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Background:Hallucinations are transmodal and transdiagnostic phenomena, occurring across sensorymodalities
and presenting in psychiatric, neurodegenerative, neurological, and non-clinical populations. Despite their cross-
category occurrence, little empirical work has directly compared between-group neural correlates of hallucina-
tions.
Methods:Weperformedwhole-brain voxelwisemeta-analyses of hallucination status across diagnoses using an-
isotropic effect-size seed-based d mapping (AES-SDM), and conducted a comprehensive systematic review in
PubMed and Web of Science until May 2018 on other structural correlates of hallucinations, including cortical
thickness and gyrification.
Findings: 3214 abstractswere identified. Patientswith psychiatric disorders and hallucinations (eight studies) ex-
hibited reduced gray matter (GM) in the left insula, right inferior frontal gyrus, left anterior cingulate/
paracingulate gyrus, left middle temporal gyrus, and increased in the bilateral fusiform gyrus, while patients
with neurodegenerative disorders with hallucinations (eight studies) showed GM decreases in the left lingual
gyrus, right supramarginal gyrus/parietal operculum, left parahippocampal gyrus, left fusiform gyrus, right thal-
amus, and right lateral occipital gyrus. Group differences between psychiatric and neurodegenerative hallucina-
tion meta-analyses were formally confirmed using Monte Carlo randomizations to determine statistical
significance, and a jackknife sensitivity analysis established the reproducibility of results across nearly all study
combinations. For other structuralmeasures (28 studies), themost consistent findings associatedwith hallucina-
tion status were reduced cortical thickness in temporal gyri in schizophrenia and altered hippocampal volume in
Parkinson's disease and dementia. Additionally, increased severity of hallucinations in schizophrenia correlated
with GM reductionswithin the left superior temporal gyrus, rightmiddle temporal gyrus, bilateral supramarginal
and angular gyri.
Interpretation: Distinct patterns of neuroanatomical alteration characterize hallucination status in patients with
psychiatric and neurodegenerative diseases, suggesting a plurality of anatomical signatures. This approach has
implications for treatment, theoretical frameworks, and generates refutable predictions for hallucinations in
other diseases and their occurrence within the general population.
Funding: None.

© 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Hallucinations are transdiagnostic and transmodal perceptions of
stimuli that do not exist in the physical world [1]. They are prevalent
in both psychiatric disorders, such as schizophrenia (60–80%) [2] and
try, University of Cambridge,
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bipolar disorder (BD 10–23%) [3], and neurodegenerative diseases,
such as Parkinson's disease (PD; 22–38%) [4], dementia with Lewy Bod-
ies (DLB; 80%) [5], and Alzheimer's disease (AD; 13–18%) [6], as well as
in other psychiatric and neurological disorders, and among the general
population (4.5–12.7%) [7]. Irrespective of diagnosis, the presence of
hallucinations marks an increased risk of adverse outcomes, such as re-
duced likelihood of recovery in schizophrenia [8], more severe cognitive
deficits in PD [9], increased mortality in AD [10], increased suicidal be-
haviour in adults with psychosis [11], and transition to later mental
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before This Study

There is increasing recognition that hallucinations occur be-
yond the archetype of schizophrenia, presenting in other psychi-
atric disorders, neurological and neurodegenerative conditions,
and among the general population. Not only are hallucinations
a transdiagnostic phenomenon, but also the subjective experi-
ence of hallucinating is diverse, varying in modality, content, fre-
quency, and affect. It has been suggested that no one type of
hallucination is pathognomic to any one disorder, but rather
that hallucinations may exist on a spectrum from health to ill-
ness, epidemiologically or experientially continuous between in-
dividuals who do and do not meet criteria for a mental illness.
However, limited research has been done to directly compare
the underlying neuroanatomy of hallucinations between differ-
ent disorders. With this aim, we conducted a meta-analysis and
systematic review of structural MRI studies comparing individ-
uals who experience hallucinationswith thosewho do not, to in-
vestigate the brain morphology related to the transdiagnostic
presentation of hallucinations. We searched PubMed and Web
of Sciencewith no start date limit, up toMay 2018, using the key-
word combination (hallucinat*) AND (MRI OR magnetic reso-
nance imaging OR morphology OR voxel?based OR
morphometr* OR neural correlate OR structur*). We included
only studies with a within-diagnosis no-hallucination control to
tease out structural changes specific to hallucinations from ef-
fects of the broader pathology. Neuroimaging meta-analyses
were conducted on studies performing whole-brain voxelwise
gray matter differences, while studies assessing other structural
correlates were qualitatively synthesized.

Added Value of this Study

This is the first meta-analysis to illustrate the brain structural
correlates of hallucination occurrence derived from T1-weighted
magnetic resonance imaging (MRI) in a comparative manner
across clinical groups. We identified two distinct gray matter
substrates for hallucination presence in psychiatric compared to
neurodegenerative diseases, which we hypothesize constitute
at least two distinct mechanisms. In addition, we qualitatively
assessed other structural neuroimaging studies over a variety of
morphometric indices. We therefore provide a complete charac-
terization of current knowledge of the brain morphology associ-
ated with hallucinations across clinical status and modality.

Implications of all the Available Evidence

Our findings show at least two structural substrates that link
to the hallucinatory experience. This informs theoretical work on
hallucinationswhichhave to date been limited in generating uni-
fying direction-specific predictions of brain structure and func-
tion. Understanding the plurality of anatomical signatures of
hallucinations may also inform treatment strategies. We predict
that other disorders in which patients experience hallucinations
can be categorized by our approach based on the broader pheno-
type; for example, hallucinations in personality disorder may be
of the psychiatric type, and similarly for early onset hallucina-
tions in the general population, whilst later onset will be neuro-
degenerative. Moreover, by differentiating the mechanisms of
hallucinations we recommend the contextualizing of research
by the appropriate phenotype.
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illness in children and young adults [12,13]. Although hallucinations are
often distressing, they may also be benign or contribute to meaningful
personal experiences [14,15].

Historically, hallucinations were considered a cardinal symptom of
schizophrenia, but they are not pathognomic: one-third of patients do
not hallucinate [2], and the experience is often heterogeneous among
those who do [1]. This has been confirmed across clinical and non-
clinical populations, revealing diverse phenomenology involving mo-
dality, content, affect, onset, and frequency [1,15,16]. Inter-individual
differences among hallucinations prompt a number of conceptual,
mechanistic, and clinical questions: Does phenomenological heteroge-
neity translate into neurobiological plurality? Howwould this influence
theoretical models of hallucinations and inform treatments? Does the
epidemiological and experiential diversity of hallucinations reflect a
continuum model, in which symptoms like hallucinations are distrib-
uted over a spectrum of individuals who do and do not meet criteria
for mental illness, and thus arise from a common mechanism instanti-
ated to different degrees of severity [17]? Establishing the validity of
this conceptual framework against alternatives is important for how
we understand and treat hallucinations.

Despite the plurality of hallucinations, there is little empirical work
comparing between-group neural correlates of hallucinations. Prior re-
views and meta-analyses on the brain structural and functional corre-
lates of hallucinations have generally limited their scope to a single
diagnosis or modality [18–20], or both [21–25]. Only two reviews
have investigated hallucinations transdiagnostically or in more than
one modality: one without quantitative meta-analytic comparison
[26], the other focussed on acute functional correlates of hallucinations
[27]. Two meta-analyses have explored the structural correlates of hal-
lucinations, but assessed correlates of hallucination severity rather than
presence/absence, and limited their scope to auditory verbal hallucina-
tions (AVH) in schizophrenia [23,24]. We therefore planned meta-
analyses to evaluate MRI-derived volumetric structural gray matter
(GM) correlates of hallucination status across populations,
complemented with a comprehensive review of other structural mea-
sures, including cortical thickness, gyrification, and structure-specific
morphometrics.

A significant issue in neuroimaging studies of hallucinations has
been the lack of a clinical control group, thus confounding abnormalities
specific to hallucination status with those of the broader phenotype.
Equally challenging has been a tangled conceptual landscape, with nu-
merousmodels proposed as cognitive or neurobiological accounts of au-
ditory or visual hallucinations [5,26,28–41] (Fig. 1). Though an
influential model of auditory hallucinations is the inner speech model
[45], which proposes that AVHs arise from misattributing inner speech
to a non-self source, alternative models posit the causal agent to be
memory-related processes [28], spontaneous activation in auditory
and related memory areas [29], inappropriate proximal salience [30],
skewed balance of top-down/bottom-up control dynamics between
secondary sensory cortices and frontal regions [26,33] or of inhibition/
excitation at the physiological level [34], or themismatch between pro-
cesses comparing predictive representations of the external world to
sensory evidence [31,35,37].While thesemodels attempt to explain au-
ditory hallucinations in schizophrenia and non-clinical populations, a
separate array of models have been proposed for visual hallucinations
in neurodegenerative disorders like PD and AD [5,32,36,46]. Auditory
and visual hallucination models overlap in alluding to deficits in reality
monitoring, memory, salience, inhibition, and excitation. Additionally,
hallucinations have been subcategorized by different neurocognitive
mechanisms [40], or by differential contribution of a range of pharmaco-
logical systems [41]. Obtaining differentiating evidence is difficult as
these models are not mutually exclusive, each drawing upon a similar
repertoire of constituents, making it non-trivial to derive corresponding
predictions [42]. However, specific morphological variation can differ-
entiate patients who do and do not hallucinate [43], indicating that
structural MRI can provide insights into why individuals hallucinate.



Fig. 1. Landscape of theoretical models of hallucinations. The major cognitive, psychological, and neurobiological theories for auditory and visual hallucinations are depicted. Separate
theories have been proposed to underlie auditory versus visual hallucinations, although they share many common themes. Different theories within each modality category are not
mutually exclusive and may overlap in their predictions. Dotted lines delineate proposals of divisions between, extensions to, or limitations of current theories. Key references: Inner
speech model [45]; Intrusive memory hypothesis [28]; Resting state hypothesis [29]; Abnormal salience monitoring hypothesis [30]; Expectation-perception model [31]; Reality
monitoring deficit theory, Dream imagery intrusion theory, Activation input modulation theory [36,46]; Disinhibition hypothesis [5]; Perception and attention deficit model [32]; Top-
down bottom-up models [26,33]; Excitatory-inhibitory imbalance [34]; Predictive processing accounts [35,37]; proposal of divide between self-monitoring accounts and spontaneous
activity accounts for auditory verbal hallucinations (AVH) [38]; proposal of subtypes for AVH [40]; proposal for differential contribution of pharmacological subsystems to different
types of AVH [41]; commentary on need to address interaction between and hierarchy of different modalities of hallucinations [40].

59C.P.E. Rollins et al. / EClinicalMedicine 8 (2019) 57–71
Voxel-based morphometry (VBM) is a common method for unbi-
ased, automated quantification of GM differences between groups.
Conducting a meta-analysis of VBM studies is an objective approach to
synthesize the extant literature and identify replicable findings [44].
Knowledge of neuroanatomical signatures of hallucinations present in
certain populations and absent in others would clarify the continuum
model by identifying whether there exist common neural correlates
and contribute towards a clearer neurobiological picture of the origins
and mechanisms of hallucinations. Considering the cultural and histor-
ical influences on hallucination interpretation [14], an organic model of
hallucinations could moreover substantiate accurate diagnostic criteria.
Thismeta-analysis and systematic reviewquantitatively compared peo-
ple with and without hallucinations in terms of brain structure to iden-
tify the neuroanatomy related to the transdiagnostic presence of
hallucinations.

2. Methods

2.1. Search Strategy and Selection Criteria

A systematic review of the literature for the structural correlates of
hallucinations was conducted in October 2017, with update notifica-
tions received until May 2018. Following PRISMA guidelines [47], arti-
cles were identified by searching PubMed and Web of Science using
the keyword combination (hallucinat*) AND (MRI OR magnetic reso-
nance imaging OR morphology OR voxel?based OR morphometr* OR
neural correlate OR structur*) with no date limit. Reviews and meta-
analyses on neuroimaging of hallucinations were cross-referenced to
ensure no relevant studies were missed [20,23–26].

Studies were included in the meta-analyses if they: (a) employed
structural MRI in a whole-brain investigation of voxelwise differences
inGM reported in standard stereotaxic space; (b) included a direct com-
parison between groups with and without hallucinations within the
same diagnostic category. Corresponding authors were contacted to re-
quest coordinate information if not reported in the original article, or to
clarifymethodological issues. CPER evaluated all studies and JS, GKM, or
JRG confirmed the selection criteria, with uncertainties discussed to
consensus. Region of interest (ROI) VBM studies and studies using
non-voxelwise structural MRI methods that otherwise matched inclu-
sion criterion (b) were included in the systematic review.

2.2. Data Analysis

Voxel-wise meta-analyses were undertaken using anisotropic
effect-size seed-based d Mapping (AES-SDM; https://www.
sdmproject.com/) [48,49] following recommended guidelines [44]
(Supplementary S1). AES-SDM uses peak coordinates and effect sizes
from primary studies to create maps of meta-analytic effect size and
variance of the signed GM differences. Similar to other voxel-based
meta-analytic methods [50], loci from primary studies are estimated
as smoothed spheres and meta-analytic maxima calculated by
weighting the encompassed voxels [48]. Additionally, AES-SDM incor-
porates the effect sign (increases or decreases) and the t-statistic asso-
ciated with each peak, increasing both sensitivity and accuracy [48].
AES-SDM also allows inclusion of non-significant studies, reducing
bias towards positive results. AES-SDM is detailed elsewhere (https://
www.sdmproject.com/software/tutorial.pdf), and summarized in Sup-
plementary Methods.

Anticipating differences in mechanisms of hallucinations between
psychiatric illnesses and neurodegenerative diseases based on distinc-
tions in phenomenology, modality, prevalence [51], and the significant
participant age separation among primary studies (t(25) = 17.324, p
b 0.001), we performed a meta-analysis including schizophrenia, first
episode schizophrenia (FES), first episode psychosis (FEP), and young
adults at clinical risk for psychosis (at-risk mental state long-term,
ARMS-LT), and BD, and a second of neurodegenerative disorders, in-
cluding PD and AD. Of the 16 studies included in these two cross-
sectional meta-analyses, three (see Table 1) did not make an explicit
comparison between a hallucination (H) and no-hallucinations (NH)
group, though themajority of patients in each group respectively either
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Table 1
Demographic and clinical characteristics of included studies.

Group Study Sample N Age (SD) M/F Hallucination Assessment Scale (Timescale) Modality

Psychiatric Garrison et al., 2015 [43] SCZ-H
SCZ-NH

79
34

38.5 (9.8)
40.7 (9.8)

65/14
27/7

Clinical interview (lifetime history) Mixed

Gaser et al., 2004 [59] SCZ-H
SCZ-NH

29
56

36.2
(10.9)e

52/33e SAPS (variable up to weeks before/after scanning) Auditory

Shapleske et al., 2002 [60] SCZ-H
SCZ-NH

41
31

35.5 (8.8)
32.0 (7.5)

41
31

SAPS (course of illness) Auditory

van Swam et al., 2012c, d

[52]
SCZ-H
SCZ-NH

10
10

40.9 (8.8)
36.3 (5.6)

5/5
7/3

PANSS, semi-structured interview (course of illness) Auditory

van Tol et al., 2014 [61] SCZ-H
SCZ-NH

31
20

33.4 (12.5)
35.0 (9.7)

27/4
17/3

PANSS (previous week) Auditory

Huang et al., 2015 [62] FES-H
FES-NH

18
18

22.6 (6.7)
22.7 (3.9)

10/8
9/9

PANSS, HAHRS (previous month) Auditory

Smieskova et al., 2012b, d

[53]
FEP-H
ARMS-LT-NH

16
13

25.1 (4.6)
24.6 (2.2)

12/4
8/5

BRPS (variable) Auditory

Neves et al., 2016 [63] BD-H
BD-NH

9
12

37.7 (12.1)
39.9 (15.0)

3/6
6/6

MINI-Plus (lifetime history) Auditory or visual

Neurodegenerative Goldman et al., 2014 [64] PD-H
PD-NH

25
25

74.8 (6.0)
75.4 (6.1)

17/8
18/7

MDS-UPDRS (at least previous month) Mixed

Meppelink et al., 2011
[65]

PD-H
PD-NH

11
13

Not
reported

Not
reported

NPI (previous month) Visual

Pagonbarraga et al., 2014
[66]

PD-H
PD-NH

15
27

64.1 (9)
66.3 (8)

Not
reported

MDS-UPDRS (previous month) Passage and/or
presence

Ramirez-Ruiz et al., 2007
[67]

PD-H
PD-NH

18
20

Not
reported

8/12
7/11

NPI Spanish version, semi-structured interview
(previous year)

Visual

Watanabe et al., 2013
[68]

PD-H
PD-NH

13
13

66.6 (5.5)
63.6 (10.7)

7/6
5/8

UPDRS (not specified) Visual

Shin et al., 2012 [69] nPD-H
nPD-NH

46
64

71.3 (5.9)
70.7 (5.7)

26/38
18/9

NPI (not specified) Visual

Lee et al., 2016a, d [54] AD-H
AD-NH

17
25

74.3 (7.3)
72.4 (9.4)

4/13
6/19

NPI Korean version (at least previous month) Auditory or visual

Blanc et al., 2014 [70] AD-H
AD-NH

39
39

76.0 (7.4)
76.4 (7.2)

20/19
20/19

NPI (previous month) Auditory or visual

Abbreviations: AD: Alzheimer's disease; PD: Parkinson's disease; SCZ: schizophrenia; FES: first episode schizophrenia; BD: bipolar disorder; nPD: Parkinson's disease without dementia;
FEP:first episode psychosis; ARMS-LT: at riskmental state long-term; X-H: population Xwith hallucinations; X-NH: population Xwithout hallucinations; NPI: Neuropsychiatric Inventory
Questionnaire; MDS-UPDRS: Movement Disorder Society (MDS)-sponsored version of the Unified Parkinson's disease Rating Scale (UPDRS); PANSS: Positive and Negative Symptom
Scale; HAHRS: Hoffman Auditory Hallucination Rating Scale; MINI-Plus; Mini International Neuropsychiatric Interview (MINI) Plus; SAPS: Scale for the Assessment of Positive Symptoms;
BRPS: Brief Psychiatric Rating Scale.

a Lee et al. (2016) compared AD patients with misidentification subtype to AD patients without psychosis, though they classified AD patients with hallucination into the misidentifi-
cation subtype.

b Smieskova et al. (2012) compared FEP to ARMS-LT participants, though the groups differed significantly (p b 0.0001) in their hallucination score, with the FEP group having a mean
(S.D.) score of 3.5 (2.0) on the BRPS hallucination item10 (moderate –moderately severe) and theARMS-LT grouphaving amean score of 1.4 (1.0)— a score of 1 being the lowest possible
score.

c Van Swam et al. (2012) used voxel-wise cortical thickness, as opposed to VBM. Though a different analysis, VWCT and VBM are considered complementary methods [97].
d Studies considered proxy comparisons between hallucinating and non-hallucinating groups.
e For total sample of patients with schizophrenia, including both H and NH.
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did or did not have hallucinations, andwere therefore included [52–54].
A jackknife sensitivity analysis was performed on the meta-analyses to
test reproducibility of significant brain regions by iteratively repeating
the statistical analysis systematically excluding one study [55]. Finally,
we formally assessed group differences between psychiatric and neuro-
degenerative hallucination meta-analyses using Monte Carlo randomi-
zations to determine statistical significance [56] and performed a
conjunction analysis of the simple overlap between meta-analyses to
detect whether there were GM differences common to both psychiatric
and neurodegenerative hallucinations [57–58].

2.3. Role of The Funding Source

Therewas no funding source for this study. CPERhad full access to all
the data in the study and had final responsibility for the decision to sub-
mit for publication.

3. Results

The literature search identified 2259 articles from PubMed and 1785
from Web of Science, for a merged total of 3214 after duplicates were
excluded (Fig. 2). 99 articles were selected for whole text retrieval
after title/abstract screening. 16 studies met criteria for the meta-
analyses [43,52–54,59–71] (see Table 1 for sample characteristics;
Table 2 for analysis details and results summary) and 28 papers (18 psy-
chiatric; 10 neurodegenerative) for the systematic review of other
structural metrics comparing groups with and without hallucinations.

In psychiatric patients with hallucinations, relative to thosewithout,
GM reductions were identified in the left insula, right inferior frontal
gyrus (IFG), left anterior cingulate/paracingulate gyrus, and left middle
temporal gyrus (MTG), while GM increases were observed in bilateral
fusiform gyrus (Table 3, Fig. 3). Significant decreases in GMwere appar-
ent in six brain regions in patients with neurodegenerative disorders
with hallucinations compared to those without: (1) left lingual gyrus;
(2) right supramarginal gyrus/parietal operculum; (3) left fusiform
gyrus; (4) left parahippocampal gyrus; (5) right thalamus; (6) right lat-
eral occipital gyrus (Table 3, Fig. 3). Individuals with psychiatric relative
to neurodegenerative hallucinations showed decreased GM in the left
insula and anterior cingulate/paracingulate gyrus, and greater GM in
the right lingual gyrus, IFG, and supramarginal gyrus, left thalamus, fu-
siform gyrus, inferior occipital gyrus, parahippocampal and hippocam-
pal gyri, and bilateral SFG (Table 4, Fig. 3). There were no regions of
GM alterations that were common to hallucination status between the
psychiatric and neurodegenerative meta-analyses.

28 studies employed a regional and/or non-voxelwise approach to
evaluate structural MRI data with respect to hallucination status:
seven studies performed VBM restricted to predefined ROIs [43,63,
71–75], one performed source-based morphometry [76], nine explored



Fig. 2. PRISMA flowchart for identification and selection of studies. Some studies performed analyses of multiple structural features and are therefore represented more than once.
Abbreviations: H: population with hallucinations; NH: population without hallucination; VBM: voxel-based morphometry.
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cortical thickness (CT) and/or surface area [77–85], three investigated
gyral/sulcal properties [43,86,87], and 11 assessed structure-specific
shape parameters [43,83,85,88–95]. Results are summarized in
Tables 5–6. Overall, findings were heterogeneous, with few direct repli-
cations. In schizophrenia, the most consistent findings were reductions
in CT in the vicinity of the left or right temporal gyrus for patients with
hallucinations compared to those without [77,78,96], coincident with
the reductions in GM in left MTG observed in the meta-analysis
(Fig. 3). However, two studies reported increases in GM in temporal re-
gions with hallucinations [90,92]. Hallucinations in PD and DLB were
characterized by distributed patterns of cortical thinning [83,84] and re-
lated to hippocampal volume, though the direction of this association
was mixed [83,85].

4. Discussion

Distinctive patterns of neuroanatomical alteration characterize
hallucination status in patients with psychiatric and neurodegenera-
tive diseases, with the former associated with fronto-temporal defi-
cits and the latter with medial temporal, thalamic and occipital
deficits. These results broadly align with prior meta-analyses inves-
tigating GM correlates of hallucination severity of AVH in schizo-
phrenia, which found negative correlations between hallucination
severity in schizophrenia and GMV within the bilateral STG, bilateral
HG, and bilateral insula [23,24,26] (Supplementary S3–4) and quali-
tative reviews on structural imaging studies of visual hallucinations
(VH) in neurodegenerative illnesses, which found GM atrophy
associated with VH in patients with PD in parietal, hippocampal,
and occipito-temporal regions, primarily the lingual and fusiform
gyri [25,98]. The distributed pattern of structural changes seen in
both hallucination signatures is suggestive of impairment in the co-
ordination of information flow. Indeed, AVH in schizophrenia has
been associated with increased functional activation in the STG,
insula, anterior cingulate, and pre/post central gyrus [21,22], re-
duced resting connectivity between default mode regions [99], dis-
ruptions to the salience network [30], and altered interactions
between resting-state networks [99]. Compared to AVH, VH in
schizophrenia have been associated with increased seed-based func-
tional connectivity between the amygdala and visual cortex [100],
among the hippocampus, mPFC, and caudate nuclei and white mat-
ter connectivity between the hippocampus and visual areas [91], as
well as decreased global sulcation in the right hemisphere [87]. VH
in PD have been associated with increased functional activity in the
lingual gyrus, cuneus, and fusiform gyrus [27], and
hyperconnectivity in the default mode network [101]. Cortical thick-
ness studies lend further support for divergent structural patterns,
showing localized decreases in CT in temporal regions in schizophre-
nia spectrum disorders and more widespread decreases in dementia
and PD (Table 6).

We reviewed the brain structural abnormalities associated with
hallucinations, yet how changes to the brain's topological substrate
translate to changes in an individual's experiential landscape remain
unknown. Our findings are consistent with multiple models of hallu-
cinations (Fig. 1). For instance, volume loss in temporal regions could



Table 2
Imaging characteristics and key results of included studies.

Group Study T Software Covariates FWHM
(mm)

Statistical Threshold Original
stereotaxic
space

n
Foci

Main result

Psychiatric Garrison
et al., 2015
[43]

1.5 SPM8 TIV 8 p b 0.001, uncorrected;
minimum cluster size
= 100 voxels

MNI 2 H N NH: bilateral occipital lobe

Gaser et al.,
2004 [59]

1.5 SPM99 SANS total score,
SAPS total score
without auditory
hallucination
sub-items, gender

8 p b 0.001, uncorrected,
k = 100 voxels

Talairach 4 H b NH: L transverse temporal (Heschl's)
gyrus R middle/inferior frontal gyrus, L
midde temporal gyrus, L paracingulate
gyrus,

Shapleske
et al., 2002
[60]

1.5 AFNI Age, handedness −4.2 Absolute value of
standard error b 1.96

Talairach 1 H b NH: L insular cortex

van Swam
et al., 2012
[52]

3 Brain
Voyager
QX 1.9

None Not
reported

p b 0.05, cluster size
N15 voxels, corrected
for multiple
comparisons
(Bonferroni p b 0.0063)

MNI 7 H N NH: L middle frontal gyrus, L posterior
cingulate gyrus, L frontal insula, L
parahippocampal gyrus, L postcentral
sulcus, R visual cortexHbNH: posterior
inferior temporal sulcus, postcentral gyrus

van Tol et al.,
2014 [61]

3 SPM8 Age, sex 8 p b 0.05, FWE-corrected
(cluster level),
voxel-wise threshold of
p b 0.005 uncorrected

MNI 3 H b NH: L putamen

Huang et al.,
2015 [62]

3 SPM8 Age, gender, years
of education

8 p b 0.001, uncorrected Talairach 0 n.s.

Smieskova
et al., 2012
[53]

3 SPM8 Age, gender, total
GMV

8 p b 0.001, uncorrected
(cluster-forming
threshold); p b 0.05
FWE-corrected

MNI 3 H b NH: L parahippocampal gyrus
H N NH: L superior frontal gyrus, L caudate

Neves et al.,
2016 [63]

1.5 SPM8 Total GMV 8 p b 0.05, whole-brain
FWE-corrected

Not
reported

0 n.s.

Neurodegenerative Goldman
et al., 2014
[64]

1.5 SPM8 TIV 8 p b 0.01, uncorrected;
cluster extent threshold
k = 10

Talairach 18 H b NH: bilateral cuneus, bilateral fusiform
gyrus, bilateral inferior parietal lobule,
bilateral precentral gyrus, bilateral middle
occipital gyrus, R lingual gyrus, bilateral
cingulate gyrus, L paracentral lobule

Meppelink
et al., 2011
[65]

3 SPM5 Total GM 10 p b 0.05, brain-volume
corrected cluster-level

MNI 0 n.s.

Pagonbarraga
et al., 2014
[66]

1.5 SPM5 Age, gender, global
GMV

12 p b 0.001, uncorrected;
cluster size = 207
voxels (determined by
1000 Monte Carlo
simulations)

MNI 4 H b NH: R vermis, R precuneus
H N NH: posterior lobe of cerebellum, L inf.
frontal cortex

Ramirez-Ruiz
et al., 2007
[67]

1.5 SPM2 TIV, MMSE,
Hamilton score,
Hoehn and Yahr
score

12 p b 0.05, corrected
cluster p-level

Talairach 3 H b NH: bilateral sup. parietal lobe, L
lingual gyrus

Watanabe
et al., 2013
[68]

3 SPM8 TIV, age, sex 8 p b 0.01, FWE corrected;
cluster size N50 voxels
and z-scores ≥3.00

MNI 15 H b NH: bilateral middle frontal gyrus, L
cingulate gyrus, R inferior parietal lobule,
bilateral cuneus, L fusiform gyrus, L
posterior lobe, L inferior occipital gyrus, L
inferior frontal gyrus, L declive, R lingual
gyrus

Shin et al.,
2012 [69]

3 SPM8 Age, sex, PD
duration,
intracerebral
volume, K-MMSE
score

6 p b 0.05, FWE corrected;
uncorrected p b

0.001 at the voxel level,
minimum cluster size
= 100 voxels

Talairach 5 H b NH: R inferior frontal gyrus, L
thalamus, L uncus, L parahippocampal
gyrus

Lee et al.,
2016 [54]

3 SPM8 Age, gender,
education, TIV, CDR
score, NPI
non-psychotic
scores

8 p b 0.001, uncorrected;
extent threshold of
contiguous 100 voxels
(k N 100)

MNI 6 H b NH: R inferior parietal lobule, R lingual
gyrus, L cuneus, R middle frontal gyrus, R
superior occipital gyrus, R middle
temporal gyrus

Blanc et al.,
2014 [70]

1.5 SPM12b Age, total GMV 8 p b 0.001, uncorrected;
minimum cluster size
= 25 voxels

MNI 3 H b NH: R insula/inferior frontal gyrus, L
superior frontal gyrus, bilateral lingual
gyrus

Abbreviations: AD: Alzheimer's disease; PD: Parkinson's disease; SCZ: schizophrenia; FES: first episode schizophrenia; BD: bipolar disorder; nPD: Parkinson's disease without dementia;
FEP:first episode psychosis; ARMS-LT: at riskmental state long-term; X-H: population Xwith hallucinations; X-NH: population Xwithout hallucinations; NPI: Neuropsychiatric Inventory
Questionnaire; MDS-UPDRS: Movement Disorder Society (MDS)-sponsored version of the Unified Parkinson's disease Rating Scale (UPDRS); PANSS: Positive and Negative Symptom
Scale; HAHRS: Hoffman Auditory Hallucination Rating Scale; MINI-Plus; Mini International Neuropsychiatric Interview (MINI) Plus; SAPS: Scale for the Assessment of Positive Symptoms;
BRPS: Brief Psychiatric Rating Scale; SANS: Scale for the Assessment of Negative Symptoms; FWE: family-wise error; TIV: total intracranial volume; GM: gray matter; GMV: gray matter
volume; CDR: Clinical Dementia Rating scale; MMSE: Mini-Mental State Examination; K-MMSE: Korean version of MMSE; L: left; R: right.
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Table 3
Regions of significant differences in gray matter between patients with hallucinations compared to those without for psychiatric and neurodegenerative disorders.

Group Contrast Region Peak local maximum Jackknife
sensitivity
analysisa

MNI
coordinate

Cluster size (no. of
voxels)

SDM
Z-score

Uncorrected
p-value

Psychiatric H b NH L insula −46,2,−2 820 −1.885 0.0000464 7/8
R inferior frontal gyrus, pars triangularis/frontal pole 48,36,8 281 −1.464 0.0008257 7/8
L anterior cingulate gyrus/paracingulate gyrus 0,36,−2 132 −1.259 0.0028023 7/8
L middle temporal gyrus −58,−42,−2 30 −1259 0.0028023 7/8

H N NH R fusiform gyrus 44,−64,−18 574 1.455 0.0000877 7/8
L lateral occipital cortex/fusiform gyrus −40,−82,−16 345 1.454 0.0000981 7/8

Neurodegenerative H b NH L lingual gyrus/intracalcarine cortex 0,−86,−4 1275 −2.621 0.0000103 8/8
L fusiform gyrus/inferior temporal gyrus −36,−18,−26 50 −1.860 0.0009702 7/8
R supramarginal gyrus/parietal operculum 54,−36,30 75 −1.609 0.0034835 6/8
L parahippocampal gyrus −38,−32,−10 42 −1.740 0.0018579 7/8
R thalamus 2,−2, 12 14 −1.637 0.0030603 7/8
R lateral occipital cortex 36,−80,14 10 −1.511 0.0043970 6/8

Abbreviations: H: Hallucinations; NH: No hallucinations; L: left; R: right.
a The jackknife sensitivity analysis tests the reproducibility of significant brain regions by iteratively repeating the statistical analysis, but systematically excluding one study from each

replication [55]. Fractions show the number of study combinations in which the region was preserved out of the total number of dataset combinations.
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reflect the misattribution of inner speech to a non-self source (inner
speechmodel) [45], or relate to abnormalities in cortical feedback for
predictive signal processing (predictive processing account) [102],
or could be the result (or cause) of heightened resting state activity
in the auditory cortex (resting state hypothesis) [29], or a combina-
tion of some or all of these mechanisms. That substantial heteroge-
neity was observed in ROI VBM hypothesis-driven studies further
emphasizes the limits of current theories.

Our meta-analyses suggest that there are at least two broad bio-
logical categories of hallucination mechanism: a psychiatric mecha-
nism and a neurodegenerative mechanism. In support, structural
signatures of hallucinations in the psychiatric meta-analysis overlap
with comparisons of patients to non-disordered controls. For in-
stance, a meta-analysis of GM changes in patients with psychosis
compared to healthy controls shows reductions in bilateral insula
and anterior cingulate cortex [103], coinciding with regions identi-
fied in the meta-analysis of hallucinations in neurodevelopmental
disorders, while thalamic, hippocampal, and occipital GM reductions
in PD [104] partly coincide with the changes seen in neurodegenera-
tive hallucinations. The relation between disorder-specific GM
changes and hallucination category suggests that hallucinations
share networks of brain regions with the pathologies of the disorder
in which they are embedded.

Knowledge of the structural correlates of hallucination types may
help understand their cognitive phenotypes. For instance, hallucina-
tions are linked to reality monitoring, the cognitive capacity to distin-
guish between self-generated and external sources of information
[105]. Impaired in schizophrenia, reality monitoring is associated
with the structure and function of the anterior cingulate cortex [43,
105]. The cingulate gyrus is part of a network involving the IFG, ven-
tral striatum, auditory cortex, right posterior temporal lobe whose
functional connectivity is related to the subjective extent to which
a hallucination feels real [106]. Indeed, we propose that connectivity
is key: together with the insula, the anterior cingulate constitutes
nodes of the salience network, dysfunctions in which have been pro-
posed as central to experiencing hallucinations [30]. Structural defi-
cits in the insula in psychosis might also underpin atypical
interactions between the DMN and salience network observed in
hallucinations [39]. The left STG/MTG have been robustly implicated
in the manifestation of AVH [23,102], emphasizing the importance of
speech perception and processing in hallucinations in schizophrenia
spectrum psychosis.

If hallucinations experienced by those with schizophrenia spec-
trum and bipolar psychosis are an example of a broader mechanism,
then we predict that other neurodevelopmental disorders will have
similar patterns of associated GM loss. For example, hallucinations
have a prevalence of 43% in personality disorder [107], suggested
to be a neurodevelopmental disorder [108], and are predicted to
have a mechanism similar to other psychiatric disorders.

Abnormalities in the occipital cortex in neurodegenerative diseases
suggest that deficits in sensory regions contribute to hallucinations of
the associated sensory modality since VH are more common in PD
than in schizophrenia [19]. Hallucinations in PD and ADwere character-
ized by GM reduction in the thalamus and PHG. The thalamus mediates
information in the cortical hierarchies via corticothalamo-cortico cir-
cuits and contributes to working memory maintenance [109], while
the PHG is implicated in processing contextual associations in the ser-
vice ofmemory formation and generating expectations about spatial re-
lations [110]. Their involvement supports memory-related processes in
hallucinations, thoughmay equally relate to neurodegenerative pathol-
ogies. The anterior cingulate was implicated in hallucinations occurring
in psychiatric disorders, but not neurodegenerative etiology. As the an-
terior cingulate is involved in self-referential processing, this is consis-
tent with the observation that psychotic hallucinations address the
individual and vary across continental location and historical time pe-
riod [14,111]. Conversely, hallucinations in PD have a more passive
quality and form historically stable categories of visual percepts [4].

Anatomic heterogeneity related to hallucination presence/absence
has important consequences for the plurality of treatment options. A
specific example is repetitive transcranial magnetic stimulation
(rTMS) used to reduce hallucination frequency and severity in schizo-
phrenia, albeit with some reservations [112, 113]. A number of param-
eters including frequency of stimulation and anatomical site
contribute to the outcome of rTMS, and so anatomical heterogeneity is
a possible source for the ambiguity of efficacy in therapeutic trials
[114]. Antipsychotic (dopamine receptor anatagonist) medication is
the mainstay of treatment for hallucinations in schizophrenia, and is
sometimes required in PD, with evidence of therapeutic effect in each
[115,116]. Psychological treatments include cognitive behavioral ther-
apy and avatar therapy. However, little is known to help guide a choice
of which treatmentwill be tolerable and effective for a given individual;
efforts to develop personalized treatment for hallucinations requires an
understanding of the underlying mechanism that we suggest varies
across diagnosis.

The multimodality of hallucinations is under-documented and
under-researched, with b2% of studies included in this review prob-
ing hallucinations beyond audition or vision [66]. However, 30–50%
of schizophrenia or PD patients report hallucinations in more than
one modality [2,117]: olfactory hallucinations are present in
10–13.7% [51,118] and tactile sensations frequently co-occur with



Fig. 3. Meta-analysis results for individuals with hallucinations compared to those without hallucinations in psychiatric (A) and in neurodegenerative disorders (B). A. For psychiatric
disorders, the meta-analysis revealed gray matter decreases in the left insula, right inferior frontal gyrus (pars triangularis)/frontal pole, left anterior cingulate gyrus/paracingulate
gyrus, left middle temporal gyrus, and gray matter increases in the bilateral fusiform gyrus in patients with hallucinations relative to those without. B. For neurodegenerative
disorders, the meta-analysis revealed decreases in the left lingual gyrus/intracalcarine cortex, left fusiform gyrus, right supramarginal gyrus, left parahippocampal gyrus, right
thalamus, and right lateral occipital cortex. C. Formal comparison between meta-analyses revealed reduced GM in the left insula and left anterior cingulate/paracingulate gyrus for
individuals with psychiatric relative to neurodegenerative hallucinations, and greater GM in the right lingual gyrus, IFG, and supramarginal gyrus, left thalamus, fusiform gyrus, inferior
occipital gyrus, parahippocamapal and hippocampal gyri, and bilateral SFG. Abbreviations: STG: superior temporal gyrus; MTG: middle temporal gyrus; IFG: inferior frontal gyrus;
PHG: parahippocampal gyrus; ICC: intracalcarine cortex; SFG: superior frontal gyrus.
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auditory hallucinations [1]. Despite the dimensionality of hallucina-
tions, many questionnaires and theoretical models target unimodal
accounts. Non-clinical individuals who hallucinate or hear voices
are receiving increasing interest in scientific research [7], yet only
one study in this review assessed a structural correlate (cortical
thickness) of hallucinations in this population [82]. Similarly, no
studies investigated brain structure or function of hallucinations in
borderline personality disorder, in spite of a high point prevalence
of 43% [107]. Although hallucinations are recognized to occur across
diagnostic boundaries, the current scope of transdiagnostic research
on hallucinations remains narrow.

The prevalence of auditory hallucinations in the general population
varies across the lifespan with peaks in early life (b30 years) and be-
tween 50 and 59 years [119]. Results from these meta-analyses predict
that early onset of hallucinations will have a pattern of frontotemporal
structural deficits similar to psychiatric disorders with
neurodevelopmental origins, whilst later onset will show a neurode-
generative pattern of GM change in the occipital cortex, medial



Table 4
Regions of significant differences in gray matter between psychiatric and neurodegenerative hallucinations.

Contrast Region Peak local maximum

MNI coordinate cluster size (no. of voxels) SDM Z-score uncorrected p-value

Psychiatric b neurodegenerative L insula −42,−2,2 1784 1.794 b0.0001
L anterior cingulate gyrus/paracingulate gyrus 0,44,−10 372 1.235 0.0011147

Neurogenerative b psychiatric R lingual gyrus 4,−84,−6 1080 −2.331 0.0000206
L superior frontal gyrus −10,26,64 167 −1.403 0.0016670
R supramarginal gyrus 52,−34,28 131 −1.365 0.0020230
L thalamus −4,−4,10 115 −1.516 0.0008154
L fusiform gyrus −24,−2,−42 90 −1.494 0.0010064
R inferior frontal gyrus, pars triangularis 42,24,8 82 −1.444 0.0013469
L inferior occipital gyrus −44,−78,−16 71 −1.482 0.0010786
L parahippocampal gyrus −32,−18,−26 51 −1.450 0.0013160
R superior frontal gyrus 14,36,−30 34 −1.515 0.0008464
L hippocampus −36,−34,−8 33 −1.524 0.0007690
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temporal lobe and thalamus. In any case, empirical neuroimaging and
cognitive research in non-clinical groups and non-dominant modalities
is necessary to extend the limits of current knowledge.

Aswith allmeta-analyses, statistical power is restricted by the size of
the extant literature, both in terms of the number of studiesmeeting in-
clusion criteria and sample sizes of original studies, which in neuroim-
aging the experience of hallucinations remains immature. Despite this,
the overall sample size was comparable to other SDM meta-analyses
(n = 233 H, n = 194 NH for psychiatric; n = 128 H, n = 162 NH for
neurodegenerative) [120,121]. Neuroimaging meta-analyses are often
subject to heterogeneity in methodology. We noted broadly uniform
software parameters and spatial smoothing, but variation in covariates
and statistical thresholds (Table 2). However, all meta-analyses
employed the same threshold throughout the brain, limiting bias to-
wards any a-priori regions of interest and improving reliability of re-
sults. The questionnaires used to assess hallucination status varied in
the time frame bounding the hallucination, from within the current
week to lifetime history, and none conducted follow-up assessments
for whether patients later developed hallucinations. Critically, few in-
struments evaluating hallucination presence distinguish between audi-
tory and visual hallucinations or whether hallucinations occur at all in
other modalities, such as tactile or olfactory. Even fewer assess specific
phenomenological characteristics of hallucinations, which is potentially
confounding as experiential differences may map to different neural
substrates [122]. Understanding the neurobiology supporting the con-
tent of hallucinations may help in personalizing treatment strategies
since hallucination content is related to cognitive profile in PD [116].
We recommend a more granular evaluation of hallucination modality,
phenomenological properties, and lifetime and current history, includ-
ing possible remission of hallucinations from antipsychotic medication
or rTMS. The psychiatric and neurodegenerative meta-analyses illus-
trate cross-sectional neuroanatomical differences between patients
with and without hallucinations. However, the prevalence of hallucina-
tions increases with the duration of illness for PD [116], but generally
decrease over time for schizoaffective disorder, schizophrenia, bipolar
disorder, and depression [8], whilst the content may equally change
over the trajectory of the disorder [116]. Future analyses of longitudinal
neuroimaging datamay clarify illness category separation in the tempo-
ral evolution of hallucinations. The divergence in our meta-analytic
findings for psychiatric and neurodegenerative disorders may be partly
attributable to differences inmodality, since hallucinations experienced
in schizophrenia spectrum and bipolar psychosis were predominantly
auditory, while those in PD and AD were mostly visual. However,
there was no overlap in brain regions identified in the two meta-
analyses. Moreover, the reported modalities are partly construed by
the questionnaire used, which often assume a unimodal account or ne-
glect to ask aboutmultimodal experiences or differentiate between hal-
lucination modalities. A quantitative and qualitative comparison of the
phenomenological properties of hallucinations in schizophrenia and
PD found that 55% of patients with schizophrenia had VH and 45% of pa-
tients with PD had AH, emphasizing that sensory modality is not a mu-
tually exclusive class [51]. Moreover, hallucinations involving more
than one modality were reported in approximately 80% of patients for
schizophrenia and PD alike. Differences in hallucinations between dis-
orders emerge in the frequency, duration, capacity of control, negative
valence, and impact of hallucinations on patients, such that people
with schizophrenia were more heavily affected by their hallucinations
[51]. It is therefore unlikely that differences between the psychiatric
and neurodegenerative hallucination meta-analyses are due to mo-
dality alone, but capture amore complex picture of illness pathology,
hallucination properties like content and affect, and mechanisms of
onset or occurrence. Nonetheless, important outstanding questions
are (1) whether hallucinations of the same modality have a common
neural basis regardless of diagnosis, (2) why hallucination sensory
modality prevalence rates differ between disorders, with AH being
the most prevalent sensory modality in schizophrenia and VH for
PD, and (3) how sensory modalities interact during hallucination ex-
periences, both in terms of their serial or simultaneous presentation
in time and the underlying neural systems [123]. Finally, there was
also a significant difference in the ages of the participants in the
two meta-analyses, although each meta-analysis had its own age-
matched control group and thus the comparison between disorders
did not capture differences due to aging.

Hallucinations in clinical and non-clinical populations are diverse in
content, modality, frequency, and affect, among other dimensions.
Though hallucinations have been explored transdiagnostically at the
level of phenomenology, little empirical work has made group compar-
isons of brain structure related to hallucinations. We show that halluci-
nations in psychiatric disorders have distinct neuroanatomical
organization from the pattern observed in neurodegenerative diseases,
and in doing so hypothesize at least two structural substrates associated
with the hallucinatory experience. This categorical differentiation in the
neurobiology of hallucinations is important for optimizing or develop-
ing treatment strategies, andmakes specific predictions about other dis-
orders, such as personality disorder, and the onset of hallucinations in
the general population. The structural networks involved in hallucina-
tions partly coincide with the respective case–control comparisons,
and are thus embedded within the broader neuroanatomical pheno-
type, emphasizing the importance of non-hallucinating patient control
groups and age-matched healthy controls. Hallucinations are experi-
enced in a variety ofmental health contexts and are important phenom-
ena in probing our perception of the external world, but theoretical
work has not yet captured the diversity of hallucinations across modal-
ities or diagnoses. By hypothesizing at least two mechanisms for hallu-
cinations, we suggest incorporating this plurality in future research.
These meta-analyses offer a critical starting point.



Table 5
Summary of systematic review from GMV ROI studies of regional brain volume comparing individuals with and without hallucinations.

Group Study Sample
(M/F)

Age
(SD)

Hallucination
modality
(assessment
scale)

ROI(s) Analysis
(imaging
software)

Main result

Psychiatric Garrison et al.,
2015 [43]

79
(65/14)
SCZ-H
34
(27/7)
SCZ-NH

38.5
(9.8)
40.7
(9.8)

Mixed
(clinical
interview)

Medial profrontal cortex (mPFC) VBM
(SPM12)

Gray matter volume
SCZ-H N SCZ-NH: mPFC region surrounding the
anterior PCS

Cierpka et al., 2017
[71]

10 (6/4)
SCZ-H
10 (8/2)
SCZ-NH

36.5
(9.0)
32.1
(6.2)

Auditory
(BRPS,
PANSS,
PsyRatS)

Cerebellum VBM
(SPM8)

Gray matter volume
SCZ-H b SCZ-NH: right lobule VIIIa

Kubera et al., 2014
[76]

10 (6/4)
SCZ-H
10 (8/2)
SCZ-NH

36.5
(9.0)
32.1
(6.2)

Auditory
(BRPS,
PANSS,
PsyRatS)

n/a SBM
(GIFT)

Gray matter volume
SCZ-H b SCZ-NH: component consisting MFG;
IFG; STG; insula; IPL; rectal gyrus; transverse
temporal gyrus; supramarginal gyrus; lingual
gyrus; postcentral gyrus; fusiform gyrus;
subcallosal gyrus; MTG; ITG; orbital gyrus

Neves et al., 2016
[63]

9 (3/6)
BD-H
12 (6/6)
BD-NH

37.7
(12.1)
39.9
(15.0)

Auditory or
visual
(MINI-Plus)

Orbitofrontal cortex and ventral
prefrontal areas, cingulate gyrus,
fusiform gyrus, superior temporal
sulcus, amygdala, insula, thalamus

VBM
(SPM8)

Gray matter volume
BD-H b BD-NH: right posterior insular cortex

Stanfield et al.,
2009 [72]

17 (n/a)
BD-H
49 (n/a)
BD-NH

36.4
(11.1)a

Auditory
(OPCRIT
symptom
checklist)

Temporal lobe VBM
(SPM99)

Gray matter density
BD-H b BD-NH: left middle temporal gyrus

Neurodegenerative Janzen et al., 2012
[73]

13 (6/7)
PD-H
13 (7/6)
PDD-H
16 (9/7)
PD-NH

66.0
(6.9)
67.7
(7.1)
64.3
(8.0)

Visual
(UPDRS)

Pedunculopontine nucleus (PPN),
thalamus

VBM
(SPM8)

Gray matter volume
PD-H + PDD-H b PD-NH: PPN, thalamus
PD-H b PD-NH: PPN

Sanchez-Castenada
et al., 2010 [74]

6 (4/2)
DLB-H
6 (4/2)
DLB-NH
8 (6/2)
PDD-H
7 (4/3)
PDD-NH

70.2
(12.4)
71
(10.7)
75.3
(4.9)
70.6
(7.1)

Visual (NPI) Frontal (BA 6, 8, 9, 10, 44, 45, and
47), occipital (BA 18,19), parietal
(BA 7, 39, 40), and temporal (20)
regions

VBM
(SPM5)

Gray matter volume
DLB-H b DLB-NH: right inferior frontal gyrus
(BA 45)
PDD-H b PDD-NH: left orbitofrontal lobe (BA
10)

Colloby et al., 2017
[75]

41
(26/15)
DLB-H
47
(33/14)
AD-NH

78.6
(6.2)
79.0
(8.8)

Visual (NPI) Substantia innomiata (SI) VBM
(SPM8)

Gray matter volume
n.s.

Abbreviations: AD: Alzheimer's disease; PD: Parkinson's disease; PDD: Parkinson's diseasewith dementia; SCZ: schizophrenia; FES: first episode schizophrenia; BD: bipolar disorder; nPD:
Parkinson's diseasewithout dementia; FEP: first episode psychosis; ARMS-LT: at risk mental state long-term; DLB: dementiawith Lewy bodies; X-H: population Xwith hallucinations; X-
NH: population X without hallucinations; NPI: Neuropsychiatric Inventory Questionnaire; MDS-UPDRS: Movement Disorder Society (MDS)-sponsored version of the Unified Parkinson's
disease Rating Scale (UPDRS); PANSS: Positive and Negative Symptom Scale; HAHRS: Hoffman Auditory Hallucination Rating Scale;MINI-Plus;Mini International Neuropsychiatric Inter-
view (MINI) Plus; SAPS: Scale for the Assessment of Positive Symptoms; BRPS: Brief Psychiatric Rating Scale; OPCRIT: Operational Criteria Checklist for Psychotic Illness and Affective Ill-
ness; MFG: medial frontal gyrus; IFG: inferior frontal gyrus; STG: superior temporal gyrus: IPL: inferior parietal lobule; MTG: middle temporal gyrus; ITG: inferior temporal gyrus; SBM:
source-based morphometry.

a Hallucination and no-hallucinations groups combined.
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Table 6
Summary of systematic review from non-voxelwise structural studies comparing individuals with and without hallucinations.

Measure Group Study Sample
(M/F)

Age
(SD)

Hallucination
modality
(Assessment
Scale)

Analysis (Imaging software) Main result

Cortical
thickness
and/or
cortical
surface area

Psychiatric Chen et al.,
2015 [77]

18 (12/6)
FES-H
31
(17/14)
FES-NH

24.1
(6.3)
24.3
(5.9)

Auditory
(AHRS,
SAPS/SANS)

Whole-brain vertex-wise cortical
thickness (Freesurfer)

Cortical thickness
FES-H b FES-NH: right Heschl's gyrus
(HG)
Negative correlation with
hallucination severity by AHRS, but
not SAPS/SANS scoring: Right HG

Cui et al., 2017
[78]

115
(52/63)
SCZ-H
93
(47/36)
SCZ-NH

26.4
(5.7)
27.3
(5.1)

Auditory
(PANSS,
AHRS)

Whole brain vertex-wise cortical
thickness (Freesurfer)

Cortical thickness
SCZ-H b SCZ-NH: left middle temporal
gyrus (MTG)
Negative correlation with
hallucination severity by PANSS P3,
but not AHRS scoring across all SCZ
patients: left MTG

Morch-Johnsen
et al., 2017 [79]

145
(82/63)
SCZ-H
49
(33/16)
SCZ-NH

31.1
(9.3)
30.9
(8.4)

Auditory
(PANSS)

ROI cortical thickness and surface area
analysis of bilateral Heschl's gyrus (HG),
planum temproale (PT) and superior
temporal gyrus (STG) (Freesurfer)

Cortical thickness
SCZ-H b SCZ-NH: left HG
Cortical surface area
n.s.

Morch-Johnsen
et al., 2018 [80]

49
(18/31)
BD-H
108
(48/60)
BD-NH

33.4
(12.0)
35.0
(11.4)

Auditory
(SCID)

Whole-brain vertex-wise and ROI
cortical thickness (Freesurfer)

Cortical thickness
BD-H N BD-NH: left HG (ROI) and
superior parietal lobule (whole-brain)
Cortical surface area
n.s.

Yun et al., 2016
[81]

27 (9/18)
FEP-H
24
(12/12)
FEP-NH

22.5
(5.0)
22.7
(5.1)

Auditory
(PANSS)

Support vector machine using cortical
surface area and cortical thickness
measures

Optimal feature sets of individualized
cortical structural covariance (ISC)
FEP-H vs. FEP-NH (83.6% accuracy): 3
CSA-ISCs incl. The intraparietal sulcus,
Broca's complex, and the anterior
insula
FEP-H vs. FEP-NH (82.3% accuracy): 6
CT-ISCs incl. Executive control
network and Wernicke's module

van Lutterveld
et al., 2014 [82]

50
(19/31)
NC-H
50
(19/31)
NC-NH

40.8
(11.6)
40.5
(15.0)

Auditory
(modified
LSHS)

Whole-brain vertex-wise cortical
thickness (Freesurfer)

Cortical thickness
NC-H b NC-NH: left paracentral
cortex, left pars orbitalis, right
fusiform gyrus, right ITG, right insula

Neurodegenerative Ffytche et al.,
2017 [83]

21 (15/6)
PD-H
286
(192/94)
PD-NH

64.43
(7.5)
61.97
(9.9)

Visual
(UPDRS)

Whole-brain vertex-wise cortical
thickness (Freesurfer)

Cortical thickness
PD-H b PD-NH: right supramarginal
gyrus, superior frontal cortex, lateral
occipital cortex

Delli Pizzi et al.,
2014 [84]

18 (9/9)
DLB-H
15 (7/8)
AD-NH

75.5
(4.0)
75.6
(7.6)

Visual (NPI) Whole brain vertex-wise cortical
thickness (Freesurfer)

Cortical thickness
DLB-H b AD-NH: right posterior
regions (superior parietal gyrus,
precuneus, cuneus, pericalcarine and
lingual gyri)
Negative correlation with
hallucination severity by NPI
hallucination item scoring in DLB
patients: right precuneus and superior
parietal gyrus

Delli Pizzi et al.,
2016 [85]

19 (9/10)
DLB-H
15 (6/9)
AD-NH

76.4
(4.4)
76.5
(7.2)

Visual (NPI) Between group differences in cortical
thickness of entorhinal,
parahippocampal, and perirhinal
structures (Freesurfer)

Cortical thickness
n.s.

Sulci and
gyrification
measures

Psychiatric Garrison et al.,
2015 [43]

79
(65/14)
SCZ-H
34 (27/7)
SCZ-NH

38.5
(9.8)
40.7
(9.8)

Mixed
(clinical
interview)

ROI LGI of mPFC regions of interest
(frontopolar, medial orbitofrontal,
superior frontal and paracentral cortices)
(Freesurfer)

Local gyrification index
SCZ-H b SCZ-NH: mPFC regions
surrounding PCS (bilateral
frontopolar, medial orbitofrontal,
superior frontal and paracentral
cortices)

Kubera et al.,
2018 [86]

10 (6/4)
SCZ-H
10 (8/2)
SCZ-NH

36.5
(9.0)
32.1
(6.2)

Auditory
(BRPS,
PANSS,
PsyRatS)

Whole-brain vertex-wise local
gyrification index (Freesurfer)

Local gyrification index
SCZ-H b SCZ-NH: left Broca's area,
right Broca's homolog, right superior
middle frontal cortex
SCZ-H N SCZ-NH: precuneus and
superior parietal cortex

(continued on next page)
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Table 6 (continued)

Measure Group Study Sample
(M/F)

Age
(SD)

Hallucination
modality
(Assessment
Scale)

Analysis (Imaging software) Main result

Negative correlation between LGI and
hallucination severity by BPRS total
score: left Broca's area and its right
homolog, precuneus, superior parietal
cortex

Cachia et al.,
2015 [87]

16 (9/7)
SCZ-VH
17 (11/6)
SCZ-NVH

30.4
(12.6)
30.5
(8.7)

Visual
(PANSS,
SAPS)

Between group differences in global
sulcal indices (BrainVisa)

Global sulcation index
SCZ-H b SCZ-NH: right parietal cortex
and left sylvian fissure

Shape
parameters
(volume,
length,
surface area,
intensity)

Psychiatric Rossell et al.,
2001 [88]

42 (all
M)
SCZ-H
29 (all
M)
SCZ-NH

35.5
(9.0)
32.3
(7.4)

Auditory
(SAPS)

Between group differences in corpus
callosum (divided into 4 sections:
anterior, mid-anterior, mid-posterior,
posterior) surface area and length

Corpus calllosum surface area and
length
n.s.

Shapleske
et al., 2001 [89]

44 (all
M)
SCZ-H
30 (all
M)
SCZ-NH

35.5
(8.8)
32.0
(7.5)

Auditory
(SAPS)

Between group differences in Sylvian
fissure length, planum temporale surface
area and volume

Sylvian fissure length, planum
temporale volume and surface area
n.s.

Hubl et al.,
2010 [90]

13 (8/5)
SCZ-H
13 (8/5)
SCZ-NH

33 (8)
31 (9)

Auditory
(PANSS)

Between group differences in GMV of
Heschl's gyrus (HG)

Gray matter volume
SCZ-H N SCZ-NH: right HG

Garrison et al.,
2015 [43]

79
(65/14)
SCZ-H
34 (27/7)
SCZ-NH

38.5
(9.8)
40.7
(9.8)

Mixed
(clinical
interview)

Between group differences in length of
paracingulate sulcus (PCS)

Length of paracingulate sulcus
SCZ-H b SCZ-NH: left PCS

Amad et al.,
2014 [91]

16 (9/7)
SCZ-A +
VH
17 (11/6)
SCZ-AH

30.4
(12.6)
30.5
(8.7)

visual (SAPS) Between group differences in
hippocampal volume

Mean hippocampal volume
SCZ-A + VH N SCZ-AH
Local hippocampal shape differences
SCZ-A + VH N SCZ-AH: anterior and
posterior end of CA1, subiculum

Shin et al., 2005
[92]

17 (7/10)
FEP-H
8 (2/6)
FEP-NH

31.0
(5.0)
28.4
(4.8)

Auditory
(PANSS)

Between group differences in GM and
WM volumes of frontal, parietal,
temporal, occipital, cerebellum

Gray matter volume
FEP-H N FEP-NH: frontal, parietal, and
temporal lobes, ventricles
White matter volume
FEP-H N FEP-NH: temporal lobe

Neurodegenerative Ffytche et al.,
2017 [83]

21 (15/6)
PD-H
286
(192/94)
PD-NH

64.43
(7.5)
61.97
(9.9)

Visual
(UPDRS)

Between group differences in subcortical
GMV (Freesurfer)

Subcortical gray matter volume
PD-H b PD-NH: bilateral
hippocampus, caudate, putamen

Pereira et al.,
2013 [93]

18 (6/12)
PD-H
18 (6/12)
PD-NH

73.7
(5.4)
73.8
(6.8)

Visual (NPI) Between group differences in
hippocampal subfield volumes (fimbria,
presubiculum, subiculum, CA1, CA2–3,
CA4-DG fields, hippocampal fissure)

Hippocampal subfield volumes
n.s.

Yao et al., 2016
[94]

12 (10/2)
PD-H
15 (10/5)
PD-NH

70a

66a
Visual
(UPDRS)

Between group differences in
hippocampal volume and vertex-wise
analysis of hippocampal shape

Hippocampal volume and shape
n.s.

Delli Pizzi et al.,
2016 [85]

19 (9/10)
DLB-H
15 (6/9)
AD-NH

76.4
(4.4)
76.5
(7.2)

Visual (NPI) Between group differences in volumes of
total hippocampi and hippocampal
subfields (Freesurfer)

Gray matter volume
AD-NH b DLB-H: left total
hippocampal volume, bilateral CA1,
left CA2–3, CA4-DG and subiculum

Lin et al., 2006
[95]

5 (3/2)
AD-H
5 (3/2)
AD-NH

73 (6)
73 (4)

Visual (report
from patient
or caregiver)

Between group differences in white
matter signal hyperintensities

Periventricular hyperintesity
AD-H N AD-NH: occipital caps

Abbreviations: AD: Alzheimer's disease; PD: Parkinson's disease; PDD: Parkinson's diseasewith dementia; SCZ: schizophrenia; FES: first episode schizophrenia; BD: bipolar disorder; nPD:
Parkinson's diseasewithout dementia; FEP: first episode psychosis; ARMS-LT: at risk mental state long-term; DLB: dementiawith Lewy bodies; X-H: population Xwith hallucinations; X-
NH: population X without hallucinations; NPI: Neuropsychiatric Inventory Questionnaire; MDS-UPDRS: Movement Disorder Society (MDS)-sponsored version of the Unified Parkinson's
disease Rating Scale (UPDRS); PANSS: Positive and Negative Symptom Scale; HAHRS: Hoffman Auditory Hallucination Rating Scale;MINI-Plus;Mini International Neuropsychiatric Inter-
view (MINI) Plus; SAPS: Scale for the Assessment of Positive Symptoms; BRPS: Brief Psychiatric Rating Scale; OPCRIT: Operational Criteria Checklist for Psychotic Illness and Affective Ill-
ness; MFG: medial frontal gyrus; IFG: inferior frontal gyrus; STG: superior temporal gyrus: IPL: inferior parietal lobule; MTG: middle temporal gyrus; ITG: inferior temporal gyrus; SBM:
source-based morphometry. LSHS: Launay and Slade Hallucination Scale (LSHS).

a Median age.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
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