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Abstract 12	

Fluid intelligence is the capacity to solve novel problems in the absence of task-specific 13	

knowledge, and is highly predictive of outcomes like educational attainment and 14	

psychopathology. Here, we modelled the neurocognitive architecture of fluid intelligence in 15	

two cohorts: CALM (N = 551, aged 5 - 17 years) and NKI-RS (N = 335, aged 6 - 17 years). We 16	

used multivariate Structural Equation Modelling to test a preregistered watershed model of 17	

fluid intelligence. This model predicts that white matter contributes to intermediate cognitive 18	

phenotypes, like working memory and processing speed, which, in turn, contribute to fluid 19	

intelligence. We found that this model performed well for both samples and explained large 20	

amounts of variance in fluid intelligence (R2
CALM = 51.2%, R2

NKI-RS = 78.3%). The relationship 21	

between cognitive abilities and white matter differed with age, showing a dip in strength 22	

around ages 7 - 12 years. This age-effect may reflect a reorganization of the neurocognitive 23	

architecture around pre- and early puberty. Overall, these findings highlight that intelligence 24	

is part of a complex hierarchical system of partially independent effects. 25	

Keywords 26	

Working memory, processing speed, fractional anisotropy, watershed model, structural 27	

equation modeling 28	
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Fluid intelligence (gf) is a core part of human cognition and refers to the capacity to solve 29	

novel problems in the absence of task-specific knowledge. It is highly predictive of a number 30	

of important life span outcomes, including educational attainment (Primi et al. 2010; Roth et 31	

al. 2015) and psychopathology (Gale et al. 2010). Despite years of investigation, however, our 32	

understanding of the neurocognitive architecture of gf remains limited. Longstanding debates 33	

have considered, for instance, how gf relates to more fundamental cognitive functions such 34	

as working memory and processing speed, and how all of these cognitive functions relate to 35	

brain structure and function (Kyllonen and Christal 1990; Fry and Hale 2000; Chuderski 2013; 36	

Ferrer et al. 2013).  37	

Working memory is the ability to hold and manipulate information in the mind short-term. It 38	

has been suggested that working memory is a key determinant of gf by limiting mental 39	

information processing capacity (Fukuda et al. 2010; Chuderski 2013). Proponents of this 40	

working memory account of gf cite high correlations between the two domains ranging from 41	

0.5 to 0.9 in meta-analyses (Ackerman et al. 2005; Oberauer et al. 2005). Such high 42	

correlations have led some to suggest that gf and working memory are, in fact, isomorphic 43	

(Kyllonen and Christal 1990). However, more recent work has highlighted that this 44	

isomorphism only arises under conditions of high time constraints for gf tasks (Chuderski 45	

2013). This suggests that gf and working memory are, in fact, separable constructs and 46	

underlines the importance of processing speed for gf. 47	

Processing speed, the speed of mental computations, is thought to be rate-limiting to gf and 48	

is therefore sometimes proposed to be a particularly good predictor of gf (Kail and Salthouse 49	

1994; Salthouse 1996; Ferrer et al. 2013; Kail et al. 2015; Schubert et al. 2017). Proponents of 50	

the processing speed account of gf cite moderate but robust correlations between gf and 51	
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processing speed of 0.2 in meta-analyses (Sheppard and Vernon 2008) as well as longitudinal 52	

evidence (Finkel et al. 2005; Coyle et al. 2011; Kail et al. 2015). Salthouse (1996) argued in the 53	

context of cognitive aging, that processing speed determines high-level cognitive 54	

performance because slow processing means that relevant sub-operations cannot be 55	

completed in a set amount of time or are not available for successful integration. A 56	

complementary explanation of individual differences in gf proposes that processing speed 57	

may be a direct reflection of fundamental neuroarchitectonic properties of the brain, such as 58	

myelination or white matter microstructure (Lu et al. 2011; Chevalier et al. 2015). 59	

White matter shows protracted development throughout childhood and adolescence, and 60	

into the third decade of life (Mills et al. 2016). White matter tracts can be characterised in 61	

vivo using diffusion-tensor imaging (DTI), which is sensitive, but not necessarily specific, to 62	

white matter microstructural properties such as myelination or axonal density (Jones et al. 63	

2013; Wandell 2016). Fractional anisotropy (FA) is the most commonly investigated DTI 64	

measure and quantifies the directionality of water diffusion in different white matter tracts 65	

(Pfefferbaum et al. 2000; Wandell 2016). Working memory, processing speed and gf have 66	

each been linked to individual differences in FA (Vestergaard et al. 2011; Kievit, Davis, 67	

Griffiths, Correia, CamCAN, et al. 2016; Bathelt et al. 2018). While some studies, using 68	

Principal Component Analysis, have posited that FA in different tracts can be summarized by 69	

sizable single components (Penke et al. 2010; Cox et al. 2016), formal investigations using 70	

confirmatory factor analysis have demonstrated that single-factor models of FA generally 71	

show poor fit and do not adequately capture individual differences in white matter 72	

microstructure (Lövdén et al. 2013; Kievit, Davis, Griffiths, Correia, Cam-CAN, et al. 2016).  In 73	

a similar vein, there is a growing body of literature showing specific associations between 74	

white matter tracts and cognitive abilities, with those connecting frontoparietal regions 75	
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usually showing largest contributions to complex cognitive functions like gf (Vestergaard et al. 76	

2011; Kievit et al. 2016; Bathelt et al. 2018).  77	

We here seek to address several critical outstanding issues in the field: First, there is limited 78	

systematic evidence on the concurrent relationships between gf, working memory, 79	

processing speed and white matter. This leaves the relative contributions of processing speed 80	

and working memory to gf unclear, which, in turn, poses challenges for the design of effective 81	

cognitive training interventions. Second, studies usually use a single task as a proxy for 82	

complex and abstract constructs such as processing speed, working memory, and gf. This 83	

raises questions about the generalizability of findings (Noack et al. 2014). Third, our 84	

understanding of how the relationships between relevant cognitive domains and between 85	

brain and cognition change with age remains limited, raising the possibility that brain-86	

behaviour relationships may change with age (Garrett 1946; Johnson 2000; Tamnes et al. 87	

2017). 88	

To address these issues, we here used structural equation modelling (SEM) to model the 89	

associations between gf, working memory, processing speed, and white matter 90	

microstructure and age in two large, independent samples: the Centre for Attention, Leaning 91	

and Memory sample (CALM, N = 551, aged 5 - 17 years), which consists of children and 92	

adolescents referred to a clinic for having problems with attention, learning and memory 93	

(Holmes et al. 2018), and the Enhanced Nathan Kline Institute – Rockland Sample (NKI-RS, N = 94	

335, aged 6 - 17 years), a community-ascertained sample (Nooner et al. 2012). 95	

To investigate the neurocognitive architecture of gf in a principled way, we used a watershed 96	

model of individual differences. Based on the metaphor of a watershed, the model predicts a 97	

hierarchical many-to-one mapping of partially independent effects such that upstream 98	
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tributaries (e.g. brain structure) contribute to intermediate cognitive phenomena (cognitive 99	

endophenotypes, e.g. working memory and processing speed), which then contribute to 100	

downstream, complex cognitive phenomena such as gf (Cannon and Keller 2006; Kievit, Davis, 101	

Griffiths, Correia, CamCAN, et al. 2016). See Figure 1 for a representation of the model.  102	

SEM, as a statistical technique, is uniquely suited to modeling the kinds of complex 103	

multivariate brain-behavior associations posited by the watershed model (Kievit et al. 2011; 104	

Kline 2015). SEM combines factor analysis and path analysis (a variant of regression analysis). 105	

It can model abstract cognitive constructs like gf, by estimating latent variables from 106	

observed task scores (i.e. manifest variables). This feature of SEM allowed us to model gf, 107	

working memory, and processing speed in two independent samples, and thereby provided a 108	

direct test of the generalizability of our findings. Second, SEM can test the simultaneous 109	

relations between multiple cognitive and neural variables, allowing us to address the relative 110	

contributions of different white matter tracts and different cognitive endophenotypes to gf. 111	

Finally, using SEM Trees (Brandmaier et al. 2013), a novel, decision-tree-based extension of 112	

SEM, we investigated whether the associations in the watershed model change with age. 113	

Based on the watershed model we made the following preregistered predictions 114	

(http://aspredicted.org/blind.php?x=u5pf6z): 115	

1. Working memory, gf and processing speed are separable constructs. 116	

2. Individual differences in gf are predicted by working memory and processing speed. 117	

3. White matter microstructure is a multi-dimensional construct. 118	

4. There is a hierarchical relationship between white matter microstructure, cognitive 119	

endophenotypes (working memory and processing speed) and gf, such that white 120	
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matter contributes to working memory and processing speed, which, in turn 121	

contribute to gf. 122	

5. The contribution of working memory and processing speed to gf changes with age. 123	

Materials and Methods 124	

Samples 125	

We analysed data from the CALM and NKI-RS sample, as described in detail by (Holmes et al. 126	

2018) and (Nooner et al. 2012) respectively. See also Simpson-Kent et al. (2019). We had also 127	

preregistered to analyse data from the ABCD cohort (Volkow et al. 2018). The latter cohort 128	

contains only data for 9 - and 10 - year olds at present, however, which limits comparability 129	

to CALM and NKI-RS, and makes it unsuitable for investigations of developmental differences. 130	

We therefore opted to not analyse ABCD data here and instead recommend a replication of 131	

the analyses presented here in ABCD once longitudinal data is available. The CALM sample 132	

consists of children and adolescents referred by health and educational professionals as 133	

having difficulties in attention, learning and/or memory. The NKI-RS is a community-134	

ascertained, lifespan sample, and representative of the general population of Rockland, New 135	

York, and the United States as a whole, in terms of ethnicity, socioeconomic status etc. For 136	

NKI-RS, we included data for participants under the age of 18 only to match the age range of 137	

CALM and excluded data that were completed more than half a year after enrolment. The 138	

latter criterion was implemented to ensure that age at assessment did not differ 139	

substantively between cognitive measures. The final samples included 551 participants from 140	

CALM (30.85% female, aged 5.17 - 17.92 years, NNeuroimaging = 165) and 335 participants from 141	

NKI-RS (43.48% female, aged 6.06 - 17.92 years, NNeuroimaging = 67). See Table 1 for prevalence 142	

of relevant disorders and learning difficulties in the samples. 143	
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Table 1. Prevalence of Relevant Disorders and Learning Difficulties in the CALM and NKI-RS 144	
cohorts 145	

Variable Percentage 
CALM 

Percentage 
NKI-RS 

ADHD 31.94 17.01 
Dyslexia 5.81 5.67 
Autism 6.72 0.60 
Mood disorder 0.54 0.90 
Anxiety disorder 2.36 18.21 
Medicated1 10.53 17.01 
Speech/language problems 38.11 19.40 
Note. 1 unspecified medication for NKI-RS, ADHD-medication for CALM 146	

Cognitive Tasks 147	

We included cognitive tasks measuring the domains of gf, working memory or processing 148	

speed for CALM and NKI-RS. See Table 2 for the complete list of tasks used, and the 149	

Supplementary Methods for task descriptions. Supplementary Figure 1 and 2 show raw 150	

scores on all tasks. The tasks modelled here were preregistered for CALM but not NKI-RS. 151	
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Table 2. Cognitive Tasks Modelled 152	

 CALM NKI-RS 
Working memory AWMA Digit Recall (forward digit span) WISC-R Forward Digit Span 
 AWMA Backward Digit Span WISC-R Backward Digit Span 
 AWMA Dot Matrix - 
 AWMA Mr X - 
 - CNB N-back task 
gf WASI-II Matrix Reasoning WASI-II Matrix Reasoning 
 - WASI-II Block Design 
 - WASI-II Similarities 
 - CNB Verbal Reasoning 
Processing speed DKEFS Trail-Making DKEFS Trail-Making 
 PhAB Rapid Naming - 
 TEA-Ch RBBS - 
 - CNB Motor Speed 
 - CNB Sensory Motor Speed 
Note. See the Supplementary Methods for task descriptions. Abbreviations: AWMA - 153	
Automated Working Memory Assessment (Alloway 2007), CNB - Computerized 154	
Neurocognitive Battery (Gur et al. 2001), DKEF - Delis-Kaplan Executive Functioning System 155	
(Delis et al. 2004), PhAB – Phonological Assessment Battery (Gallagher and Frederickson 156	
1995), TEA-Ch RBBS - Test of Everyday Attention for Children, Red & Blues, Bags & Shoes 157	
subscale (Manly et al. 2001), WASI - Wechsler Abbreviated Scale of Intelligence - Second 158	
Edition (Wechsler 2011), WISC-R - Wechsler Intelligence Scale for Children – Revised 159	
(Kaufman 1975). 160	

White Matter Microstructure 161	

We modelled mean FA for all ten tracts of the Johns Hopkins University (JHU) white matter 162	

tractography atlas (Hua et al. 2008) averaged over the hemispheres (Figure 2). See 163	

Supplementary Methods for details of the MRI acquisition and processing and Supplementary 164	

Figure 3 and 4 for raw FA values in all tracts. 165	

Analysis Methods and Structural  Equation Modell ing 166	

Covariance matrices and scripts replicating key analyses can be obtained from: 167	

https://github.com/df1234/gf_development. Supplementary Figure 5 and 6 show correlation 168	

matrices of all tasks and white matter tracts modelled. We modelled raw scores for gf and 169	
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working memory tasks, as preregistered. Raw scores on processing speed tasks were 170	

transformed. This step was not preregistered, but found necessary to achieve model 171	

convergence to ensure interpretability of scores. First, we inverted response time scores 172	

(using the formula y = 1/x) to obtain more intuitive measures of ‘speed’ for all but the CNB 173	

Motor Speed task, for which raw scores were already a measure of speed. Afterwards, we 174	

applied a log-transformation to reaction time tasks to increase normality and aid estimation. 175	

For the CNB Motor Speed task only, we additionally removed values ± 2 SD of the mean (N = 176	

6) because the presence of these outliers had caused convergence problems. 177	

We modelled the associations between cognition and white matter microstructure using SEM 178	

in R (R core team 2015) using the package lavaan (Rosseel 2012). All models were fit using 179	

maximum likelihood estimation with robust Huber-White standard errors and a scaled test 180	

statistic. Missing data was addressed using full information maximum likelihood estimation.  181	

We used SEM Trees to investigate whether the associations among cognitive and neural 182	

measures differed with age. SEM Trees use decision tree methods to hierarchically split a 183	

dataset into subgroups if parameter estimates differ significantly based on a covariate of 184	

interest  - in this case age (Brandmaier et al. 2013). We first ran the watershed model in 185	

OpenMx (Boker et al. 2011) and then passed this model object to semtree to compute the 186	

SEM Trees. We ran one SEM Tree for each parameter of interest (e.g. the covariance 187	

between working memory and processing speed). All other parameters in each semtree 188	

object were set to be invariant across groups to ensure that splits were specific to the 189	

parameter of interest. We used a 10 - fold cross-validation estimation method as recommend 190	

by (Brandmaier et al. 2013). For the path from the cingulate to working memory only we 191	

used 5 - fold cross-validation because the model did not converge using 10 - fold cross-192	
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validation. Minimum sample size in age group was set to N = 50 to ensure reliable estimation 193	

of standard errors. Note that this choice effectively limited search space for potential splits to 194	

ages 6.58 - 12.42 years for CALM and 8.08 - 15.49 years for NKI-RS. 195	

Results 196	

To evaluate the hypotheses generated by the watershed model, we built up the watershed 197	

model in steps and carried our comprehensive tests of model fit at each step. First, we 198	

assessed the overall fit of our models to the data using the chi-square test, root mean square 199	

error of approximation (RMSEA), comparative fit index (CFI) and standardized root mean 200	

square residual (SRMR). Good absolute fit was defined as RMSEA < 0.05, CFI > 0.97 and SRMR 201	

< 0.05; acceptable fit as RMSEA = 0.08 - 0.05, CFI = 0. 95 - 0.97, SRMR = 0.05 - 0.10 202	

(Schermelleh-Engel et al. 2003). Second, we assessed specific predictions from our models by 203	

comparing them to alternative models. Comparative model fit for nested models was 204	

assessed using the chi-square difference test. Non-nested models were compared using the 205	

Akaike (AIC) weights, which indicates the probability of a model being the data-generating 206	

model compared to all other models tested (Wagenmakers and Farrell 2004). Lastly, we 207	

evaluated the significance and strength of relationships between specific variables in our 208	

models by inspecting the Wald test for individual parameters, noting the joint R2 where 209	

relevant and reporting standardized parameter estimates. Absolute standardized parameter 210	

estimates above 0.10 were defined as small effects, 0.20 as typical and 0.30 as large (Gignac 211	

and Szodorai 2016).  212	
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The Measurement Model of Cognition 213	

To examine the neurocognitive architecture of gf, we started by modelling the cognitive 214	

components of the watershed model: gf, working memory and processing speed. Specifically, 215	

we fit a three-factor model of cognition (Figure 3) and compared it to alternative 216	

measurement models. This approach allowed us to test Hypothesis 1: namely that gf, working 217	

memory and processing speed form three separable, albeit likely correlated cognitive factors.  218	

The Three-Factor Model (Figure 3) showed excellent absolute fit for both the CALM and NKI-219	

RS sample (Table 3), indicating that overall, the data was compatible with a model of gf, 220	

working memory and processing speed as three separate factors.  221	

The Three-Factor Model also showed very good comparative fit for NKI-RS as well, with a 222	

96.60% probability of being the data-generating model compared to all alternative models 223	

tested, as indicated by its AIC weight (Figure 3). The evidence was more mixed for CALM, for 224	

which the Three-Factor Model showed a 27.15% probability of being the data-generating 225	

model, while Two-Factor Model B (Figure 3, treating working memory and gf as a unitary 226	

factor) showed a 72.85% probability of being the data-generating model, highlighting a close 227	

relationship between gf and working memory for this sample. The Single-Factor Model and 228	

Two-Factor Model A (Figure 3, treating speed and gf as a unitary factor) showed a very low 229	

(approximately 0%) probability of being the data-generating model, indicating that speed and 230	

gf were clearly separable in both samples. 231	



	 13 

Table 3. Model Fit of Competing Measurement Models 232	

Single-Factor Model Two-Factor Model A Two-Factor Model B Three-Factor Model 
CALM 

χ2(20) = 70.28, p < .001 
RMSEA = .068  
[.051-.085] 
CFI = .963 
SRMR = .047 

χ2(19) = 67.99, p < .001 
RMSEA = .068  
[.052 - .086] 
CFI = .964 
SRMR = .043 

χ2(19) = 41.66, p = .002 
RMSEA = .047  
[.027 - .066] 
CFI = .983 
SRMR = .032 

χ2(18) = 41.74, p = .001 
RMSEA = .049  
[.030 - .068] 
CFI = .983 
SRMR = .032 

AIC  = 9697.18  AIC  = 9696.44 AIC  = 9668.58 AIC  = 9670.55  
BIC = 9800.66 BIC = 9804.24 BIC = 9776.37 BIC = 9782.66 
AICweight  = 0%  AICweight  = 0% AICweight  = 72.85% AICweight  = 27.15% 

NKI-R 
χ2(35) = 109.96, p < .001 
RMSEA = .080  
[.064 - .097] 
CFI = .936 
SRMR = .045 

χ2(34) = 108.15, p < .001 
RMSEA = .081 
[.064 - .098] 
CFI = .936 
SRMR = .044 

χ2(34) = 64.85, p = .001 
RMSEA = .052  
[.033 - .071] 
CFI = .974 
SRMR = .035 

χ2(32) = 54.15, p = .009 
RMSEA = .045  
[.024 - .065] 
CFI = .981 
SRMR = .030 

AIC  = 7155.64 AIC  = 7155.74 AIC  = 7109.43 AIC  = 7102.74 
BIC = 7270.07 BIC = 7273.98 BIC = 7227.67 BIC = 7228.60 
AICweight  = 0% AICweight  = 0% AICweight  = 3.40% AICweight  = 96.60% 
Note. See Figure 3 for the configuration of different models. Abbreviations: Akaike Information Criterion (AIC), 233	
Bayesian Information Criterion (BIC), Akaike weight (AICweight) 234	

Overall, these result provide mixed evidence for Hypothesis 1: Even though working memory, 235	

processing speed and gf were highly correlated (Table 4), processing speed formed a clearly 236	

separable factor from working memory and gf in both samples. Working memory and gf, 237	

however, were clearly separable only in NKI-RS, but not CALM, suggesting greater similarity 238	

between gf and working memory in the CALM sample. To facilitate comparison across 239	

samples and in accordance with our preregistered analysis plan we nonetheless used the 240	

three-factor measurement model (Table 4, Supplementary Table 1) in all subsequent 241	

analyses. 242	
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Table 4. Covariance between Cognitive Measures in the Three-Factor Model  243	

Sample Path Standardized Estimate 
CALM gf <-> memory 0.71, z = 28.42, p < .001 
 gf <-> speed 0.55, z = 12.20, p < .001 
 memory <-> speed 0.79, z = 19.35, p < .001 
NKI-RS gf <-> memory 0.91, z = 19.51, p < .001 
 gf <-> speed 0.81, z = 24.73, p < .001 
 memory <-> speed 0.87, z = 17.43, p < .001 
Note. See Supplementary Table 1 for factor loadings. 244	

The Relationship between Working Memory, Processing Speed and g f 245	

We next examined the relationships between working memory, processing speed and gf in 246	

more detail. Specifically, we fit a SEM including regression paths between working memory 247	

and gf, as well as speed and gf, to test Hypothesis 2 - that working memory and processing 248	

speed each predict individual differences in gf. We found that this model showed good 249	

absolute fit for both samples (CALM: χ2(18) = 41.74, p = .001; RMSEA = .049 [.030 - .068]; CFI 250	

= .983; SRMR = .032, NKI-RS: χ2(32) = 54.15, p = .009; RMSEA = .045 [.024 - .065]; CFI = .981; 251	

SRMR = .030), indicating that, overall, the data was compatible with our model.  252	

To further scrutinize the relationship between gf, working memory and speed, we compared 253	

our freely-estimated model to a set of alternative models with different constraints imposed 254	

upon the regression paths. First, to test whether working memory and speed each made 255	

different contributions, we tested an alternative model in which the paths from processing 256	

speed and working memory to gf were constrained to be equal. In CALM (∆χ2(1) = 15.53, p < 257	

.001), but not NKI-RS (∆χ2(1) = 3.25, p = .072), the freely-estimated model fit better than the 258	

equality-constrained model, indicating that working memory and speed each made different 259	

contributions in CALM but not NKI-RS. Next, we tested whether the freely estimated model 260	

fit better than a model in which the path between gf and working memory was constrained 261	
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to zero. We found that that the freely estimated model fit better for both samples (CALM: 262	

∆χ2(1) = 20.77, p < .001; NKI-RS: ∆χ2(1) = 12.97, p < .001). In line with our hypothesis, this 263	

result indicates that working memory makes a significant incremental contribution to gf. 264	

Finally, we tested a model in which the path between gf and processing speed was 265	

constrained to zero. This model showed no difference in fit to the freely estimated model for 266	

CALM (∆χ2(1) = 0.02, p = .875) or NKI-RS (∆χ2(1) = 0.04, p = .849). Contrary to our hypothesis, 267	

this indicates that there was no clear incremental contribution of processing speed to gf. 268	

Finally, we inspected standardized path estimates of the freely estimated model to assess the 269	

effect seizes of working memory and processing speed. Parameter estimates showed that 270	

working memory showed a greater effect on gf than processing speed, particularly in CALM 271	

(Table 5) even though raw correlations between gf and speed were high in both samples 272	

(Table 4).  273	

Table 5. Regression Path Estimates. 274	

Sample Path Standardized Estimate 
CALM speed -> gf -0.01, z = -0.16, p = .876 
 memory -> gf 0.72, z = 7.65, p < .001 
NKI-RS speed -> gf 0.06, z = 0.21, p = .208 
 memory -> gf 0.86, z = 1.81, p = .070 
 275	

Overall these results provide mixed evidence for Hypothesis 2: There was good evidence that 276	

working memory and speed made a significant joint contribution to gf, and that working 277	

memory made an incremental contribution to gf in CALM. Contrary to our hypothesis, and 278	

the watershed model, however, processing speed showed no significant incremental 279	

contribution to gf, above and beyond working memory. We explore likely explanations for this 280	

finding in the Discussion. 281	
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The Measurement Model of White Matter 282	

We next examined the measurement model of white matter to test Hypothesis 3, namely 283	

that white matter microstructure is a multi-dimensional construct. Specifically, we examined 284	

absolute model fit of a single factor model to test whether a unidimensional model could 285	

adequately capture white matter microstructure. As expected, the single-factor model of 286	

white matter microstructure did not fit the data well (CALM: χ2(35) = 124.63, p < .001; 287	

RMSEA = .125 [.103 - .147]; CFI = .933; SRMR = .039; NKI-RS: χ2(35) = 132.33, p < .001; RMSEA 288	

= .204 [.167 - .242]; CFI = .885; SRMR = .023). This indicates that white matter microstructure 289	

could not be reduced to a single ‘global FA’ dimension in our samples, in line with (Lövdén et 290	

al. 2013; Kievit, Davis, Griffiths, Correia, CamCAN, et al. 2016) and supporting Hypothesis 3. 291	

We therefore modelled each of the ten white matter tracts separately in all subsequent 292	

models. 293	

The Watershed Model:  Relationships between Cognition and White Matter 294	

Next, we fit the full watershed model including white matter, working memory, processing 295	

speed and gf. Following our general analysis procedure, we investigated overall model fit, 296	

alternative models and individual path estimates to gain a comprehensive understanding of 297	

the relationships in the watershed model and to test Hypothesis 4 - that white matter 298	

contributes to working memory capacity and processing speed, which, in turn, contribute to 299	

gf.  300	

We found largely converging results across samples. The watershed model showed good 301	

absolute fit in CALM (χ2(78) = 107.78, p = .014; RMSEA = .026 [.012 - .038]; CFI = .981; SRMR 302	

= .043) and acceptable fit in NKI-RS (χ2(112) = 219.22, p < .001; RMSEA = .053 [.043 - .064]; 303	

CFI = .928; SRMR = .088). White matter explained large amounts of variance in working 304	
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memory (R2
CALM = 32.3%; R2

NKI-RS = 46.1%) and processing speed (R2
CALM = 38.2%; R2

NKI-RS = 305	

54.4%), which, in turn, explained even more variance in gf (R2
CALM = 51.2%; R2

NKI-RS = 78.3%). 306	

In line with Hypothesis 4, this indicates that the watershed model fit the data overall. 307	

Comparing the freely estimated watershed model to alternative, constrained, models 308	

showed that white matter contributed significantly to memory and processing speed. 309	

Specifically, a model in which paths from white matter to processing speed were constrained 310	

to zero fit worse than the freely-estimated model (CALM: ∆χ2(10) = 50.26, p < .001; NKI-RS: 311	

∆χ2(10) = 27.19, p = .002), as did a model in which paths from white matter to working 312	

memory were constrained to zero (CALM: ∆χ2(10) = 52.26, p < .001; NKI-RS: ∆χ2(10) = 25.85, 313	

p = .004). As hypothesised, white matter therefore contributed to both processing speed and 314	

working memory.  315	

We next inspected that relationship between individual white matter tracts and working 316	

memory and speed in more detail. A model in which paths from white matter to working 317	

memory and speed were constrained to be equal, fit worse than the freely-estimated 318	

watershed model for CALM (∆χ2(18) = 47.76, p < .001) and NKI-RS (∆χ2(18) = 30.42, p = .034), 319	

indicating that the role of white matter microstructure in supporting working memory and 320	

processing speed differed across tracts. This supports the notion that there is a many-to-one 321	

mapping between white matter and cognition - a core tenet of the watershed model.  322	

Investigating individual standardised parameter estimates of the different white matter tracts 323	

showed that for CALM, only the anterior thalamic radiation contributed significantly to 324	

processing speed, whereas the superior longitudinal fasciculus, forceps major and cingulum 325	

were significantly, independently and positively related to working memory (Figure 4). For 326	

NKI-RS, the superior longitudinal fasciculus was significantly and positively related to 327	
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processing speed and working memory (Figure 5). Two tracts showed an unexpected, 328	

strongly negative (< -1), relationship: the forceps minor for CALM and the inferior fronto-329	

occipital fasciculus for NKI-RS. We found that these negative estimates occurred only when 330	

all other brain to cognition pathways were also estimated: When estimated on their own, 331	

path estimates were positive (forceps minor to working memory: standardized estimate = 332	

0.36, z = 4.05, p < .001; inferior fronto-occipital fasciculus to working memory: standardized 333	

estimate = 0.14, z = 0.859, p = .390; inferior fronto-occipital fasciculus to processing speed: 334	

standardized estimate = 0.26, z = 1.41, p = .158). This sign-flip suggests that the negative 335	

pathways were potentially due to modelling several, highly-correlated paths at the same time 336	

(Jöreskog 1999). Overall, these results further support the watershed prediction that multiple 337	

white matter tracts map onto working memory and processing speed. 338	

Finally, we probed the watershed model in more detail by testing a set of alternative 339	

expressions of the watershed model still compatible with the core tenants of the watershed 340	

model – as well as a set of alterative models incompatible with the watershed model. We 341	

compared all alternatives (see Figure 6 for graphical representations) to the original 342	

watershed model by inspecting each models’ relative probability of being the data-generating 343	

model as indicated by AIC weights (Wagenmakers and Farrell 2004). We found that the 344	

original watershed model showed a very high probability (98.58%) of being the data-345	

generating model for CALM but only a 0.10% probability for NKI-RS. For NKI-RS, a different 346	

expression of the watershed model, such that gf was regressed on working memory, which 347	

was regressed on processing speed, which was then regressed on white matter (Alternative 348	

A, Figure 6) showed a 95.04% probability of being the data-generating model. This model 349	

only showed a 0.37% probability for CALM. Another expression of the watershed model, in 350	

which all tasks were modelled separately as manifest, rather than latent, variables 351	
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(Alternative B, Figure 6), showed no advantage over the watershed model for CALM (0.00% 352	

probability) or NKI-RS (0.00% probability). We next tested two alternative models 353	

incompatible with the tenants of the watershed model. We found that a model in which the 354	

hierarchy between cognitive endophenotypes and gf was inverted (Alternative C, Figure 6) 355	

showed comparatively low probability of being the data-generating model for both CALM 356	

(0.00%) and NKI-RS (2.86%). Similarly, a model in which gf was directly regressed on white 357	

matter, working memory and processing speed (Alternative D, Figure 6), showed no clear 358	

advantage over the watershed model for CALM (1.05% probability) or NKI-RS (0.00% 359	

probability). Overall these model comparisons highlight that while the watershed model fit 360	

the data for both samples and had large explanatory power (as indicated by R2s), the precise 361	

configuration of the watershed model may differ somewhat between cohorts.  362	

In summary, we found that the watershed model performed well overall for both cohorts. As 363	

hypothesised, white matter contributed to working memory and processing speed, which, in 364	

turn, contributed to gf, and explained large amounts of variance therein. Also as predicted by 365	

the watershed model, there was a many-to-one mapping between white matter tracts and 366	

cognition. The exact configuration of the watershed model, however, may differ slightly 367	

between cohorts. These differences may be a function of cohort differences in sample size, 368	

average levels of cognitive ability and/or the specific tasks used – a topic we will return to in 369	

the Discussion. 370	

Testing for potential  confounds 371	

We carried out a series of supplementary and non-preregistered analyses to examine 372	

whether possible confounders influenced our models. These analyses showed that our 373	

findings were robust to the inclusion of covariates such as scanner motion or socio-economic 374	
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status. They were also robust across genders and participants taking or not taking 375	

medication. There were no differences in the structure of the model between participants 376	

with and without diagnosed disorders for CALM. Potential small differences cannot be ruled 377	

out for NKI-RS, likely due to the low number of diagnosed participants of N = 106 378	

(Supplementary Material). 379	

Age-Related Differences in the Neurocognitive Architecture of g f 380	

Finally, we tested Hypothesis 5 - that the contribution of working memory and processing 381	

speed to gf varied with age. We first inspected cross-sectional differences in gf, working 382	

memory and processing speed, and then used SEM trees to investigate potential age-383	

differences in the relationships between these factors. In additional, non-preregistered, 384	

analyses we also used SEM Trees to investigate potential age-differences in the relationship 385	

between white matter and cognitive endophenotypes by inspecting paths that were 386	

significant in the watershed model (Figure 4 and 5).  387	

SEM trees combine SEMs with decision tree methods, separating a dataset into subgroups (in 388	

this case age groups) if SEM parameter estimates of interest differ sufficiently (Brandmaier et 389	

al. 2013). SEM trees allowed us to investigate age as a potential moderator without imposing 390	

a-priori categorical age splits. We initially allowed for no more than two age groups. This 391	

yielded inconsistent results for CALM and NKI-RS (Supplementary Table 4). To test whether 392	

these inconsistencies were an artefact of allowing for only two groups, we repeated our 393	

analysis and allowed for up to four age groups. This analysis yielded consistent results 394	

between CALM and NKI-RS (Table 6). This pattern of results indicates that the initial 395	

parameters of our analysis caused us to miss relevant age differences.  396	
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Table 6. SEM Tree Results for the Watershed Model.  397	

Path Est.  
Before 

Age 
Split  

1 

Est.  
Betw. 

Age 
Split  

2 

Est.  
Betw. 

Age 
Split  

3 

Est.  
After 

CALM 

memory <–> speed 0.85 8.46 0.97 9.46 0.74 -  - 
memory –> gf 0.83 9.38 0.42 10.04 1.14 10.88  0.94 
speed –> gf 0.04 6.88 -0.19 11.21 0.17 -  - 
SLF –> memory 0.67 7.21 0.18 11.21 0.76 -  - 
FMaj –> memory 0.59 7.71 0.14 9.29 0.33 11.13  0.74 
CG –> memory 1 0.64 6.96 0.09 11.04 0.70 -  - 
ATR –> speed 0.96 7.13 0.68 7.96 0.17 11.96  0.65 

NKI-RS 

memory <–> speed 0.90 9.82 0.48 14.72 1.11 -  - 
memory –> gf 1.10 8.59 0.59 12.67 1.03 -  - 
speed –> gf 0.53 8.59 -0.12 12.96 0.52 -  - 
SLF –> memory 2.15 8.30 1.47 12.15 1.93 -  - 
SLF –> speed 3.12 8.63 1.83 15.09 2.31 -  - 
Note. The table shows differences in parameter estimates for paths of interest (as shown in 398	
Figure 4 and 5) depending on participants’ age in years. Our analyses allowed for a maximum 399	
of three age splits (and thus four age groups). An absence of a third age split (denoted by ’-‘ 400	
in the table), indicates that the SEM tree split only twice, suggesting no further changes in 401	
parameter strength after the second split. See Supplementary Figure 7 for a graphical 402	
representation of these results. 403	

As shown in Figure 7, gf, working memory and processing speed factor scores increased with 404	

age for all three cognitive phenotypes. In line with our hypothesis, SEM trees showed that 405	

there were pronounced age-related differences in brain-behaviour in childhood and 406	

adolescence (Table 6). For both samples and all but one path, there was an initially strong 407	

relationship between components of the watershed model, then a dip around ages 7 - 9 408	

years for CALM and age 8 for NKI-RS, followed by an increase in path strength around ages 11 409	

- 12 (see Supplementary Figure 7 for a graphical representation of these results). 410	

Speculatively, this pattern of results is consistent with an interpretation of a reorganization of 411	
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neurocognitive faculties in late childhood, followed by a consolidation of neurocognitive 412	

pathways around the onset of adolescence (Johnson 2000, 2011). 413	

Discussion 414	

We here used multivariate statistical techniques to investigate the neurocognitive 415	

architecture of gf in two large (NCALM = 551, NNKI-RS = 335) developmental cohorts and, for the 416	

first time, investigated how the neurocognitive architecture of gf changes dynamically with 417	

age. We tested a preregistered watershed model of gf, which predicts a hierarchy of partially 418	

independent effects. As might be expected from a multi-cohort study, there were some 419	

differences between the community-ascertained cohort (NKI-RS) and the cohort of children 420	

and adolescents with learning difficulties (CALM) in specific path estimates. Overall however, 421	

we found convergent results across these two heterogeneous samples. The watershed model 422	

performed well for both CALM and NKI-RS: White matter contributed to working memory 423	

and processing speed, which, in turn, contributed to gf and explained 51% of variance therein 424	

for the CALM sample and 78% of variance for NKI-RS. Models were robust across genders, 425	

participants taking or not taking medication and when controlling for socio-economic status 426	

and scanner motion. Investigations of age effects showed that the relationship between 427	

cognitive abilities and white matter dipped in strength around ages 7-12 years. Speculatively, 428	

this age-effect may reflect a reorganization of the neurocognitive architecture during pre-429	

puberty and early puberty (Byrne et al. 2017). These findings have implications for 430	

understanding and targeting cognitive impairments in populations with learning difficulties. 431	

The watershed model tested here consists of three levels: gf forms the most down-stream 432	

point, with working memory and processing speed as intermediate tributaries, and white 433	
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matter microstructural tracts as upstream sources. Previous studies suggested that matter 434	

microstructure is best characterised by a single, ‘global FA’ factor (Penke et al. 2010) while 435	

others have contended that association patterns among different white matter tracts are 436	

more complex (Lövdén et al. 2013; Kievit, Davis, Griffiths, Correia, CamCAN, et al. 2016). Here 437	

we found strong evidence for a multifactorial view of white matter tracts – for both samples, 438	

a unidimensional model of white matter fit poorly, and for CALM, multiple tracts also showed 439	

partially independent contributions to distal cognitive outcomes. This is in line with the 440	

watershed model. There were some differences between cohorts as to which tracts 441	

contributed most to working memory and processing speed: In line with previous research 442	

(Kievit, Davis, Griffiths, Correia, CamCAN, et al. 2016; MacPherson et al. 2017; Bathelt et al. 443	

2018), we found that the anterior thalamic radiation was related to processing speed, as 444	

were the forceps major, forceps minor and the cingulum to working memory for CALM. 445	

However, these tracts were not significant for NKI-RS. A possible explanation for these 446	

differences between samples is the discrepancy in the number of participants with imaging 447	

data (N = 165 in CALM versus N = 67 in NKI-RS). This discrepancy likely confers differential 448	

power to detect weaker pathways. Other, not mutually exclusive, explanations are that the 449	

observed differences reflect differences in brain-behaviour mapping between more atypical 450	

and typical cohorts (Bathelt et al. 2018), sampling variance across two independent cohorts 451	

collected under somewhat different socio-economic conditions (United Kingdom and United 452	

States of America), or a more uniform age distribution in NKI-RS. While DTI images were 453	

processed with the same pipeline across sites, the scanner and MRI acquisition protocol were 454	

also different. Although previous work suggests that FA is relatively robust measure in multi-455	

site comparisons (Vollmar et al. 2010), we therefore cannot rule out site differences as a 456	

potential confound. It will therefore be necessary to replicate these findings in large typical 457	
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and atypical cohorts collected in the same setting. Of note, however, the superior 458	

longitudinal fasciculus was robustly associated with working memory across the two different 459	

samples and settings. For NKI-RS, the superior longitudinal fasciculus was also associated with 460	

processing speed. The superior longitudinal fasciculus is a large, bilateral association fibre 461	

connecting temporal, occipital, parietal and frontal regions (Kamali et al. 2014). It is therefore 462	

well-situated for supporting cognitive processes such as gf, which rely on integrative multiple-463	

demand systems (Jung and Haier 2007; Fedorenko et al. 2013; Parlatini et al. 2017). 464	

Our findings for the cognitive levels of the watershed model highlighted a close relationship 465	

between working memory and gf. Previous studies had variably suggested that gf and working 466	

memory (Kyllonen and Christal 1990; Fukuda et al. 2010), or gf and processing speed (Kail and 467	

Salthouse 1994; Salthouse 1996; Coyle et al. 2011; Ferrer et al. 2013) may be most closely 468	

related. We found that all three cognitive factors were highly correlated for both samples. 469	

Nonetheless, processing speed formed a cognitive factor clearly separable from working 470	

memory and gf. Working memory and gf, in turn, were separable in the community-471	

ascertained NKI-RS but not in CALM, the cohort of children and adolescents with learning 472	

difficulties. This close relationship between gf and working memory was also evident in other 473	

models of CALM where processing speed and working memory were used as joint predictors 474	

of gf: Contrary to our hypotheses, processing speed became non-significant after controlling 475	

for working memory here. There are several possible, and not mutually exclusive, 476	

explanations for this finding and the apparent differences between cohorts. First, a broader 477	

set of speed tasks (which might be captured by several latent variables for clerical speed, 478	

choice reaction time and speed variability) might show higher predictive power than the 479	

single latent variable for speed, which could be modelled here. This may be particularly 480	
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pertinent for heterogeneous cohorts like CALM. Second, and in line with previous work 481	

showing that time-constraints increase isomorphism of gf and working memory (Chuderski 482	

2013), even standard implementations of gf tasks may place considerable time-pressure on 483	

struggling learners, thereby increasing gf - working memory covariance in CALM as compared 484	

to NKI-RS. Conversely, less subjective or objective time pressure may also confer a 485	

differentiation of cognitive domains and the watershed hierarchy in cohorts of older ages 486	

and/or higher ability levels, such as NKI-RS: There was some evidence that, for this sample, 487	

speed formed an intermittent level in the hierarchy between white matter and working 488	

memory (Alternative A, Figure 6). Future longitudinal research will be necessary to 489	

differentiate these different configurations of the watershed model and scrutinize the causal 490	

flow of effects. For now, our findings highlight the value of replicating analyses in different 491	

cohorts using different tasks: While evidence was mixed for the association between gf and 492	

processing speed, the strong associations between gf and working memory across samples 493	

indicate a robust and likely generalizable relationship between these two domains, 494	

supporting the notion that mental information processing capacity is a key determinant of gf 495	

(Kyllonen and Christal 1990; Fukuda et al. 2010).  496	

The associations in the watershed model differed between ages in a complex, non-monotonic 497	

fashion. Previous research had suggested either a decrease in covariance among cognitive 498	

domains with age (age differentiation; Garrett 1946), an increase in covariance with age (age 499	

de-differentiation; Blum and Holling 2017), or no changes with age (Tucker-Drob 2009; de 500	

Mooij et al. 2018). These investigations have traditionally focussed on relations between 501	

cognitive domains, however, not on relationships between brain and cognition  - although 502	

see de Mooij et al. (2018). Possible linear and non-linear changes in brain-behaviour mapping 503	
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with age have remained mostly unexplored (Tamnes et al. 2017). Using structural equation 504	

modelling trees, a novel decision-tree-based technique, we here found evidence of complex 505	

developmental differences consistent across samples and relationships in the watershed 506	

model: Initially strong path estimates showed a pronounced decrease in strength around 507	

ages 7 - 9 years, followed by a renewed increase in the strength, even surpassing initial levels, 508	

around ages 10 - 15.  509	

There are at least two possible explanations for this developmental dip in brain-cognition 510	

relationships. First, there may be a true decrease in relationship strength during this time of 511	

life. Possibly, other cognitive skills, such as verbal reasoning, temporarily support gf, resulting 512	

in weaker relationships between gf and working memory. Alternatively, the configuration of 513	

the watershed model may change temporarily during this time, which could also manifest in 514	

an apparently weaker covariance structure. In this case, the true relationship between gf, 515	

memory, speed and white matter may still be strong, just configured differently from the 516	

watershed model. We note that both explanations are compatible with the interactive 517	

specialization theory (Johnson 2000, 2011), which predicts as remapping of the relationships 518	

between brain substrates and cognitive abilities during development. 519	

On a physiological level, this age effect may be driven by neuroendocrine changes during pre- 520	

and early puberty. Puberty is driven by a complex and only partially understood set of 521	

hormonal events including gonadarche and andrenarche (Sisk and Zehr 2005). Gonadarche 522	

begins with the secretion of gonadotropin-releasing hormone from the hypothalamus around 523	

ages 10-11 years and closely tracks the overt bodily changes of puberty (Dorn 2006). 524	

Andrenarche, beginning with the maturation of the andrenal gland, starts as early as six years 525	

of age, and is increasingly recognized as a complimentary driver of puberty and brain 526	
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development (Byrne et al. 2017). It is possible that the hormonal changes of andrenarche and 527	

early gonadarche may lead to a level of neural reorganization, which may initially appear as 528	

weaker relationships in the watershed model. The sweeping bodily, social and cognitive 529	

changes happening in early adolescence may then drive a consolidation of the neurocognitive 530	

architecture of gf.  531	

On a more general level, these age effects suggest the existence of potential non-linear 532	

changes in brain-behaviour mapping during childhood and adolescence and underline the 533	

value of modern statistical approaches, such as SEM Trees, for the study of age-related 534	

differences. It is worth noting, however, that these findings, which are based on an inherently 535	

exploratory technique, will need to be replicated in future confirmatory studies with fine-536	

grained data on puberty and larger sample sizes. The latter will also allow for detailed 537	

investigations of potential gender differences. Moreover, while we were able to investigate 538	

individual differences in gf, we could not assess intra-individual changes during childhood and 539	

adolescence. Although the relatively narrow age range makes large cohort effects unlikely, it 540	

may still be that there were differences in recruitment and selection that varied across the 541	

age range. As such, the cross-sectional nature of our samples limits our ability to make 542	

inferences about developmental dynamics. 543	

Our study illustrates some of the advantages and challenges of preregistered secondary data 544	

analyses. We agree with others in the field that secondary data analysis need not be and 545	

should not be confounded with purely exploratory research (Mills and Tamnes 2014; Orben 546	

and Przybylski 2019; Scott and Kline 2019). Preregistrations, as well as dedicated multivariate 547	

methods such as SEM, can help to reduce the scope for analytic flexibility and increase 548	

scientific rigour when using rich, secondary datasets. Preregistrations also do not preclude 549	
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the use of exploratory methods or the ability to ask exploratory questions, as we did in our 550	

analysis of age effects. Preregistrations merely facilitate the distinction between exploratory 551	

and confirmatory research (Wagenmakers et al. 2012). There are, however, some unique 552	

challenges to preregistering secondary data analyses worth noting. First, information on the 553	

precise measures collected is not always available prior to data access, which can limit the 554	

level of detail in which an analysis can be preregistered. Second, data quality and the level of 555	

data-processing, the latter being particularly relevant for MRI data, is not always clear a priori 556	

(e.g. see Kievit et al. 2018), which can necessitate changes to analyses plans after data 557	

inspection. Third, convergence issues are fairly common when using complex multivariate 558	

methods such as SEM. We found it necessary to transform some of our speed variables, for 559	

instance, to achieve model convergence. Such post-hoc modifications, not guided by the 560	

palatability of the results, but rather by unforeseen, and sometimes unforeseeable, practical 561	

considerations, mean that preregistration can sometimes fall short of full compliance. 562	

Nevertheless, we believe that even imperfect preregistrations, alongside shared code, data 563	

and the transparent presentation of results, can help the reader distinguish between 564	

confirmatory and exploratory results, and adjust their level of confidence in conclusions 565	

accordingly. For guidance on maximizing transparency in preregistration of secondary data, 566	

see Weston et al. (2018). 567	

Finally, the findings from our study have implications understanding and targeting cognitive 568	

impairments in populations with learning difficulties. First, the close relationship between 569	

working memory and gf found here and in other studies (Fukuda et al. 2010; Chuderski 2013), 570	

indicates that children and adolescents struggling with working memory are likely to also 571	

struggle in terms of complex reasoning tasks. Either reducing working memory load, 572	
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decreasing time constraints, or training working memory and fluid ability capacity in such 573	

populations may therefore be promising lines of inquiry for intervention studies. It is worth 574	

highlighting, however, that cognitive training studies have so far shown little evidence of (far) 575	

transfer: Training abstract reasoning, a common measure of gf, has not resulted in robust 576	

increases in working memory (Knoll et al. 2016) and working memory training has not been 577	

shown to transfer to reasoning skills or school performance (Dunning et al. 2013; 578	

Schwaighofer et al. 2015). Similarly, transfer from processing speed to reasoning seems to be 579	

limited (Mackey et al. 2011). The results obtained here suggest that interventions may 580	

increase their chance of success by implementing programs of sufficient complexity to affect 581	

the entire neurocognitive architecture of effects (see also Kievit et al. 2016). The level of 582	

intensity required to produce sustained benefits may need to be as demanding and 583	

consistent as education itself, which shows robust effects in increasing general cognitive 584	

abilities over time (Ritchie and Tucker-Drob 2018). This work and work by others (Noack et al. 585	

2014) also highlights the value of assessing, modeling, and potentially intervening on, 586	

multiple tasks, rather than relying on a single task to capture complex cognitive domains such 587	

as gf. Finally, the age-related differences in the relationships of the watershed model 588	

observed using SEM-trees suggest that some interventions may work best at particular 589	

developmental phases.  590	
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	806	

Figure Legends 807	

Figure 1. The Watershed Model. Schematic representation of the watershed model 808	

developed by (Cannon and Keller 2006) and adapted for the present study. Fluid ability is 809	

hypothesized to be the downstream product of working memory and processing speed, 810	

which are, in turn, the product of white matter contributions. Figure adapted from Kievit et 811	

al. (2016). 812	

Figure 2. White Matter Tracts Modelled in the Analyses. 813	

Figure 3. Different Measurement Models of Cognition. Abbreviations: WM: working memory, 814	

PS: processing speed 815	

Figure 4. The Watershed Model in CALM. See Supplementary Table 2 for regression 816	

estimates. Residual covariances between white matter tracts were allowed but are not 817	

shown for simplicity. Abbreviations: uncinate fasciculus (UF), superior longitudinal fasciculus 818	

(SLF), inferior fronto-occipital fasciculus (IFOF), anterior thalamic radiations (ATR), 819	

cerebrospinal tract (CST), forceps major (FMaj), forceps minor (FMin), dorsal cingulate gyrus 820	

(CG), ventral cingulate gyrus (CH), inferior longitudinal fasciculus (ILF). 821	

Figure 5. The Watershed Model in NKI-RS. See Supplementary Table 3 for regression 822	

estimates. Residual covariances between white matter tracts were allowed but are not 823	

shown for simplicity. 824	
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Figure 6. Configuration of Alternative Models. Alternatives A and B are watershed-825	

compatible, while C and D are watershed-incompatible. The best-fitting model for CALM is 826	

highlighted in blue; the best-fitting model for NKI-RS is highlighted in green. Regression paths 827	

only are shown for simplicity. Square shapes denote manifest variables and oval shapes 828	

latent variables. 829	

Figure 7. Cognitive Factor Scores by Age. 830	


