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Abstract. We examine the effect of a strong shear flow on morphological instabilities that occur in the

directional solidification of a dilute, binary alloy when the interface departs from local thermal equilibrium in

a frozen-temperature, one-sided model. In particular, the flow velocity U∞ is much larger than the rate of

solidification V and the Schmidt number is arbitrary. In contrast to solidification processes under small or no

flow, for which both a cellular and an oscillatory mode of instability appear, the liquid-solid interface under

flows of large magnitude is susceptible to a single mode of instability. All experiments on banding occur in

the overlap region between these modes under no flow and since these two primary modes coalesce into one

time-dependent, spatially-dependent mode, there is no mechanism for the production of bands anymore in the

large-flow regime. No experiments have been conducted to date on this rapid solidification under flow and

this suggests that such experiments would show no bands. The flow significantly stabilizes and selects higher

wavenumbers for the preferred form of instability in comparison to systems involving small or no flow. The

introduction of a strong flow provides an effective mechanism to eliminate instabilities at high solidification

rates. However, stability thresholds at low solidification rates remain mainly indifferent to the presence of flow.
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Figure 1: Liquid melt pool solidifying in additive manufacturing. Reproduced from [16].

1 Introduction

The production capabilities of additive manufacturing (AM), or three-dimensional printing (3DP), offer promis-

ing ways to print complex parts of diverse geometries and materials, both organic and non-organic [22, 28, 12,

9, 29, 27, 24, 21, 5, 10]. Examples range from metallic parts [28] to electronics [29] and implants and prostheses

[10].

However, a number of undesirable effects hinder current production capabilities of AM. These effects depend

on various factors, including the temperature distribution within the melt pool, compositional changes, the

geometry of the melt pool and other thermo-physical effects. Examples of these effects include distortion,

compositional changes, fusion defects [22], high surface roughness, layer delamination and warping [25], and

denudation [19].

To understand these effects and to minimize their occurances, it is necessary to examine the effects of the

flow field within the melt pool, depicted in Fig. 1, which comes about owing to large thermal gradients, and thus

large gradients in the surface tension, near the laser heat source, giving rise to Marangoni convection within

the melt pool [25, 14]. The melt pool is being scanned along the sample surface at high speed U , melting ahead

of the heat source and solidifying rapidly behind it. The solidifying interface is near planar as depicted by the

inclined line in Fig. 1. The upper, liquid-gas interface is susceptible to a number of instabilities as described by

[17]. Far away from the laser heat source, the liquid solidifies rapidly and the solid-liquid interface is susceptible

to morphological instabilities, which determine the microstructures of the resulting solid, such as the cellular

structure typical of additive manufacturing and banding seen in analogue experiments.

Kowal et al. [16] examine the effect of a weak shear flow on these morphological instabilities, building

upon the work of Merchant & Davis [20], who examine the morphological stability of the solid-liquid interface

under no flow. Both of these studies allow the solid-liquid interface to depart from thermodynamic equilibrium,
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Figure 2: Schematic of the solid-liquid interface under a shear flow.

appropriate to the case at large solidification rates, which occur in AM environments. In such settings, phase

transitions are no longer governed by the phase diagram. Departures from equilibrium, including effects such as

solute trapping and kinetic undercooling, are formulated within thermodynamically consistent generalisations

by [2, 13, 1, 4, 3, 18].

Merchant & Davis [20] use this model to map out a state diagram for the different modes of instability. Two

modes of instability are present when the interface departs from thermodynamic equilibrium under no flow:

a steady, cellular mode and a oscillatory mode. Merchant & Davis [20] found that all existing experimental

observations of bands occur in the triangular overlap region between the two neutral curves for the two primary

modes of instability.

A weak flow modulates the two modes of instability when the interface departs from thermodynamic equilib-

rium and travelling waves appear as shown by [16]. When the interface is kept at thermodynamic equilibrium,

it has been found that an imposed shear flow also favours traveling waves [11]. Forth & Wheeler [8] have also

investigated the effect of a shear flow in the limit of large Schmidt number and large Reynolds number. The

first study of morphological instabilities in the directional solidification of a binary alloy in thermodynamic

equilibrium without flow has been conducted by Mullins & Sekerka [23] and many generalizations have been

provided by Coriell & McFadden [6].

The large thermal gradients in AM environments lead to vigorous flows within the melt pool of magnitude

often much larger than the solidification rate. We build upon [16], on morphological instabilities under weak

flow in a rapid solidification environment, and extend the analysis to large flow rates. Specifically, we investigate

the stability of the liquid-solid interface in rapid directional solidification under the influence of a boundary-

layer flow, depicted in Fig. 2, of magnitude much larger than the solidification rate and develop an asymptotic

analysis in this limit. We assume that the effect of flow within the melt pool affects solidification processes
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locally at the solid-liquid interface, where the flow is locally of the boundary-layer type illustrated in Fig. 2. The

assumption is valid for perturbations of small amplitude characteristic of the onset of instability, which is the

case in the linear theory of this paper, but may break down at sufficiently large amplitudes. In contrast to the

microstructures produced in this locally-planar setting, the corresponding global effect of the solidification of the

whole melt pool subject to vigorous Marangoni convection is more complex, resulting in ring-like deformations

behind the flow’s stagnation point. In contrast to solidification under weak flow, or no flow, once the magnitude

of the flow is large, the two modes coalesce into a single mode and the region of instability is significantly

reduced. Once the two modes have coalesced, there is no impetus for the generation of bands.

We begin with a theoretical development of the problem and setting out the linear stability theory in §2. We

perform an asymptotic analysis to several orders in §3 and follow with a discussion of the results in §4. We revert

to natural scalings, which make it possible to specify a measure of the solute concentration and solidification

speed as externally controllable parameters, in §5. Implications of the results under these scalings is of use in

many physical and experimental settings. We finalize with conclusions in §6.

2 Theoretical development

The geometry of the problem is set up in the schematic of Fig. 2. A dilute, binary alloy is directionally

solidified in the z∗-direction and the coordinate system is chosen so that the unperturbed solid-liquid interface

is at z∗ = 0. Liquid occupies the region z∗ > η∗, and solid occupies the region z∗ < η∗, where z = η∗ is the

position of the perturbed interface. A strong shear flow is imposed orthogonal to the direction of solidification,

with far-field velocity U∞. These and other symbols are defined in Table 1.

The fluid is assumed incompressible, that there is no change in the density of the material as it changes phase,

and that the effect of gravity is negligible. The solid-liquid interface is allowed to depart from thermodynamic

equilibrium and make the following assumptions for the thermal and solutal problems. Assume that (a) the

thermal diffusivities of the solid and liquid phases are much larger than the diffusivity of solute in the liquid

phase, (b) the diffusivity of the solute is negligible in the solid phase, (c) the thermal conductivities of both

phases are equal, and (d) latent heat production at the interface can be neglected, These are the assumptions

adopted by [20] and [16]. Assumptions (c) and (d) allow the thermal field to fully decouple from the solutal and

flow fields, rendering the analysis more tractable and the interpretation of the results clearer.

In rapid solidification environments, phase transitions are no longer governed by the equilibrium phase

diagram. [2, 4, 3, 18] developed a thermodynamically consistent model for phase transitions that depart

from interfacial equilibrium, which specifies a non-equilibrium local interfacial temperature T ∗
I and local solute
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Symbol Definition

η∗ Interface deflection

U∞ Far-field velocity

TM Equilibrium melting temperature of the pure material

mE Equilibrium liquidus slope

kE Equilibrium segregation coefficient

γ/Lν Capillarity constant

V0 Upper bound for the rate at which crystallization can occur

M Morphological number

β Disequilibrium parameter

U Attachment-kinetics parameter

kE Segregation coefficient

Γ Dimensionless surface energy

V Speed ratio

R Inverse Schmidt number

Table 1: Table of parameters

concentration C∗
s in the solid.

The former is given by

T ∗

I = TM

(

1 + 2H∗
γ

Lν

)

+m∗(V ∗

n )C
∗ − mE

kE − 1

V ∗
n

V0
, (1)

which incorporates the Gibbs-Thomson effect for curved interfaces and the effects of capillary undercooling and

kinetic undercooling. This relationship appears e.g. in [20] and [7], and was originally derived by following the

arguments of [4] and [3] for a planar interface.

The constants appearing in this relation are described as follows. TM is the equilibrium melting temperature

of the pure material, mE is the equilibrium liquidus slope, kE is the equilibrium segregation coefficient, γ/Lν

is the capillarity constant, and V0 is the upper bound for the rate at which crystallization can occur.

The liquidus slope due to non-equilibrium segregation is no longer a constant, as in interfacial equilibrium,

but a function of the local interface velocity V ∗
n . Its functional form is given by

m∗(V ∗

n ) = mE

{

1− 1

kE − 1

(

kE − k∗(Vn)

[

1− ln

(

k∗(V ∗
n )

kE

)])}

. (2)

The remaining quantities appearing in (1) are the mean curvature H∗, which for a non-planar, three-
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dimensional surface becomes

2H∗ =
η∗x∗x∗

(

1 + η∗2y∗

)

− 2η∗x∗η∗y∗η∗x∗y∗ + η∗y∗y∗

(

1 + η∗2x∗

)

(

1 + η∗2y∗ + η∗2x∗

)3/2
, (3)

and the solidification rate for non-planar growth

V ∗

n =
V + η∗t∗

(1 + |∇∗η∗|2)1/2
. (4)

The latter ingredient in the non-equilibrium model, namely C∗
s , is related to the local solute concentration

in the liquid via the relationship

C∗

s = C∗k∗(V ∗

n ). (5)

The segregation coefficient k∗ is no longer fixed, as in interfacial equilibrium, but a function of the local interface

velocity V ∗
n given by

k∗(V ∗

n ) =
kE + β0V

∗
n

1 + β0V ∗
n

. (6)

[13] and [1] determined this particular functional form consistently with observation and limiting values so that

at low solidification rates, the segregation coefficient is close to its equilibrium value kE , and at high solidification

rates, the segregation coefficient k∗ → 1, reflecting the observation that solute is trapped into the solid at these

rates.

2.1 Dimensionless equations

The governing equations are made dimensionless by scaling the velocity field by the far-field speed, scaling time

and space based on solute diffusion, t∗ ∼ D/U2
∞ and l∗ ∼ D/U∞, and adopting the viscous pressure scaling

p∗ =
µU2

∞

D p. (7)

The thermal and solutal fields are scaled as

T =
T ∗ − T0

GD/U∞

, C =
C∗ − C∞/kE

C∞(kE − 1)/kE
, (8a, b)

Here, G is the imposed thermal gradient and T0 is a reference equilibrium freezing temperature of the material.

In dimensionless form, the governing equations read

∇2T = 0, (9)

describing heat balance,

∂C

∂t
− V−1 ∂C

∂z
+ u ·∇C = ∇2C, (10)
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describing solute balance,

R
(

∂u

∂t
− V−1 ∂u

∂z
+ u ·∇u

)

= −∇p+∇2
u, (11)

describing momentum balance, and

∇ · u = 0, (12)

describing incompressibility, for the liquid (z < η) and

∇2T = 0, (13)

describing heat balance for the solid (z < η). The interfacial conditions read

Cs =
1

1− kE
+

(

C − 1

1− kE

)

k(Vn) (14)

(C − Cs)Vn = −(−Cxηx − Cyηy + Cz)(1 + |∇η|2)−1/2 (15)

T = 2HMΓ+M
[

C + (m(Vn)− 1)

(

1

kE − 1
+ C

)]

−MUVn (16)

at z = η and the far field conditions become

u → ex as z → ∞, (17)

C → 1 as z → ∞. (18)

The segregation coefficient and the liquidus slope are now dimensionless functions of the solidification rate,

k(Vn) =
kE + βVn

1 + βVn
, (19)

m(Vn) = 1 +
1

1− kE

[

kE − k(Vn)

(

1− ln
k(Vn)

kE

)]

, (20)

where the normal velocity is given by

Vn =
V−1 + ηt

(1 + |∇η|2)1/2 , (21)

and the mean curvature

2H =
ηxx

(

1 + η2y
)

− 2ηxηyηxy + ηyy
(

1 + η2x
)

(

1 + η2y + η2x
)3/2

. (22)

These equations are governed by seven dimensionless parameters, including the morphological number M,

the disequilibrium parameter β, the attachment-kinetics parameter U , the segregation coefficient kE , the di-

mensionless surface energy Γ, the speed ratio V , and the inverse Schmidt number R, where

M =
mE(kE − 1)C∞U∞

DlGkE
, β = β0U∞, U =

U∞kE
(kE − 1)2C∞V0

, (23a, b, c)

Γ =
TMγU∞kE

LνDlmE(kE − 1)C∞

, V = U∞/V, R =
ρD
µ

. (24a, b, c)

These are all scaled with respect to the external flow speed.
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2.2 Linear stability analysis

Perturb about the basic state given by the solution

T0 = z +M
(

1

1− kE
− (β + kEV) Γs

(1− kE)V2
− U

V

)

, (25)

C0 = 1− kEV
kEV + β

e−z/V , (26)

u0 = 1− e−zR/V , (27)

η0 = v0 = w0 = p0 = 0, (28)

where

Γs =
kEV2

(1− kE) (β + kEV) 2
(

(β + kEV) ln
(

β + kEV
kE(β + V)

)

+ (1− kE)V
)

, (29)

and expand in the small parameter ǫ by writing

X(x, t) =X0(z) + ǫX1(z)e
σt+iα·x, (30)

X =(u, p, C)T , (31)

where α = (α1, α2) is the horizontal wavevector with amplitude α, and

η(x, y, t) = η1e
σt+iα·x. (32)

A single equation is obtained for the vertical velocity, given by,

[

V
(

V d2

dz2
+R d

dz
− V

(

α2 + σR+ iα1R
(

1− e−zR/V
))

)

·

·
(

α2 − d2

dz2

)

+ iα1R3e−zR/V

]

w1(z) = 0, (33)

by eliminating pressure and the horizontal velocity. The solute conservation equation reduces to

VC′′

1 (z) + C′

1(z)− VC1(z)
(

α2 + σ + iα1

(

1− e−zR/V
))

=
VkE

β + VkE
w1(z)e

−z/V . (34)

These are subject to the interfacial conditions

w1 =0, (35)

w′

1 =iα1RV−1η1, (36)

(β + V)C′

1 + C1 (1− kE) =

(

σV2

β + kEV
+

1

V

)

kEη1, (37)

and

C1 =

(

α2Γ + σ (U − Us) +M−1 +
Γs

(

βσV2 − β − keV
)

V2(β + V)

)

Us(β + V)2
βVΓs

η1, (38)
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at z = 0, and the far field conditions

w1, w
′

1, C1 → ∞, as z → ∞, (39)

where

Us =
βkEV3

(β + V) (β + kEV) 2
. (40)

The relations above form a sixth order system of differential equations subject to four interfacial conditions and

three decay conditions. This makes the problem fully specified. The system is a differential eigenvalue problem

for (w1(z), C1(z), η1), where the growth rate σ is treated as the eigenvalue. As such, the solutions are specified

only up to a constant multiple, which we fix, without loss of generality, by setting η1 = 1.

3 Asymptotics for V ≫ 1

The external-flow ratio is taken to be large using an asymptotic expansion in V−1 as follows:

w1 = w10 + V−1w11 + V−2w12 + · · · , (41)

C1 = C10 + V−1C11 + V−2C12 + · · · . (42)

The neutral stability boundary has σ = iω, where ω ∈ R is the angular frequency of oscillations. It is appropriate

to expand

ω = ω0 + V−1ω1 + V−2ω2 + · · · . (43)

The neutral stability curve is determined by the inverse morphological number, which we expand as

M−1 = V−1m0 + V−2m1 + · · · . (44)

3.1 Zeroth-order problem

At zeroth order in V−1, the governing equations reduce to

w10
(4)(z) + w′′

10(z)
(

2α2 + iω0R
)

+ w10(z)
(

α4 + iα2ω0R
)

= 0, (45)

C′′

10(z)−
(

α2 + iω0

)

C10(z) = 0, (46)

subject to the interfacial conditions

w10 = 0, w′

10 = 0, C′

10 − iω0 = 0, (47)

C10 = α2Γ +m0 + iUω0, (48)
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at z = 0, and the far field conditions

w10, w
′

10, C10 → 0, as z → ∞. (49)

The solution is given by

w10(z) = 0, C10(z) = 0, (50)

and the solvability condition gives

m0 = −α2Γ− iω0

(

U +
1√

α2 + iω0

)

. (51)

Requiring m0 to be real gives an equation for the zeroth-order frequency

ω0

[

U + (α4 + ω2
0)

−1/4 cos

(

1

2
arg
(

α2 + iω0

)

)]

= 0, (52)

from which we deduce the solution ω0 = 0 and

m0 = −α2Γ. (53)

At leading order, the system only feels the effects of surface energy and is strongly stabilized by it for all

wavenumbers.

3.2 First-order problem

At first order in V−1, the governing equations become

w11
(4)(z)− 2α2w′′

11(z) + α4w11(z) = 0, (54)

C′′

11(z)− α2C11(z) = 0, (55)

subject to

w11 = 0, w′

11 − iα1R = 0, (56)

C′

11 = iω1, (57)

C11 = iUω1 +m1 − 1, (58)

at z = 0, and

w11, w
′

11, C11 → 0 as z → ∞. (59)

Note that there is no viscous boundary layer. The solution is given by

w11 = iα1Rze−αz, C11 = −iα−1ω1e
−αz, (60)
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and the solvability condition at this order becomes

α (1−m1) = iω1(αU + 1). (61)

Requiring for the morphological number to be real specifies the first-order frequency

ω1 = 0, (62)

and the first-order correction to the inverse morphological number

m1 = 1. (63)

The positivity of this higher-order term implies that the strong shear flow does not stabilize the system com-

pletely. There is an interval of small wavenumbers that give rise to instability.

3.3 Second-order problem

At second order in V−1, the governing equations reduce to

w12
(4)(z)− 2α2w′′

12(z) + α4w12(z) =−Rw11
(3)(z) + iα1R2zw′′

11(z)

+ α2Rw′

11(z)− iα1α
2R2zw11(z), (64)

α2C12(z)− C′′

12(z) =− w11(z) + C′

11(z)− iα1zRC11(z), (65)

subject to

w12 = 0, w′

12 = 0, (66)

C′

12 + (1− kE) (C11 − βC10) = kE + iω2, (67)

C12 =
β2 (kE − 1)

2kE
C10 +

β

kE
+m2 + iUω2, (68)

at z = 0 and

w12, w
′

12, C12 → 0 as z → ∞. (69)

The solution is given by

w12 =

[

1

12
α2
1α

−1R3z3 +
1

4

(

α2
1α

−2R3 − iα1R2
)

z2
]

e−αz, (70)

C12 = − 1

4α3

[

iα1α
2z2R+ iα1αzR+ 4iα2ω2 + 4α2kE + iα1R

]

e−αz, (71)

and the solvability condition at this order reduces to

m2 = −kE
α

− β

kE
− iω2(αU + 1)

α
− iα1R

4α3
. (72)
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Figure 3: Neutral curves as a function of the wavenumber for kE = 0.5, β/V = 0.01, Γ/V = 0.0005. The axes are

scaled based on scalings involving the solidification rate rather than the external flow velocity, as appropriate

for comparison with results for weak or no flow. Neutral curves for large V are shown as black, solid curves

for V = 1, 10, 100. Neutral curves for small V are shown as dashed curves for V = 0.1, 0.15, 0.2, 0.25 (see [16]).

For comparison, the neutral curves for V = 0 are shown as solid, red curves. The unstable region is the region

underneath the solid curves.

Requiring m2 to be real yields the first nonzero term in the asymptotic expansion for the frequency. That is,

ω2 = − α1R
4α2(αU + 1)

. (73)

The corresponding correction to the inverse morphological number reads

m2 = −kE
α

− β

kE
. (74)

The effects of disequilibrium are first seen at this order and are stabilizing.

The asymptotic results, at the first three orders, also imply that there is just one instability mode for large

V , in contrast to the same scenario for small V or V = 0, and that this mode is oscillatory.

4 Discussion

Without any flow, there are two modes of instability: a steady, cellular mode and a time-periodic, oscillatory

mode [20]. Once a weak (V ≪ 1) shear flow orthogonal to the direction of the advancing solidification front

is imposed, travelling waves due to the flow appear as shown by [16]. That is, both modes become oscillatory.

However, these modes are still distinguishable for V ≪ 1.
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Figure 4: Critical morphological number as a function of V for kE = 0.5, β = 1, Γ = 1. The region of validity

is for V−1 ≪ 1 as indicated by the bold, solid curve. The regions of stability are indicated.

Figure 5: Critical morpholocial number for varying surface energies for large flow (V = 100 – dotted curve),

weak flow (V = 1 – dashed curve, see [16]) and no flow (V = 0 – solid curve). The axes are rescaled based on

scales involving the solidification rate rather than external flow rate, as appropriate for comparison with results

involving weak or no flow. Parameters used: kE = 0.5, βV−1 = 0.01.
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Figure 6: The critical wavenumber αc for varying surface energies for large flow (V = 100 – dotted curve), weak

flow (V = 1 – dashed curve) and no flow (V = 0 – solid curve). The axes are rescaled based on scales involving

the solidification rate rather than external flow rate, as appropriate for comparison with results involving weak

or no flow. Parameters used: kE = 0.5, βV−1 = 0.01.

Figure 7: The critical wavenumber αc and cutoff wavenumber αs for varying V−1. The axes are scaled based

on the external flow rate. Parameters used: kE = 0.5, β = 1, Γ = 1.
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Figure 8: Neutral stability curves in rescaled variables (C ,V ). Leading-order results for V = 10 are shown in

black. For comparison, results for no and weak flow are overlain. The steady and oscillatory branches under no

flow are given by the solid thin and thick red curves. The weak-flow perturbations to these brances are shown as

dashed thin and thick curves, respectively and are reproduced from [16]. Parameters used: kE = 0.8, B = 0.3,

N = 0.05.

Figure 9: Neutral stability curves in rescaled variables in the (A ,V ) plane. This figure is a cross-section of

figure 8 at C = 15. Results for V = 10 are shown in black. For comparison, results for no flow are overlain in

blue. The steady and oscillatory branches under no flow are shown as solid and dashed blue curves. Parameters

used: kE = 0.8, B = 0.3, N = 0.05.
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Once the magnitude of the flow is large (V ≫ 1), these two modes become replaced by a single loop. The

neutral curves for a sequence of typical parameters are shown in Fig. 3 for α2 = 0 in comparison to results

for weak or no flow. As in [16] and [20], we focus on examining the two-dimensional setting with α2 = 0, for

simplicity and for direct comparison to results for V = 0 and V ≪ 1. The neutral curves for V ≫ 1 are unaffected

by this assumption as the expansion for the morphological number depends only on the magnitude α, which is

symmetric in α1 and α2. Symmetry is lost in the expansion for the frequency ω, which is given additionally in

terms of α1 and the leading order term in the expansion for ω vanishes when α1 = 0. If α1, α2 = 0, it is still

mathematically appropriate to reduce the governing equations to one involving the vertical component of the

perturbed velocity and results such as the occurance of banding are unaffected by the choice to set α2 = 0.

When the magnitude of the flow is small, the perturbed oscillatory mode moves to the left until it is no

longer seen. The critical M−1
c necessary for any instability to occur decreases with V as V → ∞, as shown in

4. The asymptotic results are valid for V ≫ 1 and the figure should only be interpreted in this range.

The critical wavenumber αc, corresponding to M−1
c , is small and finite, in contrast to that of the oscillatory

mode under no flow, for which αc = 0. That is, there is spatial structure for the preferred mode when V ≫ 1,

in contrast to the preferred oscillatory mode under no flow, which is spatially homogenous.

The critical M−1
c also decreases with Γ until an absolute stability limit is reached at Γ = Γs, as shown in

Fig. 5. No instabilities occur for Γ > Γs. A similar absolute stability limit exists for no flow. However, under

strong flow, the critical wavenumber αc is nonzero at the absolute stability limit as shown in Fig. 6 (αc = 0

at the absolute stability limit when no flow is present). That is, long waves are preferred near the absolute

stability limit under no flow, which is no longer the case for V ≫ 1. Fig. 6 also shows a comparison to results

under weak or no flow in rescaled variables, based on the solidification rate rather than the external flow speed,

which is convenient for displaying results involving weak or no flow. The comparison uses the results of [16]

and [20]. The value of Γs, in rescaled variables, is lower for V ≫ 1 than for V = 0 or V ≪ 1. That is, the range

of surface energies for which instabilities occur is smaller for V ≫ 1, indicating that strong flow is stabilizing.

Fig. 6 also shows that the critical wavenumber decreases with Γ as Γ → Γs for each of the modes of

instability and that the differences between small and large magnitudes of the external flow become apparent

only for large surface energies.

Both the critical wavenumber and the cutoff wavenumber decrease with V , as shown in Fig. 7. In contrast

to results for no flow and weak flow, under strong flow there is a nonzero small-wavenumber cutoff αos, such

that there are no instabilities for α < αos. Long waves are no longer preferred.
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5 Physical Scalings

In many physical and experimental scenarios, it is natural to adopt scalings that allow one to specify a measure

of the solute concentration and solidification speed as externally controllable parameters. This can by done if

capillary scales l ∼ (γTM/(LνG))1/2, t ∼ γTM/(LνGDl) are chosen to scale length and time as in [20], rather

than the diffusion scales that we have used, which are convenient for the analysis.

We can rescale length and time against capillary scales by adopting the following transformation:

M = V CV , Γ = V C
−1V , β = BV V , (0 a− c)

U = V N C
−1V , k = A V

−1V , σ = S V
−2V2. (1 a− c)

This is a rescaled version of the transformation used in [20].

Neutral curves for the two modes of instability present under no flow (the cellular mode and the oscillatory

mode), separating regions of stability from regions of instability, are shown in the rescaled variables in (C ,V )

space in Fig. 8. Overlain in this figure is also the neutral curve resulting from a strong and weak imposed shear

flow. The region of instability is much smaller under strong flow. Specifically, instabilities are seen only for

smaller solidification rates. The upper bound for the solidification rate, above which no instabilities occur, is

an order of magnitude lower for V ≫ 1 than under no flow. This implies that introducing a strong external

shear flow is an effective way to reduce instabilities at large solidification rates. The lower bound, under which

no instabilities occur, remains mainly unaffected.

Such stabilization via a strong external flow is similar to the stabilization of instabilities of thin liquid films

via a shear flow, which produces an interfacial viscous-capillary wave capable of postponing and even eliminating

instabilities completely [15]. The latter stabilization occurs in a nonlinear regime, in contrast to the mechanisms

explored in this paper.

The wavenumbers, for which these instabilities occur under strong flow come close to the largest wavenumbers

seen for results under no flow, and are bounded away from zero in contrast to results under no flow, as seen

in Fig. 9. Fig. 9 shows a cross section of the neutral curves displayed in Fig. 8 at a fixed concentration C .

The two modes of instability under no flow become replaced by a single, oscillatory mode for V ≫ 1 of larger

wavelengths and smaller solidification rates.

6 Conclusions

We have examined the effects of an imposed shear flow on the directional solidification of a binary alloy. The

shear flow is imposed parallel to the solidification front and is of magnitude much larger than that of the
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solidification rate. The solid-liquid interface is allowed to depart from thermodynamic equilibrium.

Without any flow, the solid-liquid interface is susceptible to the onset of two modes of instability: a steady,

cellular mode and a time-periodic, pulsatile mode (α = 0) as seen in [20]. Once a weak flow is imposed, travelling

waves appear and the first of these modes becomes weakly oscillatory, as shown in [16]. Even though there is

no longer a sharp transition between these, the modes are nevertheless distininguishable.

This is no longer the case once the magnitude of the flow is large, as the two modes of instability, seen

under no flow and weak flow, merge into a single mode. This mode is oscillatory (α 6= 0, ω 6= 0) and occurs

for wavenumbers that are close to the largest wavenumbers seen without flow, see Fig. 3. In contrast to the

scenario for the oscillatory mode under no flow, the critical wavenumber remains nonzero, despite being small.

This means that the preferred mode induces spatial structure under strong flow in contrast to the spatially

homogenous, oscillatory modes preferred by the system under no flow.

The length scale of the cellular structure typical of rapidly solidified materials under which the effect of flow

is negligible has been additionally found to scale consistently with the cooling rate [see, e.g., 26]. Under strong

flow, such structure no longer occurs and is replaced by modes that are oscillatory in the solidification direction.

With strong flow, the dependence of the scale of these on the cooling rate may be controlled by the enhanced

heat transport resulting from convection within the melt pool.

The critical M−1, as defined by the neutral curve, decreases with V . The stronger the flow, the smaller

the region of instability in parameter space. The critical and cutoff wavenumbers also both decrease with V ,

meaning that instabilities under strong flow favor small wavenumbers.

Just as under no flow or weak flow, surface energy is seen to stabilize the system up to an absolute stability

boundary Γ = Γs, which, under an appropriate rescaling based on the solidification rate rather than the

external flow rate, is smaller under large flow rates than under small or no flow. Surface energies higher than

this completely stabilize the interface. Instabilities under strong flow are seen for a smaller range of surface

energies. A difference is that long waves are preferred near the absolute stability limit under no flow, but the

system selects a distinct, critical wavelength near absolute stability once the magnitude of the flow is large. The

critical wavenumber, as well as the cutoff wavenumber, both decrease towards this with the surface energy as

it approaches the absolute stability limit.

A distinguishing feature, perhaps of interest for industrial applications, is that lower solidification rates are

necessary for any instability to occur under strong flow than with no flow at all, or with weak flow. Inducing

a strong shear flow is therefore an effective way to eliminate interfacial instabilities at high solidification rates.

Such stabilization is similar to that of instabilities of thin liquid films, which may be postponed or even eliminated

when a shear flow is introduced [15]. However, flow does not make a significant difference to stability thresholds
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at low solidification rates.

The triangular overlap region between the two primary modes of instability under no flow vanishes at large

flow rates, which suggests that banding will not occur at large external-flow velocities. This loss of banding

requires experimental verification. All experimental data on banding occur within this overlap region [20], but

there have been no experiments conducted on instabilities under rapid solidification with flow. Introducing a

large external flow may be a way of influencing the microstructure during rapid solidification, as a means to

eliminate banding.
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