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Abstract 24 

Leu341 has been predicted from crystal structure as an important residue for thyroid hormone 25 

receptor (TR) β function, but this has never been confirmed in functional studies. Here, we 26 

describe a novel p.L341V mutation as a cause of resistance to thyroid hormone β, suggesting an 27 

important role for Leu341 in TRβ function. In silico and in vitro studies confirmed that 28 

substituting Leu341 with Val and other non-polar amino acids impairs sensitivity of TRβ for T3 29 

with various degrees, depending on their side-chain size and orientation.  30 

  31 



Introduction 32 

Mutations in the THRB gene that affect the function of the thyroid hormone receptor (TR) 33 

β cause resistance to thyroid hormone (RTH) β. The biochemical characteristics are elevated T4 34 

and T3 with non-suppressed TSH concentrations. Based on the TRβ1 crystal structure, Leu341 35 

has been predicted as an important residue for the binding to T3 (1, 2). We here verify the crucial 36 

role of Leu341 in T3 binding and TRβ1 functions, driven by the identification of a novel 37 

p.L341V mutation in an RTHβ patient. 38 

Patient 39 

 A 12-year-old Thai girl (II.3) presented with short stature (height 134 cm [-3.17 SDS], 40 

weight 27.2 kg, BMI 15.1 kg/m2 [-1.83 SDS]), diffused goiter and palpitations (heart rate 41 

144/min). She had been misdiagnosed with Graves’ disease and treated with methimazole for 3 42 

years. During treatment, she had fluctuating thyroid hormone and increased TSH concentrations. 43 

Her older sister (II.2) and mother (I.2) also suffered from presumed Graves’ disease, for which 44 

the mother had undergone a subtotal thyroidectomy and subsequently developed post-operative 45 

hypothyroidism which required high dose of L-thyroxine (300 µg/day) treatment. Their thyroid 46 

function tests showed high T4 and T3 with non-suppressed TSH concentrations, suggesting 47 

RTHβ (Fig.1A and Supplementary Fig.S1).  48 

Results 49 

After obtaining informed consent, sequencing of exons 7-10 of the THRB gene identified 50 

a novel heterozygous p.L341V (c.1021C>G) mutation in all affected members. This mutation is 51 

not present in public databases (dbSNP, 1000 Genomes, and Exome Aggregation Consortium 52 

[ExAC]). 53 



Based on the crystal structure (PDB-ID: 3GWS (3)), Leu341 is located in the T3-binding 54 

pocket of wild-type (WT) TRβ1, and its aliphatic side-chain forms hydrophobic interactions with 55 

the outer ring of the T3 molecule and surrounding residues to maintain the shape and integrity of 56 

the T3-binding pocket (Fig.1B and Supplementary Fig.S2). TRβ1-L341V and three artificial 57 

mutants (L341I, L341A, and L341F) with hydrophobic side-chains of different sizes and 58 

structural properties were subsequently modeled (Fig.1B). Because the side-chain of Val is 59 

shorter than that of Leu and has a different orientation, the interaction with T3 and surrounding 60 

residues of TRβ1-L341V was predicted to be disturbed. Given its very small side-chain, these 61 

alterations were even more pronounced in the Ala substituent. Even though the size and 62 

branched-chain character of Ile is similar to Leu, the altered side-chain orientation affects direct 63 

contacts with T3 and interactions with the surrounding residues in TRβ1-L341I. Although TRβ1-64 

L341F was predicted to slightly alter the architecture of the T3-binding pocket, the direct 65 

interactions with T3 and most of the surrounding residues were preserved.  66 

  In vitro studies confirmed the functional impairment of these mutants. In [125I]T3 67 

competitive binding assays, the dissociation constant (Kd) of all mutants was higher than WT, 68 

indicating a reduced T3 affinity. Interestingly, the shift in Kd was related to the size of the 69 

introduced side-chain and the distance to T3 and surrounding residues (Fig.1D). Substitution by 70 

Ala and Val, which have a smaller side-chain size than Leu, Ile and Phe, produced larger shifts in 71 

Kd. The shift of T3-induced transcriptional activity of the mutant receptors on the DR4-TRE 72 

luciferase reporter showed a similar trend. The half maximal effective T3 concentration (EC50) of 73 

all mutants was higher than that of WT, indicating their impaired transcriptional activity 74 

(Fig.1E). In addition, the degree of the shift in EC50 also depended on the size and orientation of 75 

the side-chain. The EC50 of co-expressed WT and TRβ1-L341V was also significantly higher (3-76 



fold) than that of WT only, suggesting a dominant-negative effect of the TRβ1-L341V (Fig.1C). 77 

Together, these in vitro studies support an important role for Leu341 in T3 binding and receptor 78 

function.  79 

Discussion 80 

 Here, we demonstrate that Leu341 of TRβ is crucial for T3 binding, prompted by the 81 

identification of a novel L341V THRB mutation in an RTHβ family. Our in-depth functional 82 

studies confirm the crucial role of this residue for TRβ function which had been predicted by  83 

crystallographic studies and the identification of a previously reported L341P mutation in a 84 

patient with RTHβ (4).  85 

The in silico models used in this study correctly predict the degree of receptor 86 

impairment as found in our in vitro studies. In addition, the creation of artificial mutations based 87 

on the in silico modeling gains more detailed insight about the T3-TRβ interaction. It suggests 88 

that the exact side-chain size and orientation at residue 341 are of vital importance for T3 89 

binding and hence receptor activity. These findings also indicate that the in silico prediction is a 90 

good approach to further explore the role of certain residues in TRβ function and may enhance 91 

our understanding of the pathogenic effects of mutations therein. 92 
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Figure 1. (A) The pedigree demonstrates three RTHβ patients in the family and their TFTs 124 

(TSH, thyroid-stimulating hormone; TT4, total thyroxine; FT4, free thyroxine; TT3, total 125 

triiodothyronine; FT3, free triiodothyronine; Anti-TPO, anti-thyroid peroxidase; Anti-TG, anti-126 

thyroglobulin; TRAb, thyrotropin receptor autoantibody). (B) Crystal structure of T3-bound WT 127 

TRβ1 (PDB-ID: 3GWS) in which the side chain of the affected Leu341 is depicted in red. 128 

Arg282 and His435 form hydrogen bonds with the carboxyl group of the alanine side-chain and 129 

phenolhydroxyl group of T3, respectively (purple dashed lines). Together with Leu330, Phe272, 130 

and Leu346, Leu341 forms a hydrophobic pocket accommodating the two phenolic rings of the 131 

T3 molecule through hydrophobic interactions (green lines) which it stabilizes the hydrophobic 132 

pocket. Structural models of the L341V and three artificial mutants (L341A, L341I, and L341F) 133 

showing the side-chain size and orientation toward the T3 molecule and surrounding residues of 134 

the different residue side-chains. All mutants were predicted to disturb these interactions to 135 

various degrees, with the L341F having the smallest impact. (C) Co-transfection of WT with 136 

TRβ1-L341V alters transcriptional activity of WT in a dominant-negative manner (mean ± SEM 137 

of four independent experiments performed in triplicate). (D) The [125I]T3 dissociation curves 138 

show the diverse severity of T3 binding impairment of the mutants (mean ± SEM of three 139 

independent experiments performed in duplicate). (E) Transcriptional activity of the mutant 140 

receptors is impaired, as indicated by the right-shifted of T3-induced dose-response curves tested 141 

on DR4-TRE (mean ± SEM of three independent experiments performed in triplicate). (Insert) 142 

Immunoblotting confirms the expression of all receptor constructs in Jeg3 cells.  143 



 144 

 145 



Supplementary Materials  146 

Assessment of thyroid function 147 

 Thyroid function tests (TSH, FT4, and FT3) of the index patient were evaluated using 148 

electro-chemiluminescence immunoassay kit (Roche Diagnostic, Mannheim, Germany).  149 

DNA extraction and mutation analysis 150 

 Genomic DNA was extracted from peripheral blood leukocytes by QIAamp® DNA Mini 151 

Kit (Qiagen, Hilden, Germany). Exons 7-10 of the THRB gene [GeneBank: NM_000461.4], 152 

including exon-intron boundaries, were amplified (see Supplementary Table S1 for primers). 153 

Sequencing was performed as described previously (1). The exon carrying the mutation was re-154 

amplified and sequenced to exclude a PCR error. The study was approved by the Medical Ethics 155 

Committee of the Faculty of Medicine, Chiang Mai University, Thailand. 156 

In silico prediction of mutant TRβ1 function 157 

YASARA Structure Software (YASARA Bioscience GmbH, Vienna, Austria) (2) was 158 

used to model the TRβ1-L341V patient’s mutation and three artificial mutants (L341A, L341I 159 

and L341F) into a T3-bound WT TRβ1 crystal structure (PDB-ID: 3GWS) (3) using the side-160 

chain substitution tool. Side-chain orientations were optimized using SCWALL (Side-Chain 161 

conformations With ALL available methods) (4, 5) after which the final models were minimized 162 

without further constraints. All images were created using YASARA Structure and Pov-Ray v3.6 163 

software (www.povray.org). 164 

DNA constructs and mutagenesis 165 

The human TRβ1 cDNA was amplified and subcloned into the EcoRI and XbaI sites of 166 

the pcDNA3 expression vector fused at the 5’-end to the sequence encoding the FLAG-epitope 167 



tag and downstream of an optimized Kozak sequence (see Supplementary Table S1 for primers). 168 

The TRβ1-L341V patient’s mutation (c.1021C>G) and three artificial mutants, including L341A, 169 

L341I and L341F, were introduced using the QuickChange II Mutagenesis kit (Agilent 170 

Technologies, Amstelveen, The Netherlands) according to manufacturers’ protocol (see 171 

Supplementary Table S1 for primers). Sequences of mutant constructs were confirmed by Sanger 172 

sequencing. 173 

[125I]T3 competitive binding assay 174 

Human FLAG-tagged TRβ1 WT and mutant (L341V, L341A, L341I and L341F) 175 

receptor proteins were synthesized in reticulocyte lysate using the TnT® T7 Quick Coupled 176 

Transcription/Translation System (Promega, Leiden, The Netherlands). The protein lysate was 177 

incubated with 0.02 nM of [125I]T3 in 0.5 mL binding buffer (20 mM Tris, pH 8.0, 50 mM KCl, 178 

1 mM MgCl2, 10% glycerol, 5 mM DTT) and 0-10,000 nM unlabeled T3 for 2 hours at 30°C. 179 

Protein-bound [125I]T3 was captured by filtering through a nitrocellulose filter membrane 180 

(Millipore HA filters, 0.45 µm) under vacuum. The data was corrected for non-specific binding 181 

(counts bound at 10,000 nM unlabeled T3) and expressed as percentage maximal [125I]T3 182 

binding (counts bound at 0 nM unlabeled T3). The [125I]T3 displacement curve and the 183 

dissociation constant (Kd) were computed by GraphPad Prism program version 5.0 (GraphPad, 184 

La Jolla, CA) and shown as mean ± standard error of the mean (SEM) of three independent 185 

experiments performed in duplicate. 186 

Cell culture and transfection 187 

JEG3 cells were cultured and transfected as previously described (6). In brief, 20 ng of 188 

FLAG-tagged WT or mutant TRβ1 expression vectors and 120 ng of luciferase reporter 189 

constructs containing direct repeat (DR4) thyroid hormone response element (TRE) (7), as well 190 



as 60 ng pMaxGFP transfection control, were transiently transfected into cells in thyroid 191 

hormone-depleted medium using Xtreme Gene 9 transfection reagent (Roche Diagnostics, 192 

Almere, NL). To determine the effect of TRβ1-L341V on WT function (dominant-negative 193 

effect), we co-expressed WT and TRβ1-L341V receptors (1:1 equimolar ratio), or either WT or 194 

TRβ1-L341V with empty vector (EV) (as gene dose control). After 24 hours, cells used for 195 

luciferase assays were incubated in DMEM/F12 medium supplemented with 0.1% bovine serum 196 

albumin and containing 0-10,000 nM T3 for 24 hours.  197 

Immunoblotting 198 

To determine the expression of FLAG-tagged TRβ1 WT and mutants in JEG3 cells, 199 

nuclear proteins were extracted as described previously with slight modifications (8). Briefly, 200 

cells were swollen on ice for 15 min in buffer A (10 mM Hepes, 10 mM KCl, 0.1 mM EDTA, 1 201 

mM DTT, pH 7.9) supplemented with the Complete Protease Inhibitor cocktail (Roche 202 

Diagnostics) and were lysed by addition of 0.6% NP40. The nuclei were pelleted by 203 

centrifugation for 10 min at 2500 g and extracted for 45 min in buffer C (20 mM HEPES, 0.4 M 204 

NaCl, 1 mM EDTA, 1 mM DTT, Complete Protease Inhibitors, pH 7.9) at 4˚C. After 205 

centrifugation for 15 min at 20000 g, the supernatants containing nuclear proteins were collected 206 

and diluted in buffer D (20 mM HEPES, 1 mM EDTA, Complete Protease Inhibitors, pH 7.9). 207 

Immunoblotting was performed as previously described (6). The FLAG-tagged TRβ1 and 208 

Histone 3 (as loading control) were detected by FLAG-M2 antibody (#F1804 Sigma-Aldrich) 209 

and Histone 3 (H3; 1B1B2) antibody (#14269 Cell Signaling Technology), respectively, at a 210 

1:1000 dilution and visualized by Enhanced Chemiluminescence (Thermofisher Scientific) on 211 

the Alliance 4.0 Uvitec platform (Uvitec Ltd). 212 



Luciferase assay 213 

 Luciferase activity of WT and mutant receptors was measured using the Dual Glo 214 

Luciferase kit (Promega, Leiden, The Netherlands) as previously described (1). The ratio 215 

between luciferase and GFP was calculated to adjust for transfection efficiency. Data were 216 

expressed as percentage maximal response of WT and half maximal effective T3 concentration 217 

(EC50) and maximal response calculated using GraphPad Prism program version 5.0 (GraphPad, 218 

La Jolla, CA). The results are shown as mean ± SEM of at least three independent experiments 219 

performed in triplicate. 220 
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