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Abstract—We construct an internal language for cartesian
closed bicategories. Precisely, we introduce a type theory mod-
elling the structure of a cartesian closed bicategory and show that
its syntactic model satisfies an appropriate universal property,
thereby lifting the Curry-Howard-Lambek correspondence to the
bicategorical setting. QOur approach is principled and practical.
Weak substitution structure is constructed using a bicategori-
fication of the notion of abstract clone from universal algebra,
and the rules for products and exponentials are synthesised from
semantic considerations. The result is a type theory that employs
a novel combination of 2-dimensional type theory and explicit
substitution, and directly generalises the Simply-Typed Lambda
Calculus. This work is the first step in a programme aimed at
proving coherence for cartesian closed bicategories.

I. INTRODUCTION

2-categories axiomatise the structures formed by classes of
categories, such as the 2-category Cat of small categories,
functors and natural transformations. In such settings the
associativity and unit laws of composition hold strictly (‘on the
nose’). In many situations—in particular where composition
is defined by a universal property—these laws only hold up
to coherent isomorphism: the resulting structure is that of a
bicategory. Bicategories are rife in mathematics and theoretical
computer science, arising for instance in algebra [1], [2],
semantics of computation [3], [4], datatype models [5], [6],
categorical logic [7], [8], and categorical algebra [9], [10], [11].

The layers of coherence data required to witness the
associativity and unit laws makes calculating in bicategories
(and weak n-categories more generally) notoriously difficult.
One approach is to reduce bicategorical structure to categorical
structure by quotienting, but the loss of intensional information
this entails is often unsatisfactory.

There are two main strategies for working with structures
defined up to isomorphism. One strategy looks for coherence
theorems establishing that some class of diagrams always com-
mute. For bicategories and bicategorical limits (bilimits [12])
there are well-known coherence results [13], [14]; however,
we know of no analogous result in the literature for closed
structure. Another strategy employs a type theory that matches
the categorical structure (see e.g. [15], [16], [8]); such a system
is sometimes called the internal language [17] or internal
logic [18].

In this paper we carry out the internal-language strategy
for cartesian closed bicategories, and thereby set up the
scene for the coherence strategy to be presented elsewhere.

We construct an internal language A%~ for cartesian closed
bicategories (where ‘ps’ stands for pseudo), thus reducing
the problem of coherence for cartesian closed bicategories
to a property of A5;”. This type theory provides a practical
calculus for reasoning in such settings and directly generalises
the STLC (Simply-Typed Lambda Calculus) [19].

Our work is motivated by the complexities of calculating in
the cartesian closed bicategories of generalised species [7] and
of cartesian distributors [9], specifically for their application to
higher-dimensional category theory [20]. However, the internal
language we present applies to other examples: cartesian closed
bicategories also appear in categorical algebra [10] and game
semantics [21].

A. 2-dimensional type theories and bicategorical composition

There is a natural connection between 2-categories and
rewriting. If objects are types and morphisms are terms, then
2-cells are rewrites between terms. This idea was explored
as early as the 1980s in the work of Rydeheard & Stell [22]
and Power [23]. For STLC, Simply-Typed Lambda Calculus,
Seely [24] suggested that n-expansion and [-contraction may
naturally be interpreted as the unit and counit of the adjunction
defining (lax) exponentials in a 2-category, an approach
followed by Hilken [25] and advocated by Ghani & Jay [26],
[27]. More recently, type-theoretic constructions modelling
2-categories with strict cartesian closed structure have been
pursued in programming-language theory [28] and proof
theory [29] while a directed 2-dimensional type theory in
the style of Martin-Lof [30] has been introduced by Licata &
Harper [31].

It is crucial to our approach that the equational theory of
A5~ does not identify any more structure than the axioms of
cartesian closed bicategories. This entails distinguishing more
terms than in STLC. For instance, note that terms such as

tlur /w1, uz/xs][v/y] tlu[v/y]/z1, uzlv/y]/ze]

are respectively interpreted in a Lambek-style semantics [17]
by the equal maps

[t o {[ual, [uzl) o [v] and [t o ([us] o [v, [ue] o [v])

In contrast, in the bicategorical setting these composites are only
isomorphic.! Hence, substitution ought to be associative only
up to isomorphism. This places us outside the 2-categorical

and

I'This issue is similar to that identified by Curien [32], who attempts to rectify
the mismatch between locally cartesian closed categories and Martin-Lof de-
pendent type theory caused by interpreting the (strictly associative) substitution
operation as a pullback (associative up to coherent isomorphism).



world of previous work, as well as setting our work apart from
type theories in which weak structure is modelled in a strict
language, such as Homotopy Type Theory (c.f. [33]).

B. The type theory Ny~

We will construct the internal language AT~ in stages. First
we will construct the internal language of bicategories AES (Sec-
tion V) and then the internal language of bicategories with
finite products AT, (Section VII); the type theory AT~ extends
both these systems (Section IX). In each case we construct
the syntactic model and prove an appropriate 2-dimensional
freeness universal property.

We introduce substitution formally using a version of explicit
substitution [34], [35]. This syntactic structure and the axioms
it is subject to are synthesised from a bicategorification of
the abstract clones [36] of universal algebra (Section IV).
Abstract clones are a natural bridge between syntactic structure
(in the form of intuitionistic type theories or calculi) and
semantic structure (in the form of Lawvere theories or cartesian
multicategories).

Cartesian closed structure is synthesised from universal
arrows at both the global (2-dimensional) and the local
(1-dimensional) levels. From this approach we recover versions
of the usual fn-laws of STLC, while keeping the rules to a
minimum (Sections VII and Section IX). Our formulation
points towards similar constructions for tricategories (weak
3-categories [37], [38]) or even co-categories.

The type theory AY.™ is, in a precise sense, a language for
cartesian closed bicategories. It is capable of being formalised
in proof assistants such as Agda [39] and the principled nature
of its construction makes it readily amenable to the addition
of further structure. We leave such extensions for future work.

II. BICATEGORIES

We recall the definition of bicategory, pseudofunctor and
biequivalence. For leisurely introductions consult e.g. [1], [2,
§91.

Definition IL.1 ([1]). A bicategory B consists of

« a class of objects ob(B),

« for every X,Y € ob(B) a hom-category (B(X,Y),e,id)
with objects I-cells f:X —Y and morphisms
2-cells a: f = f': X - Y, composition of 2-cells is
called vertical composition,

o for every X, Y, Z € ob(B) an identity functor
Idx : 1 — B(X, X) and a horizontal composition functor
oX\Y,Z - B(Y, Z) X B(X, Y) - B(X, Z),

« invertible 2-cells

apgf:(hog)of=ho(gof):W —>2Z
lf:IdXszf:W*)X
rg:goldy =¢9g: X ->Y

forevery f : W - X, g: X Y and h:Y — Z,

natural in each of their arguments and satisfying two
coherence laws.

The functoriality of horizontal composition gives rise to
an interchange law: for suitable 2-cells 7,7’, 0,0’ one has
(T"eT)o (0’ o) = (1" 0c’)e(r00).

A morphism of bicategories is called a pseudofunctor (or
homomorphism). It is a mapping on objects, 1-cells and 2-cells
that preserves horizontal composition up to isomorphism.

Definition I1.2 ([1]). A pseudofunctor F' : B — C between
bicategories B and C consists of
« a mapping F : 0b(B) — ob(C),
« a functor Fyy :B(X,Y)—C(FX,FY) for every
X,Y € ob(B),
o an invertible 2-cell ¢x :Idpx = F(Idx) for every
X € ob(B),
« an invertible 2-cell ¢; 4 : F(f) o F(g) = F(f og) for
every g: X > Y and f:Y — Z, natural in f and g

subject to three coherence laws. A pseudofunctor for which
and ¢ are both the identity is called strict.

Example 11.3. Every 2-category is a bicategory and every
2-functor is a strict pseudofunctor. A one-object bicategory
is equivalently a monoidal category; a monoidal functor is
equivalently a pseudofunctor between one-object bicategories.

Bicategorical products and exponentials are defined using
the appropriate notion of adjunction, called a biadjunction.
For our purposes, the characterisation of biadjoints in terms
of biuniversal arrows [40] is most natural (c.f. [7]); this is
the bicategorical version of the well-known description of
adjunctions via universal arrows (e.g. [41, Chapter III, §1]).
For biuniversal arrows and their relationship to biadjunctions,
see e.g. [42].

Definition II.4 ([12]). Let F': B — C be a pseudofunctor. To
give a right biadjoint U to F' is to give

1) a mapping U : 0b(C) — ob(53) on objects,

2) a family of 1-cells (qc : FUC — C)ceop(c)>

3) for every B € ob(BB) and C € 0b(C) an adjoint equiva-

lence
qcoF(—)
gl

B(B,UC) L C(FB,C)

(—)P

Morphisms of pseudofunctors are called pseudonatural
transformations [12] and morphisms of pseudonatural transfor-
mations are called modifications [1]. Bicategories, pseudofunc-
tors, pseudonatural transformations and modifications organise
themselves into a tricategory we denote Bicat.

Example 11.5.  For every pair of bicategories 3 and C there
is a bicategory Hom(B,C) of pseudofunctors, pseudonatural
transformations and modifications.

Bicategories provide a convenient setting for abstractly
describing many categorical concepts (e.g. [43], [44]).

Definition II.6. Let B be a bicategory.

1) An adjunction (A, B, f,g,m,€) in B is a pair of objects
(A,B) with arrows f : A < B : g and 2-cells



n:Ida=gof and € :
triangle laws.

2) An equivalence (A, B, f,g,n,€) in B is a pair of objects
(A, B) with arrows [ : A < B : g and invertible 2-cells
n:IdAégofande:fogéIdB.

3) An adjoint equivalence is an adjunction that is also an
equivalence.

f og = Idp subject to two

The appropriate notion of equivalence between bicategories
is called biequivalence [45].

Definition II.7. A biequivalence between bicategories B and
C consists of pseudofunctors F': B < C : G with equivalences
GoF ~idg and F o G ~ id¢ in the bicategories Hom(B, B)
and Hom(C, C), respectively.

ITII. SIGNATURES FOR 2-DIMENSIONAL TYPE THEORIES

The STLC with constants is determined by a choice of
base types and constant terms (e.g. [17]). For constants
defined in arbitrary contexts such a choice is determined by a
multigraph; that is, a set of nodes A+, ..., Ay, B, ... connected
by multiedges [Ay, ..., A,] — B. A multigraph consisting
solely of edges (i.e. multiedges of the form [A] — B) is called
a graph.

Notation 111.1. In the following definition, and throughout, we
write A, for a finite sequence [Aq,..., A,] (n € N).

Definition IIL2. A 2-multigraph G is a set Gy of nodes
equipped with a graph G(A.; B) of edges and surfaces for
every n € N and Ay,..., A,, B € Gy. A homomorphism of
2-multigraphs h : G — G’ is a map h : Gy — G|, together with
functions

ha,. .a,B:G(AeB) = G ([hA1,...,hA,]; hB)
hfg:G(Ae; B)(f,9) = G'([hA1, ..., hA,]; hB)(hf, hg)

for every n €N, Ay,..., A,,B€ Gy and f,g € G(A.; B).

We denote the category of 2-multigraphs by 2-MGrph. The
full subcategory 2-Grph of 2-graphs is formed by restricting to
2-multigraphs G such that G([A1, ..., A,]; B) = & whenever
n # 1.

IV. SUBSTITUTION STRUCTURE UP TO ISOMORPHISM

The type theory we shall construct has types, terms, rewrites
and an explicit substitution operation. It is therefore determined
by a 2-multigraph together with a specified substitution
structure. Accordingly, to synthesise our language we introduce
an intermediate step between 2-multigraphs and bicategories,
which we call biclones. These are a bicategorification of
the abstract clones of universal algebra [36], which capture
a presentation-independent notion of equational theory with
substitution.

Definition IV.1. An S-biclone C is a set S of sorts
equipped with the following for all n, m € N and
Xq,.., XY\, )Y, Z€ St
« a category C(X,;Y) with objects I-cells f : Xo - Y
and morphisms 2-cells a: f = g: X, = Y,

« distinguished projection functors p; : 1 — C(X,; X;) for
1<i<n,
« a substitution functor
subx,.v,.z 1 C(Ye; Z) x [ [ C(X.;Y)) = C(X.; 2)
j=1

which we denote by

subx,.v,.z (f7 (91, -- agm)) = flg1,--- gm]
(we write t[ve[ws]] or t[v1[ws], ..., vp[we]] for the it-
erated substitution t[vy[w1, ..., wi], ..., vx[w1,..., w]],
c.f- Notation III.1),
« natural families of invertible 2-cells
asSOC, y, we & H UL, - -+, Un|[Ve] = t[ur[Ve], - ., unfve]]
Lu:uﬁu[plvu'apn]
Ql(ﬁl)’m’u” Dp[ut, ..y un] =ur (K=1,...,n)

for every t € C(Y.,Z), uj € C(X.,Y;), v; e C(W,, X;)
andueC(X.,Y)(@=1,...,nand j =1,...,m).
This data is subject to two compatibility laws:

clug,..., un]
tlut, ... un] —— t[p1,. .-, Pnu)[t1, - Un]
idl lassoc
tlu, ... un] < t[p1[ul, ..., unly .o, Prlut, ..., un]]

assoc[we ] assoc

tlue][ve][we] — t[uefve]][we] — t[ue[ve][ws]]

assocl lt [assoc,..., assoc]

t[we][ve[wa]] t[ue [ve[ws]]]

assoc

When the set S of sorts is clear we refer to an S-biclone as
simply a biclone.

Thinking of a bicategory as roughly a 2-category with
structure up to isomorphism, one may think of a biclone as
roughly a Cat-enriched clone with structure up to isomorphism.
Indeed, the definition of clone may be generalised to hold in any
cartesian category (and even more generally, e.g. [46], [47]): if
the structural 2-cells ¢, ¢ and assoc are all the identity, a biclone
is equivalently a 2-clone, i.e. a clone in the cartesian category
Cat. We have directed the 2-cells to match the definition of a
skew monoidal category [48]; the definition should therefore
generalise to the lax setting (c.f. also the lax bicategories of
Leinster [49, §3.4)).

Every S-biclone C has an underlying linear-core bicate-
gory Cyp. with objects S and hom-categories Cpo(X,Y) =
C([X];Y) (cf. [50]). Every 2-multigraph freely induces a
sorted biclone, and one may introduce bicategorical substitution
structure into a type theory with base types, constant terms and
constant rewrites specified by a 2-graph G by postulating the
structure of the free sorted biclone on G and then restricting it
to its underlying linear core. This is the gist of the following
section.
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Figure 1. Introduction rules on basic terms
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Figure 3. Introduction rules on basic rewrites
N7 :t=t":A F7:t=t:A
vert-comp
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horiz-comp

A+ T{z;i— o} t{r > wi} = t'{z;—>uj}: B

Figure 4. Constructors on rewrites

Introduction rules for AP

pss Aps and AT For

V. A TYPE THEORY FOR BICATEGORIES

We follow the tradition of 2-dimensional type theories

consisting of types, terms and rewrites, e.g. [24], [25], [31], [29].
Following Hilken [25], we consider two forms of judgement.

Alongside the usual T - ¢ : A to indicate ‘term t has type
A in context I, we write ' — 7 : t = t' : A to indicate ‘T
is a rewrite from term ¢ of type A to term ¢’ of type A, in
context I".

For now we do not want to assume our model has products so
we restrict to unary contexts. Base types, constants and rewrites
are therefore specified by a 2-graph G. The term introduction
rules are collected in Figure 1 and the rewrite introduction
rules in Figures 2—4. We denote the language thus defined by
A(9).

The terms are variables z, y,..., constant terms c(z),
d(x),... and explicit substitutions t{x — u}. Thus for every

ABS these rules are restricted to unary contexts.

term v and term ¢ with free variable z we postulate a term
t{x — u}; this is a formal analogue of the term ¢[u/x] defined
by the meta-operation of capture-avoiding substitution (c.f. [34],
[35]). The variable x is bound by this operation, and we work
with terms up to a-equivalence defined in the standard way.
Instead of being typed in the empty context, constants are given
by the edges of G. The restriction to unary contexts ensures the
syntactic model is a bicategory, rather than a biclone. When we
construct the type theory for bicategories with finite products
we shall allow constants and explicit substitution to be multi-
ary.

The grammar for rewrites is synthesised from the free biclone
on G. The structural rewrites assoc,t and p witness the three
laws of a biclone; we slightly abuse notation by simultaneously
introducing these rewrites and their inverses. The constant
rewrites o(x) are specified by the surfaces of G and for every



term ¢ we have an identity rewrite id,. The explicit substitution
operation mirrors that for terms while vertical composition is
captured by a binary operation on rewrites (c.f. [25], [29]). We
make use of the same conventions on binding and a-equivalence
as for terms.

Notation V.1. We adopt the following abuses of notation.
1) Writing ¢ for id; in a rewrite.
2) Writing t{z; — u;}?, or simply ¢{x; — u;} for

t{xy — uy,..., T, — u,}, and similarly on rewrites.
3) Writing c{tq,...,t,} for the explicit substitution
e(xy,...,xn){x; — t;} for constants ¢, and similarly

on rewrites.

The equational theory = on rewrites is derived directly from
the axioms of a biclone; these are collected in Figures 5-8.
In this extended abstract, the rules for the invertibility of the
structural rewrites and the congruence rules on = are omitted.

The type theory AP (G) satisfies the expected well-
formedness properties (c.f. [51, Chapter 4] for STLC). Unique-
ness of typing is obtained by adding type annotations on bound
variables, constants and vertical compositions; we omit this
extra information for readability.

A. The syntactic model for AES

We construct the syntactic model for Ab (G) and prove that
it enjoys a 2-dimensional freeness universal property analogous
to that of [38, §2.2.1]. Put colloquially, Ags(g) is the internal
language for bicategories with signature a 2-graph G. The
bicategorical structure is induced directly from the biclone
structure.

Construction V.2. For any 2-graph G, define a bicategory
7;2(9) as follows. Objects are unary contexts (z : A). The hom-
category T2(G)((z : A), (y : B)) has objects a-equivalence
classes of derivable terms (x: A+ t: B) and morphisms
a=-equivalence classes of rewrites (x : A+ T7:t=1":B)
under vertical composition. Horizontal composition is given
by explicit substitution and the identity on (x : A) by the var
rule (x : A+ x: A). The structural isomorphisms 1,r and a
are o, 1~ and assoc, respectively.

Construction V.3. For any 2-graph G, bicategory B and
2-graph homomorphism h G — B, the semantics of
Figure 13 restricted to 7;35(9) induces a strict pseudofunctor

W TR(G) — B.

The universal extension pseudofunctor h# cannot be char-
acterised by a strict universal property; for instance, for
each type A the bicategory 7;2(9) contains countably many
equivalent objects (x : A) for x ranging over variables. To
obtain the desired universal property, we restrict to a sub-
bicategory in which there is a single variable name.

Construction V4. Let SP.(G) denote the bicategory with
objects unary contexts (x : A) for x a fixed variable and
horizontal and vertical composition operations as in 7;‘;(g)

SES(Q) and 7,}(G) are biequivalent, and
Sps(G) is free on G in the following sense.

The bicategories
the restricted model

Theorem V.5. Let G be a 2-graph. For any bicategory B and
2-graph homomorphism h : G — B, there exists a unique strict
pseudofunctor h# : SES(Q) — B such that h o1 = h, for
1: G — 8P.(G) the inclusion.

The full model 7.)(G) therefore satisfies the universal
property up to biequivalence. Proving the freeness universal
property in this way has the benefit of allowing us to
establish uniqueness without reasoning about uniqueness of
pseudonatural transformations or modifications. It follows that
Ags is an internal language for bicategories. By Example II.3,
restricting to a single base type gives rise to an internal language
for monoidal categories.

The argument in this section applies with only minor
adjustments to biclones. Thus, allowing Ags (G) to have contexts
with fixed variables over a 2-multigraph G gives rise to
the free biclone on G in the sense of Theorem V.5. This
relies on a straightforward generalisation of the notions of
pseudofunctor, transformation and modification. Details will
be given elsewhere.

VI. FP-BICATEGORIES

We recall the notion of bicategory with finite products,
defined as a bilimit [12]. To avoid confusion with the ‘cartesian
bicategories’ of Carboni and Walters [52], [53], we use the
term fp-bicategories. fp-Bicategories are the objects of a
tricategory fp-Bicat.

It is convenient to work directly with n-ary products (n € N).
This reduces the need to deal with the equivalent objects given
by rebracketing binary products. For bicategories B, ..., 5,
the product bicategory ||, B; has objects (By,...,B,) €
[1:, ob(B;) and structure given pointwise. An fp-bicategory
is therefore a bicategory BB equipped with a right biadjoint to
the diagonal pseudofunctor A,, : B — B*" : B+ (B,...,B)
for each n € N. This unwinds to the following definition.

Definition VI.1. An fp-bicategory is a bicategory B equipped
with the following data for every n € N and A4,..., A, € B:
1) a product object [ [, (A1,...,An),
2) projection 1-cells m, = [], (Aq,...

1<k<n,
3) for every X € B an adjoint equivalence

JA,) — Ag for

(m10—,.., Tp0—)

B(X, 1, (A1,...,An)) L LOBX,A) (D)

We call the right adjoint {(—, ..., =) the n-ary tupling.
Remark V1.2. One obtains a lax n-ary product structure by
merely asking for an adjunction in diagram (1).
Example V1.3. Every small fp-bicategory (B,I1,(—)) defines
an ob(B)-biclone B, by setting B.,([X1,...,X,];Y) to be
B(IL,(X1,...,Xn),Y).
Notation V1.4.

1) We write Ay x---x A, or [["_; A; for [, (A1, ...

and denote the terminal object [ [,() by 1.

s An)



F'F7:t=t:A
Threidi=7:t=1t:A4
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Figure 5. Categorical structure of vertical composition
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Figure 6. Preservation rules
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Figure 7. Naturality rules on structural rewrites
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Figure 8. Biclone laws

b

Equational theory for structural rewrites in Ap,

2) We write {f;)i=1,...n, or simply {f.) for the n-ary tupling
<f17°"7fn>-

There are different ways of specifying the adjoint equiv-
alence (1) (see e.g. [41, Chapter IV]). One option is to
specify an invertible unit and counit subject to natural-
ity and triangle laws. This matches the n-expansion and
(B-reduction rules of STLC (c.f [24], [26], [27], [29]), but
in the pseudo or lax settings requires a cumbersome pro-
liferation of introduction rules. Instead, we characterise the
counit w = (w(l),...,w(")) as a universal arrow. Thus,
for any finite family of 1-cells (¢; X — A)ic1,.m
we require a I-cell (ti,...,t,) : X — [[,(41,...,4,)
and a family of 2-cells (wt(i)m,t 27 0 (te) = th)k=1,....n>

n

Ay and A%”. For Ags the rules are restricted to unary contexts.

universal in the sense that for any family of 2-cells
(o :mou=1t;:I' > A;)i=1,.. n there exists a unique 2-cell

pllar,...,an) tu= {t)H:T = [T, A; such that

(k)

@, e (meoplan, .. o)) = ap i mEou = 1,

fork=1,...,n.

Example V1.5. In any bicategory, unary-product structure may
be chosen to be canonically given as follows: II;(A) = A,
7 =1da, (t)=tand w; =1, : Idot = ¢.

Remark VI1.6. As it is well-known, product structure
is unique up to equivalence. Given adjoint equivalences
(g :C = HzlleZ : h) and (ei : Bi = Al : fi)izl’.__,n in a bi-



category B, the composite

/\
go B(X,[17-, B:i) L TIiZ, B(X,By) T (ej0—)
 —
€L (=i =D &
7y (fi0-)

B(X,C) heo [T, B(X, Ai)
yields an adjoint equivalence

(((exomi)og)o—,...,((enomn)og)o—)
—
B(X,C) € [T, B(X, A;)
Y~
ho{fromr fo=)

presenting C' as the product of Ay,..., A,.

Definition VL7. An fp-pseudofunctor (F,k*) between
fp-bicategories (B, I1,(—)) and (C,II,(—)) is a pseudofunctor
F : B — C equipped with adjoint equivalences

(F(H:L:l Al), H;L:l F(Ai)7<F7T1, .. ~7F7Tn>»k§11,...,An)

for every n € N and Ay,..., A, € B.
We call (F,k*) strict if F is strict and satisfies

F(Hn(Al,...,An)) =1I,(FA,,...,FA,)
A1, An FA,,....FA,
F( i ) =7
Flty, ... tny ={(Ft1,...,Ftp)
ng),...,tn = w;—l’?&l,“.,Ftn

ArnA, = M, (Fay . Fa,)

and the adjoint equivalences are canonically induced by the
2-cells pi(ry,,...,rp,) : Id = {7y, ..., ).

Thus, a strict fp-pseudofunctor strictly preserves both (global)
biuniversal arrows and (local) universal arrows.

VII. A TYPE THEORY FOR FP-BICATEGORIES

We extend the basic language ABS to a type theory A%,
with finite products. The addition of products enables us to
use arbitrary contexts, defined as finite lists of variable-and-
type pairs in which variable names must not be repeated.
The underlying signature is therefore a 2-multigraph and the
bicategorical structure of ABS is extended to a biclone.

The additional structure required for products is synthesised
directly from the cases in Definition VI.1. These additional
rules are collected in Figures 9-11. As for Ags, we work up
to a-equivalence of terms and rewrites. The well-formedness
properties of ABS extend to Af,.

For every n € N and types Ay,...,A, we introduce a
product type [ [, (A1,...,Ay); the case n = 0 yields the unit
type 1. We fix a set of base types S and let the set of types
Ty(S) be generated by the grammar

Ay,...,A, == Xe§S
| T (A, Ay) (neN)

On top of this, we fix a 2-multigraph G with Gy = T (.5).
We generally abuse notation by adopting the conventions
of Notation VI.4(1). For the biuniversal arrows we introduce

distinguished constants 7 (p) : A (k = 1,...,n) for every
context (p:[],(A1,...,4y,)). As for adjunction (1), we
postulate an operator tup(—, ..., =), a family of rewrites

sme{tup(ty, ... tn)} = tk)k:l,...,n

(recall Notation V.1(3)) for every family of derivable terms
T+ t A;)i=1,...n, and provide a natural bijective
correspondence between rewrites as follows:

(i=1,...,n)

pila, .. 2 tn)
The rules of Figure 11 achieve this by making w universal:
this is precisely the content of Lemma VII.2 below. These
rules define lax products. To obtain the adjoint equivalence (1)
one introduces explicit inverses for the unit and counit. In this
extended abstract these are omitted.

— (—k)
wtl,.“,tn - (wt17~--=tn

(673 7r1-{u} = ti

2)

L)t u = tup(ty,...

Remark VII.1. The product structure arises from two nested
universal transposition structures. We conjecture that a cal-
culus for fp-tricategories (resp. fp-oco-categories) would have
three (resp. a countably infinite tower of) such correspondences.

A. The product structure of A5

The product structure derives from the following universal
property of w.

Lemma VIL2. If the judgements (I' - «; : mi{u} = t; :
A;)i=1,...n are derivable in A;S(Q) then pl(ay,...,an) :
u = tup(t,...,tn) is the unique rewrite 7y (modulo
a=-equivalence) such that the following equality is derivable
fork=1,... n:

T+ o

bt @ TRV = g s m{ul = 4 0 Ay

From this lemma it follows that the tup(—, ..., =) operator
extends to a functor on rewrites, and that one may define the
unit of adjunction (1) by applying the universal property to
the identity.

Definition VII.3.

1) For every family of derivable rewrites (I' — 7
t, = t’/i Ai)i:l,...,n define tup(Tl,...,Tn)
tup(t1,...,tn) = tup(ti,...,t,) to be the rewrite

1 1 n .
p'(Tiew@,, 4 s--->Tn®w™; . 4 )in context IT'.

2) For every derivable term I" - ¢ : [ [, (A1, ..., Ay,) define
the unit ¢; : ¢t = tup(m1{t},...,m{t}) to be the rewrite
pT(idm{t}, .o,1dg, 3) in context .

Likewise, one obtains naturality and the triangle laws relating
the unit ¢ and counit w = (), ..., ™), thereby recovering
a presentation of products in the style of [24], [25], [29]. These
admissible rules are collected in Figure 12.

B. The syntactic model for A5

We construct the syntactic model for Af, and prove the
freeness universal property establishing that it is the internal
language of fp-bicategories. We begin with a model in which
we allow arbitrary variables and consider all contexts. We then



P—t1:41 ... T'kHt,: A, -pair k-proj (1 < k < n)
T+ tup(ts,...,tn) : [, (A1, ..., An) p:IL (AL, An) F e(p) « Ak
Figure 9. Terms for product structure
T A T ntAn
: ZREL Fl @™ intro (1 < k < n)
T+ w( ’)-4-7tn s {tup(te, ...y tn)} = te : Ag
Fwu:][,(A1,...,A) ' oar:miful =t1: A L' an:maful =tn: Ap )
p'-intro
Ioplar,...,an) :u= tup(ts,... tn): [1,(A1,..., An)
Figure 10. Rewrites for product structure
F'oar:miful =t : A 'k an:mafu} = th s An
Ul(1<k<n
I o =w® ,)m,tn eme{pila,...,an)} : me{u} =ty : Ag
Py :u=tup(ty,...,tn) s [[,,(A1,..., An) 0
Ty =plw . eminh..w . emnly}) iu=tup(ts,....tn) : [[,(A1,..., An)
(I‘ Foai=afmful =t Ai) i1
i=1,..., n cong
T Fpla,...,an) =pl(al,...,al) tu= tup(ts, ..., ta) : [1,(A1,..., An)
Figure 11. Universal property of w
Rules for A¥ (G).

restrict to unary contexts and a single named variable (c.f. Con-
structions V.2 and V.4) in order to obtain a strict universal
property (c.f. Theorem V.5).

Construction VIL4. Define a bicategory TX(G) as fol-
lows. The objects are contexts T',A,.... The I-cells
' — (y; : Bj)j=1,...,m are m-tuples of c-equivalence classes
of terms (I' = t; : Bj)j=1,.m derivable in A5 (G); the
2-cells are m-tuples of a=-equivalence classes of rewrites
(F =7 tj = t; : Bj)j:l,..‘,m

Vertical composition is given pointwise by the e operation,

and horizontal composition by explicit substitution:
(tl,,..,tl)7(u17... ,tl{miHui})

7um) = (tl{mi = ui}, e

(71, ,7), (015 yom) — (T1{xs — 03}y .y Ti{Ts — 0i})

The identity on A = (y; : Bj)j=1,....m is given by the var
rule (A y; : Bj)j=1,....m- The structural isomorphisms 1,r
and a are given pointwise by o, 1~ and assoc, respectively.

The first step in showing that 73(G) is an fp-bicategory
is constructing n-ary products of unary contexts. Much
of the work required is contained in the admissi-
ble rules of Figure 12. For example, there is an ad-
joint equivalence m(g)((x X),(p:[1,(A1,...,4An))
[T 75(G)((z - X), (x; : A;)) defining products of unary

~

contexts in 73(G) with unit ¢ and counit w =
(w®, ..., w®).

Lemma VILS. For any 2-multigraph G, the following holds
in Tyx(G).

1) For any n € N the n-ary product | [;_,(z; : A;) exists
and is given by (p: [, 4;).
2) For any context T' = (21 : Aq,...,

an adjoint equivalence I' = (p I, (A

Zp @ Ay) there exists
L AR)).

Remark VII.6. The existence of the adjoint equivalence of
Lemma VIL.5(2) in 7;;(9) is equivalent to the existence of a
pseudo-universal multimap [Aq,..., A, = [],(A1,..., A4p)
in the biclone associated to A5 (G) (c.f. [50]).

We define products of arbitrary contexts using Remark VI.6
and the preceding lemma. Define the product of

><( (n) AE ))i=1m m

) (o TG A

(@M AMYy g x

Hml A )

to be the product (py
of unary contexts.

Corollary VIL.7. For any 2-multigraph G, the syntactic model
TX(G) of AX.(G) is an fp-bicategory.

To5(G) contains redundancy in two ways: as well as the
equivalent objects given by bijectively renaming variables in
contexts, every context (xl : Ai)izl ,,,,, n 1S equivalent to the
context (p : [[;—, A;). To obtain a strict universal property we

cut out such multiplicities (c.f. Construction V.4).

Construction VIL8. Let S5.(G) denote the bicategory with
objects unary contexts (x : A) for x a fixed variable and
horizontal and vertical composition operations as in TX(G).

pPs
The product structure of 7.(G) restricts to Si.(G) and the
two bicategories are equivalent as fp-bicategories. To obtain



(T HFide, cti = ti 2 Ai)i=1,...0n

I tup(ide, , . . -, idt,, ) = ideup(ey,...,t0) © tup(ta, . ..

(F'—Til:t;=>t;-/:Ai)i_1 n

AAAAA

s tn) = tup(ty,...

tn) L (AL, .. An)

Tt :t;’ cAi)i=1,...n

'+ tup(ry,...,7}) etup(7i,...,7n) = tup(7] e 71,...

F'ro:u=u:[] (A41,...

T ®Tn) s tup(t1,. ..

,tn) = tup(t,...

,t%) : l_[n(AlwuyAn)

7A’ﬂ)

¢-nat

I'tcweo=tup(mi{c},....,m{c})ecu :u= tup(m{u'},..., mn{u'}) : [[,(A1,...

Cremt =t Azt n

7An)

.. 7Tn)} =Tk ® wgf,)...,tn

,,,,,,

I tup(ty,..

tn)  TL, (A1,

w®pat (1 <k <n)

s An)

' tup(wi.l), e

'+ mef{u} : Ag

7w§:’)) ® Gup(te) = idiup(ey) : tup(te) = tup(te) : [, (A1, ...

triangle-law-1

) Aﬂ)

triangle-law-2 (1 < k < n)

' wif)t o T {Su} = idny (uy : Te{u} = m{u} @ Ay

n

Figure 12. Admissible rules for A% (G)

h[X]

R L, (B, .., Byl

h[A=>B]

h[[l‘liAl,...,anAnﬂ

hlzy : A1,y .o xn s Ap g 1 Af]

hlzy : A1, ..o xn s Ap ez, ..., 2,) : B]
RIA F Ha o w, - B]

h[T b tup(ts, ... t) : [1, (B1.. ... Bn)]

hip:11,(B1,-..,By) = m(p) : Bi]
hlf: A=>B,a: A+ eval(f,a): B]
AT + Azt : A=> B]

AT+ ids : t = ¢: BJ

= h(X) for X a base type
= [[i=:h[Bi]
:= h[A] => h[B]
= T, IA]

on n-ary contexts

Aty Ay
=
= h(c) for ce G(A.; B)

= hlzy: A1, 20t Ap Ht: B]
o (h[A F wi s Aiie1,..
:=(h[T'Fty: By,],..., [T t, : B])

._ Bi1,..,B,
=y
= evalg,p

= A(h[l,z: A+ t:BJo~)

= idp[ri¢:B]

hlxy: A1y zp s Ap b o(me) : c(xe) = ¢ (x4) : B] := h(o) for o0 € G(A., B)(c,c)
h[T + wgl,)...,tn smp{tup(ty, ... tn)} =tk By = wgﬁilﬂp..,h[[tn]]

coap) = tup(ty, .. ty) [, (Brs -, Byl
T,z : A b € : eval{(Ax.t){inc, },x} =t : B]
R[T + el(z.a) : u = Azt : A=> BJ
h[C+7'er:t=1t":B]

BIA b e o o)y s o o u by = a2 ]

= pT(hﬂF Foa; mifu} =t Bil)iz1,..n

‘= €(h[T,z:At:Blox)

= el(h[l, 2 : A+ a:eval{u{inc,},z} =t : BJo ~)

=h[l 7t =t":Bleh[l'+7:t=1t:B]

i=hzy: A1,y Ay Tt =t B
olh[AF o; i u; = uf: ADic1m

Figure 13. Bicategorical semantics




the freeness universal property for 73X(G) with respect to
2-multigraphs G, it suffices to show that Sx (G) is the free
fp-bicategory for 2-graphs G. Universal extensions are induced

by the semantics in Figure 13 restricted to Sp5 (G).

Theorem VILY. Let G be a 2-graph with Gy = To(S5)
for a set of base types S. For every fp-bicategory B
and 2-graph homomorphism h : G — B such that
h(Hn(Al, .. ,An)) = II,(hAy,...,hA,), there exists a
unique strict fp-pseudofunctor h# : SX(G) — B such that
h# o1 = h, where 1 : G — Si.(G) denotes the inclusion.

VIII. CARTESIAN CLOSED BICATEGORIES

To give a cartesian closed structure on an fp-bicategory B
is to specify a biadjunction (—) x A - (A=>—) for each
object A € B. Cartesian closed bicategories are the objects of
a tricategory CCBicat.

Definition VIIL.1. A cartesian closed bicategory or
CC-bicategory is an fp-bicategory (B,1I1,(—)) equipped with
the following data for every A, B € B:

1) an exponential object (A => B),

2) an evaluation 1-cell evaly p : (A=>B) x A — B,
3) for every X € B an adjoint equivalence

evalg, po(—xA)

B(X,A=B) 1 B(XxA,DB)

Y
A

3)

Remark VIIL.2. The uniqueness of exponentials up to equiv-
alence manifests itself in the same way as for products. For
instance, given an adjoint equivalence ¢ : E ~ (A=>B) : f,
the object E inherits an exponential structure by composition
with e and f (c.f. Remark VL.6).

As for products, we choose to define the adjunction (3) by
characterising its counit € as a universal arrow (c.f. the discus-
sion after Notation VI1.4). Thus, for every 1-cellt: X x A — B
we require a l-cell Mt : X — (A=>DB) and a 2-cell ¢ :
evalg po(Atx A) = t that is universal in the sense that for any
2-cell v : evaly g o (u x A) = t there exists a unique 2-cell
ef(a) : u = At such that ¢, o (evaly g o (ef(a) x A)) = o

Definition VIIL3. A cartesian closed pseudofunctor or
CC-pseudofunctor between CC-bicategories (B, I, (—), =l>)
and (C,II,(—),=>) is an fp-pseudofunctor (F,k*) equipped
with equivalences

(F(A=>B),(FA=>FB),sa,5,kp)

forevery A, B € B, where sy p: F(A=>B) —
is the transpose of

(FA=>FDB)

F(evalap)oky . pa: F(A=B)x FA— FB

A CC-pseudofunctor (F, k*, k=) is strict if (F, k) is strict
and satisfies

F(A=>B) = (FA=>FB)
F(evalpa,rp) = evalpa rp
F(AM) = A(F't)
F(et) = ept

=
kxp=1ldra—rB

and the adjoint equivalences are canonically induced by the
2-cells ef(k) : Idrpa— rp = A evalpa rp) where & is the
following composite of canonical 2-cells

evalpa pp o (Id x FA) = evalpy ppold = evalpa pp

IX. A TYPE THEORY FOR CARTESIAN CLOSED
BICATEGORIES

We extend AY, to the full language AY;” by synthesising
the additional rules from the cases of Definition VIII.1; these
rules are Figures 14-16.

We extend the grammar for types with an arrow type former
(=) =>(=). We henceforth fix a set of base types S, let T(.S)
denote the set of all types over S, and consider 2-multigraphs G
with set of nodes Gy = T(95).

We postulate a constant eval(f,z) for every context
(f : A=> B,z : A); the usual application operation becomes
a derived rule:

I'-t: A= B 'u:A
I+ eval{t,u}: B

The adjunction (3) requires the functor (—) x A on the syntac-
tic model. As for STLC, this corresponds to context extension
and an associated notion of weakening. The explicit nature of
substitution in our type theory gives rise to correspondingly
explicit structural operations on contexts.

Definition IX.1. A context renaming
(@i Ad)imt,n — (Y5 1 Bj)j=1,..m

isamap r: {z1,....zn} = {y1,...,Ym} such that A; = B,

whenever r(z;) = y;.

It is immediate that for every context renaming 7 : I' — A
the following rules are admissible in A% (G):

'—t: A r:I' > A
A t{zi—r(z)}: A

THr:t=t:A r:I' - A
A r{zi—r(z:)} : t{m > ()} = ' {z; > r(z)} - A

Notation IX.2. For a context renaming r we write ¢{r} and
7{r} for the terms and rewrites formed using the preceding
admissible rules.

Weakening arises by taking the inclusion of contexts
inc; : I' — (I',z : A). For the counit of (3) we therefore
postulate a rewrite

€ eval{(A\x.t){inc, },x} =t



Tx:A+t: B

'Mt:A=B

fam f:A=B,a: At eval(f,a): B

eval

Figure 14. Terms for cartesian closed structure

T'z:A+t: B
D,z: Ak e eval{(Az.t){inc, }, 2} =t: B

e-intro

I'e:A+t: B I'u:A=B
Iz: A «:eval{u{inc,},z} =1¢: B
I'el(za):u=Xzt: A= B

el-intro

Figure 15. Rewrites for cartesian closed structure

Iz: A «:eval{u{inc,},z} =¢: B

I,z: AR a=e¢eeval{el(z.a){inc,}, z} : eval{ufinc,},z} = t: B

'y:u=Xzxt: A=>B

U2

[y =el(z.e oeval{y{inc,},2}) :u= .t : A=>B

Iz: Ak a=d :eval{u{inc,},z} =1t: B

cong

I'tel(z.a)=el(z.o):u= \et: A=>B

Figure 16. Universal property of €

Rules for A%~ (G).

I'e:A+t: B

Tz: A7 :t=1t":B

Nx:Ar7:t=t:B

' Mzide =idags : Azt = Xzt : A= B

T Mx.(ro7)= Az.7")e(Az.7) : Azt = Aot : A=>B

To:u=u:A=B

T+ ny eo = Az.eval{o{inc, },z} e 1, : u = Az.eval{v'{inc,},z} : A=> B

Nez:A-71:t=1t:B

7)-nat

I,z: A Teer = ey oeval{(Az.7){inc, }, z} : eval{(A\z.t){inc, },z} = t' : B
I'e:A+t: B

e-nat

P (Az.et)one =idrg.t : Azt = Azt : A=> B
I'u:A=>B

triangle-law-1

Iz : AF €eal{ufine, },o} ® eval{nu{inc. }, #} = idevaifufine, },o) : eval{uf{inc.}, z} = eval{u{inc.},z} : B

Figure 17. Admissible rules for A5s~ (G)

triangle-law-2

for every term t typeable in a context extended by the
variable x.

The encoding of the universal property of ¢; in the type
theory yields a bijective correspondence of rewrites modulo
a=-equivalence as follows (c.f- (2)):

(x: A)
el(x.a):u= \vt: A= B

a:eval{u{inc, },z} =t : B

where we write (x : A) to indicate that the variable x
of type A is in the context (c.f. [30]). Our approach
to achieving this matches that for products. For every
rewrite « : eval{u{inc,},z} =t we introduce the rewrite
ef(z.a) : u = A\z.t and make it unique in inducing a fac-
torisation of « through ¢;; the variable x is bound by this
operation. The rules governing this construction are given

in Figures 15-16; these provide lax exponentials (c.f. [25]).
Finally, one requires explicit inverses for the unit and counit.
In this extended abstract they are omitted.

Remark 1X.3. As for products (c.f. Remark VIIL.1), we obtain
a nesting of two universal transposition structures. In the
same vein, we conjecture that a calculus for cartesian closed
tricategories (cartesian closed oco-categories) would have three
(a countably infinite tower of) of such correspondences. Indeed,
this should extend to general type structures arising from weak
adjunctions.

We continue to work up to a-equivalence of terms and
rewrites. The well-formedness properties of AES and AF lift
to A%,




A. Cartesian closed structure of Ay~

The e-introduction rule (Figure 15) only ‘evaluates’ lambda
abstractions at variables. The general form of explicit
[B-reduction is derivable.

Definition IX.4. For derivable terms ',z : A+ ¢: B and
I' - w: Adefine By : eval{z.t,u} = t{idp,x — u} to be
the rewrite ¢, {idp,z — u}e7 in context I' (recall Nota-
tion IX.2), where 7 is a composite of structural isomorphisms.

As expected, the remaining exponential structure follows
from the universal property of € (c.f. Lemma VIL.2).

Lemma IX.5. For every rewrite (Iiz:A + «
eval{u{inc, },x} = t : B) in A5 (G), the rewrite el(z.a)
is the unique v (modulo a=-equivalence) such that

Iz: A a=¢oeval{vy{inc,},z} : eval{u{inc, },z} =t : B

It follows that the lambda-abstraction operator extends to a
functor, and we obtain a unit for the adjunction (3).

Definition IX.6.
1) For any derivable rewrite (I'z: A+ 7:t=1t:B)
define A\z.7 : A\z.t = Ax.t’ to be the rewrite ef(z.7 o ¢;)
in context I'.
2) For any derivable term (I" - w : A=> B) define the
unit 7, : v = Az.eval{u{inc,},x} to be the rewrite
ef(z.ideval{ufinc, },+}) in context T'.

The unit 1 and counit e satisfy naturality and triangle laws,
collected in Figure 17. Thus we recover the unit-counit presen-
tation of both products and exponentials (c.f. [24], [25], [29]).

B. The syntactic model for Ny~

We finally turn to constructing the syntactic model for
A% (G) and proving its freeness universal property. The con-
struction of the syntactic model follows the pattern established
by A} and A%

Construction IX.7. Define a bicategory T,;—(G) as fol-
lows. The objects are contexts T',A,.... The I-cells
' — (y; : Bj)j=1,....,m are m-tuples of c-equivalence classes
of terms (I' + t; @ Bj)j=1,.m derivable in N5 (G);
2-cells are m-tuples of a=-equivalence classes of rewrites
Thkr1:t;j= t; : Bj)j=1,....m- Horizontal and vertical com-
position are as in Construction VIL4.

Tos—(G) inherits the product structure of T((G). To
construct cartesian closed structure it suffices to construct
exponentials of unary contexts. Much of the work required is

contained in the admissible rules of Figure 17.

Lemma IX.8. For unary contexts (x : A), (y: B), the expo-
nential (z : A) => (y : B) in Tyg—(G) exists and is given by
(f: A=> B).

Using Remark VIIL.2 and the preceding lemma, we define
the exponential object (I'=> A) for I' := (x; : A;)i=1,...»n and
A := (y; : Bj)j=1,...,m using the equivalent unary contexts, as

(p : Hn(Al,...,An)) = (q : Hm(Bl,...,Bm)).

Corollary IX.9.
CC-bicategory.

The syntactic model T~ (G) is a

From Sections V-A and VII-B one might expect that
restricting to a sub-bicategory with unary contexts and a fixed
variable name is sufficient to obtain the required freeness
universal property. This suggests the following definition.

Construction IX.10. Let S}~ (G) denote the bicategory with
objects unary contexts (x : A) for x a fixed variable and
horizontal and vertical composition operations as in T (G).

The cartesian closed structure of 737 (G) restricts to
Spi7(G) and the two are equivalent as cartesian closed
bicategories. However, one does not obtain a strict freeness
universal property. We recover uniqueness by restricting to
cartesian closed bicategories in which the product structure is
strict.

Theorem IX.11. Let G be a 2-graph with Gy = T(S5)
for a set of base types S. For every cartesian 2-category
(i.e. 2-category with 2-categorical products) with pseudo-
exponentials C and every 2-graph homomorphism h : G — C
such that h(Hn(Al, el An)) = IL,(hA1,...,hA,) and
h(A=>B) = (hA=>hB), there exists a unique strict
CC-pseudofunctor h* : 857 (G) — C such that h¥ o = h,
for v:G — S§57(G) the inclusion.

Thus, one obtains the same result as for Sections V-A
and VII-B, albeit with a restricted freeness universal property.
This, modulo the coherence result of Power [14] applied to
fp-bicategories, yields that

A%~ is the internal language of
cartesian closed bicategories.

In fact, it is possible to adjust the definition of exponentials
to obtain a type theory for which the induced syntactic models
are equivalent as CC-bicategories to those above and satisfy
a strict freeness universal property with respect to arbitrary
CC-bicategories. This type theory is however no longer in the
spirit of STLC, and so will be presented elsewhere.
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