibraryOS

…. hvt Virtio

Arm64
toolchain

code .stm file data input

 Unikernel Monitors

Snape
Tools

Hardware
specifics

App
Developer

Snape Unikernel-based VM

TrustZone
available Features

Rumprun MirageOSIncludeOS

snape monitor

…. ukvm qemu

Backends

TZ- snape

Secure World OS (S-EL1)

Arm Trusted Firmware (S-EL3)

Enclave LoaderMMUIPC & RPC Net interface

FS/Blk device

Console UI

Secureboot

PIE-U components
(userspace S-EL0)

baremetal
FS

Storage

UI

Secure
Time

RNG &
Crypto

vTPM

PIE-K components
(OS modules, S-EL1)

TW components
(S-EL1)

Snape driver

baremetal
FS

Storage

UI

Secure
Time

RNG &
Crypto

vTPM

encrypted
Storage

encrypted
NW FS

Net
interfaces

Solo5

Stronger Security

Lower Overhead

Figure 3. An ARM64-based example of Snape architecture

own userspace and kernel space, and only the normal world
has hyp mode3. The two worlds can communicate to each
other under the strict supervision of a Secure Monitor run-
ning in monitor mode (EL3) via a “Secure Monitor Call”
(SMC) instruction.

3 Snape overview
Figure 3 shows an example of a Snape application on ARMv8
platforms that choose various private OS features with a
different level of isolation. The application requests: (i) a pro-
tected filesystem that runs as a standalone binary in secure
world userspace; (ii) a secure console UI that runs in secure
world kernel mode; and (iii) a trusted interface around the
underlying networking stack for accessing tap devices.
Snape is a unikernel-based VM that runs on top of a tiny hy-
pervisor or unikernel monitor that enforces memory isolation
and provides hardware resources such as virtual CPU, disk
IO, and networking via a small number of hypercalls [18, 25].
By default, the hypervisor may depend on a commodity OS
for providing these services. For instance, Solo5 hvt moni-
tor [25] depends on the host Linux kernel for creating block
storage or accessing tap devices for networking. The underly-
ing libraryOS provides necessary OS functionality and is stati-
cally linked to the application as a unikernel image which will
be loaded by the hypervisor. If an application does not have
any sensitive data, it would be executed with default monitor
backend that depends on the untrusted host OS/hypervisor.
However, when an application has private data that needs to
be protected against the host OS/hypervisor, the application
developer needs to specify its trust model by configuring
Snape Trust Model (.stm) file (§3.3). Then, depending on
the trust model, Snape initializes the requested enclaves and
maps the required services to dedicated enclaves and does
not change anything for non-sensitive calls. Snape provides
essential trusted services and depends on the hardware sup-
port to provide different levels of isolation for the trusted
modules (§3.2). As demonstrated in Figure 3, Snape contains

3Secure EL2 support is introduced in Armv8.4, which provides virtu-
alization support inside the secure world

CVEs guest VMs Snape VMs
Host malicious OS:
CVE-2018-8781 yes no
CVE-2017-1000251 yes no
CVE-2017-17712 yes no
CVE-2017-13715 yes no
Host malicious hypervisor:
CVE-2018-14678 yes no
CVE-2017-12188 yes no
CVE-2017-12137 yes no
CVE-2017-10918 yes no
Channel attacks:
CVE-2017-5753 yes yes
CVE-2017-5715 yes yes
CVE-2017-5754 yes yes

Table 1. A representative selection of recent vulnerabilities
that can cause a malicious OS/hypervisor to access private
data from the guest VMs, but can be prevented on the Snape
architecture

a small OS running in the TrustZone secure world that man-
ages enclaves resources, runs enclaves, and handles secure
interactions between enclaves and to the outside world.

3.1 Threat Model
We assume adversaries that can gain full control over the host
OS and hypervisor. The malicious host OS or hypervisor can
execute arbitrary code and access VM data (see Table 1). We
assume the secure world minimal OS or runtime is carefully
verified, preinstalled and loaded with a secure boot mecha-
nism. The minimal OS loads all enclaves statically and no
dynamic loading is allowed. Snape covers against Iago at-
tacks [8] from the host compromised OS. Recent study shows
practical side channel attacks against enclaves [16, 17, 26].
These attacks are out of scope in this paper.

3.2 Snape fine-grained security services
In this section, we explain how Snape security services are pro-
tected from the untrusted host and how it supports different
levels of isolation on TrustZone-enabled ARMv8 platforms.

∙ Pure In-enclave (PIE) Services: Each PIE services im-
plemented as a baremetal component that compiles
into separate enclave binaries without any dependencies
to the untrusted world. Depending on the available
secure hardware, these services can be PIE storage,
filesystem, user interface, system time, randomness,
and cryptography. As Figure 3 shows, the difference
between PIE-U and PIE-K is the level of isolation be-
tween enclaves and execution in either secure world
user mode or kernel mode. PIE-U services that run in
secure world user mode (SEL0) are in fact, isolated pro-
cesses through the secure world MMU. While PIE-K
services are executing as secure world drivers (SEL1).
So it is clear that PIE-U provides stronger security
and largest overhead due to extra context switches to
usersapce.

EdgeSys ’19, March 25, 2019, Dresden, Germany Zahra Tarkhani, Anil Madhavapeddy, and Richard Mortier

∙ Trusted Wrapper (TW) Services: These services fol-
low a forward-and-verify approach similar to Trust-
Shadow [10] for providing trusted OS system calls, or
Nizza [11] that provides trusted wrappers around de-
vice drivers for secure reuse of legacy drivers. Snape sup-
ports TW filesystem and networking wrappers around
the Linux kernel to protect the confidentiality and in-
tegrity of private data by on-the-fly data encryption
inside enclave before passing it to the untrusted host.
TW components act as a proxy between application
and untrusted host, and verify inputs and outputs of
untrusted calls. These services may provide better per-
formance and richer functionality, but arguably weaker
security than PIE equivalents.

The performance overhead of Snape depends on the trust
model and isolation type of trusted services as we will discuss
in Section 5.

3.3 Snape trust model
Snape requires application developers to build a trust model
via an stm manifest. Unlike systems like ProxOS [24], there
is no need to specify all private system calls. Only the name
of private modules are enough in most cases. For example,
Figure 4 is the stm file for two unikernels that shows unikernel
1 asking for a PIE-U block disk, a private file "keys.txt" as
well as TW networking. Similarly, unikernel 2 asks for a
PIE-K console UI and TW Storage. To provide a usable
development environment all trusted APIs are hidden from
the developer and aggregated by the Snape hypervisor.

#Trust Model#

//Unikernel #1:
//Private in-enclave FS & Block Device
//trusted_wrapped (tw) Networking
p_disk:(pie-u,"/tmp/unik1");
p_file:keys.txt
p_networking(tw);

//Unikernel #2:
//Private in-enclave UI
//trusted_wrapped (tw) FS
p_disk:(tw,"/tmp/unik2");
p_file:secret.txt
p_ui:(pie-k);

Figure 4. Snape Trust Model (stm) of two unikernels

4 Proof-of-concept implementation
We decided to implement Snape PoC using existing unikernel
systems since these lightweight libOSes already significantly
reduce applications dependencies to the complex untrusted
host that makes them suitable for many edge-cloud based
deployments [19, 25]. We also decided to focus on building
the Snape for the ARM architecture not only because it is

widely used in edge devices, but also since ARM security
extension provides a rich set of hardware security options
(§2.2). However, to show how our design can be portable to
other platforms, we partially ported Snape to x86-64 archi-
tecture that utilizes Intel SGX as we briefly discuss in (§4.3).
We implemented Snape hypervisor as a unikernel monitor
and a backend for Solo54 that supports several unikernel
monitors to run different unikernels such as Rumprun, Mi-
rageOS, IncludeOS, and Solo5. Hence, Snape’s hypervisor
follows the similar interfaces that make support of these
unikernels straightforward with some minor modifications.
Specifically, the high-level interfaces of Snape hypervisor are
similar to Solo5 hvt [25]; that is a tiny Type-2 hypervisor
(∼ 1500LoC) that exposes a minimal interface to the host
OS and KVM (∼ 10 hypercalls) for unikernel isolation and
accessing IO such as network and block devices. However,
Snape hypervisor provides the same functionalities using
TrustZone based security services. Snape PoC supports only
essential security services that (as Table 2 shows) have a
lightweight code base. Our prototype runs on a Raspberry
Pi 3 which supports a TrustZone capable CPU. However, it
currently lacks support for TZASC to isolate secure-world
memory, so the secure memory is statically configured.

4.1 Snape Secure World
Snape’s secure world OS is based on the core kernel of
OPTEE-OS5. The secure monitor runs Arm Trusted Firmware
and initializes secure world resources. Communication be-
tween the two worlds is possible through message passing
via SMC calls. The secure kernel follows ARM SMC calling
conventions to implement a simple RPC protocol. The ELF
loader calls an RPC to load each enclave, that is a signed
static ELF binary stored encrypted on the host Linux filesys-
tem. Then depends on enclave type, it runs each enclave as
a secure kernel module in S-EL1 or a separate process in
S-EL0. The secure kernel MMU configures TTBRC registers
that point to several L1 32 MB translation tables that cover
virtual memory mapping of each S-EL0 enclave. Each enclave
is internally identified by its UUID and signature (hash of
the binary) and the secure kernel ensures the same enclave
is not already loaded. We have implemented the followings
Snape secure services on top of the secure OS with a focus
on minimalism.

PIE – Filesystem This is a simplified baremetal filesystem
implemented inside an enclave with no dependency to the
untrusted world. Private disks are implemented as RAM
disks using 512-byte or 4096-byte sectors. Disk layout begins
with a filesystem header that describes the offsets of the
allocation table, root directory, and other details such as size
and filesystem signature. The disk driver provides minimal
disk interfaces (e.g. read, write, seek). The filesystem files
are contiguous and use 2MB disk blocks by default that can
be optimized depends on uses cases.

PIE – User Interface Snape implements minimal user in-
terface including console operations, GPIO access, and a

4https://github.com/Solo5/solo5
5https://github.com/OP-TEE/optee_os

https://github.com/Solo5/solo5
https://github.com/OP-TEE/optee_os

Snape: The Dark Art of Handling Heterogeneous Enclaves EdgeSys ’19, March 25, 2019, Dresden, Germany

Modules LoC
Secure Kernel 20k
Snape hypervisor 3k
PIE FS 3.6K
PIE Crypto 7.4k
TW FS + TW Net 1.9K

Table 2. Snape major modules’ LoC

mailbox interface to the rPi GPU based on rPi firmware67.
To implement these in S-EL0, we use RPCs to the Snape
driver in S-EL1 to read/write hardware registers as well as
direct access to secure world physical memory.

TW– Filesystem & Networking These services act as a
proxy between Snape VMs and the untrusted host to protect
against Iago attacks. Snape drivers, within the secure kernel
and Linux kernels, communicate through a secure RPC path
and provide trusted wrappers around the host FS and net-
working stack. To reduce performance overhead, parameter
marshalling is done through temporary shared memory be-
tween secure and normal worlds. For each system call, Snape
drivers allocate temporary shared memory objects via RPC
threads. After parameter validation, parameters are copied
to the shared memory. The results from the host are checked,
and after the validation, the output will be copied to regis-
tered secure memory. Snape drivers clean up the temporarily
shared memory.

PIE– Crypto The Snape “tcrypt” enclave provides access
to a hardware-based Random Number Generator (RNG) en-
gine in the secure kernel through secure RPCs. It supports a
variety of cryptography operations including modern cryp-
tography protocols such as ChaCha20, Poly1305, SipHash,
and BLAKE2.

4.2 Snape startup
Applications with no private section can run on Snape with
no extra work and a default trust model. However, when the
developer wants to use secure services, they configure the
trusted model (an stm file) that will be loaded by Snape via
a hypercall. Then based on the registered model, the Snape
hypervisor initialises secure sessions to the secure world to
ask for new enclaves and allocating private objects like disks
and files. Upon successful initialisation, the secure kernel
returns valid enclave context for invoking enclave functions.
Snape redirects the relevant calls to the requested enclaves.
For ease-of-programming, this aggregation phase and enclave
specific calls are hidden from the developer via libraries. The
hypervisor also saves the metadata of registered enclave so
applications also can have access to it via hypercalls.

4.3 Snape portability to other platforms
The modular and declarative nature of Snape makes it rela-
tively easy to support other platforms. Most of Snape security
services and Snape hypervisor are standalone components
6https://github.com/raspberrypi/userland
7https://github.com/raspberrypi/firmware

written in C that are easy to port to other types of en-
claves with minor modifications in external interfaces. For
example, in our SGX-Snape, we ported both PIE and TW
FS from our TrustZone PoC with total modification of 20
interfaces to/from SGX enclaves based on SGX SDK require-
ments. However, since SGX only provides protected memory
in userspace, it is not suitable for providing all features in
TrustZone-Snape .

5 Evaluation
To support real-world POSIX compatible applications, Snape
needs some modifications over unikernels like Rumprun8 for
Aarch64-rPi3 support. We are therefore using microbench-
marks to evaluate the overhead of the major Snape secu-
rity services: the PIE filesystem, PIE user interface, TW
filesystem, and TW networking (see Table 3). We developed
microbenchmarks for Solo5 unikernels and evaluated on Rasp-
berry Pi 3, except for the PIE UI module that is evaluated
on QEMU. The table shows the worst-case overhead of each
module on solo5 unikernels with snape backend compares
to the corresponding unikernels with Linux kernel backend.
The PoC is not particularly optimized. Hence, the overhead
of individual modules may be discouraging, however, it does
not necessarily reflect the actual performance overhead when
each module can be an only a small part of a real-world
application that now has a flexible way to use all available
optimizations from the untrusted host as well. We are work-
ing on proper evaluation and performance improvement of
our system on real-world applications.

trusted services slowdown
TW FS & Networking 2.7x-4x
PIE-K FS <9x
PIE-U FS <60x
PIE-K UI (on qemu) <9x
PIE-U UI (on qemu) <40x

Table 3. Snape average latency overhead

6 Related Work
Many systems utilise hypervisors for constructing private
execution environments for applications [9, 12, 20, 21, 24].
Systems like Terra [9] and Proxos [24] introduce the con-
cept of isolating private parts of applications in a dedicated
VM that cannot be suitable for resource constrained edge
devices. Snape and Proxos share a similar model for users
trust management, though Snape does not require developers
to specify all private syscalls. Systems like Haven [6] and
Trustshadow [10] run unmodified applications inside SGX
and Trustzone enclaves. As we discussed earlier (§1), run-
ning unmodified applications in an enclave on top of a large
monolithic software stack has fundamental issues including
exposing a single point of breach. Snape resolves these issues
while providing a fine-grained flexible trust model.

Finally, we share the motivation of compartmentalized and
isolated OS components with microkernels [15]. This popular
8https://github.com/rumpkernel/rumprun

https://github.com/raspberrypi/userland
https://github.com/raspberrypi/firmware
https://github.com/rumpkernel/rumprun

EdgeSys ’19, March 25, 2019, Dresden, Germany Zahra Tarkhani, Anil Madhavapeddy, and Richard Mortier

approach is used for handling heterogeneous architectures,
for example, in HeliOS [22] satellite kernels. Microkernels
like SeL4 [14] are small enough for formal verification, and
widely used in embedded and mobile devices. However, formal
verification is expensive and it is not always practical to
formally verify all systems sensitive modules. Snape shares a
similar isolated architecture while leveraging enclave-assisted
isolation instead.

7 Conclusion & Future Work
We propose Snape, a declarative platform for applications to
easily take advantage of various hardware security features
on the heterogeneous edge. Our system takes the first steps
toward an alternative approach from shielding applications
inside a large complex monolithic software stack that lim-
its applications from utilizing all hardware resources both
from the protected and untrusted worlds. Our new design
provides a flexible trust model for developers to manage their
trust in the underlying system. We describe our prototype
on ARMv8-based platforms to effectively use ARM Trust-
Zone technology. Our approach can be extended to different
hardware platforms in the future.

One immediate future work is to improve the efficiency
and performance of our system and build more realistic
applications. The Snape prototype can also benefit from op-
timizations in different areas such as optimized PIE services,
reducing context switches, faster RPC communications, and
automatic multicore parallelism.

Acknowledgements Funded in part by EPSRC EP/N028260/2.

References
[1] [n. d.]. CVE Details. https://www.cvedetails.com/cve/

CVE-2016-2431/. Publish Date : 2016-05-09.
[2] [n. d.]. CVE Details. https://www.cvedetails.com/cve/

CVE-2016-8763/. Publish Date : 2017-04-02.
[3] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata.

2013. Innovative technology for CPU based attestation and sealing.
In Proceedings of the 2nd International Workshop on Hardware
and Architectural Support for Security and Privacy (HASP).

[4] ARM. 2009. Security technology building a secure system using
trustzone technology (white paper). ARM Limited (2009).

[5] ARM Security Technology. 2009. Building a Secure System using
TrustZone® Technology.

[6] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shield-
ing applications from an untrusted cloud with haven. ACM
Transactions on Computer Systems (TOCS) 33, 3 (2015), 8.

[7] Simon Biggs, Damon Lee, and Gernot Heiser. 2018. The Jury Is
In: Monolithic OS Design Is Flawed: Microkernel-based Designs
Improve Security. In Proc. 9th Asia-Pacific Workshop on Systems
(APSys ’18). ACM, Article 16, 7 pages. https://doi.org/10.1145/
3265723.3265733

[8] Stephen Checkoway and Hovav Shacham. 2013. Iago Attacks:
Why the System Call API is a Bad Untrusted RPC Inter-
face. In Proceedings of the Eighteenth International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’13). ACM, 253–264. https:
//doi.org/10.1145/2451116.2451145

[9] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan
Boneh. 2003. Terra: A virtual machine-based platform for trusted
computing. In ACM SIGOPS Operating Systems Review, Vol. 37.
ACM, 193–206.

[10] Le Guan, Peng Liu, Xinyu Xing, Xinyang Ge, Shengzhi Zhang,
Meng Yu, and Trent Jaeger. 2017. TrustShadow: Secure execution
of unmodified applications with ARM TrustZone. In Proceedings
of the 15th Annual International Conference on Mobile Systems,
Applications, and Services. ACM, 488–501.

[11] Hermann Hartig, Michael Hohmuth, Norman Feske, Christian
Helmuth, Adam Lackorzynski, Frank Mehnert, and Michael Peter.
2005. The Nizza secure-system architecture. In Collaborative
Computing: Networking, Applications and Worksharing, 2005
International Conference on. IEEE, 10–pp.

[12] Owen S Hofmann, Sangman Kim, Alan M Dunn, Michael Z Lee,
and Emmett Witchel. 2013. Inktag: Secure applications on an
untrusted operating system. In ACM SIGARCH Computer Ar-
chitecture News, Vol. 41. ACM, 265–278.

[13] David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD
memory encryption. White paper (2016).

[14] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, et al. 2009. seL4: Formal verifi-
cation of an OS kernel. In ACM SOSP. ACM, 207–220.

[15] J. Liedtke. 1995. On Micro-kernel Construction. In Proc. ACM
SOSP. 237–250. https://doi.org/10.1145/224056.224075

[16] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Mau-
rice, and Stefan Mangard. 2016. ARMageddon: Cache Attacks on
Mobile Devices.. In USENIX Security Symposium. 549–564.

[17] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown. arXiv preprint
arXiv:1801.01207 (2018).

[18] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven
Hand, and Jon Crowcroft. 2013. Unikernels: Library Operating
Systems for the Cloud. In Proc. ACM ASPLOS. 461–472. https:
//doi.org/10.1145/2451116.2451167

[19] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon
Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe
Huici. 2017. My VM is Lighter (and Safer) than your Container.
In Proc. ACM SOSP. ACM, 218–233.

[20] Jonathan M McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam
Datta, Virgil Gligor, and Adrian Perrig. 2010. TrustVisor: Efficient
TCB reduction and attestation. In Security and Privacy (SP),
2010 IEEE Symposium on. IEEE, 143–158.

[21] Jonathan M McCune, Bryan J Parno, Adrian Perrig, Michael K
Reiter, and Hiroshi Isozaki. 2008. Flicker: An execution infrastruc-
ture for TCB minimization. In ACM SIGOPS Operating Systems
Review, Vol. 42. ACM, 315–328.

[22] Edmund B Nightingale, Orion Hodson, Ross McIlroy, Chris Haw-
blitzel, and Galen Hunt. 2009. Helios: heterogeneous multiprocess-
ing with satellite kernels. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles. ACM, 221–
234.

[23] Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec Wolman.
2014. Using ARM TrustZone to build a trusted language runtime
for mobile applications. In ACM SIGARCH Computer Architec-
ture News, Vol. 42. ACM, 67–80.

[24] Richard Ta-Min, Lionel Litty, and David Lie. 2006. Splitting
interfaces: Making trust between applications and operating sys-
tems configurable. In Proc. USENIX OSDI. USENIX Association,
279–292.

[25] Dan Williams and Ricardo Koller. 2016. Unikernel Monitors:
Extending Minimalism Outside of the Box.. In HotCloud.

[26] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015.
Controlled-channel attacks: Deterministic side channels for un-
trusted operating systems. In Security and Privacy (SP), 2015
IEEE Symposium on. IEEE, 640–656.

https://www.cvedetails.com/cve/CVE-2016-2431/
https://www.cvedetails.com/cve/CVE-2016-2431/
https://www.cvedetails.com/cve/CVE-2016-8763/
https://www.cvedetails.com/cve/CVE-2016-8763/
https://doi.org/10.1145/3265723.3265733
https://doi.org/10.1145/3265723.3265733
https://doi.org/10.1145/2451116.2451145
https://doi.org/10.1145/2451116.2451145
https://doi.org/10.1145/224056.224075
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/2451116.2451167

	Abstract
	1 Introduction
	2 Motivation & Background
	2.1 The need for fine-grained flexible trust
	2.2 ARM TrustZone overview

	3 Snape overview
	3.1 Threat Model
	3.2 Snape fine-grained security services
	3.3 Snape trust model

	4 Proof-of-concept implementation
	4.1 Snape Secure World
	4.2 Snape startup
	4.3 Snape portability to other platforms

	5 Evaluation
	6 Related Work
	7 Conclusion & Future Work
	References

