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Abstract

Title: Flow fields created by impinging liquid jets and applications in cleaning
Name: Rajesh Kumar Bhagat
Cleaning is an essential domestic and industrial operation. It is particularly important
in the food and pharmaceuticals sectors, where a large proportion of the total water
consumption (as much as 70%) is used just for cleaning. Impinging liquid jets are
frequently used for cleaning operations and currently, almost all industrial cleaning
systems are based on empirical results. In an effort to develop efficient and sustainable
cleaning systems, I have studied the flow field created by impinging liquid jets and
their application in cleaning.

On impingement of a liquid jet onto a surface, the liquid spreads radially outwards
until it reaches a point where the liquid film changes its thickness abruptly. This
transition from a thin film to a thick film is demarcated by a hydraulic jump. The
supercritical thin film flow is also associated with higher momentum and shear stress,
and is therefore, key for cleaning and heat transfer applications. For more than
a century, it has been believed that these thin film hydraulic jumps are created
due to gravity. However, in this dissertation it is shown both experimentally and
theoretically, that these hydraulic jumps result from energy losses due to surface
tension and viscous forces alone and gravity plays no significant role. The new theory
allow the size of thin film region (location of the hydraulic jump) to be predicted
and manipulated. The location where flow in the thin film becomes turbulent is
also considered. The average-velocity and the location demarcating the laminar to
turbulent transition were measured and showed good agreement with the model.

The model for cleaning by normally impinging jets (by peeling mechanism)
(Wilson et al., 2014) was then extended to consider cleaning by oblique impinging
jets and compared with experimental data which showed a good agreement. Finally,
cleaning scenarios arising in industrial systems where the liquid jets moves across a
soiled surface were modelled. In these scenarios the liquid jet impinges obliquely and
moves with varying velocity. A simple mathematical framework was developed for
these systems on which more detailed models can build on.
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Chapter 1

Background and overview

All early human civilizations started near rivers or near a large source of water. We
have always tried to control water and manipulate water flow and by doing so, have
discovered hydrology and hydraulic engineering. Tap (or Faucet) producing liquid
jets were first used for controlled use of water and beautification in the form of
fountains. Subsequently, fueled by their advancement in plumbing and pumping
technologies, the ancient Greeks developed the first shower (see figure 1.1) for cleaning
and possibly recreational purposes and started the history of cleaning by impinging
jets.

Figure 1.1 Ancient Greek shower (Vase image form Bilder antiken lebens, Hrsg.
von Theodor Panofka, 18, 9) Source: http://www.ancientworldalive.com/single-
post/2015/10/27/Ancient-Greek-and-Roman-Bathing



2 Background and overview

An early scientific account of the liquid jet, its impingement on a surface and
subsequent flow field including the hydraulic jump can be found in Leonardo da
Vinci’s sketches and drawings. (see figure 1.2, 1.3 and, 1.4) (Pedretti, 2000). From
Leonardo da Vinci’s sketches and drawings it is clear that he was obsessed with water.
He was fascinated by virtually everything but he studied and tried to understand
fluid flow from his youth until his death (Irving, 2018).

The applications of impinging jet, a technology which the ancient Greeks devel-
oped, and problem that was discussed by da Vinci and many others since, are still
based on empirical results and are inefficient. The main reason for this stagnation is
that, we considered water as an unlimited natural resource and this robust ancient
technology works. However, with the growing world population, human activities
and climate change, water is no longer an unlimited natural resource. Its use for
industrial and domestic applications is now subject to availability constraints and
ultimately sustainability considerations.

1.1 Introduction

A recent report suggests that in England and Wales, in an average household, 39%
of total water consumption is used for personal washing and 24% in WC flushing
(Lawson et al., 2018). An average seven and half minute shower consumes ≈ 67 L
of water (Cambridge Water Company, 2018). A recent water crisis in Cape Town
highlighted our vulnerability to water resources and distribution (Muller, 2018),
where it can cause serious public health issues and even law-and-order problems.
High speed impinging jets are frequently used for industrial cleaning. In food and
pharmaceutical industries, a large proportion of their total water use is consumed in
cleaning operations. In some of the food and drink sectors, cleaning accounts for as
much as 70% (dairy sector Ajiero and Campbell (2018)) of the total water use. Table
1.1 presents an overview of the percentage of total water used just for cleaning.

Table 1.1 Typical water use for cleaning in the food sector (Environmental Technology
Best Practice Programme, 1998)

Sector Percentage of water used for cleaning
Bakery 70%
Dairy 70%

Soft drinks 48%
Brewery 45%
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Figure 1.2 Leonardo da vinci’s sketches on impact of water jets on a solid surfaces.
(Pedretti, 2000)

Figure 1.3 Leonardo da Vinci’s sketch of impact of a water jet on a pool of water
‘water in percussion (“in percussione") and in resurgence’ ca. 1492. Paris, MS. A,
fol.24V

Figure 1.4 Leonardo da Vinci’s sketch about the law of rebound, ca. 1492. Paris,
MS. A, fol. 24r
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Every litre of processed milk requires between 1-10 L of clean water. In the financial
year 2014, the total milk production in the UK was ≈ 14 million tonnes (Alex, 2016),
which implies that total water used for cleaning in the dairy industry in the UK
range between 1 to 10 billion L. This comes with an associated cost, both for supply
and treatment of the spent water. In areas where water is scarce, such operations
are simply not feasible.

Clean water is one of the key resources in the food-water-energy nexus. Pri-
oritisation of clean water to combat thirst means that industry needs to reduce
its consumption levels to achieve sustainable operations. The use of water jetting
represents a technology which can improve cleaning efficiency while reducing water
consumption.

This dissertation aims to understand industrial cleaning using impinging liquid
jets. There are two aspects to this problem (1) understanding the hydrodynamics of
impinging liquid jets, and (2) its application to industrial cleaning scenarios. The
studies therefore set out to understand the hydrodynamics of the impinging liquid jets
which is discussed in § 2, 3, and 4. Chapter 5 presents experimental and theoretical
studies for industrial cleaning scenarios where liquid jets remain stationary or move
and clean surfaces. The conclusions and future work are given in § 6.

1.1.1 Sinner’s circle

The main objectives of industrial cleaning systems are speed (cleaning time), efficiency,
cost effectiveness, and sustainability. The rules of thumb underlying cleaning activities
is expressed as “ Sinner’s Circle” (see figure 1.5). The key variables of Sinner’s
circle are; (1) Mechanical action, (2) Chemical action, (3) Temperature, and (4) Time.
Their cumulative response determine the degree of cleaning i.e. higher temperature
usually results in more effective cleaning. Likewise for a set degree of cleaning
enhancing one aspect reduces other. The application of high speed impinging liquid
jets in cleaning produces high shear stress, momentum transfer and hence faster
cleaning rates. In Sinner’s circle, impinging liquid jets are associated with mechanical
action and reduced time. This dissertation focuses mainly on understanding the
flow field of impinging liquid jets and their application to cleaning. Sinner’s circle is
revisited in § 5.
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Figure 1.5 Sinners’s circle

1.1.2 Cleaning-in-place (CIP)

Cleaning in place (CIP) can be defined as the cleaning of internal or external surfaces
of process equipment, pipelines etc. without dismantling the equipment, with little
or no manual labour. To achieve this objective, high speed liquid jets are directed
onto surfaces or cleaning solutions are circulated at higher speed under the turbulent
flow conditions (Romney, 1990; Tamime, 2009). CIP systems generally employ spray
balls or rotating nozzle(s) ejecting liquid jets (see figure 1.6), which move across the
surface and cleans it.

From the perspective of modelling and optimisation, CIP systems with rotating
nozzles have three key overlapping elements: (1) hydrodynamics and the flow field
of a moving impinging liquid jets, (2) cleaning mechanisms and, (3) geometrical
aspects of a moving liquid jet. Considering the complexities of the problem, it is
not surprising why design and operation of available CIP systems are currently
largely based on empirical relationships. The approach to develop a mathematical
framework for modelling of CIP systems is: study the above stated key elements
in isolation and couple them to the other elements in stages and finally integrate
and develop the model. For instance, understanding the hydrodynamics of a static
liquid jet impinging onto a surface will provide the shear stress, momentum and
mixing under the flow field. The understanding can then be coupled to the cleaning
mechanism to develop a quantitative model for cleaning under the flow condition. For
example, Wilson et al. (2014) coupled the hydrodynamics and removal of a specific
soil type (immobile soils) to model cleaning by peeling by an impinging liquid jet.
They hypothesized that, for cleaning by peeling, the rate of cleaning is proportional
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to the momentum in the liquid at the cleaning front. In this case, the momentum
was estimated by Wilson et al. (2012) hydrodynamic model to obtain the expression
for cleaning kinetics.

Figure 1.6 CIP operation by a typical Rotary Jet cleaners (Image
source: http://www.spray-nozzle.co.uk/resource-links/applications/tank-washing-
(cip)/rotary-jet-tank-cleaners)

Wilson et al. (2015) extended this approach with some assumptions, and integrated
the static jet cleaning model to moving jet systems, where a liquid jets impinges
normally onto the surface and the point of impingement moves steadily across the
surface. A better understanding of each key element and their integration into a CIP
models offers better understanding of the whole process.

In this dissertation, the main focus is on improving the understanding of the flow
field created by impinging liquid jets. I have also worked on developing quantitative
relationships for various geometrical scenarios arising in cleaning by static and
moving liquid jets. This understanding is coupled with models for cleaning by peeling
mechanism. A similar approach could be taken to cleaning by attrition (driven by
the local shear stress imposed on a deposit or soil): this is not explored here.
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1.2 Overview

The dissertation is divided into four main chapters and a closing chapter with
conclusions and recommendation for future work. The chapters do not follow in the
chronological order in which the work was conducted. Nevertheless, the adopted
modelling strategy in which the key elements could be updated and integrated,
allowed the dissertation to be laid in this format and not in the chronological order.

A significant fraction of the chapters from this dissertation have been published;
§ 2 in the Journal of Fluid Mechanics (Bhagat et al., 2018), § 4 in Chemical
Engineering Science (Bhagat and Wilson, 2016) and § 5 in Journal of Food and
Bioproducts Processing (Bhagat et al., 2017). I have recorded my coauthor(s)’s
contributions in the introduction section of each chapter and, where applicable in
the text.

§ 2 discusses the hydrodynamics of an impinging liquid jet and the formation
of the hydraulic jumps. In this chapter the mechanical energy equation including
surface energy is solved. This chapter provides some new revolutionary insight into
the formation of the circular hydraulic jump. Contrary to the previously held view
that hydraulic jumps are created due to gravity, it is shown both experimentally
and theoretically that the thin film hydraulic jumps (such as in kitchen sinks) are
created due to surface tension and gravity does not play significant role. This chapter
provides a general mathematical framework which is applicable to all hydraulic
jumps, which incorporates the effects of gravity (important for thick film hydraulic
jumps, such as occur downstream of a weir, but which is insignificant for thin-film
jumps, like those in kitchen sinks). This theory also correctly incorporates the effect
of surface tension, which is the dominant effect in thin films. § 2 presents a control
volume based analysis; a differential volume based analysis is given in Appendix A,
and they show excellent agreement.

Using the mechanical energy based approach,the results from § 2 disapproves
the previous momentum based or Navier Stokes equation based approaches of the
description of the thin film flow and the hydraulic jump. § 3 revisits the thin film
flow from a new momentum based approach and shows agreement with § 2. The
the results from § 2 are compared with the Wilson et al. (2012) description of the
flow field. It is found that the momentum calculated from both approaches show
reasonable agreement and the simple Wilson et al. (2012) model gives a reasonable
engineering estimate of the momentum.

§ 4 explores the flow field created by normal and obliquely impinging jets when
the thin liquid film becomes turbulent. In this chapter, the flow field is divided into
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three zones (1) boundary layer formation zone, (2) laminar zone and, (3) turbulent
zone. The location demarcating the laminar to turbulent transition is found to be
the location where the liquid film thickness is minimum. The transition is then
verified by comparison with optical observations, heat transfer and, cleaning data.

§ 5 investigates the cleaning of adherent soil by inclined static and moving liquid
jets, where the removal mechanism is peeling. In this chapter, new experimental
data and a model for cleaning by obliquely impinging jets are presented and these
show good agreement.

Wilson et al. (2015) provided a model for cleaning by normally impinging moving
liquid jets. The model is extended for CIP scenarios when the angle of impingement
of the jet changes continuously. Models are presented for two different cleaning paths;
(1) when the nozzle rotates in a vertical plane and cleans from the top to the bottom
or vice-versa, (2) when the nozzle rotates in a horizontal plane following a hoop
cleaning track.

The findings are summarised in the § 6, followed by short discussion on avenues
for future work.



Chapter 2

Hydrodynamics of a impinging
liquid jet: hydraulic jump

2.1 Introduction

It is a common experience to observe that when a jet of water falls vertically from a
tap on to the base of a domestic sink, the water spreads radially outwards in a thin
film until it reaches a radius where the film thickness increases abruptly. This abrupt
change in depth is known as a circular hydraulic jump (see figure 2.1(a)). Beyond
the jump, the liquid spreads outward as a thicker film until it reaches the edge of the
sink. Up to this point, the hydraulic jump radius remains approximately at the same
location (can be seen as Movie 1, https://doi.org/10.1017/jfm.2018.558). Once the
liquid reaches the edge of the sink, the boundary condition for the liquid film changes,
the downstream liquid film thickness increases and the initial steady hydraulic jump
radius moves inwards. The present study explores the steady hydraulic jump before
liquid reaches the edge of the plate.

The hydraulic jump has been studied for over four hundred years. An early
account was presented by Leonardo de Vinci in the 16th century (Hager (2013)). The
Italian mathematician Bidone (1819) published experimental results on the topic
and Lord Rayleigh (1914) subsequently provided the first theoretical explanation for
the planar hydraulic jump based on inviscid theory.

Figures 2.1(b) and (c), show that the same abrupt change in film thickness occurs
on a vertical plane impacted by a horizontal jet and a horizontal plane impacted from
below by an upwards directed jet, respectively. Further, as can be seen in figure 2.1,
for a given jet diameter and flowrate, the radius of the initial jump is the same in all
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(a) Horizontal surface; jet im-
pinging from above

(b) Vertical surface; jet im-
pinging horizontally

(c) Horizontal surface; jet im-
pinging from below

Figure 2.1 Hydraulic jumps caused by a water jet impinging normally on surfaces
with different orientations. In these three cases the jets are identical, produced from
the same nozzle at the same flowrate, Q = 1 L min−1, and the radius of the jump is
observed to be independent of the orientation of the surface.

cases, irrespective of the orientation of the surface. From this one can conclude that
gravity plays no role in the initial formation of the jump.

To the best of the my knowledge all existing explanations for thin-film hydraulic
jumps on the scales under consideration in this chapter, invoke gravity as a significant
force in its formation. The work in this chapter demonstrates that this view is
incorrect and that the appropriate force balance in these jumps critically involves
surface tension and that gravity is unimportant. To achieve this aim the previous
theories and experiments are reviewed in § 2.2. The experiments presented in this
chapter is described in § 2.3, followed by a scaling analysis in § 2.4, which collapse
the experimental data. A detailed theory for the flow is developed in § 2.5. which
explains the role of surface tension in the force balance. The theoretical predictions
and the experimental data for different surface orientations and fluid properties are
compared in § 2.6. Conclusions are reported in § 2.7.

This work has been published in the Journal of Fluid Mechanics (Bhagat et al.,
2018). I developed the theory, conducted the experiments and analysed the data.
My coauthor Dr Narsing Jha helped me perform some circular hydraulic jump
experiments. Prof Paul Linden and I developed the scaling relationship. I drafted
the manuscript which Prof Linden and I edited. Subsequently, it was also edited by
Prof Ian Wilson. Text from the paper appears in this chapter.
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2.2 Previous studies

The study presented here concerns with the initiation of the jump shown by the
schematic in figure 2.2(a), or the hydraulic jump due to impact of a jet normally on
an infinite plane. In practice, all experiments involve a plane of finite dimensions
and eventually the liquid drains from the edges of the surface. Consequently, the
study here is restricted to considerations of the flow before it reaches the edge
of the surface, and ignore the changes that occur once the downstream bound-
ary condition changes (The hydraulic jump formation can be seen as Movie 2,
https://doi.org/10.1017/jfm.2018.558)

Figure 2.2 (a) Schematic of the liquid film and hydraulic jump created by an impinging
jet. (b) Control volume of film element on which the energy balance is applied.

Watson (1964) developed a similarity solution for radial flow in the thin liquid
film, which is described further below. He also proposed the first description of a
thin-film circular hydraulic jump incorporating viscous friction in the film, ignoring
the tangential stress due to surface tension, and balanced the momentum and
hydrostatic pressure across the jump. Watson’s solution, which involves gravity,
requires experimental measurement of the film thickness at the jump location to
predict the jump radius, and overpredicts the radius for smaller jumps by as much as
50%. Bush and Aristoff (2003) added surface tension to Watson’s theory but stated
that its influence was small as they argued its effect was confined to the hoop stress
associated with the increase in circumference of the jump. They recognised that
addition of surfactant substantially (20%) increased the jump radius but they did
not pursue this aspect further, owing to the complications involved with surfactants.
Mathur et al. (2007) presented results for hydraulic jumps created by liquid metals
where the jump radii were in range of µm. They recognised that jumps on this scale
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are created due to surface tension but associated with very high curvature and small
jump radii. However, they asserted that gravity is the key to all jumps on the scale
of the kitchen sink hydraulic jump.

Earlier analyses by Kurihara (1946) and Tani (1949) used thin-film boundary
layer equations including gravity to model circular hydraulic jumps. This analysis
was critiqued by Bohr et al. (1993) who solved the axisymmetric shallow water
equations which again, naturally, included gravity. Bohr et al. (1993) found that
the outer solution of the equations became singular at a finite radius. Consequently,
they solved the equations inwards from the edge of the plate or the boundary from
where liquid drains due to gravity, and connected the inner and the outer solutions
for radial flow through a shock. This analysis gave a scaling relation for the jump
radius, R ∼ Q5/8ν−3/8g−1/8 where Q, ν and g are the jet volumetric flow rate, the
kinematic viscosity of the fluid and the acceleration due to gravity, respectively. They
argued that the jump could be understood qualitatively in terms of the interplay
between gravity, viscosity and the momentum of the liquid. A similar axisymmetric
shallow water model was also proposed by Kasimov (2008). Again this study did
not consider the initial formation of the jump, but connected the thin film with the
deeper flow established as a result of the downstream boundary condition at the
edge of the domain.

Two studies considered the case where gravity is unimportant. Godwin (1993)
assumed the jet diameter was an important parameter and showed that the jump
radius, when independent of gravity, scaled as R ∼ Q1/3d2/3ν−1/3, where d is the
jet diameter. It can be argued that, since R ≫ d, the jet diameter is not a
relevant parameter which has also been verified experimentally. Avedisian and Zhao
(2000) studied the circular hydraulic jump at low gravity in a drop tower. In these
experiments, a horizontal plate was submerged in a pool of liquid to impose a constant
downstream liquid thickness condition and was impacted by a liquid jet to create a
hydraulic jump. They found that, under normal gravity, the jump radius decreased
when the depth of the downstream liquid film increased. However, at low gravity, the
downstream liquid film height had no effect, and the jump radius increased compared
to its value under normal gravity. Capillary waves were also observed, and they
concluded that at low gravity the jumps were dominated by viscosity and surface
tension.

Hansen et al. (1997) studied surface waves in circular hydraulic jumps. They
reported that the hydraulic jump radius scales as R ∝ Q0.77 for water, and R ∝ Q0.72

for less viscous oils. They concluded that, on a flat plate without any reflectors, the
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waves are gravity-capillary waves. Further, in the limit of zero surface tension, Rojas
et al. (2013) reported that R ∼ Q3/4ν−1/4H−1/2g−1/4, where H is the height of the
film downstream of the hydraulic jump.

In the experiments reported in this chapter, it can be observed that, under the
same flow conditions, normal impingement of a liquid jet gives a circular hydraulic
jump with the same initial radius irrespective of the orientation of the surface
(figure 2.1). On a vertical plate, where the spreading liquid film and gravity are
coplanar, an approximately circular hydraulic jump is still formed (figure 2.1(b)).
The thicker liquid film beyond the hydraulic jump then drains downwards due to
gravity and above the point of impingement the location of the jump remains constant
in time. The experiments on a surface inclined at 45◦ also produced circular jumps.
A similar lack of dependence of the radius on both vertical and inclined surfaces have
also been observed by Wang et al. (2015); Wilson et al. (2012). Similarly, when a jet
impinges onto a horizontal surface from below, an abrupt increase in film thickness
is also observed (figure 2.1(c)). Under the influence of gravity, the thicker liquid
film falls as droplets or as a continuous film forming a water bell (Jameson et al.
(2010)). The surface tension of the liquid was changed by preparing homogeneous
water-alcohol solutions and a surfactant. A significant change in kitchen sink scale
hydraulic jump can be seen by changing the surface tension γ when Q and ν are
kept constant (can be seen as Movie 3, https://doi.org/10.1017/jfm.2018.558). The
existing treatments are unable to explain this behaviour as they hold that surface
tension only becomes significant for much smaller jump radii.

2.3 Experimental

Circular hydraulic jumps were produced by impinging a liquid jet normally on to a
planar surface. Both a vertical jet impinging on a horizontal plate from above and
below, a horizontal jet impinging on a vertical plate and a jet impinging normally on
to a plate inclined at 45◦ to the horizontal were studied (see figure 2.3). For most
experiments the jet nozzle diameter was 2 mm and the jet flow rate Q varied from
0.49 −2 L min−1. For low flow rates (Q < 1.3 L min−1), liquid was supplied from a
constant-head apparatus to glass Pasteur pipettes.

Target plates were PerspexTM, glass or Teflon® sheets. The horizontal plate was
a 0.25 m diameter circular disk; vertical and inclined planes consisted of a 1 × 0.4 m2

rectangular plate. It was found that the jump radius was independent of the plate
material and this factor will not consider further. Nozzle diameters of 1 and 3 mm
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were also used, and no significant difference in the jump radius was observed when
measured from the edge of the resulting jet.

For higher flow rates (Q > 1.3 L min−1) a centrifugal pump and a brass nozzle
was used (See figure 2.4 ).

Water was pumped from a 26 L capacity storage tank through a rotameter and
a manual control valve before entering the nozzle. The nozzle was fabricated from
brass with an orifice diameter of 2 mm. Further details of the setup are given in
Wang et al. (2013b). The nozzle could be rotated to give angles of impingement over
the range 0 ≥ ϕ ≥ 180◦. In these tests the nozzle was located between 40 to 80 mm
from the target so that the jet remained coherent and did not droop. The target
was either a transparent Perspex or glass plate.

Figure 2.3 Schematic of experimental arrangement; liquid jet impinging normally on
to a (a) horizontal plate from above, (b) plate inclined at 45◦, (c) vertical plate and
(d) horizontal plate from below.

Figure 2.4 Schematic of the experimental setup used for higher Q (1.3 L min−1≤ Q ≤
2 L min−1)
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Table 2.1 Properties of the liquids used in hydraulic jump tests

Liquid Reference T (◦C) γ ×103 ν ×106 ρ
(◦C) (N m−1) (m2 s−1) (kg m−3)

Water 20 72 1.002 1000
WP95/5 Vazquez et al. (1995) 20 42.5 1.274 989
WP80/20 Vazquez et al. (1995) 20 26 2.30 968
WG30/70 Jameson et al. (2010) 19 67 20.7 1160
WG10/90 Jameson et al. (2010) 28 65 99.3 1240

SDBS Sun et al. (2014) 20 38 1.00 1000

Transparent graticule tape was mounted on the target to provide in-situ dimension
calibration. The experiments performed in this apparatus featured flow rates, with
Q = 1.3 −2 L min−1.

The viscosity and surface tension were varied by using mixtures of water with
1-propanol (5 and 20 w/w%, labelled as WP95/5 and WP80/20, respectively) and
water with glycerol (70 and 90 w/w% labelled WG30/70, and WG10/90, respectively).
A 3 mmol L−1 solution of sodium dodecyl benzene sulfonate (SDBS) was also used.
The surface tension was varied by about a factor of three and the kinematic viscosity
by a factor of nearly 100. The fluid properties are listed in table 2.1.

An IP65 waterproof fluorescent tube lamp and a halogen lamp illuminated the
target. Digital video cameras, Photron Fastcam SA3 and Sony Cyber-Shot DSC-
RX100 VA were used to acquire high-speed images of the liquid film and the hydraulic
jump at up to 2000 fps. These were subsequently processed using MATLAB and
ImageJ to obtain the jump radius R as a function of the jet and fluid properties.
In total over 150 experiments were conducted. Error bars were determined by the
standard deviation of repeated experiments.

2.4 Scaling analysis

Consider the axisymmetric flow shown schematically in figure 2.2. The jump is
characterised by its radius R, the liquid film thickness h and the radial velocity u of
the film. Based on experimental observations we assert that gravity is unimportant
and hence the flow depends on the jet flow rate Q, the jet diameter d, the film
thickness h, and the fluid properties i.e. the density ρ, viscosity ν and the surface
tension γ. Since observations (e.g. figure 2.1) show that the jump radius R ≫ d

and we observed no dependence on d, we ignore the jet diameter. We then have six
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parameters; R, h, ρ, ν, γ and Q (or equivalently u) and three dimensions, giving three
dimensionless parameters: a Reynolds number Re, a dimensionless film thickness, κ,
and the Weber number, We, given by

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

 

 

 WG 3/7 (Glass)
 WG 3/7 (Teflon)
 WG 1/9 (Glass)
 Water (Vertical plate)
 Water (Horizontal plate)
 WP95/5
 WP80/20
 SDBSR/
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Figure 2.5 Dimensionless jump radius plotted against the flow rate for all our
experiments with different liquids and surface orientation.

Re = uh

ν
, κ = h

R
, We = ρu2h

γ
. (2.1)

We assume that the radial flow is balanced by viscous drag, for such flows Watson
(1964) showed that du

dr
∝ −ν

h2 , which implies

u

R
∼ ν

h2 (2.2)

Using equation 2.2 and κ = h
R

implies κReF = O(1), where ReF = uh
ν

, Reynolds
number based on the film thickness. Then, if we further assume that the hydraulic
jump occurs when momentum equals the surface tension and hence at the jump
We ∼ 1. Now using the fact that continuity implies Q ∼ uhR, at jump radius
We ∼ 1 and u

R
∼ ν

h2 , yields the characteristic length R0,
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R0 = Q
3
4 ρ

1
4

ν
1
4 γ

1
4

. (2.3)

The measurements of the dimensionless jump radius R/R0 are plotted against the
jet flow rate Q in figure 2.5. This shows that the data from experiments covering the
full range of Q, surface material and orientation and fluid properties (table 2.1) all
collapse on to the line R

R0
= 0.289 ± 0.015. This collapse of the data, consistent with

(equation 2.3), implies that the dominant balance in the formation of thin-film jumps
is associated with surface tension and viscous drag, and that gravity is irrelevant. In
the next section § 2.5, a more quantitative estimate of the jump radius is developed
on the underlying equations of motion.

2.5 Theory

2.5.1 Force due to surface tension; the normal stress bound-
ary condition

Fluid motion is governed by the Navier-Stokes equations which express conservation
of momentum in a fluid continuum. For flows with an interface between two fluids,
the Navier-Stokes equations or energy equation in differential form do not express
the surface tension force acting on the interface. This force is introduced as a normal
stress boundary condition at the interface.

Consider a surface S with unit normal n, bounded by a closed contour C with
arc length l in the interface between two immiscible fluids, taken here to be the
common case of a liquid and a gas denoted by the subscripts L and G, respectively,
with constant surface tension γ. Since the surface tension force acts in a direction
perpendicular n and the contour C, continuity of the normal stress is expressed as

∫
S

(TG − TL) · ndS + γ
∫
C

dl × n = 0, (2.4)

where = −pI + µ[∇u + (∇u)T ] is the total stress, with pressure p and velocity u,
and µ is the viscosity of the fluid. Using a vector identity and noting that S is an
arbitrary surface this gives the dynamic boundary condition

(TG − TL) · n = −γ(∇s · n)n, (2.5)
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Figure 2.6 Schematic velocity profiles in a flow with (a) ‘free surface’ and (b) a surface
with non-zero surface tension γ. The surface tension force retards the flow near the
surface giving a non-zero shear stress at the interface (2.4).

where ∇s = [I − nn].∇ is the surface gradient, relating the jump in the normal stress
to the curvature of the surface.

Assuming the dynamic viscosity of the air is negligible compared to that of the
liquid and denoting pressure in the air as pG and in the liquid as pL, (2.4) can be
written as

∫
S

(−pG + pL)ndS + µ
∫
S

n.[∇u + (∇u)T ]dS + γ
∫
C

dl × n = 0, (2.6)

where u is the velocity in the liquid.
In the case of a stationary liquid and gas, the middle term of (2.6) is zero and this

equation gives the usual Laplace pressure in the liquid associated with the curvature
of the surface. In the case of a flowing liquid the surface tension force can be balanced
by the viscous stresses at the surface, and for a sufficiently fast flow this can be
much larger than the Laplace pressure. This force balance manifests itself through a
non-zero velocity shear at the surface as shown in figure 2.6.

Force on an axisymmetric thin film

Following Bush and Aristoff (2003) for an axisymmetric thin film on a planar surface
we write the equation of the surface in implicit form

J(r, z) = z − h(r) = 0, (2.7)
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Figure 2.7 Schematic of the differential volume showing the slope of the thin liquid
film

which yields the normal vector

n = ∇J

|∇J |
= ẑ − h′r̂

(1 + h′2)1/2 , (2.8)

where r̂ and ẑ are unit vectors in the radial and wall-normal directions, respectively,
and h′ = dh/dr. We define the angle α as the tangent to the surface defined by
h′ = tan α. Then cos α = 1

(1+(h′2)1/2 and sin α = h′

(1+h′2)1/2 , and (2.8) can also be
written as

n = ẑ cos α − r̂ sin α. (2.9)

Consider the control volume shown in figure 2.7. Here dl = θ̂rdθ and

γ
∫ r+∆r

r
dl × n

= γ
∫ r+∆r

r θ̂ × (ẑ cos α − r̂ sin α)rdθ,

= γ
(
2πr cos αr̂ + 2πr sin αb̂

)∣∣∣∣r+∆r

r
,

= γ
(
2πr cos αr̂ + 2πr sin αb̂

)∣∣∣∣r+∆r

r
, (2.10)

where we have integrated azimuthally from 0 to 2π.
Noting that, since the radial length along the surface is dr

cos α
(figure 2.7) so that

dS = 2πr dr
cos α

, then from (2.6) and (2.10) the radial and vertical components of
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normal stress at the free surface can be written as

Fγ,r ≡
∫ r+∆r

r
µ
(
n · [∇u + (∇u)T ]

)
·r̂
(

2πr
dr

cos α

)∣∣∣∣
h

= −
∫ r+∆r

r
P sin α2πr

dr

cos α
+2πrγ cos α

∣∣∣∣r+dr

r
,

(2.11)
and

Fγ,z ≡
∫ r+∆r

r
µ
(
n · [∇u + (∇u)T ]

)
·ẑ
(

2πr
dr

cos α

)∣∣∣∣
h

= −
∫ r+∆r

r
P2πrdr+2πrγ sin α

∣∣∣∣r+dr

r
,

(2.12)
where P = pL − pG. Now recognising that upstream of the hydraulic jump, the liquid
film is almost flat which implies that α → 0 and P → 0, equation (2.11) can be
written as

µ

∫
S

n.[∇u + (∇u)T ]dS

 .r̂
∣∣∣∣
h

≈ γ
∫
C

dl × n.r̂ = 2πrγ
∣∣∣∣
r+∆r

− 2πrγ

∣∣∣∣
r
. (2.13)

Consequently, in a control volume approach the force due to surface tension, which
in differential form of the governing equation appears as a normal stress boundary
condition, can be incorporated as a surface force on the circumference of the control
volume (shown in figure 2.2b).

2.5.2 Control volume based analysis

In this section we will adopt a direct method and apply a energy balance on a
control volume. We Consider cylindrical co-ordinates r and z, the radial and jet-axial
coordinates, respectively, u and w the associated velocity components (figure 2.2),
and assume circular symmetry about the jet axis. In order to analyse the flow
the ansatz developed by Watson (1964) for the velocity within the thin film is used.
Then the radial velocity is written as u = usf(η), η ≡ z/h(r) (0 ≤ η ≤ 1), where η

is the dimensionless thickness of the film and us is the velocity at the free surface.
Using continuity the average velocity ū ≡ C1us is defined by

∫ h

0
urdz = usrh

∫ h

0
f(η)dη = C1usrh ≡ ūrh = Q

2π
= const., (2.14)

where C1 =
∫ h

0 f(η)dη = 0.615 is a shape factor determined from Watson’s similarity
solution for which he found the relation,

df(η)
dη

= 1.402
(
1 − f(η)3

) 1
2 (2.15)
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The flux of mechanical energy across an annular control volume shown in figure
2.2(b), is balanced from r to r + ∆r and from 0 to h (where the common factor 2π

has been canceled out),

(ρū2ūrh)
2

∣∣∣∣
r

− (ρū2ūrh)
2

∣∣∣∣
r+∆r

− (γūr)
∣∣∣∣
r

+ (γūr)
∣∣∣∣
r+∆r

+

pūrh
∣∣∣∣
r

− pūrh

∣∣∣∣
r+∆r

+ ρgūrh2

2

∣∣∣∣
r

− ρgūrh2

2

∣∣∣∣
r+∆r

− rτwū∆r = 0,

(2.16)

Here τw = ρν us

h
f ′(0) is the wall shear stress and from the velocity profile ansatz

(equation 2.15), f ′(0) = 1.402.
The first term is the flux of kinetic energy which is balanced by pressure, gravity

and viscous work given in the third, fourth and fifth terms. These are standard and
the new term that has been neglected in previous studies is the second term γūr

which represents the flux of surface energy. This term results from the increase of
surface area across the control volume as a result of the change in the circumference
from r to r + ∆r.

Dividing (2.16) by ∆r, taking the limit ∆r → 0 and using the fact that ūrh =
constant (see (2.14)) yields,

1
2

d(ρū2)ūrh

dr
− d(γūr)

dr
= −ūrh

dp

dr
− 1

2ρgūrh
dh

dr
− τwrū. (2.17)

From the boundary layer velocity profile ansatz we write ū2 =
∫ 1

0 u2dη ≡ C2u
2
s, where

C2 ≡
∫ 1

0 f 2(η)dη = 0.4755 is a second shape factor. Then equation (2.17) implies

C2ρu2
shr

dus

dr
− γr

dus

dr
− γus = −usrh

dp

dr
− 1

2ρgusrh
dh

dr
− τwrus. (2.18)

Note that the shape factor C1 cancels out in this equation, and so plays no role.
Again using equation (2.14), yields usr

dh
dr

= −hd(usr)
dr

which can be substituted in
equation (2.18), to obtain

(C2ρu2
sh − γ − 1

2ρgrh2)rdus

dr
= −usrh

dp

dr
+ γus + 1

2ρgush
2 − τwrus. (2.19)

Finally, rearranging equation (2.19) gives the gradient of the radial velocity

dus

dr
=

−usrhdp
dr

+ γus + 1
2ρgush

2 − τwrus

(1 − 1
W e

− 1
F r2 )(C2ρu2

shr) . (2.20)
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Wherein the Weber number and Froude number are defined respectively as,

We ≡ C2ρu2
sh

γ
, Fr ≡

√
2C2u2

s

gh
. (2.21)

It is clear that equation (2.20) is singular when

We−1 + Fr−2 = 1, (2.22)

and that the hydraulic jump occurs where this condition is satisfied.
In order to obtain quantitative results, equation (2.20) was solved for us using

the similarity velocity profile and the initial condition obtained from Watson (1964).
The boundary layer first occupies the full depth of the film at the location, rb, given
by rb

d
= 0.1833Re

1
3 , where the jet Reynolds number Re = 4Q

πνd
. At this location,

which for the present values of Re ∼ 104, rb ≪ R, us is set equal to the mean jet
velocity, which provides the initial condition to solve equation (2.20) which provides
its subsequent radial values. The solution of equation (2.20) is not sensitive to the
initial condition obtained using Watson’s similarity profile as other boundary layer
velocity profiles yield similar values of rb. The solution of equation (2.20) becomes
singular at the location where We−1 + Fr−2 = 1, yielding R. This condition provides
a more precise estimate and a physical basis for the scaling argument equation
(2.3), and also includes the small effect of gravity, and provides a general theory for
formation of a circular hydraulic jump.

2.6 Results

2.6.1 Effect of surface orientations

Figure 2.1 shows that for normal jet impingement the orientation of the surface does
not affect the radius of the jump. In figure 2.1(b), for a vertical wall, the jump is very
close to circular, which is further evidence that gravity plays no significant role. On
vertical plate, the jump radius was measured in the direction where gravity is normal
to radial direction. Therefore, for the theoretical prediction gravity was ignored. A
direct comparison between the four cases of a horizontal plane impinged from above
and below, a vertical plane and a surface inclined at 45◦ is shown in figure 2.8.

The theoretical curve, obtained ignoring gravity by setting g = 0 in (2.20), agrees
closely with the data from the vertical, inclined and horizontal plate from above.
The observed radius is slightly larger for the horizontal plate impinged from below.
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This is presumably because the ultimate transition to dripping flow or a water bell
is affected by gravity and occurs after the film initially thickens.
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Figure 2.8 Effect of flow rate on jump radius for the four surface orientations. In each
case the liquid was pure water. The theoretical prediction (Solid locus) is obtained
from setting g = 0 (Equation 2.20).

2.6.2 Effect of fluid properties: surface tension and viscosity

Figure 2.9 compares experimental measurements with the predictions of R for pure
water, WP95/5 and the aqueous SDBS solution for a jet impinging on a horizontal
plate from above. Table 2.1 indicates that SDBS and pure water have similar
viscosities but different surface tensions, while WP95/5 and SDBS have different
viscosities but similar surface tensions.

Lowering the surface tension (SDBS cf. water) increases R while increasing the
viscosity (WP95/5 cf. SDBS) reduces R. The corresponding theoretical curves
obtained from (2.20), again with g = 0, shown in figure 2.9, capture these variations
with liquid properties and agree with the experimental data.

Figure 2.10 compares data reported by Jameson et al. (2010) for liquid jets of 70
and 90 w/w% glycerol/water solutions, WG30/70 and WG10/90, at 19◦C and 28◦C,
respectively, impinging on the underside of a horizontal surface consisting of either
glass or Teflon®. For a given flow rate, the measured departure radius R is smaller
for the more viscous solution: the surface tensions are comparable.
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Figure 2.9 Effect of flow rate on initial jump radius for normal impingement on a
horizontal plate from above, for water, water-propanol (WP95/5) and SDBS at 20◦C.
Curves are the predictions obtained from solutions of (2.20). The predictions lie
within the uncertainty in the experimental measurements.
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Figure 2.10 Measured water bell departure radius, from Jameson et al. (2010),
alongside predictions (curves), obtained by solving (2.20) with g = 0. The liquids
were water-glycerol mixtures WG30/70 and WG10/90.
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The solution to equation 2.20 obtained by setting g = 0 slightly underpredict the
radius, but they capture the effect of the viscosity changes well. In their theoretical
description of the water bell departure radius, Button (2005) expected that R would
depend on the surface wettability or the contact angle between the surface and
the liquid which they revised in Button et al. (2010), however, their analysis is
fundamentally flawed and it is discussed in § 3.3.2. As can be seen in figure 2.10
there is only a very small difference between the glass (hydrophilic) and Teflon®

(hydrophobic) surfaces. Although they observed a change in the local contact angle
at the rim of the radial flow, the water bell formation radius was at the same location,
as predicted by the theory developed here.

2.6.3 Return to scaling

Equation 2.20 can be used to determine the constant in the scaling relation (2.3).
Using (2.14), (2.21) and the expression for the wall stress we find that

R

R0
=
(

1
f ′(0)(2π)3

C2

C2
1

) 1
4

= 0.245, (2.23)

which is close to the experimental best fit to the data 0.289 ± 0.015 quoted in § 2.3.
Thus, the theory allows us to quantify the scaling relation.

2.7 Conclusions

This chapter ultimately provides a resolution to the question: what gives birth to a
circular hydraulic jump in a thin liquid film? A scaling relationship (2.3) was derived
which collapses the experimental data and shows that the jump location is determined
by the viscosity and the surface tension of the liquid. Using a similarity solution
due to Watson (1964), with the addition of surface tension, quantitative predictions
of the jump radius R that are in excellent agreement with our measurements for
different surface orientations and fluid properties.

The hydraulic jump, or the supercritical to subcritical transition, occurs when
We−1 + Fr−2 = 1. From equation (2.20) it can be inferred that the transport of
surface energy becomes dominant for the expanding films at larger radii. The LHS of
equation (2.19) indicates that the liquid momentum must overcome the hydrostatic
pressure and surface tension. The jump is formed where the hydrostatic pressure
term ρgh2r and surface force γr are greater than or equal to the momentum. This
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behaviour was previously attributed to the hydrostatic force alone, which is a special
case of the general solution.

Previous analyses have incorporated surface tension but only through the hoop
stress, which, we agree, is small on the scale of these jumps and is effectively
incorporated in the pressure term in equation (2.16). It is the loss of energy
associated with the radial transport of surface energy that implies that the flow
can no longer provide the kinetic energy to maintain the thin film. At this point
the flow decelerates rapidly, the depth of the flow increases and the hydraulic jump
occurs. This is equivalent to the surface tension force associated with curvature of
a film of thickness h, and hence this thickness is the relevant length scale in the
Weber number used to obtain the scaling relation equation (2.3). Comparing the
scaling relation obtained in this chapter, equation (2.3), R ∼ ρ1/4Q3/4ν−1/4γ−1/4,
with the result obtained by Rojas et al. (2013) in the limit of zero surface tension,
R ∼ Q3/4ν−1/4H−1/2g−1/4, implies that the depth of liquid downstream of the jump
scales with capillary length scale H ∼ (γ/gρ)1/2.

It is also worth noting that the dependence of R on Q and ν our scaling relation
(Q3/4ν−1/4) is very similar to that obtained by Bohr et al. (1993) quoted in § 2.2,
namely, Q5/8ν−3/8. Consequently, these and other authors were able to fit their data
to the latter scaling which involves gravity and not surface tension, since these latter
two parameters were not changed between experiments. Similarly, Hansen et al.
(1997) found empirically that the jump radius for water, R ∝ Q0.77 which is close
to the obtained scaling relationship, R ∝ Q3/4. However, they concluded that it is
consistent with the scaling relation obtained by Bohr et al. (1993), which predicts
R ∝ Q5/8.

The critical Weber number based on the film thickness at the jump implies that
the flow speed is

√
γ/ρh, which is the speed of capillary waves with wavenumbers

comparable to the inverse of the film thickness. Consequently, capillary waves play a
similar role in this situation to gravity waves in the traditional hydraulic jump.

It should again be emphasised that the study only concerned with the location of
the jump on an infinite plane. For vertical jet impingement on a horizontal surface,
the liquid film eventually reaches and flows off the edge of the surface. At that point
there will be another boundary condition resulting from this flow off the edge which
will result in information travelling upstream through the subcritical region to the
initial jump location. This will effectively flood that control and, in general, the
jump will move inwards from its initial location, reducing R. However, on a vertical
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plate or on impingement of a liquid jet onto a ceiling, the jump will remain at the
same location.

Finally, it is worth considering what constitutes a thin film in this context. As
shown in equation § 2.3, balancing the deceleration with the viscous drag implies
that the film aspect ratio κ ∼ Re−1. For the values of Re ∼ 1000 in the experiments
h ∼ R.10−3 ∼ 100 µm.





Chapter 3

Energy vs Momentum equation;
reconciliation with previous
theories

3.1 Introduction

In § 2, it was shown that, irrespective of the orientation of the surface, on normal
impingement of a liquid jet on to a surface, the liquid film spread radially until a
point where the liquid film changes its film thickness abruptly and forms a circular
hydraulic jump (figure 2.1). Furthermore, for same flow rate and physical properties,
the hydraulic jump occurred at the same location. This experiment unequivocally
confirmed that gravity plays no significant role in the formation of a kitchen sink
scale hydraulic jump (figure 2.1). It also challenged the previously held views that
the abrupt change in liquid film thickness on a horizontal (Bohr et al. (1993); Bush
and Aristoff (2003); Watson (1964)), vertical (Wang et al. (2015, 2013b); Wilson
et al. (2012)) and on underside (Jameson et al. (2010)) of a surface are different
phenomena. Rather, they are related and can be explained by same set of governing
equations. Therefore, the existing theories where gravity plays a central role in the
formation of hydraulic jump (Bohr et al. (1993); Bush and Aristoff (2003); Watson
(1964)) are unlikely to give a reasonable description of the flow field.

In § 2, equation 2.20 was derived by incorporating surface energy into the
mechanical energy equation. Equation 2.20 becomes singular at a finite radial
location, taking the form, du

dr
→ −∞, implying dh

dr
→ ∞, which yields the location of

the hydraulic jump. The criterion for hydraulic jump was found to be; 1
W e

+ 1
F r2 = 1
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which suggests there are two limiting cases.
Case 1: We ≈ 1 and Fr ≫ 1. The jump is caused by surface tension, and occurs
when the film thickness is small and the momentum per unit width is of the order of
the surface tension. For circular hydraulic jumps, the expanding flow field favors
this case and most jumps are induced by surface tension.
Case 2: Fr ≈ 1 and We ≫ 1 and. When the liquid film thickness is large and the
flow of momentum per unit width is high compared to the surface tension, then
the jump is initiated by gravity. None of the experiments reported in this paper
correspond to this case and for thin films it is effectively We ≈ 1. The theory also
explained, why the film jump/hydraulic jump on a vertical surface and water bell
departure radius/hydraulic jump are insensitive of substrate type.

In contrast to earlier theories (see Bohr et al. (1993); Bush and Aristoff (2003);
Kasimov (2008); Watson (1964)) which were obtained by solving the Navier Stokes
equations, the results shown in § 2 are significantly different in several key aspects.
However, in principle, both methods should yield similar results. Therefore, in this
chapter, a momentum based approach is adopted to describe the flow field and
reconcile the results with previous theories.

The aim is to answer the questions; (i) why previous approaches fail to explain
the birth of a hydraulic jumps; (ii) to what extent is the flow field upstream of a
hydraulic jump affected by the surface tension, and can previous theories still be
used for cleaning and other, such as, heat and mass transfer applications. To achieve
this, the assumptions and limitations of the previous theories will be revisited. It is
argued that in the case of thin film flows, the slope of the free surface and the force
due to surface tension cannot be ignored. To achieve this aim, the previous literature
in reviewed in § 3.2. A control volume analysis, applying momentum balance is
described in § 3.3 and the role of surface tension, which was ignored previously is
highlighted. In § 3.4 the results are compared from previous and the current theories.
Conclusions are drawn in § 3.5.

3.2 Previous approaches

Watson (1964) recognised that since the central layer of the liquid film created by
impinging jets are thin, the ideas of boundary layer should be applied to describe
the flow field. He described the flow as; soon after the impingement of a jet, in
the spreading liquid film, a boundary layer will grow from the stagnation point and
gradually absorb the whole film, and at a particular radial location the whole film
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becomes a boundary layer. By balancing the liquid momentum with the viscous force,
for large values of r, he found a similarity solution for the laminar boundary layer
equations. Watson’s governing equations, obtained ignoring the surface tension of the
fluid, predicted a smooth film thickness profile. Watson recognized that the Froude
number of the flow outside the jump is small and at the location of the hydraulic
jump, momentum conservation can be applied. Therefore, balancing momentum
with the hydrostatic pressure obtained him a relation for the hydraulic jump. The
relation involved depth of the film outside/downstream of the jump, H, jet diameter,
d, jump radius, R and other physical parameters; flow rate, Q, kinematic viscosity,
ν, and gravity, g. These six parameters, yield four dimensionless groups;

Reynolds number defined as ReW at = Qd
2ν

,

the Froude number equivalent, Q2

RgH3 ,

dimensionless radius R
d

and RgH2d2

4Q2 .

Watson ignored the jet Reynolds number, as it is very large and the Froude
number equivalent as they would not produce large corrections, he suggested that
RgH2d2

4Q2 can be related to (R
d
)(ReW at)− 1

3 . The main shortcomings of Watson’s theory
are; (1) it is a non-predictive theory. To apply the momentum balance at the location
of the hydraulic jump, the height of the film downstream of hydraulic jump needs to
be measured;(2) the flow described by Watson ignores the effect of surface tension
hence the description of the flow field is inaccurate (see § 2); (3) the theory implies
that thin film circular hydraulic jumps are formed due to gravity, which has been
proven not to be true (see § 2, figure 2.1).

Bohr et al. solved shallow-water type equations including viscosity and gravity.
They wrote the axisymmetric Navier–Stokes equations and averaged these in the
vertical direction. This vertically averaged Navier–Stokes equation yielded the
shallow-water equations for film thickness and the average radial velocity. The
viscous loss term was approximated in terms of average velocity, film thickness and
an ansatz for the velocity profile. They then applied the constant flux condition and
eliminated liquid film thickness from the continuity and momentum equations. This
manipulation yielded an ordinary differential equation for velocity as a function of
radial location. Then they analysed the solution of this differential equation. They
found that outer solutions of their equations become singular at a finite radius and
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argued that this lack of asymptotic states is a general phenomenon associated with
radial flow with a free surface. It is important to recognize that this singularity
predicts velocity to be positive infinity (+∞) which is physically impossible. Bohr
et al. also suggested that incorporating gravity in Watson’s solution will give a
similar singularity. They connected the inner and outer solution through a shock
and found a scaling relation for the hydraulic jump. Bohr et al. focused mainly on
the hydraulic jump and not the flow field.

Azuma and Hoshino (1984a) provided an early detailed description of the flow
field. They subdivided the flow field into a boundary layer formation zone, a laminar
zone and the a turbulent zone. Similarly Lienhard (1995); Liu and Lienhard (1993)
studied the flow field created by impinging liquid jets for heat transfer applications.
Neither Azuma and Hoshino nor Liu and Lienhard incorporated the effect of surface
tension but they were able to predict the measurable physical quantities, for example
liquid film thickness and heat transfer coefficient, reasonably well. Since both these
theories describe turbulent film, the theories will be discussed in detail in § 4.

Jameson et al. (2010) reported the formation of water bells. To explain the water
bells theoretically, Button et al. (2010) used Watson’s description of flow and gave
a film termination condition or a condition for water bell departure radius. They
invoked the theory for disintegration of a liquid sheet (Taylor (1959)) and proposed
that at the location of detachment point, the liquid momentum should be balanced
by the surface tension. However, their interpretation of Taylor’s theory is flawed and
discussed in § 3.3.2.

Wilson et al. (2012) studied the flow field created by liquid jets impinging on a
vertical plate. They described the flow upstream of the jump as a Nusselt film and
named the sudden change in film thickness at a finite radius as the ‘film jump’. They
suggested that at the location of film jump, the forward momentum balances the
force due to surface tension including the contact line. This theory suggested that
the film jump location should be sensitive to the nature of the substrate. However,
Wang et al. (2013b) found that the measured film jump locations were independent
of substrate type.

In § 2 it is shown that the film jump is the same family of event as hydraulic
jump and it is insensitive to substrate type and in the limit of large Froude number
the condition for a hydraulic jump is We ≈ 1.
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3.3 Theory

3.3.1 Momentum balance

Applying momentum balance to the control volume of fluid shown in figure 3.1 yields,

Figure 3.1 Control volume of the film element on which the momentum balance was
applied
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(3.1)

Here θ is the azimuthal angle and α is the angle subtended by liquid film with
horizontal. Dividing both sides by ∆r with limits ∆r → 0, owning to circular
symmetry eliminating ∆θ and using the constant flux condition usrh = constant,
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yields,

C2ρusrh
dus

dr
+ d(γr cos(α))

dr
= −rh

dp

dr
− 1

2ρgrh
dh

dr
− τwr (3.2)

Ignoring γ and α in equation 3.2 would yield an expression which has been used in
the conventional theories (see (Bush and Aristoff, 2003; Watson, 1964; Wilson et al.,
2012).

C2ρusrh
dus

dr
+ = −rh

dp

dr
− 1

2ρgrh
dh

dr
− τwr (3.3)

Equation 3.2 and 3.3 are the momentum balances in the radial direction. Equation
3.3 is a function of r which could be solved with a given initial condition, while
equation 3.2 is a function of both r and z (as α is a function of r and z). Again, in
the conventional theories, the new term (d(γr cos(α))

dr
) has been neglected.

Manipulating equation 3.2 further and taking a dot product with the radial
velocity, us yields,

C2ρu2
srh

dus

dr
+ usγ cos(α) + γrus

d cos(α)
dr

= −usrh
dp

dr
− 1

2ρgusrh
dh

dr
− τwrus (3.4)

Comparing equations 3.4 with 2.18 implies that us
d(γr cos α)

dr
= −d(γrus)

dr
and usγ cos(α) =

usγ.
This is despite a small growth in α up to the hydraulic jump location; the liquid

film remains thin enough that the relation usγ cos(α) ≈ usγ still holds. At the
location of the hydraulic jump, the radial velocity decreases rapidly and α changes
from ≈ 0◦ to 90◦, forming the hydraulic jump. Equation A.6 (see Appendix A)
suggests that the vertical component of the velocity in the flow field, w, takes the
form of w = udh

dr
η = usf(η)h′η. Near the hydraulic jump radius, where u rapidly

decreases, w can still have a finite value forming hydraulic jump as α → 90◦ or
h′ → ∞. It suggests that the momentum based analysis presented in this chapter is
consistent with the energy based analysis presented in § 2.

In § 3.4, the prediction from the current theory is compared with Wilson et al.
(2012) flow model. The following key quantities are selected for the comparison:
average velocity, ū, momentum per unit width M , and wall shear stress τw, which
are defined as,

ū = us

∫ 1

0
f(η)dη ≡ C1us (3.5)
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M =
∫ h

0
ρu2dz ≡ C2ρu2

sh (3.6)

τw = µ
∂u

∂z

∣∣∣∣
z=0

(3.7)

Following the numerical solution of equation 2.20, ū and M is calculated from
equations 3.5 and 3.6 and the wall shear stress is given by,

τw = 4.56πµū2r

Q
(3.8)

Wilson et al. (2012) described the liquid flow in the radial flow zone as a fully
developed Nusselt film and for that the mean liquid velocity is given by,

ū(Wilson et al., 2012) = 1
1

U◦
+ 10π2µ

3ρQ2 [r3 − r3
o]

(3.9)

Momentum per unit width, M

M(Wilson et al., 2012) = 6
5ρū2

Nuh (3.10)

And the wall shear stress is given by,

τw(Wilson et al., 2012) = 6πµū2r

Q
(3.11)

3.3.2 Hydraulic jump/film jump

Button et al. (2010) proposed a model for water bell departure radius in which
they balanced the momentum with the surface tension. They invoked Taylor (1959)
analysis of disintegration of fluid sheets. Taylor (1959) applied a force balance at the
free edge of the bounding liquid sheet and found a relationship for disintegration
radius as the location where M = 2γ. Button et al. (2010) argued that, a moving
liquid sheet in air contains two moving surfaces which yields M = 2γ, adopting
the analogy, for moving liquid film with one free surface should yield a balance
M = γ. This analysis is flawed, since unlike liquid sheets with free edge, the water
bells are surrounded by the contact line attached to the surface. Hence, correct
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adaptations of Taylor (1959)’s analysis should yield M = γ(1 − cos β), where β is the
contact angle between the liquid and the wall (see figure 3.2) which would suggest
a dependence on surface wettability. Moreover, Button et al. (2010) wrote ‘It was
observed experimentally that the liquid formed a local contact angle with the solid
surface at the rim of the radial flow. This local contact angle was dependent on the
wettability of the surface. Even so, the water bell departure radius was found to be
independent of the surface, despite the formation of the local contact angle.’

In the Wilson et al. (2012) model the location of the film jump is determined by
a balance between momentum and surface forces. They estimated the net surface
tension force acting at the film jump as γ(1 − cos β). Wilson et al. (2012) analysis
agrees with Taylor (1959) analysis of disintegration of liquid sheets. However, Wang
et al. (2013b) reported that the location of the film jump was independent of the
nature of the wall material and could be calculated from their model by using an
effective contact angle of 90◦.

Figure 3.2 Schematic, not to scale, showing a cross section of the RFZ and rope in a
vertical plate.

In § 2, it was shown that the condition for a hydraulic jump is; We−1 + Fr−2 = 1
(equation 2.22). It has also been shown that for a kitchen sink scale jump, gravity is
unimportant and the effective condition for a jump is We ≈ 1 which implies that at
the location of a hydraulic jump,

M =
∫ h

0
ρu2dz ≡ γ (3.12)
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where M is the momentum per unit width at any radial location. To predict the film
jump, Wang et al. (2015) used an effective contact of 90◦ which essentially satisfies
equation 3.12 and hence predicts the hydraulic jump.

3.4 Results

Due to its simplicity and reasonable description of the flow field (see Aouad et al.
(2016), Pérez-Mohedano et al. (2015)) and its applicability (see Glover et al. (2016),
Damkjær et al. (2017)) Wilson et al. (2012) flow model is being used for comparison
with the current theory.
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Figure 3.3 Comparison of average velocities obtained from the solution of equation
2.20 and equation 3.9 (Wilson et al. (2012)).

The solution of equation 2.20, with initial condition at rb

d
= 0.1833Re

1
3 , us = Uo =

mean jet velocity, provides the surface velocity at subsequent radial positions and
the mean radial velocity can be calculated from equation 3.5. Similarly the solution
of equation 3.9 give Wilson et al.’s prediction of the mean velocity at different radial
positions.
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Figure 3.3 compares the mean velocity predicted by 3.9 (Wilson et al., 2012) and
the present work, 3.5 from the radial position starting from rb up to the hydraulic
jump; and for a range of flow rates (0.8 −2 L min−1) and a nozzle diameter d = 2 mm.
Equation 2.20 becomes singular at a finite radius, which predicts the hydraulic jump
and it is not valid beyond this point, However, equation 3.3 is a continuous function
which predicts a finite radial velocity in the range d

2 ≤ r < ∞. For all cases, at a
smaller radius, the Wilson et al. model predicts a higher value of velocity which
decreases rapidly at subsequent radial positions.
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Figure 3.4 Comparison of the radial distribution of the momentum per unit width,
M . Dashed curve show the prediction using Wilson et al. (2012) whereas the solid
curve show prediction from the present study.

At a larger radius, the mean radial velocity predicted by the present theoretical
description has a higher value which, matches with Wilson et al.’s prediction at
the location of the hydraulic jump. Moreover, there is an evident difference in the
predicted velocities, nevertheless Wilson et al.’s theory gives a reasonable engineering
estimate of the velocity which could be easy to implement for its application in
cleaning, heat and mass transfer.
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Figure 3.4 compares the momentum per unit width, M , as a function of the radial
position. Again at smaller radii Wilson et al. (2012) predict slightly higher values of
the radial momentum however, the two show a similar value at the location of the
hydraulic jump. This implies that both theories satisfy the jump condition given in
3.12 at same radial location, and hence predict the same hydraulic jump radius.
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Figure 3.5 Comparison of estimated wall shear stress distributions. Dashed curve
show the prediction using Wilson et al. (2012) whereas solid curve show prediction
from the present study.

The wall shear stress was calculated using equations 3.8 and 3.11 and compared for
a range of flow rates (0.8 −2 L min−1) and a nozzle diameter d = 2 mm. At smaller
radii, the wall shear stress predictions from Wilson et al. (2012) are almost 2 orders
of magnitude higher compared to the present model, which rapidly decreases and
give similar value at larger radii. The simple model which ignores the boundary layer
formation and the detailed theory presented here do not show good agreement for
the wall shear stress. This is further discussed in Section 4.5.4 .
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3.5 Conclusions

In § 2, we solved the mechanical energy equation and obtained the governing equation
describing the flow field created by impinging liquid jets. In this chapter, it was shown
that the momentum based approach agree with the energy based approach. The
main aims of the current chapter were to, (1) show that the energy and momentum
based approach yield same results, (2) compare the current results with existing
literature to reconcile and find the limitation of the existing theories, (3) to find the
shortcomings of the existing literature and identify; why existing theories failed to
answer the question ‘What gives birth to a hydraulic jump?’

The theoretical analysis presented in § 3.3 show that the slope of the liquid film
and the force due to surface tension cannot be ignored. At a smaller radius, surface
tension does not produce a large correction. However, at a larger radius the liquid
momentum per unit width, M , is comparable to the force due to surface tension and
produces large corrections. At the location of the hydraulic jump, liquid momentum
equals the surface tension.

We compared the average velocity predicted by Wilson et al. (2012) and the
current theory, and both theories give similar prediction for the average velocity. In
§ 4.4.3 we will show that the current theory gives good agreement with experimental
data though the Wilson et al. prediction provides reasonable engineering estimate of
the average velocity in the liquid film. Similarly, both theories give similar values
of momentum per unit width, M . Wilson et al. (2012) gives sufficiently reasonable
prediction of the average velocity and momentum, and due to its simplicity, it could
be easier to implement it for applications such as cleaning, where the rate of cleaning
is proportional to the momentum in the film (Bhagat et al. (2017); Glover et al.
(2016); Wang et al. (2013a); Wilson et al. (2014, 2015)).

The prediction for the wall shear stress was compared for both the theories.
Wilson et al. consistently gives higher value of the wall shear stress compared to the
predictions from the current theory. This is due to the fact that Wilson et al. (2012)
flow model ignored the initial development of the boundary layer and assumed a
fully developed liquid film from the perimeter of the footprint of the impinging jet
and beyond. Therefore, Wilson et al. (2012)’s theory can not be applied for cases
where shear stress is the driving force of action, such as an erosive cleaning process.



Chapter 4

Flow field created by impinging
liquid jets when liquid film
becomes turbulent

4.1 Introduction

§ 3 compares the energy based approach to describe the flow field (See § 2) with the
momentum based approach which is widely used in the literature (For example see;
Bohr et al. (1993); Bush and Aristoff (2003); Kasimov (2008); Mathur et al. (2007);
Watson (1964); Wilson et al. (2012) ). The conclusions from § 3 that, although the
previous momentum based approach is not accurate, it gives a reasonable estimate
of the velocity and momentum in the radial flow zone, RFZ (see figure 4.1). These
quantities are widely used for applications such as cleaning and heat transfer, and
the momentum based approach ignoring surface tension could be easier to implement
for engineering applications. In this chapter, the discussion is extended to higher
Reynolds number flows, where the thin liquid film in the RFZ becomes turbulent.
The transition to turbulence in the thin liquid film results in higher rates of heat
and mass transfer, which is discussed in this chapter.

Turbulent liquid jets (Re > 20000) are widely used for cleaning, with applications
ranging from the internal and external surfaces of processing and storage vessels
(Burfoot and Middleton (2009)), to kitchenware in dishwashers (Pérez-Mohedano
et al. (2015)). Liquid jets impinging on solid surfaces are also employed in process
intensification for enhancing local heat transfer rates (Lienhard, 1995) . High speed
jets can also be used for cutting (Leach and Walker, 1966). In cleaning applications,
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knowledge of the flow pattern created by the jet is important for determining local
cleaning rates as well as predicting wetting and draining behaviour. § 2 describes
‘what gives birth to a hydraulic jump in a thin laminar liquid film’. The present
chapter describes the hydrodynamics of thin liquid films at higher flow rates and jet
Reynolds numbers when the liquid film becomes turbulent.

On normal impingement of a horizontal jet onto a vertical surface, liquid spreads
radially outwards and changes its film thickness abruptly and forms an approximately
circular hydraulic jump (See figure 2.1 b). In this scenario, gravity is coplanar to
the direction of flow and it influences the thick liquid film beyond the hydraulic
jumps, profoundly. Hence, below the point of impingement, the accelerating liquid
film forms a draining film. Above the point of impingement, the slow liquid beyond
hydraulic jump, flows circumferentially in a rope (see figure 4.1). Moreover, the
hydraulic jump demarcates the region where the liquid velocity is higher and hence
shear stress and momentum is higher which is interesting, considering its application
in cleaning and heat transfer. It also roughly demarcates the horizontal spread of
the liquid on a vertical surface.

Many cleaning applications involve walls which are close to vertical. For high flow
rate jets, for which the radial spread is large, the influence of gravity gives rise to
less symmetric flow patterns on a vertical wall. This chapter therefore focuses on the
flow patterns generated on a vertical wall. When a coherent horizontal jet impinges
on a vertical wall, as shown in figure 4.1, the liquid initially spreads out in a thin film
in a region which is here labelled the radial flow zone, RFZ. At some radial position
the outwards momentum in the film is countered by surface tension or when We ≈ 1
and a jump is observed: it is here termed the film jump to highlight the flow being
on a vertical surface. For high flow rate jets on a vertical plate, the radial spread
could be large and unlike the horizontal case, where gravity is perpendicular to the
radial velocity, here gravity is coplanar to the flow. Therefore, for a high flow rate
jet on a vertical surface, gravity can cause the location of the film jump to vary with
azimuthal position, θ. Hence, to describe the variation of film jump in azimuthal
direction, the film jump radius will be indicated as Rθ.

Below the level of impingement (marked AA′ on figure 4.1), the rope and radial flow
spread out further to generate a falling film which may narrow further downstream.

Morison and Thorpe (2002) reported the first systematic study of liquid jets
impinging on vertical walls. Wilson et al. (2012) presented a model for the flow in the
RFZ which gave good agreement with Morison and Thorpe’s data for the half width
of the RFZ (R90◦) on the plane AA′, in figure 4.1, as well as new experimental data
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Figure 4.1 Schematic of flow pattern formed by a jet impinging normally on a vertical
wall. (a) side view through section BB′ (b) front view. O is the point of impingement,
Uo is the jet velocity and d is the jet diameter.

sets. The dimensions of the RFZ for obliquely impinging jets and the flow behaviour
have since been investigated by Wilson and co-workers (Wilson et al. (2012), Wang
et al. (2013a),Wang et al. (2015, 2013b), Aouad et al. (2016)) as well as by other
groups (e.g. Gordeev et al. (2016)).

In the model of Wilson et al. (2012) the flow in the film is treated as laminar, with
a parabolic velocity profile similar to that in Nusselt’s analysis of film condensation
Nusselt (1916) (see § 3). The location of the film jump was obtained from a
balance between the outward flow of momentum in the liquid and the retarding
force provided by surface tension. At higher flow rates, approaching those of interest
for industrial cleaning applications, their model tended to overpredict the location
of the film jump (Wang et al., 2013b). Their model included a contribution from
the wall material, via the contact angle β (see § 3.3.2), which was not observed
experimentally: moreover, similar RFZ dimensions were found on walls with different
wetting characteristics. In § 2, It has been shown that these thin-film hydraulic
jumps result from energy losses due to surface tension and viscous forces alone.
In the scenario where vertical jets fall on a horizontal surface, gravity is always
perpendicular to the radial direction (or gravity is perpendicular to the flow plane)
which manifests in the form of gravity waves viz. the Froude number is therefore
incorporated into the condition for hydraulic jumps; We−1 + Fr−2 = 1. However, in
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the vertical plane, gravity and radial coordinates are coplanar hence Froude number
will disappear from the governing equation and the condition for hydraulic jump
becomes We = 1.

In the control volume analysis presented in § 2, Watson’s similarity velocity
profile was used to account for the velocity distribution in the vertical direction. The
evolution of velocity profile has not been considered in this analysis. However, at
higher flow rates the liquid film is likely to enter the turbulent regime (see Azuma and
Hoshino (1984a,b); Lienhard (2006)) and the laminar film (or Nusselt film behaviour
assumed by Wilson et al. (2012)) is unlikely to be valid for the whole film hence, the
evolution of the velocity profile must be considered. The aim of this study is to revisit
the treatment of the flow of the liquid film in the RFZ for horizontal (and inclined)
jets impinging on vertical walls, incorporating the effect of turbulence in the film.
The analysis is guided by the results from §3 and § 2, i.e. hydraulic jump occurs
when We ≈ 1 and downstream transport of surface energy term dominates only close
to the hydraulic jump radius, therefore, in rest of the film it can be ignored. The
results are compared with data reported in previous studies in the literature as well
as new estimates of the average velocity in the film obtained from observation of the
early stages of jet impingement. Several features of the flow in the RFZ, including
the transitions in wave behaviour and heat transfer performance reported by Azuma
and Hoshino (1984a,b),; Liu et al. (1991) and Lienhard (1995) are compared with
the results from the analysis.

The primary objective was to establish the limit of validity of the previous
approaches/models, in addition to providing a description for faster jets.

In most part this work has been published in the journal Chemical Engineering
Science (Bhagat and Wilson, 2016). I developed the theory, conducted the exper-
iments and analysed data. I drafted the manuscript which Prof Ian Wilson and I
edited. Text from this paper appears in this chapter.

4.2 Model development

Figure 4.2 shows an isometric sectioned view (through AA’ in figure 4.1) of the flow
profile created by normal impingement (ϕ = 90o) of a coherent liquid jet on a vertical
surface (through the plane AA′ in the figure 4.1). Where ϕ is the angle of inclination
between the wall and the liquid jet. In figure 4.2, the key regions are labelled: (i)
the radial flow zone (RFZ); (ii) the boundary of the radial flow zone, the film jump;
(iii) the rope region; and (iv) the draining film. The RFZ is important for cleaning



4.2 Model development 45

applications as the wall shear stress and momentum in the film are greatest in this
region.

Figure 4.2 Schematic of cross-section through the radial flow zone and the film jump
at θ = 90◦ (isometric sectioned view). The different flow zones are: (1) stagnation
region; (2) boundary layer formation, shown by dashed line; (3) boundary layer
reaches the surface and laminar flow zone starts; (4) laminar to turbulent transition;
(5) film jump; (6) rope. O is the point of impingement.

The model is presented in three sections. The first section deals with the flow in
the film for a jet impinging perpendicularly on a vertical wall. The second considers
the formation of the film jump. The third considers the case where the jet impinges
obliquely (i.e. ϕ < 90o or ϕ > 90o).

4.2.1 Normal impingement of a jet on a vertical surface

For the range of flow rates used in the present analysis, the velocity component in the
azimuthal direction, vθ, arising due to gravitational acceleration is small compared
to the radial component of velocity ū. Therefore ignoring the component of velocity
in the azimuthal direction and applying the boundary layer approximation for a
two-dimensional film flow, the governing differential equations for an axisymmetric
film flowing radially away from the point of impingement are:

1
r

∂(ur)
∂r

+ ∂v

∂z
= 0 (Continuity equation) (4.1)
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u
∂u

∂r
+ v

∂u

∂z
= 1

ρ

∂p

∂r
+ µ

ρ

∂2u

∂2z
− g cos θ (Navier Stokes equation) (4.2)

Cylindrical co-ordinates are used and the boundary conditions are

u = v = 0 atz = 0 (No slip at wall)
∂u

∂z
= 0 at z = h (No shear stress at the free surface)

Conservation of volume yields

Q =
∫ h

0

∫ 2π

0
urdzdθ (4.3)

The jets in the present study feature 6300 < Re < 32000, which lie in the
turbulent regime: Landreth and Adrian (1990) discussed the criteria for liquid jets
to be turbulent and used PIV measurements on impinging liquid jets to confirm the
presence of turbulent characteristics in cases where Re = 6560.

The pressure gradient in radial direction, ∂p
∂r

, is set to zero (ignoring pressure
due to radial curvature (see § 2) and parallel streamlines). Integrating equations 4.1
and 4.2 and applying Leibniz’ rule yields the momentum integral equation

1
r

∫ h

0
u2rdz − µ

ρ

∂u

∂r

∣∣∣∣
z=0

− hgcosθ (4.4)

In the following analysis, mirroring that of Azuma and Hoshino (1984b), the film
flow is sub-divided into three zones (see figure 4.2): (i) the boundary layer formation
zone (BLFZ), (ii) the laminar zone (LZ), and (iii) the turbulent zone (TZ).

4.2.2 Boundary layer formation zone

In the BLFZ, it is assumed that the influence of the wall is restricted to within the
growing boundary layer, of thickness δ. Beyond the boundary layer the local velocity
is initially that of the jet, Uo: this velocity is not influenced by the wall but is subject
to gravitational acceleration, giving,

us(r) = 2
√

U2
0 − 2gr cos θ (4.5)
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Re-writing equation 4.4 for the BLFZ gives

1
r

d

dr

∫ δ

0
u2rdz + 1

r

d

dr

∫ h

δ
u2rdz = −µ

ρ

∂u

∂z

∣∣∣∣
z=0

− hg cos θ (4.6)

Within the boundary layer, the velocity profile is assumed to be described by a
similarity solution of the form

u(r, z) = us(r)f(η) where η ≡ z

δ
(4.7)

Substituting equation 4.7 into 4.6 and integrating gives

1
r

d

dr
(u2

srδ)
∫ 1

0
f 2(η)dη + 1

r

d

dr
(u2

sr(h − δ)) = µ

ρ

Uo

δ
f ′(0) − hg cos θ (4.8)

writing
∫ 1

0 f 2(η) = C2 and f ′(0) = C3 allows equation 4.8 to be re-written as

C2
1
r

d

dr
(U2

o rδ) + 1
r

d

dr
(U2

o r(h − δ)) = µ

ρ

Uo

δ
f ′(0) − hg cos θ (4.9)

Applying conservation of volume (equation 4.3) to the two regions of the film gives

Q = r
∫ 2π

0

∫ δ

0
udzdθ + r

∫ 2π

0

∫ δ

0
usdzdθ (4.10)

For small values of r,
∫ 2π

0
2
√

(U2
o − 2grcosθ)dθ ≈ 2πUo (4.11)

Hence, equation 4.10 can be written as,

Q

2π
= rUoδ

∫ 1

0
f(η)dη + rUo(h − δ) (4.12)

writing
∫ 1

0 f(η)dη = C1 gives,

h = Q

2πrUo

+ δ(1 − C1) (4.13)

Substituting equation 4.13 into 4.9 yields

d(δ2)
dr

= −2δ2

r
− 2δ2gcosθ

U2
1 − 2C2 + C1

C1 − C1
− 2C3µ

ρU(C2 − C1)
+ Qgcosθδ

πUo(C2 − C1)U2r
(4.14)
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For a given velocity profile, equation 4.14 gives the thickness of the boundary layer
at position r and, from equation 4.13, the film thickness, h.

In this analysis, the velocity profile in the boundary layer and in laminar region
is assumed to be a fourth order polynomial in z, with

u(r, z) =

us(r)f(η) if 0 ≤ z ≤ δ

us(r) if δ < z ≤ h
(4.15)

Where,
f(η) = a1 + a2η + a3η

2 + a4η
3 + a5η

4 (4.16)

Equation 4.16 must satisfy the following two boundary conditions;

f(0) = 0 no slip condition (4.17)

Ignoring stress due to surface tension, no shear at free surface condition was imposed

f ′(1) = 0 free surface condition (4.18)

Beyond the boundary layer, the fluid velocity is the surface velocity, giving

f(1) = 1 surface velocity condition (4.19)

The experimental measurements of the velocity profile in such thin films by Stevens
and Webb (1993) show a linear velocity profile (see figure 4.3), f(η) = η near the
wall rather than a parabolic one, f(η) = 2η − η2 (as used by Wilson et al. (2012)
) or a cubic, f(η) = 3

2η − η3(see Liu et al. (1991); Schlichting et al. (1974)). The
remaining two coefficients in equation 4.16 were therefore found by setting the wall
behaviour to be linear. This requires

C1 =
∫ 1

0
f(η)dη = 1

2 (4.20)

C3 = f ′(0) = 1 (4.21)

and yields the result.

f(η) = η − 3η2

2 + 4η3 − 5η4

2 (4.22)
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This velocity profile gave good agreement with the Laser Doppler velocimetry
results reported by Stevens and Webb (1993) (see figure 4.3). It will also be shown
later (see §4.4.2) that the transition from smooth concentric waves to chaotic surface
waves observed in experiments is described reasonably well by the model, when the
velocity profile in the developing film is described by equation 4.22.
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Figure 4.3 Comparison between equation 4.22, linear, parabolic, cubic velocity profile
with the data extracted from experimental velocity profile reported by Stevens and
Webb (1993). Different symbols indicates separate data sets with different film
thickness

Equations 4.14, 4.15 and 4.16 are solved numerically for a given value of θ to
give the local film thickness and velocity. For the case where θ = 90◦, gravity has no
effect and an analytical solution to 4.14 can be obtained, viz.

δ = 2.12
√

µr

ρUo

for θ = 90◦ (4.23)

Substituting this result into equation 4.13 gives the film thickness profile along
AA′ in the BLFZ,
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h

d
= 0.125

(
d

r

)
+ 1.06

2
√

Re
2

√
r

d
(4.24)

Equation 4.3 then gives the following relationship between film thickness, h, and
average velocity ū at radial position r:

rhū = Q

2π
= d2Uo

8 (4.25)

Solving equations 4.24 and 4.25 yields the average velocity in the BLFZ:

ū = Uo

8( r
d
)(0.125(d

r
) + 1.06

2√
Re

√
r
d
)

(4.26)

The radius where the boundary layer reaches the free surface, labelled rb, and
beyond which liquid flows as a fully developed laminar film, is calculated by setting
h = δ in equation 4.13. An analytical result is available for θ = 90◦, viz.

rb

d
= 0.24 3

√
Re (4.27)

The film thickness predicted by the above model is similar to that reported by previous
workers: Azuma and Hoshino (1984b); Liu et al. (1991); Watson (1964)) all reported
expressions of the form rb

d
= O( 3

√
Re). Watson (1964) obtained rb

d
= 0.1833( 3

√
Re)

for his similarity profile, whilst Liu et al. (1991) found that a cubic velocity profile
gave rb

d
= 0.1773( 3

√
Re)

4.2.3 Laminar film zone (LZ)

Beyond rb the liquid flows in a fully developed laminar film which eventually becomes
turbulent (Azuma and Hoshino (1984a,b)). In the LZ, the velocity profile is again
assumed to be described by the fourth order polynomial, for consistency with the
BLFZ. In the LZ, however, η = z

h
. Equation 4.15 becomes:

u = us(r)f(η) 0 ≤ z ≤ h (4.28)

Solving equations 4.4, 4.22, and 4.28 with the initial condition that at r = rb,
ub = 1

2
2
√

(U2
o − 2grb cos θ) , yields the velocity profile in the laminar zone.

dū

dr
= −(5.7π2µū2r2)

Q2ρ
− 0.714gcosθ

ū
(4.29)



4.2 Model development 51

This requires numerical integration except at θ = 90◦, where integrating equation
4.4 with the boundary condition ū = Uo

2 at r = rb gives

(
Q

π

)2 (1
ū

− 1
Uo/2

)
= 1.9µ

ρ
(r3 − r3

b ) for θ = 90◦ (4.30)

The average velocity in the film, ū, is

ū = Uo

8 r
d

(
3.792
Rej

( r
d
)2 + 0.1975(d

r
)
) (4.31)

This can be compared with the velocity profile obtained by Wilson et al. (2012), who
assumed the film to have a fully developed parabolic velocity profile (i.e. a Nusselt
film) where r > d

2 : (
1
ū

− 1
Uo/2

)
= 10π2µ

3Q2ρ

r3 −
(

d

2

)3
 (4.32)

This can be rearranged for comparison with equation 4.31:

ū = Uo

8 r
d

(
6.667

Re
( r

d
)2 + (3Re−20)

24(Re) (d
r
)
) ≈ Uo

8 r
d

(
6.667

Re
( r

d
)2 + 0.125(d

r
)
) (4.33)

There is evident similarity between 4.31 and 4.33, providing some insight into the
good agreement seen with the Wilson et al. model. It predicts similar trends.

Solving equations 4.25 and 4.31 gives the film thickness in the LZ as

h

d
=
(

3.792
Re

(r

d
)

2
+ 0.1975(d

r
)
)

(4.34)

4.2.4 Laminar to turbulent transition

The laminar film eventually becomes turbulent at radius rt. Watson (1964) used the
approximate result of Lin (1945) to determine the transition radius. Azuma and
Hoshino (1984a,b) and Liu et al. (1991) found that Watson’s turbulent model did
not give good agreement with their experimental data and both groups presented
alternative correlations for rt

d
. Azuma and Hoshino set rt to be the location where

the film has granular waves of very small wave-length and they described these waves
as sandpaper-like waves (see Azuma and Hoshino (1984a,b)). Liu et al. (1991) used
two criteria: (i) where the smooth laminar film lost its transparency and became
a rough light scattering surface; and (ii) where there was a noticeable increase in
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the local Nusselt number (heat transfer coefficient). The latter results are compared
with the new model in figure 4.10. In the experiments, the transition is taken to
be where smooth regularly spaced concentric waves become more chaotic. It will
be shown that the correlations presented by Azuma and Hoshino (1984a,b) and Liu
et al. (1991) give less good prediction of these features.

Dou (2006) and Dou and Khoo (2010) proposed a mechanism for the laminar-
turbulent transition based on flow instability. Duo proposed that the instability
in a viscous flow can arise from the relative magnitude of the energy gradient in
the transverse z direction to that in the streamline r direction arising from viscous
friction. A large energy gradient in the transverse direction can potentially amplify
a disturbance while that in the streamline direction can absorb these disturbances.
From their analysis they concluded that, for pressure driven flows, an inflection in
the velocity profile can give rise to turbulence. For shear driven flows, the condition
for the transition is the existence of a zero velocity gradient in the velocity profile of
the averaged flow (Dou and Khoo (2010)).

The flow field created by an impinging jet is a shear driven flow, where turbulence
is promoted by surface waves, unlike the boundary layer on a flat plate where
turbulence starts from the wall (Kline et al. (1967) ;Azuma and Hoshino (1984a,b);
Dou and Khoo (2010)). The experiments which I have conducted, the jet has a
varicose shape owing to the Rayleigh-Plateau instability (Rayleigh (1892)), which on
impingement creates surface waves on the film (Azuma and Hoshino (1984a,b)). It
has been postulated that the change in surface wave behaviour can be promoted by
the existence of a singularity in the variation of energy with film thickness. This can
amplify a disturbance and convert a smooth laminar flow into a more chaotic flow:
such a location in the film can be a point of transition. It is acknowledged that the
hypothesis needs to be proven theoretically and experimentally. The energy flux per
unit width of the film is given by;

E = ρū3h + ρgrūh cos θ (4.35)

Substituting ū from equation 4.25 into 4.35

E = ρ(d2Uo

8hr
)3h + Q

2π
ρg cos θ (4.36)

The variation with film thickness is

dE

dh
= ∂E

∂r

dr

dh
+ ∂E

∂h
(4.37)
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Hence
dE

dh
= −3d6U3

o

256r4h2
1

(dh
dr

)
− d6U3

o

128r3h3 (4.38)

When dh
dr

= 0 in the laminar region, there is a singularity in dE
dr

and this is associated
with instability in the film. The condition for instability in film is then

dh

dr
= 0 (In laminar region) (4.39)

Solving equations 4.34 and 4.39 yields the transition radius, rt, for the case where
θ = 90◦ as

rt

d
= 0.2964 3

√
Re (4.40)

4.2.5 Turbulent region (TZ)

At low jet Reynolds numbers, the film jump may occur before the laminar-turbulent
transition. In cases where the film does become turbulent, the velocity profile is
assumed to follow a 1th

7 power law and the wall shear stress, τw, is calculated from
the Blasius law (Azuma and Hoshino (1984a,b) Azuma and Hoshino (1984a,b); Liu
et al. (1991); Schlichting et al. (1974)).

u

us

= η
1
7 (4.41)

τw

ρu2
s

= 0.225
(

µ

ρush

)1/4

(4.42)

Ignoring the azimuthal component of velocity and integrating equation 4.3 for a 1th

7
power law velocity profile (equation 4.41) yields

Q

2π
= 7

8usrh = ūrh (4.43)

Substituting Equation 4.43 into equation 4.42 gives

τw

ρu2
s

= 0.0366
4
√

Re
4

√
r

d
(4.44)
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Rearranging equation 4.4 and integrating with respect to η gives

usrh

r

dus

dr

∫ 1

0
f 2(η)dη = −τw

ρ
− gh cos θ (4.45)

Equation 4.45 can be further simplified to

dū

dr
= −0.047062π

Q

4
√

r5

4
√

Re
ū2 − 64

63
g cos θ

ū
(4.46)

At rt, continuity requires ū (laminar) = ū (turbulent) = ut. The velocity distribution
can then be calculated.

For θ = 90◦, equation 4.46 can be solved with the initial condition, ut = 0.422Uo

at r = rt = 0.2964d 3
√

Re. The result is

Uod
2
(1

ū
− 1

Ut

)
= 0.1673

4
√

Re

4
√

r9
∣∣∣∣r
rt

(4.47)

Rearranging equation 4.47 yields

ū = Uo

0.167
4√

Re

4

√(
r
d

)9
+
(
2.37 − 0.0108 2

√
Re
) (4.48)

Substituting for ū into Equation 4.43 gives the local film thickness:

h

d
= 0.0209

4
√

Re

4

√(
r

d

)5
+
(
0.296 − 0.001356 2

√
Re
)(d

r

)
(4.49)

For angles other than 90◦, the velocity is obtained by numerical integration. Examples
of the predicted velocity distribution, i.e. ū versus r, are compared with new
experimental measurements.

4.2.6 Hydraulic jump/ Film jump

High speed video of the initial stages of formation of the RFZ was used to obtain
estimates of ū for comparison with the above theory. An example of the early stages
of a jet impinging perpendicularly on to a vertical wall is provided as (can be seen as
video 1 at https://doi.org/10.1016/j.ces.2016.06.011). Initially the liquid spreads out
in an almost circular front. After a short period the liquid stops spreading outwards
and the rope forms. The location of the film jump at θ = 90◦ does not change
position with time: the rope falls beyond location R90◦ (see figure 4.1). At θ = 0◦,
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Figure 4.4 Photograph shows the flow in the RFZ and rope: photograph on glass
wall (Re = 22, 200, ϕ = 90◦, nozzle diameter 2 mm)

directly above the point of impingement, once the rope forms gravity causes it to
fall back over the spreading film. Therefore, in the upward direction, against gravity,
the film jump is first found to occur at the outer edge of the rope and R0◦ , is marked
accordingly in figure 4.1. With a hydrophilic wall material the rope spreads outward
and the film jump is then located somewhere inside the rope. At R90◦ gravity does
not cause the rope to move towards the film jump and the jump is located at the
inner edge of the rope.

In 3.3.2, it is shown the criteria for a hydraulic/film jump is,

We ≈ 1 (4.50)

Or when momentum equals the surface tension, for turbulent film therefore, this is
where

M =
ρ64

63
Q
2π

Uo

r

(
0.167
4√

Re

4

√(
r
d

)9
+
(
2.37 − 0.0108 2

√
Re
)) = γ (4.51)
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4.2.7 Obliquely impinging jet

The analysis is now extended to a liquid jet impinging obliquely on to a vertical
surface. Immediately after impingement, the jet velocity, Uo, remains the same;
however, the amount of liquid flow per unit width varies with θ. The azimuthal
component of velocity is again omitted from the analysis. However, due to inclination
of the jet, the amount of liquid flowing radially depends on θ.

The distribution of flow for an obliquely impinging jet presented by Kate et al.
(2007) was used by Wang et al. (2013b) and is used here. Oblique impingement of a
circular jet gives an elliptical zone of impact (see Figure 4.5). Kate et al. showed
that one of the foci of the ellipse, labelled S on Figure 4.5(b), acts as a source and
the liquid moves radially away from this point. The radial distance from the source
to the edge of the impingement zone, re, subtended by angle θ is

re = ro
sin ϕ

(1 + cos θ cos ϕ) (4.52)

where ro is the radius of the jet. Wang et al. (2013b) showed that the local average
velocity in the RFZ is given by

rūh = 1
2Uor

2
e sin ϕ for r > re (4.53)

Following the treatment leading to Equations 4.11, 4.12, 4.13 and 4.53, the film
thickness in the BLFZ with oblique impingement is given by

h = Uor
2
e sin ϕ

2rUo

+ (1 − C1)δ (4.54)

Solving equations 4.9 and 4.54 yields the equation for the evolution of boundary
layer thickness

d(δ2)
dr

= −2δ2

r
− 2δ2g cos θ

u2
s

(1 − 2C2 + C1)
(C2 − C1)

− 2C3µ

ρus(C2 − C1)
+ r2

egδ sin ϕ cos θ

(C2 − C1)u2
sr

(4.55)

Substituting equation 4.54 into 4.53 gives

ū =
1
2Uor

2
esinϕ

r
(

Uor2
esinϕ

2rUo
+ (1 − c1δ)

) (4.56)
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(a) Side and end views, showing non-circular RFZ

(b) End view, showing elliptical impact region
Figure 4.5 Schematics of a liquid jet impinging obliquely on a vertical wall. S is the
source point from where liquid spread out radially and O is the point of impingement
passing through the center line of the jet

where h and ū depend on both θ and ϕ. Similarly, in the LZ, equation 4.29 takes
the form

dū

dr
= − 5.7µū2r2

ρ(Uor2
e sin ϕ)2 − 0.714g cos θ

ū
(4.57)
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and for θ = 90◦

(
Uor

2
esinϕ

)2
(

1
ū

− 1
Uo/2

)
= 1.9µ

ρ
(r3 − r3

b ) for θ = 90◦ (4.58)

For the TZ, equation 4.46 becomes

dū

dr
= − 0.04706(

1
2Uor2

esinϕ
)

4
√

4r2
esinϕ

4

√
dr5

Re
ū2 − 64

63
g cos θ

ū
(4.59)

These results for the velocity and film thickness are used to find the location of the film
jump, Rθ, which will vary with θ. The predictions are compared with experimental
data for θ = 0◦ and 180◦ for a range of flow rates and angle of impingement ϕ.

4.3 Experimental

Two different apparatuses were used in this work. Figure 4.6 shows a schematic
of the test rig used for the majority of the experiments. Liquid was pumped from
an overhead supply tank through pressure, conductivity and temperature sensors
before entering a flow control valve. The pressure upstream of the nozzle was
measured to monitor the flow rate. These studies employed a solid stream nozzle
of internal diameter 2.667 mm (Lechler GmbH, Type 544) to generate the jet. The
nozzle mounting consisted of a 106 mm long section of i.d. 16 mm piping, including
a pressure port connection, followed by a 50 mm section of i.d. 11 mm to which
the nozzle was connected. This is more representative of industrial cleaning nozzle
installations than the very long, smooth entry sections used by workers such as
Azuma and Hoshino (1984a). The connections can introduce perturbations in the
jet. The nozzle mounting allowed rotation so that the angle of impingement could
be changed. The nozzle and target were located in a light-tight steel chamber, with
illumination provided by externally mounted 1200 W halogen lamps. All the sensors,
valves and pump were connected to a computer control and data collection system.
A detailed description of this system was also given by Wilson et al. (2015).

The nozzle was positioned 200 mm from the target, which was a 500 × 500 mm2

and 5 mm thick plate made of PerspexTM or glass. A graticule tape was fixed on the
target to provide in situ scale calibration. A white sheet of paper was mounted on
the dry side of the plate in order to give better image resolution and contrast. The
target was cleaned, wiped with ethanol, and allowed to dry before each experiment.
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Figure 4.6 Schematic of the test rig used to study the initial stages of RFZ formation.
Labels: P1, P2 – pressure sensors; T – temperature sensor; K – conductivity sensor;
FCV – flow control valve)

Deionised water at 23◦C was used as the test liquid. Initially liquid leaving the
nozzle was prevented from reaching the target by a PerspexTM interrupter plate to
allow the flow to reach steady state. After approximately one minute the interrupter
plate was removed and the flow pattern created by the jet striking the surface was
captured using a high speed camera (Phantom Miro M310) operating at 4300 frames
per second. (Can be seen at https://doi.org/10.1016/j.ces.2016.06.011, as videos 1)
shows the jet striking the target and the formation of a circular front of liquid which
grows and eventually forms a pattern similar to figure 4.1. Images were processed
using the NIH ImageJ and Matlab® software.

Although the nozzle was horizontal, gravity could cause the jet to droop a small
amount as it traversed the 200 mm to the target. The angle of impingement was
therefore slightly less. The effective angle of impingement was calculated and the
values are reported in table 4.1.

The second apparatus is described in §2.3. The experiments performed in the
second apparatus featured lower flow rates, with Q = 0.6 −2 L min−1. An IP65
waterproof fluorescent tube lamp illuminated the target. Photographs and video
were taken with a NikonTM D 3300 and Photron Fastcam SA3 cameras and image
processing was again performed using the ImageJ and MATLAB softwares.
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Table 4.1 Effective angle of impingement for jets inclined at ϕ = 90◦ and 120◦ as a
result of travel across the 200 mm distance between the nozzle and target.

Flow rate (L min−1) Effective angle of impingement
ϕ = 120◦ ϕ = 90◦

1.95 116.7 85.5
2.52 118.0 87.4
3.05 118.6 88.2
3.57 119.0 88.7
4.01 119.2 88.9

4.4 Results and Discussion

The models presented in § 4.2 provide estimates of film thickness, h, and average
velocity ū. Both terms are needed to predict the location of the film jump, R, using
equation 4.50. Film thicknesses were not measured in the experiments so the models
are compared with results from the literature. Model predictions of ū are compared
with the values obtained during the initial growth of the RFZ.

4.4.1 Film thickness

Stevens and Webb (1993) measured the thickness of thin films of water as part of
their study of the flow structure in the films with a free surface created by impinging
liquid jets. They used Laser-Doppler Velocimetry (LDV) to determine the velocity
profile in the film and calculated film thickness from conservation of volume. Figure
4.7(a) shows some of their experimental data alongside the model prediction, equation
4.24. For this jet Reynolds number, of 53100, equation 4.27 predicts the location
where the boundary layer to reach the surface of the film at rb ≈ 9.01d, indicating
that the data originate from the BLFZ.

Similarly, figure 4.7(b) compares the model predictions with data obtained at
Re = 37, 000 and 36, 100 for jet diameters of 23 mm and 14 mm, respectively. The
small difference in Re does not give a significant difference in the predicted h

d
values.

The predicted values of rb are 8d and 7.93d for Re = 37000 and 36100, respectively,
again lying within the BLFZ. Stevens and Webb did not present error bars with the
experimental data. There is good agreement between the experimental results and
the model in each case. It is noteworthy that there are no fitted parameters in the
model.
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Figure 4.7 Comparison of liquid film thickness in the RFZ measured by Stevens
and Webb (1993) with the model for the boundary layer zone, equation 4.24. (a)
Re = 53100, d = 10.9 mm; (b) Two different jets were used, with (i) Re = 37000,
d = 23 mm and (ii)Re = 36100, d = 14 mm. The test liquid was water at room
temperature.
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4.4.2 Transition radius, rt

In the laminar zone, the liquid film thickness initially decreases and reaches a location
where it is minimum. At this location dE

dh
shows a singularity and we hypothesize that

the laminar film becomes unsteady and turbulent effects are expected to dominate.
Equation 4.39 gives the location of the transition for the general case, and equation
4.40 for θ = 90◦. Azuma and Hoshino (1984b) presented the following correlation for
the radius of a transition based on their visual observations

rt

d
= 730Re−0.315 (4.60)

Whereas Liu et al. (1991) reported two correlations, one based on visual observation,

rt

d
= 1200Re−0.422 (4.61)

and one based on heat transfer data, viz.

rt

d
= 26800Re−0.68 (4.62)

Figure 4.8(a) compares the present model, for θ = 90◦, and the above correlations.
The prediction for rt

d
differs noticeably at lower Re. Equations 4.60 and 4.61 show

a similar trend but the former is consistently larger by about 15 units. All three
(equations (4.60-4.62) predict a decrease in rt

d
with increasing Reynolds number,

whereas the current model, equation 4.40, predicts an increasing trend. Equations
4.40, 4.61 and 4.62 predict similar values of rt

d
, in the range 9-15, for Re > 70000.

Figure 4.8(b) compares the present model predictions, equation 4.40, for rt

d
with

our experimental measurements of the location where the smooth concentric waves
started to break (see image 4.9).

Two sets of predictions are reported as the jet exhibited a varicose structure,
where surface tension caused the diameter to vary periodically before impinging.
The maximum and minimum jet diameters were extracted from photographs and
used in the prediction. For a 2.66 mm nozzle, the maximum and minimum measured
jet diameters were 2.86 and 2.66 mm. The experimental data lie between the values
predicted for the minimum and maximum jet diameters and shows good agreement
with the model. In the derivation of the criterion for the transition from laminar to
turbulent film behaviour, it is postulated, following the work of Azuma and Hoshino
(1984a) that the transition is accompanied by the loss of regularity in surface waves.
The photographs in figure 4.9 show regular concentric waves in the RFZ: further from
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breakup alongside the model predictions, equation 4.40. The error bars are standard
deviation of measured transition radius.
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the point of impingement these are less coherent. The prediction for the transition
(equation 4.40) is plotted on the image and shows good agreement with the observed
feature. By comparison, the Liu et al. (1991) correlation, equation (4.61, 4.62),
consistently overpredicts the transition.

The model also gave good agreement with transitions reported by other workers.
Liu et al. (1991) measured the local rate of heat transfer from a hot plate to the
film created by an impinging liquid jet. They reported measurements of local heat
transfer coefficient. The results are presented in terms of the local Nusselt number,
Nu, where the length scale is the jet diameter. The data in figure 4.10 show a general
increase in Nu with Re, and a decrease with radial location, r

d
. At higher Re there

is a discontinuity in the decreasing radial trend. Liu et al. attributed this to the
transition to a turbulent film. The transition radius predicted by the model, equation
4.40, is marked by a vertical dashed line on the plots and this shows reasonable
agreement with the location of the discontinuity. Their plots of local Nusselt number
vs r

d
show a generally decreasing trend but with a local maximum at rt

d
around 6-10.

Their data are compared with the current model in Figure 4.10 (a - e). At higher
Re the model gives a reasonably accurate prediction of this local maximum.

Cleaning of water soluble soils such as Xanthan gum by impinging jets shows
similar behaviour (Joppa et al., 2018). Figure 4.11 show the evolution of cleaning
pattern of a Xanthan gum layer coated plate by impinging liquid jet. A circular
cleaned region appears near the point of impingement, which grows in size with time.
Simultaneously, a ring shaped cleaned region appears at a particular radial location
in the RFZ.

The combination of a circular cleaned region near the point of impingement and
a ring cleared of soil further out creates an annulus-shaped foot print of uncleaned
material (See figure 4.11 (b-d), where darker areas are the cleaned regions). This
cleaning behavior can be attributed to the high shear stress, hence enhances cleaning,
near the point of impingement and enhanced mixing at the location where the laminar
film becomes turbulent. figure 4.12 compares the experimental measurements of
circular cleaned region with the prediction of the laminar to turbulent transition
radius. The corresponding theoretical curve obtained from solution of 4.40 shows
good agreement with the experimental data. This support my hypothesis that the
ring shaped cleaning region appears due to laminar to turbulent and enhanced
mixing.

Rao and Trass (1964) measured the local rate of mass transfer for a water jet
impinging on a horizontal plate coated with a soluble layer. They reported the local
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Figure 4.9 Photographs of the RFZ and draining films obtained with perpendicular
impinging jets, d = 2.667 mm and (a) Re = 15500 and (b) Re = 28000. Dashed
line – this work (d = 2.87 mm), solid line – this work (d = 2.67 mm), equation 4.40;
dotted line – Liu et al. (1991) correlation, equation 4.61.
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Figure 4.10 Effect of radial location on local Nusselt number for water jets impinging
on a heated surface. Data reproduced from Liu et al. (1991), forRe = (a) 83500, (b)
85500, (c) 48400, (d) 64300, and (e) 71100. Connecting lines between data points
are to guide the eye. The vertical dashed lines show the location of rt

d
predicted by

equation 4.40.
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Figure 4.11 Time series images of cleaning of Xanthan gum by a impinging water jet.
A circular disk and a ring of cleaned region appear near the point of impingement
and at a certain radial location in the RFZ, respectively. The experimental images
were modified with a false colour to show cleaned regions clearly. These images were
extracted from a video provided by Dr. Hannes Köhler from the Technical University
of Dresden (TUD).
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Figure 4.12 Cleaning ring radius plotted against jet Reynolds number for cleaning
of Xanthan gum coated horizontal plate by a vertical water jet. The curve is the
prediction of the laminar to turbulent transition radius, rt for the respective Reynolds
numbers. In the experiments the Re was manipulated by changing both jet diameter
and the liquid flow rate. Dr. Hannes Köhler provided the data.

Sherwood number (a dimenssionless mass transfer coefficient) for a range of Reynolds
numbers and jet diameters. At low Re, careful inspection of local Sherwood number
vs r

d
profiles shows a deviation from the general decreasing trend, similar to that

reported by Liu et al. for heat transfer. The location of the deviation is close the
transition predicted by the present model.

4.4.3 Velocity profile: Perpendicular impingement (ϕ = 90◦)

Measurements of the velocity profile in these films are complicated by the presence
of surface waves. Aouad et al. (2016) measured the surface velocity in the RFZ for
jets impinging perpendicularly on vertical walls using particle image velocimetry.
They used a dye to limit measurements to the surface region alone. The measured
surface velocities were noticeably higher than those predicted by the Wilson et al.’s
model and this was attributed to the presence of surface waves.
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In the present study the average film velocity was estimated from the initial
evolution of the flow pattern until a steady rope was formed. To estimate the average
velocity, the high speed videos were analysed to obtain the positional time series
of the leading edge of the initially spreading liquid film. The time series data was
then processed with a least-squares fit of a high-order polynomial, which allowed
to obtain the smoothed time series data. The smoothed data was then numerically
differentiated to get a reliable estimate of the average velocity. This method of data
processing does not give a reliable estimate of the error, therefore, error bars are not
presented (Cousins et al. (2012)).

Also, due to the experimental limitation, at the very beginning, i.e. just after
the jet impinges and the liquid film spreads very rapidly, reliable time series data
could not be obtained, and the velocity could not be estimated.

Figure 4.13 compares the average velocity profile for θ = 90◦ obtained from video
analysis for flow rates ranging from Q = 1.95 −4.01 L min−1 and nozzle diameter
dN = 2.67 mm (Re = 15500 to 32000) with the solutions of equation 2.20, the new
model presented in § 4.2, as well as those of Wang et al. (2013b). The latter is
based on that of Wilson et al. (2012) and includes the correction for an obliquely
impinging jet and gravity. There are no adjustable parameters in either model and
the agreement is good in most cases, until the approach to the film jump itself. The
agreement is less good for Re = 32000 but the general trend is captured.

Comparing the three models, the Wang et al. (2013b)) predictions show consis-
tently less good agreement. The model underpredicts the average velocity at larger
radial position but the difference is less than a factor of 2. In several cases the two
models (turbulent film and Wang et al. (2015)) bracket the measured velocity, while
the solution of equation 2.20 passes through the data.

The theoretical description presented in § 2 does not capture the laminar to
turbulent transition and the features arising from this. Nevertheless the solution of
2.20 show better agreement, compared to both the turbulent film model presented in
§ 4.2 and Wang et al. (2013b). This confirms that the surface energy term plays an
important role which should be included for an accurate description of the flow field.

The Wilson et al. (2012)/Wang et al. (2015) model nevertheless provides a
reasonable engineering estimate of the average film velocity. It is sufficiently accurate
for engineering estimates of phenomena determined by the film such as the location of
the film jump and cleaning at ϕ = 90◦ (see Wilson et al. (2014); Glover et al. (2016)).
Similarly, the turbulent film model presented in § 4.2 also provides the reasonable
estimate of average velocity, film jump and other features, such as enhanced heat
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transfer (see figure 4.10) and cleaning (see figure 4.11, 4.12) arising from the turbulent
transition.

4.4.4 Oblique impingement (ϕ = 120◦)

The obliquely impinging jet presents a stiffer test for the model presented in this
chapter as the distribution of liquid as well as the development of the spreading
film are tested. Figure 4.14 presents results for different flow rates for a challenging
case, where the jet impinges in an upward direction (ϕ = 120◦): Wang et al. (2013b)
showed that the widest part of the RFZ was then located above the impingement
point. For the value of ϕ = 120◦, re is largest at θ = 0◦ and smallest for θ = 180◦:
for a given flow rate the maximum liquid flux occurs at θ = 0◦ and the smallest at
θ = 180◦ and it represents the extreme cases, therefore, chosen for the comparison of
velocity. Figure 4.14 presents pairs of plots for each case studied; for θ = 0◦ (above
the impingement point, where flow is against gravity) and θ = 180◦ (downstream of
the impingement point). The effective angle of impingement, reported in Table 4.1,
was used in the calculations.

There is a noticeable kink in the new model, at the laminar to turbulent transition.
This is not evident in the estimated average velocity data. High speed videos were
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Figure 4.13 Comparison of experimental estimates of the average velocity ū obtained
from video analysis of the formation of the RFZ with the present model. Vertical
glass plate, nozzle diameter 2.67 mm , Q = (a) 1.95 L min−1, (b) 2.49 L min−1, (c)
3.01 L min−1, (d) 3.51 L min−1, and (e) 4.01 L min−1.
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Figure 4.14 Comparison of estimated average velocity with model predictions for
an obliquely impinging water jet (ϕ = 120◦) on a vertical PerspexTM plate, dN =
2.667 mm, for Q = (a) (a) 1.99 L min−1, (b) (a) 2.52 L min−1; (c) (a) 3.05 L min−1;
(d) (a) 4.01 L min−1; (1) (θ = 0◦), (2) (θ = 180◦).



78 Flow field created by impinging liquid jets when liquid film becomes turbulent

analysed to estimate the average velocity and the positional time series of the growth
of the film. The smoothed data was then numerically differentiated to obtain reliable
time derivatives. Due to data smoothing, the average velocity obtained using this
method can not show the expected shuttle kink in the velocity profile. Due to the
limitation of the data processing technique, the error in the average radial velocity
could not be estimated.

The experimental limitations restricted us to report the velocity measurement
data at smaller radius. Particularly, for the oblique configuration, ϕ = 120◦, the
direction of least liquid flux is θ = 180◦, (see figure 4.5). It is noted that on oblique
impingement of the jet, irrespective of the direction of flow the initial liquid velocity
remains the same, only the flux of the liquid varies with the direction. In the direction
θ = 180◦, the film jump terminates quickly. Therefore, it was difficult to get reliable
time series data near the point of impingement, hence the velocity could be estimated
only for a limited range of radial position.

The theoretical prediction and the experimental data show reasonable general
agreement except at larger radii. This was again due to the limitation in the adopted
velocity measurement method. Firstly, the governing equations, hence the velocity
prediction needs a correction due to surface tension of the fluid (see § 2), particularly
at larger radial locations, near the hydraulic jump. Secondly, near the hydraulic/film
jump, the radial velocity rapidly decreases and smoothing of the positional time
series data using higher order polynomials produces shuttle artifact at larger radius.
These artifacts then magnifies on the numerical differentiation and manifests in the
form of artifacts in estimated average velocity at higher radius. At smaller radii,
the theoretical prediction and the estimate of the average velocity are in excellent
agreement while at larger radius they show reasonably good agreement. These are
believed to be the first measurements of the average velocity for obliquely impinging
jets.

4.5 Hydraulic jump/Film jump

4.5.1 Horizontal jets impinging perpendicularly

The hydraulic jump or film jump is located where the outward flow of momentum
is countered by surface tension. Above plane AA′ in figure 4.1, the liquid collects
to form the rope and drains under gravity around the RFZ. Below plane AA′,
initially, a film jump was clearly observed on wall materials like Perspex (Can be
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seen at https://doi.org/10.1016/j.ces.2016.06.011, as video 3). However, owing to
gravitational acceleration in the downward direction, the film jump eventually gives
way to a transition to a draining film in steady state. Therefore, the film jump was
only observed above plane AA′. Above AA′ the film jump is not circular: this is
partly due to gravity retarding the upwards flow but also due to the dynamics of the
rope. At small values of θ (Can be seen at https://doi.org/10.1016/j.ces.2016.06.011,
as videos 1 and 2 ) the film jump and RFZ formed is initially almost circular: over
time, the rope grows in size and spreads downwards into the RFZ.
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Figure 4.15 Effect of flow rate on the location of film jump for a jet impinging
perpendicularly on a vertical surface at θ = 90◦. Comparison of measured values and
the model, equation 4.51 for Q = 1.95 −4.01 L min−1, dN = 2.667 mm

At larger values of θ such as 90◦, the rope spreads outwards, the extent to which
it spreads being determined by the nature of the surface, i.e. a hydrophilic wall
material favouring a wider rope. This observation indicates that the predictions of
the location of the film jump should be compared with the outer dimension of the
rope at θ = 0◦ rather than the inner limit.

Figure 4.15 compares the measured values of R for θ = 90◦ (ϕ = 90◦ for flow
rates between 1.95 −4.01 L min−1 (Re = 15500 to 32000) for equations 4.51 and the
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Wilson et al. (2012) model and for two different wall materials, PerspexTM and glass.
Following the discussion in § 3.3.2, the latter model uses an effective contact angle of
90◦.In all cases the jets are turbulent. The Wilson et al. (2012) model underpredicts
R but gives a reasonable estimate, which is consistent with the predictions of average
velocity in Figure 4.13. The solution of equation 4.51 gives very good agreement
with the data for Perspex but consistently underpredicts the observations on glass,
by 2 mm . On glass, which is hydrophilic, the liquid spreads on the surface and there
is more noticeable, random, variation in the film jump location. Button et al. (2010)
reported a similar, small variation in the departure radius of water bells on glass.

Comparing the models indicates that the new model provides a more reliable
prediction for the location of the film jump than those based on the Wilson et al.
(2012) approach.

4.5.2 Oblique impingement on a vertical surface

Predicting the location of the film jump for an obliquely impinging jet is, like the
average velocity profile, a sterner test of the model. Figure 4.16 compares the
experimental measurements of film jump location for θ = 0◦ and 90◦ and a range
flow rates, 1.95 −4.01 L min−1 and angles of impingement ϕ = 120◦ and 100◦. For
ϕ = 120◦, a large portion of the flow travels upward and gives rise to a very unstable
rope: the measurements of R were therefore made when the rope was first formed.
The difference in flow rates gives rise to R (θ = 0◦) being almost twice R (θ = 90◦).
The locus for the Wang et al. (2013b) model shows that it tended to overpredict R

(θ = 0◦).
In contrast, the new model gives good agreement with the experimental data for

both directions. Similarly good agreement was obtained for other values of θ (data
not reported), indicating that it provides a acceptably accurate description of the
flow behaviour within the jet for angles of impingement in the range 30◦ ≤ ϕ ≤ 120◦

4.5.3 Every man’s fluid mechanics

The oblique impingement of a liquid jet on a vertical wall is familiar to many in
the context of male urination in gentleman’s toilets. The model is applied here in a
somewhat jocular vein to test its predictive capacity for this everyday phenomenon.
A typical adult male urethral orifice is elliptical with dimensions 6 mm × 0.5 mm
and delivers 1 −1.4 L min−1 urine (Drake et al. (2014)). Hodgson and Smith (2014)
conducted a short study mimicking male urination against a vertical well. They
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Figure 4.16 Location of the film jump for a jet impinging obliquely on a vertical
surface. Comparison of measured and predicted values of R atθ = 0◦ and 90◦°.
Predictions are presented for the turbulent film model presented in this chapter
and that of Wang et al. (2013b). Q = 1.95 −4.01 L min−1, d = 2.667 mm: angle of
impingement ϕ = 100◦ and 120◦.

established the typical angle of impingement during urination to lie between 30◦ −60◦

and measured R90◦ and R0◦ for a 2 mm diameter nozzle at angle of impingements
40◦, 50◦ and 40◦ against a vertical PerspexTM sheet. They studied saline solution
16 g L−1,(mimicking urine) and water at 37◦C at flow rates of 1, 1.2 and 1.4 L min−1

. The density, viscosity and surface tension of saline solution at 37°C were similar
to that of water (given in parentheses), as 1009 kg m−3 (993 kg m−3), 0.71 (0.696)
mPa.s and 0.0704 N m−1 (0.0701 N m−1) respectively (Hodgson and Smith., 2014).
The film jump measurements are compared with the present model, equation 4.50,
in Figure 4.17. The horizontal distance between the wall and the nozzle was 105 mm
and some drooping of the jet due to gravity was encountered. The effective angle of
impingement was estimated and the values are given in Table 4.2. The model gives
a reasonable prediction of their film jump measurements.
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Figure 4.17 Location of film jump at θ = 0◦ and 90◦ for Q = 1 ,1.2 ,1.4 L min−1

and notional angles of impingement 40◦, 50◦ and 60◦ (equation 4.50). Data taken
from Hodgson and Smith (2014). Liquid temperature 37 ◦C, d = 2 mm and Re =
10600, 12700, and 14900. Loci show predictions from this work.
Table 4.2 Summary of the effective angle of impingement for ϕ = 40◦, 50◦, and 60◦

with 105 mm distance between the nozzle and target.

Flow rate (L min−1) Effective angle of impingement
ϕ = 40◦ ϕ = 50◦ ϕ = 60◦

1 42 51.4 61
1.2 42 51.4 61
1.4 42 51.4 61

The model does not account for splashback, which can cause social problems. Hurd
et al. (2013) characterized the splash back from male urination and recommended
that practitioners employ a low angle of impingement, ϕ, and a short distance of
travel so that the jet impinges as a coherent jet. If the jet is not close enough,
jet break-up due to the Rayleigh-Plateau instability results in more splash back.
The model confirms that a low value of ϕ will cause the bulk of the liquid to flow
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downwards. It is left to the reader to explain to practitioners that they should stand
close to the wall in order to generate coherent jets.

4.5.4 Wall shear stress in the RFZ

The shear stress imposed by the flow in the film is an important parameter in
applications such as heat transfer and in cleaning (where the soiling layer is eroded
by the flow). Yeckel and Middleman studied the removal of an oil layer by a water
jet impinging perpendicularly downwards on to a horizontal plate (creating a circular
hydraulic jump). The shear stress imposed on the oil layer by the water film caused
it to thin over time. They presented a two zone model for the flow in the RFZ based
on Watson’s analysis, with a turbulent film throughout. They obtained the following
results for τw:

τw =


0.0397ρU2

o

2 Re−0.2
(

r
ro

)−0.2
if r < r+

30.3ρU2
o

2

(
r
ro

)−0.25
Re0.25[

( r
ro

)2.25+27.24Re0.25
]2 if r > r+

(4.63)

where r+ is their estimate of radius at which the turbulent boundary layer reaches
the free surface, given by

r+

ro

= 1.84 9
√

Re (4.64)

Yeckel and Middleman used the jet radius as the length scale in the jet Reynolds
number: equation 4.63 are written in terms of Re as defined above, i.e. with
jet diameter as the characteristic length scale. The wall shear stress distribution
predicted by equation 4.63 for an example case is compared with those obtained
from the velocity distributions given by Liu et al. (1991); Wilson et al. (2012) and
the current work, § 4.2, in figure 4.18 . The wall shear stress is evaluated in each
zone using

τw = µ
∂u

∂z

∣∣∣∣
z=0

(4.65)

(i) For this work, in the BLFZ, differentiating equation 4.15 yields

τw = µ
U

δ
f ′(η)

∣∣∣∣
z=0

(4.66)

Using equation 4.23, for θ = 90◦, this gives

τw = µ
Uo

2.12 2
√

µr
ρUo

(4.67)
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In the laminar zone, the shear stress is given by

τw = µ
U

h
f ′(η)

∣∣∣∣
z=0

(4.68)

and for θ = 90◦,
τw = µ

Uo

4r
(

3.792
Re

( r
d
)2 + 0.1975(d

r
)
)2 (4.69)

In the turbulent zone, the wall shear stress is calculated from the Blasius law, giving

τw = 0.0478ρ
4
√

Re

 Uo

0.167
4√

Re

4

√(
r
d

)9
+
(
2.37 − 0.0108 2

√
Re
)
( 4

√
r

d

)
(4.70)

(ii) Liu et al. (1991)
Applying a similar treatment to this flow profile gives
Boundary layer

τw = µ
Uo

1.786 2
√

µr
ρUo

(4.71)

Laminar zone
τw = µ

0.3Uo

r
(

5.147
Re

( r
d
)2 + 0.1713(d

r
)
)2 (4.72)

(iii) Wilson et al. (2012) Likewise, the approximation of a Nusselt film yields the
result

τw = µ
3Uo

8r
(

6.667
Re

( r
d
)2 +

(
3Re−20

24Re

)
(d

r
)
)2 (4.73)

The shear stress distribution predicted using Wilson et al.’s description of the flow
field, equation 4.73, differs noticeably from the other profiles until larger values of r

d
,

which is in agreement with the results presented in § 3.4. The maximum in τw at
r
d

∼ 5 is not present in the other cases as this location lies in the initial region where
the boundary layer is still developing: boundary layer development is not considered
in the model. The trends in Figure 4.18 indicate that the Wilson et al. model is
unlikely to give reliable descriptions of erosive cleaning driven by surface shear stress.
The results presented in § 3.4 and in figures 4.13 and 4.14 show that the Wilson et al.
(2012) model does however give reasonable estimates for the momentum and ū in
the film, which is the key parameter in the model for adhesive removal (i.e. peeling)
presented by the same workers (Wilson et al. (2014)).
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Figure 4.18 Comparison of the estimated wall shear stress distributions for a jet with
d = 2 mm , Re = 21000, flow rate, Q =, 2 L min−1, θ = 90◦

Figure 4.18 shows that the current model predicts a similar distribution in τw to
that of the Liu et al.. The Yeckel and Middleman model predicts a noticeably larger
shear stress than the other detailed models for r

d
< 7: this is because their wall shear

stress calculation is for a turbulent film, using the Blasius law, and is higher in this
region than the shear stress in a laminar film. Thereafter the trends are similar, with
the prediction from the current work, equation 4.69, lying between the other two
results. This pattern was observed in other cases considered.

4.6 Conclusions

The flow pattern created by the impingement of a turbulent water jet on a vertical
wall was investigated using glass and PerspexTM walls. The thin film in the radial
flow zone was modelled as three regions and the governing equations were solved for
each to find the velocity field and the film thickness. The film thickness measurements
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reported by Stevens and Webb (1993) were used to guide the model: this in turn
gave predictions of the average velocity in the film which were compared with new
sets of data generated using high-speed video. The analysis yielded predictions for
the transition to turbulent flow based on the location where the laminar liquid film
can amplify a disturbance and become chaotic.

The postulation for the criterion for transition from a laminar film to a turbulent
one is based by work of Dou and Khoo, and relates the transition to the point
where there is a minimum in film thickness. In the experiments the transition was
assigned to be the distance where concentric transverse surface waves (arising from
the jet being varicose due to a Plateau-Rayleigh instability) were replaced by more
chaotic structures. This hypothesis requires more rigorous theoretical analysis and is
a topic for further study. Nevertheless, the model for turbulent transition gives good
agreement with the experimental data.

The measurements of the average velocity in the film were obtained using a
new technique. The average velocity is obtained by differentiating the time series
data obtained from the leading edge of the initially growing liquid film. It avoids
the complications experienced using velocimetry where the influence of waves is
significant (see Aouad et al. (2016)). It is relatively robust, independent of liquid
optical properties and can be readily applied to different wall materials, angles of
inclination and flow rates.

The model gave good agreement with both the historical and new data, for average
velocity and location of the film jump. The predictions for obliquely impinging jets
were noticeably superior to the model of Wang et al. (2013b) and Wilson et al. (2012).
This will allow the rate of cleaning by such jets, using the model of Wilson et al.
(2014), to be predicted with greater confidence.



Chapter 5

Cleaning by stationary and
moving liquid jets

5.1 Introduction

The previous chapters discuss the hydrodynamics of impinging liquid jets. This
chapter explores the application of impinging liquid jets in cleaning. The primary
motivation for cleaning by an impinging liquid jet is the maximum utilisation of the
available hydrodynamic force/energy in the flow. Liquid jets are frequently used
in modern industrial cleaning operations where rotating nozzles are employed to
clean the internal and external walls of process equipment and transportation tanks.
These rotating nozzles offer advantages over traditional (1) soak and clean techniques,
which requires longer down time and and sometimes manual labour and, (2) static
spray devices, where the falling film created by these devices does the cleaning (
Jensen et al. (2011)).

On impingement of a liquid jet onto a surface, the liquid spreads radially in a thin
film until it forms a hydraulic jump. The flow in the thin liquid film is associated
with higher liquid velocity, momentum, and shear stress. Figures 3.4 and 4.18 show
the momentum per unit width, M , and the wall shear stress distribution in the thin
liquid film upstream of the hydraulic jump. From the point of impact up to the
hydraulic jump radius, M , and the wall shear stress decreases rapidly.

On normal impingement of a static liquid jet onto a soiled surface, the liquid
cleans the surface, forming a circular cleaning front which grows with time. Wilson
et al. (2014) proposed a model to describe cleaning by static impinging jets. This
model suggested that the rate of cleaning is proportional to the momentum at the
cleaning front (see § 5.3). This implies that the driving force for cleaning is the liquid
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momentum at the cleaning front. In case of a static liquid jet, as the cleaning front
grows, the momentum at the cleaning front decreases and hence the cleaning rate
decreases rapidly.

However, a liquid jet moving across a soiled surface leaves a trail of cleaned region.
In this scenario, if the liquid jet moves slowly, a steady state can be achieved where
at the leading edge of the cleaning trail, the rate of cleaning equals the speed of
the liquid jet or in case of normal impingement, the nozzle’s speed. This implies
that, for a given jet velocity, the distance between the point of impingement and
the cleaning front remains constant. Hence, the cleaning front remains exposed to a
constant momentum.

Near the point of impact, the cleaning rate remains higher and by moving a liquid
jet, the cleaning front is always exposed to a higher mechanical force (momentum)
as compared to a static jet or a spray ball. Although the moving liquid jets are
advantageous over the traditional cleaning systems, they are largely unexplored
theoretically. The design and operation of such systems are empirical; mostly based
on trial and error. To the best of my knowledge, this is the first study exploring
tank cleaning scenarios by moving liquid jets, theoretically. There are two main
aspects of modelling cleaning by moving liquid jets; (1) liquid jet dynamics and
created liquid film’s behaviour and (2) soil removal. This chapter will provide a
simple mathematical framework to study cleaning by moving liquid jets, on which
future studies with further complexities can build on.

The bulk of this chapter is based on the paper “Cleaning vessel walls by moving
water jets: Simple models and supporting experiments” by Bhagat, R.K., Perera,
A., and Wilson, D.I., which was published in the journal Food and Bioproducts
Processing, (2017), 102, 31-54. The manuscript was drafted by Prof Ian Wilson.
Anira Perera was an undergraduate student who worked with Prof Ian Wilson and
me on the mathematical derivation of the moving jet case, when the nozzle moves
in a vertical plane, which is presented in § 5.5.1 and § 5.5.2. I then found the
analytical solution for these cases. § 5.5.3 on cleaning by moving liquid jets when the
nozzle moves sideways creating ring shaped cleaning strips are based on my ideas. I
introduced the near and far field approaches. I conducted the data analysis and the
new experiments. I extended the normal static jet model for cleaning to obliquely
impinging jets and compared it with the experimental data. The figures which I
used from the manuscript are clearly cited. The parts where I did not contribute
significantly are clearly cited and mentioned in the text. In particular, I note that
Section § 5.6 is reproduced from Bhagat et al. (2017) which is mainly based on
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my coauthor’s ideas. I calculated the results for this section. I also participated in
the discussions and helped develop the ideas. Text from the paper appears in this
chapter. The paper is included in Appendix C.

5.1.1 Jet dynamics and created liquid film’s behaviour

A water jet travelling through air is subject to the well known Rayleigh-Plateau
instability (Eggers and Villermaux (2008); Weber (1948)). Depending on the tank
size and other parameters, the liquid jet may impact the surface as a coherent jet, a
varicose shaped jet whose diameter varies strongly or completely broken up jet in the
form of droplets. After impacting the surface, the liquid spreads radially outwards
in a thin film. In § 4, it has been shown the liquid film goes through various stages,
namely; a boundary layer formation zone, a laminar zone, then a turbulent transition
and subsequently flow as a turbulent film. The various stages of the liquid film, jet
stability add further complexity to the whole analysis. Therefore, for the simplicity
of the analysis, it is assumed that the liquid jet remains coherent and the effect of
the rotation of the nozzle is ignored. The liquid film is described by Wilson et al.’s
simple hydrodynamic model.

Figure 5.1 Schematic of jet cleaning in a cylindrical vessel. O is the point of jet
impingement and RFZ is the region of fast moving radial flow. The shaded region
represents area wetted by the liquid, with sketch of flow pattern on wall on right.
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The nozzle speed, which is O(mm s−1), is much smaller compared to the mean
velocity in the liquid film hence it is assumed that the nozzle’s motion does not
influence the liquid film.

5.1.2 Soil removal

The removal of a soil layer by the flow of a cleaning solution is determined by
its chemical composition, physical structure (dry, wet, crystalline no-crystalline),
relative interaction (cohesive or adhesive forces) and solubility. The main objective
of industrial as well as domestic (dish washers) cleaning techniques is to clean as
fast as possible at as less cost as possible; it should take the least amount of time
and should be environmentally friendly. Classical cleaning is described in terms of
four key parameters, which forms Sinner’s circle(Tamime, 2009) are; (1) mechanical
action, (2) chemical actions, (3) temperature and, (4) time. Wilson (2005) reviewed
the cleaning mechanisms to remove fouling layers whereas Fryer and Asteriadou
(2009) classified food soils in terms of mechanical and chemical action. Mechanical
action relates to flow rate while chemical action relates to reagents and detergents.

In terms of the mechanical action, the flow field of an impinging liquid jet can be
subdivided into three regions namely (1) the stagnation zone, (2) the radial flow zone,
RFZ, and (3) the flow beyond the hydraulic jump. In the immediate vicinity of the
point on the solid surface where the liquid jet approach toward the surface subdivide
and spread away is the region of flow called stagnation zone. In the stagnation zone,
a point of intersection of the center line of the jet and the solid surface is know as a
stagnation point. At the stagnation point, even without no slip boundary condition
the flow velocity is zero. At this point the force present is normal in nature. Between
r = 0 to the jet radius ro, the vorticity created at the boundary diffuse away from
the surface which is pushed back or convected towards the surface by the liquid jet.
Hence, vorticity generated at the boundary remains confined in a layer adjacent to
the boundary (Batchelor, 2000). This creates a boundary layer in the stagnation
zone. In the rest of the radial flow zone up to the hydraulic jump, the shear stress
decreases with r rapidly (see figure 4.18). Beyond the hydraulic jump, liquid flow
slowly in a thick draining film and the shear stress is low in this region.

In relation to the cleaning by impinging liquid jets, Bhagat et al. (2017) presented
an alternative food soil characterisation which is shown schematically in figure 5.2.
In this characterisation, the mode of cleaning is determined by the soil properties
and their interaction with the flow. Soils are classified as (1) mobile soils; the soils
which deform when subjected force and, (2) immobile soil; which does not deform
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but undergo rupture and breakage. A soil generally gets removed by a combination
of cleaning mechanisms. In the different region of mechanical action, one or the
other cleaning mechanism dominates. For example; in the RFZ, where momentum
and shear force are high, a soil may get dislodged due to peeling (immobile soil
behaviour) however, in the draining film region the soil may behave as a mobile soil
and be removed by dissolution. Similarly, chemical reagents and temperature can
change the soil’s response to flow and after exposure to these a soil’s property can
change from being immobile to mobile.

(a) Peeling
Immobile soil

(b) Roll-up
Mobile soil

(c) Erosion
Immobile soil

(d) Dissolution
Mobile soil

Figure 5.2 Schematic of cleaning mechanisms (a) Peeling: Adhesion of soil to the
substrate is weaker than cohesive interactions in the soil: the soil detaches as a
layer. Promoted by surfactant ingress to the soil/substrate interface. (b) Roll-up:
Cohesion within the soil is strong and the soil is insoluble in the cleaning solution.
The soil is deformed by fluid flow and/or buoyancy forces, causing it to leave the
substrate, which can be enhanced by surfactants. (c) Erosion: Cohesive interactions
within the soil are weaker than adhesion to the substrate: shear at the interface
removes material. Promoted by agents that weaken the soil. (d) Dissolution: The
soil is soluble in the cleaning solution: cohesive interactions within the soil are less
favourable than those with the solution. Favoured by thermodynamic factors such
as temperature, pH and solvent nature.

Another major aspect of cleaning which is related to the interaction and time
dependent behaviour between the cleaning liquid and the soil is ‘soaking’. If a soil is
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exposed to a cleaning fluid which changes either physical or chemical structure of
the soil which results in its adhesive, cohesive strength or solubility of the soil, can
promote or make it harder to clean. Exposure to the cleaning fluid can also change
the cleaning mechanism, for example, if the solubility of a soil is pH dependent, by
manipulating the pH of the cleaning fluid and exposure time, one can manipulate
the cleaning mechanism and rate. Likewise, if a surfactant penetrates through a
soiling layer to the soil/substrate interface, it can promote adhesive failure ( Ali
et al. (2015)). This time dependency introduces further complexity, as the extent of
contact with the cleaning solution is determined by the distribution of liquid, i.e.
behaviour at impingement and film drainage (see Aouad et al. (2016)).

5.1.3 Modelling and optimisation

One of the key elements in developing a mathematical framework to predict and
optimise cleaning by impinging liquid jets, is the understanding of the different
cleaning mechanisms shown in figure 5.2. To some extent, models capable of predicting
cleaning by a static impinging liquid jet by different mechanism are available. The
remaining knowledge gap is to apply the current understanding of cleaning by static
impinging jets to moving liquid jets, which are widely used in industry.

For cleaning by static liquid jets Wilson et al. (2014) proposed a model for cleaning
by the peeling mechanism in which they hypothesised that the rate of cleaning is
proportional to the momentum at the cleaning front. They showed that the model
could predict cleaning for a number of different soils. Yeckel and Middleman (1987)
looked at cleaning of an oil layer by impinging liquid jets where the main mechanism
of cleaning is erosion. They proposed that the shear stress at the interface between
water and the oil promotes motion and thinning of the oil layer. Hsu et al. (2011)
and Walker et al. (2012) looked at other soils with complex rheologies in similar
setup. Meng et al. (1998) and Leu et al. (1998) studied cleaning by high pressure
(69-311 MPa) water jets, where erosion is caused by the impingement of high velocity
droplets. Scholtz and Trass (1970) studied convective mass and heat transfer which
could be extended to cleaning by dissolution mechanism for different materials.

Wilson et al. (2015), Glover et al. (2016) studied cleaning by normally impinging
liquid jets moving across the soil surface and cleaning. Considering the far field
approximation of liquid flow (see § 5.3.3) they developed an analytical solution to
predict the width of the region cleared by these jets. This model, in principle, could
give the time required to clean a tank, provided the liquid jet impinges normally.
However, in practice, from a fixed position in the tank, the nozzle(s) rotates and
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spray the water jet which move across the surface creating different cleaning patterns
(see figure 1.6). This implies that the angle of impingement changes continuously
(see figure 5.1).

This chapter presents a simplified modelling approach to the problem of cleaning
by moving liquid jets. Wilson et al. (2014) used the the far field approximation for
the hydrodynamics, which is exact in the outer periphery of the RFZ. This implies
that the model cannot explain cleaning in the inner regions (closer to the point of
impingement) of the RFZ. However, for a relatively weak food soil, the far field
approximation could be a reasonable approximation. Figure 5.3 shows a cleaning
scenario in which a nozzle moves downwards with velocity |V | creating a trail of
cleaned region. In the frame of the liquid jet, the soil approaches the leading edge of
the cleaning trail, X, with velocity V . At this point the rate of cleaning is equal to
the jet velocity V . Vector OP indicates a typical streamline which is diverging from
vector V and point P is the furthest point where OP is of the size of the hydraulic
jump. For a weak food soil, cleaning rates near point P (indicated in the highlighted
region) will determine the final width of the cleaned region.

Figure 5.3 Schematic of jet moving downwards with a velocity V and cleaning a
vertical wall. O is the point of jet impingement and OP is the point where cleaning
strip meet the hydraulic jump.
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For a relatively weak food soil and at a low nozzle velocity V , this region is likely
to be in the far field region implying that far field hydrodynamics will dictate the
final width of the cleaned region. For the case when the nozzle moves in upward
direction, the cleaning strip will continuously be in contact of the liquid and far field
hydrodynamics will determine the final cleaning width. Hence for rest of the analysis,
the hydrodynamics are described by the far field approximation. In this chapter,
the radial flow zone is divided into three regions; (1) intermediate region, (2) near
field and, (3) far field. The model for cleaning (by peeling mechanism) by static
perpendicular as well as inclined liquid jets, is extended to all three regions. The
approximations used to model the cleaning by a moving liquid jet are listed below:
(1) § 2 shows that in the RFZ, gravity does not play any significant role, and even
on vertical plates, the RFZ remains approximately circular. Therefore, in the RFZ,
gravity is ignored.
(2) Gravity and rotation of the nozzle do not affect the liquid jet and it travels
through air as a straight ray.
(3) The liquid jet remains coherent (no break-up or splash-back from the surface)
(4) The soil layer is uniform
(5) Only the peeling mechanism is considered
(6) The flow field in the RFZ is described by the simple Wilson et al. (2012) laminar
film model

5.2 Experimental

The models developed in the next section are compared with data obtained from
experimental studies of cleaning by impinging water jets. The data presented in
figure 5.8 has been published previously in Wilson et al. (2015). The experimental
data for Polyvinyl acetate (PVA) layers on polymethylmethacrylate (Perpex®) sheets
in figures 5.11 and 5.12, and petroleum jelly on glass in figures 5.9 and 5.10, are
new sets of data. The latter data sets were obtained using the apparatus described
by Wilson et al. (2014) and by Glover et al. (2016). Detailed descriptions of the
experimental configuration and operating protocols are given in these papers, §2.3
and § 4.3. Layers of petroleum jelly were prepared by spreading the soft solid material
across a 300 mm wide × 500 mm long and 5 mm thick glass sheet using a spreader
tool. The spreader tool consist of a aluminum blade attached to frame which could be
rolled on attached roller wheels (see figure 5.4). Two identical screws of known pitch
adjust the level of the blade and hence can create a gap between the blade and the
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substrate to be coated. A surplus amount of material to be coated (petroleum jelly
or the PVA) was spread on the surface and made as even as possible using a window
cleaning spreader. Then, the slider is placed at one end of the substrate behind
the surplus amount of soil and pulled across the sheet to the other end, leaving a
uniform coating layer. The procedure is also described by Glover et al. (2016). PVA
layers were prepared on Perspex®sheets and allowed to dry for 24 h before testing.
The thickness of the PVA layers was measured using a deep throat micrometer. To
measure the petroleum jelly layers thickens; the substrate was weighed before and
after spreading the layer. After spreading the layer, the area covered by petroleum
jelly layer was found using image analysis and the thickness of the layer tP J was
determined using

tpj = Wtafter − Wtbefore

ρpj × Apj

(5.1)

Where tpj, Wtafter, Wtbefore, ρpj, and Apj are the thickness of the layer, weight of
the plate after coating, weight of the plate before coating, density of the petroleum
jelly and the coated area respectively.

Figure 5.4 Picture of the slider or the coater

The sheet was mounted vertically on a frame located within a test chamber whose
walls were transparent. Distilled water was pumped from a reservoir at a set and
measured flow rate through a nozzle to create a coherent jet. The flow rates used
range from 1 − 3 L min−1. The nozzle was positioned 28 cm from the sheet so that
the jet was coherent at the point of impingement. The jet diameter could be changed
by using nozzles with similar configuration but different diameter. After impinging,
the water spread out and drained down the sheet, after which it was collected and
recycled. The experiments were performed at ambient temperature, which varied
from 18 to 20◦C in the tests reported here. The experimental setup is described in
detail in §2.3 and § 4.3.
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The use of transparent sheets meant that the evolution of the cleaned region could
be monitored by a video camera (Nikon D3200) located outside the test chamber.
Transparent graticule tape was attached to the dry side of the sheet to provide a
calibration for extracting dimensions from the images. An interrupter plate was
initially placed between the nozzle and the soiled sheet when the flow was started
until a steady, coherent jet was obtained. The interrupter plate was then removed
and the change in cleaned region size extracted by analysis of the videos.

5.3 Models

The model for peeling (i.e. adhesive removal) of soil layers by impinging jets for
stationary nozzles presented by Wilson et al. (2014) and its extension to moving
nozzles (Wilson et al. (2015)) is summarised and extended to the cases where the
jet is not impinging perpendicularly. In these models, the force imposed by the
spreading liquid film within the RFZ is considered sufficient to detach the soil from
the substrate. When a jet impinges perpendicularly on a wall, with negligible effect
of gravity, a circular cleaned region of radius a grows over time. The local rate of
film removal is given by

da

dt
= k′M (5.2)

where a is the measure of the size of the cleaned area, M is the local rate of momentum
flow per unit width of cleaning front, and k′ is a rate constant which incorporates
any dependency on soil strength, interaction with the substrate, and thickness.

5.3.1 Cleaning by static nozzles; full model/intermediate
soil model

From Equation 3.9 and 3.10, the momentum per unit width, M , at radius r is given
by

M = 3ρQ

5π

1
r

 1
1

U◦
+ 10π2µ

3ρQ2 [r3 − r3
o]

 (5.3)

alternatively Equation 5.3 can also be written as

M = 3ρQ

5π

U◦

r

 1
1 − 20

3Re
+ 20

3Re
r3

r3
◦

 (5.4)
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This expression assumes a well-developed parabolic velocity profile within the film,
which is not valid for small r. This assumption was criticized in § 3 and § 4 and shown
to be reasonable for larger values of r. Nevertheless, the model gives a reasonable
engineering estimate of the momentum, M , and for the simplicity of the analysis,
the model has been implemented to predict cleaning. Substituting equation 5.3 into
5.2 yields,

da

dt
= k′ 3ρQ

5π

1
a

 1
1

U◦
+ 10π2µ

3ρQ2 [a3 − r3
o]

 (5.5)

Separating the variables,(
1

U◦
− r3

o

10π2µ

3ρQ2

)∫ a

ai

a′da′ + 10π2µ

3ρQ2

∫ a

ai

a′4da′ = k′ 3ρQ

5π
dt (5.6)

Integrating equation 5.6 yields(
1

U◦
− r3

o

10π2µ

3ρQ2

)
(a2 − a2

i ) + 10π2µ

3ρQ2 (a5 − a5
i ) = k′ 3ρQ

5π
∆t (5.7)

Here ai is the initial cleaned radius. For high Reynolds number flows, a careful
examination of equation 5.4 suggests two limiting cases; regime 1 (near field) when
a ∼ ro and regime 2 (far field) when a ≫ ro, and in the intermediate regions, where
full model must be used.

5.3.2 Near field approximation: soils for which the cleaning
radius remain small or when r ∼ r◦

In the limiting case when r ∼ r◦ and the jet Reynolds number, Re, is high, equation
5.4 can be approximated by

M ≈ 3ρQ

5π

Uo

r
(5.8)

The liquid jets used in cleaning operations are generally high Reynolds number jets.
The above approximation is valid only in the region when 20

3Re
r3

r3
◦

≪ 1 which implies
that r

d
≪ 0.265Re1/3, the cleaning front is located near the point of impingement

and the boundary layer in the film is not fully developed. This is consistent with the
theory presented in § 4 on the boundary layer formation zone where equation 4.27
demarcating the boundary layer to the laminar zone is given by r

d
< 0.24Re

1
3 . From
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equation 5.2, rate of cleaning was estimated to be

da

dt
= k′ 3ρQ

5π

Uo

a
= σ

a
(5.9)

where σ is a group of parameters and it sets the cleaning timescale. Integrating
equation 5.9 from the point where adhesive breakthrough is first noticed, ai, at time
ti, to time t gives

(a2 − a2
i ) = 2σ(t − ti) (5.10)

The cleaned region is expected to increase with ∆t1/2 (a parabolic growth law). After
some time a will reach the limit of validity of Equation 5.8.

5.3.3 Far field approximation; soils for which the cleaning
radius is large or when r ≫ r◦

This is the scenario considered by Wilson et al. (2014). In the limit of r ≫ r◦,
equation 5.3 can be approximated to

M = 9ρ2Q3

50π3µ

(
1

r(r3 − r3
o)

)
(5.11)

Substituting equation 5.11 in 5.2 yields the rate of cleaning for large radii,

da

dt
= k′M = k′ 9ρ2Q3

50π3µ

(
1

a(a3 − r3
o)

)
(5.12)

Integrating 5.12 w.r.t. time yields[
a5

5 − r2
◦
a2

2

]a

ai

= k′ 9ρ2Q3

50π3µ
(t − ti) (5.13)

For r ≫ r◦ such that a5 ≫ r3
◦a2 and when ai and ti are of the O(0), Wilson et al.

(2014) approximated it further and found the relation

a ≈
(

k′ 9ρ2Q3

50π3µ

)1/5

(t − ti)1/5 = K∆t0.2 (5.14)
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Here, K is a lumped cleaning constant dependent on mass flow rate. Adopting a
similar approximation equation 5.12 can be written as

da

dt
= k′M ≈ k′ 9ρ2Q3

50π3µ

( 1
a4

)
= ξ

a4 (5.15)

The evolution of a is then noticeably different from equation 5.9.
Figure 5.5 compares the evolution of the cleaned area predicted by equations

5.6, 5.10 and 5.14, in terms of scaled time t/t◦ = tσ/r2
◦ (the time scaling can be

obtained from equation 5.10), for the values employed in the experiments of Glover
et al. (2016): water at 20◦C, r◦ = 1 mm, Q = 2 L min−1 and U◦ = 10.8 m s−1, giving
Re = 21800 with ai = r◦. The full model deviates from the near field prediction
around a/r◦ = 14, at t/t◦ = 4000, and follows the far field trend from a/r◦ = 20.
Beyond a/r◦ = 30 the difference between the latter two models is small and decreases
with time.

Also plotted on the figure is the locus obtained when M is calculated using the
detailed model of the hydrodynamics of the radial film including a turbulent film in
§ 4. This shows similar behaviour to the full model up to a/r◦ = 40. The models
deviate thereafter owing to the fact that the detailed model considers three different
flow regimes including turbulent film whereas Wilson et al.’s simple model does not
account for either boundary layer formation or turbulence. The discontinuity in the
detailed model, marked F on the inset, is the location of the transition from laminar
to turbulent behaviour in the film. Nevertheless, the Wilson et al. (2012) model
give a reasonable prediction of the cleaning behaviour and has the advantage of
yielding tractable analytical solutions: the detailed model always requires numerical
enumeration. Also for cleaning applications, it is reasonable to assume that for static
jet cleaning the region of interest is the initial region of fast cleaning. In figure 5.5,
in first t/t◦ ≈ 1600, the cleaning radius grow to a/r◦ = 25 however in next 18200
scaled time unit a/r◦ becomes 25 to 50. In this initial region the simple Wilson et al.
(2012) models give reasonable engineering estimate of momentum and cleaning. The
Wilson et al. model is therefore used in the following sections which consider the
influence of features such as varying angle of impingement and soil behaviour.
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Figure 5.5 Predicted evolution of the size of the cleaned region for a coherent water
jet impinging perpendicularly on a flat wall (no gravity effects). The results are
presented in dimensionless form; a/r◦ and t/t◦, where t◦ is the characteristic time
defined as t◦ = r2

◦/σ. Inset shows initial behaviour. Thin loci show predictions
based on the Wilson et al. (2012) flow model: dashed line - near field, equation
5.10; dot-dash line - far field, equation 5.14 ; continuous line - intermediate case,
equation 5.6. The heavy locus is the prediction obtained using the numerical model
presented in § 4 and Bhagat and Wilson (2016) to calculate M for a water jet at
20◦C with r◦ = 1 mm and Re = 22, 200. The discontinuity at F is associated with
the transition to turbulence in the film.

5.3.4 Cleaning by moving nozzle, jet perpendicular to the
wall

In this case the nozzle moves, the jet strikes the wall perpendicularly, and the point of
impingement moves across the soiled surface at velocity V . The photograph in figure
5.6(a) shows a roughly elliptical front ahead of the point of impingement followed by
a cleared strip downstream, of width wc. Wilson et al. (2015) modelled this using
the construction in figure 5.6(b). They changed the frame of reference so that the
point of impingement was static and the soil moved towards the jet at velocity V .
Velocity V is equal to the speed of translation of the nozzle, which they labelled vjet.
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For jets generated by rotating nozzles, V varies with angular position and this is
considered in the process analysis later.

Figure 5.6 (a) Photograph, and (b) model schematic for the region cleaned by a
vertical water jet moving from left to right across a plate coated with petroleum jelly.
O is the point of impingement and R the radius of the RFZ.

Point X, located in this case a distance ax directly ahead of the jet, is a stationary
point where the rate of cleaning is equal to the rate at which soil material is convected
towards it, at V . At point P , oriented at angle χ to the direction of nozzle movement
and at distance p from the origin, vector addition is required to resolve the relationship
between the rate of cleaning at P to V (see figure 5.7). When the radial velocity of
the liquid, u, is much greater than V , the locus of p is described by the non-linear
differential equation

dp

dχ
=
(

da

dt

)
P

p

V sin χ
− p

tan χ
(5.16)

The analysis of Wilson et al. (2015) is revised and extended to other cases
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Figure 5.7 Vector diagram for cleaning front at point P in figure 5.6. Vector PB
represents the rate of cleaning along the radial direction and its magnitude taken to
be ξ/p4. Vector PA is the direction of net motion of the interface due to the cleaning
and the motion of the nozzle or the target. Here V is the speed of the nozzle or the
speed of the target plate.

Far field case

Wilson et al. (2015) considered the far field scenario, where p ≫ r◦ described by
equation 5.15. At X, with ax ≫ r◦,

da

dt
= V = ξ

a4
x

(5.17)

and
ax =

( 9
50

)1/4 (k′ṁ3

ρπ3µ

)( 1
V

)
(5.18)

Elsewhere da/dt = ξ/p4 and equation 5.16 becomes

dp

dχ
= ξ

V p3 sin χ
− p

tan χ
(5.19)

They integrated 5.19 numerically and obtained the result wc = 2.94ax. Bhagat et al.
(2017) provided an analytical solution of the differential equation. Substituting for
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ξ/V from equation 5.17 gives

dp

dχ
= a4

x

p3 sin χ
− p

tan χ
(5.20)

This can be written in dimensionless form by setting p∗ = p/ax

dp∗

dχ
= 1

p∗3 sin χ
− p∗

tan χ
(5.21)

Multiplying each side by p∗3 and rearranging gives

p∗3 dp∗

dχ
+ p∗4

tan χ
= 1

sin χ
(5.22)

Writing z = p∗4 and using an integrating factor of sin4 χ with the boundary condition
p∗ = 1 at χ = 0 leads to the solution

p∗4 sin4 χ = 4
3 cos3 χ − 4 cos χ = 8

3 (5.23)

Inspection of equation 5.23 yields the following results: (i) At χ = 0, p∗ = 1 and in
the limit of small χ the RHS → χ4, as required.
(ii) The co-ordinates of the cleaning locus (x, y) relative to the point of impingement
are given by x = p∗ cos χ and y = p∗ sin χ. Equation 5.23 allows y to be calculated
directly and x is obtained from x = y cot χ. It can be shown that as χ → π,
y → 2

4√3 = 1.52. Figure 5.8 shows the shape of the cleaning front superimposed on
the data sets reported by Wilson et al. (2015) as well as their numerical solution,
which was obtained using the modified Euler method. The two integrations are
almost identical until χ ≈ 127◦, after which the numerically calculated width
started to narrow. The difference in cleared width is small, equation 5.23 giving
wc = 3.04ax cf. 2.94ax, i.e. a 3.5% difference. Applying this result to the data sets
for cleaning Xanthan gum presented by Wilson et al. (2015) yielded a k′ value of
0.0018 m s kg−1 cf. their reported value of 0.002 m s kg−1: both values agreed with
the value of k′ obtained from static cleaning tests within experimental uncertainty.
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Figure 5.8 Predicted shape of cleaning front obtained by integrating equation 5.22.
Locus plotted in Cartesian co-ordinates, relative to the point of impingement O
(see figure 5.6). Superimposed on the locus are data sets obtained from interrupted
experiments, scaled using equation 5.23 to identify ax from wc. Data taken from
Wilson et al. (2015): Xanthan gum soil cleaned by water at approximately 20◦.
Conditions: ∆P = 1.5 bar, V = 10.5 mm s−1, dN = 1.69 mm. Flow stopped after
(A) 30 cm travel, m◦ = 1.16 mg cm−2; (B) 10 cm travel, m◦ = 1.38 mg cm−2. Dotted
circle shows locus of a circle of radius ax. Dashed line – numerical solution of Wilson
et al. (2015); solid locus – far field case, equation 5.23; dot-dash locus – near field
case, equation 5.27. Note that the axes are normalised: ax for a far field will be
larger than ax for a near field. Figure reproduced from Bhagat et al. (2017).

Near field case

The near field case, where a is small, also arises when V is large such that that ax is
small. Again, at X, with ax ∼ r◦, using equation 5.9

da

dt
= V = σ

ax

(5.24)

At P equation 5.16 gives
dp

dχ
= σ

V sin χ
− p

tan χ
(5.25)

Or in dimensionless terms,
dp∗
dχ

= 1
sin χ

− p∗
tan χ

(5.26)

With p∗ = 1 at χ = 0. The solution is

p∗ = χcosecχ (5.27)
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and the locus of the cleaning front is given by (χ cot χ, χ). This is plotted alongside
the solution for the far field on figure 5.8. The width of the cleared region increases
steadily with distance from X, noticeably more than the far field case, and approaches
a limit of w∗

c = 2π as χ → π. The difference arises from the slower loss of momentum
in the film (from the assumption that u ≈ U◦). At larger distances, e.g. far
downstream where θ → π, this assumption will no longer be valid, and numerical
methods must be used to include the transition region in the velocity profile. The
full model can be obtained following similar procedure as shown above and it is
shown in the paper by Bhagat et al. (2017).

5.4 Cleaning by static nozzle, inclined jets

The previous sections describe the evolution of the circular area cleaned by a
stationary jet impinging perpendicularly and normal impingement of a moving liquid
jet on the soiled surface, where dimension a lies within the RFZ (the models do
not apply beyond the hydraulic/film jump). The § 4.2.7 presents the detailed flow
field including boundary layer and turbulent film created by obliquely impinging jets.
However, the cleaning models presented in this chapter are based on the simplified
Wilson et al. and Wang et al. model. Wang et al. (2015) modified the Wilson et al.
(2012) model for flow in the thin film to include inclination of the jet relative to
the wall, by including the flow distribution presented by Kate et al. (2007). The
Wang et al. flow model is combined with the model for peeling to predict cleaning
by an inclined jet. In the next section these are extended to describe removal by an
inclined moving jet.

Consider a coherent liquid jet of radius ro and mean velocity Uo impinging on
a flat surface at angle ϕ, as shown in figure 5.15. Gravity is not considered so the
orientation of the wall is not important. The footprint of the jet is an ellipse, with
flow following streamlines moving radially away from the source S which is located a
distance ro cot ϕ upstream of the point of impingement O. The upstream direction is
positive in Cartesian co-ordinates.

Consider a streamline inclined at angle θ to the upstream direction. The radial
distance from S to the edge of the ellipse (where the mean velocity of the flow
is Uo), re, is given by equation 4.52 (re = ro

sin ϕ
(1+cos θ cos ϕ)). Beyond re, continuity

links the local film depth, h, and mean velocity at location r via equation 4.53
(rūh = 1

2Uor
2
e sin ϕ for r > re)



106 Cleaning by stationary and moving liquid jets

Table 5.1 Experimental setting for cleaning of petroleum jelly by water jet

Set angle of impingement Effective angle of impingement Layer thickness
ϕ (µm)

45◦ 43.6◦ 340 ± 50
90◦ 88.6◦ 340 ± 50
110◦ 108.5◦ 322 ± 50
135◦ 133.4◦ 409 ± 50

The mean velocity in the film at r > re is given by

1
ū

= 1
U◦

+ 10ν

3U2
◦ r4

e sin ϕ2

(
r3 − r3

e

)
(5.28)

The corresponding momentum flow per unit width of cleaning front in the θ

direction, Mθ, is given by
Mθ = 3

5ρU◦r
2
e sin ϕ

ū

r
(5.29)

For the weaker soil case (assuming Uo ≫ ū; r3 ≫ r3
e : equation 5.15), this gives

Mθ =
[ 9
50

ρ

ν
U3

◦ sin ϕ3
] 1

r4 (5.30)

The rate of cleaning along the streamline inclined at θ is then

da

dt
=
[

9k′

50
ρ

ν
U3

◦ sin ϕ3
]

1
a4 =

[
3σ

10ν

r6
e

r2
◦
U◦sin ϕ3

]
1
a4 (5.31)

and the corresponding result for the near field case is

da

dt
=
[

9k′

50 ρr2
eU2

◦ sin ϕ

]
1
a

=
[
σ

r2
e

r2
◦

sin ϕ

]
1
a

(5.32)

In each case σ is calculated using the mass flow rate in the jet.
New experimental data obtained for inclined and perpendicular jets impinging

on petroleum jelly and PVA layers are compared with the near field result, equation
5.32, which suggests that plots of a2 vs. t should be linear, with a gradient that is
determined by ϕ and θ:

∆a2 = 2
[
σ

r2
e

r2
◦

sin ϕ

]
∆t = 2σθϕ∆t (5.33)
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There was some variation in petroleum layer thickness, from 320 −400µm (Table
5.1). The Table also includes the true angle of impingement, calculated from the
effect of gravity on the jet trajectory. There is a systematic shift of 1.5° arising from
the apparatus. The effective angle of impingement was used in the calculations.

Figure 5.9 shows the results for different combinations of ϕ and θ obtained with
petroleum jelly layers on glass plotted in the form (∆a2)1/2 vs (∆t)1/2. All the plots
show the linear trend predicted by equation 5.33 and the gradient gives an estimate
of 2σθϕ. The gradients are plotted against (re/r◦)(Q/r◦)

√
sin ϕ in figure 5.10 to

isolate the contributions from ϕ, θ and flow rate. The data lie on a straight line
passing through the origin, confirming that the model can account for the variation
in azimuthal flow rate resulting from non-perpendicular impingement. The gradient
of the line of best fit in figure 5.10 gives an estimate of k′ of 0.027 m s kg−1. Wilson
et al. (2014) reported a value of k′ = 0.001 m s kg−1 for a noticeably stiffer petroleum
jelly.

Further validation of the model is provided by studies on PVA layers employing
water jets impinging at 45◦ conducted by Wang (2014). The data from the initial phase
of cleaning for different values of θ are plotted in figure 5.11 and show good agreement
with the near field result. The values of 2σθϕ extracted from these plots as well as
those collected for two other flow rates are plotted against (re/r◦)(Q/r◦) sin1/2 ϕ in
figure 5.12. The data again lie on a straight line, confirming that the model accounts
for the effect of flow rate, for a different soiling material. The cleaning rate constant
estimated in this case was 0.000 13 m s kg−1, making this PVA soil the hardest to
clean of those considered here.

5.5 Cleaning by moving nozzles, inclined jets, mov-
ing up or down

Figure 5.13 shows a flow scenario created by a liquid jet moving in a vertical plane
inside a cylindrical tank. In this scheme, the nozzle rotates in a vertical plane which
enables the liquid jet to create a vertical strip of cleaned region, The impingement
point O moves across the surface from the bottom to the top of the tank. At any
given point, the angle of impingement changes continuously. To model cleaning by
moving liquid jets, a number of assumptions are outlined in § 5.1.3. Apart from
those, the curvature of the tank wall is not considered as the liquid film is thin and
the typical curvature of the industrial tanks are small (The curvature of the tank is
defined as 1/radius of the tank and typical radius are O(m)). Breakup of the jet
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Figure 5.9 Evolution of size of cleared region in petroleum jelly layers (see Table
5.1) generated by a water jet (ro = 1 mm, Q = 2 L min−1, Re = 21, 800) impinging at
angles indicated, plotted in the form suggested by equation 5.33.
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Figure 5.10 Effect of angle of impingement on cleaning rate constant 2σ for petroleum
jelly on glass, including the values extracted from the plots in figure 5.9.
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Figure 5.11 Cleaning of PVA layers on glass by water jet impinging at 45◦; value
of θ given on plots. Data plotted in the form of the near field result, equation 5.33.
Layer thickness 33 µm, Q = 3 L min−1, Re = 32, 700 and r◦ = 1 mm.
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Figure 5.12 Effect of flow rate on cleaning rate constant for water jet impinging on
PVA layers at an angle of 45◦. The data include the values extracted from the plots
in figure 5.11. Solid line shows line of best fit to equation 5.33 used to estimate k′.

as it travels to the wall and gravity effects are not considered. However, in real life
applications it will have an effect (see Damkjær et al. (2017)). Ignoring gravity and
the effect of the rotation of nozzle gives rise to two basic flow configurations. On
oblique impingement of a liquid jet, the liquid flows dominantly in one direction and
in combination with the transverse nozzle velocity V the following two flow scenarios
are; (1) the transverse nozzle velocity V and dominant flow direction are the same,
or the transverse nozzle velocity vector V and a vector along the liquid jet’s axis
forms an acute angle (U+/D−) and, (2) they are in the opposite direction or form a
obtuse angle (U−/D+). The flow scenarios are shown schematically in figure 5.14.

As the nozzle moves up or down along the wall, the angle of inclination, Φ,
changes. In § 5.1.3 it is shown that for weaker food soils, the far field approximation
provides a reasonable estimate of the final cleaned width (see figure 5.8). For rest of
the analysis, the hydrodynamics are described by the far field approximation. The
result for a near field and the intermediate case can be obtained following the same
approach, noting that the latter requires cumbersome algebra which may be better
suited to numerical methods. Three scenarios are considered:

(i) Constant speed: the point of impingement moves up or down the wall at V or
−V . As drawn on figure 5.13, V = −dL

dt
.
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Figure 5.13 Schematic of a flow scenario created by a moving water jet inside a
tank. The nozzle N rotating in a vertical plane and the point of impingement moving
vertically down the wall of a cylindrical vessel of diameter D. ZZ ′ is the cylindrical
axis of symmetry.

(ii) The nozzle rotates at constant angular velocity ω = dΦ/dt, where Φ is the
angle from the vertical defined in figure 5.13. We assume there is no azimuthal
rotation, so O moves down one wall and up the opposite wall (one might think of
the cutting pattern followed by lawnmowers or combine harvesters).

V = −dL

dt
= − d

dt
(1
2D cot Φ) = −Dω

2 cosec2Φ = −VNcosec2Φ (5.34)

where VN is the traverse speed at the nozzle plane. Computer controlled nozzles may
proceed around one or more axes at varying rates, and the analysis presented here
can be extended to such motions.

(iii) The nozzle velocity varies with Φ in order to give a cleared region of constant
width. The conditions require to achieve this are considered later (equation 5.45).

Figure 5.14 shows the four scenarios that can arise. Labels D and U refer to
the direction of the jet on the wall (down and up, respectively), while + and −
refer to the location of the point of impingement relative to the nozzle plane. These
are paired: in D+ and U− the point corresponding to X is located upstream of
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Figure 5.14 Schematics of cleaning by liquid jets impinging moving up or down a
wall, above and below the nozzle plane (NH on figure 5.13). D and U refer to the
direction of travel of the impingement point O. V > 0 or when the jet moves upwards
is indicated by U and V < 0 is indicated by D. Similarly + and − indicates whether
jet is impinging in upward or downward direction or h > 0 is referred by + and
vice-verse. The two basic flow scenarios arising are when transverse nozzle velocity
vector V and a vector along the direction of the jet forms an acute angle D−/U+ or
obtuse angle D+/U−

the impingement point, at θ = 0◦ in figure 5.15, while in D− and U+ it is located
downstream, at θ = 180◦ in figure 5.15.

5.5.1 Case A: D+/U−

The source S is located a distance ro cot ϕ behind the point of impingement, so any
plots of the shape of the cleaning front should be corrected for this contribution. It
is ignored in the idealised cases presented here as ro is expected to be small and the
factor does not contribute significantly to the calculation for the cleared width.

Consider U−, as the geometry is that in figure 5.15. The angle of inclination, ϕ,
is acute: 0 < ϕ < 90◦. Most of the liquid is flowing in the opposite direction to the
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Figure 5.15 Schematics of the magnified footprint of an obliquely impinging jet.
In relation to relative motion of the nozzle and jet axis, this flow configuration
correspond to D+/U−

path of the jet so the distance OX will be short. Angles χ and θ are coincident in
this case and the expressions that follow are written in terms of θ as this emphasises
the effect of flow pattern. For D+ the sense is reversed and the same construction
applies, but with ϕ defined with respect to the downward direction. At the stagnation
point θ = 0◦ and X lies on the same side of O as the source S. At X, |V | = da

dt
and

equation 4.52 gives (noting that cot ϕ is positive)

re = ro
sin ϕ

(1 + cos ϕ) (5.35)

The cleaning rate for the far field case is then calculated using equation 5.15.
Discarding the magnitude brackets on V , the following result for ax,ϕ, the distance
between S and X for angle of inclination ϕ, is obtained:

ax,ϕ =
(

9k′

50

)(
ρ

ν
r6

◦U3
◦

) [ sin9 ϕ

(1 + cos ϕ)6

]
V −1/4 (5.36)

The parameters have been grouped into terms related to the soil, the jet, the angle of
inclination and nozzle, respectively. The term in square brackets decreases strongly
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as ϕ decreases (the jet impinges more obliquely) as more of the jet flow is then
directed towards the θ = 180◦ streamline, and ax,ϕ is consequently smaller.

Comparing the cleaning rate at angle θ to that at θ = 0◦, and noting that da
dt

= ξ
p4

(Equation 5.31), yields
(

da
dt

)
θ

V
= ξ(θ)/p4

ξ(0)/a4
x,ϕ

= r6
e(θ)

r6
e(0)

a4
xϕ

p4 (5.37)

=⇒ ξ(θ)
ξ(0) = r6

e(θ)
r6

e(0) =
(

1 + cos ϕ

1 + cos ϕ cos θ

)6

(5.38)

ξ therefore increases with θ, as more flow is directed outwards from the source as
the point on the cleaning front moves round from X. After scaling, the equivalent
expression to equation 5.22 is obtained

p∗3 dp∗

dθ
+ p∗4

tan θ
=
[

1 + cos ϕ

1 + cos ϕ cos θ

]6 1
sin θ

(5.39)

An analytical solution can again be obtained using an integrating factor of sin4 θ,
viz.

p∗ sin θ =
√

2
{

(1 + cos ϕ)6
∫ θ

0

sin3 θ′

(1 + cos ϕ cos θ′)6 dθ′
}1/4

(5.40)

The integral can be evaluated using a dummy variable j = sec ϕ + cos ϕ and yields

p∗ =
√

2(1 + sec ϕ)3/2

sin θ


[

−1
3(sec ϕ + cos θ′)3 + sec ϕ

2(sec ϕ + cos θ′)4 + 1 − sec2 ϕ

5(sec ϕ + cos θ′)5

]θ

0


1/4

=
( 2

15

)1/4 (1 + sec ϕ)3/2

sin θ


[

− sec2 ϕ − 5 sec ϕ cos θ′ − 10 cos2 θ′ + 6
(sec ϕ + cos θ′)5

]θ

0


1/4

(5.41)

Figure 5.16 shows the cleaning front shape predicted for various values of ϕ, within
the likely working range, taken to be 10◦ < ϕ < 90◦. The origin (0, 0) is the source
S. Near X the shape is again curved and the width of the cleared region increases
with θ, approaching a limiting width as θ → π. The distance taken to reach the limit
depends on ϕ, as shown by the inset on the figure. With small ϕ, i.e. very oblique
jets, the model predicts that the cleared region grows outwards for a considerable
distance downstream. The flow distribution model is unlikely to be valid in this
range, however, as a non-elliptical flow pattern may be formed (see Kate et al. (2007))
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and the jet may bounce off the surface if the surface material is hydrophobic (Kibar
et al. (2010)).
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Figure 5.16 Predicted shapes of cleaning fronts for different angles of impingement,
ϕ, for Case A, D+, U−(see figure 5.14). Inset shows trend at large x∗. Dimensionless
Cartesian coordinates, x∗ = x/ax,ϕ; y∗ = y/ax,ϕ.

The dimensionless width of the cleaned region is obtained by setting θ = π in equation
5.41 and finding p∗ sin θ, giving

w∗
c = wc

ax,ϕ

= 2
√

2(1 + sec ϕ)3/2
{

1
30

(
4 − sec ϕ

(sec ϕ − 1)4 + 4 + sec ϕ

(sec ϕ + 1)4

)}

=
(32

15

)1/4
(1 + sec ϕ)3/2

{(
4 − sec ϕ

(sec ϕ − 1)4 + 4 + sec ϕ

(sec ϕ + 1)4

)}1/4 (5.42)

where ax,ϕ depends on the mode of operation, i.e. whether V is constant or varies
with ϕ. Figure 5.17 shows that w∗

c decreases as ϕ becomes more oblique, in contrast
to the effect of ϕ on ax,ϕ. Combining equations 5.36 and 5.42 gives

wc,ϕ =
(

48
125

k′ρ2Q3

π3µ

)( 1
V

)1/4 {(
sin3 ϕ tan6 ϕ

)( 4 − sec ϕ

(sec ϕ − 1)4 + 4 + sec ϕ

(sec ϕ + 1)4

)}1/4

=
(

48
125

k′ρ2Q3

π3µ

)( 1
V

)1/4
FV (ϕ)

(5.43)
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Figure 5.17 Effect of angle of jet impingement on dimensionless width of strip cleared
by a moving nozzle.

for the case where V is constant, and

wc,ϕ =
(

48
125

k′ρ2Q3

π3µ

)1/4 (sin2 ϕ

VN

)1/4 {(
sin3 ϕ tan6 ϕ

)( 4 − sec ϕ

(sec ϕ − 1)4 + 4 + sec ϕ

(sec ϕ + 1)4

)}1/4

=
(

48
125

k′ρ2Q3

π3µ

)1/4 ( 1
VN

)1/4
Fω(ϕ)

(5.44)

for the case where the nozzle rotates at constant angular velocity, with VN the
traverse speed at the nozzle plane (NH in figure 5.13; |VN | = Dω/2). The plots of
FV and Fω in figure 5.18 show that a constant traverse speed gives a more uniform
cleared width, decreasing by about 30% as the angle of impingement reaches 10◦,
whereas the constant rotational speed results in a 70% reduction over this range.

Equation 5.43 suggests that a uniform cleared width could be obtained by using
a traverse speed of the form

V ∝
(
sin3 ϕ tan6 ϕ

)( 4 − sec ϕ

(sec ϕ − 1)4 + 4 + sec ϕ

(sec ϕ + 1)4

)

∝ sin ϕ

(
1 + cos2 ϕ

5

) (5.45)
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Figure 5.18 Effect of jet impingement angle on width functions FV (equation 5.43)
and Fω (equation 5.44)

The variation is approximately sinusoidal as V ∝ sin ϕ
(
1 + cos2 ϕ

5

)
≈ sin ϕ. There

would be a lower limit to the velocity used in practice as low values of ϕ are likely
to correspond to the jet crossing the base or top of the vessel rather that a vertical
wall, and the cleared areas will overlap more extensively. This aspect is covered in
the Simulation section.

5.5.2 Case B: D−/U+

Consider D− as this allows ready comparison with figure 5.15. The angle of impinge-
ment, ϕ, is again 0 < ϕ ≤ 90◦. At the stagnation point, θ = 180◦, |V | = da

dt
and

equation 4.52 gives (noting that cos ϕ is again positive)

re = ro
sin ϕ

(1 − cos ϕ) (5.46)

The corresponding result for ax,ϕ is

ax,ϕ =
(

9k′

50

)(
ρ

ν
r6

◦U3
◦

) [ sin9 ϕ

(1 − cos ϕ)6

]
V −1/4 (5.47)
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In contrast to Case A, equation 5.36, the term in square brackets increases strongly
as ϕ decreases (the jet impinges more obliquely) as more of the jet flow is directed
along the θ = 180◦ streamline towards the stagnation point.

The shape of the cleaning front is calculated in a similar fashion to Case A but it
is convenient to write equation 5.23 with the angle of inclination of the streamline to
the downstream direction, χ, now equal to π − θ, such that X is located at χ = 0:
Comparing the cleaning rate at angle θ to that at θ = 0, and noting that da

dt
= ξ

p4

(equation 5.31), yields
dp

dχ
=
(

da

dt

)
P

p

V sin χ
− p

tan χ
(5.48)

The ξ term again depends on χ, with(
da
dt

)
χ

V
= ξ(χ)/p4

ξ(0)/a4
x,ϕ

= r6
e(χ)

r6
e(0)

a4
xϕ

p4 (5.49)

=⇒ ξ(χ)
ξ(0) = r6

e(θ − π − χ)
r6

e(θ − π) =
(

1 − cos ϕ

1 − cos ϕ cos χ

)6

(5.50)

yielding cf. equation 5.41)

p∗ =
( 2

15

)1/4 (sec ϕ − 1)3/2

sin θ

{[
sec2 ϕ − 5 sec ϕ cos χ′ + 10 cos2 χ′ − 6

(sec ϕ − cos χ′)5

]χ

0

}1/4
(5.51)

Figure 5.19 shows the cleaning front shape predicted for the range 10◦ ≤ ϕ < 90◦.
The cleaned region reaches its asymptotic width close to the source, in contrast

to Case A. As the jet impinges more obliquely, the asymptotic width is reached
ahead of the point of impingement.

The width of the cleaning front narrows noticeably with increasing ϕ, again
differing from Case A, with w∗

c given by

w∗
c =

(32
15

)1/4
(sec ϕ − 1)3/2

{(
4 − sec ϕ

(sec ϕ − 1)4 + 4 + sec ϕ

(sec ϕ + 1)4

)}1/4
(5.52)

Figure 5.19 shows that wc∗ decreases strongly with increasing ϕ. The product
w∗

c × ax,ϕ, ϕ, however, is identical to that for Case A (Equations 5.43 and 5.44), so
that the ultimate width of the cleaned strip is independent of the direction of nozzle
motion and is determined by the angle of impingement and the traverse speed. It is
acknowledged that this finding is unlikely to apply for Case A when ϕ is small, where
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the distance to reach the asymptotic width, downstream of the point of impingement,
may be large and detailed geometrical computation must be performed.
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Figure 5.19 Predicted shapes of cleaning fronts for different angles of impingement,
ϕ, for Case B, D−, U+ (see figure 5.14). Dimensionless Cartesian coordinates,
x∗ = x/ax,ϕ; y∗ = y/ax,ϕ.

5.5.3 Cleaning by moving nozzles, inclined jets, moving side-
ways

This combination arises when a jet moves in a spiral pattern within a vessel, moving
slowly upwards or downwards while the nozzle rotates in the azimuthal plane.
The motion of the nozzle in the azimuthal direction and along the vertical axis
is perpendicular to the radially ejecting liquid jet. The model for the moving jet,
equation 5.16, is combined with that for an inclined jet (figure 5.15) for the far field
case. The geometry is summarised in figure 5.20. Angle χ is again relative to the
direction of motion of the nozzle, OX: angle θ is zero in the upstream direction of
the flow, and χ = θ + π/2
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At X, χ = 0 and θ = π/2: equation 4.52 gives re = r◦ sin ϕ, so equation 4.52
gives

da

dt
= V =

[ 3σ

10ν
r4

◦U◦ sin9 ϕ
] 1

a4
x,ϕ

(5.53)

The subscript ϕ on ax,ϕ is used to flag that this dimension depends on the angle of
inclination. At P , noting that cos θ = sin χ when calculating re from equation 4.52,
equation 5.31 becomes

(
da

dt

)
P

= V
a4

x,ϕ sin3 ϕ

p4

(
sin ϕ

1 + cos ϕ sin χ

)6

(5.54)

Figure 5.20 Model geometry for liquid jet impinging obliquely while nozzle moves
normal to the direction of the flow of the liquid jet.
Substituting this result into equation 5.16 and using dimensionless variables as before
gives

p∗3 dp∗

dχ
+ p∗4

tan χ
= cosecχ

[
sin ϕ

1 + cos ϕ sin χ

]6

(5.55)

Using the integrating factor of sin4 χ gives

1
4

d(p∗4 sin4 χ)
dχ

= sin3 χ

(
sin ϕ

1 + cos ϕ sin χ

)6

(5.56)

with boundary condition p∗ = 1 at χ = 0. The shape of the cleared region
becomes asymmetric as the angle of inclination differs from perpendicular. Equation
5.55 was integrated in Matlab from χ = 0 to π, and from χ = 0 to −π, to obtain the
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(a) Upward directing jet: ϕ ≤ 90◦
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(b) Downward directing jet: ϕ ≥ 90◦

Figure 5.21 Effect of angle of inclination on the shape of region cleared by nozzle
moving normal to liquid jet direction for (a) ϕ ≤ 90◦ (b)ϕ ≥ 90◦. O is the point of
impingement.
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components of the cleared width above and below the impingement plane, w+∗
c,ϕ and

w−∗
c,ϕ, respectively. Figure 5.21 shows the effect of ϕ on the shape and width of the

cleared zone, where the dimensions have been normalised with respect to ax,90 (i.e.
perpendicular impingement) for ease of comparison.

The width of the cleared zone increases as the angle becomes more oblique.
The combined width, w+∗

c,ϕ and w−∗
c,ϕ, was calculated for the range of values of ϕ of

interest (30◦ < ϕ < 150◦) and the results are presented in the form of the parameter
W ∗ = (w+∗

c,ϕ + w−∗
c,ϕ)/3.04ax,90◦ in figure 5.22. The plot shows that w∗ could be fitted

to a 6th order polynomial in ϕ (with R2 = 1), or to an acceptable degree of accuracy
by the expression

W ∗ = wc,ϕ

wc,90◦
= cosec3/4ϕ (5.57)

Figure 5.22 Ratio of the width of the cleared region for an inclined jet to that of a
perpendicular jet (ϕ = 90◦), for a nozzle moving sideways. Solid line ˘ polynomial
fit,W ∗ = 0.0712ϕ6 − 0.6715Φ5 + 2.6855ϕ4 − 5.8263ϕ3 + 7.6681ϕ2 − 6.242ϕ + 3.4682,
where ϕ is in radians; dashed line, W ∗ = cosec(3/4)ϕ. Figure reproduced from
Bhagat et al. (2017)
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5.6 Simple simulations of vessel cleaning

§ 5.6 is reproduced from Bhagat et al. (2017) and I would like to acknowledge that
this is mainly based on my coauthor’s ideas. I had participated in the discussions
and had made some corrections. I calculated the results for this section.

The results predicting the width of the region cleared by the jet can be used to
estimate the length of time and other resources required to remove the soil from
the wall of a vessel. This section present some simple models for calculating a set
of performance indicators similar to those proposed by Köhler et al. (2015) for the
case of a vertical cylindrical vessel with hemispherical ends. There are a number of
simplifying assumptions made in the analysis, which could be revised in a detailed
numerical model.

Two types of trajectory are considered, shown schematically in figure 5.23. The
nozzle is located on the axis of a vertical cylinder of diameter D. It is assumed that
the curvature of the wall has no effect on the cleaning behaviour. The diameter of
the hemispherical ends is also D and the height of the wall is Σ. For the purpose of
comparing cycle times Ξ is introduced as the ratio of the height to diameter. The
nozzle is located at distance qD from the top of the wall. The jet is assumed to travel
as a ray, i.e. it remains coherent (no breakup, constant velocity), does not bend or
droop. Since the nozzle is located on the axis, the angle of impingement of the jet is
ϕ in the plane of the jet motion and normal to the wall in the transverse direction. It
is acknowledged that these assumptions are unlikely to hold in practice (see Damkjær
et al. (2017)) but the knowledge of jet breakup and its impact on cleaning rate in
these situations is not sufficiently advanced for more accurate predictions to be made
at the current time. The aim of these calculations is to establish a framework for
comparing different designs and operating protocols.

Furthermore, cleaning is assumed to occur by adhesive breakdown, i.e. peeling,
alone: there is no change in k′ with time or wetting history. For many soils of
practical interest, the ease with which the material can be removed from the wall is
related to the time for which the soil has been in contact with the cleaning solution.
In such cases, the flow path of the liquid down and along the wall would need to be
modelled in parallel and k′ adjusted according to the length of time that the soil has
locally been in contact with the cleaning solution. The flow of liquid in the falling
film could also promote cleaning if the soil became sufficiently weak or soluble.
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5.6.1 Performance indicators

Strips – vertical passes

In this case the point of impingement moves vertically up one wall and down the
opposite wall, moving to the side by a small amount during each pass so that in the
subsequent transit the cleared region touches that created by the previous transit at
the point of narrowest width (see figure 5.23(a)). At other points the cleared regions
overlap. The finding that the width of the cleared region depends on ϕ alone (for
modest ϕ) means that the number of cycles is set by the angle subtended at the
nozzle by the top and bottom of the wall, labelled ϕ1,min and ϕ2,min respectively,
which are in turn determined by Ξ and q. This symmetry indicates that the range of
values of q to consider is 0 ≤ q ≤ Ξ/2, so that ϕ1,min ≤ ϕ2,min. The construction in
figure 5.23(b) gives

ϕ2,min = arctan
(

1
2(Ξ − q)

)
(5.58)

The number of complete cycles (up one side and down the other) required to clean
the vessel wall, N , is given by

N = πD

2Wc,ϕ2,min

(5.59)

It is assumed that the ends of the vessel are cleaned by the repeated passes. For a
given soil, nozzle design and flow rate, the distance Wc,ϕ2,min

is determined by the
nozzle rotation, and three possible behaviours are considered, namely (i) constant
nozzle angular velocity, ω; (ii) constant traverse speed on vessel wall, V ; and (iii)
variable speed, set to give a constant width of cleared region (see equation 5.45). For
the purposes of comparison, it is convenient to use a common speed of jet transit at
the nozzle plane, VN , such that ω = 2VN

D
. The time to complete a cycle, tcycle, is then

tcycle,ω = 2π

ω
= πD

VN

(5.60)

tcycle,V = 2ΞD + πD

VN

= D

VN

(2Ξ + π) (5.61)

Equation 5.61 is only valid for a hemisphere of diameter D. The cycle time for constant
traverse speed is therefore longer, but figure 5.18 indicates that this programme gives
a wider cleared region so fewer passes are needed for equal VN . For case (iii), the
speed over the hemispherical ends needs to be specified. This was set at the value



126 Cleaning by stationary and moving liquid jets

reached at the top and bottom of the cylindrical wall where it joined the ends, giving
(see Appendix B)

tcycle,W =
D

VN

{
π

2 (cosecϕ1,min + cosecϕ2,min) + 1
4 [ln(cosecΦ − cot Φ) − cot Φcosecϕ]π−ϕ2,min

ϕ1,min

}
(5.62)

The three performance indicators can then be evaluated. Two schemes can be
considered: one including cleaning of the hemispherical ends, using the results for
tcycle in equations 5.60-5.62, and a second for cleaning of the vertical wall alone, for
comparison with the next scenario. The cycle times for each case are summarised in
Table 5.2.

Cleaning time, tF

This is the total time taken to remove all the material from the vertical walls, given
by

tF = N × tcycle (5.63)

Volume of liquid used, V ol

This is the amount of liquid that is projected from the nozzle. In practice the liquid
is likely to be recirculated, so this gives the maximum amount required, e.g. where
all the liquid goes to drain

V ol = tF × Q (5.64)
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5.6.2 Hydraulic energy, EP

The width of the cleared region is related to the flow rate of the jet, which requires
pumping. If the discharge coefficient of the nozzle is CD, and the combined efficiency
of the pump and motor is ηp, the hydraulic energy expended in cleaning is given
by (ignoring friction losses in piping and valves etc., which could be included via a
multiplying factor)

EP = tF × Q × 1
ηp

× ∆P

= tF × Q × 1
ηp

× 8Q2ρ

π2d4
NC2

D

= tF × Q3 × × 8ρ

π2d4
NC2

Dηp

(5.65)

The effect of jet flow rate differs between the performance indicators. Equation 5.44
indicates that Wc,ϕ ∝ (ρ × Q)3/4 for a given geometry and nozzle motion programme,
so tF ∝ (ρ × Q)−3/4 and decreases noticeably with increasing mass flow rate. In
contrast, V ol is weakly dependent on jet flow rate (V ol ∝ (ρ × Q)1/4) while EP

increases strongly (EP ∝ (ρ × Q)9/4 ).
The effect of vessel geometry (Ξ = 2, 3, 4 and 5, 0.25 < q < Ξ/2) and nozzle

speed programme is compared in figure 5.24. The width of the cleared region at the
nozzle plane is set at D/20 and w(ϕ) for the constant V and constant ω programmes
is calculated using FV and Fω, respectively (noting that FV and Fω ̸= 1 at the
nozzle plane). Time is in arbitrary units (t.u.) and the performance indicators are
normalised with respect to the case, Ξ = 2, q = 1, VN =constant = 1D/t.u. and
ω = 2t.u. In the plots the cleaning time is normalised by the smallest value of tF .
Dimensions are introduced in the Case Study.

For each speed programme the cleaning time is shortest with the nozzle is located
at q = Ξ/2, i.e. the symmetrical case. The cleaning time increases with Ξ, resulting
from the additional area to be cleaned and the effect of angle of impingement on
the width of the cleaning region: for constant wc operation, the velocity decreases
noticeably further away from the nozzle plane. The Figure shows that the constant
speed case gives consistently poor performance compared to constant ω (which is
typical of those used in multi-axis cleaning devices) and constant wc (which requires
a more complex drive arrangement).
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Figure 5.24 Cleaning by strips: effect of nozzle motion programme on time to clean
a cylindrical vessel with hemispherical ends of diameter D and height ΞD with
Ξ = 2, 3, 4 and 5; wc at the nozzle plane = D/20. tF,ref is the shortest time in the
set, obtained here with L/D = 2, q = 1 and constant wc. Line pattern indicates
motion programme. Each locus is plotted up to q = Ξ/2. Figure reproduced from
Bhagat et al. (2017)

5.6.3 Bands: horizontal passes

The nozzle rotates in the azimuthal plane at constant angular velocity, ω (see figure
5.23(c)). Cleaning of the hemispherical ends is not considered here. Two scenarios
are:

(i) Descending nozzle: in this idealised configuration, the nozzle descends (or
ascends) after each rotation so that the jet always impinges at an angle of inclination
of 90◦ and the circumferential traverse speed across the surface is constant, at
VN = 1

2ΩD. The width of the cleared region is constant, at Wc,90◦ , and tF is given
by 2π

Ω × LD
Wc,90◦

= πLD2

VN Wc,90◦
.

(ii) Nozzle in fixed position. After each rotation ϕ is adjusted so that the next
band touches the previous band. The width of the band, wc,ϕ, is given by Equation
5.57. In this case the circumferential velocity is constant, at VN . The first rotation,
at ϕ = 90◦, gives a band with height l1 = wc,90◦/2 above and below the nozzle
plane. The angle of impingement corresponding to this height, ϕ1, is given by
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ϕ1 = arctan(D/2l1), and is used to estimate the width of the next band and thence
the height, i.e. l2 = l1 + wc,ϕ1 . A numerical root search would be required to identify
ϕi+1 for each band. The progress of cleaning for successive bands is presented in

Figure 5.25 Cleaning by bands: effect of cleared width at nozzle plane. ϖ is the
number of rotations (bands), starting with ϖ = 1 at the nozzle plane, and h is the
height of the cleared region. Inset shows data presented in scaled form, h/wc,90, with
logarithmic scale on ordinate axis. Figure reproduced from Bhagat et al. (2017)

figure 5.25 for different values of initial band width. As the angle of jet impingement
becomes more acute, the width of the cleared band increases, in contrast to the
above case of stripes at constant angular velocity. Whereas the stripes case favours
the nozzle being located at the centre of the vessel, this result suggests that the
nozzle should be located towards the top of the vessel. There will, in practice, be
limits to how far up the vessel the nozzle should be located: considerations of jet
breakup and jet rebound have already been mentioned.

5.6.4 Case Study

The two modes of operation are now compared for an idealised case, namely a
cylindrical vessel with diameter 2 m and a 2 m high vertical wall. Only the cleaning
of the cylindrical sides is considered. A 2.66 mm diameter nozzle is located at the
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midpoint of the vessel, with flow characteristics taken from a commercial nozzle
specification (Lechler Catalogue (2011)). The case study parameters are summarised
in Table 5.3. Three flow rates were considered and the value of VN was based on a
nozzle rotation speed of 4 min−1.

Table 5.3 Case study parameters

Feature Parameter Value
Vessel geometry Diameter, D 2 m

Height, ΞD 6 m
Nozzle location, qD 3 m

ϕmin 18.4◦

Volume (cylinder) 18.3 m3

Nozzle Diameter 2.66 mm
Flow rate ∆P = 1 barg 4.45 L min−1

∆P = 2 barg 6.30 L min−1

∆P = 5 barg 9.96 L min−1

Angular velocity ω 4 rpm
Ω 4 rpm

Linear velocity at nozzle plane VN 0.42 m s−1

Hydraulic efficiency ηp 0.75
Cleaning rate constant Temperature (◦C) k′

20◦ 0.027
30◦ 0.23
40◦ 2.54
50◦ 13.3

The value of k′ is based on that obtained above for petroleum jelly. The effect
of using higher temperature, which is one factor in Sinner’s circle, was included by
increasing k′ by the factor reported by Wilson et al. (2014) for a different petroleum
jelly. The thermal energy required to heat the water is added to the hydraulic
pumping requirement, EP , to give the total energy requirement, Etotal. This allows
the benefit generated by using hot water to be quantified. Capital costs of the heater
are not considered.

Table 5.4 summarises the results for three stripes scenarios, with constant angular
velocity (labelled ω), traverse speed (V ) and cleared width (wc) and two bands
scenarios, namely one where the nozzle moves up and down while rotating at
constant angular velocity (Ω), and one where the nozzle is located at the centre of
the vessel (mid, where q = Ξ/2). The latter was used to allow comparison with the
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scenario. Results were also generated for the scenario where the nozzle was located
at the top of the vessel, and gave cleaning times approximately 25% faster.

The results are sensitive to the value of L but general trends can be identified.
Constant cleared width operation scenario gave consistently longer times and conse-
quently poorest performance as measured by the other indicators. This result differs
from that shown in figure 5.24 because the time taken to move across the top and base
of the vessel is not considered in the case study calculations. The order of cleaning
times is then V > Ω > ω > mid: the latter two, which are simplest to achieve in
practice, are similar. Increasing the temperature results in a noticeable reduction
in cleaning time and consumption of liquid. The former results in a reduction in
hydraulic energy and, for the parameters of this case study, the associated increase
in thermal energy requirement does not alter this trend. Otherwise the use of higher
pressure results in shorter cleaning times but higher liquid consumption. Comparing
the extremes for the most attractive (mid) scenario, operating at 20◦C and 1 bar
achieves cleaning in 17.5 minutes and requires 79 L of liquid and of energy: the
corresponding values for 60◦C and 5 bar are 2.5 min, 25 L and 19 k. Cost factors
need to be introduced to determine the financial benefit.

This case study demonstrates how the models developed in this chapter could be
applied to assess the performance of different cleaning strategies, including the use
of chemical agents to modify k′. Since k′ can be identified from batch cleaning tests,
the areas requiring further investigation are confirmation of the moving inclined jet
models; determination of the effect of jet travel distance on jet trajectory, breakup,
and cleaning performance (as well as the influence of jet rotation); and the impact of
soaking on cleaning behaviour.
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5.7 Conclusions

The main goal of the study presented in this chapter was to develop a mathematical
framework for modelling industrial and domestic cleaning (Dish washer) operations.
The problem can be subdivided into three overlapping sub-problems; (1) understand-
ing the hydrodynamics of the flow field created by impinging liquid jets, (2) coupling
the hydrodynamics and cleaning mechanisms to obtain cleaning models and, (3)
integrating and modifying these cleaning models in the light of the dynamics arising
from the motion of the nozzle.

Damkjær et al. (2017); Glover et al. (2016); Wilson et al. (2014, 2015) studied
cleaning by the peeling mechanism by a static impinging liquid jet which suggests
that the rate of cleaning is proportional to the liquid momentum at the cleaning
front i.e. da

dt
= k′M . Here, the term M couples the hydrodynamics and the cleaning

mechanism i.e., in this case peeling. In § 3 and § 4, it was established that the Wilson
et al. (2012) description of flow field gives a reasonable engineering estimate of the
momentum M and the main advantage of this model is its simple mathematical
formulation. For the ease of analysis and to obtain an analytical solution, they
approximated the flow model and it is found to be valid only at the peripheral
regions of the RFZ.

However, it is identified that in the Wilson et al. (2012) flow model, the mathe-
matical expression for momentum should be approximated by three sets of equation,
suggesting three regions, namely; near field, far field and, intermediate region.
Through a series of results presented in this chapter, it is shown that the Wilson
et al. (2014) model for cleaning by peeling by an impinging liquid jet can be used
to predict the extent of cleaning by jets created by stationary and moving nozzles.
In a laboratory setup, the stationary jet experiments are easier to conduct and
they provide vital insight to understand the cleaning mechanisms. For example, for
cleaning by the peeling mechanism, stationary jet experiments provide the cleaning
rate parameter k′ which can subsequently be used for comparison and application
with cleaning by moving jets. The near field and the far field region approximations
for cleaning was confirmed using experimental data. The stationary jet cleaning
model was extended, for the first time, to cleaning where the jet impinges at an
angle off the perpendicular. The shape of the cleared region is no longer circular and
the model predictions were in good agreement with new experimental data obtained
with layers of petroleum jelly. It was shown that model can account for the variation
in the azimuthal flow rate.
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In cleaning-in-place-systems (CIP), the nozzle rotates about two axes which
enables the liquid jet(s) to sweep across, creating different jet path pattern on the
vessel surface. With appropriate geometric manipulation, the modelling approach
presented in this chapter can be applied to assess the effectiveness and impact of
CIP jet path trajectories in cleaning.

Wilson et al. (2015) gave solution for cleaning by peeling the mechanism for
normal moving jets, for which they used the far field approximation for the flow field.
The model is extended to other cases, namely the near field. In CIP applications, the
moving jet impinges obliquely, with a continuously changing angle of impingement.
For those cases, new solutions have been obtained. It is found that the angle of
impingement and nozzle’s direction of motion affects the shape and the total cleared
area significantly.

A series of velocity programmes were investigated, and the impact on resources
(time taken, liquid consumption, energy requirement) calculated. The most favourable
programme was found to depend on the geometry of the vessel.

The case study indicates how the modelling approach could be used to design or
develop cleaning-in-place programmes for specific soils. There are a number of aspects
where further work is required in order to generate accurate results. Experimental
data are required for an inclined jet with a moving impingement point, as well more
information about the effect of jet breakup, splatter, and rebound. Extension of the
model to spiral trajectories, reflecting those employed in practice, is also required.





Chapter 6

General conclusions and future
work

6.1 Conclusions

The main aim of this work was to understand the flow fields created by impinging
liquid jets and their use in cleaning applications, particularly CIP processes.

§ 2 deals with understanding of the hydrodynamics. For centuries, it was
believed that the kitchen sink scale hydraulic jumps are created due to gravity.
The experiments and the theory presented in § 2 overturned this gravity-based
theory and ultimately provided a theoretical resolution to the question: what gives
birth to a hydraulic jump? Experiments were conducted in which water jets were
fired upwards and sideways onto flat surfaces, and witnessed exactly the same
hydraulic jumps as those obtained when the jet flowed downwards. These experiments
unequivocally disapproved the previous gravity-based theories since changing the
orientation of surface changes the relative direction of gravity to the liquid flow.
Despite these changes in orientation the shape and the size of the hydraulic jump
remains approximately the same. A control volume analysis was conducted in which
the total mechanical energy including surface tension was considered. Through this
energy balance, it was found that the derivative of the radial velocity with respect to
the radius becomes singular (du

dr
→ −∞) at a finite radial location. This implies that,

at this location, the radial velocity changes rapidly and produces the hydraulic jump.
The condition for the hydraulic jump, or the supercritical to subcritical transition
was shown to be; We−1 + Fr−2 = 1.

For thin film cases, Fr does not play any significant role and the condition for
hydraulic jump is We ≈ 1. This also answered the question which has been debated
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for some time about that, why the hydraulic jump on a vertical wall or the departure
radius, observed when a liquid jet hits a ceiling from the underside, are unaffected
by the nature of the substrate. The primary conclusion from the study presented
§ 2 was that these thin-film hydraulic jumps result from energy loss due to surface
tension and viscous forces alone. At the location of the hydraulic jump, surface
tension and viscous forces balance the momentum in the liquid film and gravity plays
no significant role. The findings reported here shed new light on thin film flows and
the incorporation of surface tension into liquid flows which has often being puzzling.
For example, Bush and Aristoff (2003) looked at the influence of surface tension
on circular hydraulic jumps and concluded that, ‘While the influence of surface
tension is generally weak in terrestrial experiments, it becomes appreciable for jumps
of small radius and height. Moreover, its influence will be heightened dramatically
in a microgravity setting, or when internal jumps arise between immiscible fluids of
comparable density.’ Since the theory presented by Bush and Aristoff (2003) was one
of the most accepted views, this clearly shows a lack of fundamental understanding
and a knowledge gap which the study presented in § 2 has overcome.

Previous treatments of the hydraulic jump had employed the solutions based
on the Navier-Stokes equation, or a momentum balance obtained by integrating
this equation. In § 3 a momentum balance was applied on the relevant control
volume which showed an agreement with the energy based theory described in § 2.
It was also found that the surface energy term, which had previously been ignored,
dominates only in the peripheral region of the RFZ i.e. close to the hydraulic jump.
Hence, despite the fundamental difference, in most of the RFZ the new theory and
the previous theories (e.g. Wilson et al. (2012)) gives a similar value of momentum.
Button et al. (2010) presented a model for the water bell departure radius (i.e. the
case when water jet was fired upward onto a ceiling) was revisited. The analysis of
Button et al.’s model which was based on Taylor’s analysis was found to be flawed.

§ 4 considered with the case where the thin liquid film in the RFZ becomes
turbulent. The thin film in the RFZ was divided into three regions, namely the
boundary layer flow zone, the laminar zone, and the turbulent zone. Governing
equations were written and solved for the boundary layer flow zone and the laminar
zone. The condition for the laminar to turbulent transition was found to be the
location where the liquid film thickness reaches a minimum. Beyond that point, the
flow was modelled using a 1/7th power law velocity profile.

Three different data sets for the laminar to turbulent transition, (1) direct optical
observation, (2) enhanced heat transfer coefficient and (3) enhanced cleaning by
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dissolution mechanism were compared with the predictions and found to be in
agreement. Measurements of the average velocity in the film were obtained using a
new technique. It avoids the complications experienced using PIV where the influence
of waves is significant (as reported by Aouad et al. (2016)). It is relatively robust,
independent of liquid optical properties and can be readily applied to different wall
materials, angles of inclination and flow rates. The experimental data for the average
velocity were compared with predictions from the models presented in § 2 and § 4.
The data showed good agreement with turbulent film model, and better agreement
with the theory presented in § 2. Similarly, Stevens and Webb (1993) measured the
liquid film thicknesses and these were compared with the model’s prediction. The
data and the prediction showed excellent agreement.

§ 5 reported a collaborative effort which developed a mathematical framework
for modelling jet cleaning scenarios that arise in CIP operations. The problem was
subdivided into three overlapping sub-problems; (1) understanding the hydrodynam-
ics of impinging liquid jets,(2) coupling hydrodynamics and cleaning mechanisms to
obtain cleaning models, and (3) integrating and modifying the cleaning model in the
light of the dynamics arising from motion of the nozzle. The conclusion from § 3
was that the Wilson et al. (2012) flow model gives a reasonable engineering estimate
of the momentum in the RFZ. Given its simplicity, it was used to describe the flow
field. It was identified that in the Wilson et al. (2012) flow model, the mathematical
expression for momentum can be approximated by three sets of equation, suggesting
three regions, namely; near field, far field and, the full model or intermediate region.
Similarly, the Wang et al. (2015) flow model was approximated for the near field case
and it was coupled with the Wilson et al.’s cleaning model to obtain an expression
for cleaning by obliquely impinging jets. The predictions from the modified model
were then compared with the experimental data and showed good agreement. The
jet cleaning (by peeling) model was used to predict performence of a moving jet
operating under different translation paths. Considering two different CIP flow
scenarios, models were developed for (1) when the nozzle moves in a vertical plane
creating vertical cleaned stripes, and (2) when the nozzle rotates in a horizontal
plane creating circular cleaned stripes. Using these models, a simple simulation for
vessel cleaning and a case study was presented.
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6.2 Future work

§ 2 provided a theoretical resolution to the question; ‘What gives birth to a hydraulic
jump?’. However, several questions still remain to be answered.

In § 2 for the control volume analysis, Watson’s similarity velocity profile was
used to account for the distribution of the velocity in the z direction. Watson
(1964) obtained this velocity profile ignoring surface tension and assuming zero
shear stress at the liquid-air interface. However, the analysis presented in § 2.5.1
conclusively shows that this approach is not correct and the normal stress boundary
condition must be applied at the interface. Particularly, in the peripheral region of
the RFZ, the momentum M and the force due to surface tension are comparable;
the similarity velocity profile cannot represent the true velocity profile. Therefore, to
understand the evolution of the velocity profile, Navier-Stokes equations with the
normal stress boundary condition should be solved. The velocity profile is important
in the shear-driven cleaning as the shear stress imposed on the surface depends on
the velocity profile. Similarly, the differential analysis presented in Appendix A
should be modified and the contribution from surface tension should be incorporated
directly using the boundary condition at the interface.

After the birth of a hydraulic jump on a finite plate, liquid continues to spread
outwards and will eventually reach the edge of the plate. At this point, the boundary
condition changes: the liquid film thickness downstream of the hydraulic jump
increases and the hydraulic jump radius moves inwards. This phenomenon is currently
unexplored and could be a fruitful area for further work to understand hydraulic
jumps.

Hydraulic jumps are conventionally studied by applying a momentum balance at
the jump location where hydrostatic pressure is balanced by the momentum of the
fluid (Bush and Aristoff, 2003; Watson, 1964). In these studies, the height of the film
downstream of the hydraulic jump was measured experimentally. The control volume
analysis presented in § 2 yielded a condition for the formation of a hydraulic jump,
in which the flow downstream of the hydraulic jump did not appear. A momentum
balance across the hydraulic jump will yield the height of the film downstream of
the hydraulic jump and this estimate could be compared with experiments.

The analysis presented in § 2 for the circular hydraulic jump can be extended
to thin film planar hydraulic jumps, where predictions can again be compared to
experimental measurements.

In § 4, although the empirical relationship demarcating the laminar to turbulent
transition in the RFZ explains the experimental data, it is not rigorous. The empirical
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findings in this study provide a new understanding about this transition, nevertheless
the precise mechanism for the transition remains unknown. In general, however, it
appears to be related to the instability in the capillary waves (see figure 4.9). In light
of the theory presented in this dissertation, stability analysis should be performed
and the laminar to turbulent transition should be re-investigated. This is particularly
important for cleaning applications as the current model yields a discontinuity in
the wall shear stress which is puzzling.

The analysis presented in § 5 was for cleaning by the peeling mechanism. The
hydraulic model can now be applied to study other cleaning mechanisms. The
extension will require different approaches to those employed in § 5. For example,
in case of cleaning by erosion mechanism where wall shear stress is the important
parameter, it will not be possible to frame the rates in term of steady state condition
at the leading edge of the cleaning front.

In § 5 one of the key assumptions was that the liquid jet remains coherent. In
large industrial tanks, the liquid jets are often non-coherent and they impact the
wall as a series of droplets. The rotation of the nozzles adds further complexities.
Considerably more work will need to be done to establish the effect of jet breakup
and the rotation of the nozzle on the hydrodynamics and cleaning performance of
large scale jets.

Another aspect to consider is the soaking and swelling related phenomena which
change the cleaning rate parameter k′ and introduce temporal dynamics into cleaning
studies. This complex behaviour can arise in many real systems, driven by cleaning
solution and chemistry. In a computer controlled moving nozzle system with a camera
attached to the nozzle, and by an in situ calibration, the cleaning rate parameter
k′ can constantly be fed to the system. The in situ calibration can be obtained by
the following method; in case of cleaning by moving liquid jets, at the leading edge
of the cleaning trail, the rate of cleaning equals the speed of the liquid jet, which
implies k′M(aX) = V . This expression provides a simple alternate way to obtain the
cleaning rate parameter k′. Different nozzle speeds would yield different ax values
which then can be plotted as V vs M(aX) and the slope of this linear curve will
yield k′. In a moving jet system, transverse nozzle velocity changes continuously
and the image analysis from the camera mounted on the nozzle could provide the
in situ calibration. This could be vital for the optimal cleaning of soils for which
the cleaning rate parameters are time dependent and change due to soaking or other
chemical or physical changes in the soil while the cleaning operation is underway.
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CIP literature contains several studies where pulsed liquid flow have yielded
enhance cleaning performance (e.g. Augustin et al. (2010), Fuchs et al. (2017)). The
hydrodynamics and performance of pulsed liquid jets have not been studied in depth
to date, and the current knowledge is largely emperical. This is an area of research
and one where the findings of this work could provide a basis for a quantitative
framework.
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Appendix A

Theory of Hydraulic jumps

A.1 Theory

We consider a cylindrical co-ordinates r and z, the radial and jet-axial coordinates,
respectively, u and w the associated velocity components (figure 2.2), and assume
circular symmetry about the jet axis. In the boundary layer approximation, the
equations are governing steady flow in a thin film are

∂(ru)
∂r

+ ∂(rw)
∂z

= 0, (A.1)

u(∂u

∂r
) + w(∂u

∂z
) = ν

∂2u

∂z2 . (A.2)

The no slip boundary conditions at the substrate is

u = w = 0, at z = 0, (A.3)

For constant jet flow rate Q the radial velocity satisfies 2πr
∫ h

0 u dz = Q . In
order to analyse the jump we use the similarity velocity profile’s ansatz developed
by Watson (1964) for the velocity within the thin film which is derived assuming no
shear stress at the free surface

∂u

∂r
= 0, at z = h. (A.4)

This assumption ignores the shear stress at the free surface which arises due to the
surface tension of the liquid and should formally be introduced through the normal
stress boundary condition at the interface, which here is introduced by surface energy
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balance on the annular control volume (shown in figure A.1 ). Therefore, the radial
velocity can be written as u = usf(η), η ≡ z/h(r) (0 ≤ η ≤ 1), where η is the
dimensionless thickness of the film and us is the velocity at the free surface. Using
continuity we define the flux-average velocity ū ≡ C1us by

∫ h

0
urdz = usrh

∫ h

0
f(η)dη = C1usrh ≡ ūrh = Q

2π
= const., (A.5)

where C1 =
∫ h

0 f(η)dη = 0.6137 is a shape factor determined from the similarity
solution.

Integrating equation A.1 from 0 to h and using 2.14 yields

w = u
dh

dr
η = usf(η)h′η (A.6)

Writing A.1 in the form

1
2ρ(u2 + w2)∂(ru)

∂r
+ ∂(rw)

∂z
= 0 (A.7)

using A.7 and the circular symmetry of the system allows the mechanical energy
equation to be written as

∂

∂r
(ur

1
2ρ(u2 + w2)) + ∂

∂z
(wr

1
2ρ(u2 + w2)) = −ur

dp

dr
− ρgur

dh

dr
+ ruµ(∂2u

∂z2 ) (A.8)

The mechanical energy equation (A.8) does not have a surface energy term as the
differential element of fluid does not include the free surface. However, on integration
of (A.8) from z = 0 to the free surface z = h, we need to add the surface energy
term. This is calculated as follows.

The rate of change of surface energy at a radial location r and in a differential
volume 2πrh∆r is 2πγr ∆r

∆t
and in the limit ∆r → 0

2πγr
∆r

∆t
= 2πγrū. (A.9)

Assuming circular symmetry around the jet axis, we can write the rate of change of
surface energy per unit angle as γrū. In the limit ∆r → 0, a balance on the flux of
surface energy across the annular control volume (figure A.1), yields

2πγr
∆r

∆t
= 2πγrū. (A.10)
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Figure A.1 Control volume of the differential annular volume of the liquid

Assuming circular symmetry around the jet axis, we can write the rate of change of
surface energy per unit angle as γrū. In the limit ∆r → 0, a balance on the flux of
surface energy across the annular control volume (figure A.1), yields

lim
∆r→0

(γūr)
∣∣∣∣
r+∆r

− (γūr)
∣∣∣∣
r

∆r
= d(γūr)

dr
.

(A.11)

Substituting (A.6) in (A.8) and integrating the LHS of the equation w.r.t z and
adding the surface energy term, yields

∫ h

0

∂

∂r

(
ρru3

2 (1 + (h′η)2)dz

)
+
∫ h

0

∂

∂z

(
ρru3

2 h′η(1 + (h′η)2)dz

)
, (A.12)

∫ h

0

∂

∂r

(
ρru3

2 (1 + (h′η)2)dz

)
+ ρru3

s

2 h′η(1 + h′2). (A.13)

Applying Leibniz’s integral rule yields,

d

dr

∫ h

0

(
ρru3

2 (1 + (h′η)2)
)

dz =
d
(

ρrhu3

2

)
dr

∫ 1

0
f 3(η)(1 + (h′η)2)dη. (A.14)

Now using the fact that usrh = constant, (A.14) can be written as

d

dr

∫ h

0

(
ρru3

2 (1 + (h′η)2)
)

dz = ρu2
shr

dus

dr

∫ 1

0
f 3(η)(1 + (h′η)2)dη. (A.15)



152 Theory of Hydraulic jumps

Similarly integrating the RHS of (A.8) w.r.t z and adding the surface energy term
from (A.11) yields

−
∫ h

0
ur

dp

dr
dz −

∫ h

0
ρgur

dh

dr
dz +

∫ h

0
ruµ(∂2u

∂z2 )dz + d(γūr)
∂r

. (A.16)

Then, using relation usrh = constant implies usr
dh
dr

= −hd(usr)
dr

, yields

−usrh
dp

dr

∫ 1

0
f(η)dη − ρgh2

(
r

dus

dr
+ us

)∫ 1

0
f(η)dη + µru2

s

h

∫ 1

0
f(η)f ′′(η)dη + γ

d(ūr)
dr

.

(A.17)

Finally putting together the LHS of (A.15) and the RHS of (A.17) and using the
relation ū = C1us gives

dus

dr
=

−usrhC1
dp
dr

+ C1γus + C1ρgush
2 − µru2

s

h

∫ 1
0 f(η)f ′′(η)dη

(1 − 1
W e

− 1
F r2 )

(
ρu2

shr
∫ 1

0 f 3(η)(1 + (h′η)2)dη
) . (A.18)

Here, the Weber number and Froude number are defined as, respectively,

We ≡ ρu2
sh
∫ 1

0 f 3(η)(1 + (h′η)2)dη

C1γ
,

, Fr ≡

√√√√u2
s

∫ 1
0 f 3(η)(1 + (h′η)2)dη

C1gh
.

(A.19)

Equation (A.18) was solved with the initial condition obtained from Watson’s
analysis of the growth of the boundary layer (Watson, 1964). The boundary layer
first occupies the whole film at rbl, given by rbl

d
= 0.1833 3

√
Re, where d is the nozzle

diameter and the jet Reynolds number Re = ρUod
µ

. At this location us is set equal
to the mean jet velocity. Inside the jump radius h′ remains very small therefore,
to obtain an approximate solution upstream of the hydraulic jump, in (A.18) and
(A.19), h′ was set to zero. From Watson solution, we can calculate

∫ 1
0 f(η)3dη = 0.4

and
∫ 1

0 f ′′(η)f(η)dη = 1.179. Substituting the integrands in (A.18) and solving it
with initial condition at r = rbl, us = Uo provides the subsequent radial values of
the surface velocity. The location where We−1 + Fr−2 = 1, (A.18) becomes singular
and there is a discontinuity in the film velocity and the liquid film thickness changes
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abruptly. Therefore, the condition for hydraulic jump is,

We−1 + Fr−2 = 1. (A.20)

A.2 Results and discussion

Equation (A.20) shows that the hydraulic jump depends on the local We and Fr

numbers. In § 2, it has been shown that in the case of thin-film hydraulic jump, Fr

remains very high and the criterion is set by the Weber number. Subsequently, the
surface tension and the viscosity of the test liquids was systematically changed and
it was shown that the theory gives excellent agreement with the experimental data.
Here, the theoretical prediction is compared with the experimental data for different
surface orientations. Figure A.2 compares the theoretical prediction obtained by
the solution of (A.18), whereas the dashed (blue) line represents the theoretical
prediction obtained from the solution of equation 2.20. The two predictions overlap
and show excellent agreement with the experimental data.
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Figure A.2 Comparison of theoretical prediction obtained using solution of (A.18)
(red line) with the experimental results presented in § 2. The dashed line shows the
solution of 2.20.
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A.3 Conclusions

The general theoretical treatment, including gravity and surface tension, presented
here show that the condition at a circular hydraulic jump is We−1 + Fr−2 = 1. In
case of thin films, gravity does not play any significant role and the hydraulic jumps
are created due to surface tension alone and the effective condition for a thin film
hydraulic jump is We ≈ 1. This calculation agrees with the conclusions drawn in §
2 and with both the flux average control volume analysis presented in § 2 and the
differential analysis presented in this paper are in agreement.



Appendix B

Cleaning scenario case study

Consider a nozzle moving clockwise, with Φ the angle from the vertical (Figure
5.23(b)), defined by

tan Φ = D

2L
(B.1)

The velocity at which the point of impingement moves up or down the surface is

V = −dL

dt
= D

2 cosec2ΦdΦ
dt

(B.2)

For constant cleared width, quation 5.44 suggests that |V | ≈ VN sin ϕ, where ϕ is
the acute angle at the point of impingement. Above NΣ, Φ = ϕ1 while below NΣ,
π − Φ = ϕ2. Equation B.2 becomes

D

2 cosec2ΦdΦ
dt

= VNsinΦ (B.3)

Giving
∆twall = D

2VN

∫ π−ϕ2,min

ϕ1,min

cosec3ΦdΦ (B.4)

∆twall = D

4VN

[ln(cosecΦ − cot Φ) − cot Φcosecϕ]π−ϕ2,min

ϕ1,min
(B.5)

With
tan ϕ1,min = 1

2q
(B.6)

tan ϕ2,min = 1
2(Ξ − q) (B.7)
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The jet is assumed to move across the upper and lower hemispherical ends at speeds
VN sin ϕ1,min and VN sin ϕ2,min, respectively, giving the time for one cycle as

tcycle,W =
D

VN

{
π

2 (cosecϕ1,min + cosecϕ2,min) + 1
4 [ln(cosecΦ − cot Φ) − cot Φcosecϕ]π−ϕ2,min

ϕ1,min

}
(B.8)



Appendix C

Cleaning vessel walls by moving
jets: Simple models and
supporting experiments

https://www.sciencedirect.com/science/article/pii/S0960308516301638
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