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Abstract

The BioCreative V chemical-disease relation (CDR) track was proposed to accelerate the pro-

gress of text mining in facilitating integrative understanding of chemicals, diseases and their

relations. In this article, we describe an extension of our system (namely UET-CAM) that par-

ticipated in the BioCreative V CDR. The original UET-CAM system’s performance was ranked

fourth among 18 participating systems by the BioCreative CDR track committee. In the

Disease Named Entity Recognition and Normalization (DNER) phase, our system employed

joint inference (decoding) with a perceptron-based named entity recognizer (NER) and a

back-off model with Semantic Supervised Indexing and Skip-gram for named entity normal-

ization. In the chemical-induced disease (CID) relation extraction phase, we proposed a pipe-

line that includes a coreference resolution module and a Support Vector Machine relation

extraction model. The former module utilized a multi-pass sieve to extend entity recall. In

this article, the UET-CAM system was improved by adding a ‘silver’ CID corpus to train the

prediction model. This silver standard corpus of more than 50 thousand sentences was

automatically built based on the Comparative Toxicogenomics Database (CTD) database.

We evaluated our method on the CDR test set. Results showed that our system could reach

the state of the art performance with F1 of 82.44 for the DNER task and 58.90 for the CID

task. Analysis demonstrated substantial benefits of both the multi-pass sieve coreference

resolution method (F1þ4.13%) and the silver CID corpus (F1þ7.3%).

Database URL: SilverCID–The silver-standard corpus for CID relation extraction is freely

online available at: https://zenodo.org/record/34530 (doi:10.5281/zenodo.34530).
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Introduction

A survey of PubMed users’ search behavior showed that

diseases and chemicals were two of the most frequently re-

quested entities by PubMed users worldwide: diseases ap-

peared in 20% of queries and chemicals in 11% (1). These

two entities are central to several topics such as developing

drugs for therapeutics, discovering adverse drug reactions

(ADRs) as well as chemical safety/toxicity among patient

groups and facilitating hypothesis discovery for new

pharmaceutical substances. As a consequence, extracting

chemical-disease relations (CDR) from unstructured free

text has become an important field in biomedical text

mining.

In recent years, there has been an increased focus in re-

search on capturing disease and chemical relations (e.g.

drug-side-effect relations) from biomedical literature text.

The Comparative Toxicogenomics Database (CTD) has

been a notable target of many studies. The CTD is a manu-

ally curated database that promotes understanding about the

effects of environmental chemicals (e.g. arsenic, heavy metals

and dioxins) on human health (2). As of June 2015, the CTD

database had 1 842 746 chemical–disease associations. Due

to the high cost of manual curation and the rapid growth of

the biomedical literature, a number of researchers have at-

tempted to extract chemical—disease relations or drug side

effects automatically. The simplest class of approaches is

based on the co-occurrence statistics of chemical and disease

entities, i.e. if two entities are mentioned together in the

same sentence or abstract, they are probably related. Chen

et al. (3) used this method to identify and rank associations

between eight diseases and relevant drugs. This approach

tends to achieve high recall, but low precision and fails to

distinguish the chemical-induced disease (CID) relations

from other relations that commonly occur between chem-

icals and diseases. Knowledge-based approaches were also

successfully applied for the ADR extraction (4, 5). They,

however, demands the time-consuming and labor-intensive

manual compilation of huge knowledge (in terms of rules as

in 4 or a three-tier hierarchical graph as in 5), which results

from the wide variety of contexts in which relations can

occur. These approaches, therefore, tend to suffer from the

low recall. Other approaches are based on automated ma-

chine learning techniques, such as Support Vector Machines

(SVMs) (6) and decision trees (7). Their performance, how-

ever, has still been limited, which is mainly due to the lack of

a substantial data set for training. Moreover, the variety of

abundant ADR syntaxes as well as a failure to resolve inter-

sentence alternative entity-mentions also hampers the

performance.

To accelerate the progress, BioCreative V proposed a

challenge task for automatic extraction of CDRs (8, 9).

The CDR challenge has two sub-tasks:

(A) Disease Named Entity Recognition (DNER). This task

includes automatic recognition of disease mentions

(named entity recognition, NER) in PubMed abstracts

and assignment of Medical Subject Heading (MeSH,

10) identifiers to these mentions named entity normal-

ization (NEN).

(B) CID relation extraction. Participating systems were

provided with raw text from PubMed articles as input

and asked to return a list of<chemical, disease>pairs.

In which, chemicals and diseases are normalized con-

cepts that participate in a CID relation.

In these challenge tasks, diseases were annotated using

the ‘Diseases’ [C] branch of MeSH 2015, including dis-

eases, disorders, signs and symptoms; chemical terminolo-

gies were annotated using the ‘Drugs and Chemicals’ [D]

branch of MeSH 2015. The CID relations can be marked

as ‘marker/mechanism’ in the CTD database. There are

two types of such relationships: (i) biomarker relations be-

tween a chemical and disease indicating that the chemical

correlates with the disease and (ii) putative mechanistic re-

lationships between a chemical and disease indicating that

the chemical may play a role in the etiology of the disease

(see Figure 1).

As a team participating in the CDR challenge, we pro-

posed a modular system that handled the DNER and CID

tasks separately. For the DNER as the first phase, we pro-

posed a method for combining several state-of-the-art

word-embedding techniques in the NEN module in order

to take advantages of both the gold standard annotated

corpus and large scale unlabeled data. The NEN and NER

modules were then combined into a joint inference model

to boost performance and reduce noise. For the second

phase, the CID task exposed many challenges such as (i)

CTD  disease – chemical rela�ons
1,919,790  rela�ons

Not curated

Undefined A chemical that 
correlates with 
a disease

A chemical may 
play a role in 
the e�ology of 
a disease

A chemical that 
has a known or 
poten�al 
therapeu�c role in 
a disease

Marker/mechanism (M)
56,267 Rela�ons

Therapeu�c (T)

increased 
abundance in the 
brain of chemical 
X correlates with 
Alzheimer disease

exposure to 
chemical X 
causes lung 
cancer

chemical X is used to 
treat leukemia

Example

Example
Example

Curated as

Chemical-induced disease rela�ons

Figure 1. Analysis of the direct evidence field in the CTD database.
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complex grammatical structures, (ii) entities that belong to

a relation may appear not only in a single sentence but also

in multiple sentences, in which they are often mentioned

coreferentially or using different forms, (iii) entities being

expressed in MeSH IDs instead of of free-text forms. To

overcome these challenges, a traditional machine learning

model for relation extraction, which is based only on

explicit mentions of entities in a single sentence, will not be

adequate. We thus had to employ a coreference module

along with a SVM-based relation extraction module as the

central core. The intention of using the coreference module

was to extend system recall on disease/chemical mentions,

then to convert inter-sentence relations to intra-sentence

relations. Additionally, in order to exploit as much useful

information as possible from the literature, we built a

silver-standard corpus (namely ‘SilverCID’) for training the

DNER average perceptron model and the SVM intra-

sentence relation extraction model. This corpus was a care-

fully selected sub-set of citations in the CTD database and

totally disjoint from the targets in the testing set. In add-

ition, we explored the benefit of using a large-scale feature

set to handle the variety of CTD relation mentions.

The novel contributions of this article are as follows: (i)

we proposed a DNER model that was based on the joint in-

ference between an averaged perceptron NER model and a

NEN pipeline of two phases, i.e. Supervised Semantic

Indexing (SSI) followed by a skip-gram model; (ii) we dem-

onstrated the benefit of our automatically built SilverCID

corpus (a sentence-level corpus) for the CID relation extrac-

tion; (iii) we presented evidence for the efficacy of using the

multi-pass sieve in the CID relation extraction task and (iv)

we demonstrated the strength of the rich feature set (see sec-

tion SVM-based intra-sentence relation extraction and

Table 2 for more details) for CID relation extraction.

Materials and Methods

Data set

Our experiments were conducted on the BioCreative V

CDR data. In order to take advantage of the CTD data-

base, we also built a SilverCID corpus from PubMed art-

icles that were cited in the CTD database but which did

not appear in the BioCreative CDR track data set.

BioCreative CDR track data set

To assist the development and assessment of participating

CDR systems, the BioCreative V workshop organizers cre-

ated an annotated text corpus that consists of expert anno-

tations for all chemicals, diseases, and their CID relations.

This corpus contained a total of 1500 PubMed articles that

were separated into three sub-sets, each of 500 for the

training, development and test set (the details are shown

on Table 1). Following the data survey of BioCreative (9),

of these 1500 articles, 1400 were selected from an existing

CTD-Pfizer data set that had been jointly curated via a pre-

vious collaboration between CTD and Pfizer (11). The re-

maining 100 articles contained newly curated data and

were incorporated into the test set.

SilverCID corpus

The CTD (2) is a robust, publicly available database that

aims to advance understanding about how environmental

exposures affect human health. Chemicals in the CTD

come from the chemical subset of MeSH. The CTD’s dis-

ease vocabulary is a modified subset of descriptors from

the ‘Diseases’ category of MeSH, combined with genetic

disorders from the Online Mendelian Inheritance in Man

(OMIM) database (12).

In> 28 million CTD toxicogenomic relationships, there

are 1 919 790 disease-chemical relations (curated or

inferred via CTD-curated chemical–gene interaction)

(October 2015). There are several types of relations be-

tween diseases and chemicals, which may be described

within the ‘Direct Evidence’ field of the CTD database.

This field has two labels M and T, in which the label M in-

dicates that a chemical can correlate with a disease or can

be the etiology of a disease (Figure 1). Relations curated as

M, therefore, are more likely to be CID relations.

Moreover, we observed that if two entities that partici-

pated in a relation appear in the same sentence, it is highly

probable that this sentence contains the grammatical rela-

tion that we were considering. Taking into account these

two observations, a silver standard CID corpus, SilverCID,

was constructed using the CTD database and PubMed ac-

cording to five steps (Figure 2 gives an example of how the

SilverCID was constructed):

Step 1 (Relation filtering): CID relations in the CTD

database were filtered using information from the ‘Direct

evidence’ field. Only relations marked as ‘M’ (marker/

mechanism) were chosen.

Step 2 (Collecting): We collected PubMed abstracts from

the reference list of the relations that had been chosen in Step

1. This reference list was provided by the CTD database.

Table 1. Summary of the CDR track data set

Data set Articles Chemical Disease CID

Men ID Men ID

Training 500 5203 1467 4182 1965 1038

Development 500 5347 1507 4244 1865 1012

Test 500 5385 1435 4424 1988 1066

Men, Mention; CID, CID relations.
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Step 3 (Overlap removal): To avoid overlap between

the SilverCID corpus and the CDR test set, we removed all

the PubMeb abstracts which appeared in the CDR track

data set to ensure a fair evaluation of the SilverCID’s

contribution.

Step 4 (Annotating): For each relation that had been

chosen in Step 1, all disease and chemical mentions in its

referring PubMed articles were automatically annotated.

Step 5 (Sentence filtering): Sentences in the abstracts

that remained after Step 4 were kept for downstream

works if they contained both chemical and disease entities,

which may participate in a CID relation. Sentences that did

not contain any entity or contained only one entity were

removed.

Two novel aspects that makes our SilverCID corpus dif-

ferent from other resources are (i) it was built automatically

CID rela�on
filtering

Overlap 
removal

Chemical Disease Direct 
Evidence

Diethylnit
rosamine

Hepatocell-
ular M

Curcumin Breast 
Neoplasms T

daidzein Breast 
Neoplasms N/A

Valproic 
Acid Vomi�ng M

Alfentanil Muscle 
Rigidity M

Oxygen Cluster 
Headache T

…

Chemical-induced disease
rela�on list

CTD database

CID Rela�ons 
(chemical-disease) References

Diethylnitrosamine -
Hepatocellular 210

Valproic Acid – Vomi�ng 16

Alfentanil – Muscle
Rigidity 13

…

CID Rela�ons 
(chemical-disease)

References 
PMID

Diethylnitrosamine -
Hepatocellular

22197969 
24632418
23548910
…

Valproic Acid – Vomi�ng
6206716
20204907
…

Alfentanil – Muscle
Rigidity

3115150
…

…

Collect

Annota�ng

CID Rela�ons 
(chemical-disease)

References 
PMID

Diethylnitrosamine -
Hepatocellular

22197969 
24632418
23548910
…

Valproic Acid – Vomi�ng
6206716
20204907
…

Alfentanil – Muscle
Rigidity

3115150
…

…

Annotated CID sentences
The theme of work was to 
evaluate effec�veness in oral 
route of polylac�de co-
glycolide (PLGA) 
Nanocapsulated curcumin
(Nano Cur) against 
diethylnitrosamine (DEN)
induced hepatocellular
carcinoma (HCC) in rat. 

Nano Cur (weekly oral 
treatment for 16weeks at 
20mg/kg b.wt) in DEN
induced HCC rats exerted 
significant protec�on against 
HCC and restored redox
homeostasis in liver cells

Pancrea��s is a serious 
complica�on of valproic acid
therapy that must be 
considered in any pa�ent 
receiving valproic acid who 
experiences severe 
abdominal pain and 
vomi�ng.

…

PMID: 22197969 
(…) The theme of work was to
evaluate effec�veness in oral
route of polylac�de co-glycolide
(PLGA) Nanocapsulated curcumin
(Nano Cur) against
diethylnitrosamine (DEN) induced
hepatocellular carcinoma (HCC) in
rat. (…) Three i.p. injec�ons o� he
chemical hepatocarcinogen DEN
at 15days interval causes
hepatotoxicity, the genera�on of
reac�ve oxygen species (ROS),
lipid peroxida�on, decrease in
plasma membrane microviscosity
and deple�on of an�oxidant
enzyme levels in liver. Nano Cur
(weekly oral treatmen� or
16weeks at 20mg/kg b.wt) in DEN
induced HCC rats exerted
significant protec�on against HCC
and restored redox homeostasis in
liver cells. (…)

PMID: 6206716
Four pa�ents had
pancrea��s associated with
valproic acid therapy. Three
pa�ents received valproic
acid at usual doses, and all
were free of other
symptoms o� oxic
reac�ons, with serum levels
of valproic acid in the usual
therapeu�c range. (…) All
pa�ents recovered with
discon�nua�on of valproic
acid therapy and enteral
feeding and administra�on
ofi ntravenous fluids. A�er
recovery, a valproic acid
regimen was restarted
uneven�ully (in one
pa�ent). (…) Pancrea��s is
a serious complica�on of
valproic acid therapy that
must be considered in any
pa�ent receiving valproic
acid who experiences
severe abdominal pain and
vomi�ng.

Sentence
filtering

…
…
…

Figure 2. An example of constructing silverCID corpus.
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and (ii) it is a sentence-level corpus (i.e. a set of sentences

that contains at least one intra-sentence CID relation with

its participating chemical and disease entities), which cov-

ered about 60% of CID relations in the CTD database.

This data set contains 38 332 sentences, 1.25 million

tokens, 48 856 chemical entities (1196 unique chemical

entities), 44 744 disease entities (2098 unique disease enti-

ties) and 48 199 CID relations (12 776 unique CID rela-

tions). It is freely available online at URL: https://zenodo.

org/record/34530 (doi:10.5281/zenodo.34530).

Proposed model

The overall architecture of our proposed system is

described in Figure 3. Compared with our previous system

in the BioCreative CDR track, the improved system used

the SilverCID corpus for training in both the DNER and

CID phases. The impact of this improvement on the sys-

tem’s performance will be analyzed in the next sections.

Pre-processing steps include sentence splitting, tokeniza-

tion, abbreviation identification, stemming, POS tagging

and dependency parsing (Stanford; Stanford Dependencies:

http://nlp.stanford.edu/software/stanford-dependencies.

shtml). The system was based on the integration of several

state-of-the-art machine learning techniques in order to

maximize their strengths and overcome their weaknesses.

Named entity recognition and normalization

This module solved the sub-task DNER. It was a joint-

decoding model of a NER and NEN modules in order to

boost performance and reduce noises (13). The NER and

NEN modules were trained separately and then decoded

simultaneously.

Following reports of high level performance of the

joint-inference model by Li and Ji (13) and Zhang and

Clark (14), we decided to employ a structured perceptron

model for NER. Its output was a set of real numbers, each

in which corresponded to the weight of each class label.

This output format was the same with that of the NEN

model, therefore, it was suitable for joint-inference in the

decoding phase. The structured perceptron was an exten-

sion of the standard perceptron for structured prediction

by applying inexact search with violation-fixing update

methods (15). It was trained on the CDR training, develop-

ment set and SilverCID corpus with a standard lexico-

graphic feature set: orthography features, context features,

POS tagging features and dictionary (CTD) features.

The NEN module was a sequential back-off model

based on two word embedding (WE) methods: SSI (16)—a

supervised WE method—and skip-grams (17)—an un-

supervised WE method. The SSI model was trained on the

CDR training and development set to obtain a correlation

matrix W between tokens in the training data as well as

MeSH. Skip-gram is a state-of-the-art word-to-vector

method that took advantage of large unlabeled data. We

used an open source skip-gram model provided by

NLPLab (http://evexdb.org/pmresources/vec-space-models/

wikipedia-pubmed-and-PMC-w2v.bin), which was trained

on all PubMed abstracts and PMC full texts (4.08 million

distinct words). The output of skip-gram model was a set

of word vectors of 200 dimensions, from which similarities

between all word pairs were calculated. As a result, we

constructed a correlation matrix that was in the same for-

mat as the output of the SSI model. Therefore, we could

combine the SSI model and the skip-gram model into the

back-off model. For normalizing entities, we created pairs

Pubmed 
abstracts

Sentence 
spli�ng

Tokeniza�on

Abbrevia�on 
iden�fica�on

DNER

Skip-gram 
NEN

Pre-processing

Averaged 
perceptron 

NER

SSI NEN

CID

Mul�pass 
sieve 

coreference 
resolu�on

Results

Joint 
Inference

SVM intra-
sentence 
rela�on 

extrac�on

Stemming

POS tagging

Dependency 
parsing 

Figure 3. Architecture of the proposed CDR extraction system, which includes the pipeline of processing modules and material resources; boxes with

dotted lines indicate sub-modules.
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of each entity and each MeSH concept and then processed

them by the SSI and skip-gram sequential back-off model.

In this regard, firstly, we implemented the SSI model to

find which pairs are linked, and then processed non-linked

pairs once again by the skip-gram model.

The CID subtask required the system to extract the CID

relations at the abstract level. In simple cases, a CID rela-

tion might be expressed in a single sentence (intra-sentence

relation), i.e. two entities that participate in a CID relation

appear in the same sentences. Unfortunately, they might be

expressed in multiple sentences (inter-sentence relation).

Our system was based on a strategy that firstly converted

inter-sentence relations to intra-sentence relations by using

a coreference resolution method and then applied a ma-

chine learning model to extract them.

Our DNER system was a joint decoding model, which

used a modified beam search for decoding (13, 18). In this

model, we trained two separate models for NER and NEN

and then decoded them simultaneously. We also proposed

a new scoring function for Beam search decoding as fol-

lowed (see formula 1).

argmax
Xn

i¼1
ðwNER xt¼i; yt¼i�1;NER

� �
þwNEN xt¼i; xt¼i�1; yt¼i�1;NER; yt¼i;NER

� �
Þ

The scoring function for NEN is:

wNEN xt¼i;xt¼i�1;yt¼i�1;NER;yt¼i;NER

� �

¼

0; if yt¼i;O

wNEN xt¼ið Þ; if
( yt¼i�1;B�DSjI�DSjO andyt¼i;B�CD

yt¼i�1;B�CDjI�CDjO andyt¼i;B�DS

wNENðxt¼i;xt¼i�1Þ; if
( yt¼i�1;B�DSjI�DS andyt¼i;I�DS

yt¼i�1;B�CDjI�CD andyt¼i;I�CD

8>>>>>>>>>><
>>>>>>>>>>:

If WNEN<WNEN (NONE)¼ threshold, re-write for-

mula 1 to formula 3:

argmax
Xn

i¼1
ðwNER xt¼i; yt¼i�1;NER

� �
þwNEN NONEð ÞÞ

In which, WNER is returned from the structured percep-

tron model.

Coreference resolution

Formally, the coreference consists of two linguistic expres-

sions—antecedent and anaphor (19). Figure 4 is an ex-

ample of the coreference, in which the anaphor ‘side effect’

is the expression whose interpretation depends on that of

the other expression, and the antecedent ‘tohemorrhagic

cystitis’ is the linguistic expression on which an anaphor

‘side effect’ depends on.

The traditional coreference resolution task was nor-

mally to discover the antecedents for each anaphor in a

document. From the perspective of this study, it was not

necessary to always make clear which is the antecedent or

anaphor. Our system considered both antecedents and ana-

phors as mentions of entities, and strived to recognize as

many mentions of an entity as possible.

Studies on the coreference resolution in the general

English domain date back to 1960s and 1970s and often

focus on person, location and organization. In biomedi-

cine, because entity types to be resolved are atypical to gen-

eral domains (i.e. protein, gene, disease, chemical, etc.),

coreference researches in this domain have received com-

paratively less attentions (19). Previous approaches had

applied several methods, ranging from heuristics-based

(20, 21) to machine learning (22, 23).

In this regard, our proposed system employed the co-

reference module that was based on a multi-pass sieve

model (21). It has been evaluated as a simple yet effective

mean for disorder mention normalization (21). We first

processed each abstract by noun phrase (NP) chunking

(using Genia tagger; http://www.nactem.ac.uk/GENIA/tag

ger/) and then created a set of NPs pairs for each abstract.

These pairs of NPs were then passed through the sieves.

Those that were kept by any sieve were considered as core-

ferent pairs, those that were not kept in each sieve were

passed through the next sieve to the end. There were nine

sieves used, each corresponded to a set of rules. Figure 5 is

an illustration of the sieve-based coreference resolution

module with example pairs that were kept by each sieve.

Sieve 1—ID matching: Two chemical or disease men-

tions that have the same MeSH ID are coreferent. This

sieve used information from the previous NEN step. For

example as ‘irregular heartbeat’ and ‘irregular heart beat’

were both normalized to MeSH ID: D001145, and were

thus considered coreferent.

Sieve 2—Abbreviation expansion: In this sieve we used

the BioText Abbreviation recognition software (http://bio

text.berkeley.edu/software.html) (24) to identify abbrevi-

ations and their full forms (e.g. full form of ‘PND’ in the

It is characterized by its intense urotoxic action, 

leading tohemorrhagic cystitis.

This side effect of IFO raises the requirement for the 

co-administration with sodium 2-

sulfanylethanesulfonate (Mesna) aiming to avoid or 

minimize this effect.

coreference

CID rela�on

PMID: 23949582

Figure 4. An example of the coreference between chemical entities.

Two sequential sentences are extracted from PubMed abstract PMID:

23949582.
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abstract PMID:11708428 is ‘prednisone’). We then

checked the MeSH ID of the full form and applied it to the

abbreviation in order to unify mentions.

Sieve 3—Grammatical conversion: Similar forms of an

entity mention were automatically generated by changing

grammatical elements in mentions, including subjects, ob-

jects and prepositions, etc. The ID match criterion was

then checked. New forms were obtained by applying rules

proposed by D’Souza and Ng (21), which includes: (i)

replacing the preposition in the name with other prepos-

itions, (ii) dropping the preposition from the name and

swapping the substring surrounding it, (iii) bringing the

last token to the front, inserting a preposition as the second

token, and shifting the remaining tokens to right by two

and (iv) moving the first token to the end, inserting a prep-

osition as the second to last token, and shifting the remain-

ing tokens to the left by two. Examples include

‘calcification of the artery’ and ‘artery calcification’, ‘men-

tal status alteration’ and ‘alteration in mental status’.

Sieve 4—Number replacement: Similar forms of a men-

tion were generated by replacing numbers with other forms

and the ID match criterion was checked. In this regard, we

considered the numeral, roman numeral, cardinal and

multiplicative forms of a number for generating new men-

tion forms, i.e. ‘two’ can be converted to ‘2’, ‘ii’ and

‘double’.

Sieve 5—Synonym replacement: The ID match criterion

for synonyms of mentions was checked. This sieve used a

synonym dictionary constructed from the MeSH, which

contains 780 982 entries. Examples include ‘propanolol’

and ‘propranolol’.

Sieve 6—Affix normalization: New forms of a mention

were generated by changing affixes (including prefixes and

suffixes) and then the ID match criterion was checked. For

examples, ‘macroprolactinemia’ and ‘microprolactinoma’

(PMID:20595935), ‘nephrotoxicity’ and ‘nephrotoxic’

(PMID:19642243) are coreferent.

Sieve 7—Stemming: Entity mentions are stemmed using the

Porter stemmer (http://tartarus.org/martin/PorterStemmer/),

and then the ID match criterion was checked. Examples in-

clude ‘abortion’ and ‘abortions’.

Sieve 8—Partial match: This sieve used the output infor-

mation from the abbreviation expansion sieve and applied

the criterion for partial matching proposed by D’Souza

Pairs appear in the same abstract:
- chemical-chemical men�ons 
- disease –disease men�ons

irregular heartbeat –
irregular heart beat

PIMD: 11366874
MeSH ID:  D001145

propanolol - propranolol

PMID: 611664 
MeSH ID: D011433

PMID: 11708428 
MeSH ID: D011241

prednisone - PDN

macroprolac�nemia 
- microprolac�noma

PMID: 20595935
MeSH ID: D015175

abor�on- abor�ons

PMID: 803783 
MeSH ID: D000031

calcium channel blocking agents 
- calcium channel blockers

PMID: 3323259
MeSH ID: D002121

tohemorrhagic cys��s
- side effect

PMID: 23949582
MeSH ID: D003556

Sieve 1 – ID matching

Sieve 2 - Abbrevia�on 
expansion

Sieve  3 – Gramma�cal 
conversion

Sieve 4 - Number 
replacement

Sieve 5 - Synonym 
replacement

Sieve 6- Affix 
normaliza�on

Sieve 7 – Stemming

Sieve 8 - Par�al match

Sieve 9 – Hyponymic terms

not co-reference pairs

calcifica�on of the artery 
- artery calcifica�on

PMID: 10669626 
MeSH ID: D061205

PMID: 11379838 
MeSH ID: D001714

bipolar II - bipolar 2

Figure 5. Coreference resolution using nine-pass sieve. Examples is pairs were kept by sieves.
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and Ng (21). It is said that ‘a mention can be partially

matched with another mention for which it shares the

most tokens’. To give an example, ‘calcium channel block-

ing agents’ and ‘calcium channel blockers’ in abstract

PMID:3323259 were marked as coreference.

Sieve 9—Hyponymic terms: We created two dictionaries

for chemicals and diseases including hyponymic nouns that

often referred to chemicals/diseases. For example, chemical

hyponymic dictionary includes ‘drug’, ‘dose’, etc.; disease

hyponymic dictionary includes ‘disease’, ‘case’, ‘infection’,

‘side effect’, etc. In this sieve, NER information was used to

find chemical and disease entities, and if there was any term

in dictionary within its context window of two sentences be-

fore-/after-ward, we could determine a coreference.

SVM-based intra-sentence relation extraction

Our work was based on the know-how that if a NP and an

entity are coreferent, the NP can be considered as an entity

of that type. The intra-sentence relation extraction module

received sentences that contain a disease—chemical pair as

input and classified whether this pair had the CID relation

or not.

The example in Figure 4 (section Coreference reso-

lution) also shows how to combine the coreference reso-

lution module and the intra-sentence relation extraction

module for handling inter-sentence relations. The strategy

is that if the intra-sentence relation extraction module can

recognize the relation between ‘side effect’ and ‘IFO’, we

can also determine the relation between ‘tohemorrhagic

cystitis’ and ‘IFO’ because ‘tohemorrhagic cystitis’ and

‘side effect’ are coreferent.

The intra-sentence relation extraction module was

based on a SVM (25)—one of the most popular machine

learning methods that has been successfully applied for

biomedical relation extraction (26, 27). We used the

Liblinear tool (http://www.csie.ntu.edu.tw/�cjlin/liblinear/)

to train a supervision binary SVM classifier (L2- regular-

ized and L1-loss) on the CDR track training/development

data set and our SilverCID corpus. In this study, we

observed that the complexities of CID relations (several

structural forms, abundance-related vocabulary sets, diffi-

culty to determine the distance between the two entities,

etc.) are very similar to the event extraction problem. As a

consequence, the feature set that was specially constructed

for event extraction might work better than that com-

monly used for normal relation extraction [they were

words, entity types, mention levels, overlap, dependency,

parse tree and dictionary (28–30)]. Following a report of

high performance in event extraction (31), we decided to

use a large-scale feature set including four types of features:

Token features, neighboring token features, token features

n-gram, pair features n-gram and shortest features path,

the feature’s details are shown in Table 2.

Experimental results

For evaluation, disease entities and CID relations that had

been predicted by our proposed model were compared to

the gold standard annotated CDR testing data set using

standard metrics: precision (P, indicating the percentage of

predicted positives that are true instances), recall (R, indicat-

ing the percentage of true positive instances that the system

has retrieved) and F1 (the harmonic means of R and P).

BioCreative V also evaluates the running time of partici-

pating systems based on response time via teams’ respect-

ive web services.

DNER results

The experimental results of the DNER phase on the CDR

track testing data set are shown in Table 3. Note that only

disease entities were evaluated.

We compared our results with the benchmarks provided

by the BioCreative organizer, including:

• The straightforward dictionary look-up method that

relied on disease names from the CTD database.

• Retrained models using the out-of-box DNorm (16),

which was a competitive system that achieved the highest

performance in a previous disease challenge. DNorm

combined an approach that was based on conditional

random fields (CRFs) and rich features for NER with a

pair wise learning to rank for NEN.

• BioCreative DNER average results: Average results of

the best run of 16 teams participating in the DNER task.

• BioCreative DNER no. 1 ranked team results: Results

from the team that was ranked no. 1 (in term of F1) in

the DNER task (32). This system used a linear chain

CRF with rich features for NER, they used three lexicons

resources to generate CRF dictionary features and mul-

tiple post processing steps to optimize the results. In the

NEN step, they used a dictionary-lookup method that

was based on the collection of MEDI, NCBI disease cor-

pus and the CDR task data set.

In this article, we improved our system (33) that had

participated in the BioCreative DNER task by adding the

silverCID corpus in the NER averaged perceptron training

set. Table 3 also shows how useful the silverCID was in

boosting the performance of our proposed model.

In the BioCreative V evaluation, our system performed far

beyond the dictionary look up method, but worse than

DNorm that was considered as a very strong benchmark (note

that there were only seven participating teams that achieved
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performances better than DNorm). Using the silverCID corpus

for training NER model boosted the performance by 6% of

F1 and became better than the DNorm’s result.

To demonstrate the benefit of the joint decoding model,

we also built a baseline system that was based on the trad-

itional pipeline model: NER was employed first and its re-

sult was then used for NEN. In this manner, the NER and

NEN modules were totally similar with them in our joint

decoding model. The results showed that joint decoding

model boosted the performance by 1.8% of the F1 score.

Following the results reported by BioCreative (8), the

average response time in the DNER task was 5.6 s and our

system was among participating systems that had smallest

response time (276 ms, ranked no. 2).

CID results

Table 4 shows the results of our system on the CID task. It

serves two purposes, i.e. firstly for comparing our results

with the BioCreative benchmark results, and secondly for

evaluating the contribution of the coreference resolution

approach and the silver-CID corpus as well as finding the

best combination of them.

We compared our results with the benchmarks provided

by the BioCreative organizer, including:

• The co-occurrence baseline method with two variants:

abstract-level and sentence-level.

Table 3. DNER results

P (%) R (%) F (%)

BioCreative

benchmarksa

Dictionary look-up 42.71 67.46 52.30

DNorm 81.15 80.13 80.64

Average results 78.99 74.81 76.03

Ranked no. 1 result 89.63 83.50 86.46

Our system in BioCreative V (33)a 73.20 79.98 76.44

Our improved systemb 79.90 85.16 82.44

NER-NEN pipeline 78.26 83.17 80.64

aProvided by the BioCreative 2015 organizer (33).
bThe silverCID corpus included in training the NER module.

Table 2. Large-scale feature set used in the intra-sentence relation extraction module

Feature types Description Features Provided information

Token features Token itself • Token orthography (capitalization, first

letter of sentence, number, etc.)

• Base form of token

• N-grams (n ¼ 1–4) of token

• Part-of-speech tagging

Information about the current

token

Neighboring

token features

Extracts all 2-step dependency

paths from the target token,

which then were used to extract

n-grams

• Features extracted by the token feature

function for each token

• Token and dependency n-grams

(n ¼ 2–4)

• Token n-grams (n ¼ 2; 3)

• Dependency n-grams (n ¼ 2)

Information about the surrounding

context of the current token

Token n-gram

features

Extract token n-grams (n¼1–4)

within a window of three tokens

before and three tokens after the

target token

• N-grams of word Information about phrase which

contain current token

Pair n-gram

features

Extracts word n-grams (n¼1–4)

within a window from three

tokens before the first tokens to

three tokens after the last token

in target chemical-disease pair.

• Dependency n-grams (n ¼ 2)

• Token n-grams (n ¼ 2, 3)

• N-grams (n ¼ 2–4) of dependencies and

tokens

Information about function of cur-

rent token in the dependency

tree

Shortest path

features

Shortest dependency paths be-

tween two words (in which,

each word belongs to a disease

or chemical entity)

• Length of path

• Word n-grams (n ¼ 2– 4)

• Dependency n-grams (n ¼ 2–4)

• Consecutive word n-grams (n ¼ 1–3)

representing governor-dependent

relationships

• Edge walks (word-dependency-word)

and their sub-structures

• Vertex walks (dependency-word-de-

pendency) and their sub-structures

Information about relation be-

tween current token and other

tokens in sentence using depend-

ency tree and function of each

token in this path
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• BioCreative CID average results: Average results of the

best run of 18 teams participating in the CID task.

• BioCreative CID no. 1 ranked team results: Results from

the team that was ranked no. 1 (in term of F1) in the

CID task (34). This system combines two SVM classifiers

trained on sentence- and document-level, its novel aspect

is at using rich features coming from CID relations in

other biomedical resources.

The configuration of our system that participated in the

CID task was the pipeline of a multi-pass sieve coreference

resolution module and a SVM intra-sentences relation ex-

traction module. It achieved the F1 score of 51.60%. This

was much better than that of the co-occurrence benchmark

method. Further, the improved system that used the

SilverCID corpus for training SVM module boosted the

performance by 7.3% of F1. It can be noted that this result

is better than that of the highest ranked system in the CID

task. The contributions of the coreference resolution and

silverCID corpus were evaluated by comparing results of

the SVM-based intra-sentence relation extraction module

with and without adding the coreference resolution mod-

ule/silverCID corpus. A comparative evaluation showed

that the original SVM approach (only trained on the CDR

training and development set) achieved F1 of 47.47%,

whilst adding the SilverCID corpus boosted F1 by 4.64%

(51.60%) and, further, adding the multi-pass sieve corefer-

ence resolution module boosted F1 by 4.13% more

(58.90%).

We also made a comparison between our heuristic-

based multi-pass sieve method and another state-of-the-art

machine learning-based method for coreference resolution.

In this regard, we re-implemented a method proposed by

Ng (22), which was an expectation maximization (EM)

clustering coreference approach. This system also used the

SVM-based intra-sentence relation extraction model that

had been trained on the CDR training and development

set. The results demonstrated the strength of our multi-

pass sieves method. We achieved 53.41% in precision

(5.77% better than that of the EM clustering-based),

49.91% in recall (0.37% worse) and 51.60% in F1

(2.67% better).

The feature set that was used in the SVM model con-

tains 332 570 features. It is clearly a non-trivial large fea-

ture space to compute. In our experiments, the SVM model

took more than an hour for training. According to the re-

sults reported by BioCreative (8), the average response

time in the CID task was 9.3 s. Our system response time

was 8.993 s.

Discussion

Our work makes available to others the SilverCID corpus

which was built automatically, in addition to the extant re-

sources, i.e. the CDR track data set (section BioCreative

CDR track data set) and the CTD-Pfizer collaboration data

set (11) which have resulted from manual curation. A fur-

ther novel aspect that makes the SilverCID corpus different

from other sources is that it is a sentence-level corpus which

covered about 60% of CID relations in CTD database.

Traditionally, NER and NEN were treated as two sep-

arate tasks, in which, NEN took the output of NER as its

input. Following several studies, e.g. Liu et al. (35), we

begin to understand the limitations of this pipeline ap-

proach, i.e. the errors propagate from NER to NEN and

there is no feedback from NEN to NER. Khalid et al. (36)

also demonstrated that most NEN errors were caused by

recognition errors. The joint decoding model is expected to

overcome these disadvantages of such a traditional pipeline

model. Table 3 shows that joint decoding model boosted

performance by 1.8% in term of the F1 score. Joint decod-

ing outperformed the pipeline model in the cases of long

entities that belongs to MeSH, such as ‘combined oral

contraceptives’ (MeSH:68003277) and ‘angiotensin-con-

verting enzyme inhibitors’ (MeSH:D000806).

In the DNER phase, the NEN back-off model could

take advantage of both labeled CDR data set and the ex-

tremely large unlabeled PubMed data. The SSI model cal-

culated the correlation matrix between tokens, it worked

better than Skip-gram in cases that tokens appeared in

training data or MeSH (e.g. SSI links ‘arrhythmias’ to

MeSH:D001145 (Arrhythmias, Cardiac), ‘peripheral

neurotoxicity’ to MeSH:D010523 (Peripheral Nervous

System Diseases). The skip-gram model calculated similar-

ity between tokens by taking advantage of the large un-

labeled PubMed data, and helped improve the system

recall (e.g. Skip-gram linked ‘disordered gastrointestinal

Table 4. CID relation extraction results

P (%) R (%) F (%)

BioCreative

benchmarksa

Co-occurrencea 16.43 76.45 27.05

Average resulta 47.09 42.61 43.37

Rank no. 1 resulta 55.67 58.44 57.03

Our system in BioCreative V (33)a 53.41 49.91 51.60

(SVM1 CR MPS)

Our improved system 57.63 60.23 58.90

(SVM1 CR MPS1 silverCID corpus)

SVM 44.73 50.56 47.47

SVMþ silverCID corpus 51.42 52.81 52.11

SVMþ CR EMC 47.64 50.28 48.93

CR, coreference resolution; MPS, multi-pass sieve; EMC, EM clustering.
aResults provided by the BioCreative 2015 organizer (33). SVM: SVM

intra-sentence relation extraction. Bold values are performance measures of

our two models on the Test set, not using cross-validation evaluation.
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motility’ to MeSH:D005767 (Gastrointestinal Diseases),

‘hyperplastic marrow’ to MeSH:D001855 (Bone Marrow

Diseases), which were false negatives by the SSI model).

In the CID phase, we compared some true positive re-

sults of three other systems which are listed in Table 5. The

comparing systems include: (i) SVM model that was only

trained on the CDR training and development data, (ii)

pipeline model of the SVM module and the multi-pass sieve

coreference resolution module and (iii) the same model as

in (ii), but with the Silver-CID corpus used for training the

SVM module. The disagreements between these three sys-

tems, which are shown in Table 5, clarify contribution of

the method and data set used in our model (see

Supplementary 1 for the sample texts).

First, Table 5 shows that the SVM-based intra-sentence

relation extraction model played the central core of our

system. It worked well in the cases of intra-sentence CID

relations (e.g. examples 1 and 2). As a result, if SVM failed

on an intra-sentence relation, adding the multi-pass sieve

coreference resolution module was not helpful (e.g. ex-

amples 3 and 4).

Since the SilverCID corpus enriched the training data

for SVM, using it might help to find more relations than

only the SVM model did (e.g. example 3). It, however, also

might bring some noises leading to the small adverse effects

for the system, i.e. adding the silverCID could lead to some

missing results (e.g. example 2).

It is certain that SVM only based model, even trained

on the SilverCID corpus or not, could not catch the inter-

sentence relations (e.g. examples 5–8). Therefore, the co-

reference resolution was completely necessary for handling

the inter-sentence relations (e.g. examples 5 and 7). Similar

to intra-sentence relation cases, adding the silverCID cor-

pus might help (e.g. example6) or reject very small amount

true positives classified by the SVMþ coreference model

(e.g. example 7).

Furthermore, there were still many cases on that the sys-

tems as a whole failed (e.g. examples 4 and 8).

Table 6 shows examples of where our system disagreed

with the annotation standard (see Supplementary 2 for ex-

ample texts). There were two types of errors: wrong results

(FP) and missing results (FN). Since entities which partici-

pated in the CID relations were expressed using their

MeSH ID and the evaluation was made at the abstract-

level, it was very hard to clarify the cause of errors within

the whole system. Our comments for these cases were em-

pirical, based on heuristic surveying the system output.

In Table 6, some errors were caused by the previous

DNER phase: in example 4, NER module did not recog-

nize ‘theophylline’ as chemical; in example 5, FP result for

the ‘retention deficit’ of NER module leaded to the FP

error of the whole system; in example 6, NER determined

the wrong boundary of the entity ‘acute hepatitis’ and in

example 7, NEN module matched ‘heart hypertrophy’ to

the wrong MeSH ID (it should be ‘D006332’).

Inter-sentence relations often have very complex struc-

tures. Two entities involving such relations might belong

to two sentences that were not adjacent. In some worst

cases, one entity was even hidden, which caused many FN

errors (e.g. examples 1 and 2).

The SVM module depended on the training data set,

thus, it might lead to several limitations of finding new rela-

tions (which were not similar with those in the training set).

Example 9 in Table 6 demonstrates this type of limitation.

Coreference resolution was not a trivial problem, it had

several types of errors by itself. The FP error in example 10

seems to be caused by the coreference resolution module,

i.e. linking the term ‘dose’ to the wrong entity.

Table 5. Analysis of the contribution of methods and resources used in our proposed system for capturing CID relationships

CID relation (chemical-disease) PMID Type of relation SVM SVMþCR SVMþSC SVMþCRþSC

Intra- Inter-

1 Maleate (C030272)—nephrotoxicity (D007674) 25119790 � � � � �

2 Quinacrine hydrochloride (D011796)—atrial

thrombosis (D003328)

6517710 � � �

3 Metolachlor (C051786) -liver cancer (D008113) 26033014 � � �

4 Galantamine (D005702) – headaches (D006261) 17069550 �

5 Methoxamine (D008729)- headache (D006261) 11135381 � � �

6 Gemfibrozil (D015248)—myositis (D009220) 1615846 � �

7 Oxidized and reduced glutathione (D019803) —

reperfusion injury (D015427)

1943082 � �

8 Metolachlor (C051786)- follicular

cell lymphoma (D008224)

26033014 �

SVM, SVM intra-sentence relation extraction; CR, multi-pass sieve coreference resolution; SC, silverCID corpus; Intra-, Intra-sentence CID relation; Inter-,

Inter-sentence CID relation; �, chemical-disease pair is classified as CID relation correctly. See supplementary 1 for the sample texts.
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Regarding errors caused by using the silverCID corpus,

we noted that this corpus might bring much valuable infor-

mation, but it also might bring some noise, leaded to FN

errors (e.g. example 3) and FP errors (e.g. example 8). Such

two errors would disappear if we had removed the

silverCID corpus from our system.

Conclusions

In this research, we have presented a systematic study of

our approach to the BioCreative V CDR task.

Improvements on the original system include: (i) a joint

decoding approach for NER and NEN based on several

state-of-the-art machine learning methods for the DNER

sub-task and (ii) improvements of a SVM-based model for

the CID sub-task by using a large-scale feature set,

silverCID corpus and crucially, a multi-pass sieve corefer-

ence resolution module. Our best performance achieved an

F1 of 81.93 for DNER while that of the DNorm, the state-

of-the-art DNER system based on SSI, was 80.64%. The

best performance for CID of our improved system had F1

of 58.90, comparable to 57.03% of the highest ranked sys-

tem in the CID task.

Based on the CTD database, we built a silver standard

data set (called ‘silverCID’ corpus), including 51 719 sen-

tences that contained CID relations with silver annotations

for NER, NEN and CID relations. The use of the

SilverCID corpus would not have been allowed under the

original rules of the task because it was unknown which

subset of the database was used in the test evaluation. In

our comparison, this SilverCID corpus proved its effective-

ness when boosting our system performance by 7.3% in

term of the F1 score (note that we checked to make sure

that there were no overlap between CTD-silver set and the

test set).

Several comparisons were made to compare our results

with those of other systems and to analyze the system

errors. The evidences pointed towards complementarities

between the NER-NEN joint decoding model, the SVM

model, the SilverCID corpus and the coreference resolution

module. The empirical results also demonstrated the ad-

vantage of using multi-pass sieve coreference resolution to

handle inter-sentence relations.

One limitation of our system is that DNER was the ini-

tial step of CID, thus, DNER results greatly influenced the

CID results. Therefore, the comparison hereby required

further validations because we used NER and NEN infor-

mation provided by our DNER phase while other systems

used theirs.

Our proposed system is extensible in several ways.

Improving the coreference resolution module is obviously

the first possible follow-up. Although the coreference reso-

lution module plays a central role in extracting inter-

relations, at this time, it only boosted the performance by

4.13% in terms of F1. One potential suggestion is to use the

SilverCID corpus for training a multi-pass sieve coreference

module as the more results the coreference resolution mod-

ule can find out, the more inter-relations can be found. The

second possible follow-up to improve our system may come

from several useful biomedical resources that we did not

utilize. According to the report of the best team in the

DNER sub-task of BioCreative V (32), we know that they

exploited many databases such as CTD, MEDI (37), SIDER

(38), etc. to extract various useful knowledgebase features

for their machine learning based participating system or to

be as a dictionary for matching. The third can be applica-

tion of several post-processing steps, such as abbreviation

resolution and consistency improvement, which was applied

by the best team in the DNER sub-task of the BioCreative V

and demonstrated its effectiveness (31).

Table 6. Sources of errors by our system on the CDR test set

CID relation (chemical-disease) PMID Type of error Cause of error

FP FN

1 Corticosteroid (D000305)–systemic sclerosis (D012595) 22836123 � Complex inter-sentence structure

2 Cyclophosphamide (D003520)–edema (D004487) 23666265 � Complex inter-sentence structure

3 Chlorhexidine diphosphanilate (C048279)–pain (D010146) 2383364 � Noise from silverCID corpus

4 Theophylline (D013806)–tremors (D014202) 3074291 � Error from NER

5 Scopolamine (D012601)–retention deficit (D012153) 3088653 � Error from NER

6 Clopidogrel (C055162)–acute hepatitis (D017114) 23846525 � Error from NER

7 Isoproterenol (D007545)–heart hypertrophy (D006984) 2974281 � Error from NEN

8 Nicotine (D009538)–anxiety (D001008) 15991002 � Noise from silverCID corpus

9 Oxitropium bromide (C017590)–nausea (D009325) 3074291 � Error from SVM model

10 Gamma-vinyl-GABA (D020888)–status epilepticus (D013226) 3708328 � Error from coreference resolution module

Intra-, Intra-sentence CID relation; Inter-, Inter-sentence CID relation; FP, false positive; FN, false negative. See supplementary 2 for the sample texts.
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