
This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1

Thermocapillary instabilities in a horizontal
liquid layer under partial basal slip

Katarzyna N. Kowal1,2,3†, Stephen H. Davis1 and Peter W. Voorhees4

1Department of Engineering Sciences and Applied Mathematics, Northwestern University,
2145 Sheridan Road, Evanston, IL 60208, United States

2Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Wilberforce Road, Cambridge, CB3 0WA, United Kingdom

3Trinity College, University of Cambridge, Cambridge, CB2 1TQ, United Kingdom
4Department of Materials Science and Engineering, Northwestern University, 2225 Campus

Drive, Evanston, IL 60208, United States

(Received xx; revised xx; accepted xx)

We investigate the onset of three-dimensional hydrothermal waves in a low-capillary-
number liquid layer of arbitrary depth, bounded by a free, liquid-gas interface from
above and a partial slip, rigid surface from below. A selection of two- and three-
dimensional hydrothermal waves, longitudinal rolls and longitudinal travelling waves
form the preferred mode of instability, which depends intricately on the magnitude of the
basal slip. Partial slip is destabilizing for all modes of instability. Specifically, the minimal
Marangoni number required for the onset of instability follows Mm ∼ a(β−1 + b)−c for
each mode, where a, b, c > 0 and β−1 is the slip parameter. In the limit of free slip,
longitudinal travelling waves disappear in favor of longitudinal rolls. With increasing
slip, it is common for two-dimensional hydrothermal waves to exchange stability in favor
of longitudinal rolls and oblique hydrothermal waves. Two types of oblique hydrothermal
waves appear under partial slip, which exchange stability with increasing slip. The oblique
mode that is preferred under no-slip persists and remains near-longitudinal for small slip
parameters.
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1. Introduction

The past three decades have undergone substantial progress in the development
of layer-by-layer production methods via additive manufacturing (AM), or three-
dimensional printing (3DP). Complex parts of various geometries are currently printable
for a vast range of industrial applications, including metallic and organic parts (Chin
et al. 2017; Gibson et al. 2015; He et al. 2014; Hofmann et al. 2014; Miller et al. 2012;
Mukherjee et al. 2016; Murphy & Atala 2014; Wegst. et al. 2015; Yung et al. 2016;
Zheng et al. 2013). Still, a number of undesirable effects hinder current production
capabilities, including, among others, distortion and compositional changes (Mukherjee
et al. 2016), high surface roughness (Sames et al. 2016), corrugations due to wave motion
and denudation (Matthews et al. 2016). These effects are potentially controllable via the
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Figure 1. Schematic of the solidification of a liquid melt pool in additive manufacturing and
an inset of the liquid/solid/mush layer.

adjustment of material properties, temperature distribution, laser intensity and speed,
geometry of the molten pool and various thermo-physical effects.
A main impediment in the prediction of these effects stems from the high temperature

gradients near the laser source, which induce thermocapillary motion and the onset of
Marangoni convection within the melt pool (Davis 1987; Sames et al. 2016; Khairallah
et al. 2016). Microstructures of the grown solid are strongly affected by this flow (Kowal
et al. 2017b) and compositional variations induce complex nonlinear pattern selection at
the rapid solidification rates common to AM (Kowal et al. 2017a) and 3DP.
In the layer-by-layer production methods of AM, material is deposited upon a subtrate,

which subsequently melts under a moving laser heat source and tends to solidify by
the ambient thermal field. This process is repeated continually, layer by layer, and the
trajectories traversed determine the geometry of the finished product. Depending on the
geometry and material properties of the desired product, as well as whether or not the
same path is continually traversed, the substrate is either mostly solid, or mostly liquid.
The schematic in figure 1 illustrates the geometry of the problem together with an inset
that depicts a microscopic view of the substrate, or liquid/solid/mush layer that forms
at the solid-liquid interface. The structure and composition of the substrate may vary
on fine scales, much smaller than that of the liquid layer. In principle, one could use
large-scale computational methods to describe the multi-layer flow, heat transfer, and
phase change present. This approach would give the details of the particular system but
general insight into such systems is absent. Instead, we have “modelled” the substrate as
providing an effective slip to the top layer. Given the separation of scales, this provides a
homogenized boundary condition on the scale of the layer of liquid, stemming from the
homogenization of the mixture of solid and liquid. We are effectively averaging over the
microstructure of the substrate to build in the effective slip experienced by the liquid
layer into an effective slip coefficient β−1. The value of β−1 spans the range from no slip
to free slip. In effect, all of the properties of the substrate are incorporated in β−1. Given
this model, we determine the effect of various substrates on the hydrothermal instabilities
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Figure 2. Schematic of the geometry of the problem

of the top layer, the preferred mode, the frequency of travel, and the critical Marangoni
number. In other areas of application, it is common for the bulk of thermocapillary flows
to occur within a boundary layer near the upper, gas-liquid interface, especially for high-
Marangoni-number flows (Cowley & Davis 1983). In these cases, the locus of the lower
boundary of this layer is no longer a no-slip surface, and instead, partial slip is similarly
to be expected.
Following Pearson (1958), the onset of thermocapillary convection has been examined

for a vast range of effects in various settings theoretically, for example, in two-dimensional
slots of small aspect ratio (e.g., Sen & Davis 1982) in thin liquid films at low capillary
number (e.g., Smith & Davis 1983a,b), and at high Marangoni number in a square cavity
(Carpenter & Homsy 1990), as well as numerically (e.g., Takashima 1981; Zebib et al.

1985; Chen & Hwu 1993; Mundrane et al. 1995; Xu & Zebib 1998; Hamed & Floryan 2000;
Nepomnyashchy et al. 2001; Shevtsova et al. 2003; Saenz et al. 2013) and experimentally
(e.g., Juel et al. 2001; Hof et al. 2004) in numerous configurations. Four distinct modes
of instability occur if the lower boundary obeys the no-slip condition, including two-
and three-dimensional hydrothermal waves, longitudinal rolls and longitudinal travelling
waves (Smith & Davis 1983a). In the current paper, we wish to examine how the selection
of the preferred mode of instability changes under partial and free-slip, and find another
mode of instability that becomes preferable for larger slip parameters.
We begin by setting out our theoretical development and method of numerical solution

in §2. We discuss longitudinal instabilities, including longitudinal rolls and longitudinal
travelling waves in §3, two-dimensional hydrothermal waves in §4, and oblique hydrother-
mal waves in §5. We finalize with conclusions in §6.

2. Theoretical development

Consider a three-dimensional liquid layer of mean depth d under a uniform, horizontal
temperature gradient ∂T ∗/∂x∗ = −b in the coordinate system illustrated in figure 2. The
layer is bounded from below by a rigid, partial-slip surface at z∗ = 0 and a free, liquid-
gas surface from above, at z∗ = η∗. The layer consists of an incompressible, Newtonian
fluid of viscosity µ, density ρ, velocity u

∗ and pressure field p∗. Its specific heat, thermal
conductivity, and thermal surface conductance are denoted by cp, k and h, respectively.
Because film thicknesses are on the order of 100µm, it is accepted in the literature that
gravity in 3DP environments is negligible. The surface tension σ∗

s of the upper surface
decreases as the temperature increases from its reference value,

σ∗

s = σ∗

0 − γ(T ∗ − T0). (2.1)

We non-dimensionalize as follows:

x
∗ = dx, t∗ =

µ

γb
t, u

∗ =
γbd

µ
u =

γbd

µ
(u, v, w), (2.2)
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p∗ = γbp, T ∗ − T0 = bdT, σ∗

s = σ∗

0σs. (2.3)

In dimensionless terms,

σs = 1− CaT, (2.4)

where

Ca =
γbd

σ0

(2.5)

is the capillary number. Hereafter, the interface is assumed to remain flat, η = 1, which
occurs in the limit of zero capillary number, and we assume that the upper layer is a gas of
negligible density and zero pressure. The kinematic boundary condition, thermo-capillary
stress conditions and heat flux condition at the upper interface become

w = 0, (2.6)

−
∂T

∂x
=

∂u

∂z
+

∂w

∂x
, (2.7)

−
∂T

∂y
=

∂v

∂z
+

∂w

∂y
, (2.8)

and

−
∂T

∂z
= B(T − T∞) +Q, (2.9)

at z = 1, where

B =
hd

k
(2.10)

is the Biot number, Q is a dimensionless surface heat flux determined by the basic state,
and T∞ is the temperature of the bounding gas far from the interface. We impose partial
slip and no penetration at the lower boundary

∂u

∂z
= βu,

∂v

∂z
= βv, w = 0, (z = 0), (2.11)

as well as the heat flux condition,

−n · ∇T = Bl(T − T∞), (z = 0). (2.12)

Here, β is a dimensionless slip parameter and Bl is a lower-boundary Biot number.
Within the layer, the momentum balance is given in dimensionless form by

R

[

∂u

∂t
+ u · ∇u

]

= −∇p+∇2
u, (0 < z < η), (2.13)

supplemented by the incompressibility condition

∇ · u = 0, (0 < z < η), (2.14)

and the heat balance equation

M

[

∂T

∂t
+ u · ∇T

]

= ∇2T, (0 < z < η), (2.15)

where

R =
ργbd2

µ2
, (2.16)

and

M =
ργbd2cp

µk
, (2.17)
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are the Reynolds number and the Marangoni number, respectively. Another useful
quantity is the Prandtl number

Pr =
M

R
=

µcp
k

. (2.18)

2.1. Basic state

We consider the partial-slip shear-flow solution given by

ū = −
∂T̄

∂x
(z + 1/β), v̄ = w̄ = 0, p̄ = p0, (2.19)

for which the corresponding temperature field,

T̄ =− x+M

[

1

6

(

1− z3
)

+
1

2β

(

1− z2
)

+B−1

(

1

2
+

1

β

)

+QM−1B−1

]

+ (2.20)

−Blγ(1 +B(1− z)), (2.21)

where

γ =
M(3(β + 2) + (β + 3)B)− 6βQ

6βB(BBl +B +Bl)
, (2.22)

and the temperature of the bounding gas,

T∞ = −x, (2.23)

both have a linear horizontal gradient. This is the unique parallel-flow solution under no
imposed pressure gradient. The parameter Q is determined by the basic state to ensure
continuity of temperature at the upper surface. For β fixed, we fix Q so that

Q =
M(3β + (2β + 3)Bl + 6)

6β(Bl + 1)
, (2.24)

giving,

T̄ = −x−
M(z − 1)(z(zβ + β + 3)(Bl + 1) + 3 + β)

6β(Bl + 1)
. (2.25)

When β → ∞ and Bl = 0,

ū → −z
∂T̄

∂x
, v̄ = w̄ = 0, p̄ = p0, (2.26)

T̄ → −x+M

[

1

6

(

1− z3
)

]

, (2.27)

which recovers the no-slip limit of Smith & Davis (1983a).

2.2. Linear stability analysis

Introduce perturbations X = X̄ + ǫX ′, where X = (u, p, T ). The perturbations are
governed by

R

[

∂u

∂t
+ ū

∂u′

∂x
+ w′

∂ū

∂z
ex

]

= −∇p′ +∇2
u
′, (2.28)

M

[

∂T ′

∂t
+ ū

∂T ′

∂x
+ u′

∂T̄

∂x
+ w′

∂T̄

∂z

]

= ∇2T ′, (2.29)

∇ · u′ = 0, (2.30)
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and are subject to the boundary conditions

w′ = 0 (z = 1), (2.31)

∂u′

∂z
+

∂w′

∂x
= −

∂T ′

∂x
(z = 1), (2.32)

∂v′

∂z
+

∂w′

∂y
= −

∂T ′

∂y
(z = 1), (2.33)

−
∂T ′

∂z
= BT ′ (z = 1), (2.34)

∂u′

∂z
= βu′,

∂v′

∂z
= βv′, w′ = 0,

∂T ′

∂z
= BlT

′ (z = 0). (2.35)

We search for normal mode solutions

(u′, p′, T ′) = (û(z), p̂(z), T̂ (z))eσt+iα·x, (2.36)

where α = (α1, α2, 0), and obtain a system of differential equations

R [σû + iα1ūû+ ŵ(Dū)ex] = −iαp̂− (Dp̂) ez + (D2 − α2)û, (2.37)

M
[

σT̂ + iα1ūT̂ − û+ ŵ(DT̄ )
]

= (D2 − α2)T̂ , (2.38)

iα1û+ iα2v̂ +Dŵ = 0, (2.39)

subject to the boundary conditions

ŵ = 0 (z = 1), (2.40)

Dû+ iα1ŵ = −iα1T̂ (z = 1), (2.41)

Dv̂ + iα2ŵ = −iα2T̂ (z = 1), (2.42)

−DT̂ = BT̂ (z = 1), (2.43)

Dû = βû, Dv̂ = βv̂, ŵ = 0, DT̂ = BlT̂ (z = 0), (2.44)

where D = d/dz is a differential operator and α = |α|.

Eliminating p̂ and v̂ gives the reduced system

[(

α2Pr +M
(

σ + iα1

(

z + β−1
)))

− PrD2
] (

α2û− iα1Dŵ
)

+ α2
2Mŵ = 0, (2.45)

(

α2Pr +M
(

σ + iα1

(

z + β−1
))) (

D2ŵ + iα1Dû− α2
2ŵ

)

+ α2
2PrD2ŵ − (α1M + iPrD3) (α1û− iDŵ) = 0, (2.46)

(

α2 +M
(

σ + iα1(z + β−1)
))

T̂ = D2T̂ +
1

2
M2z

(

z + 2β−1
)

ŵ +Mû, (2.47)



Thermocapillary instabilities in a horizontal liquid layer under partial basal slip 7

subject to

ŵ = 0 (z = 1), (2.48)

û′ + iα1ŵ = −iα1T̂ (z = 1), (2.49)

−α1û
′ + iŵ′′ + iα2

2ŵ = −iα2
2T̂ (z = 1), (2.50)

−T̂ ′ = BT̂ (z = 1), (2.51)

û′ = βû (z = 0), (2.52)

iŵ′′ − α1û
′ = β (iŵ′ − α1û) (z = 0), (2.53)

ŵ = 0 (z = 0), (2.54)

T̂ ′ = BlT̂ (z = 0). (2.55)

2.3. Minimization procedure

The system of differential equations above forms an eigth-order eigenvalue problem,
which we solve numerically to find allowable values of the growth rate σ. We are interested
in neutral stability and set ℜ(σ) = 0, so that σ = iω in terms of the frequency ω ∈
R. To obtain nonzero solutions numerically, we note that solutions are defined only
up to a multiplicative constant and impose the constraint T̂ = 1 at z = 1, without
loss of generality. From this numerical calculation, we obtain the Marangoni number M
corresponding to the point of neutral stability. This defines a neutral surface, given by

M = M(α1, α2, P r,B,Bl, β), (2.56)

which is supplemented by the corresponding frequency

ω = ω(α1, α2, P r,B,Bl, β). (2.57)

The global minimum of the neutral surface defines the critical Marangoni number Mc,
which needs to be exceeded in order for any instabilities to occur. We find the critical
Marangoni number by first using Newton’s method to find a local minimum,

M = Mm(j;Pr,B,Bl, β), (2.58)

of the neutral surface. As there is more than one local minimum, we use j as an index to
distinguish the various minima, or branches. The corresponding wavevector and frequency
are denoted by

α = αm(j;Pr,B,Bl, β), (2.59)

ω = ωm(j;Pr,B,Bl, β). (2.60)

By changing the initial guess in the minimization process, we obtain all local minima,
Mm, of the neutral surface. There is a finite number of local minima. The smallest value
of Mm defines the critical Marangoni number

M = Mc(Pr,B,Bl, β), (2.61)

and the corresponding critical wavevector and frequency

α = αc(Pr,B,Bl, β), (2.62)

ω = ωc(Pr,B,Bl, β). (2.63)

We repeat this procedure for a range of values of Pr,B,Bl and β belonging to the interval
[0,∞) via parameter continuation.
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(a)

(b)

Figure 3. Neutral curves, depicting (a) M and (b) ω for various slip parameters and Pr = 1/2,
B = 5, Bl = 0. The solid curves depict longitudinal rolls, and the dashed curves depict
longitudinal travelling waves.

3. Longitudinal instabilities

We first confine attention to the case in which α1 = 0, giving rise to longitudinal insta-
bilities. Two types of longitudinal instabilities appear: longitudinal rolls and longitudinal
travelling waves.

3.1. Stationary longitudinal rolls

The onset of stationary longitudinal rolls occurs with ω = 0 and axes aligned in the
direction of the mean flow. Neutral curves for various slip parameters at fixed Pr are
depicted in figure 3. The minimum of each neutral curve defines the minimal Marangoni
number Mm necessary for the onset of instability, which corresponds to an associated
transverse wavenumber α2m. Each of these decreases as the slip parameter β−1 increases.
Basal slip destabilizes the system. The neutral curve in the no-slip limit is an upper
bound, towards which the remaining neutral curves tend to monotonically as β → ∞.
The minimal Marangoni number for the onset of stationary longitudinal rolls decreases

monotonically from Mm ≈ 40 in the no-slip limit towards zero as β−1 → ∞ as depicted in
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(a)

(b)

Figure 4. Critical (a) Marangoni number and (b) wavenumber for longitudinal rolls against β−1.
The wavenumber tends to an asymptotic value of approximately 2 as β−1 → ∞. Parameters:
B = 5, Bl = 0, P r = 1/2.

figure 4a. The associated wavenumber approaches a non-zero value in the limit β−1 → ∞
as depicted in figure 4b.

These minima do not necessarily reflect the preferred modes of instability, as the
preferred mode need not be longitudinal. This is the case for low and moderate Prandtl
numbers, as seen in figure 5a. The preferred mode is given by the lowest value of M
for each Prandtl number. By the preferred mode, we refer to the mode that is seen
most visibly in experiment or practical application. For large enough Prandtl numbers,
however, stationary longitudinal rolls are the preferred modes of instability as seen in
figures 14a and 5a, both with and without slip, for B = 0. Longitudinal rolls can also be
preferred for lower Prandtl numbers, as long as the Biot number is large enough, as seen
in figure 14b.
Slip is seen to destabilize the system. Both with and without slip, the magnitude of

the critical wavenumber for stationary longitudinal rolls decreases monotonically with the
Prandtl number as seen in figure 5b. However, the system selects long wave instabilities
near a critical, finite Prandtl number, Pr ≈ 30, for B = Bl = 0, β = 5.
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(a)

(b)

Figure 5. Critical values of (a) M and (b) α for B = Bl = 0, in the no slip limit (solid
curves) and partial slip with β = 5 (dashed curves) for oblique hydrothermal waves (black),
two-dimensional hydrothermal waves (blue), longitudinal rolls (cyan), and longitudinal waves
(green). The preferred mode is given by the lowest value of M for each Pr. Slip destabilizes the
system for all types of modes.

Larger Biot numbers B yield larger critical Marangoni numbers for stationary longitu-
dinal rolls, as seen in figure 6a for B = 5. The same can be observed for increasing
Bl, for all modes of instability. The range of Prandtl numbers for which stationary
longitudinal rolls are the dominant mode of instability increases for larger Biot numbers.
For B = 5, stationary longitudinal rolls are the dominant mode of instability for all
values of Pr ' 0.67 without slip and Pr ' 0.63 for β = 5.

The minimal Marangoni number and wavenumber as a function of the slip parameter
β−1 is shown in figure 7 for Pr = 1/2 and B = 5. For stationary longitudinal rolls, the
minimal Marangoni number follows the translated power-lawMm ∼ 20.2(β−1+0.33)−0.61

for Pr = 1/2 and B = 5.
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(a)

(b)

Figure 6. Critical values of (a) M and (b) α for B = 5, in the no slip limit (solid curves) and
partial slip with β = 5 (dashed curves) for oblique hydrothermal waves (black), two-dimensional
hydrothermal waves (blue), longitudinal rolls (cyan), and longitudinal waves (green). Thin curves
correspond to Bl = 0. Thick curves correspond to Bl = 1. The preferred mode is given by the
lowest value of M for each Pr.

3.2. Longitudinal travelling waves

For nonzero frequencies ω, the resulting instabilities are longitudinal travelling waves
propagating in either normal direction to the mean flow. The growth rates come in
complex conjugate pairs as seen in figure 3b. The wavenumbers, for which these travelling
waves exist, are bounded from above by a cutoff wavenumber α2s at a nonzero cutoff
Marangoni number Ms. Figure 8 shows α2s and Ms as a function of β−1. Both α2s and
Ms decrease monotonically as β−1 → ∞, and a stability limit is identified as β−1 → ∞.
The cutoff wavenumber coincides with the minimal wavenumber for small enough β−1.

Precisely, the minimum of each neutral curve, as seen in figure 3, occurs at α = α2m,
where α2m < α2s for large enough β−1, and α2m = α2s otherwise. In the latter case, the
most preferred wavenumber is exactly the cutoff wavenumber. Similarly to longitudinal
rolls, the minimal Marangoni number for longitudinal travelling waves, as well as the
associated wavenumber α2m, both decrease with β−1. That is, basal slip destabilizes the
system.
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(a)

(b)

Figure 7. Minimal (a) Marangoni number and (b) associated wavenumber for Pr = 1/2, B = 5,
and Bl = 0. Longitudinal rolls are shown in cyan

(

Mm ∼ 20.2(β−1 + 0.33)−0.61
)

, longitudinal

waves are shown in green
(

Mm ∼ 19.8(β−1 + 0.29)−0.51
)

, oblique hydrothermal waves are

shown in black
(

Mm ∼ 19.6(β−1 + 0.29)−0.48
)

and orange
(

Mm ∼ 19.4(β−1 + 0.29)−0.56
)

, and

two-dimensional hydrothermal waves are shown in blue
(

Mm ∼ 21.1(β−1 + 0.35)−0.60
)

.

Although not the preferred mode of instability, longitudinal travelling waves are close
to the preferred mode of instability for low enough Prandtl numbers as seen in figure 5
for B = 0, both with and without basal slip. Oblique hydrothermal waves (modes for
which α1, α2 6= 0 and ω 6= 0) are preferred over strictly longitudinal travelling waves for
this range of Prandtl numbers, although these oblique waves are near-longitudinal. A
similar observation can be made for larger Biot numbers, as seen in figure 6 for B = 5.
Similarly to longitudinal rolls, increasing Biot numbers give rise to increasing Marangoni
numbers.

The minimal Marangoni number and associated wavenumber for longitudinal waves is
shown in figure 7 as a function of β−1 for Pr = 1/2 and B = 5. Although it is not a
global minimum for any range of β−1, the minimal Marangoni number for longitudinal
waves follows the translated power-law Mm ∼ 19.8(β−1 + 0.29)−0.51.
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(a)

(b)

Figure 8. Cutoff (a) wavenumber and (b) associated Marangoni number for longitudinal
waves versus β−1. Parameters: B = 5, Bl = 0, P r = 1/2.

4. Two-dimensional hydrothermal waves

Hydrothermal waves with α2 = 0 and ω 6= 0 (there is no steady bifurcation when
α2 = 0) constitute a third mode of instability. These two-dimensional waves need not
be the preferred mode of instability in all situations, although they are the preferred
modes of instability for intermediate Prandtl numbers and small enough Biot numbers.
For B = 0, this range of Prandtl numbers is approximately given by 0.6 / Pr / 1.5
without slip as seen in figure 5a. This range narrows down as the slip parameter increases
as seen in figure 14a. At fixed Pr and B, it is common for two-dimensional hydrothermal
waves to become no longer preferred when the slip parameter exceeds a critical value as
seen in figure 13. Either oblique hydrothermal waves or longitudinal rolls are preferred for
larger slip parameters. As seen illustratively in figure 5a, the range of Prandtl numbers
for which two-dimensional waves are preferred reduces to 0.63 / Pr / 1.35 when β = 5.
Similarly, as the Biot number increases, this range narrows down until two-dimensional

hydrothermal waves are no longer the preferred mode of instability for large enough
Biot numbers as seen in figure 14b. This is an important qualitative change as B
increases, which occurs even though quantitative changes to longitudinal modes are
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(a)

(b)

Figure 9. Critical (a) φ and (b) ω for Pr = 1/2, B = 5 and Bl = 0. Longitudinal rolls are
shown in cyan, longitudinal waves are shown in green, oblique hydrothermal waves are shown
in black and orange, and two-dimensional hydrothermal waves are shown in blue.

small. Increasing basal slip reduces this range further. This can be observed in figure
6a for B = 5, where the neutral curve for two-dimensional hydrothermal waves is
nowhere minimal in comparison to other modes. Instead, longitudinal rolls and oblique
hydrothermal waves become preferred.
Despite parameter configurations in which two-dimensional waves are not the preferred

mode of instability at a fixed Prandtl and Biot number, it is common for these waves to
be almost preferable as the slip parameter increases as seen in figure 7a. Figure 7a shows
minimal Marangoni numbers for various modes for Pr = 1/2, B = 5 as a function of β−1,
where oblique hydrothermal waves are preferred in the no-slip limit and for low slip, and
two-dimensional hydrothermal waves are close to being preferred for high enough β−1.
The wavenumber associated with the minimal Marangoni number for two-dimensional

hydrothermal waves is shown in figure 7b for Pr = 1/2 and B = 5. The minimal
Marangoni number for these two-dimensional waves follows the translated power-law
Mm ∼ 21.1(β−1 + 0.35)−0.60. The magnitude of the frequency of these two-dimensional
waves increases almost linearly with the slip parameter as seen in figure 9.
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(a)

(b)

Figure 10. Critical values of (a) φ and (b) ω, for B = 0, in the no slip limit (solid curves)
and partial slip (dashed curves) for oblique hydrothermal waves (black), two-dimensional
hydrothermal waves (blue), longitudinal rolls (cyan), and longitudinal waves (green). The
preferred mode is given by the lowest value of M for each Pr. Slip destabilizes the system
for all types of modes.

5. Oblique hydrothermal waves

Modes with α1 6= 0, α2 6= 0 and ω 6= 0, namely, oblique hydrothermal waves, are some
of the most commonly seen modes of instability. These oblique waves form the preferred
mode of instability for low Prandtl numbers. This is the case both with and without slip,
although the Prandtl numbers required for these modes to dominate are higher (lower)
with slip than in the no-slip limit for small (large) Biot numbers. For B = 0, the cutoff
Prandtl number, indicating the upper bound on the Prandtl number for these modes to
dominate, is given by Pr ≈ 0.6 in the no-slip limit and Pr ≈ 0.63 with partial slip, for
β = 5, as seen in figure 5. This range of Prandtl numbers widens slightly for higher Biot
numbers, to Pr ≈ 0.66 in the no-slip limit and Pr ≈ 0.64 under partial slip with β = 5.
The preferred oblique hydrothermal waves are near-longitudinal both with and without
partial slip as seen in figure 10a for B = 0 and figure 11a for B = 5. Although oblique
hydrothermal waves may be preferred for fixed values of Pr and B in the no-slip limit, it
is possible for these waves to become secondary to two-dimensional waves or longitudinal
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(a)

(b)

Figure 11. Critical values of (a) φ and (b) ω, for B = 5, in the no slip limit (solid curves)
and partial slip (dashed curves) for oblique hydrothermal waves (black), two-dimensional
hydrothermal waves (blue), longitudinal rolls (cyan), and longitudinal waves (green). The
preferred mode is given by the lowest value of M for each Pr.

rolls as the slip parameter increases. This is seen in figure 14b at a fixed Prandtl number,
where oblique waves are preferred for intermediate Biot numbers for small β−1, and cease
to be preferred for slip parameters that exceed a criticial value.
There are two distinct oblique hydrothermal waves, and depending on the slip param-

eter, either one or the other forms the preferred mode of instability. As seen in figure 7,
the oblique hydrothermal wave that forms the preferred mode of instability in the no-slip
limit for Pr = 1/2 and B = 5 remains preferred for low enough slip parameters up to a
cutoff value β−1 ≈ 0.6, beyond which the other oblique hydrothermal wave is preferred.
The magnitude of the frequency of the latter wave, which increases with slip for large
enough β−1, is much greater than that of the former, as seen in figure 9b.
The angle of inclination φ = 180

π
arctan (α2/α1) of the critical wavevector of the near-

two-dimensional oblique hydrothermal wave is shown in figure 9, in comparison with
that of the other oblique hydrothermal wave, which remains near-longitudinal for all slip
parameters. It is interesting to note that these two modes approach each other, in the
sense that the eigenvalues corresponding to the two modes approach each other with



Thermocapillary instabilities in a horizontal liquid layer under partial basal slip 17

(a)

(b)

Figure 12. Critical wavevector for the two oblique modes for Pr = 1/2 and B = 5 and varying
values of β. The wavevector for the near-longitudinal mode is shown in the upper panel.

β−1, but the modes remain distinct. Figure 12 shows the wavevector in the (α1, α2)-
plane for both oblique hydrothermal waves as a function of the slip parameter. The
near-longitudinal mode changes direction with β.

As seen in figure 10b for B = Bl = 0, preferred oblique hydrothermal waves, which in
this case are near-longitudinal, travel against the base flow for all Prandtl numbers under
the no-slip limit (which follows from the definition of ω and its positivity in figure 10b).
This remains the case under partial slip and the frequencies increase for large enough
Prandtl numbers. However, this behaviour reverses for larger Biot numbers and small
enough Prandtl numbers as seen in figure 11b. Oblique waves travel with the flow in
this case, and the range of Prandtl numbers for which these waves travel with the flow
expands under partial slip.
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Figure 13. Critical Marangoni number versus β−1 for B = Bl = 0 and Pr = 1.2.
Two-dimensional waves (blue) and longitudinal rolls (cyan) are preferred for small,

respectively, large β−1.

6. Conclusions

We have investigated the onset of two- and three-dimensional hydrothermal waves,
longitudinal rolls and longitudinal travelling waves in a low-capillary-number horizontal
liquid layer of arbitrary depth with a lower boundary that allows for slip. Hydrothermal
waves result from an imposed horizontal temperature gradient along the upper, liquid-
gas interface. In dimensional terms, the wavelengths of the generated instabilities are
comparable to the layer depth. We find that the selection of preferred mode of instability
depends intricately on the basal slip parameter.
We find that partial slip destabilizes the system for all modes of instability and

reduces the occurance of longitudinal travelling waves. The minimal Marangoni number
required for the onset of instability decreases monotonically with β−1 for all these modes.
Specifically, the minimal Marangoni number follows a translated power-law of the type
Mm ∼ a(β−1 + b)−c for each of these modes, where a, b, c are positive constants.
The band of wavenumbers for which longitudinal travelling waves appear narrows

down until this mode of instability fully disappears in favor of longitudinal rolls in the
limit of free slip. The minimal Marangoni number required for the onset of longitudinal
rolls as well as the associated wavenumber both decrease monotonically with the slip
parameter. Longitudinal rolls are the preferred modes of instability for large enough
Prandtl numbers both with and without slip, though lower Prandtl numbers are required
for these modes to be preferred under partial slip. That is, higher slip parameters promote
the occurance of longitudinal rolls for a widening range of Prandtl numbers as seen in
figure 14. Similarly, increasing Biot numbers give rise to wider ranges of Prandtl numbers
for which longitudinal rolls are the dominant mode of instability. The critical wavenumber
for longitudinal rolls decreases monotonically with Pr, both with and without partial
slip, until the system selects long wave instabilities near a critical Prandtl number
under no heat flux and partial slip. Longitudinal rolls become favorable also for low
Prandtl numbers, as long as B is large enough. This range of Biot numbers expands with
increasing slip.
Two-dimensional hydrothermal waves are the preferred mode of instability for interme-

diate Prandtl numbers and low Biot numbers. The range of Prandtl numbers for which
two-dimensional hydrothermal waves are preferred reduces with the slip parameter, and
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(a)

(b)

Figure 14. Regime diagram showing the appearance of oblique hydrothermal waves,
two-dimensional hydrothermal waves, and longitudinal rolls in (a) (Pr, β−1) space for
B = Bl = 0 and (b) (B, β−1) space for Pr = 0.65 and Bl = 0.

these waves tend to be selected by the system for lower Prandtl numbers under partial
slip as seen in figure 14b. The range of Biot numbers for which these waves are preferred
similarly reduces with increasing slip. It is, however, common for the Marangoni number
for two-dimensional hydrothermal waves to approach the critical Marangoni number as
the slip parameter increases, while Pr and B are fixed.
The system selects oblique hydrothermal waves as the preferred form of instability

for low Prandtl numbers. For small β−1, partial slip reduces (expands) the range of
Prandtl numbers required for these waves to be preferred for large (small) Biot numbers,
while increasing Biot numbers slightly expand this range. As β−1 increases further, the
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range of Prandtl numbers reduces further, in favor of the occurance of two-dimensional
hydrothermal waves. It is common to see oblique hydrothermal waves for intermediate
Biot numbers and for low enough slip parameters β−1 at a fixed value of Pr, as seen in
figure 14b. These oblique waves are no longer preferred for slip parameters that exceed a
critical value. There are two distinct types of oblique hydrothermal waves and the system
selects either one or the other of these oblique waves depending on the slip parameter.
One of these modes is near-longitudinal for all slip parameters. These near-longitudinal
oblique hydrothermal waves are preferred for low slip parameters up to a cutoff value
of β−1. The secondary oblique hydrothermal wave, of much higher frequency, becomes
preferred for larger slip parameters.
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