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Breast and prostate cancer research to date has largely been predicated on

the use of cell lines in vitro or in vivo. These limitations have led to the

development of more clinically relevant models, such as organoids or mur-

ine xenografts that utilize patient-derived material; however, issues related

to low take rate, long duration of establishment, and the associated costs

constrain use of these models. This study demonstrates that ex vivo culture

of freshly resected breast and prostate tumor specimens obtained from sur-

gery, termed patient-derived explants (PDEs), provides a high-throughput

and cost-effective model that retains the native tissue architecture, microen-

vironment, cell viability, and key oncogenic drivers. The PDE model pro-

vides a unique approach for direct evaluation of drug responses on an

individual patient’s tumor, which is amenable to analysis using contempo-

rary genomic technologies. The ability to rapidly evaluate drug efficacy in

patient-derived material has high potential to facilitate implementation of

personalized medicine approaches.
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1. Introduction

Preclinical models that accurately replicate the native

architecture and microenvironment of primary human

tumors are urgently needed to improve our under-

standing of basic tumor biology and to facilitate the

development of improved therapeutic approaches

(Thompson et al., 2008). The use of immortalized

human cell line models for investigating novel thera-

pies in vitro or in vivo is convenient but also a major

reason for the high failure of new drugs entering clini-

cal trials. To move toward more clinically relevant

model systems, researchers have adopted patient-

derived approaches such as organoids (Drost et al.,

2016; Gao et al., 2014) and xenografts (PDX) (Lawr-

ence et al., 2013; Wang et al., 2005; Whittle et al.,

2015). We report an alternative approach of culturing

freshly resected breast and prostate cancer tissue as

patient-derived explants (PDE). Ex vivo culture of

human prostatic tissue has been used since the 1970s

with varying degrees of success, and protocols ranging

from total immersion of tissue pieces in medium to

culture of tissue pieces or slices on grid or sponge scaf-

folds, reviewed by Centenera et al. (2013). Despite this

long-standing history and general acknowledgment of

the potential of ex vivo cultured tissues to increase the

clinical relevance of laboratory research (Centenera

et al., 2013; Kim, 2005; Pretlow et al., 1995; Ris-

bridger et al., 2018; Vescio et al., 1991), the PDE

method has not been widely adopted to study solid

tumors. The purpose of this study was to highlight

advantages of the PDE model and demonstrate how it

can be applied to interrogate hormone-dependent can-

cers such as those of the breast and prostate.

2. Materials and methods

2.1. Ethical approval for research using human

tissue

All research conducted in this study conformed to the

standards set by the Declaration of Helsinki.

2.1.1. Australia

The use of freshly resected human tissue samples for

this study was approved by the Human Research

Ethics Committees of the University of Adelaide, the

Royal Adelaide Hospital, and Burnside War Memorial

Hospital. All material is collected with written

informed consent from patients, and data are de-iden-

tified according to National Health and Medical

Research Council of Australia guidelines for human

research. Prostate tissues were collected as part of the

Australian Prostate Cancer BioResource.

2.1.2. United States

Prostate tissues from UT Southwestern Medical Center

at Dallas and Thomas Jefferson University hospitals

were obtained with written informed consent from

patients undergoing radical prostatectomy for high-

volume cancer, under Institutional Review Board-

approved protocols for the respective institutions.

Clinical characteristics and histopathology of

patients who donated tissue to this study are outlined

in Table S1.

2.2. PDE culture of solid tumors

The PDE technique utilized in this study employs a gela-

tin sponge platform (Centenera et al., 2013) (Fig. 1A).

This method was selected for two key reasons: firstly,

the use of a substrate for explant culture prevents cellu-

lar outgrowth that is frequently observed when tissues

are cultured without support and completely submerged

in media (Pretlow et al., 1995; Varani et al., 1999); sec-

ondly, the gelatin sponge used in this study is a commer-

cial medical device developed for hemostasis (Ferrosan,

2014) that is readily available, cost-effective, and simple

to use, making the method feasible for widespread

adoption in translational cancer research laboratories.

Figure 1A illustrates the PDE method using prostate

tumors as an example. Following surgical tissue

removal, the surgeon or clinical pathologist resects a

sample of the presumed malignant or nonmalignant

region and the specimen is transported to the research

laboratory in cold phosphate-buffered saline on ice,

typically within 1–2 h of surgery. Under sterile condi-

tions, tissue was placed onto the lid of a 10-cm plate

along with the saline it was transported in. Using a sur-

gical blade, a 1-mm-thick longitudinal section of the

tissue sample is cut and placed into neutral-buffered

formalin for paraffin embedding. This tissue is called

the Day 0 sample and is used to determine the cancer

content of the tissue following staining with hema-

toxylin and eosin (H&E). The remaining tissue is dis-

sected into 1-mm3 pieces, called explants, and placed in

triplicate or quadruplicate (depending on amount of

tissue received) on top of a media-soaked gelatin

sponge (Ethicon; Johnson & Johnson, Somerville, NJ,

USA) inside the wells of a 24-well plate containing

500 lL RPMI 1640 medium containing 10% fetal

bovine serum, 19 antimycotic/antibiotic solution,

0.01 mg�mL�1 hydrocortisone, and 0.01 mg�mL�1 insu-

lin. The appropriate vehicle, treatment, or shRNA was
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added directly to the media inside the appropriate tis-

sue culture well at the indicated concentrations, allow-

ing direct comparison of treatments and controls.

Explants were cultured at 37 °C and 5% CO2 for vari-

ous time points and then formalin-fixed and paraffin-

embedded, snap-frozen, or preserved in RNAlater

(Invitrogen, San Diego, CA, USA) depending on the

desired downstream analysis. For assessment of BrdU

incorporation, BrdU (10 lM) was added to the culture

medium 2 h (prostate) or 24 h (breast) prior to harvest.

In our collective experience, all tissues containing

epithelial cells can successfully be cultured, and the lim-

iting factor for analysis is instead the presence of suffi-

cient numbers of epithelial (for benign tissue studies) or

malignant cells (for cancer tissue studies). For this rea-

son, routine hematoxylin and eosin (H&E) staining of

all Day 0 and cultured tissues is an essential part of

our protocol to confirm the presence and approximate

percentage of benign/malignant cells within the speci-

mens before proceeding with further analyses. Between

the three prostate cancer laboratories, our collective

experience indicates that approximately 10% of tissues

from high-volume disease and 20–30% of tissues from

low-volume disease do not contain malignant cells, and

this is largely due to sampling.

2.3. Immunohistochemistry

Immunohistochemical staining was performed on 2- to

4-lm sections that were deparaffinized, rehydrated, and

blocked for endogenous peroxidase before being sub-

jected to heat-induced epitope retrieval. Breast tissues

were additionally treated to block for endogenous bio-

tin. Sections were blocked and incubated with the

appropriate primary and secondary antibodies, then

developed using 3-30-diaminobenzidine chromogen, and

counterstained with hematoxylin. Appropriate positive

and negative controls were included in all runs.

Table S2 lists pertinent information for all antigens.

Immunostaining in the Tilley laboratory was per-

formed manually, and in the Raj laboratory, immunos-

taining was performed on the DAKO autostainer

(DakoCytomation, Carpinteria, CA, USA). Tissues

cultured by the Knudsen laboratory were stained by

the Raj laboratory. The percent positivity and intensity

of nuclear staining for each antigen were quantified

manually by an independent pathologist or observer,

who was blinded to the treatments/conditions.

2.4. RNA extraction

Tissues preserved in RNAlater (Qiagen, Hilden, Ger-

many) were homogenized in ice-cold PBS with a Pre-

cellys 24 Tissue Homogenizer (Bertin Technologies,

Montigny-le-Bretonneux, France), and RNA was

extracted using Trizol according to the manufacturer’s

instructions. DNAse treatment was performed using

the TurboDNase kit (Ambion, Austin, TX, USA)

according to manufacturer’s instructions. RNA was

quantified using a Nanodrop 1000 spectrophotometer

(Thermo Fisher Scientific, Waltham, MA, USA). Rev-

erse transcription was performed on 400 ng total RNA

using the iScript kit (Bio-Rad Laboratories, Hercules,

CA, USA) according to manufacturer’s instructions.

2.5. Quantitative real-time PCR

qPCR was performed using 2 lL of cDNA from

whole tissue extracts and SYBR green for prostate

explants, and gene-specific TaqMan assays were per-

formed for breast explants. Primers and assay IDs are

listed in Table S3. Relative gene expression was calcu-

lated using the DCt method. Expression of PSA in

prostate explants was normalized to PPIA, L19,

TUBA1B, ALAS1, and GAPDH. Progesterone recep-

tor (PGR) expression in breast explants was normal-

ized to IPO8 and PUM1.

2.6. Ablation of AR by shRNA

The shAR and shControl lentiviral constructs were

packaged using Lenti-X HT (Open Biosystems, Dhar-

macon Inc., Lafayette, CO, USA) according to the

manufacturer’s instructions and added to the tissue

Fig. 1. PDE culture sustains tissue morphology, viability, and endocrine signaling. (A) PDE tissue culture method. (i) Following surgery, a

core of tumor tissue is removed by a pathologist (tumor area demarcated by broken white line), (ii) the tumor sample is dissected into 1-

mm3 fragments, (iii) cultured in 24-well plates on a gelatin sponge sitting in media, allowing direct comparison of treatments in matched

tumor tissue, and (iv) schematic diagram of PDE setup. (B) Representative hematoxylin and eosin staining of PDEs from primary prostate

and breast tumors, showing maintenance of gross morphology following 6 days in culture. Arrows indicate examples of tumor cells and

surrounding stroma. (C) HIF1a staining from three independent laboratories showed no significant difference in prostate cancer tissue

oxygenation after 6 days of PDE culture. Staining intensity was manually assessed by a single pathologist (P. Kapur). Data are presented as

mean � SEM, n = 3. (D) Expression and signaling of steroid receptors critical for prostate and breast carcinogenesis were maintained in

PDEs cultured in complete media for 6 days, as demonstrated by immunostaining for AR and the AR-regulated protein PSA in prostate

PDEs, and ERa and the ERa-regulated protein PGR in breast cancer PDEs. Scale bars represent 50 lm.
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culture medium for 48 h. Lentiviral media was then

removed and replaced with fresh media containing no

lentivirus and cultured for an additional 48 h. Tissues

were harvested and formalin-fixed prior to immunohis-

tochemistry staining for androgen receptor (AR) and

prostate-specific antigen (PSA) as described above.

2.7. Chromatin immunoprecipitation followed by

massively parallel DNA sequencing (ChIP-seq)

Breast cancer PDEs cultured in complete medium con-

taining vehicle (EtOH; 0.1%), 17b-estradiol (E2; 10 nM),

or synthetic PGR agonist R5020 (10 nM) for 72 h were

harvested, crosslinked, and processed for ChIP-seq anal-

ysis as described previously (Ross-Innes et al., 2012).

The estrogen receptor alpha (ERa) HC-20 antibody

(Santa Cruz Biotechnologies, Dallas, TX, USA) was

used for immunoprecipitation of ERa from PDE tissue

lysates. Sequences generated by an Illumina HiSeq 2000

were processed by the Illumina analysis pipeline version

1.6.1 and aligned to the Human Reference Genome

(hg19) using BWA version 0.5.5 (Li and Durbin, 2009).

Reads were filtered by removing those with a BWA

alignment quality score less than 15. Enriched ERa
binding regions were identified by comparing ERa ChIP

DNA samples to total ChIP input DNA. ER ChIP-

sequencing was then performed from each PDE tissue

and treatment. Peak calling was performed using

MACS2 version 1.4.0rc2 (Zhang et al., 2008).

2.8. Statistical analysis

Data are displayed as the mean � standard error. Dif-

ferences were determined using Student’s t-test or one-

way analysis of variance (ANOVA). The correlation

between Ki67 and PSA expression was analyzed using

the Spearman correlation test with an accompany-

ing P value. All statistics and generation of heat map

were performed using GRAPHPAD PRISM Software ver-

sion 7.02 (GraphPad Software, La Jolla, CA, USA). A

P-value ≤ 0.05 was considered statistically significant.

3. Results

3.1. Morphology, viability, and molecular

signaling are sustained in PDEs

Histopathological evaluation of tissue architecture and

cellular appearance demonstrated that the morphology

of PDEs cultured for up to 6 days on gelatin sponges

is consistent with the original, uncultured (i.e., Day 0)

tumor tissue, as illustrated by representative H&E

staining of prostate cancer and breast cancer (Fig. 1B).

Tumor cells are present in the surrounding stroma,

demonstrating maintenance of the tumor microenvi-

ronment (Fig. 1B). Immunohistochemical staining for

the hypoxia-inducible factor (HIF)-1a showed no evi-

dence of hypoxia in PDEs cultured using the sponge

method (Fig. 1C). Importantly, equivalent HIF-1a
staining was observed in prostate tumors cultured in

three independent laboratories (Fig. 1C) and evalua-

tion of serial sections of individual tissues indicated no

discernible difference in histology or antigen staining

between the air or sponge interface (data not shown).

The AR and ERa are critical drivers of prostate and

breast cancer, respectively; therefore, AR and ERa
were assessed as examples of major oncogenic signaling

pathways in the PDE model. Epithelial cell positivity

for immunoreactive AR and ERa was sustained within

malignant prostate and breast PDEs, respectively, for

up to 6 days in complete media (Fig. 1D). Expression

of the androgen-regulated protein, PSA, and the estro-

gen-regulated protein PGR, indicative of functional sig-

naling by AR and ERa, respectively, was also evident

after 6 days of culture (Fig. 1D).

3.2. Proliferative capacity of PDE tumor tissue

Cellular uptake of the thymidine analog 5-bromo-2-

deoxyuridine (BrdU; Fig. 2A) and its nucleoside

analog 5-ethynyl-20-deoxyuridine (Fig. S1) from the

culture media was observed in a subset of prostate

tumors, indicating that cultured tissues have the capac-

ity for de novo proliferation. BrdU uptake was evident

throughout the PDE samples (Fig. 2A) and was con-

cordant with Ki67 positivity (Fig. 2B). Ki67 positivity

in breast and prostate explant tissues was investigated

further to assess suitability of the PDE model to evalu-

ate proliferative responses to hormonal stimuli, growth

factors, or therapeutic agents. The number of Ki67-

positive epithelial cell nuclei (i.e., the cellular prolifera-

tive index) in Day 0 tissues ranged from 0 to 16% and

increased to a range of 0 to 43% (P < 0.05) in matched

tissues after 48 h of culture and remained stable for at

least 96 h (Fig. 2C). The time-dependent increase in

proliferation observed here and in previous organ-

otypic culture models (Nevalainen et al., 1993; Olbina

et al., 1998) is likely due to growth-promoting factors

in the media or to the release of an inhibitory serum

influence that was present in vivo, but absent ex vivo.

3.3. Modulation of AR signaling in prostate

cancer PDEs

AR is the driving transcription factor in prostate can-

cer and the primary therapeutic target for systemic
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treatment. To demonstrate modulation of this critical

signaling pathway, a lentiviral-based shRNA approach

was used for isogenic suppression of AR gene

expression. Lentiviral transduction of cultured prostate

PDEs with an AR-directed shRNA for 48 h decreased

the steady-state protein levels of AR by approximately

Fig. 2. Proliferative capacity of PDEs. (A) De novo proliferation of tumor cells in PDE cultured tissues is demonstrated by BrdU uptake in a

representative prostate cancer explant. (B) The distribution of BrdU uptake is similar to expression of the proliferative marker Ki67 as shown

in a representative prostate cancer PDE. (C) Representative images and quantitation of Ki67 immunostaining in prostate (n = 9) and breast

(n = 8) tissue at Day 0 and in PDEs cultured for up to 96 h in complete media. *ANOVA: Day 0 versus time points, P = 0.0007 for prostate;

P = 0.0013 for breast. All scale bars represent 50 lm.
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50% (Fig. 3A). Importantly, AR inhibition resulted in

a 40% decrease in expression of the AR-regulated pro-

tein PSA (Fig. 3A), which demonstrates that the AR

signaling pathway is functional in PDE tissues.

Clinical inhibition of the AR signaling pathway is

achieved through androgen deprivation therapy or AR

antagonists (Attard et al., 2011). To demonstrate

capacity of the PDE model for evaluating therapeutics,

prostate cancer PDEs were treated with the clinically

used AR antagonist bicalutamide. Proliferative

response was assessed using the immunohistochemistry

marker Ki67, with a response considered significant

when treatment induced a change from vehicle of

≥ 25%. Proliferative responses were observed after

only 48 h of culture; therefore, this time point was

selected to allow short-term, high-throughput preclini-

cal testing to be performed. Similar to Fig. 2C, a large

range of baseline Ki67 (2-58%) was observed across

the cohort (Fig. 3B). In prostate cancer PDEs cultured

in the presence of 10 lM bicalutamide for 48 h, the

proliferative index was reduced in 10/23 tissues (44%),

increased in 6/23 tissues (26%), and had no significant

effect on proliferation in 7/23 tissues (30%) compared

to vehicle-treated PDEs (Fig. 3B). Similar heterogene-

ity in response was observed with the newer generation

antagonist enzalutamide in a smaller, independent

cohort of PDEs (Fig. S2). A change in apoptosis was

not observed in PDEs cultured for 48 h with 10 lM
bicalutamide (Fig. 3C). Collectively, these findings

illustrate the heterogeneity of clinical samples and

demonstrate the importance of using a model that

reflects this natural variation when evaluating solid

tumors. A critical aspect of this research will be relat-

ing the observed heterogeneity with clinical outcomes

of these patients, but we were unable to assess this in

the current study. To date, only one patient (Fig. 3A

patient no. 18) from our cohort of predominantly low-

to-intermediate risk patients (median follow-up time of

48.3 months; range 23–64.4 months) has experienced

biochemical recurrence (BCR). This is consistent with

the reported 5-year BCR rate of 10–20% in low-to-

intermediate risk patients undergoing robotic-radical

prostatectomy (Diaz et al., 2015) and highlights the

need for longer-term follow-up to correlate PDE

results with individual patient outcomes. A more feasi-

ble clinical context to ascertain whether PDE culture is

correlated with clinical outcome is neoadjuvant clinical

trials that allow direct comparison of pre- and post-

treated tumors.

In a subset of 12 PDEs from Fig. 3B, where suffi-

cient matched tissue was available to extract RNA,

changes in PSA gene expression in response to

bicalutamide treatment were evaluated by qPCR. Simi-

lar to Ki67, heterogeneity in PSA response to bicalu-

tamide was observed across the 12 explants (Fig. 3D).

Importantly, in 10/12 tissues Ki67 positivity and PSA

expression increased or decreased concordantly,

demonstrating a significant positive association

(r = 0.657; P = 0.0238; Fig. 3E). Transcript analysis of

additional prototypical AR-regulated genes FKBP5,

KLK2, NKX3.1, and TMPRSS2 shows a similar pat-

tern of expression to PSA and Ki67 (Fig. 3E), indicat-

ing general inhibition of androgen signaling by

bicalutamide in prostate cancer PDEs. No correlation

was observed between proliferative response and

tumor grade, stage, or presurgery serum PSA. How-

ever, we acknowledge that a larger range of samples

may be required to determine this conclusively as the

majority of our specimens were of Gleason grade 7,

stage PT3A/B, and PSA < 10 (Table S1).

3.4. Analysis of ERa signaling in breast cancer

explants

Estradiol (E2)-activated ERa binds to cis-regulatory

elements of target genes such as the PGR (Ross-Innes

et al., 2012). Candidate gene analyses performed on

RNA extracted from ERa-positive PDEs (n = 14) cul-

tured for 24 h with E2 revealed a range of responses

to hormone treatment. E2 stimulation decreased PGR

expression by ≥ 50% in 6/14 tissues (43%), increased

PGR expression by ≥ 50% in 5/14 tissues (36%), and

had no significant effect on PGR in 3/14 tissues (21%)

compared to the matched vehicle controls (Fig. 4A).

To further investigate ERa signaling, we used ChIP-

seq to evaluate E2-treated breast cancer PDEs and

Fig. 3. Modulation of AR signaling in prostate cancer PDEs. (A) Steady-state protein levels of AR and the AR-regulated protein PSA were

knocked down in prostate cancer PDEs (n = 3) cultured in media containing lentiviral-based shRNA directed against AR (shAR) compared

with scrambled control (shCON). Scale bars represent 50 lm. (B) Quantitation and representative images of Ki67 immunostaining in PDEs

derived from 23 patients following 48 h culture with vehicle control or bicalutamide (10 lM). A response to bicalutamide was considered

significant when treatment induced a change from vehicle of ≥ 25%. Scale bars represent 50 lm. (C) Quantitation and representative

images of cleaved caspase-3 immunostaining in PDEs derived from 23 patients following 48-h culture with vehicle control or bicalutamide

(10 lM). Data are presented as mean � SEM. Scale bars represent 50 lm. (D) Water fall plot of percent change in PSA gene expression

and Ki67 immunostaining from a subset of PDEs from (A) treated with vehicle control or bicalutamide (n = 12). (E) Scatterplot of the data

from D showing a positive correlation between Ki67 and PSA with Spearman’s r = 0.657 (P < 0.05). (F) Heat map visualization of qRT-PCR

analysis of classic AR-regulated transcripts in bicalutamide-treated PDEs compared to vehicle (n = 12).
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compared whole-genome ERa binding events with

primary breast cancer tissues and traditional breast

cancer models, including the most commonly used

ERa-positive breast cancer cell line, MCF7, grown

in vitro or in vivo as xenografts. Figure 4B depicts an

example ERa binding site shared by all models [reti-

noic acid receptor-a (RARA)], a binding site identified

in patient-derived tissues only (SLCO5A1), and bind-

ing sites identified in cell line models only (50 kb to

TOB1/SPAG9). These findings clearly highlight how

cell line models do not accurately represent clinical

breast cancer and the importance of utilizing tissue-

based models for interrogation of mechanisms of car-

cinogenesis.

We have previously shown that PGR is not only an

ERa-target gene but is also an ERa-associated protein

that can reprogram ERa DNA binding and transcrip-

tional responses in breast cancer and, importantly,

used the PDE model to study the transcriptome and

growth effects of this ERa reprogramming by PGR

(Mohammed et al., 2015; Singhal et al., 2016). To fur-

ther investigate these findings, herein we report suc-

cessful ERa ChIP-seq in ERa-positive breast cancer

PDEs cultured with E2 in the presence or absence of

synthetic PGR agonist R5020. The number of ERa
binding events in each E2-treated and E2 + R5020-

treated PDE is shown in Table S4. ERa binding could

be mapped in all PDEs, but total peak intensity and

the number of identified binding events differed

between PDEs and treatments. To systematically quan-

tify these observations, consensus ERa chromatin

binding sites were compiled for each treatment by

including peaks found in at least two of the three

cases. Under estrogenic conditions alone, there were a

total of 22 658 consensus ERa binding sites, and

under estrogenic conditions with R5020 supplementa-

tion, there were a total of 34 051 consensus sites, with

18 790 shared sites between the two conditions

(Fig. 4C). Further 3868 and 15 261 ERa binding sites

were identified to be specific to either estrogen alone

or estrogen plus R5020 treatment, respectively

(Fig. 4C). Representative images of ERa chromatin

binding at the RARA-positive control locus demon-

strate robust peaks common to both treatment condi-

tions (Fig. 4D, upper panel), as well as binding peaks

specific to individual hormone treatments, such as

those observed 10 kb upstream of the nuclear receptor

coactivator 3 (NCOA3) locus (Fig. 4D, lower panel).

4. Discussion

Patient-derived explant tissue culture on a gelatin scaf-

fold retains many features of human solid tumors,

including the native microenvironment and cellular

interactions that are critical for carcinogenesis but are

lacking in many preclinical models. This study demon-

strates that PDEs are not only viable in culture but

can be manipulated using hormones, siRNA, or cancer

drugs and that the response to those interventions can

be assessed using an array of techniques, including

immunohistochemistry, real-time qRT-PCR, and geno-

mewide molecular analyses of cistromes. The PDE

method is robust, as shown through observations of

sustained tissue morphology, viability, and mainte-

nance of critical cancer-related signaling pathways in

independent laboratories. It is also applicable to multi-

ple solid tumor types; to date, the methodology has

successfully been applied to all cancers tested, includ-

ing some not represented in the current study (ovary,

endometrium, renal, sarcoma; personal communica-

tion). The de novo cellular proliferation observed in

cultured tissues indicates that the system is not static

and makes this a particularly useful model to assess

the growth inhibitory activity of new or emerging ther-

apeutic agents, as demonstrated by our respective

teams using PDEs from prostate cancer and breast

cancer (Centenera et al., 2012; Comstock et al., 2013;

Dean et al., 2012; de Leeuw et al., 2015; Schiewer

et al., 2012).

One of the most exciting aspects of the PDE model

is the potential to uncover information about the

diversity of tumor biology that is not possible using

cell lines or cell line xenografts due to their clonality.

Observed changes in PSA and PGR expression in

prostate and breast tumors as markers of AR and

ERa signaling, respectively, reflected the natural tumor

heterogeneity observed clinically for each tumor type

examined (Arnedos et al., 2013). Variation in PSA

response to bicalutamide, the most common antagonist

used in locally advanced disease (Heidenreich et al.,

2014), in prostate PDEs is consistent with outcomes of

the TERRAIN and STRIVE clinical trials. As an AR

antagonist, bicalutamide inhibits expression of AR-

regulated genes such as PSA, as well as genes involved

in cellular proliferation, differentiation, and survival

(Furr, 1996; Maucher and von Angerer, 1993). In

TERRAIN and STRIVE, a serum PSA decline of

≥ 50% from baseline was achieved in 31% and 21%

of bicalutamide-treated patients, respectively (Penson

et al., 2016; Shore et al., 2016). In our cohort of PDEs

treated with bicalutamide, a similar rate of PSA

decline was observed, with 25% of PDEs showing

≥ 50% decrease in PSA gene expression compared

with vehicle treatment. PSA increase from baseline

was also observed in a subset of patients in both clini-

cal trials, which was again similar to our results where
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Fig. 4. Modulation of ERa signaling in breast cancer PDEs. (A) qPCR analysis of PGR expression shows differential response to 10 nM E2 in

breast cancer PDEs (n = 14). Samples with ≥ 50% change compared to vehicle were considered responsive. Data are presented as the

mean � SEM. (B) ChIP-sequencing analysis of ERa binding sites in breast cancer PDEs (n = 3), untreated primary breast cancers (n = 3), an

in vivo xenograft tumor grown from the ERa-positive MCF7 cell line, and MCF7 cells cultured in vitro (n = 2). Shown are examples of ERa

binding events that are shared by all models (RARA), present only in in vivo models (SLCO5A1) or present only in cell line models (TOB1/

SPAG9). (C) Venn diagram showing the overlap of ERa binding sites identified in PDEs treated with E2 or E2+ R5020. Only ChIP-seq peaks

identified in at least two tumors were considered included. Heat map of treatment-specific binding events from the Venn diagram. Data

were centered at the top of the peak and visualized with a 5-kb window around the peak. (D) ERa ChIP-seq binding sites identified in E2�
or E2+ R5020-treated breast cancer PDEs. Examples of common binding sites (upper panel) and treatment-specific binding (lower panel)

sites are shown.
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PSA increased ≥ 50% compared with vehicle treatment

in 16% of cases.

Ki67 expression is a measure of cells in the active

phase of the cell cycle and is a widely used marker of

proliferating cells (Scholzen and Gerdes, 2000). Ki67

proliferative index is an independent predictor of pros-

tate cancer outcomes (Fisher et al., 2013; Pollack

et al., 2004; Zellweger et al., 2009); however, the wide

range of Ki67 expression naturally observed in clinical

prostate tumors and a lack of consensus on appropri-

ate cutoff points have prevented utilization of Ki67 as

a marker in the clinic (Penault-Llorca and Radosevic-

Robin, 2017). Similarly, we observed wide variation in

baseline Ki67 expression in PDE tissues, reflecting the

diverse genetic heterogeneity of prostate tumors (Bar-

bieri et al., 2013). Further, we observed a positive cor-

relation between Ki67 immunostaining and androgen

signaling in bicalutamide-treated PDEs, consistent

with the effect of bicalutamide on prostate tumor

PDE proliferation being AR-mediated. Despite

observing significant effects of bicalutamide on PDE

proliferative index, apoptotic response to bicalutamide

was also evaluated, using the immunohistochemistry

marker cleaved caspase-3. We have previously

reported apoptosis induction in prostate cancer PDEs

cultured for 48 h with other therapeutic agents (Cen-

tenera et al., 2012). It is therefore likely that higher

doses of bicalutamide than the 10 lM used in this

study are required to induce apoptosis in prostate

cancer PDEs.

Breast cancer is highly heterogeneous, clustering into

10 different molecular subgroups based on an inte-

grated analysis of genomic aberrations and transcrip-

tional profiling (Curtis et al., 2012). Tumors that

express ERa represent the majority (≥ 70%) of all

cases (Curtis et al., 2012). Assessment of ERa and

PGR status by immunohistochemistry guides

treatment decisions for breast cancer, as PGR is an

ERa-regulated gene and used as a biomarker of ERa
activation (Lee and Gorski, 1996). We found that ERa
signaling is not only sustained in breast cancer PDEs,

but that the estrogenic response of ERa-positive PDEs

significantly varies in terms of PGR regulation.

Although an established ERa-regulated gene, PGR

expression at the mRNA level can be influenced by

factors that modulate the transcriptional activity of

ERa (e.g., E2 metabolism, expression of transcrip-

tional cofactors, degree of receptor phosphorylation)

or regulate PGR expression independent of ERa (e.g.,

environmental levels of progesterone, insulin-like

growth factors), reviewed in Ref. (Grimm et al., 2016).

Exposure to exogenous hormones through endocrine

therapy or menopausal hormone therapy is another

factor that affects ERa and PGR status (Ali and

Coombes, 2002). Therefore, the heterogeneity we

observed is likely representative of individual tissue

microenvironments, and the PDE model provides an

avenue to more accurately dissect how the tumor

setting influences ERa signaling. In support of this

concept, we used genomewide profiling of hormone-

treated breast cancer PDEs to capture ERa binding

events and demonstrated reprogramming of ERa bind-

ing by synthetic progestin R5020, a phenomenon we

recently reported using cell line models and clinical

samples (Mohammed et al., 2015; Singhal et al., 2016).

Collectively, our data demonstrate the major advan-

tage of the PDE model, which is the capacity for

quantitative evaluation and comparison of different

pharmacological agents in matched patient material.

Traditionally, within-patient comparisons have only

been possible between pre- and post-treatment samples

from neoadjuvant studies or through utilization of

diagnostic needle biopsies (Beltran et al., 2017).

Obtaining this type of material is notoriously difficult

without direct access to clinical trials or due to the

limited amount of quality tissue available from biopsy

after diagnostics are complete. The utilization of clini-

cal material for profiling the genome, transcriptome,

and proteome has remarkably advanced our under-

standing of the molecular features of breast and pros-

tate cancer. The potential now offered by the PDE

model is -omic analysis of matched treated and

untreated samples using the PDE model. Our teams

have published transcriptomic and proteomic analysis

of PDE tissues (Armstrong et al., 2018; Nguyen et al.,

2018; Pishas et al., 2014), and here, we demonstrate

the added capacity for cistromics. Expanding the

repertoire to include the lipidome, metabolome,

kinome, and secretome will provide further critical

insight into tumor biology and better define the mech-

anism of action of pharmaceutical agents preclinically,

which will lead to the identification of more clinically

relevant therapeutic targets and improved translation

of research findings.

Preclinical models that more accurately represent

human disease are needed to improve translational

cancer research outcomes. The appreciation for

patient-derived models in this context is increasing

rapidly in parallel with organoid and PDX techniques.

The major difference between explant and organoid

culture is that the latter are generated from tumors

that are minced and enzymatically digested to dissoci-

ate cells for seeding in Matrigel (Gao et al., 2014),

whereas explant tissue is cultured in its native format

without disruption to the tissue architecture or tumor

microenvironment. In this way, explants are more
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analogous to PDX models but without the significant

associated costs, timeframes, and complication of infil-

trating mouse stroma (Whittle et al., 2015). Another

disadvantage of PDX models is that the take rate is

biased toward more aggressive tumors such that

engraftment may even be indicative of poor patient

outcome (DeRose et al., 2013). The poor take rate of

primary tumors means that PDX lines do not neces-

sarily represent all disease states. In contrast, tissues

from benign, primary, and advanced disease stages

have been successfully cultured using the PDE tech-

nique with an extremely high take rate that is depen-

dent on the presence of epithelial cells rather than the

aggressiveness of the tumor cells. The PDE method

therefore enables rapid, high-throughput, and cost-

effective analyses of diverse human tumors and disease

stages. We propose that incorporation of the PDE

model into preclinical drug development programs will

facilitate better selection of agents for clinical trials

and provide biological insight into key molecular path-

ways of oncogenesis. The major criterion for imple-

mentation of the PDE model is ready access to fresh

tissue samples, necessitating a strong collaboration

between surgeons, pathologists, and scientists. The reli-

ance on fresh tissue also means that PDEs cannot be

passaged or revived from frozen material. What

remains to be proven over the longer term is whether

this approach can indeed predict in vivo clinical

responses and lead to new, more effective cancer treat-

ments or biomarkers of treatment response. Toward

this goal, a recent study in non-small-cell lung cancer

reported a significant correlation between cisplatin sen-

sitivity in ex vivo cultured tissue and patient survival

(Karekla et al., 2017). Future neoadjuvant clinical

studies comparing pre- and post-treatment tissues to

include parallel ex vivo cultures of the pretreatment

tumor tissues will validate the PDE model using clini-

cally relevant end points. This will provide an exciting

opportunity to investigate novel mechanisms of treat-

ment resistance and identify biomarkers of treatment

response that are essential for the realization of per-

sonalized cancer medicine.

5. Conclusion

PDE culture of breast and prostate tumors is a high-

throughput and cost-effective technique that retains

the tissue’s native architecture, microenvironment, and

key oncogenic drivers. This approach allows direct

within-patient comparison to rapidly evaluate efficacy

of therapeutic agents in a personalized manner and is

amenable to analysis using contemporary molecular

technologies.
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