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Abstract—We construct an internal language for cartesian
closed bicategories. Precisely, we introduce a type theory mod-
elling the structure of a cartesian closed bicategory and show that
its syntactic model satisfies an appropriate universal property,
thereby lifting the Curry-Howard-Lambek correspondence to the
bicategorical setting. Our approach is principled and practical.
Weak substitution structure is constructed using a bicategori-
fication of the notion of abstract clone from universal algebra,
and the rules for products and exponentials are synthesised from
semantic considerations. The result is a type theory that employs
a novel combination of 2-dimensional type theory and explicit
substitution, and directly generalises the Simply-Typed Lambda
Calculus. This work is the first step in a programme aimed at
proving coherence for cartesian closed bicategories.

I. INTRODUCTION

2-categories axiomatise the structures formed by classes of
categories, such as the 2-category Cat of small categories,
functors and natural transformations. In such settings the
associativity and unit laws of composition hold strictly (‘on the
nose’). In many situations—in particular where composition
is defined by a universal property—these laws only hold up
to coherent isomorphism: the resulting structure is that of a
bicategory. Bicategories are rife in mathematics and theoretical
computer science, arising for instance in algebra [1], [2],
semantics of computation [3], [4], datatype models [5], [6],
categorical logic [7], [8], and categorical algebra [9], [10], [11].

The layers of coherence data required to witness the
associativity and unit laws makes calculating in bicategories
(and weak n-categories more generally) notoriously difficult.
One approach is to reduce bicategorical structure to categorical
structure by quotienting, but the loss of intensional information
this entails is often unsatisfactory.

There are two main strategies for working with structures
defined up to isomorphism. One strategy looks for coherence
theorems establishing that some class of diagrams always com-
mute. For bicategories and bicategorical limits (bilimits [12])
there are well-known coherence results [13], [14]; however,
we know of no analogous result in the literature for closed
structure. Another strategy employs a type theory that matches
the categorical structure (see e.g. [15], [16], [8]); such a system
is sometimes called the internal language [17] or internal
logic [18].

In this paper we carry out the internal-language strategy
for cartesian closed bicategories, and thereby set up the
scene for the coherence strategy to be presented elsewhere.

We construct an internal language Λx,Ñ
ps for cartesian closed

bicategories (where ‘ps’ stands for pseudo), thus reducing
the problem of coherence for cartesian closed bicategories
to a property of Λx,Ñ

ps . This type theory provides a practical
calculus for reasoning in such settings and directly generalises
the STLC (Simply-Typed Lambda Calculus) [19].

Our work is motivated by the complexities of calculating in
the cartesian closed bicategories of generalised species [7] and
of cartesian distributors [9], specifically for their application to
higher-dimensional category theory [20]. However, the internal
language we present applies to other examples: cartesian closed
bicategories also appear in categorical algebra [10] and game
semantics [21].

A. 2-dimensional type theories and bicategorical composition

There is a natural connection between 2-categories and
rewriting. If objects are types and morphisms are terms, then
2-cells are rewrites between terms. This idea was explored
as early as the 1980s in the work of Rydeheard & Stell [22]
and Power [23]. For STLC, Simply-Typed Lambda Calculus,
Seely [24] suggested that η-expansion and β-contraction may
naturally be interpreted as the unit and counit of the adjunction
defining (lax) exponentials in a 2-category, an approach
followed by Hilken [25] and advocated by Ghani & Jay [26],
[27]. More recently, type-theoretic constructions modelling
2-categories with strict cartesian closed structure have been
pursued in programming-language theory [28] and proof
theory [29] while a directed 2-dimensional type theory in
the style of Martin-Löf [30] has been introduced by Licata &
Harper [31].

It is crucial to our approach that the equational theory of
Λx,Ñ

ps does not identify any more structure than the axioms of
cartesian closed bicategories. This entails distinguishing more
terms than in STLC. For instance, note that terms such as

tru1{x1, u2{x2srv{ys and tru1rv{ys{x1, u2rv{ys{x2s

are respectively interpreted in a Lambek-style semantics [17]
by the equal maps

JtK ˝ xJu1K, Ju2Ky ˝ JvK and JtK ˝ xJu1K ˝ JvK, Ju2K ˝ JvKy

In contrast, in the bicategorical setting these composites are only
isomorphic.1 Hence, substitution ought to be associative only
up to isomorphism. This places us outside the 2-categorical

1This issue is similar to that identified by Curien [32], who attempts to rectify
the mismatch between locally cartesian closed categories and Martin-Löf de-
pendent type theory caused by interpreting the (strictly associative) substitution
operation as a pullback (associative up to coherent isomorphism).



world of previous work, as well as setting our work apart from
type theories in which weak structure is modelled in a strict
language, such as Homotopy Type Theory (c.f. [33]).

B. The type theory Λx,Ñ
ps

We will construct the internal language Λx,Ñ
ps in stages. First

we will construct the internal language of bicategories Λb
ps (Sec-

tion V) and then the internal language of bicategories with
finite products Λx

ps (Section VII); the type theory Λx,Ñ
ps extends

both these systems (Section IX). In each case we construct
the syntactic model and prove an appropriate 2-dimensional
freeness universal property.

We introduce substitution formally using a version of explicit
substitution [34], [35]. This syntactic structure and the axioms
it is subject to are synthesised from a bicategorification of
the abstract clones [36] of universal algebra (Section IV).
Abstract clones are a natural bridge between syntactic structure
(in the form of intuitionistic type theories or calculi) and
semantic structure (in the form of Lawvere theories or cartesian
multicategories).

Cartesian closed structure is synthesised from universal
arrows at both the global (2-dimensional) and the local
(1-dimensional) levels. From this approach we recover versions
of the usual βη-laws of STLC, while keeping the rules to a
minimum (Sections VII and Section IX). Our formulation
points towards similar constructions for tricategories (weak
3-categories [37], [38]) or even 8-categories.

The type theory Λx,Ñ
ps is, in a precise sense, a language for

cartesian closed bicategories. It is capable of being formalised
in proof assistants such as Agda [39] and the principled nature
of its construction makes it readily amenable to the addition
of further structure. We leave such extensions for future work.

II. BICATEGORIES

We recall the definition of bicategory, pseudofunctor and
biequivalence. For leisurely introductions consult e.g. [1], [2,
§9].

Definition II.1 ([1]). A bicategory B consists of
‚ a class of objects obpBq,
‚ for every X,Y P obpBq a hom-category

`

BpX,Y q, ‚, id
˘

with objects 1-cells f : X Ñ Y and morphisms
2-cells α : f ñ f 1 : X Ñ Y ; composition of 2-cells is
called vertical composition,

‚ for every X , Y , Z P obpBq an identity functor
IdX : 1 Ñ BpX,Xq and a horizontal composition functor
˝X,Y,Z : BpY,Zq ˆ BpX,Y q Ñ BpX,Zq,

‚ invertible 2-cells

ah,g,f : ph ˝ gq ˝ f ñ h ˝ pg ˝ fq : W Ñ Z

lf : IdX ˝ f ñ f : W Ñ X

rg : g ˝ IdX ñ g : X Ñ Y

for every f : W Ñ X , g : X Ñ Y and h : Y Ñ Z,
natural in each of their arguments and satisfying two
coherence laws.

The functoriality of horizontal composition gives rise to
an interchange law: for suitable 2-cells τ, τ 1, σ, σ1 one has
pτ 1 ‚ τq ˝ pσ1 ‚σq “ pτ 1 ˝ σ1q ‚pτ ˝ σq.

A morphism of bicategories is called a pseudofunctor (or
homomorphism). It is a mapping on objects, 1-cells and 2-cells
that preserves horizontal composition up to isomorphism.

Definition II.2 ([1]). A pseudofunctor F : B Ñ C between
bicategories B and C consists of
‚ a mapping F : obpBq Ñ obpCq,
‚ a functor FX,Y : BpX,Y q Ñ CpFX,FY q for every
X,Y P obpBq,

‚ an invertible 2-cell ψX : IdFX ñ F pIdXq for every
X P obpBq,

‚ an invertible 2-cell φf,g : F pfq ˝ F pgq ñ F pf ˝ gq for
every g : X Ñ Y and f : Y Ñ Z, natural in f and g

subject to three coherence laws. A pseudofunctor for which ψ
and φ are both the identity is called strict.

Example II.3. Every 2-category is a bicategory and every
2-functor is a strict pseudofunctor. A one-object bicategory
is equivalently a monoidal category; a monoidal functor is
equivalently a pseudofunctor between one-object bicategories.

Bicategorical products and exponentials are defined using
the appropriate notion of adjunction, called a biadjunction.
For our purposes, the characterisation of biadjoints in terms
of biuniversal arrows [40] is most natural (c.f. [7]); this is
the bicategorical version of the well-known description of
adjunctions via universal arrows (e.g. [41, Chapter III, §1]).
For biuniversal arrows and their relationship to biadjunctions,
see e.g. [42].

Definition II.4 ([12]). Let F : B Ñ C be a pseudofunctor. To
give a right biadjoint U to F is to give

1) a mapping U : obpCq Ñ obpBq on objects,
2) a family of 1-cells pqC : FUC Ñ CqCPobpCq,
3) for every B P obpBq and C P obpCq an adjoint equiva-

lence

BpB,UCq CpFB,Cq

qC˝F p´q

%

p´q5

Morphisms of pseudofunctors are called pseudonatural
transformations [12] and morphisms of pseudonatural transfor-
mations are called modifications [1]. Bicategories, pseudofunc-
tors, pseudonatural transformations and modifications organise
themselves into a tricategory we denote Bicat.

Example II.5. For every pair of bicategories B and C there
is a bicategory HompB, Cq of pseudofunctors, pseudonatural
transformations and modifications.

Bicategories provide a convenient setting for abstractly
describing many categorical concepts (e.g. [43], [44]).

Definition II.6. Let B be a bicategory.
1) An adjunction pA,B, f, g, η, εq in B is a pair of objects
pA,Bq with arrows f : A Ô B : g and 2-cells



η : IdA ñ g ˝ f and ε : f ˝ g ñ IdB subject to two
triangle laws.

2) An equivalence pA,B, f, g, η, εq in B is a pair of objects
pA,Bq with arrows f : A Ô B : g and invertible 2-cells
η : IdA

–
ùñ g ˝ f and ε : f ˝ g

–
ùñ IdB .

3) An adjoint equivalence is an adjunction that is also an
equivalence.

The appropriate notion of equivalence between bicategories
is called biequivalence [45].

Definition II.7. A biequivalence between bicategories B and
C consists of pseudofunctors F : B Ô C : G with equivalences
G ˝ F » idB and F ˝G » idC in the bicategories HompB,Bq
and HompC, Cq, respectively.

III. SIGNATURES FOR 2-DIMENSIONAL TYPE THEORIES

The STLC with constants is determined by a choice of
base types and constant terms (e.g. [17]). For constants
defined in arbitrary contexts such a choice is determined by a
multigraph; that is, a set of nodes A1, . . . , An, B, . . . connected
by multiedges rA1, . . . , Ans Ñ B. A multigraph consisting
solely of edges (i.e. multiedges of the form rAs Ñ B) is called
a graph.
Notation III.1. In the following definition, and throughout, we
write A‚ for a finite sequence rA1, . . . , Ans pn P Nq.

Definition III.2. A 2-multigraph G is a set G0 of nodes
equipped with a graph GpA‚;Bq of edges and surfaces for
every n P N and A1, . . . , An, B P G0. A homomorphism of
2-multigraphs h : G Ñ G1 is a map h : G0 Ñ G10 together with
functions

hA1,...,An;B : GpA‚;Bq Ñ G1prhA1, . . . , hAns ;hBq

hf,g : GpA‚;Bqpf, gq Ñ G1prhA1, . . . , hAns ;hBqphf, hgq

for every n P N, A1, . . . , An, B P G0 and f, g P GpA‚;Bq.

We denote the category of 2-multigraphs by 2-MGrph. The
full subcategory 2-Grph of 2-graphs is formed by restricting to
2-multigraphs G such that GprA1, . . . , Ans ;Bq “ H whenever
n ‰ 1.

IV. SUBSTITUTION STRUCTURE UP TO ISOMORPHISM

The type theory we shall construct has types, terms, rewrites
and an explicit substitution operation. It is therefore determined
by a 2-multigraph together with a specified substitution
structure. Accordingly, to synthesise our language we introduce
an intermediate step between 2-multigraphs and bicategories,
which we call biclones. These are a bicategorification of
the abstract clones of universal algebra [36], which capture
a presentation-independent notion of equational theory with
substitution.

Definition IV.1. An S-biclone C is a set S of sorts
equipped with the following for all n, m P N and
X1, . . . , Xn, Y, Y1, . . . , Ym, Z P S:
‚ a category CpX‚;Y q with objects 1-cells f : X‚ Ñ Y

and morphisms 2-cells α : f ñ g : X‚ Ñ Y ,

‚ distinguished projection functors pi : 1 Ñ CpX‚;Xiq for
1 ď i ď n,

‚ a substitution functor

subX‚;Y‚;Z : CpY‚;Zq ˆ
m
ź

j“1

CpX‚;Yjq Ñ CpX‚;Zq

which we denote by

subX‚;Y‚;Z
`

f, pg1, . . . , gmq
˘

:“ f rg1, . . . , gms

(we write trv‚rw‚ss or trv1rw‚s, . . . , vnrw‚ss for the it-
erated substitution trv1rw1, . . . , wls, . . . , vnrw1, . . . , wlss,
c.f. Notation III.1),

‚ natural families of invertible 2-cells

assoct,u‚,v‚ : tru1, . . . , unsrv‚s ñ tru1rv‚s, . . . , unrv‚ss

ιu : uñ urp1, . . . , pns

%pkqu1,...,un : pkru1, . . . , uns ñ uk pk “ 1, . . . , nq

for every t P CpY‚, Zq, uj P CpX‚, Yjq, vi P CpW‚, Xiq

and u P CpX‚, Y q (i “ 1, . . . , n and j “ 1, . . . ,m).
This data is subject to two compatibility laws:

tru1, . . . , uns trp1, . . . , pnsru1, . . . , uns

tru1, . . . , uns trp1ru1, . . . , uns, . . . , pnru1, . . . , unss

ιru1,...,uns

id assoc

tr%p1q,...,%pnqs

tru‚srv‚srw‚s tru‚rv‚ssrw‚s tru‚rv‚srw‚ss

tru‚srv‚rw‚ss tru‚rv‚rw‚sss

assoc

assocrw‚s assoc

trassoc,...,assocs

assoc

When the set S of sorts is clear we refer to an S-biclone as
simply a biclone.

Thinking of a bicategory as roughly a 2-category with
structure up to isomorphism, one may think of a biclone as
roughly a Cat-enriched clone with structure up to isomorphism.
Indeed, the definition of clone may be generalised to hold in any
cartesian category (and even more generally, e.g. [46], [47]): if
the structural 2-cells ι, % and assoc are all the identity, a biclone
is equivalently a 2-clone, i.e. a clone in the cartesian category
Cat. We have directed the 2-cells to match the definition of a
skew monoidal category [48]; the definition should therefore
generalise to the lax setting (c.f. also the lax bicategories of
Leinster [49, §3.4]).

Every S-biclone C has an underlying linear-core bicate-
gory C`c with objects S and hom-categories C`cpX,Y q “
C
`

rXs ;Y
˘

(c.f. [50]). Every 2-multigraph freely induces a
sorted biclone, and one may introduce bicategorical substitution
structure into a type theory with base types, constant terms and
constant rewrites specified by a 2-graph G by postulating the
structure of the free sorted biclone on G and then restricting it
to its underlying linear core. This is the gist of the following
section.



var p1 ď k ď nq
x1 : A1, . . . , xn : An $ xk : Ak

`

c P GpA1, . . . , An;Bq
˘

const
x1 : A1, . . . , xn : An $ cpx1, . . . , xnq : B

x1 : A1, . . . , xn : An $ t : B p∆ $ ui : Aiqi“1,...,n
horiz-comp

∆ $ ttx1 ÞÑ u1, . . . , xn ÞÑ unu : B

Figure 1. Introduction rules on basic terms

x1 : A1, . . . , xn : An $ t : B
ι-intro

x1 : A1, . . . , xn : An $ ιt : tñ ttxi ÞÑ xiu : B

x1 : A1, . . . , xn : An $ ι´1
t : ttxi ÞÑ xiu ñ t : B

x1 : A1, . . . , xn : An $ xk : Ak p∆ $ ui : Aiqi“1,...,n
%pkq-intro p1 ď k ď nq

∆ $ %
pkq
u1,...,un : xktxi ÞÑ uiu ñ uk : Ak

∆ $ %
p´kq
u1,...,un : uk ñ xktxi ÞÑ uiu : Ak

y1 : B1, . . . , yn : Bn $ t : C px1 : A1, . . . , xm : Am $ vi : Biqi“1,...,n p∆ $ uj : Ajqj“1,...m
assoc-intro

∆ $ assoct,v‚,u‚ : ttyi ÞÑ viutxj ÞÑ uju ñ ttyi ÞÑ vitxj ÞÑ ujuu : C

∆ $ assoc´1
t,v‚,u‚

: ttyi ÞÑ vitxj ÞÑ ujuu ñ ttyi ÞÑ viutxj ÞÑ uju : C

Figure 2. Introduction rules on structural rewrites

Γ $ t : A
id-intro

Γ $ idt : tñ t : A

`

σ P GpA1, . . . , An;Bqpc, c1q
˘

2-const
x1 : A1, . . . , xn : An $ σpx1, . . . , xnq : cpx1, . . . , xnq ñ c1px1, . . . , xnq : B

Figure 3. Introduction rules on basic rewrites

Γ $ τ 1 : t1 ñ t2 : A Γ $ τ : tñ t1 : A
vert-comp

Γ $ τ 1 ‚ τ : tñ t2 : A

x1 : A1, . . . , xn : An $ τ : tñ t1 : B p∆ $ σi : ui ñ u1i : Aiqi“1,...,n
horiz-comp

∆ $ τtxi ÞÑ σiu : ttxi ÞÑ uiu ñ t1txi ÞÑ u1iu : B

Figure 4. Constructors on rewrites

Introduction rules for Λb
ps, Λx

ps and Λx,Ñ
ps . For Λb

ps these rules are restricted to unary contexts.

V. A TYPE THEORY FOR BICATEGORIES

We follow the tradition of 2-dimensional type theories
consisting of types, terms and rewrites, e.g. [24], [25], [31], [29].
Following Hilken [25], we consider two forms of judgement.
Alongside the usual Γ $ t : A to indicate ‘term t has type
A in context Γ’, we write Γ $ τ : t ñ t1 : A to indicate ‘τ
is a rewrite from term t of type A to term t1 of type A, in
context Γ’.

For now we do not want to assume our model has products so
we restrict to unary contexts. Base types, constants and rewrites
are therefore specified by a 2-graph G. The term introduction
rules are collected in Figure 1 and the rewrite introduction
rules in Figures 2–4. We denote the language thus defined by
Λb

pspGq.
The terms are variables x, y, . . . , constant terms cpxq,

c1pxq, . . . and explicit substitutions ttx ÞÑ uu. Thus for every

term u and term t with free variable x we postulate a term
ttx ÞÑ uu; this is a formal analogue of the term tru{xs defined
by the meta-operation of capture-avoiding substitution (c.f. [34],
[35]). The variable x is bound by this operation, and we work
with terms up to α-equivalence defined in the standard way.
Instead of being typed in the empty context, constants are given
by the edges of G. The restriction to unary contexts ensures the
syntactic model is a bicategory, rather than a biclone. When we
construct the type theory for bicategories with finite products
we shall allow constants and explicit substitution to be multi-
ary.

The grammar for rewrites is synthesised from the free biclone
on G. The structural rewrites assoc, ι and % witness the three
laws of a biclone; we slightly abuse notation by simultaneously
introducing these rewrites and their inverses. The constant
rewrites σpxq are specified by the surfaces of G and for every



term t we have an identity rewrite idt. The explicit substitution
operation mirrors that for terms while vertical composition is
captured by a binary operation on rewrites (c.f. [25], [29]). We
make use of the same conventions on binding and α-equivalence
as for terms.
Notation V.1. We adopt the following abuses of notation.

1) Writing t for idt in a rewrite.
2) Writing ttxi ÞÑ uiu

n
i“1 or simply ttxi ÞÑ uiu for

ttx1 ÞÑ u1, . . . , xn ÞÑ unu, and similarly on rewrites.
3) Writing ctt1, . . . , tnu for the explicit substitution

cpx1, . . . , xnqtxi ÞÑ tiu for constants c, and similarly
on rewrites.

The equational theory ” on rewrites is derived directly from
the axioms of a biclone; these are collected in Figures 5–8.
In this extended abstract, the rules for the invertibility of the
structural rewrites and the congruence rules on ” are omitted.

The type theory Λb
pspGq satisfies the expected well-

formedness properties (c.f. [51, Chapter 4] for STLC). Unique-
ness of typing is obtained by adding type annotations on bound
variables, constants and vertical compositions; we omit this
extra information for readability.

A. The syntactic model for Λb
ps

We construct the syntactic model for Λb
pspGq and prove that

it enjoys a 2-dimensional freeness universal property analogous
to that of [38, §2.2.1]. Put colloquially, Λb

pspGq is the internal
language for bicategories with signature a 2-graph G. The
bicategorical structure is induced directly from the biclone
structure.

Construction V.2. For any 2-graph G, define a bicategory
T b

pspGq as follows. Objects are unary contexts px : Aq. The hom-
category T b

pspGq
`

px : Aq, py : Bq
˘

has objects α-equivalence
classes of derivable terms px : A $ t : Bq and morphisms
α”-equivalence classes of rewrites px : A $ τ : tñ t1 : Bq
under vertical composition. Horizontal composition is given
by explicit substitution and the identity on px : Aq by the var
rule px : A $ x : Aq. The structural isomorphisms l, r and a
are %, ι´1 and assoc, respectively.

Construction V.3. For any 2-graph G, bicategory B and
2-graph homomorphism h : G Ñ B, the semantics of
Figure 13 restricted to T b

pspGq induces a strict pseudofunctor
h# : T b

pspGq Ñ B.

The universal extension pseudofunctor h# cannot be char-
acterised by a strict universal property; for instance, for
each type A the bicategory T b

pspGq contains countably many
equivalent objects px : Aq for x ranging over variables. To
obtain the desired universal property, we restrict to a sub-
bicategory in which there is a single variable name.

Construction V.4. Let Sb
pspGq denote the bicategory with

objects unary contexts px : Aq for x a fixed variable and
horizontal and vertical composition operations as in T b

pspGq.

The bicategories Sb
pspGq and T b

pspGq are biequivalent, and
the restricted model Sb

pspGq is free on G in the following sense.

Theorem V.5. Let G be a 2-graph. For any bicategory B and
2-graph homomorphism h : G Ñ B, there exists a unique strict
pseudofunctor h# : Sb

pspGq Ñ B such that h# ˝ ι “ h, for
ι : G ãÑ Sb

pspGq the inclusion.

The full model T b
pspGq therefore satisfies the universal

property up to biequivalence. Proving the freeness universal
property in this way has the benefit of allowing us to
establish uniqueness without reasoning about uniqueness of
pseudonatural transformations or modifications. It follows that
Λb

ps is an internal language for bicategories. By Example II.3,
restricting to a single base type gives rise to an internal language
for monoidal categories.

The argument in this section applies with only minor
adjustments to biclones. Thus, allowing Λb

pspGq to have contexts
with fixed variables over a 2-multigraph G gives rise to
the free biclone on G in the sense of Theorem V.5. This
relies on a straightforward generalisation of the notions of
pseudofunctor, transformation and modification. Details will
be given elsewhere.

VI. FP-BICATEGORIES

We recall the notion of bicategory with finite products,
defined as a bilimit [12]. To avoid confusion with the ‘cartesian
bicategories’ of Carboni and Walters [52], [53], we use the
term fp-bicategories. fp-Bicategories are the objects of a
tricategory fp-Bicat.

It is convenient to work directly with n-ary products pn P Nq.
This reduces the need to deal with the equivalent objects given
by rebracketing binary products. For bicategories B1, . . . ,Bn
the product bicategory

śn
i“1 Bi has objects pB1, . . . , Bnq P

śn
i“1 obpBiq and structure given pointwise. An fp-bicategory

is therefore a bicategory B equipped with a right biadjoint to
the diagonal pseudofunctor ∆n : B Ñ Bˆn : B ÞÑ pB, . . . , Bq
for each n P N. This unwinds to the following definition.

Definition VI.1. An fp-bicategory is a bicategory B equipped
with the following data for every n P N and A1, . . . , An P B:

1) a product object
ś

npA1, . . . , Anq,
2) projection 1-cells πk :

ś

npA1, . . . , Anq Ñ Ak for
1 ď k ď n,

3) for every X P B an adjoint equivalence

B
`

X,
ś

npA1, . . . , Anq
˘

śn
i“1 BpX,Aiq

pπ1˝´,...,πn˝´q

%

x´,...,“y

(1)

We call the right adjoint x´, . . . ,“y the n-ary tupling.

Remark VI.2. One obtains a lax n-ary product structure by
merely asking for an adjunction in diagram (1).
Example VI.3. Every small fp-bicategory

`

B,Πnp´q
˘

defines
an obpBq-biclone Bc` by setting Bc`prX1, . . . , Xns ;Y q to be
B
`
ś

npX1, . . . , Xnq, Y
˘

.
Notation VI.4.

1) We write A1ˆ¨ ¨ ¨ˆAn or
śn
i“1Ai for

ś

npA1, . . . , Anq
and denote the terminal object

ś

0pq by 1.



Γ $ τ : tñ t1 : A
‚-right-unit

Γ $ τ ‚ idt ” τ : tñ t1 : A

Γ $ τ : tñ t1 : A
‚-left-unit

Γ $ τ ” idt1 ‚ τ : tñ t1 : A

Γ $ τ2 : t2 ñ t3 : A Γ $ τ 1 : t1 ñ t2 : A Γ $ τ : tñ t1 : A
‚-assoc

Γ $ pτ2 ‚ τ 1q ‚ τ ” τ2 ‚pτ 1 ‚ τq : tñ t3 : A

Figure 5. Categorical structure of vertical composition

x1 : A1, . . . , xn : An $ t : B p∆ $ ui : Aiqi“1,...,n
id-preservation

∆ $ idttxi ÞÑ uiu ” idttxi ÞÑuiu : ttxi ÞÑ uiu ñ ttxi ÞÑ uiu : B

x1 : A1, . . . , xn : An $ τ : tñ t1 : B

x1 : A1, . . . , xn : An $ τ 1 : t1 ñ t2 : B

p∆ $ σi : ui ñ u1i : Aiqi“1,...,n

p∆ $ σ1i : u1i ñ u2i : Aiqi“1,...,n
interchange

∆ $ τ 1txi ÞÑ σ1iu ‚ τtxi ÞÑ σiu ” pτ
1
‚ τqtxi ÞÑ σ1i ‚σiu : ttxi ÞÑ uiu ñ t2txi ÞÑ u2i u : B

Figure 6. Preservation rules

p∆ $ σi : ui ñ u1i : Aiqi“1,...,n
p1 ď k ď nq

∆ $ %
pkq

u11,...,u
1
n
‚xktxi ÞÑ σiu ” σk ‚ %

pkq
u1,...,un : xktxi ÞÑ uiu ñ u1k : Ak

x1 : A1, . . . , xn : An $ τ : tñ t1 : B

x1 : A1, . . . , xn : An $ ιt1 ‚ τ ” τtxi ÞÑ xiu ‚ ιt : tñ t1txi ÞÑ xiu : B

y1 : B1, . . . , yn : Bn $ τ : tñ t1 : C px1 : A1, . . . , xm : Am $ σi : vi ñ v1i : Biqi“1,...,n p∆ $ µj : uj ñ u1j : Ajqj“1,...m

∆ $ assoct1,v‚,u‚ ‚ τtyi ÞÑ σiutxj ÞÑ µju ” τtyi ÞÑ σitxj ÞÑ µjuu ‚ assoct,v‚,u‚ : ttyi ÞÑ viutxj ÞÑ uju ñ t1tyi ÞÑ v1itxj ÞÑ u1juu : C

Figure 7. Naturality rules on structural rewrites

x1 : A1, . . . , xn : An $ t : B p∆ $ ui : Aiqi“1,...,n

∆ $ ttxi ÞÑ %
piq
u‚u ‚ assoct,x‚,u‚ ‚ ιttxi ÞÑ uiu ” idttxi ÞÑuiu : ttxi ÞÑ uiu ñ ttxi ÞÑ uiu : B

z1 : C1, . . . , zl : Cl $ t : D

py1 : B1, . . . , yn : Bn $ wj : Ckqk“1,...,l

px1 : A1, . . . , xm : Am $ vi : Biqi“1,...,n

p∆ $ uj : Ajqj“1,...m

∆ $ ttzk ÞÑ assocwk,v‚,u‚u ‚ assoct,w‚tyj ÞÑvju,u‚ ‚ assoct,w‚,v‚txj ÞÑ uju ” assoct,w‚,v‚txj ÞÑuiu ‚ assocttzk ÞÑwku,v‚,u‚

: ttzk ÞÑ wkutyi ÞÑ viutxj ÞÑ uju ñ ttzk ÞÑ wktyi ÞÑ vitxj ÞÑ ujuuu : D

Figure 8. Biclone laws

Equational theory for structural rewrites in Λb
ps, Λx

ps and Λx,Ñ
ps . For Λb

ps the rules are restricted to unary contexts.

2) We write xfiyi“1,...,n or simply xf‚y for the n-ary tupling
xf1, . . . , fny.

There are different ways of specifying the adjoint equiv-
alence (1) (see e.g. [41, Chapter IV]). One option is to
specify an invertible unit and counit subject to natural-
ity and triangle laws. This matches the η-expansion and
β-reduction rules of STLC (c.f. [24], [26], [27], [29]), but
in the pseudo or lax settings requires a cumbersome pro-
liferation of introduction rules. Instead, we characterise the
counit $ “ p$p1q, . . . , $pnqq as a universal arrow. Thus,
for any finite family of 1-cells pti : X Ñ Aiqi“1,...,n

we require a 1-cell xt1, . . . , tny : X Ñ
ś

npA1, . . . , Anq

and a family of 2-cells p$pkqt1,...,tn : πk ˝ xt‚y ñ tkqk“1,...,n,

universal in the sense that for any family of 2-cells
pαi : πi ˝ uñ ti : Γ Ñ Aiqi“1,...,n there exists a unique 2-cell
p:pα1, . . . , αnq : uñ xt‚y : Γ Ñ

śn
i“1Ai such that

$
pkq
t1,...,tn ‚

`

πk ˝ p
:pα1, . . . , αnq

˘

“ αk : πk ˝ uñ tk

for k “ 1, . . . , n.

Example VI.5. In any bicategory, unary-product structure may
be chosen to be canonically given as follows: Π1pAq “ A,
πA1 “ IdA, xty “ t and $t “ lt : Id ˝ tñ t.

Remark VI.6. As it is well-known, product structure
is unique up to equivalence. Given adjoint equivalences
pg : C Ô Πn

i“1Bi : hq and pei : Bi Ô Ai : fiqi“1,...,n in a bi-



category B, the composite

BpX,
śn
i“1 Biq

śn
i“1 BpX,Biq

BpX,Cq
śn
i“1 BpX,Aiq

pπ1˝´,...,πn˝´q

h˝´

%

x´,...,“y

Πni“1pei˝´q

%%

g˝´

Πni“1pfi˝´q

yields an adjoint equivalence

BpX,Cq
śn
i“1 BpX,Aiq

p ppe1˝π1q˝gq˝´,...,ppen˝πnq˝gq˝´ q

%

h˝xf1˝´,...,fn˝“y

presenting C as the product of A1, . . . , An.

Definition VI.7. An fp-pseudofunctor pF, kxq between
fp-bicategories

`

B,Πnp´q
˘

and
`

C,Πnp´q
˘

is a pseudofunctor
F : B Ñ C equipped with adjoint equivalences
`

F
`
śn
i“1Ai

˘

,
śn
i“1 F pAiq, xFπ1, . . . , Fπny, k

x
A1,...,An

˘

for every n P N and A1, . . . , An P B.
We call pF, kxq strict if F is strict and satisfies

F
`

ΠnpA1, . . . , Anq
˘

“ ΠnpFA1, . . . , FAnq

F pπA1,...,An
i q “ πFA1,...,FAn

i

F xt1, . . . , tny “ xFt1, . . . , F tny

F$
piq
t1,...,tn “ $

piq
Ft1,...,F tn

kxA1,...,An “ IdΠnpFA1,...,FAnq

and the adjoint equivalences are canonically induced by the
2-cells p:prπ1

, . . . , rπnq : Id
–
ùñ xπ1, . . . , πny.

Thus, a strict fp-pseudofunctor strictly preserves both (global)
biuniversal arrows and (local) universal arrows.

VII. A TYPE THEORY FOR FP-BICATEGORIES

We extend the basic language Λb
ps to a type theory Λx

ps

with finite products. The addition of products enables us to
use arbitrary contexts, defined as finite lists of variable-and-
type pairs in which variable names must not be repeated.
The underlying signature is therefore a 2-multigraph and the
bicategorical structure of Λb

ps is extended to a biclone.
The additional structure required for products is synthesised

directly from the cases in Definition VI.1. These additional
rules are collected in Figures 9–11. As for Λb

ps, we work up
to α-equivalence of terms and rewrites. The well-formedness
properties of Λb

ps extend to Λx
ps.

For every n P N and types A1, . . . , An we introduce a
product type

ś

npA1, . . . , Anq; the case n “ 0 yields the unit
type 1. We fix a set of base types S and let the set of types
T0pSq be generated by the grammar

A1, . . . , An ::“ X P S

|
ś

npA1, . . . , Anq pn P Nq

On top of this, we fix a 2-multigraph G with G0 “ T0pSq.
We generally abuse notation by adopting the conventions

of Notation VI.4(1). For the biuniversal arrows we introduce

distinguished constants πkppq : Ak (k “ 1, . . . , n) for every
context

`

p :
ś

npA1, . . . , Anq
˘

. As for adjunction (1), we
postulate an operator tupp´, . . . ,“q, a family of rewrites

$t1,...,tn “
`

$
pkq
t1,...,tn : πkttuppt1, . . . , tnqu ñ tk

˘

k“1,...,n

(recall Notation V.1(3)) for every family of derivable terms
pΓ $ ti : Aiqi“1,...,n, and provide a natural bijective
correspondence between rewrites as follows:

αi : πituu ñ ti pi “ 1, . . . , nq

p:pα1, . . . , αnq : uñ tuppt1, . . . , tnq
(2)

The rules of Figure 11 achieve this by making $ universal:
this is precisely the content of Lemma VII.2 below. These
rules define lax products. To obtain the adjoint equivalence (1)
one introduces explicit inverses for the unit and counit. In this
extended abstract these are omitted.

Remark VII.1. The product structure arises from two nested
universal transposition structures. We conjecture that a cal-
culus for fp-tricategories (resp. fp-8-categories) would have
three (resp. a countably infinite tower of) such correspondences.

A. The product structure of Λx
ps

The product structure derives from the following universal
property of $.

Lemma VII.2. If the judgements pΓ $ αi : πituu ñ ti :
Aiqi“1,...,n are derivable in Λx

pspGq then p:pα1, . . . , αnq :
u ñ tuppt1, . . . , tnq is the unique rewrite γ (modulo
α”-equivalence) such that the following equality is derivable
for k “ 1, . . . , n:

Γ $ $
pkq
t1,...,tn ‚πktγu ” αk : πituu ñ tk : Ak

From this lemma it follows that the tupp´, . . . ,“q operator
extends to a functor on rewrites, and that one may define the
unit of adjunction (1) by applying the universal property to
the identity.

Definition VII.3.
1) For every family of derivable rewrites pΓ $ τi :

ti ñ t1i : Aiqi“1,...,n define tuppτ1, . . . , τnq :
tuppt1, . . . , tnq ñ tuppt11, . . . , t

1
nq to be the rewrite

p:pτ1 ‚$
p1q
t1,...,tn , . . . , τn ‚$

pnq
t1,...,tnq in context Γ.

2) For every derivable term Γ $ t :
ś

npA1, . . . , Anq define
the unit ςt : tñ tuppπ1ttu, . . . , πnttuq to be the rewrite
p:pidπ1ttu, . . . , idπnttuq in context Γ.

Likewise, one obtains naturality and the triangle laws relating
the unit ς and counit $ “ p$p1q, . . . , $pnqq, thereby recovering
a presentation of products in the style of [24], [25], [29]. These
admissible rules are collected in Figure 12.

B. The syntactic model for Λx
ps

We construct the syntactic model for Λx
ps and prove the

freeness universal property establishing that it is the internal
language of fp-bicategories. We begin with a model in which
we allow arbitrary variables and consider all contexts. We then



Γ $ t1 : A1 . . . Γ $ tn : An
n-pair

Γ $ tuppt1, . . . , tnq :
ś

npA1, . . . , Anq
k-proj (1 ď k ď n)

p :
ś

npA1, . . . , Anq $ πkppq : Ak

Figure 9. Terms for product structure

Γ $ t1 : A1 . . . Γ $ tn : An
$pkq-intro (1 ď k ď n)

Γ $ $
pkq
t1,...,tn

: πkttuppt1, . . . , tnqu ñ tk : Ak

Γ $ u :
ś

npA1, . . . , Anq Γ $ α1 : π1tuu ñ t1 : A1 . . . Γ $ αn : πntuu ñ tn : An
p:-intro

Γ $ p:pα1, . . . , αnq : uñ tuppt1, . . . , tnq :
ś

npA1, . . . , Anq

Figure 10. Rewrites for product structure

Γ $ α1 : π1tuu ñ t1 : A1 . . . Γ $ αn : πntuu ñ tn : An
U1 (1 ď k ď n)

Γ $ αk ” $
pkq
t1,...,tn

‚πktp
:
pα1, . . . , αnqu : πktuu ñ tk : Ak

Γ $ γ : uñ tuppt1, . . . , tnq :
ś

npA1, . . . , Anq
U2

Γ $ γ ” p:p$p1qt1,...,tn ‚π1tγu, . . . , $
pnq
t1,...,tn

‚πntγuq : uñ tuppt1, . . . , tnq :
ś

npA1, . . . , Anq

`

Γ $ αi ” α1i : πituu ñ ti : Ai
˘

i“1,...,n cong
Γ $ p:pα1, . . . , αnq ” p:pα11, . . . , α

1
nq : uñ tuppt1, . . . , tnq :

ś

npA1, . . . , Anq

Figure 11. Universal property of $

Rules for Λx
pspGq.

restrict to unary contexts and a single named variable (c.f. Con-
structions V.2 and V.4) in order to obtain a strict universal
property (c.f. Theorem V.5).

Construction VII.4. Define a bicategory T x
pspGq as fol-

lows. The objects are contexts Γ,∆, . . . . The 1-cells
Γ Ñ pyj : Bjqj“1,...,m are m-tuples of α-equivalence classes
of terms pΓ $ tj : Bjqj“1,...,m derivable in Λx

pspGq; the
2-cells are m-tuples of α”-equivalence classes of rewrites
pΓ $ τ : tj ñ t1j : Bjqj“1,...,m.

Vertical composition is given pointwise by the ‚ operation,
and horizontal composition by explicit substitution:

pt1, . . . , tlq, pu1, . . . , umq ÞÑ pt1txi ÞÑ uiu, . . . , tltxi ÞÑ uiuq

pτ1, . . . , τlq, pσ1, . . . , σmq ÞÑ pτ1txi ÞÑ σiu, . . . , τltxi ÞÑ σiuq

The identity on ∆ “ pyj : Bjqj“1,...,m is given by the var
rule p∆ $ yj : Bjqj“1,...,m. The structural isomorphisms l, r
and a are given pointwise by %, ι´1 and assoc, respectively.

The first step in showing that T x
pspGq is an fp-bicategory

is constructing n-ary products of unary contexts. Much
of the work required is contained in the admissi-
ble rules of Figure 12. For example, there is an ad-
joint equivalence T x

pspGq
`

px : Xq, pp :
ś

npA1, . . . , Anq
˘

»
śn
i“1T x

pspGq
`

px : Xq, pxi : Aiq
˘

defining products of unary
contexts in T x

pspGq with unit ς and counit $ “

p$p1q, . . . , $pnqq.

Lemma VII.5. For any 2-multigraph G, the following holds
in T x

pspGq.

1) For any n P N the n-ary product
śn
i“1pxi : Aiq exists

and is given by pp :
śn
i“1Aiq.

2) For any context Γ “ px1 : A1, . . . , xn : Anq there exists
an adjoint equivalence Γ Ô

`

p :
ś

npA1, . . . , Anq
˘

.

Remark VII.6. The existence of the adjoint equivalence of
Lemma VII.5(2) in T x

pspGq is equivalent to the existence of a
pseudo-universal multimap rA1, . . . , Ans Ñ

ś

npA1, . . . , Anq
in the biclone associated to Λx

pspGq (c.f. [50]).

We define products of arbitrary contexts using Remark VI.6
and the preceding lemma. Define the product of

px
p1q
i : A

p1q
i qi“1,...,m1

ˆ ¨ ¨ ¨ ˆ px
pnq
i : A

pnq
i qi“1,...,mn

to be the product pp1 :
śm1

i“1A
p1q
i q ˆ ¨ ¨ ¨ ˆ ppn :

śmn
i“1A

pnq
i q

of unary contexts.

Corollary VII.7. For any 2-multigraph G, the syntactic model
T x

pspGq of Λx
pspGq is an fp-bicategory.

T x
pspGq contains redundancy in two ways: as well as the

equivalent objects given by bijectively renaming variables in
contexts, every context pxi : Aiqi“1,...,n is equivalent to the
context pp :

śn
i“1Aiq. To obtain a strict universal property we

cut out such multiplicities (c.f. Construction V.4).

Construction VII.8. Let Sx
pspGq denote the bicategory with

objects unary contexts px : Aq for x a fixed variable and
horizontal and vertical composition operations as in T x

pspGq.

The product structure of T x
pspGq restricts to Sx

pspGq and the
two bicategories are equivalent as fp-bicategories. To obtain



pΓ $ idti : ti ñ ti : Aiqi“1,...,n

Γ $ tuppidt1 , . . . , idtnq ” idtuppt1,...,tnq : tuppt1, . . . , tnq ñ tuppt1, . . . , tnq :
ś

npA1, . . . , Anq

pΓ $ τ 1i : t1i ñ t2i : Aiqi“1,...,n pΓ $ τi : ti ñ t1i : Aiqi“1,...,n

Γ $ tuppτ 11, . . . , τ
1
nq ‚ tuppτ1, . . . , τnq ” tuppτ 11 ‚ τ1, . . . , τ

1
n ‚ τnq : tuppt1, . . . , tnq ñ tuppt21, . . . , t

2
nq :

ś

npA1, . . . , Anq

Γ $ σ : uñ u1 :
ś

npA1, . . . , Anq
ς-nat

Γ $ ςu1 ‚σ ” tuppπ1tσu, . . . , πntσuq ‚ ςu : uñ tuppπ1tu
1
u, . . . , πntu

1
uq :

ś

npA1, . . . , Anq

pΓ $ τi : ti ñ t1i : Aiqi“1,...,n
$pkq-nat p1 ď k ď nq

Γ $ $
pkq

t11,...,t
1
n
‚πkttuppτ1, . . . , τnqu ” τk ‚$

pkq
t1,...,tn

: πkttuppt1, . . . , tnqu ñ tk : Ak

Γ $ tuppt1, . . . , tnq :
ś

npA1, . . . , Anq
triangle-law-1

Γ $ tupp$p1qt‚ , . . . , $
pnq
t‚
q ‚ ςtuppt‚q ” idtuppt‚q : tuppt‚q ñ tuppt‚q :

ś

npA1, . . . , Anq

Γ $ πktuu : Ak
triangle-law-2 p1 ď k ď nq

Γ $ $
pkq
t1,...,tn

‚πktςuu ” idπktuu : πktuu ñ πktuu : Ak

Figure 12. Admissible rules for Λx
pspGq

hJXK :“ hpXq for X a base type
hJ
ś

npB1, . . . , BnqK :“
śn
i“1hJBiK

hJA“BBK :“ hJAK“BhJBK
hJx1 : A1, . . . , xn : AnK :“

śn
i“1hJAiK on n-ary contexts

hJx1 : A1, . . . , xn : An $ xk : AiK :“ πA1,...,An
k

hJx1 : A1, . . . , xn : An $ cpx1, . . . , xnq : BK :“ hpcq for c P GpA‚;Bq
hJ∆ $ ttxAii ÞÑ uiu

n
i“1 : BK :“ hJx1 : A1, . . . , xn : An $ t : BK

˝ xhJ∆ $ ui : AiKyi“1,...,n

hJΓ $ tuppt1, . . . , tnq :
ś

npB1, . . . , BnqK :“ xhJΓ $ t1 : B1, K, . . . , hJΓ $ tn : BnKy

hJp :
ś

npB1, . . . , Bnq $ πkppq : BkK :“ πB1,...,Bn
k

hJf : A“BB, a : A $ evalpf, aq : BK :“ evalA,B

hJΓ $ λx.t : A“BBK :“ λ
`

hJΓ, x : A $ t : BK˝ »
˘

hJΓ $ idt : tñ t : BK :“ idhJΓ$t:BK

hJx1 : A1, . . . , xn : An $ σpx‚q : cpx‚q ñ c1px‚q : BK :“ hpσq for σ P GpA‚, Bqpc, c1q
hJΓ $ $

pkq
t1,...,tn : πkttuppt1, . . . , tnqu ñ tk : BkK :“ $

pkq
hJt1K,...,hJtnK

hJΓ $ p:pα1, . . . , αnq : uñ tuppt1, . . . , tnq :
ś

npB1, . . . , BnqK :“ p:phJΓ $ αi : πituu ñ ti : BiKqi“1,...,n

hJΓ, x : A $ εt : evaltpλx.tqtincxu, xu ñ t : BK :“ εphJΓ,x:A$t:BK˝»q

hJΓ $ e:px.αq : uñ λx.t : A“BBK :“ e:phJΓ, x : A $ α : evaltutincxu, xu ñ t : BK˝ »q
hJΓ $ τ 1 ‚ τ : tñ t2 : BK :“ hJΓ $ τ 1 : t1 ñ t2 : BK ‚hJΓ $ τ : tñ t1 : BK

hJ∆ $ τtxAii ÞÑ σiu
n
i“1 : ttxAii ÞÑ uiu

n
i“1 ñ t1txAii ÞÑ u1iu

n
i“1 : BK :“ hJx1 : A1, . . . , xn : An $ τ : tñ t1 : BK

˝ xhJ∆ $ σi : ui ñ u1i : AiKyi“1,...,n

Figure 13. Bicategorical semantics



the freeness universal property for T x
pspGq with respect to

2-multigraphs G, it suffices to show that Sx
pspGq is the free

fp-bicategory for 2-graphs G. Universal extensions are induced
by the semantics in Figure 13 restricted to Sx

pspGq.

Theorem VII.9. Let G be a 2-graph with G0 “ T0pSq
for a set of base types S. For every fp-bicategory B
and 2-graph homomorphism h : G Ñ B such that
h
`

ΠnpA1, . . . , Anq
˘

“ ΠnphA1, . . . , hAnq, there exists a
unique strict fp-pseudofunctor h# : Sx

pspGq Ñ B such that
h# ˝ ι “ h, where ι : G ãÑ Sx

pspGq denotes the inclusion.

VIII. CARTESIAN CLOSED BICATEGORIES

To give a cartesian closed structure on an fp-bicategory B
is to specify a biadjunction p´q ˆ A % pA“B´q for each
object A P B. Cartesian closed bicategories are the objects of
a tricategory CCBicat.

Definition VIII.1. A cartesian closed bicategory or
CC-bicategory is an fp-bicategory

`

B,Πnp´q
˘

equipped with
the following data for every A,B P B:

1) an exponential object pA“BBq,
2) an evaluation 1-cell evalA,B : pA“BBq ˆAÑ B,
3) for every X P B an adjoint equivalence

BpX,A“BBq BpX ˆA,Bq

evalA,B˝p´ˆAq

%
λ

(3)

Remark VIII.2. The uniqueness of exponentials up to equiv-
alence manifests itself in the same way as for products. For
instance, given an adjoint equivalence e : E » pA“BBq : f ,
the object E inherits an exponential structure by composition
with e and f (c.f. Remark VI.6).

As for products, we choose to define the adjunction (3) by
characterising its counit ε as a universal arrow (c.f. the discus-
sion after Notation VI.4). Thus, for every 1-cell t : X ˆAÑ B
we require a 1-cell λt : X Ñ pA“BBq and a 2-cell εt :
evalA,B˝pλtˆAq ñ t that is universal in the sense that for any
2-cell α : evalA,B ˝ puˆ Aq ñ t there exists a unique 2-cell
e:pαq : uñ λt such that εt ‚

`

evalA,B ˝ pe
:pαq ˆAq

˘

“ α.

Definition VIII.3. A cartesian closed pseudofunctor or
CC-pseudofunctor between CC-bicategories

`

B,Πnp´q,“B
˘

and
`

C,Πnp´q,“B
˘

is an fp-pseudofunctor pF, kxq equipped
with equivalences

`

F pA“BBq, pFA“BFBq, sA,B , k
“B

A,B

˘

for every A,B P B, where sA,B : F pA“BBq Ñ pFA“BFBq
is the transpose of

F pevalA,Bq ˝ k
x
A“BB,A : F pA“BBq ˆ FAÑ FB

A CC-pseudofunctor pF, kx, k“B
q is strict if pF, kxq is strict

and satisfies

F pA“BBq “ pFA“BFBq

F pevalFA,FBq “ evalFA,FB

F pλtq “ λpFtq

F pεtq “ εFt

k“B

A,B “ IdFA“BFB

and the adjoint equivalences are canonically induced by the
2-cells e:pκq : IdFA“BFB

–
ùñ λpevalFA,FBq where κ is the

following composite of canonical 2-cells

evalFA,FB ˝ pIdˆ FAq – evalFA,FB ˝ Id – evalFA,FB

IX. A TYPE THEORY FOR CARTESIAN CLOSED
BICATEGORIES

We extend Λx
ps to the full language Λx,Ñ

ps by synthesising
the additional rules from the cases of Definition VIII.1; these
rules are Figures 14–16.

We extend the grammar for types with an arrow type former
p´q“Bp“q. We henceforth fix a set of base types S, let TpSq
denote the set of all types over S, and consider 2-multigraphs G
with set of nodes G0 “ TpSq.

We postulate a constant evalpf, xq for every context
pf : A“BB, x : Aq; the usual application operation becomes
a derived rule:

Γ $ t : A“BB Γ $ u : A

Γ $ evaltt, uu : B

The adjunction (3) requires the functor p´q ˆA on the syntac-
tic model. As for STLC, this corresponds to context extension
and an associated notion of weakening. The explicit nature of
substitution in our type theory gives rise to correspondingly
explicit structural operations on contexts.

Definition IX.1. A context renaming

r : pxi : Aiqi“1,...,n Ñ pyj : Bjqj“1,...,m

is a map r : tx1, . . . , xnu Ñ ty1, . . . , ymu such that Ai “ Bj
whenever rpxiq “ yj .

It is immediate that for every context renaming r : Γ Ñ ∆
the following rules are admissible in Λx,Ñ

ps pGq:

Γ $ t : A r : Γ Ñ ∆

∆ $ ttxi ÞÑ rpxiqu : A

Γ $ τ : tñ t1 : A r : Γ Ñ ∆

∆ $ τtxi ÞÑ rpxiqu : ttxi ÞÑ rpxiqu ñ t1txi ÞÑ rpxiqu : A

Notation IX.2. For a context renaming r we write ttru and
τtru for the terms and rewrites formed using the preceding
admissible rules.

Weakening arises by taking the inclusion of contexts
incx : Γ ãÑ pΓ, x : Aq. For the counit of (3) we therefore
postulate a rewrite

εt : evaltpλx.tqtincxu, xu ñ t



Γ, x : A $ t : B
lam

Γ $ λx.t : A“BB
eval

f : A“BB, a : A $ evalpf, aq : B

Figure 14. Terms for cartesian closed structure

Γ, x : A $ t : B
ε-intro

Γ, x : A $ εt : evaltpλx.tqtincxu, xu ñ t : B

Γ, x : A $ t : B Γ $ u : A“BB

Γ, x : A $ α : evaltutincxu, xu ñ t : B
e:-intro

Γ $ e:px.αq : uñ λx.t : A“BB

Figure 15. Rewrites for cartesian closed structure

Γ, x : A $ α : evaltutincxu, xu ñ t : B
U1

Γ, x : A $ α ” εt ‚ evalte
:
px.αqtincxu, xu : evaltutincxu, xu ñ t : B

Γ $ γ : uñ λx.t : A“BB
U2

Γ $ γ ” e:px.εt ‚ evaltγtincxu, xuq : uñ λx.t : A“BB

Γ, x : A $ α ” α1 : evaltutincxu, xu ñ t : B
cong

Γ $ e:px.αq ” e:px.α1q : uñ λx.t : A“BB

Figure 16. Universal property of ε

Rules for Λx,Ñ
ps pGq.

Γ, x : A $ t : B

Γ $ λx.idt ” idλx.t : λx.tñ λx.t : A“BB

Γ, x : A $ τ 1 : t1 ñ t2 : B Γ, x : A $ τ : tñ t1 : B

Γ $ λx.pτ 1 ‚ τq ” pλx.τ 1q ‚pλx.τq : λx.tñ λx.t2 : A“BB

Γ $ σ : uñ u1 : A“BB
η-nat

Γ $ ηu1 ‚σ ” λx.evaltσtincxu, xu ‚ ηu : uñ λx.evaltu1tincxu, xu : A“BB

Γ, x : A $ τ : tñ t1 : B
ε-nat

Γ, x : A $ τ ‚ εt ” εt1 ‚ evaltpλx.τqtincxu, xu : evaltpλx.tqtincxu, xu ñ t1 : B

Γ, x : A $ t : B
triangle-law-1

Γ $ pλx.εtq ‚ ηt ” idλx.t : λx.tñ λx.t : A“BB

Γ $ u : A“BB
triangle-law-2

Γ, x : A $ εevaltutincxu,xu ‚ evaltηutincxu, xu ” idevaltutincxu,xu : evaltutincxu, xu ñ evaltutincxu, xu : B

Figure 17. Admissible rules for Λx,Ñ
ps pGq

for every term t typeable in a context extended by the
variable x.

The encoding of the universal property of εt in the type
theory yields a bijective correspondence of rewrites modulo
α”-equivalence as follows (c.f. (2)):

px : Aq α : evaltutincxu, xu ñ t : B

e:px.αq : uñ λx.t : A“BB

where we write px : Aq to indicate that the variable x
of type A is in the context (c.f. [30]). Our approach
to achieving this matches that for products. For every
rewrite α : evaltutincxu, xu ñ t we introduce the rewrite
e:px.αq : uñ λx.t and make it unique in inducing a fac-
torisation of α through εt; the variable x is bound by this
operation. The rules governing this construction are given

in Figures 15–16; these provide lax exponentials (c.f. [25]).
Finally, one requires explicit inverses for the unit and counit.
In this extended abstract they are omitted.

Remark IX.3. As for products (c.f. Remark VII.1), we obtain
a nesting of two universal transposition structures. In the
same vein, we conjecture that a calculus for cartesian closed
tricategories (cartesian closed 8-categories) would have three
(a countably infinite tower of) of such correspondences. Indeed,
this should extend to general type structures arising from weak
adjunctions.

We continue to work up to α-equivalence of terms and
rewrites. The well-formedness properties of Λb

ps and Λx
ps lift

to Λx,Ñ
ps .



A. Cartesian closed structure of Λx,Ñ
ps

The ε-introduction rule (Figure 15) only ‘evaluates’ lambda
abstractions at variables. The general form of explicit
β-reduction is derivable.

Definition IX.4. For derivable terms Γ, x : A $ t : B and
Γ $ u : A define βx.t,u : evaltλx.t, uu ñ ttidΓ, x ÞÑ uu to be
the rewrite εttidΓ, x ÞÑ uu ‚ τ in context Γ (recall Nota-
tion IX.2), where τ is a composite of structural isomorphisms.

As expected, the remaining exponential structure follows
from the universal property of ε (c.f. Lemma VII.2).

Lemma IX.5. For every rewrite pΓ, x : A $ α :
evaltutincxu, xu ñ t : Bq in Λx,Ñ

ps pGq, the rewrite e:px.αq
is the unique γ (modulo α”-equivalence) such that

Γ, x : A $ α ” εt ‚ evaltγtincxu, xu : evaltutincxu, xu ñ t : B

It follows that the lambda-abstraction operator extends to a
functor, and we obtain a unit for the adjunction (3).

Definition IX.6.
1) For any derivable rewrite pΓ, x : A $ τ : tñ t1 : Bq

define λx.τ : λx.tñ λx.t1 to be the rewrite e:px.τ ‚ εtq
in context Γ.

2) For any derivable term pΓ $ u : A“BBq define the
unit ηu : u ñ λx.evaltutincxu, xu to be the rewrite
e:px.idevaltutincxu,xuq in context Γ.

The unit η and counit ε satisfy naturality and triangle laws,
collected in Figure 17. Thus we recover the unit-counit presen-
tation of both products and exponentials (c.f. [24], [25], [29]).

B. The syntactic model for Λx,Ñ
ps

We finally turn to constructing the syntactic model for
Λx,Ñ

ps pGq and proving its freeness universal property. The con-
struction of the syntactic model follows the pattern established
by Λb

ps and Λx
ps.

Construction IX.7. Define a bicategory T x,Ñ
ps pGq as fol-

lows. The objects are contexts Γ,∆, . . . . The 1-cells
Γ Ñ pyj : Bjqj“1,...,m are m-tuples of α-equivalence classes
of terms pΓ $ tj : Bjqj“1,...,m derivable in Λx,Ñ

ps pGq;
2-cells are m-tuples of α”-equivalence classes of rewrites
pΓ $ τ : tj ñ t1j : Bjqj“1,...,m. Horizontal and vertical com-
position are as in Construction VII.4.

T x,Ñ
ps pGq inherits the product structure of T x

pspGq. To
construct cartesian closed structure it suffices to construct
exponentials of unary contexts. Much of the work required is
contained in the admissible rules of Figure 17.

Lemma IX.8. For unary contexts px : Aq, py : Bq, the expo-
nential px : Aq“B py : Bq in T x,Ñ

ps pGq exists and is given by
pf : A“BBq.

Using Remark VIII.2 and the preceding lemma, we define
the exponential object pΓ“B ∆q for Γ :“ pxi : Aiqi“1,...,n and
∆ :“ pyj : Bjqj“1,...,m using the equivalent unary contexts, as

`

p :
ś

npA1, . . . , Anq
˘

“B
`

q :
ś

mpB1, . . . , Bmq
˘

.

Corollary IX.9. The syntactic model T x,Ñ
ps pGq is a

CC-bicategory.

From Sections V-A and VII-B one might expect that
restricting to a sub-bicategory with unary contexts and a fixed
variable name is sufficient to obtain the required freeness
universal property. This suggests the following definition.

Construction IX.10. Let Sx,Ñ
ps pGq denote the bicategory with

objects unary contexts px : Aq for x a fixed variable and
horizontal and vertical composition operations as in T x,Ñ

ps pGq.

The cartesian closed structure of T x,Ñ
ps pGq restricts to

Sx,Ñ
ps pGq and the two are equivalent as cartesian closed

bicategories. However, one does not obtain a strict freeness
universal property. We recover uniqueness by restricting to
cartesian closed bicategories in which the product structure is
strict.

Theorem IX.11. Let G be a 2-graph with G0 “ TpSq
for a set of base types S. For every cartesian 2-category
(i.e. 2-category with 2-categorical products) with pseudo-
exponentials C and every 2-graph homomorphism h : G Ñ C
such that h

`

ΠnpA1, . . . , Anq
˘

“ ΠnphA1, . . . , hAnq and
hpA“BBq “ phA“BhBq, there exists a unique strict
CC-pseudofunctor h# : Sx,Ñ

ps pGq Ñ C such that h# ˝ ι “ h,
for ι : G ãÑ Sx,Ñ

ps pGq the inclusion.

Thus, one obtains the same result as for Sections V-A
and VII-B, albeit with a restricted freeness universal property.
This, modulo the coherence result of Power [14] applied to
fp-bicategories, yields that

Λx,Ñ
ps is the internal language of
cartesian closed bicategories.

In fact, it is possible to adjust the definition of exponentials
to obtain a type theory for which the induced syntactic models
are equivalent as CC-bicategories to those above and satisfy
a strict freeness universal property with respect to arbitrary
CC-bicategories. This type theory is however no longer in the
spirit of STLC, and so will be presented elsewhere.
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Différentielle Catégoriques, vol. 21, no. 2, pp. 111–160, 1980.

[46] S. Staton, “An algebraic presentation of predicate logic,” in Foundations of
Software Science and Computation Structures, F. Pfenning, Ed. Springer
Berlin Heidelberg, 2013, pp. 401–417.

[47] M. Fiore, “On the concrete representation of discrete enriched abstract
clones,” Tbilisi Mathematical Journal, vol. 10, no. 3, pp. 297–328, 2017.
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