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Abstract 
 

The Himalayan mountain range contains the highest peaks on Earth and has 

provided a diversity of environments for humans, some of which have required 

substantial genetic adaptation. I have used a combination of SNP-chip data, genome 

sequences and functional studies to explore the demographic history, genetic 

structure and signatures of adaptation in Himalayan populations. Eight hundred and 

eighty three individuals from 49 different autochthonous groups from Nepal, Bhutan, 

North India, and the Tibetan Plateau in China were genotyped for ~600,000 genome-

wide SNPs. High-coverage whole-genome sequences of 87 individuals from a subset 

of these populations plus three additional ones were also generated. Himalayan 

populations share a common genetic component derived from a single ancestral 

population, followed by the development of local fine structure correlating with 

language and geographical distribution. I find higher genetic diversification within the 

Himalayan populations than in the surrounding regions which correlates with the 

distribution of Indo-European and Tibeto-Burman speakers, suggesting that both 

language and geography have influenced the genetic structure of these populations. I 

refined Himalayan population demographic history, using both autosomal and 

uniparental sequences. Himalayan populations display different proportions of gene 

flow with neighbouring populations and diverse effective population sizes and split 

times. The Y-chromosome lineages identified are common in South and East Asia and 

Tibet, but mostly form distinct clusters in the Himalayas. High altitude adaptation 

seems to have originated in a single ancestral population and then spread widely in 

the Himalayan region in the last 5,000 years. Genetic signatures of adaptation to high 

altitude are observed in the Endothelial PAS Domain Protein 1 gene (EPAS1) and 

several other known and novel candidates. EPAS1 has previously been reported to be 

under selection and involved in adaptation to living at high altitudes and was 

suggested to result from introgression of DNA from an extinct hominin species 

(Denisovans) into Tibetans. However, functional studies of EPAS1 variants have not 

been systematically carried out and it is still unknown which variant(s) are 

responsible for high altitude adaptation and their mechanism of action. I used both in 

silico and in vitro studies to explore these topics and validate EPAS1 candidate 

regulatory variants. The introgressed haplotype extends for over 300 kb spanning six 
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genes (EPAS1, TMEM247, ATP6V1E2, RHOQ, CRIPT, PIGF). I optimised a protocol to 

induce hypoxia in cell lines with and without the Denisovan introgressed haplotype. 

Preliminary results show that in cell lines without the introgressed haplotype, EPAS1 

expression increases under hypoxic conditions, whereas in the cell lines with the 

introgressed haplotype the expression of EPAS1 remains constant.  The most likely 

functional candidate variants fall in a ~32.7kb region within EPAS1. High altitude 

adaptation thus seems to be driven by EPAS1 as well as coordinated by other genes 

involved in the hypoxic response.   
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1. Introduction 

1.1 Human origins, ancient migrations and 
mixing 
 

The origin of the genus Homo in Africa was proposed for the first time by 

Charles Darwin in “The Descent of Man and Selection in Relation to Sex” (1871) (1). 

Founded on embryological and Thomas Huxley’s comparative anatomical studies that 

illustrated how modern humans and apes share a common ancestor (2), Darwin came 

to the conclusion that the last shared ancestor of humans and apes probably lived in 

Africa. The discovery of relevant fossils and, more recently, the advent of genetic 

studies, confirmed Darwin and Huxley’s suggestions. The earliest known human 

species, Homo habilis, lived around 2.5 million years ago in Africa, and the closely 

related species Homo erectus and Homo ergaster appeared after 1.9 million years ago.  

Homo erectus was the first species with a body size and shape resembling modern 

humans and was also the first to expand outside Africa. Between 700,000–300,000 

years ago, at least four main human lineages were present in different part of the 

world: Homo erectus in Asia, Homo neanderthalensis in Eurasia, Homo sapiens in Africa 

and the Denisovans in Asia, a group closely related to Neanderthals (3, 4). 

Anatomically modern humans (AMH) seem to have evolved in Africa in the last 300 

thousand years (ka) where the earliest AMH fossils known thus far have been found 

at Jebel Irhoud in Morocco dating to ~310 thousand years ago (5), and at the 

Ethiopian sites of Omo Kibish dating to ~195 ka (6), and Herto dating to ~160 ka (7).  

Nowadays, although there is general acceptance of the African origin of modern 

humans, where specifically within this continent modern humans originated, and how 

and when the expansion of our ancestors from Africa to the rest of the world occurred, 

are still debatable. The traditional location for modern human origins has been 

Eastern Africa, where the human fossils of Omo Kibish and Herto were discovered, 

which were for many years the oldest known AMH remains. Genetic studies 

supporting this hypothesis reported that non-African populations carry part of the 

genetic diversity present in Eastern African individuals (8, 9). Nevertheless, this 

hypothesis has been challenged in recent years by new archaeological and genetic 

discoveries.  The recent report of human fossils dating back to ~300 thousand years 
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ago in Morocco raise the possibility of a Northern African origin. Genetic evidence 

from the Y chromosome reported the deepest-rooting Y chromosome clade (called 

A00) in West Africa (10, 11). On the other hand, the genetic analysis of sub-Saharan 

African hunter-gatherer communities suggested the possibility of a Southern African 

origin. The analysis of population differentiation and linkage disequilibrium (LD) 

patterns suggested that these populations are the most genetically differentiated in 

the world and thus in agreement with a South African modern human origin (12). New 

genetic and archaeological evidences could confirm one of these hypotheses or even 

suggest a more complex origin of our species from multiple regions (13).  

Another topic of debate is the route of the modern human dispersal out of Africa 

(OoA). Currently there are two main hypotheses, both with dispersal from Eastern 

Africa, but via a northern or southern route (14, 15). The northern path passes across 

northern Egypt into the Sinai Peninsula through a land corridor. Modern human 

remains found at Skhul (16) and Qafzeh (17) in Israel dating between 120 and 90 ka 

support this route of dispersal into the Middle East. More recently, a maxilla with 

associated dentition was discovered at Misliya Cave in Israel and dated to around 177-

194 ka, suggesting that modern humans might have left Africa even earlier than 

previously thought through a northern route (18, 19).  Conversely, the southern route 

implies crossing the Bab al Mandab Strait between the current countries of Eritrea 

and Yemen, and a rapid dispersal to South-East Asia and Oceania. This path involves 

crossing of a body of water, although during glacial periods it was less wide than the 

current state and easier to cross (14, 15, 20). Nevertheless, this coastal route is 

supported by some genetic evidence, although it lacks of clear archaeological 

evidence (21-23).  

The timing of the OoA expansion and the involvement of single or multiple 

waves of dispersal are also topics with little consensus.  Currently, there are two main 

hypotheses. In the first scenario, modern humans left Africa in a single major dispersal 

around 60-50 ka, and earlier dispersals in the Levant (Middle East) represented by 

individuals such as Skhul, Qafzeh and Misliya Cave did not contribute to present-day 

populations. The second hypothesis includes multiple waves of dispersal starting 

around 100-130 ka. The discovery of human remains and artefacts across Asia and 

Australia dated before 60 ka raises the possibility that the earlier dispersal into the 

Middle East (Skhul, Qafzeh, Misliya Cave) extended to East and South-East Asia (24-
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28). Genetic studies have generally favoured a single dispersal (23), but some have 

reported evidence for a small contribution (<2%) from an earlier migration (29). 

Modern humans during their dispersals into different parts of the world subsequently 

encountered and intermixed with at least other two human species, the Neanderthals 

and the Denisovans. The Denisovans were a population closely related to 

Neanderthals that split from the latter after the separation of both from the modern 

human lineage around 400–700 ka (4, 30, 31).  Neanderthals contributed genetic 

material to all non-African individuals, with slightly more in East Asians than West 

Asians/Europeans. One hypothesis proposes two events of introgression: a first event 

in the Levant close in time to the modern human out-of-Africa migration around 

50,000–60,000 years ago (32), followed by a second smaller introgression that only 

contributed genetically to Asians (33). An alternative hypothesis suggests dilution of 

the Neanderthal contribution in Europeans by mixing with a population lacking 

Neanderthal introgression. Denisovans contributed genetic material to more 

geographically-specific groups of modern humans including populations from South-

East Asia (including Himalayans), and dwellers of Papua New Guinea and Aboriginal 

Australians (34, 35). A recent study outlined the possibility of two pulses of Denisovan 

introgression, one including both South-East Asian and Oceanian individuals, and a 

second one only into the former group (36).  
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1.2 Genetic variation and positive selection in 
human populations 
 

1.2.1 Human genetic variation 
 

The eukaryotic cell is composed of cytoplasm, and a nucleus enclosed within 

membranes that contains the nuclear DNA. The cytoplasm has organelles, such as the 

mitochondria, that are essential for the functioning of the cell. These organelles are 

responsible for cellular metabolism and energy production, and contain a circular 

molecule of DNA that is maternally inherited and independent from the DNA present 

in the nucleus. In each cell, there are many mitochondria. The human nuclear genome 

is organised into 23 chromosome pairs, of which 22 are autosomes and the last pair 

are sex chromosomes. Females carry two copies of the X chromosome, whereas males 

have one copy of the X and one of the Y chromosome. The human genome contains 

around 20,000 genes that code for proteins and together make up 1–2% of the 

genome. In the remaining ~99% of the DNA, many genomic regions play important 

roles in regulating gene function (37-39).  

Genetic variation is the term used to describe differences in the DNA sequence 

between individuals. These genetic differences are mostly neutral but can result in 

differences in phenotype. Genetic variation can arise in both the germline (sperm and 

egg cells) and in somatic tissues, but only the variation occurring in the germline can 

be transmitted from one generation to the next and thus affect population dynamics. 

Two major sources of genetic variation are recombination and mutation. 

 Recombination is the process by which the genetic material inherited from 

both parents mixes when homologous chromosomes align and exchange genetic 

material, crossing over, during prophase I of meiosis. The crossing over shuffles 

paternal and maternal DNA in the offspring. Recombination between the X and Y 

chromosomes, except as described below, disrupts sex determination resulting in 

males with the absence of essential genes on the Y chromosome and females with 

possibly damaging genes. Hence, 95% of the human Y chromosome does not 

recombine and just two pseudoautosomal regions at the extremities of these 

chromosomes recombine. The rest of the Y chromosome is passed patrilineally from 

one generation to the other intact except for mutations (40). Likewise, mtDNA does 
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not recombine and passes matrilineally from one generation to the other intact, 

unless a mutation occurs (41).   

Mutations are changes to the DNA sequence and occur at different scales from 

entire chromosomal aberrations, such as translocation of chromosomal segments or 

changes in chromosome numbers, to single nucleotides. They can involve the 

insertion, deletion or duplication of up to millions of base-pairs (Mb) (structural 

variant, SV,  or copy-number variant, CNV), or the insertion or deletions of a few bases 

(INDEL). Insertion of transposable elements and change in number of tandem repeats 

of DNA motifs are also mutational events. The smallest mutations are single base 

substitutions resulting in single nucleotide polymorphisms, SNPs. Most new 

mutations are neutral, and do not affect the fitness of an organism. However, some of 

them can be beneficial or deleterious (42). CNVs are widespread in human 

populations and, although most do not have any phenotypic effect, others can be 

advantageous or deleterious (43, 44). For example, the duplication of the salivary 

amylase gene has undergone positive selection in populations with high-starch diets, 

whereas the alpha-thalassemia deletion in the alpha-globin gene cluster is considered 

protective against malaria (45, 46). On the other hand, CNVs have been associated 

with the increase risk of developing diseases such as cancer and a series of Mendelian 

diseases and complex traits (43, 47). Likewise, small INDELs can be deleterious 

especially when they occur within an open reading frame (ORF) because they can lead 

to a different protein sequence or to shifting the reading frame and premature 

termination. INDELs have been associated with diseases such as cystic fibrosis, acute 

myeloid leukaemia and other types of cancer (48). On the other hand, INDELs can 

bring beneficial effects such as the insertion-deletion variant (c.34delCinsTCCT) in 

HTRA1 that has been reported as protective against age-related macular degeneration 

in the Chinese population (49). Another example is the 4 bp deletion located in the 

second intron of EPAS1 that has been associated with high altitude adaptation in 

Tibetans (50).  

SNPs are the most abundant and most studied type of genetic variation within 

human populations. One of the main causes for base substitution is incorrect base 

incorporation during DNA replication. New (de novo) mutations arise when incorrect 

base incorporation during DNA replication is not corrected by DNA repair enzymes 

and the new base gets fixed in the DNA. However, replication is a high-fidelity process 
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and errors occur at very low frequency (10-9-10-11 per nucleotide per replication). 

Nevertheless, the substitution rate is not uniform across the genome. The CpG islands 

are genomic regions rich in dinucleotides where a cytosine is followed by a guanine 

in the 5' → 3' direction, and are mutational hotspots. Most CpG dinucleotides (~75%) 

are targets of DNA methylation with the formation of 5-methylcytosine by the 

addition of a methyl (-CH3) group to the 5-carbon of the cytosine ring by a 

methyltransferase enzyme. On the other strand, the complementary bases form a CpG 

site as well, thus methylation also affects the C base on this strand. When 5-

methycytosine is deaminated, it yields a uracil and subsequent mispairing with the 

guanosine on the other strand. These can lead to two scenarios: the U-G mispair can 

be fixed by replacing G with an A producing (after DNA replication) a T-A pair, or by 

changing the U to a C re-forming a C-G pair. (42, 51). Similarly to CNVs and INDELs, 

SNPs in different parts of the genome can have different functional impacts. 

Substitutions that do not alter any amino acid are called synonymous, and are 

frequently assumed to be selectively neutral. Mutations that lead to an amino acid 

change are called nonsynonymous or missense substitutions and can have different 

effects on function according to their position in the protein (42). Loss-of-function 

(LoF) mutations are predicted to reduce or completely abolished protein coding-

genes function. On the other hand, gain-of-function (GoF) mutations can confer an 

abnormal activity on a protein (52, 53). 

Overall, the term ‘variant’ is used to refer to any genetic difference between 

two DNA sequences, and different versions of the same variant are called ‘alleles’. 

Conventionally, the reference allele denotes the base that is found in the reference 

genome assembly (https://www.ncbi.nlm.nih.gov/grc). Conversely, the alternative 

allele indicates any variant that differs from the reference. It is important to note that 

the reference allele is not necessarily the more frequent allele (major allele) or the 

alternative the less frequent (minor allele) in a population. Moreover, the reference 

allele does not necessarily represent the ancestral state of an allele. The ancestral 

allele is defined as the ancestral state of a variant, and the derived allele has arisen 

subsequently by mutation. In practice, the ancestral allele for humans is inferred from   

the alignment of different primates from Ensembl compara and thus takes into 

account the alleles of several different apes (54).  

https://www.ncbi.nlm.nih.gov/grc


25 

 

 

 

Alleles that are physically close on the same chromosome tend to be inherited 

together more often than expected by chance. These blocks of alleles form relatively 

stable haplotypes. LD is a measure of how often two alleles are inherited together, and 

the coefficient (D) of LD is defined as the difference between the observed frequency 

of a pair of alleles at two loci (pAB) and the product of the frequencies of those two 

alleles expected for random association (pApB)(55): 

DAB = pAB − pApB 

Each pair of alleles is characterised by their own coefficient of disequilibrium. 

The extent of LD across the genome is variable within different human populations 

and LD maps are population specific (56, 57). African individuals generally show 

lower levels of LD compared to populations outside Africa, probably due to the larger 

size of human populations in Africa over time and greater time depth, compared with 

the relatively small number of modern humans that exited Africa during their 

expansion into the rest of the world (58).  

In population genetics, the variation in allele frequencies within populations is 

a valuable metric to understand population dynamics over time. According to the 

Hardy-Weinberg equilibrium theory, in the absence of any evolutionary force, the 

allele and genotype frequencies in an infinitely large and panmictic population will 

remain constant through time (59, 60). Factors that can change the allele frequency 

in a population and violate the Hardy-Weinberg equilibrium include mutations, 

genetic drift, non-random mating, gene flow and natural selection, for example. 

Mutations introduce new alleles into a population and, therefore, change the allele 

frequency spectrum. The frequency of the original allele will decrease because 

mutation changes it into a different allele (42). Genetic drift is the change in the 

frequency of an existing allele due to stochastic sampling of individuals in creating the 

next generation. The effect of genetic drift over time relates to the population size, 

with less genetic drift in large populations and vice versa (42, 61): in a small 

population, an allele can rapidly get either lost (allele frequency =0) or fixed (allele 

frequency =1), whereas in a big population alleles tend to vary less and stay near their 

starting frequencies. To summarise the effect of genetic drift in a population, the 

concept of effective population size (Ne) is often used. Ne differs from the census size 

(N) of a population and in genetics represents the number of individuals on an 
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idealised population that undergoes the same amount of genetic drift as the 

respective natural population. The effective population size is usually smaller than 

the census size of a population (42, 62-64). Ne is most commonly measured with 

respect to coalescence time. In an idealised diploid population with no selection, the 

pairwise nucleotide diversity is equal to 4µNe, where µ is the mutation rate. Hence, 

the effective population size can be calculated by dividing the nucleotide diversity by 

the mutation rate (65).  Similarly, gene flow is another cause of departure from Hardy-

Weinberg equilibrium. It consists of the movement of alleles from one population to 

another through interbreeding. This may be coupled with physical migration of 

individuals from one population to the other. The higher the gene flow, the lower the 

genetic difference between two populations. Inversely, isolation can increase the 

genetic differentiation between two populations (42). Lastly, natural selection is 

another mechanism leading to changes in allele frequencies over time. Natural 

selection occurs when individuals with a certain genotype have an advantage over 

other individuals with a different genotype in their ability to pass their alleles to their 

offspring. Positive selection increases the frequency of beneficial alleles in a 

population and the probability that these variants get fixed within the population, 

while negative selection decreases the frequency of deleterious alleles (42). However, 

both will skew local variation spectrum towards an excess of rare alleles. 

Advances in SNP genotyping and high throughput sequencing technologies 

over the last ten years have allowed the genotyping and sequencing of large numbers 

of samples in a cost-effective way, leading to the availability of large modern human 

population datasets. Datasets such as the 1000 Genomes Project (66), the Human 

Genome Diversity Project (HGDP) (67), the Simons Diversity Project (SGDP) (23) and 

the Estonian Biocentre Human Genome Diversity Panel (EGDP) (29) contain 

individuals from worldwide populations. They have allowed the description of 

worldwide patterns of human genetic variation and are a valuable resource for 

comparison when new populations are sequenced. In the last decade, the advent of 

new protocols for the extraction of ancient DNA (42, 68, 69) have resulted in an 

increasing number of ancient human DNA sequences and a better understanding of 

worldwide prehistorical and historical migrations, and how they have influenced the 

genetic variation we see today (70-72). Different approaches have been developed to 
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summarise genetic variation, in particular to measure genetic distances and genetic 

relationships between individuals. Widely used methods to estimate and display 

genetic distances are principal component analysis (PCA), STRUCTURE-like plots 

(particularly ADMIXTURE) (73, 74) and the Fixation index (FST). PCA is an 

unsupervised statistical approach used to reduce dimensionality in large datasets 

while minimising the information loss. In genetics, it clusters individuals based on 

their ancestry creating new uncorrelated variables that sequentially maximize 

variance. It is widely used in population genetics to identify population structure, 

individual outliers and potential genotyping errors (75, 76). STRUCTURE and 

ADMIXTURE are model-based clustering approaches also used to summarise 

population structure. However, in contrast to PCA, they require the specification of 

the number of ancestral components to use for assigning the ancestry of the 

individuals in the dataset.  FST is an allele frequency based measure of genetic 

differentiation between populations and, thus, informative about genetic distance 

between them. Phylogenetic tree and network methods are used to compare genetic 

relationships between individuals and populations. They can be based on allele 

frequency differences such as TreeMix (77) or genetic linkage information 

(haplotypes) such as ChromoPainter and fineSTRUCTURE (78). The latter methods 

use phased haplotypes to assess genetic similarity between individuals. Moreover, 

methods such as PCAdmix (79), RFmix (80) and HAPMIX (81) use haplotype 

information to infer local ancestry in admixed populations using reference panels 

related to the admixture sources. More recently, new approaches to study genetic 

affinity within modern human populations, and between them and ancient 

individuals, such as f3 and f4 statistics and D statistics, have been commonly used 

(82). These methods assay genetic affinity by computing tests of allele frequency 

correlations within individuals. They normally test if the allele frequencies in the 

populations analysed are consistent with a simple tree topology or if admixture 

events happened between them. Finally, coalescent methods such as PSMC or MSMC 

are used to reconstruct population demographic histories (42, 83, 84) and, because 

they require information from both variant and non-variant sites, can be only 

performed on whole-genome sequencing data. These methods infer the history of 

effective population size over time using the distribution of coalescence times within 

a genome.  When multiple genomes from different populations are used, it is possible 
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to infer the divergence time between two populations comparing the relative rates of 

within and between-population coalescences.  
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1.2.2 Natural selection 
 

Positive selection, as described in the previous section, is the mechanism 

through which beneficial alleles rise in frequency in populations over time. A trait 

undergoes positive selection if it is advantageous for the individual to survive and 

reproduce, and if it is heritable so that it can pass on to the next generation. The 

availability of whole-genome data for many different modern human populations has 

allowed the study of genome-wide patterns of positive selection in humans adapted 

to live in different environments around the world (42, 85). More recently, the 

increased number of genome sequences from archaic and ancient humans and other 

species has permitted a better understanding of the time depth of many adaptive 

signals in modern populations. At the molecular level, when alleles under positive 

selection become more frequent in a population, they leave specific signatures of 

genetic variation in the DNA sequences of the population. These patterns can be 

identified by comparison with the overall background distribution of human genetic 

variation that, according to the neutral theory, has evolved mainly under neutrality. 

Under this assumption, most of the population changes in genetic variation over time 

are due to genetic drift (86, 87). One of the biggest challenges is being able to tell if a 

change in genetic variation is due to selection or to demographic history confounder 

effects, such as substructure, bottlenecks (period of reduced sample size) or 

expansion.   

The most studied selective sweeps, hard or classic sweeps, happen when a new 

advantageous allele rapidly increases in frequency and carries with it the haplotype 

on which it occurred, reducing levels of variation in the neighbouring area (88). This 

effect is reduced with the increase of genetic distance from the allele under selection 

due to recombination. A soft sweep occurs when a neutral variant segregating in the 

population becomes beneficial, due to an environmental change for example. This is 

also called a sweep from standing variation (variants that are polymorphic in a 

population), and the advantageous allele already present in the population rises in 

frequency. A second case is a soft sweep from recurrent mutation that occurs when 

the sweep includes multiple distinct beneficial alleles appearing at the same locus 

increasing their frequencies. A partial sweep arises when a beneficial allele raises 

from low frequency to intermediate, but is still polymorphic (89-91). Hard sweeps are 
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relatively straightforward to detect and have been extensively studied. On the other 

hand, soft sweeps are more complicated to detect and distinguish from neutrality 

(42). Polygenic adaptation represents an alternative mode where the adaptive change 

involves small frequency changes in possibly hundreds or thousands of alleles in 

different genes (91, 92). Many human traits and diseases are highly polygenic, such 

as height, skin pigmentation, body mass index and  type 2 diabetes (93). Balancing 

selection is another kind of selective process where multiple alleles are actively 

maintained in the gene pool of a population by selection favouring heterozygotes or 

the rare allele (whichever it is). The most famous example of heterozygote advantage 

is the sickle-cell anaemia phenotype at the β-haemoglobin locus. Individuals 

heterozygous for the sickle-cell (S) allele show resistance to malaria (94). Finally, 

background selection is a process by which weakly deleterious mutations are purged 

from the population. This can cause reduction in genetic diversity, particularly around 

functionally-important regions (91).  

Over the decades, many methods for detecting positive selection and selective 

sweeps have been proposed. Most of them use information about ancestral and 

derived alleles, instead of reference and alternative. These methods can be classified 

into three main categories 1) SFS-based; 2) LD-based and 3) Population allele 

frequency based. The site frequency spectrum (SFS) is the distribution of the allele 

frequencies at many loci, such as SNPs or INDELs, in a sample or population (95, 96). 

SFS-based methods rely on the departure of the allele frequency spectrum in the 

region of a selective sweep from the neutral expectation.  In particular, an increase of 

high- and low-frequency derived variants is expected in the vicinity of the beneficial 

allele under a classic sweep model. Examples of these methods are Tajima’s D and Fay 

and Wu’s H (42, 97). LD-based approaches rely on the extent of linkage disequilibrium 

in the selected region. Selection on one allele can rapidly increase the frequency of the 

surrounding haplotype and, thus, LD can remain high at each side of the advantageous 

allele (42, 97). These methods are generally called extended haplotype tests, and 

examples are the extended haplotype homozygosity (EHH) test, the cross-population 

extended haplotype homozygosity (XP-EHH) test and the integrated haplotype score 

(iHS) (42). The last category of methods relies on measures of inter-population 

differentiation. They assume that selection has acted on one population, but not on 

the other. If two populations have an extreme difference in the allele frequency of a 
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variant compared with the allele frequencies of other variants, it is possible that 

selection is the cause of such a difference. Methods that measure differences in 

derived allele frequencies between populations, such as ΔDAF, single locus fixation 

index (FST) and population branch statistics (PBS), are widely used to detect signals 

of positive selection in human populations (42, 98, 99), and are applicable to both 

classic and soft sweeps. DeltaDAF (ΔDAF) is the measure of the allele frequency 

differences between a pair of populations (42). PBS is the measure of distance 

between three populations using FST and it estimates if there is an allele with extreme 

frequency difference compared to two other populations (99).  Exploiting all these 

approaches, strong candidates of positive selection have been found in modern 

humans including SNPs in the Ectodysplasin A receptor (EDAR) gene, associated with 

hair, tooth and skin development in Asians, the solute carrier family 24 member 5 

(SLC24A5) and the solute carrier family 45 member 2 (SLC45A2), both involved in 

light skin pigmentation in Europeans (100). Variants in proximity to the lactase gene 

(LCT) have been linked to the ability to digest lactose as an adult in Europe and 

Western Asia. Moreover, several candidates for selection seem to be involved in 

malaria resistance, including the Duffy antigen protein (DARC) and Glucose-6-

phosphate dehydrogenase (G6PD), and mutations in the α- and β-globin genes that 

can lead to thalassemias or sickle cell anemia (42, 46, 101, 102). Finally, another signal 

of adaptation to extreme environments is the high altitude adaptation in Ethiopians, 

Andeans and Himalayans (103). In particular, Himalayans show permanent 

adaptation to high altitude, and variants lying in the Endothelial PAS Domain Protein 

1 (EPAS1) gene show the strongest signature of selection (99). Interestingly, it has 

been discovered that this gene has a highly unusual haplotype structure in Tibetans 

compared to other modern human populations, probably due to introgression of DNA 

from Denisovans into the ancestors of Tibetans (104). 
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1.3 The Himalayan region: an overview 
 

The Greater Himalayan Region is a geographical area containing the world’s 

highest mountain peaks and a diversity of environments that have required 

substantial genetic adaptations by the humans who live there. This mountain barrier 

has also shaped the genetic, cultural and ethnolinguistic mosaic of South and East 

Asia. At present, the area falls into the countries of Nepal, Bhutan, India, Pakistan and 

the Tibetan Plateau in China. Opinions are divided about whether the Himalayas were 

used as a corridor that facilitated human migrations from the Tibetan plateau to South 

Asia in ancient times, or alternatively remained uninhabited due to their inhospitality 

until more recent times (105-108). Archaeological data suggest that the central 

Tibetan Plateau was populated during the Neolithic period (109), and there is 

evidence of earlier human occupation in the north-eastern Qinghai region (110). 

 

The Himalayan region is also one of the most complex linguistic areas in the 

world, containing two main language families, Indo-European and Sino-Tibetan, with 

Sino-Tibetan divided into the Tibeto-Burman (TB) and Chinese subfamilies.  Tibeto-

Burman speakers represent the majority of the Himalayan populations whereas the 

Indo-European speakers are restricted to the south of the mountain range. In all, the 

region contains six linguistic phyla with multiple languages within each phylum, and 

at least two language isolates (Burushaski and Kusunda) (111, 112).   However, the 

region has not been fully represented in earlier genetic studies. Previous analyses 

have mainly focused on populations residing to the north or south of this area, or on 

small numbers of populations (105, 113-116). In fact, most of the studies have focused 

on high altitude Tibetans and Sherpa, and a few other Nepalese populations, leaving 

unpresented most the genetic variation in the region (50, 99, 116, 117). Key aims of 

these initial studies were to understand the population separation between Han 

Chinese and Tibetans, and to understand the genetic relationship between Tibetans 

and Sherpa. There is little agreement on the split time between Han Chinese and 

Tibetans, with estimates ranging from around 2,700 years ago, via an intermediate 

time around 7,000-9,000 years ago to a deep split time around 15,000-16,000 years 

ago (50, 118, 119). Another topic with little consensus is the divergence time between 
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Tibetans and the Nepalese Sherpa, and indeed whether or not they are genetically 

distinct groups.     

Some studies support the hypothesis of a very recent split (~ 1,500 years ago) 

and propose that Sherpa are a recently derived Tibetan sub-lineage. Other studies 

report a deeper split time between 3,200–11,300 years ago, and that Tibetans and 

Sherpa are genetically separate groups. Another open question is the origin of the 

different Himalayan populations and if they share a common genetic component. 

Studies on modern and, more recently, ancient individuals from the Himalayan region 

have shown that Himalayan populations have a possible East Asian origin with 

subsequent gene flow from South Asia (105, 120-122). However, the genetic 

relationships between highlanders and lowlanders in the Himalayan region, and the 

genetic background and the amount of gene flow in these populations, needs further 

investigation.  

 

The first systematic genetic survey of Himalayan populations, which used 

autosomal microsatellite markers (STRs) (111), showed that there is higher genetic 

diversification among the Himalayans compared with the populations from the 

surrounding regions, and observed genetic differentiation between Indo-European 

and Tibeto-Burman speakers, suggesting that both language and geography have 

influenced the genetic structure of these populations. 

 

Himalayan populations reside in a broad range of altitudes and environments. 

At one extreme, the Terai region at the foothills of Himalayas is a tropical forest with 

endemic mosquito-borne diseases, in particular malaria (123), dengue fever (124) 

and parasitic infections (125). In the early 1990s it was reported that a population of 

this region, the Tharu, carried an alpha-thalassaemia deletion that was almost fixed 

and probably adaptive against malaria, but this possibility has not been extensively 

explored from the genetic point of view (46). In contrast, other Himalayan 

populations reside at high altitudes, and have developed extraordinary adaptations 

to this environment. Genomic scans in the Himalayas have previously identified 

genomic regions associated with high altitude adaptation. In particular, a Denisovan-

derived EPAS1 haplotype, whose frequency is strongly correlated with altitude in the 

Himalayan populations (99, 104, 126, 127) has been identified, but the functional 
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variants within the locus and the molecular mechanisms of high altitude adaptation 

in Himalayans remain largely unknown.  
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1.4 High altitude adaptation and the hypoxia 
molecular pathway 
 

1.4.1 Adaptation at high altitude 
  

High altitude adaptation is an evolutionary mechanism that allows a species to 

survive permanently at high altitudes (>2500 meters above sea level). This adaptation 

involves long-term physiological responses to hypoxia that are often associated with 

heritable genetic modifications. Hypobaric hypoxia is caused by the decrease of 

barometric pressure with progressively increasing altitude, and therefore with fewer 

oxygen molecules in the air compared to sea level. This means that each human breath 

contains less oxygen than at low altitude. Hypobaric hypoxia is a source of severe 

stress as a constant supply of oxygen is required for mitochondrial metabolism (the 

mitochondrial respiratory chain). The oxygen transport system in the mitochondria 

probably evolved under normoxic conditions at sea level (103).  

Modern human populations residing in the Himalayas in Asia, in the Andes in South 

America, and in Ethiopia in Africa, have all evolved an ability to live in hypoxic 

environments. These populations have adapted so that they maintain appropriate 

oxygen levels in the tissues that permit survival, growth, reproduction and 

development. Individuals living at low altitudes can suffer from acute mountain 

sickness (AMS), a serious condition arising from exposure to extreme hypoxia, that 

can progress to high altitude pulmonary edema (HAPE) or high altitude cerebral 

edema (HACE) (128, 129). Indigenous high altitude populations do not suffer from 

AMS because they have undergone drastic physiological and genetic changes. From 

the physiological point of view, the main changes are at the levels of haemoglobin 

concentration and oxygen saturation (the percentage of haemoglobin binding sites 

occupied by oxygen) in the bloodstream that together control the arterial oxygen 

content. Andean dwellers show a higher haemoglobin concentration compared to 

lowlanders, mirroring in some ways the response of lowland individuals moving to 

high altitudes (acclimatisation). When Andeans move to low altitudes, their 

haemoglobin concentration decreases to normal levels. Nevertheless, Andeans have 

an increased arterial oxygen content compared to lowlanders that provides more 

efficient transportation of oxygen throughout the body and lower oxygen saturation 
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(103, 130). Similarly to Andeans, the Ethiopian highlanders have elevated 

haemoglobin levels and increased arterial oxygen. Although few studies have been 

conducted on Ethiopian highlanders, these individuals are adapted to live at high 

altitude and do not show any signs of illness (131-133).  Finally, Tibetans do not show 

increased haemoglobin concentration. Instead, they show lowered oxygen saturation 

and arterial oxygen content. They also exhibit enlarged lung volumes, higher training 

capacity and better oxygenation at birth (134, 135).  

Together with these physiological adjustments, high altitude populations also 

show genetic signatures of convergent evolution to living at high altitudes (Figure 

1.1). Numerous genome-wide scans for positive selection have been performed in 

these populations and several genes highlighted. In Andeans, the hypoxic inducible 

factor (HIF) genes EGLN1, PRKAA1, NOS2, TGFA, CXCR4 and VEGFB, as well as the non-

HIF genes ELTD1 and PRKG1 have implicated the nitric oxide pathway as a target of 

positive selection (133, 136).  Genomic scans of Ethiopian highlanders have reported 

genes shared with Andeans and Himalayans, plus novel candidates.  Examples of these 

are BHLHE41, ARNT2, THRB, CXCL17, PAFAH1B3 and a gene-rich region on 

chromosome 19 containing genes implicated in vascular physiology (137). Additional 

genes have been associated with angiogenesis (VAV3), and calcium uptake (CBARA1) 

(137). Himalayans are the most studied populations for high altitude adaptation.  The 

first genome-wide positive selection scans identified several genes in the HIF 

pathway, including EGLN1 and EPAS1. In particular, their EPAS1 haplotype has been 

suggested to be the result of introgression of DNA from an extinct hominin species 

(Denisovans), as mentioned in the previous section (104). The widespread 

distribution of this haplotype was confirmed by genotyping the EPAS1 locus in the 

large dataset of Himalayan populations used in this thesis. High altitude populations 

show the highest proportion of these variants and they may have spread through the 

region by gene flow (127). More recently, additional candidates of selection have been 

proposed in the Himalayans including HMOX2 (a modifier of haemoglobin 

metabolism), PTGIS, VDR and KCTD12 (50, 138). 

 

 

 



37 

 

 

 

 
 

Figure 1. 1 Candidate genes for high altitude adaptation in Andeans, Ethiopians and Tibetans.  The three 

geographic regions where these populations reside are highlighted in red.  A list of selection candidates 

for each population is contained in the boxes (50, 133, 136, 137). The shared candidates are shown in 

bold.  
 

Many candidate genes have thus been proposed and doubtless many more will 

be found associated with high altitude adaptation. From previous studies and the new 

results presented in this thesis, it seems that no single variant or gene is responsible 

for high altitude adaptation. To understand the roles of these genes, it is now 

important to move in the direction of linking genotype to phenotype by identifying 

the causal variants responsible for high altitude adaptation, as has been done for the 

functional validation of EGLN1 variants in Tibetans (126). 
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1.4.2 Hypoxia molecular pathway 
 

Hypoxia inducible factor (HIF) is the master transcriptional regulator that 

detects and coordinates cellular responses to hypoxia in most mammalian cells. It is 

a heterodimer that consists of one of three α subunits (HIF-1α, HIF-2α (EPAS1), or 

HIF-3α) and a common β subunit (HIF-β, also known as ARNT). The HIF family belong 

to the basic–helix–loop–helix-PAS (bHLH-PAS) superfamily and both α and β subunits 

contain a Per Arnt Sim (PAS) and N-terminal helix–loop–helix (HLH) domain. 

Furthermore, the α subunits contain a transcriptional activation and a C-terminal 

oxygen-dependent degradation domain. The HIF-𝛼 subunits are specifically induced 

by hypoxia whereas the HIF-𝛽 subunit is constitutively expressed. HIF activity is 

tightly regulated by oxygen concentration through site-specific prolyl hydroxylation 

of the different α subunits. Under normoxia, one of the members of the prolyl 

hydroxylase protein family, PHD1 (EGLN2), PHD2 (EGLN1), or PHD3 (EGLN3) 

hydroxylates the HIF-α subunit in its oxygen-dependent degradation domain. The 

PHDs are members of the 2-oxoglutarate-dependent dioxygenase family. The primary 

site of hydroxylation in HIF-1α is on Pro564, Pro531 in HIF-2α and Pro490 in HIF-3α. 

The hydroxylated α subunit  then becomes a  target for the von Hippel-Lindau (VHL) 

protein, a component of an E3 ubiquitin ligase complex that triggers the degradation 

of HIF-α by the ubiquitin–proteasome pathway (Figure 1.2). During hypoxia, the 

oxygen-dependent hydroxylation of HIF-α is prevented, leading to the stabilization of 

HIF-α and its dimerization with HIF-β (132, 139). It is important to note that the 

activity of PDH enzymes is also regulated by the concentration of reactive oxygen 

species (ROS), Krebs cycle intermediates, and ascorbate and iron concentrations 

(140). Moreover, HIF activity is mostly modulated by hydroxylation, but other post-

translational modifications, such as phosphorylation and acetylation, can also 

regulate its activity.  An additional regulation level of HIF-α is provided by the factor 

inhibitor HIF (FIH), another member of the 2-oxoglutarate-dependent dioxygenases 

family. FIH targets an asparagine residue in the HIF activation domain and 

hydroxylates it, specifically Asn803 in HIF-1α, and Asn851 in HIF-2α. In normoxic 

conditions, this hydroxylation blocks the interaction with the transcriptional 

coactivator CBP/p300. In contrast, under hypoxic condition, the reduction of this 

modification allows the functional interaction of HIF-α with CBP/p300 and thus 
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activates a transcriptional cascade. Therefore, hydroxylation plays a key role in 

regulating HIF activity by both conferring protein stability and transcriptional 

activation. Once HIF-α is stabilized, it forms a heterodimer with HIF-β via their HLH 

and PAS domains and then regulates the expression of hundreds of genes involved in 

cellular and systemic responses to hypoxia, by binding to specific sequence motifs on 

the target genes termed the hypoxia responsive elements (HRE) (132, 139, 141).  

 

Figure 1. 2 The molecular hypoxic pathway. In normoxia, PHD2 prolyl hydroxylates HIF-α subunits, 

targeting them for degradation via VHL-dependent ubiquitination. In hypoxia, the hydroxylation is 

blocked, allowing HIF-α stabilization, dimerization with HIF-β, and binding to target genes through the 

hypoxia response element (HRE). 

 

HIF-1α and HIF-2α can regulate both common and distinct genes and cellular 

responses. Both can regulate the activity of the Vascular Endothelial Growth Factor A 

(VEGFA) that codes for a protein essential for angiogenesis. In genetically engineered 

mice with deletion of one or two copies of the gene, it has also been shown that 

haploinsufficiency of either HIF-1α or HIF-2α can prevent or delay hypoxia-induced 

pulmonary hypertension (132, 142). HIF-1α is the key regulator of glycolytic enzyme 

genes, mitochondrial biogenesis and oxidative phosphorylation. It is also important 

in the regulation of hematopoietic stem cell activity. In contrast, HIF-2α tightly 

regulates the erythropoietin (EPO) gene in kidney cells. EPO is responsible for 

erythropoiesis (red blood cell production). Evidence in both mice and humans 
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showed that HIF-2α LoF leads to anaemia, whereas GoF leads to erythrocytosis 

(increased number of circulating red blood cells). Furthermore, it has been shown 

that HIF-1α and HIF-2α can also display antagonistic effects: the former triggers cell 

cycle arrest whereas the latter stimulates its progression. In murine endothelial cells, 

HIF-1α induces nitric oxide (NO) production through the activation of the NO 

synthase gene (NOS2), whereas HIF-2α inhibits NO production, inducing the activity 

of the arginase gene (ARG) (132). Little is known about HIF3-α, but it seems to act 

both as an activator and repressor of transcription (132).  

Like the HIF factors, the PHDs can have common and individual functions. PHD2 is the 

most studied and, possibly, the most important. Mouse knockout of PHD2 leads to 

embryonic lethality, whereas PHD1 and PHD3 knockouts are viable and fertile (143). 

Moreover, PHD2 plays an important role in the regulation of erythropoiesis through 

the regulation of HIF-2α and the transcription of EPO (126, 132). Studies of PHD1 and 

PHD3 have been limited compared to PHD2, but it seems that PHD3 is a HIF target and 

down-regulates HIF activity through a negative feedback loop (144).  

Himalayan populations consistently show strong signals of positive selection at the 

EGLN1 (PHD2) and EPAS1 (HIF-2α) genes. A key question is how the genetic changes 

in the two antagonists lead to the final phenotype of adaptation. Many different 

scenarios can be proposed from the different regulation of these two factors in 

highlanders versus lowlanders. In lowlanders, levels of HIF-1α and HIF-2α are kept 

low through hydroxylation and degradation. At high altitude, PHD2 activity is reduced 

and the activity of HIF-1α and HIF-2α triggered. In highlanders, it is possible that the 

PHD2 allele is either a LoF with attenuated hydroxylase activity, or a GoF with 

enhanced activity. Likewise, HIF-2α can show increased activity (GoF) or reduced 

activity (LoF). This indicate the possibility of four different models of adaptation in 

Himalayans (132): 

1. PHD2 activity is reduced (LoF) and, thus, HIF-2α activity in enhanced (GoF). 

However, this model seems unlikely as it would predict high haemoglobin 

levels, which are not observed in Tibetans and Sherpa (145). 

2. GoF for both PHD2 and HIF-2α: This combination would be possible if the 

PHD2 allele was stronger than the HIF-2α one. 
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3.  GoF for PHD2 and LoF for HIF-2α: This would lead to reduced activity of HIF-

α factors. In particular, it would reduce EPO with a consequently diminished 

response to hypoxia. 

4. LoF for both PHD2 and HIF-2α: The LoF of PHD2 would imply that the HIF-2α 

allele is a very strong LoF allele that could lead to the inhibition of HIF-2α and 

simultaneous activation of HIF-1α. 

 

Finally, oxygen deprivation leads to the production of reactive oxygen species 

(ROS) in the mitochondria. ROS are a variety of free radicals, chemical species with 

one unpaired electron, and molecules derived from molecular oxygen. Most of them 

derive from their precursor, the superoxide. The latter are formed when the redox 

centres in the mitochondrial electron transport chain leak electrons to oxygen (139).  

ROS lead to the stabilisation of HIF-α isoforms during hypoxia, and activation of the 

downstream pathway.  There is increasing evidence that mitochondria are one of the 

most important oxygen sensors, and hence they have a central role in the hypoxic 

response. Under hypoxic conditions, mutations in the mitochondrial respiratory chain 

or complex 1 inhibitors block the stabilisation of HIF-α (139). Hence, the hypoxic 

response involves tight regulation steps both at the cytoplasmic and nuclear levels of 

the cell. Functional studies in Himalayan individuals are necessary to understand 

which putative model of adaptation they went through and which genes are involved 

in this mechanism.  
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1.5 Aims and objectives 
 

The aim of this thesis was to provide a fine-scale description of the human 

genetic variation in the Himalayas. In particular, my goal was to describe populations 

that had not previously been genetically characterised, exploring their population 

structure and demographic history. My intent was to understand when Himalayans 

communities separated from each other, and from the neighbouring populations in 

South and East Asia, and the genetic relationships between them. Furthermore, my 

objective was to understand how geographical isolation, genetic drift and selection 

have affected the genetic landscape of Himalayan populations. Similarly, I wanted to 

explore if there was correlation between genes and languages in this region, and if 

both of them participated in shaping the variability we see today in the Himalayas.  

Finally, because Himalayan populations live in a broad range of environments and 

altitudes, my intention was to look for signals of positive selection at both low and 

high altitudes. Moreover, due to the great number of high altitude populations in the 

dataset, I wanted to explore the genetic relationships between them and look for 

known and possibly new candidates of high altitude adaptation. Finally, because of 

the unknown molecular mechanism of action, I wished to explore candidate 

functional variants in EPAS1 both in silico and in vitro. Using cell lines heterozygous 

for the Denisovan introgressed and non-introgressed haplotypes from the same 

genetic background, I wanted to understand if differential expression in EPAS1 was 

detectable between them. My hypothesis was a scenario in which there was LoF for 

HIF-2α leading to reduced activity of the HIF-α factor, and subsequent suppression of 

EPO expression in introgressed cell lines. Hence, to address these scientific questions, 

I used a combination of SNP-genotype data, whole-genome sequences, functional 

work and expression data. 
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1.6 Outline of the thesis 
 

This thesis presents the results of the largest genome-wide population-genetic 

analysis of humans residing in the Himalayan region thus far reported, and a 

preliminary biological and functional analysis of positive selection of the EPAS1 gene 

in high altitude Himalayan populations. The first results chapter (Chapter 2) describes 

the characterisation of the populations, their structure, and genome-wide signatures 

of high altitude adaptation using SNP-chip genotype data. The second results chapter 

(Chapter 3) uses a subset of samples with high coverage whole-genome sequencing 

data to refine demographic history using autosomal and uniparentally inherited 

sequences (mtDNA and Y chromosomes) with both common and rare variants. The 

third results chapter (Chapter 4) describes the experimental exploration of EPAS1 

molecular function under laboratory-induced hypoxia, simulating high altitude, and 

the analyses of its expression profile using quantitative PCR and RNA-sequencing. The 

general introduction at the beginning is expanded in the individual chapters, giving 

more detailed information about chapter-specific topics, and general discussion 

points are covered in the final chapter (Chapter 5). 
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2. Population genetic analyses of 
Himalayan samples using SNP-genotype 
data 

2.1 Introduction 
 

The genetic characterisation of human populations requires a large number of 

samples and genetic markers. In the past, analyses of population history and the 

genetic relationships between populations were mostly performed using the 

uniparentally inherited mtDNA and Y chromosome and single autosomal locus 

markers, such as the human leukocyte antigen (HLA) (146). More recently, 

technological advances such as next-generation sequencing methods have allowed us 

to perform genome-wide analyses in a reasonably short time period and in a cost-

effective way, improving drastically researchers’ possibility to describe human 

populations and detect alleles associated with a specific disease. In particular, single 

nucleotide polymorphisms (SNP) genotyping arrays have become one of the most 

used methods for assessing human genetic variation. High-throughput SNP-

genotyping is a technique that allows us to assay SNPs across the genome of an 

individual on a large scale. There is a plethora of commercially available SNP-chips 

designed for different purposes and for diverse species with the aim of testing 

hundreds of thousands of SNPs on a single chip. Human SNP-chips from Illumina and 

Affimetrix are used most frequently and, even though there are differences between 

the two platforms, they both can assess hundreds of thousands to millions of markers. 

Both rely on DNA base pair complementarity where A binds to T and C binds to G 

(147). Short nucleotide probes are designed to bind specific DNA target sequences 

and directly tag SNPs. Genomic DNA is amplified by PCR, fragmented, labelled with a 

fluorescent marker and bound to the chip. After the hybridisation of the DNA to the 

probes, all the non-specific and unbound DNA is washed away. The occurrence of the 

target allele in the DNA sample is assessed by evaluating the fluorescent signal at each 

probe. Genome-wide genotyping has the advantage of being an affordable and reliable 

platform for describing genetic variation across the entire genome of many 

individuals and for identifying genomic regions linked to a specific phenotype or 
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disease susceptibility. Although whole-genome sequencing provides a finer base-by-

base resolution of the genome, it is still too expensive to perform for the big cohorts 

commonly used in genome-wide association studies (GWAS).   

SNP-chips have been widely used in population genetics to characterise 

human populations, describing their genetic structure, and to identify loci undergoing 

positive selection (148). SNP-chip data produced by different studies are easy to 

combine together and many bioinformatic tools have been developed to handle such 

data. Nevertheless, genome-wide genotyping has some drawbacks. One of them is the 

ascertainment bias. This is the systematic bias of statistical results as a result of the 

choice of SNPs included in the chip. These have to be polymorphic in at least one 

population and, since European populations are the most studied, many of the 

commercially available SNP-chips are constructed using markers known to be 

polymorphic in Europeans. This bias can have important effects on the analysis 

results. Firstly, the allele frequency distribution can be skewed towards intermediate 

frequency alleles and the heterozygosity in Europeans can be over-estimated 

compared with non-Europeans individuals. In addition, the SNP distribution across 

the genome is not uniform with certain regions of the genome being enriched for SNPs 

whereas others are depleted. SNP ascertainment bias can affect linkage 

disequilibrium (LD) inferences such as the ability to tag specific genomic regions by 

SNPs, which relies on the strength of LD. Therefore, it is important to take into account 

the ascertainment bias when performing population genetics analyses and 

demographic inferences. In particular, it is critical to acknowledge this bias when 

performing demographic history analyses or positive selection scans that use allele 

frequency distributions and heterozygosity estimates (148-150). Nevertheless, 

despite these caveats, many of the computational methods developed to analyse 

genome-wide genotype data are relatively robust to ascertainment bias and the 

design of some of the SNP-chips captures variation across multiple worldwide 

populations. For example, the Affymetrix Human Origins array has been developed 

specifically for investigating human migrations, history and natural selection (82). It 

contains SNPs from eleven modern human populations from the Human Genome 

Diversity Cell Line Panel (HGDP-CEPH), Neanderthals, Denisovans and chimpanzees 

(82, 151). Markers were chosen to avoid confounding biases and to allow robust 

statistical analyses in population genetics. Similarly, the Illumina 
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HumanOmniExpress arrays have been designed selecting genomic variants from the 

HapMap project to represent the best amount of common SNP variation (MAF > 5%) 

in individuals with European, Asian and African ancestry (152). Overall, SNP 

ascertainment bias is an important concern when performing analyses, but it should 

not only be interpreted as problematic and SNP-chips are an invaluable and 

inexpensive platform for population genetics and GWAS. 

Finally, genome–wide SNP genotyping has also been chosen as one of the 

approaches for capturing genetic variability from human ancient genomes. To enrich 

for the small amount of human DNA versus the abundant microbial sequences in most 

post-mortem human bone remains, researchers at the Max Plank Institute in Leipzig 

designed a method to fish human DNA out of ancient samples. This targeted 

sequencing approach involved the use of fifty-two-bases long DNA sequences 

designed to capture over a million variable positions across the human genome (153). 

This approach proved to be very cost-effective and sensitive for capturing genetic 

variation, although for a limited number of genomic positions. To have a complete 

overview of genetic variability a better approach is to perform whole-genome 

sequencing of the ancient remains, but this is expensive and time-consuming and 

usually results in very low coverage of the sample, due to the low endogenous ancient 

DNA content. 

In this chapter, I will describe the analyses performed using genome-wide 

SNP-genotype data from the biggest modern Himalayan population dataset analysed 

thus far. It comprises individuals from 49 diverse populations from Nepal, Bhutan, 

Tibet and North India, representing the two major language families, Tibeto-Burman 

and Indo-European. The main aim of this project was to genetically characterise 

human populations that had not been extensively studied before and give a better 

picture of the genetic variation in the Himalayan region. Another focus was on 

understanding the genetic relationships within the Himalayan populations and, due 

to the linguistic richness in the Himalayan region, to examine whether there was a 

correlation between genes and languages. I also explored the genetic relationship of 

the Himalayan individuals with other worldwide populations, in particular South and 

East Asians, and investigated possible admixture events with those populations. I also 

investigated the genetic affinity of modern Himalayans with ancient Eurasian 

individuals. Finally, due the harsh environment in which many Himalayan 
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populations live, I screened for variants underlying positive selection in association 

with high altitude adaptation. The text and figures of this chapter have been mostly 

taken from Arciero et al, 2018 (154). 
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2.2 Materials and Methods 
 

2.2.1 Samples and dataset 
 

Eight hundred and eighty-three individuals belonging to 49 Himalayan 

populations were genotyped and analysed after obtaining informed consent. The 

dataset included 26 populations from Nepal, 16 from Bhutan, two from North India 

sampled in Bhutan, and five from Tibet in China (Figure 2.1; Table 2.1). The samples 

represent the two major linguistic families in the area: Indo-European and Tibeto-

Burman (also known as Trans-Himalayan). Specifically, 44 populations comprise 

Tibeto-Burman speakers from Tibet, Bhutan, North India or Nepal, and five comprise 

Indo-European speakers from Nepal (Chetri, Damai, Majhi, Sarki and Sonar). The 

Bhutanese, North Indian and Nepalese samples were collected as part of the 

‘Language and Genes of the Greater Himalayan Region’ project, a genetic survey of 

Tibeto-Burman and Indo-European speakers from these Himalayan countries, and 

have been described previously (111). Tibetan samples were selected from 

participating members of an epidemiological study in the Tibet Autonomous Region, 

China, in 2007, that was approved by the institutional ethics review board of BGI-

Shenzhen. Samples were collected from healthy unrelated Tibetans from five villages 

based on their medical records and a comprehensive medical examination during 

sampling. Peripheral venous blood or saliva was collected for DNA extraction and 

genotyping. All participants had a self-reported family history of at least three 

generations living at the sampling site. The samples were genotyped using three 

Illumina SNP-chips: 1) HumanOmniExpress-12 v1.0 BeadChip (741k SNPs) at the 

Wellcome Sanger Institute; 2) HumanOmni1-Quad BeadChip (~1M SNPs) at the 

Leiden University Medical Center; and 3) HumanOmniExpress-24 BeadChip (~713k 

SNPs) at BGI-Shenzhen. Genotype calling and QC on all samples were performed using 

the Sanger Institute’s variant calling pipelines, and SNP positions were mapped to the 

human reference assembly GRCh37. Genotypes from the three arrays were merged 

using PLINK 1.92 (155), resulting in a dataset of  600,838 SNPs. 
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Code Population Sample size Language family Latitude (⁰) Longitude (⁰) Altitude (m) 

Bhutan             

KAT Brokkat 16 Tibeto-Burman 27.73 90.43 3750 

BRP Brokpa 14 Tibeto-Burman 27.40 91.72 1608 

BUM Bumthang 19 Tibeto-Burman 27.67 90.55 3250 

CHL Chali 19 Tibeto-Burman 27.38 91.02 3201 

DAK Dakpa 2 Tibeto-Burman 27.47 91.52 2169 

DZA Dzala 14 Tibeto-Burman 27.90 91.15 2705 

GNG Gongduk 17 Tibeto-Burman 27.08 90.93 1437 

KHG Khengpa 18 Tibeto-Burman 27.13 90.68 808 

KUR Kurtöp 19 Tibeto-Burman 27.82 90.82 3850 

LHK Lakha 18 Tibeto-Burman 27.68 90.15 2985 

LAY Layap 12 Tibeto-Burman 28.07 89.68 4115 

MNG Mangde 18 Tibeto-Burman 27.42 90.22 2980 

MON Black Mountain 
Mönpa 

20 Tibeto-Burman 27.22 90.22 2027 

NGA 'Ngalop 18 Tibeto-Burman 27.53 89.48 2880 

NUP Nup 18 Tibeto-Burman 27.58 90.33 2385 

TSH Tshangla 19 Tibeto-Burman 27.18 91.32 2240 

India             

BOD Bodo 18 Tibeto-Burman 26.67 90.33 99 

TOT Toto 46 Tibeto-Burman 26.67 89.00 86 

Nepal             

BHI Bahing 1 Tibeto-Burman 27.23 86.33 1561 

BTW Bantawa 2 Tibeto-Burman 26.53 87.06 1500 

BAR Barâm 20 Tibeto-Burman 28.07 84.67 1080 

CHM Chamling 7 Tibeto-Burman 28.24 83.22 1550 

CHN Chantyal 20 Tibeto-Burman 28.40 83.37 1932 

CHP Chepang 18 Tibeto-Burman 27.58 84.70 241 

CHE Chetri 19 Indo_european 29.17 81.20 987 
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DAM Damai 8 Indo_european 27.33 83.03 987 

DHI Dhimal 20 Tibeto-Burman 26.50 87.70 86 

DUM Dumi 2 Tibeto-Burman 27.19 86.51 1650 

GUR Gurung 17 Tibeto-Burman 28.30 84.12 2182 

KUL Kulung 2 Tibeto-Burman 27.35 86.56 1400 

LIM Limbu 19 Tibeto-Burman 27.19 87.83 1094 

MGR Magar 17 Tibeto-Burman 28.08 83.83 844 

MAJ Majhi 17 Indo_european 27.83 83.67 969 

NAC Nachiring 1 Tibeto-Burman 27.23 86.51 2350 

NWR Newar 17 Tibeto-Burman 27.62 85.40 1665 

PUM Puma 1 Tibeto-Burman 26.54 86.56 1400 

SAM Sampang 3 Tibeto-Burman 27.15 87.08 1300 

SAR Sarki 6 Indo_european 27.37 83.07 987 

SHE Sherpa 10 Tibeto-Burman 27.73 86.58 4550 

SON Sonar 2 Indo_european 27.39 83.09 987 

SUN Sunwar 4 Tibeto-Burman 27.34 86.16 1750 

TMG Tamang 19 Tibeto-Burman 27.88 85.42 1900 

THK Thakali 16 Tibeto-Burman 28.82 83.75 3035 

WAM Wambule 13 Tibeto-Burman 27.07 86.36 1350 

Tibet             

LHA Lhasa 36 Tibeto-Burman 29.65 91.23 3700 

NAG Nagqu 31 Tibeto-Burman 32.00 91.13 4500 

NYI Nyingchi 20 Tibeto-Burman 28.42 94.43 2900 

SHA Shannan 26 Tibeto-Burman 29.03 91.69 3600 

TIN Tingri 19 Tibeto-Burman 29.47 87.03 4500 

 

Table 2. 1 List of populations analysed in this study. The table is subset into regions and reports the three letter population codes, the full population name, the 

population sample sizes, language family, geographical coordinates (latitude, longitude) and altitude (m). 



52 

 

 

 

2.2.2 Methods used for the analyses 
 

2.2.2.1 Data quality control and datasets 
 

The assessment of SNP-chip data quality plays an essential role for the precision 

and accuracy of downstream analyses. I used tools implemented in PLINK 1.92 and 

EIGENSOFT 6.0 for performing quality control (QC) of my dataset (156, 157). Firstly, I set 

the genotyping success rate and sample missingness thresholds to 99% and 10%, 

respectively, to exclude variants and individuals with an excess of missing genotypes. 

Sex-linked and mitochondrial SNPs as well as autosomal ones with Hardy-Weinberg 

Equilibrium p-value <0.0000001 were removed. SNPs departing to this extent from 

Hardy-Weinberg equilibrium are likely to be genotype and variant call errors (158). 

Another important assumption for population genetic studies is that the samples be 

unrelated, as including duplicated samples or first-second degree relatives can skew the 

allele frequency distribution and not be a good representation of the entire population. I 

used estimates of identity by state (IBS) for identifying pairs of samples that looked 

genetically more similar than would be expected by chance in a random sample. IBS was 

calculated for each pair of individuals as the number of shared alleles at the autosomal 

genotyped SNPs. From the genome-wide IBS values it is possible to infer estimates of 

identity by descent (IBD), the degree of recent shared ancestry for each pair of samples.  

IBD values of 1 indicate duplicated or monozygotic twin individuals, IBD values of 0.5, 

0.25 and 0.125 are for first, second and third-degree relatives, respectively.  I filtered out 

individuals with an IBD score > 0.35 (PI_HAT > 0.35): I chose this cut-off as it was good 

for removing related individuals that could affect the analyses without removing a big 

proportion of the samples.  

 

I also removed outliers (individuals that show allele frequency that differ from the 

distributions of the remaining individuals of the same population) using EIGENSOFT 6.0 

(157, 159). These filters resulted in a final dataset of 738 individuals and 583,011 SNPs. 

For comparison with worldwide populations, the final Himalayan dataset was merged 

with published datasets (Table 2.2) (67, 160, 161) resulting in 1,962 individuals and 

268,861 SNPs. Two additionally pruned datasets were generated from these by filtering 

out SNPs in high LD (r2 > 0.5) to reduce the occurrence of highly correlated pairs of SNPs 
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that could skew allele frequency distributions. The pruned Himalayan dataset consisted 

of 256,506 SNPs, and the pruned worldwide dataset included 190,287 SNPs. For 

comparison with ancient samples, I generated two further datasets: 1) I  merged my 

dataset with the Human Origins data, a dataset comprising both modern and ancient 

individuals including archaic genomes from Denisovans and Neanderthals, and a 

chimpanzee (82), resulting in 82,647 SNPs in common; and 2) we merged our Himalayan 

and worldwide datasets with published ancient Himalayan genomes from the Annapurna 

Conservation Area in Nepal (121). From the published ancient BAMs a single sequence 

with a minimum quality of ≥20 to represent each SNP in our Himalayan dataset was 

randomly sampled (162), trimming 5 bp from both ends of reads to reduce the effect of 

ancient DNA deamination. The calling from the Himalayan ancient samples was 

performed by Dr Marc Haber. This resulted in 582,810 SNPs in the Himalayan dataset 

being covered by at least one of the ancient samples (Table 2.2). 

 

Dataset Number of individuals Number of SNPs 

Modern Himalaya 738 583,011 

Modern Himalaya LD pruned 738 256,506 

World (Himalaya + Li et al., 2008 + South 
Asians: Metspalu et al., 2011, Chaubey et al., 

2010) 

1,962 268,861 

World LD pruned (Himalaya + + Li et al., 2008  
+ South Asians: Metspalu et al., 2011, Chaubey 

et al., 2010) 

1,962 190,287 

Himalaya + The 1000 Genomes Project 
Consortium., 2015 

3,274 579,640 

Modern Himalaya + Ancient Himalaya (Jeong 
et al., 2016) 

743 582,810 

Himalaya + Human Origins (Patterson et al., 
2012) 

2,809 82,647 

 

Table 2. 2 Datasets used for the analyses. The table reports the number of individuals and number of 

genomic variants contained in each dataset. 
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2.2.2.2 Population characterization and demography 
 

The genetic structure of the Himalayan populations was examined using several 

statistical approaches. Firstly, I performed principal component analysis (PCA) using 

EIGENSOFT 6.0 (157, 159) on the LD-pruned datasets. For the worldwide dataset, the 

eigenvectors were calculated using the global diversity and the Himalayan individuals 

were projected onto the plot. I ran ADMIXTURE v1.2(74) on the pruned datasets for 

cluster analysis and the cross validation (CV) error for identifying the best K value, which 

represents the best number of ancestral populations to describe the dataset. ADMIXTURE 

is a programme designed to estimate individual ancestries from dense SNP genotype 

dataset using a maximum likelihood approach. Estimation of long-term effective 

population size (Ne) for each Himalayan population and population divergence time was 

performed by Dr Massimo Mezzavilla using the NeON R package (163), which calculates 

the harmonic mean of the population size at each generation and the time of divergence 

between populations in generations. More specifically, using LD information (r2) and 

recombination distance (c) the effective population size is estimated using the nonlinear 

regression model: yi =1/(α+βci)+ei, with yi = (r2 1/n) (r2 adjusted for chromosome sample 

size) for SNP pair i at recombination distance ci (in Morgans) .The change in population 

size over time is then estimated, as LD between loci with a recombination rate of c that 

reflects the ancestral effective population size 1/(2c) generations ago (164). The model 

is based on the assumption of linear growth or decline. However, some populations might 

depart from the assumed model characteristics and LD patterns in these will be affected, 

so the relationship t = 1/(2c) should be viewed only as an approximate, but useful 

indication of timeframes (165). Furthermore, the time of divergence estimates are based 

on the assumption of a ‘‘clean’’ population split, and migration will create a stronger 

correlation of LD (larger values of r2), thereby biasing the estimate of divergence time 

downwards. Nevertheless, this method is still useful to assess isolation and difference in 

Ne between populations (166, 167). Only populations with sample size ≥10 were used, as 

the harmonic mean is sensitive to sample size. For all analyses we assumed a generation 

time of 29 years (168).  

 

Runs of homozygosity (ROHs) are long stretches of the genome where identical 

haplotypes are inherited from each parent that in turn they inherited from a recent 
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common ancestor. This produces a region of homozygous variants and the length of the 

run is indicative of when the inbreeding event happened. I identified ROHs using PLINK 

1.92 (155) with specific thresholds to maximize the detection of autozygous segments in 

the Himalayan populations (169) and other worldwide populations: a pruned dataset 

(LD, r2 > 0.5) with only common variants (MAF >0.05) was used. The minimum number 

of SNPs to call an ROH was set to 100, the heterozygote allowance was set to zero, the 

missing SNP allowance was set to 5 (5% of the SNP threshold), and the window threshold 

to call an ROH was set to 0.05. I also calculated the coefficient of inbreeding (F) with 

PLINK 1.92 to test for positive correlation between the total length of ROHs and F in each 

individual (155).  

 

A worldwide dataset using a maximum of 10 individuals from every population 

was used in the ChromoPainter and fineSTRUCTURE-2.0.6 (78) analyses to study the 

genetic relationship between Himalayan populations. ChromoPainter is a tool for 

inferring the ancestry of each individual by reconstructing their haplotype segments from 

other individuals in the dataset. FineSTRUCTURE uses the co-ancestry matrix inferred 

from ChromoPainter to construct a model-based Bayesian population-relationship tree 

and was run with 10,000,000 burn-in steps and 10,000,000 iterations. The software 

requires phased data as input. The haplotypes were phased with SHAPEIT (66) using the 

1000 Genomes Project Phase 3 dataset (66) as a reference panel. I also performed a PCA 

using the co-ancestry matrix generated by fineSTRUCTURE. To assess the robustness of 

the results from the above dataset, I additionally ran fineSTRUCTURE on a dataset with 

fewer samples (the Himalayans and 1000 Genomes Project Phase 3 populations), but 

more markers (579,640 SNPs) using the same parameters. 

 

The Himalaya dataset comprises sixteen extreme high altitude populations 

(altitude of 2500 meters or more above sea level) (135), residing at different 

geographical locations across the Himalayas. To understand whether there is a 

correlation between genetic similarity among high altitude populations and their 

geographical location, I used D-statistics, a tool for detecting genetic similarity and 

mixture events within individuals of pairs of populations. I used YRI (Yoruba in Ibadan, 

Nigeria) as an outgroup and calculated D-statistics (qpDstat function in ADMIXTOOLS v3 

package (82)) using the following phylogeny: D(Yoruba, Han; high altitude Himalayan 1, 
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high altitude Himalayan 2) where high altitude Himalayan 1 and high altitude Himalayan 

2 are pairs of Sherpa, Tibetan or Bhutanese populations (82) (120). I computed D-

statistics with the above phylogeny using the worldwide dataset for comparison 

(supplementary tables S1 and S3). Then, I tested the correlation between values of D-

statistics with pairwise differences in longitude and latitude for each pair of populations 

using the Mantel test implemented in the “Ade4” R package (mantel.rtest function) (170). 

Population admixture was studied using ALDER v1.03 (171), three-population 

statistics (f3) (82, 172) and TreeMix 1.12 (77). The ALDER software computes a LD-based 

test for admixture that can estimate the time of the admixture event, whereas three-

population f3 statistics and TreeMix are allele frequency based methods. Only 

populations with at least six individuals were included in these tests. ALDER was used 

with the default parameters and the threshold of LD in the reference groups was inferred 

by the program. A test was considered positive when both the 2-ref weighted LD curve 

was significant and the decay rates between the 2-ref and 1-ref curves were consistent. 

For f3-statistics analyses I considered a jack-knife block of 500 SNPs. I also estimated the 

shared genetic drift between modern populations and ancient samples using outgroup 

f3-statistics (ancient genome, X, Yoruba) (82) with the Yoruba as an outgroup. I used 

different ancient genomes in this investigation:  

1. Eurasian hunter-gatherer (MA1, 24,000-year-old Upper Palaeolithic Siberian) 

genetically related to Native American lineages and to modern Europeans  (173). 

2. Bronze Age Yamnaya population (3500-2700-year-old) from the Pontic-Caspian 

steppe that expanded into Eurasia impacting the genetic landscape during the 

Bronze Age. The Yamnaya population expansion parallels the expansion of Indo-

European languages, making the Yamnaya a good candidate for the putative 

spread of Indo-European languages across Eurasia (174). 

3.  Neolithic European farmer from the Linear Pottery culture (LBK_EN, 5,500-

4,800-year-old) (175). 

4. Mesolithic hunter-gatherer (La Braña, 7,000-year-old) (176) that shares genetic 

ancestry with MA1 and some modern-day northern European populations.  

5. Eurasian hunter-gatherer (Ust’-Ishim, 45,000-year-old Upper Palaeolithic 

Siberian) deriving from an ancestral population that lived before or concomitantly 

to the separation of western and eastern Eurasians and has slightly more genetic 

affinity to East Asian populations than to Western Eurasians (153);  
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6. Five ancient  Himalayan genomes 3,150-1,250-years-old (C1, M63, S10, S35 and 

S41) from the Annapurna Conservation Area, Nepal (121).  

I also used the archaic Denisovan and Neanderthal genomes and the chimpanzee to study 

genetic affinity of Himalayan samples to these archaic individuals: I calculated principal 

components using Denisovan, Neanderthal and chimpanzee, and projected modern 

samples onto them (35). I also computed D-statistics using (Yoruba, X; Denisovan, 

Chimpanzee) where X were different modern human populations from the worldwide 

dataset. 
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2.2.2.3 Positive selection  
 

Signals of positive selection were evaluated in four ways to try and reduce, as 

much as possible, the spurious signals of selection due to the extensive population 

structure and relatedness of the Himalayan samples. First, I considered the Spearman’s 

correlation between derived allele frequency and the residence altitude of each 

population (127), adjusting the p-value for multiple tests by applying the Bonferroni 

correction (requiring <0.05/number of tests). Spearman's correlation is a non-

parametric test that measures the strength of correlation between two variables where 

the value rho = 1.0 is perfect positive correlation and the value rho = -1 is a perfect 

negative correlation. It does not, however, take into account the population structure. 

Second, I calculated a genome-wide association between allele frequency and altitude 

using a mixed model approach implemented in the Efficient Mixed-Model Association 

eXpedited program (EMMAX) (177). EMMAX detects variants where the observed allele 

frequency is significantly divergent from the expected frequency, and accounts for 

population stratification and sample relatedness through a variance component 

approach. A kinship matrix was constructed to account for population structure and 

implemented in a linear mixed model. Variants with p-value <5x10-8 were considered 

significantly associated with altitude. Although these methods detect associations 

between allele frequency and altitude, they are not able to distinguish between high- and 

low altitude selection signals. For this reason I also calculated the Fixation Index (FST) 

(178) for each SNP position between Himalayan, European (CEU; Utah Residents (CEPH) 

with Northern and Western European Ancestry) and East Asian (CHB; Han Chinese in 

Beijing, China) from the 1000 Genomes Project Phase 3 populations, and searched for 

unusual values using the Population Branch Statistic (PBS) (99). To reduce noise due to 

population structure within the Himalayan populations and differences in sample sizes, I 

ran PBS assuming that the CHB is the most closely related population to Tibetans and 

looked specifically for signals of high altitude adaptation (99). For this analysis, I only 

used the populations from Bhutan and Tibet that clustered together in the 

fineSTRUCTURE analysis compared with CEU and CHB. Variants above the 99.99th 

percentile of the empirical distribution were considered statistically significant (179, 

180). The top hits from each method were assessed and the overlap collated. LD 

estimations for the regions containing the top candidates were calculated and plotted 
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using Haploview (181). I also used Fisher’s method (182) for combining p-values of the 

three statistics used for detecting positive selection. Firstly, I calculated a rank p-value of 

the PBS values (values were ranked in decreasing order from the most significant value 

and divided by the total number of SNPs used in the analysis); I then combined the p-

values of the three statistics genome-wide and adjusted the p-value for multiple tests by 

applying the Bonferroni correction (requiring < 0.01/number of tests). Finally, to further 

validate the selection signals, I calculated genome-wide associations between allele 

frequency and altitude using BayEnv v2 (183, 184), a Bayesian framework specifically 

designed to detect correlation between allele frequencies and environmental factors 

taking population structure into account. I generated the input files for BayEnv2 v2 from 

a LD (r2 > 0.5) pruned SNP file using PGDSpider (185) and I standardised altitude (the 

environmental variable) according to the BayEnv2 v2 manual. BayEnv v2 was run with 

the default parameters and the Bayes Factors interpreted according to previous 

recommendations (186): only candidate variants falling into the category “Decisive” 

(Bayes Factors (BF) > 100, log10(BF) > 2) were considered significant. Where possible, 

allele frequencies in the five Himalayan ancient genomes for our top candidates of 

selection were also calculated.  

 

I generated a protein homology model for SLC52A3 using Phyre2 software (187) 

and mapped the missense variant found in SLC52A3 onto the protein structure using 

PyMOL (The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC). I 

predicted protein-protein interaction networks using the STRING software (v. 10.5) 

(188) for our top selection candidates. Finally, I used the Ensembl Variant Effect Predictor 

(VEP) (189) to predict the consequences of variants of interest on gene expression and 

protein sequence. I retrieved the Combined Annotation Dependent Depletion v.1.2 

(CADD) scores (190) of our top candidates and also overlapped the results with the 

Genotype-Tissue Expression (GTEx) database (191). 
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2.3 Results 
 

2.3.1 Himalayan samples show distinct patterns of 
population structure 
 

I first investigated the population history and demography of the Himalayan 

region (Figure 2.1, Table 2.1) by determining the genetic relationships among the 

Himalayan populations, and comparing them with other worldwide populations from 

published datasets such as the Human Genome Diversity Project (HGDP), 1000 Genomes 

Project and other South Asian specific datasets (Table 2.2).  

 

 
 

Figure 2. 1 Population samples analysed in this project. A. Map of South and East Asia, highlighting the four 

regions examined, and the colour assigned to each. B. Samples from the Tibetan Plateau. C. Samples from 

Nepal. D. Samples from Bhutan and India. The circle areas are proportional to the sample sizes. The three 

letter population codes in B-D are defined in Table 2.1. 
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Principal Components Analysis (PCA) shows that the Himalayan populations form 

a cline, lying between the South and East Asian samples. Populations from Nepal are close 

to Indians, whereas those from Bhutan and Tibet are closer to East Asians (Figure 2.2A, 

B). This pattern of genetic affinity to South and East Asian populations is also supported 

by an ADMIXTURE analysis at K=10 of worldwide populations (Figure 2.2C), where the 

genetic component from South Asia (orange) is observed particularly in the Nepalese, 

and the East Asian (gold) component in the Nepalese, as well as the Bhutanese and 

Tibetans. However, except for the Toto, all other Himalayan populations are mainly 

characterised by their own ancestral component (blue). I also found some detectable 

European and Middle Eastern ancestral components (off-white and green) in some 

Nepalese. 
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Figure 2. 2 PCA and ADMIXTURE analysis using the world dataset. A. PCA of the world dataset. Each dot represents a sample, coded by region as indicated. The 

Himalayan region samples lie between other East Asian and South Asian samples. B. The plot displays a zoom of Himalayan populations in their worldwide context. 

Nepalese samples lie close to Indians, whereas Bhutanese and Tibetans are close to East Asian populations. C. ADMIXTURE results for K=10. Himalayan populations 

display their own ancestral component (blue) that is also visible in some of the Pakistani and East Asian populations. Himalayan populations are also characterised 

by the presence of South Asian (orange) and East Asian (gold) components. 
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On a finer scale, the first component of a PCA using only the Himalayan 

populations shows strong geographical clustering with the Toto population forming an 

outlier, while the second principal component identifies substructure within the 

Himalayan populations (Figure 2.3A). Individuals from Nepal lie in several dispersed 

clusters, whereas those from Bhutan and Tibet group together. Interestingly, the 

Nepalese Sherpa cluster with the Tibetans and some Bhutanese populations from high 

altitude. A distinct cluster is formed by Dhimal and Bodo individuals from Nepal and 

North India, respectively (Figure 2.3A)



65 

 

 

 



 

 

 

 

6
6
 

 

 

 
 

 
Figure 2. 3 PCA and ADMIXTURE analysis using the Himalayan dataset. A. PCA of the Himalayan populations alone. Each dot represents a sample, coded by country 

or region as indicated. Most samples lie on an arc between Bhutanese and Nepalese samples; Toto (India) are seen as extreme outlier in the bottom left corner, while 

Dhimal (Nepal) and Bodo (India) also form outliers. B. Zoom of PCA using the Himalayan dataset only. The plot displays Bhutanese and Tibetans clustering together. 

Sherpa from Nepal cluster with other high altitude populations from Bhutan and Tibet. C. ADMIXTURE (K values of 2 to 6, as indicated) analysis of the Himalayan 

samples. Note that most increases in the value of K result in single population being distinguished. 
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The ADMIXTURE analysis using only the Himalayan populations shows patterns 

consistent with the PCA, with different proportions of ancestral components between 

Nepal, Bhutan, North India and Tibet (Figure 2.3C). Each increase in the value of K 

between 2 and 5 usually leads to a single population being distinguished, suggesting 

extensive genetic isolation and drift. Toto, an outlier in the PCA, is also characterised by 

an independent ancestral component even at a K value of 2 (Figure 2.3C). By contrast, the 

five Tibetan populations do not show any substructure in this analysis. The lowest CV 

error was at a K value of 6, where we observe a single widespread ancestral component 

(grey) which is shared among all the high altitude populations and is significantly 

positively correlated with altitude (rho = 0.79; p=2.2 x 10-18) (Fig 2.4).  

 

 

 
 

Figure 2. 4 Positive correlation between the high altitude-specific genetic component and altitude. The plot 

shows the correlation between the percentage of the grey component from the ADMIXTURE analysis (K=6) 

in each Himalayan population (Figure 2.3C) and the altitude at which the population resides. 
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Figure 2. 5 Long-term effective population size (Ne) and divergence times of Himalayan populations. A. 

Long-term effective population size (Ne) of Himalayan populations. The plot displays the harmonic mean 

of the Ne for each population. Only populations with sample size ≥ 10 were used for this analysis. Within 

the Himalayan populations, Chetri have the highest Ne, whereas Toto have the lowest. B. UPGMA tree based 

on estimated time of divergence of the Himalayan populations. The populations analysed are shown on the 

x-axis and the time of divergence (Kya) on the y-axis. Most of the Himalayan populations show a split time 

with Indian populations around 25,000-20,000 years ago and with East Asians around 15,000-10,000 years 

ago. Chetri, Damai and Sarki are outliers to other Himalayan populations as they show divergence times 

similar to Indians. Tibetan populations display a split time among them of around 1,000 years ago. 
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Long-term Ne values can be estimated using SNP genotyping data, but these have 

limitations and can only be used as a proxy for the variability of their effective population 

sizes and thus the overall genetic diversity. Nevertheless they permit some informative 

comparisons. The Chetri have the highest long-term Ne, whereas Toto have the lowest 

(Figure 2.5A), suggesting that the low genetic variation in Toto could be due to genetic 

drift or endogamy (192).  All Tibetan populations display similar population sizes (Figure 

2.5A) (165). The sequence of splits suggests that the Himalayans separated first from 

Indian populations (with possible exceptions of Chetri, Damai and Sarki), then from East 

Asians and finally among themselves. Interestingly, all of the high altitude populations in 

this dataset display a similar differentiation time from other Himalayans, and place this 

at around 6,000-5,000 years ago (Fig 2.5B). Despite the limitations of this approach, this 

estimate is in line with several previous genetic and linguistic estimates (50, 118), but 

differs from others that estimated older (∼15,000–9,000 years ago) or more recent split 

times (~2,700 years ago) respectively (99, 108, 110, 119). The various Tibetan 

populations display very recent split times from each other, which is consistent with the 

lack of substructure within these populations. 

 

I also explored whether or not Himalayan populations show extended runs of 

homozygosity (ROHs), which may arise from endogamy. Overall, Himalayan populations 

are characterized by a high number of autozygous segments of different lengths across 

the genome (119). Nepalese and Bhutanese populations show the most numerous ROHs, 

and these are also the longest, up to ~80 and ~90 Mb in length, respectively. Toto from 

India are characterized by the highest number of individual ROHs up to ~50 Mb in length. 

On the other hand, Tibetan populations show the lowest number and length of ROHs (Fig 

2.6A). The total length of ROHs per sample correlates positively with the coefficient of 

inbreeding (F) (Fig 2.6B). Bhutanese, Indian and Nepalese populations show the highest 

coefficient of inbreeding values and have total lengths of ROHs around 300-400 Mb. 

Tibetans show a very low coefficient of inbreeding associated with low numbers of ROHs. 

Overall, the number and length of ROHs in Himalayan populations are in line with those 

in other worldwide populations: in such a comparison, Toto show the highest numbers, 

followed by American and Middle Eastern populations, while Bhutanese populations 

show a total length and number of ROHs similar to populations from South Asia.   
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Figure 2. 6 Runs of homozygosity (ROHs) in the Himalayan populations. A. Distribution of runs of 

homozygosity (ROHs) in the Himalayan populations. The x-axis shows the populations analysed and the y-

axis represents the median length of ROHs in each population. Nepalese and Bhutanese populations show 

the highest number and longest ROHs, whereas Tibetan populations show the lowest number and length 

of ROHs. B. Positive correlation between total length of ROHs per sample and coefficient of inbreeding (F). 

The total length (Mb) of ROHs per sample is shown on the x-axis, and the coefficient of inbreeding (F) on 

the y-axis. Note the different scale in each section. Bhutanese, Indian and Nepalese populations display the 

highest coefficient of inbreeding values and the highest total length of ROHs.  Tibetan populations show the 

lowest coefficient of inbreeding and the lowest number of ROHs. 

 

I also used the phased Himalayan and worldwide population data to reconstruct 

phylogenetic relationships between the samples and to identify population structure 

through a Bayesian clustering algorithm implemented in fineSTRUCTURE. The inferred 

phylogenetic tree shows two main branches splitting Nepalese from Bhutanese plus 

Tibetans (Figure 2.7A). All the Himalayan high altitude populations, including the 

Tibetans, cluster together, with the exception of the Thakali population from Nepal, which 

clusters with its Nepalese neighbours. Within genetic clusters of the Nepalese and 

Bhutanese it is possible to recognize substructure based on population and linguistic 

features. This tree topology was replicated when fineSTRUCTURE was applied to a 

dataset comprising only Himalayan and 1000 Genomes Project Phase 3 populations, 

which allowed a higher number of SNPs to be used. PCA was also calculated from the co-

ancestry matrix generated by fineSTRUCTURE confirming that the Himalayan 
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populations are distributed along a cline with the Sherpa, Bhutanese and Tibetans 

clustering together.  

The Himalayan region is one of the richest areas from the linguistic point of view 

with many different language families and linguistic isolates spoken. To test if there was 

correlation between genetic and linguistic variability in the Himalayas, I compared the 

genetic tree with the linguistic affiliation of each Himalayan population (Figure 2.7B). I 

observe, particularly in Bhutan, that there is agreement between genetic and linguistic 

sub-divisions. Speakers of Kiranti languages from Nepal form a separate cluster, and their 

languages constitute a distinct linguistic subgroup within the Tibeto-Burman language 

family. Dhimal from Nepal and Bodo from North India form a separate branch, supporting 

the PCA result, but not the traditionally-accepted language affiliation, and also 

correspond well with a new linguistic hypothesis which groups Dhimal and the Bodo-

Koch languages together within a “Brahmaputran” subgroup (193). 
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Figure 2. 7 Genetic structure of the Himalayan populations from haplotype analysis using fineSTRUCTURE, 

and comparison with language. A. Populations are clustered according to haplotype sharing; the branching 

pattern represents this hierarchy, but the branch lengths have no meaning. Note the geographical 

clustering of populations, particularly the Bhutanese. B. Language family annotation of the genetic clusters 

revealing correspondences between genetics and language. Population codes are defined in table 

2.1.Indicated on the tree are branch confidence values. Branches without values have a confidence of 1.   
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Finally, I computed D-statistics (Yoruba, Han; high altitude Himalayan 1, high 

altitude Himalayan 2) for pairs of Sherpa, Tibetan and Bhutanese populations using our 

worldwide dataset to test for the presence of correlation between genetic similarity and 

geographical location of the high altitude populations. Jeong et al 2017 found an east-

west longitudinal cline within Tibetan samples with individuals from more eastern 

locations having higher genetic affinity with lowland East Asians (120). I tested a similar 

hypothesis using the high altitude populations available to me. D-statistics values were 

close to zero for most of the pairs (0.0001≤|D-statistic|≤0.0061), with just 36 out of 210 

tests statistically significant at a Z score ≥4 (values 0.072≤|Z|≤7.656), showing that some 

high altitude Himalayan populations have increased genetic affinity with the low altitude 

East Asians (Fig 2.8A). However, unlike the Tibetan samples in Jeong et al 2017, our 

Himalayan populations do not follow a longitudinal cline (or a latitudinal one) related to 

their genetic affinity to low altitude East Asians (Mantel test r=0.15 and p-value = 0.18 

for longitude, r=0.11 and p-value=0.18 for correlation with latitude). This difference may 

reflect the smaller range of longitude of our samples (Fig 2.8B). 
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Figure 2. 8 Statistical analysis of genetic sharing between pairs of modern high altitude Himalayan 

populations and Han individuals. A. The plot shows the results for the D-statistic test (x-axis) in the form 

D(Yoruba, Han; high altitude Himalaya1, high altitude Himalaya Himalaya2). Left: value of the D-statistic; 

right: associated Z-score for statistical significance. Values of D-statistics departing from zero and with Z-

score in the extreme tail of the distribution (vertical dashed line in the plot) are indicative of more genetic 

sharing of one of the Himalayan populations with Han. B. Correlation plot of genetic and spatial distance 

between pairs of modern high altitude Himalayan populations. The plot shows the results for D-statistic 

test in the form of D(Yoruba, Han; high altitude Himalaya1, high altitude Himalaya2) (y-axis) compared 

with the difference in longitude (A) or latitude (B) for pairs of Himalayan populations (x-axis). The 

correlation coefficient (r) and the p-value are the results of the Mantel test between genetic distance (D-

statistics values) and spatial distance (longitude and latitude). 
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2.3.2 Complex demographic history in the Himalayas 
 

The Himalayan region separates South Asia from East Asia and is ideal to study 

admixture between highlanders residing in the Himalayas and their neighbouring 

lowland populations. To test this, I studied gene flow and admixture between Himalayan 

and nearby populations through three approaches: f3-statistics, ALDER and TreeMix. All 

the tests provide evidence of admixture between Himalayan and other populations 

(Figure 2.9, 2.10). Overall, Himalayan populations are characterized by gene flow within 

the region and with neighbouring populations from South and East Asia. The f3-statistics 

and ALDER show significant admixture events between the Nepalese, North Indians, 

Tibetans from China, South Asians, Middle Eastern and European populations (Figure 

2.9). ALDER also detected extra, although limited, admixture events between the 

Bhutanese and populations from South and East Asia around 800 and 900 years ago. 

Furthermore, Chetri, Majhi, Newar, Dhimal, Bodo and Lhasa show gene flow from Europe 

and the Middle East that might be attributed to the presence of these western 

components as part of the Ancestral North Indian component in South Asians (71, 160, 

172, 194). Chetri, Bodo, Majhi and Dhimal show a signature of admixture dated to 

between 1000 and 200 years ago. Newar and Lhasa display older signatures of gene flow 

dated between 1000 and 2000 years ago (Figure 2.9).  
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Figure 2. 9 Admixture history of five Himalayan populations. The five populations, each named on the left, 

could be modelled as a mixture between different source populations from two regions. One of these is 

shown on the vertical axis, while the second is indicated by the colour of the horizontal bar. The position of 

this bar represents the inferred time of admixture, and the length in time of these admixture events, 

according to the scale on the horizontal axis. Thus, the Chetri, for example, can be modelled as a mixture of 

a large number of Asian and European pairs of populations, occurring around 200-400 years ago. 
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 TreeMix analysis shows long branches for the Toto, Mönpa and Chepang 

populations in agreement with the genetic drift patterns (Figure 2.10). This is supported 

by the lack of detectable admixture events for these populations with f3-statistics and 

only a few significant results for Toto with ALDER, showing an admixture event around 

600-800 years ago with Chinese and Indian populations. Migration edges involving 

populations from South and East Asia are detectable (Figure 2.10). 

 

The genetic affinity between the Himalayan populations and five ancient Eurasian 

genomes was examined using the f3-outgroup statistics. Himalayans show greater 

affinity to Eurasian hunter-gatherers (MA-1, a 24,000-year-old Upper Palaeolithic 

Siberian), and the related Bronze Age Yamnaya, than to European farmers (5,500-4,800 

years ago; Figure 2.11A, C and D) or European hunter-gatherers (La Braña, 7,000 years 

ago; Figure 2.11B), like other South and East Asian populations. I also explored the 

affinity of Himalayan populations by comparing them with the 45,000-year-old Upper 

Palaeolithic hunter-gatherer (Ust’-Ishim) and each of MA-1, La Braña, or Yamnaya. 

Himalayan individuals cluster together with other East Asian populations and show equal 

distance from Ust’-Ishim and the other ancient genomes, probably because Ust’-Ishim 

belongs to a much earlier period of time.  
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Figure 2. 10 TreeMix results from the worldwide dataset. The tree displays phylogenetic relationships and 

migration edges between the Himalayan populations and other worldwide populations. The x-axis 

represents the amount of genetic drift and migration edges are represented by arrows. The tree shows long 

branches for Toto, Mönpa and Chepang in agreement with their strong genetic drift patterns.  Migration 

edges involving populations from South Asia, East Asia and Nepal are detectable. Dhimal and Bodo are 

characterised by migration events from South Asia (India and Pakistan). 
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Figure 2. 11 Relative genetic similarity of the Himalayan region and other populations to four ancient DNA 

samples. A.-D. Each plot shows a comparison between two ancient samples, and equal similarity is 

represented by the grey line. Each dot represents a present-day population. Thus, section A shows that the 

Himalayan region populations are more similar to the Upper Palaeolithic Siberian hunter-gatherer than to 

the Neolithic European farmer. 

 

I also investigated genetic affinity between modern Himalayan populations and 

five ancient Himalayans (3,150-1,250 years old) from Nepal. The ancient individuals 

cluster together with modern Himalayan populations in a worldwide PCA (Figure 2.12), 

and the f3-outgroup statistics show modern high altitude populations have the closest 

affinity with these ancient Himalayans, suggesting that these ancient individuals could 

represent a proxy for the first populations residing in the region.  
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Figure 2. 12 Principal component analysis of the world dataset with ancient Himalayans projected onto the 

plot. Ancient Himalayan samples (purple) cluster together with modern Himalayan populations. 

 

Finally, I explored the genetic affinity of Himalayan samples with the archaic 

genomes of Denisovans and Neanderthals (35), and found that they show a similar 

sharing pattern with Denisovans and Neanderthals as the other South and East Asian 

populations (Figure 2.13). Individuals belonging to four Nepalese (Dumi, Sunwar, Sherpa, 

Sarki, Nachiring), one Cambodian, and three Chinese populations show the highest 

Denisovan sharing (after populations from Australia and Papua New Guinea), but these 

values are not significantly greater than other South and East Asian populations. 
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Figure 2. 13 Principal component analysis of modern human populations, Denisova and Neanderthal. The 

plot shows the projection of modern human samples onto principal components calculated using Denisova, 

Neanderthal and Chimpanzee. Himalayan populations show a similar pattern of genetic sharing with 

Denisova to the other South-East Asian populations. 
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2.3.3 Signatures of adaptation in the Himalayan 
region 
 

Due to the harsh environment in which many individuals reside, I searched for 

variants under positive selection within Himalayan populations living at high altitudes, 

using four approaches: 1) Genome-wide Spearman’s correlation between derived allele 

frequency and altitude; 2) EMMAX, a genome-wide statistical test for association between 

SNP frequency and altitude that accounts for population substructure (195); 3) the 

Population Branch Statistic (PBS) which identifies SNPs with unusually high FST values 

between high- and low altitude samples, compared with an outgroup population (99); 

and 4) BayEnv v2, a Bayesian framework for specifically testing association between 

allele frequency and environmental variables, such as altitude (183, 184).  

 

Genome-wide Spearman’s correlations pinpointed 75 derived alleles with 

frequencies that correlated significantly with altitude (Spearman’s rho >0.72) (Figure 

2.14A). The EMMAX analysis showed that 99.98% of the variance was explained by the 

kinship matrix, and identified 56 variants where the observed allele frequency 

nevertheless diverged significantly from the expected frequency (Figure 2.14C). The PBS 

analysis highlighted 117 variants under possible selection for the derived allele, including 

ones in regions such as EPAS1 and Disrupted in Schizophrenia 1 (DISC1) previously 

identified by Tibetan exome sequencing (99) (Figure 2.14E).  

 

Twelve candidate variants lying in three different genomic regions overlap 

between these first three approaches (Figure 2.14G). Ten of them lie on chromosome 2 

in a ~330-kb genomic region that includes EPAS1, of which two are of potential functional 

significance. These are rs1868092, downstream of EPAS1 in a promoter-flanking region 

which has previously been associated with high altitude adaptation and shown to be a 

single-tissue eQTL in whole blood (196, 197), and  rs982414, an intronic variant ~231 kb 

downstream of EPAS1, which has been associated with hemoglobin concentration in 

Tibetans (103). Furthermore,  rs12986653, a variant in ATPase H+ Transporting V1 

Subunit E2 (ATP6V1E2) which falls in a CTCF binding site, shows single-tissue eQTLs 

associated with the ATP6V1E2, CXXC repeat containing interactor of PDZ3 domain 

(CRIPT) and Transmembrane protein 247 (TMEM247) genes (198) and has a high CADD 
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score of 20.6. The second region overlapping between the three methods is on 

chromosome 1 and includes the eleventh candidate SNP, rs6679627, an intronic variant 

in the Tripartite Motif Containing 67 (TRIM67) near Egl-9 family hypoxia inducible factor 

1 (EGLN1), which has previously been associated with high altitude adaptation in 

Tibetans (126, 199). The third overlapping region is on chromosome 5 and includes a 

SNP, rs4702062, which shows a strong EMMAX signal together with strong positive 

correlation with high altitude for the ancestral allele (between 80% and 97% in high 

altitude populations, compared with a maximum frequency ≤64% in 1000 Genomes 

Project populations) and has a CADD score of 12.9 (Figure 2.14F). This variant is also in 

high linkage disequilibrium LD (r2 = 0.87) with another nearby variant, rs844335, that 

was picked up by PBS because of its high derived allele frequency, between 80% and 97% 

in high altitude populations, compared with a maximum frequency ≤61% in 1000 

Genomes Project populations. rs4702062 lies in an intergenic region upstream of the 

ANKH inorganic pyrophosphate transport regulator (ANKH) gene on chromosome 5, 

while rs844335 lies within an open chromatin region nearby, and is also in LD (r2 = 0.73) 

with a third variant, rs1550825, that lies in a transcription factor binding site. The ANKH 

gene codes for a transporter that regulates the passage of inorganic phosphate through 

the cell and contains two hypoxia-responsive elements (HREs) in proximity to its 

promoter region, and thus its expression is regulated by hypoxic factors (HIFs) (200). 

 

Combining the p-values from the first three methods provides a concise way to 

merge their findings, although not a measure of the type-1 error rate because the tests 

are not completely independent. This approach identified 398 variants with Bonferroni-

adjusted p-value <0.01 (Figure 2.14G). The fourth method, BayEnv v2, could not be 

included in this combined p-value analysis as it used an LD-pruned subset of the SNPs. 

The strongest signals of selection from this last analysis, with multiple significant SNPs in 

each, included the three regions surrounding EPAS1, EGLN1 and ANKH discussed above, 

and also a region near the major histocompatibility complex. The EPAS1, EGLN1 and HLA-

DQB1 regions were also reported as associated with high altitude adaptation in a previous 

genome-wide association study between Tibetans and Han Chinese using a linear mixed 

model approach comparable to EMMAX (201). Multiple significant SNPs lying in these 

regions present single-tissue eQTLs and high CADD scores. An additional six regions with 

two or more significant SNPs stood out in the combined p-value analysis, surrounding the 
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RP11-384F7.2, Zinc finger protein 532 (ZNF532), Collagen type IV alpha 4 chain (COL4A4), 

Solute carrier family 52 member 3 (SLC52A3), Megakaryoblastic leukemia (translocation) 

1 (MKL1) and Growth factor receptor bound protein 2 (GRB2) genes (Figure 2.14G). The 

results from BayEnv v2 were then used for further validation of the candidate genes 

highlighted above. It pinpointed 503 variants falling into the category “Decisive” (Bayes 

Factor (BF) >100, log10 (BF) >2). Eight of the top ten candidate regions discussed above 

overlapped with the “Decisive” ones: EGLN1, EPAS1, COL4A4, RP11-384F7.2, ANKH, HLA-

DQB1/HLA-DPB1, ZNF532 and SLC52A3 while the MKL1 and GBR2 regions overlapped 

strong (10<BF<100, 1<log10(BF)<2) and substantial (3.2< BF<10, 0.5 < log10(BF)<1) 

candidates, respectively (Table 2.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

8
6 

 

Candidate gene Cluster of 
selected SNPs: 

GRCh37 
coordinates 

Number 
of SNPs 

in 
cluster 

Top SNP: 
Combined 

p-value 

Top SNP: 
 

Top SNP 
frequency 

high altitude 
populations 

Top SNP 
frequency 
East Asian 
populatio

ns 

Allele 
under 
selecti

on** 

eQTLs Comments 

EPAS1 2:46468276-
46852033 

26 1.83E-27 rs4953359 68% 14% D 9 Known high altitude selection signal 

EGLN1 1:231204794-
231897303 

21 3.45E-14 rs6655954 58%* 27%* A 10 Known high altitude selection signal 

HLA-DQB1/ 
HLA-DPB1 

6:32582075-
33175824 

15 1.66E-11 
 

rs10484569 77% 39% D 6 Known high altitude selection signal 

ANKH 5:14908578-
149285033 

5 2.63E-11 rs4702062 84%* 64%* A - Novel 

RP11-384F7.2 
AC068633.1 

3:117427214-
118549344 

5 6.68E-09 rs1081896 79%* 64%* A 2 Novel 

ZNF532 18:56562356-
56648324 

3 8.37E-09 rs3826597 18% 8% D - Novel 

COL4A4 2:227770592-
227922321 

8 1.19E-07 rs3769641 46% 19% D 1 Novel 
 

SLC52A3 20:744415-
745963 

2 1.22E-06 rs3746804 63% 25% D 1 Novel 

MKL1 22:40827319-
40905072 

3 3.97E-06 rs17001997 
 

47% 24% D 3 Novel 

GRB2 17:73326965-
73374945 

4 3.66E-05 rs4789182 
 

94% 83% D 4 Novel 

NOTE. * Frequency of ancestral allele ** A = Ancestral, D = Derived. Bold candidate genes: Decisive (log10Bayes Factor >2) candidates from BayEnv v2 

 
Table 2. 3 Genomic regions showing the strongest signals of positive selection in the Himalayan populations
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Figure 2. 14 Signals of positive selection (adaptation) in the Himalayan populations. A, C, E, G. Manhattan 

plots showing a measure of confidence in selection (vertical axis) plotted against genomic coordinate 
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(horizontal axis). Each dot represents a SNP. A. Spearman’s correlation between derived allele frequency 

and altitude. C. EMMAX. E. Population Branch Statistics. G. Fisher’s combined p-value from these three tests. 

B, D, F, H. Plots of allele frequency against altitude for four selection candidates. Each dot represents a 

Himalayan region population. 

 

We highlight further features of these candidate regions. The SLC52A3 region 

includes a missense variant (Pro267Leu, rs3746804) with derived allele frequency >70% 

in most high altitude populations compared with a maximum frequency ≤35% in the 

1000 Genomes Project populations, and a synonymous variant (rs3746807) with overall 

high derived allele frequency in Himalayan populations (42-100%) compared with a 

maximum frequency ≤24% in 1000 Genomes Project populations (Figure 2.14, Table 2.3). 

rs3746804 shows single-tissue eQTLs for SLC52A3 in lung and skin, and has a CADD score 

of 13.3. The COL4A4 region comprises eight SNPs: the top one, rs3769641, lies in a 

splicing regulatory region within COL4A4, and its derived allele frequency is positively 

correlated with altitude (Spearman’s rho= 0.70). This region also contains a missense 

variant (rs3752895) that shows single-tissue eQTLs in brain tissue for the Rhomboid 

domain containing 1 (RHBDD1) gene and a synonymous variant (rs2228557). These two 

variants show high CADD scores of 17.2 and 16.7, respectively. The GRB2 region on 

chromosome 17 shows four intronic SNPs and has previously been associated with 

hypoxia-induced oxidative stress level at the intestinal mucosal barrier in Tibetans 

compared with Han Chinese (202) (Figure 2.14G). Two of the four variants in GRB2, 

rs4542691 and rs4789182, show single-tissue eQTLs. The MKL1 region on chromosome 

22 carries three intronic SNPs, and has previously been associated with the regulation of 

the cellular response to chronic hypoxia in the vasculature of rats. All three variants in 

MKL1, rs2294352, rs6001931 and rs17001997, show single-tissue eQTLs in muscle-

skeletal tissue (Table 2.3) (203).  
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Figure 2. 15 SLC52A3 protein homology model. The plot shows the homology model generated for the 

SLC52A3 protein and its cellular transmembrane location. The missense variant, rs3746804, is indicated 

in red (Pro267Leu). 

 

We also examined the allele frequencies of the top SNPs in our ten candidate 

regions in the five ancient Himalayan genomes, and compared them with the allele 

frequencies in present-day Himalayans. Six variants in the EPAS1 region and eleven in the 

EGLN1 region show high derived allele frequencies in ancient Himalayans (≥ 0.60). The 

missense variant rs3746804 in the SLC52A3 locus also shows a high derived allele 

frequency of 0.67 in the ancient Himalayans. Variants in COL4A4, ANKH, RP11-

384F7.2/AC068633.1 and HLA-DBP1/DBP2 show derived allele frequencies in the ancient 

Himalayans of 0.56 -1.00, while two variants, rs4542691 and rs4789182, in the GRB2 

locus show a derived allele frequency of 100% in the ancient samples.  Finally, rs3826597 

in ZNF532 region show a derived allele frequency of 0.95 in the ancient Himalayans.  
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None of the top selection candidate regions, apart from EPAS1 (50, 104), show signatures 

of adaptive introgression from archaic Denisovans or Neanderthals according to 

published introgression maps (204). 

 

We also generated a protein homology model for SLC52A3, and investigated the 

position of the missense variant, rs3746804. The SLC52A3 structure resembles that of a 

glucose transporter and rs3746804 is predicted to lie in an exposed intracellular region 

which could act as an interaction surface for the intracellular environment (205) (Fig 

2.15). We finally generated protein-protein interaction networks for our top ten protein 

candidates. EPAS1, EGLN1, COL4A4 and GRB2 were predicted to be part of the same 

network.  Prostaglandin I2 synthase (PTGIS) and Vitamin D receptor (VDR), suggested 

previously by Hu et al. to be under selection for high altitude adaptation, are also 

predicted to be in the same protein-protein interaction network (50). 
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2.4 Discussion  
 

This study represents the most comprehensive survey thus far of genetic variation 

in the Himalayan region, aiming to elucidate the genetic ancestry of these populations, 

including their demographic histories, and the genetic adaptations they have undergone 

in order to survive in the varied and challenging environments present in the region.   

 

2.4.1 Population structure and demography 
 

In the broadest sense, all the Himalayan populations share ancestry with their 

geographical neighbours in South and East Asia, reflecting the common pattern of the 

distribution of human genetic diversity dominated by geography (Figure 2.2). Within this 

framework, I nevertheless detect an ancestral component that is abundant in most 

Himalayans, but rare elsewhere (Figure 2.2C), pointing to shared ancestry for these 

populations, a conclusion reinforced by their similar patterns of shared genetic drift with 

non-Himalayan ancient samples (Figure 2.12). At finer resolution, I see evidence for both 

substructure reflecting geography within the Himalayan region, and extreme drift 

leading to single populations forming outliers in the PCA (Figure 2.3A,B) or specific 

components in ADMIXTURE analysis (Figure 2.3C). The most striking example is 

provided by the Toto from North India, an isolated tribal group with the lowest genetic 

diversity among all the Himalayan populations examined here, indicated by the smallest 

long-term Ne (Figure 2.5A), and a reported census size of 321 in 1951 (206), although 

their numbers have subsequently increased. Despite this extreme substructure, shared 

common ancestry among the high altitude populations (Figure 2.3C and Figure 2.7) can 

be detected, and the Nepalese in general are distinguished from the Bhutanese and 

Tibetans (Figure 2.3C) and they also cluster separately (Figure 2.7). In a worldwide 

context, they share an ancestral component with South Asians (Figure 2.2C). On the other 

hand, the Tibetans do not show detectable population substructure, probably due to a 

much more recent split in comparison with the other populations (Figures 2.32 C and 

2.5). The genetic similarity between the high altitude populations, including Tibetans, 

Sherpa and Bhutanese, is also supported by their clustering together on the phylogenetic 

tree, the PCA generated from the co-ancestry matrix generated by fineSTRUCTURE 
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(Figure 2.7A), the lack of statistical significance for most of the D-statistics tests (Yoruba, 

Han; high altitude Himalayan 1, high altitude Himalayan 2), and the absence of correlation 

between the increased genetic affinity to lowland East Asians and the spatial location of 

the Himalayan populations (Figure 2.8). Together, these results suggest the presence of a 

single ancestral population carrying advantageous variants for high altitude adaptation 

that separated from lowland East Asians, and then spread and diverged into different 

populations across the Himalayan region. Genetic drift and admixture with other 

Himalayan, South and East Asian populations can explain the widespread distribution of 

the selected EPAS1 haplotype at lower frequencies in populations at lower altitudes 

(127), and the altitude clines in the other selection candidates (Figure 2.14). Our findings 

suggest a recent split (only a proxy for population differentiation given the limitations of 

the method applied) between Tibetans, Sherpa and, possibly, other high altitude 

populations, rather than the Tibetans being a mixture of Sherpa and Han Chinese (113, 

117). Whole-genome sequences from multiple high altitude populations will provide 

better estimates of such divergence times and a more detailed demographic history of the 

region. 

 

Himalayan populations show signatures of recent admixture events, mainly with 

South and East Asian populations as well as within the Himalayan region itself. Newar 

and Lhasa show the oldest signature of admixture, dated to between 2,000 and 1,000 

years ago. Majhi and Dhimal display signatures of admixture within the last 1,000 years. 

Chetri and Bodo show the most recent admixture events, between 500 and 200 years ago 

(Figure 2.9). The comparison between the genetic tree and the linguistic association of 

each Himalayan population highlights the agreement between genetic and linguistic sub-

divisions, in particular in the Bhutanese and Tibetan populations. Nepalese populations 

show more variability, with genetic sub-clusters of populations belonging to different 

linguistic affiliations (Figure 2.7B). Modern high altitude Himalayans show genetic 

affinity with ancient genomes from the same region (Figure 2.12), providing additional 

support for the idea of an ancient high altitude population that spread across the 

Himalayan region and subsequently diverged into several of the present-day populations. 

Furthermore, Himalayan populations show a similar pattern of allele sharing with 

Denisovans as other South-East Asian populations (Figure 2.13). Overall, geographical 

isolation, genetic drift, admixture with neighbouring populations and linguistic 
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subdivision played important roles in shaping the genetic variability we see in the 

Himalayan region today.  

 

2.4.2 High altitude adaptation 
 

The harsh environment at high altitude due to increased ultraviolet radiation, 

hypobaria and hypoxemia is inescapable, so it is expected to have triggered physiological 

and genetic adaptations including modifications in the cellular responses of the humans 

who settled there. Genomic scans for positive selection in Tibetans have previously 

implicated several genes as candidates for high altitude adaptation, especially an 

extended EPAS1 haplotype (99, 119, 207-209) that arose by introgression from 

Denisovans (104), and is widespread in the region (127). Positive selection scans can 

easily be confounded by population structure, and although simple correlations of SNP 

frequency with altitude replicated several of the candidates reported in previous studies 

(Figure 2.14), including those near EPAS1, DISC1 and ATP6V1E2 which are highly 

differentiated between lowland Han and Tibetans (99, 119), additional analyses better 

suited to sub-structured populations only confirmed a subset of these. The signal on 

chromosome 2 is particularly strong and includes a ~330-kb region encompassing 

EPAS1, ATP6V1E2 and PIGF/CRIPT (Figure 2.14). An expected signal of selection from 

EGLN1 was observed via nearby variants in TRIM67 and TSNAX-DISC1 (Figure 2.14) (210, 

211). A novel signal of selection was found in the region upstream of ANKH on 

chromosome 5 (Figure 2.14). This region shows extended LD, but the variant driving the 

selection could not be identified by our analysis. Nevertheless, ANKH is itself a strong 

candidate because it is involved in the regulation of the transportation of inorganic 

phosphate and its expression is regulated by HIF-2α (EPAS1) and HIF-1α (200, 212). 

ANKH is essential for maintaining cellular function and bone mineralization, and its 

concentration plays a central role in several metabolic pathways (213).  

 

In order to maximize the power to identify the additional selection candidates, I 

calculated combined p-values for three different statistics applied to our dataset, and 

then further validated these candidate genomic regions using a fourth statistic, BayEnv2.  

(Figure 2.15). Some of these additional variants may play important roles in the hypoxic 

environment, contributing to physiological responses to hypoxia. COL4A4 encodes one of 
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the subunits of collagen type IV, which is an essential component of basement 

membranes, and plays an important role in angiogenesis. Hypoxia exposure triggers 

vasoconstriction which requires structural remodelling of arterial vessels, especially in 

lung, and collagen metabolism is required for this process (214) (215). GRB2 is involved 

in the regulation of reactive oxygen species (ROS) production in hypoxic environments 

and it has been shown that, in Tibetans, downregulation of its expression reduces ROS 

damage and improves glucose and fat metabolism in intestinal tissues (202). MKL1 

encodes a myocardin-related transcription factor and is involved in smooth muscle cell 

differentiation (216). Down-regulation of MKL1 reduces the pulmonary arterial pressure 

in response to chronic hypoxia and regulates vascular remodelling in rats (203). SLC52A3 

encodes a transporter of riboflavin, a vitamin that modulates fatty acid and amino acid 

metabolism and reduces cellular oxidative stress (217). Riboflavin supplementation of 

the diets of mice improves their energetic metabolism under acute hypoxia. Thus, 

increased riboflavin could be effective in counteracting the alteration of human 

metabolism in hypoxic conditions (218). SLC52A3 is a transmembrane protein and the 

homology-based protein model we generated resembles the structure of a glucose 

transporter; our top candidate variant, rs3746804 (Pro267Leu), lies in the intracellular 

environment in a possible interaction region of the protein surface (Figure 2.15). This 

selection signal seems to be specific for Himalayan populations and could be related to 

the diet and environment, where efficient intake of riboflavin at high altitude would be 

advantageous (219). Two out of three additional candidates for high altitude adaptation 

(PTGIS and VDR) suggested by Hu et al. are predicted to be in the same protein-protein 

interaction pathway as some of our candidates, COL4A4 and GRB2, and linked with other 

genes (EPAS1, EGLN1, HIF-1α, VHL) involved in the hypoxic (50).  ANKH has also been 

reported as a candidate for high altitude adaptation in Tibetan pigs (220, 221).  

 

Thus, of the top ten selected candidate regions (seven novel) highlighted by our 

work, four are members of the most relevant protein-protein interaction network and 

three others have known functions relevant to high altitude adaptation: findings that are 

very unlikely due to chance. Furthermore, despite the strong ascertainment bias of the 

SNPs included on SNP-chips, variants lying in our top ten candidate regions are 

associated with single-tissue eQTLs and present high CADD scores, suggesting their 

possible importance in gene regulation and expression.  The presence of high derived 
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allele frequencies of variants in EGLN1, EPAS1, SLC52A3 and GRB2 loci in ancient 

Himalayans also supports our hypothesis that these candidates may be under selection 

and important for high altitude adaptation. According to available introgression maps 

(204), none of the top selected candidate regions, apart from the well-known EPAS1 

intronic region (50, 104), show signatures of adaptive introgression from Denisovans or 

Neanderthals. In all cases, high-coverage whole-genome sequences and comparisons 

with other species that have adapted to similar environments should help to identify or 

confirm the key causal variants and suggest strategies for functional follow-up. 

 

In conclusion, the current analyses have established the broad features of 

Himalayan genetic variation: a South or East Asian substrate influenced by local 

differentiation and mixing in ways that are now understood in outline, including extreme 

genetic drift in several populations. This work has provided a comprehensive dataset 

from the region for the community to use in future studies. In addition, there is evidence 

for early strong genetic adaptation to high altitude living followed by spread of the 

adapted population. Future functional investigations will allow these phenomena to be 

understood in more detail. 
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3. Fine-scale demographic history of 
Himalayan populations using whole-
genome sequencing data 

3.1 Introduction 
 

In the previous chapter, I presented the benefits of, and insights from, SNP-

genotype data for the study of Himalayan population structure and their relationship 

with worldwide populations and ancient genomes. However, SNP genotype arrays have 

limitations compared with whole genome sequencing, which can discover SNPs in an 

unbiased way, as well as discovering other types of variants, such as CNVs, SVs and 

INDELs. Sequence data can also directly identify causal variants rather than tag ones 

affecting gene regulation and expression and those responsible for specific phenotypes, 

including diseases and positively selected traits.  

To extend the study based on SNP genotypes in the previous chapter, this chapter 

is focused on analyses performed using a dataset of eighty-seven high coverage genomes 

(30x coverage) generated with the Illumina HiSeq X Ten platform at the Wellcome Sanger 

Institute. The aim is to refine the demographic history and explore the possibility of 

identifying functional variants for known as well as new signals of positive selection in 

the Himalayan populations. First, the different types of genetic variation, including SNPs, 

INDELs and CNVs for autosomal and uniparentally regions of the genome are 

characterized. Then, refined population structure and recent admixture with 

neighbouring populations are analysed, using both common and rare variants. A more 

complete picture of population demographic history can be generated using SMC++, 

MSMC and other methods which require whole genome sequencing data. Next, 

Neanderthal and Denisovan archaic introgression in the Himalayan individuals is 

explored using the Introgression-detection method (222).  Finally, narrowing down the 

signals of positive selection to possible causal driver SNPs is explored, both for the 

genomic regions identified in the previous chapter, and for new variants positively 

selected in high altitude populations. 
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3.2 Materials and Methods 
 

3.2.1 Samples and datasets 
 

Eighty-seven male samples were sequenced from 16 Himalayan populations, 

including four from each of eight populations in Nepal, six in Bhutan, one in North India 

and 27 from Tibetans in China. Thirteen of these populations were included in the SNP-

genotype data described in the previous chapter, plus three new populations we 

retrieved samples for that are Ghale and Tharu from Nepal or Lhokpu from Bhutan. Seven 

of these populations live at high altitude of 2500 meters or more above sea level (135). 

One population, Tharu, lives in the malaria-endemic Terai tropical forest in the foothills 

of the Himalayas. It has been reported that Tharu individuals have a lower prevalence of 

malaria than other ethnic groups in the same region, and this could possibly be explained 

by the particularly high frequency of α thalassemia in the Tharu population (46, 223).   

 

 
 

Figure 3. 1 Population samples included in this project. A. Map of South and East Asia, highlighting the four 

regions where the populations live, with a different colour assigned to each. B. Samples from the Tibetan 

Plateau. C. Samples from Nepal. D. Samples from Bhutan and India. The circle areas are proportional to the 

sample sizes. The three letter labels for each population are the same as in the previous chapter; the new 

populations, Ghale and Tharu from Nepal, and Lhokpu from Bhutan are labelled GHL, THR and LHP. 



99 

 

 

 

3.2.2 Variant calling and filtering 
 

3.2.2.1 SNPs and INDELs 
 

3.2.2.1.1 Autosomes 
 

The raw sequence reads were mapped to the human reference assembly GRCh38 

(GRCh38_full_analysis_set_plus_decoy_hla.fa) using BWA mem (224), and base quality 

score recalibration, indel realignment and duplicate removal were performed using the 

Genome Analysis Toolkit (GATK) by Dr. Shane McCarthy. One Genomic VCF (GVCF) per 

sample was generated using GATK HaplotypeCaller (225) and then merged into a joint 

file using the GATK GenotypeGVCFs tool, containing accurate genotype information, 

genotype likelihoods and annotations for the whole Himalaya dataset. Finally, a set of 

standard hard filtering parameters for SNPs and INDELs, according to the GATK best 

practices guidelines, was applied to the joint call set (226, 227).  Specifically, the following 

filtering parameters were used for SNPs (Fig. 3.2): 

1. FisherStrand (FS): This is the Phred-scaled p-value estimated using Fisher’s Exact Test to 

identify strand bias in the reads, and values > 60.0 are discarded as they indicate false 

positive calls. 

2. RMSMappingQuality (MQ): This is the root mean square of the mapping quality of the 

reads across all samples and its value should be < 40.0. 

3. MappingQualityRankSumTest (MQRankSum): This is applied to heterozygous calls and it 

represents the u-based z-approximation of the Mann-Whitney Rank Sum Test for 

mapping quality (reads with reference bases vs. those with the alternate allele). This value 

should be < 12.5. 

4. QualByDepth (QD): This is the variant confidence divided by the unfiltered depth of non-

reference samples and the values have to be < 2.0. 

5. ReadPosRankSumTest (ReadPosRankSum): This is applied to heterozygous calls and it is 

the u-based z-approximation of the Mann-Whitney Rank Sum Test for the distance from 

the end of the read for reads with alternate allele. The presence of an alternate allele near 

the ends of reads is indicative of an error. Values < -8.0 were discarded.  



100 

 

 

 

 

Figure 3. 2 The distribution of SNP parameters after filtering the Himalayan dataset. A. FS, B. MQ, C. 

MQRankSum, D. QD, E. ReadPosRankSum.  
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Only three of the above parameters were applied for INDEL filtering (Fig. 3.3): 

1. FisherStrand (FS) > 200.0 

2. QualByDepth (QD) < 2.0 

3. ReadPosRankSumTest (ReadPosRankSum) < -20.0 

 
 

Figure 3. 3 The distribution of INDEL parameters after filtering the Himalayan dataset. A. FS, B. MQ, C. QD, 

D. ReadPosRankSum. 

 

An additional filter was applied to the SNP dataset: depth (DP) of one third of, or 

three times greater than the average coverage and genotype quality (GQ) < 30 were also 

applied using bcftools 1.6 (228). All population-genetic analyses use only sites in the 

strict masked region of the genome from the 1000 Genomes Project (177, 229): around 

78% of the reference sequence. This step has been performed using the GATK 
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VariantFiltration and SelectVariants tools (226, 227). In total, the call set contains 

9,909,760 biallelic SNPs, 28,319 multiallelic SNPs and 1,043,093 INDELs.  Finally, for 

downstream analysis, multiallelic variants, all the sites with missingness greater than 

0.2% or Hardy-Weinberg equilibrium violations (hwe > 0.00001) were removed using 

vcftools 0.1.14 (230), bcftools 1.6 and PLINK 1.92 (155). This resulted in a dataset of 

9,901,395 SNPs and 1,021,861 INDELs. Out of these, 9,636,923 SNPs and 991,411 INDELs 

were autosomal.  The functional impacts of SNPs and INDELs were predicted using the 

Ensembl Variant Effect Predictor (VEP) (54, 189).  

 

3.2.2.1.2 Autosomal SNP LiftOver and filtering  
 

LiftOver is the process of converting genomic coordinates and annotations 

between assemblies and it is necessary to map all datasets to the same reference build. 

The GRCh37 assembly was released in 2009, whereas GRCh38 was released at the end of 

2013 and the latter assembly has major updates compared to GRCh37 with substantial 

improvements and better representation of the human genome. However, many of the 

population genetic and genome-wide association studies still use the GRCh37 assembly, 

and all archaic sequences (Neanderthals and Denisovans (4, 231)) and other ancient 

genomes published so far have been mapped onto GRCh37. Some efforts have been made 

to encourage researchers to use GRCh38 by releasing a LiftOver version of the 1000 

Genomes Project phase 3 VCFs and the re-mapped BAMs of the same dataset, for example 

(229). 

 

The call sets based on GRCh38 were used where possible for this project, but a 

LiftOver to GRCh37 dataset was also prepared using Picard 2.6.0 LiftoverVcf tool 

(http://broadinstitute.github.io/picard/) with default parameters for some analyses. 

Some technical issues were discovered during the merging process and later analyses: 

around 0.2% (~18,900 SNPs out of ~10 million) of genomic locations shared between 

the 1000 Genomes Project and the Himalayan dataset showed reference mismatches 

between GRCh37 and GRCh38, some of which are due to strand flips and others represent 

genuine difference between the references. For example, the reference for certain 

positions has been fixed from GRCh37 to GRCh38. These positions were called 

homozygous for the alternative allele (ALT/ALT) for all the 1000 Genomes Project 

http://broadinstitute.github.io/picard/
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individuals in GRCh37, although the ALT allele is the ancestral allelic state. This has been 

swapped in GRCh38, hence all 1000 Genome Project samples are now called homozygous 

reference (REF/REF) for these positions. Most of the LiftOver tools available convert 

genomic coordinates within assemblies, however they are not aware of changes in the 

actual reference sequence. This can lead to large technical biases in the data as it can 

create artificial genetic variability. Thus, having taken care of all of these technical issues, 

I filtered the LiftOver call set by removing all these problematic position before 

proceeding with the downstream analyses. 

 

3.2.2.1.3 Y chromosome 
 

The call set for the Y chromosome was restricted to the commonly used ~10.3Mb 

region accessible by NGS (232). First, all of the samples were confirmed to be males by 

analysing the average read depth across the accessible regions on both X and Y 

chromosomes using GATK DepthOfCoverage, and found to be similar (Table 3.1).  

 

 In order to improve consistency across the different datasets and reduce the 

number of technical artefacts, three different sets of joint calls from BAM files of 

Himalayan samples and two reference datasets, the 1000 Genomes Project Phase 3 

(1000GP) (66, 232) and the Simons Genome Diversity Project (SGDP) (23) were 

generated. First, all of the reads from the Y chromosome in the Himalayan BAMs in 

GRCh38 were extracted using SAMtools 1.6 (233) and the Picard  2.6.0 SamToFastq tool, 

then were remapped to GRCh37(hs37d5.fa) using BWA 0.7.15 (224). The BAMs mapped 

GRCh38 for the 1000GP were available from 2017. Hence, three sets of joint calls were 

generated from the three Y chromosome datasets below: 

1. 1000 Genomes Project (1243 males, Y mean coverage ~ 4.7x) and Himalayan 

samples in assembly GRCh38  

2. 1000 Genomes Project (1243 males, Y mean coverage ~ 4.7x) and Himalayan 

samples in assembly GRCh37 

3. Simon Genome Diversity Project (184 males, Y mean coverage ~ 20x) and 

Himalayan samples in assembly GRCh37 
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The all-sites calling was performed for all male samples using bcftools 1.6 mpileup 

and call flags for the ~10.3Mb callable regions, setting the ploidy argument to 1, using –

m (multiallelic-caller) and setting the minimum base quality (-Q) and the minimum 

mapping quality (-q) to 20. Further filters applied are missingness less than 30% across 

the samples and the same read depth filter as for autosomal SNPs for the high coverage 

datasets (SGDP + Himalaya). This resulted in a dataset of 36,691 SNPs for the joint call set 

of SGDP and Himalayan samples and 73,493 SNPs for the call set of 1000GP and 

Himalayan ones.  

 

Sample Population Country X Y mtDNA 

BUM1919 Bumthang Bhutan 18.21 18.69 1250.59 

BUM1922 Bumthang Bhutan 18.04 18.64 846.74 

BUM1932 Bumthang Bhutan 19.04 19.43 1512.02 

BUM1933 Bumthang Bhutan 17.32 17.53 802.45 

KUR1554 Kurtöp Bhutan 19.42 19.86 914.57 

KUR1568 Kurtöp Bhutan 19.4 19.75 1129.61 

KUR1576 Kurtöp Bhutan 19.91 19.87 1186.23 

KUR1579 Kurtöp Bhutan 20.38 20.61 1425.07 

LAY1973 Layap Bhutan 16.66 16.96 390.75 

LAY1987 Layap Bhutan 16.5 16.82 1565.87 

LAY1989 Layap Bhutan 16.14 16.48 1573.06 

LAY1993 Layap Bhutan 17.55 17.82 1681.35 

LHP1013 Lhokpu Bhutan 17.89 18.44 569.51 

LHP1027 Lhokpu Bhutan 16.13 16.44 605.89 

LHP1034 Lhokpu Bhutan 18.61 18.75 750.06 

LHP1052 Lhokpu Bhutan 18.89 19.5 681.26 

MON1226 Mönpa Bhutan 18.55 17.85 717.45 

MON1228 Mönpa Bhutan 17.51 17.81 873.78 

MON1306 Mönpa Bhutan 19.08 19.57 1123.45 

MON1310 Mönpa Bhutan 18.31 18.61 946.15 

TSH0963 Tshangla Bhutan 17.76 18.32 1464.57 

TSH0966 Tshangla Bhutan 17.81 18.22 1494.11 

TSH0992 Tshangla Bhutan 18.43 18.63 781.27 

TSH1137 Tshangla Bhutan 18.17 18.23 1098.75 

TOT1094 Toto India 18.95 19.41 659.27 

TOT1124 Toto India 18.4 18.76 1271.01 

TOT1125 Toto India 19.32 19.73 991.7 

TOT1126 Toto India 17.42 17.78 872.5 

CHE0774 Chepang Nepal 16.23 16.43 651.82 

CHP0782 Chepang Nepal 17.05 17.15 1517.9 

CHP0785 Chepang Nepal 16.03 16.32 1323.53 

CHP0826 Chepang Nepal 16.15 16.4 1056.94 
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CHE0020 Chetri Nepal 15.71 15.63 3302.36 

CHE0043 Chetri Nepal 16.54 15.42 4418.68 

CHE0047 Chetri Nepal 17.65 17.82 4263.63 

CHE0133 Chetri Nepal 17.6 18.01 3011.62 

GHL0693 Ghale Nepal 17.89 18.22 1186.29 

GHL0696 Ghale Nepal 18.93 19.27 1158.02 

GHL0935 Ghale Nepal 19.26 19.72 782.08 

GHL0937 Ghale Nepal 16.3 16.78 704.95 

LIM0052 Limbu Nepal 16.05 15.05 1961.5 

LIM0053 Limbu Nepal 15 14.03 2469.55 

LIM0063 Limbu Nepal 14.38 13.61 3466.27 

LIM0071 Limbu Nepal 17.04 16.41 2214.74 

MGR0389 Magar Nepal 14.08 14.08 2511.06 

MGR0482  Magar Nepal 17.91 18.61 974.87 

MGR0488 Magar Nepal 17.79 18.65 1142.74 

MGR0511 Magar Nepal 18.04 18.48 893.7 

SHE0298 Sherpa Nepal 16.53 16.85 3997.17 

SHE0635 Sherpa Nepal 18.69 19.07 1184.35 

SHE0838 Sherpa Nepal 18.49 19.01 1312.03 

SHE0841 Sherpa Nepal 14.44 14.37 1439.25 

THK0424 Thakali Nepal 18.54 19.04 1269.93 

THK0427 Thakali Nepal 18.47 17.9 635.28 

THK0437 Thakali Nepal 18.22 18.64 933.74 

THK0439 Thakali Nepal 19.08 19.74 954.2 

THR0641 Tharu Nepal 17.82 18.26 829.59 

THR0788 Tharu Nepal 17.02 17.31 1115.18 

THR0795 Tharu Nepal 20.29 20.68 629.63 

THR0816 Tharu Nepal 18.82 19.26 471.09 

Tib1 Lhasa Tibet 22.29 23.18 1887.49 

Tib10 Lhasa Tibet 22.19 22.39 2003.88 

Tib13 Lhasa Tibet 20.26 20.28 1791.99 

Tib14 Lhasa Tibet 19.49 19.49 1877.85 

Tib15 Lhasa Tibet 21.68 21.99 1661.93 

Tib16 Lhasa Tibet 14.35 14.42 1744.9 

Tib18 Lhasa Tibet 18.8 19.03 2655.86 

Tib21 Lhasa Tibet 13.99 14.03 2004.54 

Tib22 Lhasa Tibet 16.85 16.98 2022.63 

Tib24 Lhasa Tibet 21.08 20.96 2287.29 

Tib25 Lhasa Tibet 21.09 21.29 3690.96 

Tib26 Lhasa Tibet 19.86 20.07 1954.41 

Tib28 Lhasa Tibet 22.41 22.42 1392.1 

Tib29 Lhasa Tibet 18.43 18.7 1799.37 

Tib3 Lhasa Tibet 22.73 22.89 3180.15 

Tib30 Lhasa Tibet 17.89 18.06 1659.34 

Tib31 Lhasa Tibet 26.23 26.32 2610.96 

Tib32 Lhasa Tibet 19.89 19.86 2634.09 
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Tib33 Lhasa Tibet 19.26 19.31 1861.72 

Tib34 Lhasa Tibet 24.35 24.46 2283.43 

Tib35 Lhasa Tibet 20.65 20.91 1590.91 

Tib4 Lhasa Tibet 21.12 21.27 2287.49 

Tib5 Lhasa Tibet 20.57 20.78 3407.48 

Tib6 Lhasa Tibet 20.57 22.36 3034.15 

Tib7 Lhasa Tibet 18.75 19.09 2587.84 

Tib8 Lhasa Tibet 17.48 17.47 2280.84 

Tib9 Lhasa Tibet 19.9 20.01 3705.23 

 

Table 3. 1 Read depth estimated from BAM files. The table reports average read depth for each of the 

Himalayan samples of chromosome Y, X and mtDNA.  

 

3.2.2.1.4 mtDNA 
 

All the reads that mapped to the mitochondrial DNA (mtDNA) were extracted from 

the whole-genome Himalayan BAM files. The read depth was calculated (Table 3.1) and 

all mitochondrial positions were called similarly to the Y chromosome using bcftools 

mpileup, and then merged with the 1000 Genomes Project Phase 3 mtDNA calls (2,534 

individuals) with bcftools merge as suggested by the HaploGrep 2.0 programme (234). 

Mitochondrial DNA calls from the 1000 Genomes Project have been curated by removing 

nuclear mitochondrial DNA variants (NUMTs) and resolving heteroplasmies (66).  All the 

positions showing mitochondrial heteroplasmy in the Himalayan individuals were 

removed for downstream analyses. This resulted in a dataset of 3,911 SNPs.  

 

3.2.2.3 CNVs 
 

A CNV call set from the Himalayan samples was generated by senior 

bioinformatician in our team, Yuan Chen, using GenomeSTRiP 2.0 

(http://software.broadinstitute.org/software/genomestrip/genome-strip-20). The 

software discovers and genotypes CNVs using sequencing data (235). GenomeSTRiP was 

run following the standard pipeline, which has three steps: SVPreprocess, CNVDiscovery, 

GenerateHaploidCNVGenotypes. In total, 9,322 CNVs were called in the Himalayan 

dataset, 20 of which were filtered out using a genotype quality cutoff (GQ) > 20 with 

vcftools 0.1.14  (--minGQ 20), or for violating Hardy-Weinberg equilibrium (hwe > 

0.00001), with PLINK 2.0 (https://www.cog-genomics.org/plink/2.0/). A final dataset of 

http://software.broadinstitute.org/software/genomestrip/genome-strip-20)
https://www.cog-genomics.org/plink/2.0/
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9,302 CNVs was considered for further analyses. Out of these, 9,072 located on autosomes 

and 230 found on the sex chromosomes, X and Y. The dataset contains 4,497 deletions 

(delCNV) and 1,654 duplications (dupCNV) and 3,151 multi-allelic variants (mCNV). The 

functional impacts of CNVs were predicted using the Ensembl Variant Effect Predictor 

(VEP) (54, 189).  
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3.2.3 QC 
 

3.2.3.1 SNPs 
 

3.2.3.1.1 Concordance with SNP genotypes 
 

Twenty-six out of the 87 sequenced samples have been also genotyped and 

analysed in the previous chapter. The SNP genotypes from these 26 samples were 

converted to GRCh38 and compared with the genotypes called from the whole genome 

sequencing data for the same sample. Shared genomic positions were extracted and the 

genotypes compared within the two datasets with a custom script.  The genotype 

concordance was calculated counting the number of concordant genotypes (ref/ref, 

ref/alt and alt/alt genotypes) and divided it by the total number of genotypes (Table 3.2) 

(236) . 
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Individual Country SNP-chip ID Sequencing ID Concordance 

BUM1919 Bhutan HPG5196910 ERS724833 0.998 

BUM1922 Bhutan HPG5196913 ERS724834 0.998 

BUM1932 Bhutan HPG5197099 ERS724835 0.997 

BUM1933 Bhutan HPG5197100 ERS724848 0.998 

LAY1973 Bhutan HPG5197102 ERS724857 0.997 

LAY1987 Bhutan HPG5197200 ERS724858 0.996 

TSH0963 Bhutan HPG5197075 ERS724873 0.998 

TSH0966 Bhutan HPG5197078 ERS724874 0.998 

TSH1137 Bhutan HPG5197117 ERS724876 0.998 

CHE0774 Nepal HPG5197047 ERS724853 0.993 

CHP0782 Nepal HPG5197050 ERS724854 0.995 

CHP0785 Nepal HPG5197053 ERS724855 0.996 

CHP0826 Nepal HPG5197061 ERS724856 0.995 

CHE0020 Nepal HPG5196735 ERS724849 0.997 

CHE0043 Nepal HPG5196746 ERS724850 0.996 

CHE0047 Nepal HPG5196749 ERS724852 0.997 

CHE0133 Nepal HPG5196819 ERS724851 0.998 

LIM0052 Nepal HPG5196753 ERS724861 0.998 

LIM0063 Nepal HPG5196764 ERS724863 0.998 

LIM0071 Nepal HPG5196772 ERS724864 0.998 

MGR0389 Nepal HPG5196934 ERS724865 0.997 

MGR0482 Nepal HPG5196978 ERS724866 0.996 

MGR0488 Nepal HPG5196984 ERS724867 0.997 

MGR0511 Nepal HPG5196990 ERS724868 0.985 

SHE0635 Nepal HPG5197013 ERS724869 0.999 

SHE0838 Nepal HPG5197067 ERS724870 0.997 

 

Table 3. 2 Genotype concordance between whole-genome sequencing and SNP array genotypes in 26 

Himalayan samples. 

 
3.2.3.1.2 Ti/Tv 
 

The quality of the Himalayan SNP dataset was also assessed using the GATK 

VariantEval tool and the vcflib package popStats (237). In total, 8,264,072 (82%) SNPs 

are in the Single Nucleotide Polymorphism database (dbSNP) 146 with the same 

alternative alleles with consequent concordant rate of 99.14. The heterozygous/non-

reference homozygous ratio (Het/Hom Alt ratio), which can be an indicator of potential 

sample contamination if it is greater than two, was 1.26 for SNPs in the Himalayan dataset 

compared to 1.24 in dbSNP. The transition/transversion ratio (Ti/Tv ratio) for whole-

genome sequences should be around 2.1, and the Himalayan dataset follows this criterion 

for the known variants, although it is lower when the novel sites are considered. This 
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could be due to the occurrence of false positives within the novel sites and extra care is 

needed when including these variants in downstream analyses (Table 3.3).    

 

Novelty nSamples nSNPs concordance Rate SNPNoveltyRate TiTvRatio 

All 87 9938079 99.14 16.12 2.09 

Known 87 8335797 99.14 0 2.14 

Novel 87 1602282 0 100 1.86 

 

Table 3. 3 SNP call set QC metrics. Al l= all variants in the Himalayan dataset. Novel = variants found in the 

Himalayan dataset only. Known= variants present in dbSNP 146. 

 

3.2.3.1.3 Singleton counts 
 

Singletons are variants with only one alternative allele in all of the samples, and 

the number of singletons per sample is often used as a metric to assess dataset quality. 

Random sequencing errors are often seen as singletons and an elevated number could 

indicate sequencing errors. The total number of singletons for SNP variants in the 

Himalayan individuals using vcftools 0.1.14 was 2,781,024. The distribution of singletons 

per individual in each population was plotted (Figure 3.4A) and the correlation between 

the number of singletons and the mean coverage of depth per individual was analysed. 

Chetri and Tharu show the highest number of singletons, and Lhokpu the lowest number, 

but these are not due to differences of sequencing coverage (Figure 3.4B). Overall, 

Bhutanese populations are characterised by the lowest number of singletons, whereas 

Nepalese ones have higher proportions (Figure 3.4A and B). Finally, the genome-wide 

distribution of singletons was also plotted and it showed that they were uniformly 

distributed across the genome (Figure 3.4C). 
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Figure 3. 4 The distribution of singleton SNPs in the Himalayan dataset.  A. Total number per individual in 

each of the Himalayan populations. B. The correlation between the number of singleton SNPs and the 

average sequence coverage of each individual. C. Genome-wide distribution of all SNP singletons in the 

Himalayan dataset. 
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3.2.3.1.4 Site Frequency Spectrum (SFS) 
 

The site frequency spectrum at bialleic sites across all 87 samples using frequency 

bins of 0.05 was calculated with vcflib popStats (237) (Figure 3.5). The allele frequency 

is the number of non-reference alleles divided by the total number of alleles. The 

distribution is as expected, with a large excess of rare variants (<0.05) and small excess 

of high frequency variants (>0.95).  

 

 
 

Figure 3. 5 Site frequency spectrum (SFS) of the Himalayan SNP dataset.  The x-axis reports the allele 

frequency bins and the y-axis shows the proportion of the variants.  

 

3.2.3.1.5 PCA and ADMIXTURE analyses 
 

Principal component analyses (PCA) of the Himalayan dataset using both common 

(MAF> 0.01) and rare (MAF< 0.01) SNPs were carried out using PLINK 1.92 on an LD 

pruned file. The number of common variants used was 1,223,478, whereas the number 

of rare variants was 1,319,138. A PCA with the dataset including Himalayans and 1000 

Genomes Project individuals (worldwide dataset) was also computed using EIGENSOFT 

6.0 (157, 159). For this, I computed the eigenvectors with global diversity, and then the 

Himalayan individuals were projected onto it.  ADMIXTURE v1.2 (74) analyses were run 

on the Himalayan SNP dataset using the cross validation (CV) error to identify the best K 

value.  
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3.2.3.2 INDELs 
 

The quality of the INDEL calls was assessed similarly to the SNP dataset, and 

206,659 (22%) novel INDELs in the Himalayan dataset were identified that were absent 

in dbSNP 146. The Het/Alt Hom ratio was 1.37 for INDELs in the Himalayan dataset 

compared to 1.34 in dbSNP. 

 

Novelty nSamples nINDELs INDELNoveltyRate 
All 87 1043093 18.59 

Known 87 836434 0 
Novel 87 206659 100 

 
Table 3. 4 INDEL call set QC metrics. All = all variants in the Himalayan dataset. Novel = variants found in 

the Himalayan dataset only. Known = variants present in dbSNP146. 

  

The frequency distributions of the different INDEL lengths for novel and known 

INDELs in the Himalayan dataset were calculated, showing an overall slightly higher 

proportion of novel deletions compared to known ones. In contrast, there are slightly 

more known duplications than novel ones. Interestingly, at the extreme tails of the length 

distribution on both sides there are only novel INDELs, perhaps reflecting improvements 

in read length and INDEL calling compared with the dbSNP average (Figure 3.6).  
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Figure 3. 6 INDEL frequency distribution in the Himalayan dataset. The plot reports the novel and known 

INDELs in the Himalayan dataset compared to dbSNP 146. The x-axis shows the INDEL length in bins and 

the y-axis reports the INDEL frequency in the Himalayan populations. 

 

The total number of INDELs is 262,472. Similarly to SNPs, Chetri and Tharu show 

the highest number of singletons, and Lhokpu the lowest number; singletons are 

uniformly distributed across the genome. 

The whole-genome site-frequency distribution (SFS) of INDELs resembles the SNPs SFS, 

with a large excess of rare variants and slight excess of high-frequency variants (Figure 

3.7; compare with Figure 3.5).  
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Figure 3. 7 Observed folded site frequency spectrum (SFS) distribution of the Himalayan INDEL dataset. 

The x-axis reports the minor allele frequency and the y-axis the proportion of variants.  

 

A PCA using LD-pruned INDELs was carried out using PLINK 1.92. 

  

3.2.3.3 CNVs 
 

PCA was performed on both deletions and duplications using PLINK 2.0, and the 

results were compared. CNV discovery is a difficult process and there is concern that very 

rare and singleton variants can be enriched for artefacts. In previous studies, it has been 

reported that deletions identified by GenomeSTRiP showed an estimated FDR of 2.9% 

and this value is overall higher for rare variants (238, 239). Thus, I compared common 

Himalayan CNV intervals (MAF > 0.01) with the ones present in the 1000 Genomes 

Project individuals (GRCh38 LiftOver) with bedtools 2.22.0 (intersect argument) (240) to 

test if Himalayans carried novel common CNVs. Bedtools intersect searches for overlaps 

between two sets of genomic regions. I set the minimum overlap required at 0.3 as 

described in the SGDP data publication (241) (-f flag) and the fraction of overlap required 

as reciprocal for the two sets of intervals (-r flag).  Thus if two CNVs share at least 0.3 of 

their length, they are considered to belong to the same CNVR. Finally, I set a “left outer 

join” (-loj flag) to report both overlaps and no overlaps in the output.  
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3.2.4 Datasets  
 

3.2.4.1 Phasing and pruning 
 

The SNP call set on GRCh38 for Himalayan populations was phased with Eagle v2.4 

(242, 243) using the LiftOver 1000 Genomes Project data to GRCh38 as a reference panel. 

The new version incorporated a new pipeline developed by Giulio Genovese which 

includes extra processing steps applied to the 1000 Genomes Project LiftOver data to 

remove duplicated and multi-allelic variants. 

 

I have also generated two pruned datasets by filtering out SNPs and INDELs in 

high LD (r2 > 0.5) using PLINK 1.92, resulting in a dataset of 2,669,936 SNPs and 462,049 

INDELs.   

 

3.2.4.2 Datasets used for the analyses 
   

Several combination datasets were generated for different analyses because the 

comparison datasets were mapped to different human reference genomes (Table 3.5). 

Overall, the data mapped to GRCh38 were used for most of the analyses. A merged SNP-

only dataset of Himalayan samples plus the LiftOver version of the 1000 Genomes Project 

Phase 3 individuals (GRCh38), which contained 2,591 individuals and 9,636,923 SNPs, 

was used for most population demographic history analyses. The merged datasets of the 

LiftOver to GRCh37 and filtered Himalaya SNP dataset described earlier with the 1000 

Genomes Project samples or SGDP data were generated for the analyses of the Y 

chromosome, archaic ingression as well as for FineMAV for positive selection (244) .  
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Dataset Reference mapped to Analysis 

Himalaya (SNPs, INDELs, CNVs) GRCh38 Population structure and 
demography 

Himalaya + 1000GP low coverage 
data* 

GRCh38 Population  structure and 
demography, Y chromosome and 

MtDNA phylogenies 
Himalaya + 1000GP high 

coverage data 
GRCh38 Effective population size, 

population split time (MSMC2) 
Himalaya* + 10000 GP low 

coverage data 
GRCh37 FineMAV, Y chromosome phylogeny 

Himalaya* + SDGP GRCh37 Archaic introgression, Y 
chromosome phylogeny 

  

Table 3. 5 Different datasets used for the different analyses. The table reports the reference genome of the 

samples and the analyses performed with each dataset. *Data that have been lifted over and not directly 

mapped onto the reference genome reported in the table. This does not apply to the Y chromosome. 

 

3.2.5 Genetic variation analyses 
 

The genome-wide observed heterozygosity rate per individual was calculated 

using PLINK 1.92 (--het argument). For each sample, PLINK computes method-of-

moments F coefficients from observed and expected autosomal homozygous genotype 

counts: 

 

F = (Observed hom. count - Expected count) / (Total observations - Expected count) 

 

Thus heterozygosity rate was derived from PLINK’s output using the formula: 

 

Het = (N(NM) − O(Hom))/N(NM) 

 

where N(NM) is the number of non-missing genotypes and O(Hom) denotes the number 

of observed homozygous genotypes per individual (156). A pruned dataset (LD, r2 > 0.5) 

with only common variants (MAF >0.01) was used to detect Runs of Homozygosity (ROH) 

with PLINK 1.92. To maximize the detection of autozygous segments in the Himalayan 

populations (169), the parameter settings were:  the minimum number of SNPs to call an 

ROH was 100, the heterozygote allowance was zero, the missing SNP allowance was less 

than 5, and the window threshold to call an ROH was 0.05. Identity-by-descent (IBD) 
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tracts for each unphased individual within a single population were estimated using the 

IBDSeq programme (245). 

Pairwise population Fixation Index (FST) values were calculated for the Himalayan 

and worldwide datasets using EIGENSOFT 6.0 with 1000 Genomes Project admixed 

American populations removed. 

 

Phylogenetic relationships and gene flow between Himalayans and other 

worldwide populations were studied using TreeMix 1.12 (77), again with the sequencing 

data. Genetic affinity to other worldwide populations, in particular other South and East 

Asian individuals, was tested by computing outgroup f3 statistics with the phylogeny f3(X, 

Y; YRI), where X is each of the Himalayan populations and Y are the 1000 Genomes Project 

populations except admixed Americans and the Yoruba (YRI) used as an outgroup, using 

the qp3Pop function in the ADMIXTOOLS v5.0 package (82). Outgroup f3 statistics was 

computed separately for 6,106,953 common SNPs (MAF > 0.01) and 3,823,094 rare SNPs 

(MAF < 0.01) using the dataset of Himalayans and 1000 Genome Project individuals. Local 

ancestry was inferred using phased data with PCAdmix 1.0 (79). Phased VCFs were first 

converted to Beagle (246) format with a custom script as an input for PCAdmix. The South 

and East Asian populations in the 1000 Genomes Project were used as parental 

populations and Himalayan populations modelled as a mixture of them.  
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3.2.6 Demographic analyses 
 

The fine-scale demographic history of the Himalayan populations was 

investigated using several statistical approaches. 

 

3.2.6.1 Rare variant sharing 
 

Rare variants are informative about recent population demographic events and 

fine population structure. f2 variants are the rarest shared variants, with only two 

alternative alleles in the samples considered (177). Three different sharing patterns were 

analysed using custom scripts; the admixed American populations in the 1000 Genomes 

Project were excluded from these analyses: 

1. Singletons discovered in Himalayan populations shared with variants at any 

frequency in the 1000 Genomes Project.  

2. f2 variants in the merged 1000 Genomes Project and Himalayan dataset. Singletons 

discovered in Himalayan populations shared with singletons discovered in the 1000 

Genomes Project dataset. 

 

3.2.6.2 Effective population size and population split times 
 

Effective population size (Ne) and population split time were investigated using 

the multiple sequentially Markovian coalescent approach (MSMC2) (84) and SMC++ 

(247) . Single sample consensus calls and mask files with the callable region for each 

individual were generated from both Himalayan and the high coverage 1000 Genomes 

Project (remapped to GRCh38) BAMs using a combination of samtools, bcftools and the 

bamCaller.py as explained in the manual of MSMC2 and MSMC tools. The phased VCFs 

were used as input for MSMC2, which was run as explained in the MSMC tutorial with 

default parameters for both Ne and split time estimation (time segment patterning: 

1*2+25*1+1*2+1*3).  A generation time of 30 years and a genome-wide average mutation 

rate of 1.25e-8 per base pair per generation were used (84).  SMC++ for Ne estimation was 

run with the default parameters using the VCF dataset including Himalayan and 1000 

Genomes Project individuals, varying the pair of distinguished lineages for forming 



121 

 

 

 

composite likelihoods as reported in the SMC++ manual. A mask file to filter out large 

uncalled regions of the genome was used.  

 

3.2.6.3 Y chromosome and mtDNA phylogeny analyses 

  
The haplogroups for Y chromosomes were defined using yHaplo (248) . A fasta 

format of Y SNPs was generated using vcf-to-tab in vcftools and custom scripts, and used 

as an input to construct a phylogenetic tree with RAxML (version 8.2) using GTRCAT as 

the substitution model(249). The phylogenetic tree from RAxML was then manually 

rooted and visualised using FigTree v.1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/). 

The ages of internal nodes were estimated based on the SNP branch length (250) using 

the mutation rate 0.76×10−9/site/year (95% C.I. 0.67–0.86 × 10−9/site/year) (153). 

 

mtDNA haplogroups were defined using HaploGrep 2.0 . The mtDNA phylogenetic 

tree was constructed and the ages of the internal nodes estimated in the same way as for 

the Y chromosome, but using a mutation rate of 2.53 × 10−8/site/year (95% highest 

posterior density: 1.76–3.23 × 10−8) (153). The possible functional consequences of 

mtDNA heteroplasmic variants were predicted by running the Variant Effect Predictor 

(VEP). 

 

3.2.6.4 Archaic introgression 
 

Introgression maps for the Himalayan individuals were generated by Dr. Laurits 

Skov using a method he has developed and published (222). The method does not use the 

genome of an archaic sample, but instead searches for genomic regions with a high SNP 

density in the test sample of SNPs not seen in a reference population assumed to be 

unadmixed. A dataset including modern Himalayan and other worldwide individuals 

from the SGDP mapped to GRCh37 was used for this analysis, with non-African 

populations as the test and Africans as the unadmixed reference. High coverage archaic 

genomes from Denisovans (4) and the Altai (231) and Vindija (251) Neanderthals were 

used to assign introgressed segments to these species.  Only segments with mean 

probability ≥ 0.8 (corresponding to 5% FDR) were retained. Himalayan-specific 

introgressed segments were identified by comparing Himalayan segments with those in 

http://tree.bio.ed.ac.uk/software/figtree/
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other populations using bedtools 2.22.0 (intersect argument) with the minimum overlap 

at 0.5 (-f flag) and the fraction of overlap required to be reciprocal for the two sets of 

intervals (-r flag) and a “left outer join” (-loj flag) to report both overlaps and no overlaps 

in the output. These introgressed regions then were annotated using BEDOPS v2.4.35 

(252) from regulatory annotations in Ensembl GRCh37 Release 93 (54) and only those  

falling within a gene or regulatory features (distance =0) were retained. 
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3.2.7 Fine mapping of positive selection 
 

We took the advantage of the whole genome sequencing data which provide a full 

catalogue of genetic variation, both coding and non-coding, free from ascertainment bias 

to further refine the signals of selection in the Himalayan populations using three 

approaches:  

 

 Genome-wide single locus estimates of FST (253) between low and high altitude (> 

2500 meters above sea level) populations for SNPs, INDELs and CNVs respectively 

with PLINK 1.92. Variants showing FST values > 0.3 were considered significant.  

Single locus FST for the EPAS1 region between the Tibetans sequenced here and 

Chinese Han (CHB) sequences from the 1000 Genomes Project was calculated as 

a positive control for highly differentiated SNPs. Variants with FST values > 0.8 

where considered highly differentiated between Han Chinese and Tibetans. LD 

blocks within the EPAS1 region were estimated using PLINK 1.92 via Haploview 

with default parameters (58, 181). 

 The Fine-Mapping of Adaptive Variation (FineMAV) algorithm (244). FineMAV is 

specifically designed to localise a signal of population-specific selection to a single 

most likely variant, and thus to differentiate between selection-driving and 

passenger variants for functional follow-up studies. A FineMAV score is calculated 

for the derived allele of each SNP by combining its Derived Allele Purity (DAP), 

Derived Allele Frequency (DAF) and functional prediction (the CADD PHRED-

scaled C-score)(190). Thus it assigns high scores for derived alleles that are 

common, population-specific and have a strong predicted functional effect. Firstly, 

the population genetic component of FineMAV (DAPxDAF) is calculated, which 

summarises population differentiation. Then DAPxDAF is combined with the 

measure of functionality (CADD) as implemented in FineMAV to further prioritise 

highly differentiated variants and elucidate the most likely functional targets of 

selection. DAP, DAF and FineMAV values were calculated for derived and 

ambiguous alleles (annotated accordingly to Ensembl Compara) (54) using a 

custom script (SNPs only; INDELs were omitted).  
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The FineMAV analyses were performed in the following contexts:  

1. Himalayan high altitude populations (> 2500 meters above sea level) vs 

low altitude populations to explore differentiation between different 

Himalayan groups; n=2, x=4.96.  

2. Comparison between Himalayan high altitude and AFR, EAS, EUR, SAS 

(the1000 Genomes Project data) to explore high altitude specific signals; 

n=5, x=2.98.  

3. Comparison between Himalayan low altitude and AFR, EAS, EUR, SAS 

(the1000 Genomes Project data) to explore low altitude specific signal;  

n=5, x=2.71 

The top 100 outlier SNPs in the whole-genome FineMAV distribution were 

reported and some of the strongest hits commented. FineMAV analyses were run 

by Dr. Michal Szpak. 

  

 Hypoxia responsive element analysis. The EPAS1-encoded protein, HIF-2α, binds 

to a specific sequence motif called a hypoxia responsive element (HRE). To test 

whether any variant in the high altitude individuals was lying in a HRE and 

putatively affecting HIF-2α binding, possible binding motif regions for HIF2-α 

from the HOCOMOCO v11 Human TF collection (254, 255) were predicted using 

PWMScan (256) from PWMTools with default parameters (Ambrosini G., 

PWMTools, http://ccg.vital-it.ch/pwmtools) for the human reference genome 

(GRCh38). The Position Weight Matrix Logo for HIF-2α was generated by 

PWMScan only for the regions of interest: the regions with ENCODE Project data 

(GRCh38) (257) for DNA accessibility (DNase-seq) which are associated with 

transcription factor (TF) binding and histone modifications in aorta and lung 

tissues. Then the highly differentiated variants (FST >0.8-between Tibetans and 

Han Chinese) within these regions were identified.  

  

http://ccg.vital-it.ch/pwmtools
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3.3 Results 
 

3.3.1 A large high-quality sequencing dataset of 
Himalayan populations 
 

3.3.2.1 SNPs and INDELs 
 

The dataset of 87 individuals from 16 populations contained 9,938,079SNPs, 

1,602,282 novel. After filtering, there are 1,043,093 INDELs in total in the Himalayan 

dataset, 206,659 of which are novel. Deletions make up 54.2%, duplications 40.2%, and 

5.6% are classified as sequence alterations. As expected, the majority of INDELs fall 

within intronic and intergenic regions. However, 6,302 INDELs lie within coding 

sequences with different functional consequences (Figure 3.8).  

 

 
 

Figure 3. 8 Functional consequences of INDELs in the coding sequence. The pie chart reports the proportion 

of variants falling in different functional categories retrieved using VEP.   

 

 

 

 

INDELs coding sequence functional consequences

Frameshit variants Inframe deletions Inframe insertions

Coding sequence variants Stop gained Protein altering variants

Start lost variants Stop lost variants Stop retained variants
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The total of low frequency SNP variants (MAF < 0.01) was 2,961,006 SNPs and 

267,175 INDELs. The majority of these were extremely rare: 2,892,999 singletons SNPs 

and 262,472 INDELs, respectively. No correlation between number of singletons and 

depth of coverage was identified in any of the samples, and singletons were randomly 

distributed across the genome. 

 

PCA using the Himalayan samples together with other worldwide populations 

from the 1000 Genomes Project (Figure 3.9A) showed similar structures to those with 

SNP genotype data from the last chapter. Himalayan individuals lie on a cline within other 

South and East Asian populations, with Chetri and Tharu clustering with South Asians 

and the rest of the Himalayan populations genetically closer to East Asians. PCA of the 

Himalayan samples alone using only common variants displays a clear population 

separation, with the first two components of the PCA showing strong sub- clustering, with 

the Chetri plus one Tharu individual and Lhokpu populations forming outliers (Figure 

3.9B). The PCA using rare variants shows that the first two principal components 

separate the majority of the Himalayan populations from the four Chetri and one Tharu 

individuals that are extreme outliers (Figure 3.9C) due to their excess of singletons 

compared to other Himalayan populations. PCA computed using INDELs replicated the 

SNP results with Chetri, Tharu, Toto and Lhokpu forming outliers and the rest of the 

populations forming sub-clusters (Figure 3.9D).  

 

The ADMIXTURE analysis using the SNPs from the Himalayan dataset displays 

patterns consistent with the PCA, with different proportions of ancestral components 

between Nepal, Bhutan, North India and Tibet. Using the best number of ancestral 

components according to the cross-validation error (K=2), the Bhutanese, Tibetan and 

Sherpa populations are mainly represented by the red component, while other Nepalese 

populations show a mixture of green and red components. Outlier populations (Lhokpu, 

Toto, Chetri and Tharu) are characterised by the green component. The increase of one 

additional component (K=3) leads to the separation of Lhokpu and Mönpa characterised 

by the green component, and Toto, Chetri and Tharu by an additional yellow component 

(Figure 3.10). 
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Figure 3. 9 Principal component analyses (PCA). A.  PCA of the world dataset. Each dot represents a sample, 

coded by region as indicated. The Himalayan region samples lie between other East Asian and South Asian 

samples. B. PCA of the Himalayan populations alone for common SNPs variants. Chetri, Lhokpu and Toto 

act as outliers.  C.  PCA of the Himalayan populations alone for rare SNPs variants. Chetri, and one Tharu 

individuals act as extreme outliers. The rest of the samples are indistinguishable. D. PCA of the Himalayan 

populations alone for INDELs. The pattern of variation is similar to the PCA on common SNPs.  

 

 

 
 

Figure 3. 10 ADMIXTURE (K value of 2 and 3) analysis of the Himalayan samples. Purple= Bhutan, orange= 

India, Nepal=green, Gold= Tibet  

 

3.3.2.2 CNVs 
 

CNVs were investigated in the Himalayan populations, and compared with other 

worldwide populations from the 1000 Genomes Project. After CNV discovery and 

filtering, 9,302 CNVs were analysed: 9,072 located on autosomes and 230 on the X and Y. 

The dataset contains 4,497 deletions (delCNV), 1,654 duplications (dupCNV) and 3,151 

multi-allelic variants (mCNV). There are 6,820 common variants (MAF> 0.01). PCA on 

both the all variants and common variants datasets for duplications, deletions and mCNV 

display similar patterns, although duplications detect more detailed substructure. On the 

first principal component, Limbu and one Chetri individual, showing the highest 

proportion of CNVs, are separated from the rest of the populations for both deletions and 

duplications. In the PCA applied to duplications, Limbu outliers lie separated from the 

Chetri individual, and the second principal component splits the remaining samples into 

two groups. Similarly to the PCA performed on SNPs and INDELs, Tibetan, Bhutanese and 

Sherpa from Nepal mostly cluster together, whereas other Nepalese samples tend to form 

a cline and sub-groups (Figure 3.11).  
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Figure 3. 11 PCA on CNVs. The plots show the PCA on deletions (A) and duplications (B). Limbu and one Chetri 

individuals are seen as outliers.  
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GenomeSTRiP produces a high quality CNV call set, yet some further filtering and 

QC are still needed before further population-genetic analyses, as illustrated by the PCA 

plots. Although this is beyond the scope of my thesis, some known interesting CNVs in 

these populations were rediscovered in my dataset. One is a 3.4 kb deletion upstream of 

TMEM247 near EPAS1 in Tibetans (258). High altitude populations show the highest 

frequency of this deletion, with Tibetans (overall frequency 0.83) showing 19 

homozygotes and seven heterozygotes. The deletion is present in the other high altitude 

populations (Ghale, Kurtöp, Layap, Thakali and Sherpa) with an allele frequency ranging 

from 0.5 to 0.625.  The second is the alpha-thalassemia deletion in the Tharu (7) and 

Ghale. All the four Tharu individuals in the dataset carry heterozygous –α3.7 deletions, 

thus with an allele frequency of 0.5. Surprisingly, three out of four Ghale and one Tshangla 

individuals also carry the deletion, with one Ghale individual homozygous for it and the 

other three heterozygous. All the other samples in the dataset are homozygous for the 

reference allele.  
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3.3.2 Recent demographic history – genetic structure 
 

3.3.2.1 Genetic similarity and gene flow in the Himalayas 
 

The genetic structure and relationships between Himalayan populations and 

other worldwide populations were investigated using several metrics. Firstly, the aim 

was to explore the genetic relationship of the three new populations in this dataset, 

Tharu, Ghale and Lhokpu to the other Himalayans, and more generally to compare the 

patterns to those from the genotype data analysed in the previous chapter. Secondly, I 

was interested in understanding why the Tharu, Lhokpu and Chetri appeared as extreme 

outliers in the PCA.  

 

The phylogenetic tree reconstructed using TreeMix on the worldwide dataset 

displays long branches for Lhokpu, Toto, Mönpa and Chepang, in agreement with the 

genetic drift patterns. It also shows that Chetri and Tharu form separate branches from 

the rest of the Himalayan populations, and that the populations from higher-altitude, such 

as Lhasa, Layap and Sherpa cluster together, in agreement with the SNP-genotype 

analysis (Figure 3.12). This genetic pattern was also confirmed by the pairwise 

population FST analysis, which shows Lhokpu and Toto having the highest FST values in 

comparison with the other populations, and the Tibetan and Bhutanese populations 

showing more genetic affinity. These analyses thus confirmed the results from the SNP-

genotype data. 

 

The position of Chetri and Tharu as outliers in PCAs might be due to their different 

genetic affinity with other South and East Asian populations, or to gene flow events into 

these individuals. To distinguish between these two hypotheses, the Himalayan 

populations were compared with 1000 Genomes Project individuals using: 1) Pairwise 

FST; 2) TreeMix migration edges; 3) f3-outgroup statistics; and 4) local ancestry analyses 

using PCAdmix. 
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Figure 3. 12 TreeMix results from the worldwide dataset. The tree displays a phylogeny of the Himalayan 

and other worldwide populations. The x-axis represents the amount of genetic drift. The tree shows long 

branches for Toto, Mönpa, Lhokpu and Chepang, in agreement with their strong genetic drift patterns.   

 

The pairwise FST shows five clusters with high genetic affinity that reflect 

geographical distributions: the first one including African populations, the second one of 

Europeans, the third of East Asians, the fourth one of South Asians and the last one 

including 6 Himalayan populations. Interestingly, this last one includes populations from 

all the three geographical areas (Nepal, Bhutan and the Tibetan plateau). Subsequently, 

genetic affinity is also found between South Asians and Europeans, and within Himalayan 
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populations. Most of the Himalayan populations show higher genetic affinity to East 

Asians. On the other hand, Chetri and Tharu have higher genetic affinity with South 

Asians. Chetri and Tharu show also genetic similarity to Europeans. Lhokpu, followed by 

Toto and Chepang show higher genetic differentiation from the rest of the Himalayan 

populations sequenced here (Figure 3.13). 

 

 

Figure 3. 13 Heatmap of pairwise FST values for the worldwide dataset. The amount of genetic divergence 

is indicated by the colour scheme at the top left corner. 
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TreeMix analysis indicates possible gene flow into Tharu and Chetri from other 

South Asian, European and the Nepalese Limbu populations. Migration edges from 

European individuals could be due to European admixture into South Asian individuals 

or shared ancestral components (194). Finally, it is possible to detect gene flow from 

Chetri and Tharu ancestries into Toto individuals (Figure 3.14).  

 

 
 

Figure 3. 14 Migration edges for the worldwide dataset from the Treemix analysis. The colour intensity of 

the arrows indicates the migration weight.  
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The f3-outgroup statistics based on the phylogeny f3(X, Y; YRI) for both rare and 

common variants shows that the Chetri and Tharu share less genetic affinity with East 

Asian individuals (common variants: 0.155 <f3< 0.172, rare variants: 0.027 <f3< 0.037 ) 

compared to other Himalayan populations (common variants: f3>0.189, rare variants: 

f3>0.070), with Tibetans, Bhutanese, Limbu and Sherpa from Nepal showing the highest 

genetic affinity to East Asian individuals (Figures 3.15 and 3.16).  On the other hand, 

Chetri and Tharu display more genetic similarity to South Asians and Chetri show an 

excess of genetic sharing with European individuals. Interestingly, for rare variants, other 

Nepalese populations, Toto from India and Tshangla from Bhutan show more genetic 

similarity to South Asians compared to other populations.  Moreover, rare variants also 

give more detailed sharing with East Asians: Himalayan populations display more genetic 

sharing with CHB compared to CDX and KHV (Figure 3.15).  Finally, all Himalayan 

populations show a similar pattern of genetic drift when Bengali population (BEB) is used 

as a proxy for South Asia (Figure 3.15 and 3.16). This could be due to the potential 

admixture of Bengali individuals with East Asians (259, 260).  
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Figure 3. 15 Common variant outgroup f3 statistics for the Himalayan samples. The plot shows the amount 

of genetic affinity (x-axis) of each Himalayan population (y-axis) to each of the worldwide populations 

(individual panels). 
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Figure 3. 16 Rare variant outgroup f3 statistics for the Himalayan samples. The plot shows the amount of 

genetic affinity (x-axis) of each Himalayan population (y-axis) to each of the worldwide populations 

(individual panels). 
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This pattern of genetic affinity to South and East Asians is confirmed when these 

populations are used as sources in PCAdmix analysis. Tharu and Chetri individuals show 

the highest proportion of South Asian ancestry haplotypes, whereas Tibetans, display the 

lowest values. Bhutanese populations and the Nepalese Limbu and Sherpa have a low 

proportion of shared South Asian ancestry comparable to the Tibetans (Figure 3.17).  

 

 
 
Figure 3. 17 Local ancestry PCAdmix analysis. The plot shows the genome-wide proportion of South Asian 

ancestry haplotypes for each Himalayan individual.  
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3.3.2.2 Himalayan genetic variation  
 

Heterozygosity rate, runs of homozygosity (ROHs) and identity-by-descent (IBD) 

are standard parameters to study population demography. Heterozygosity is indicative 

of the genetic variation in the population and very low levels of heterozygosity are 

indicative of reduced genetic variation, for example due to events such as population 

bottlenecks and genetic drift that have severe effects on population sizes. In contrast, high 

heterozygosity suggests high levels of genetic variability, and gene flow may have played 

an important role by introducing new alleles. Himalayan populations show different 

degrees of heterozygosity, with Lhokpu, Monpa and Toto having the lowest values 

whereas Chetri and Tharu have the highest (Figure 3.18). 

 

 
 

Figure 3. 18 Heterozygosity rate in the Himalayan populations. The plot shows the genome-wide 

heterozygosity rate for each population. 
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Compared to other South and East Asians populations, Himalayan individuals 

show values of heterozygosity similar to their neighbours and in agreement with 

previous estimates (261, 262). In particular, most Nepalese, Bhutanese and Tibetan 

populations show similar levels of heterozygosity to other South Asians, whereas Lhokpu, 

Mönpa, Toto and Chepang show values similar to other East Asians, who have an overall 

lower heterozygosity rate than other 1000 Genome Project populations (heterozygosity 

ratio ≈1.4) (261)). Chetri and Tharu show the highest heterozygosity rates even 

compared to other South-East Asian samples. This could be due to the excess of rare 

heterozygous variants in these populations (Figure 3.19).  
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Figure 3. 19 Heterozygosity rate in the Himalayan populations compared to other worldwide populations.  

 

The number and length of ROHs and IBD tracts are strong predictors of population 

isolation, genetic drift and inbreeding. Similarly to the results in the previous chapter, 

ROHs are widely distributed across human populations but, generally, isolated 

populations show higher numbers of ROHs whereas large and admixed populations have 

fewer and shorter ones (263).  Similarly, IBD is a useful measurement of relatedness 

between individuals and thus used to estimate population bottlenecks and substructure 

(264). In agreement with the analyses performed in the previous chapter, Bhutanese 

populations overall show the highest proportion of ROHs whereas Tibetans have the 
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lowest. Lhokpu, Kurtöp and Thakali are characterised by the highest number and longest 

ROHs (Figure 2.6A).  

 

 
 

Figure 3. 20 Heatmap of shared IBD tracts. The plot shows the number of shared IBD tracts between 

different Himalayan individuals. The number of tracts is shown by the colour scheme in the top left corner. 

 

Lhokpu, Mönpa, Layap and Toto also show the highest number and longest IBD 

tracts, while the Nepalese Magar, Chetri and Tharu show the lowest. The pairwise matrix 

of shared IBD tracts in the Himalayan populations replicates many of the patterns of 



144 

 

 

 

genetic similarity found with previous analyses. Populations showing signatures of 

genetic drift and isolation, Lhokpu, Chepang, Mönpa and Toto, share the highest number 

of IBD segments within individuals of the same population (Figure 3.20). Tibetan, Sherpa 

and other Bhutanese populations form a cluster in agreement with the PCA, ADMIXTURE 

and FST analyses.  Another smaller cluster is formed by individuals from the Nepalese 

Ghale and Magar.  

 

3.3.2.3 Rare variant sharing 
 

The singletons (Figure 3.4) found in the Himalayan dataset tend to be shared with 

the East and South Asian populations in the 1000 Genome Project: Tibetans from Lhasa 

share the most with East Asians, and Tharu and Chetri with South Asians (Figure 3.21). 

More detailed information is gained by looking at f2 variants in all the individuals from 

the Himalayas and the 1000 Genomes Project. f2 variants tend to be shared more between 

individuals from the same population or geographical group, or between recently 

admixed groups (177) (Figure 3.22). However, within the Himalayan populations, sub-

clusters of f2 variant sharing were observed. Himalayan populations share f2 variants at 

three levels: within each population, between different Himalayan populations and with 

other South and East Asians. Magar, Ghale, Thakali and Chepang form a clear cluster, 

while Tibetans, Tharu, Chetri, Toto, Lhokpu and Mönpa form a second cluster. An 

additional cluster was formed by Tshangla, Bumthang Limbu and Kurtöp. This is 

consistent with the recent shared ancestry of the Himalayan populations within 

themselves and with other neighbouring populations. Interestingly, f2 variant sub-

clusters do not follow geographical proximity; populations that are physically distant 

group together (Figure 3.23). Finally, the sharing of the subset of f2 variants with one 

alternative allele found in Himalayan populations and one in the 1000 Genomes Project 

populations showed that, overall, all Himalayan populations share singletons mostly with 

South and East Asian individuals. Tibetans from Lhasa have the highest number of 

singletons shared with East Asians, in particular with Chinese Han (firstly CHB and 

secondly CHS), in agreement with the known recent shared demographic history of 

Tibetans and Chinese Han individuals (50).  It is important to note that the overall higher 

number of shared singletons in Tibetans compared to other Himalayan populations may 

be due to the larger sample size (27 vs 4). Chetri and Tharu display higher singleton 
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sharing with South Asians compared to other Himalayans and, overall, all Himalayan 

populations share more singletons with the Bengali populations, confirming the pattern 

of the outgroup f3 statistics. Intriguingly, Chetri and secondly Tharu show higher variant 

sharing with African populations. Chetri and Tibetan individuals show a slightly 

increased sharing with Europeans (Figure 3.18).  

 

 
 

Figure 3. 21 Heatmap of singleton sharing between Himalayan and 1000 Genomes Project individuals. The 

plot shows sharing of variants that are singletons in both the Himalayan and 1000 Genomes Project 

datasets. 

 

 



146 

 

 

 

 

 
 

Figure 3. 22 Heatmap of f2 variant sharing in the worldwide dataset. The highest f2 variant sharing is within 

populations of the same geographical region. 
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Figure 3. 23 Zoom showing the Himalayan samples from the heatmap of f2 variants in Figure 3.22. 

Himalayan populations share f2 variants within themselves and with other East and South Asian 

populations. 
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3.3.2.4 Recent population expansion 
 

3.3.2.4.1 Coalescent based demographic inference 
 

The effective population size (Ne) history of Himalayan populations was 

investigated using three methods: MSMC2 and SMC++. MSMC2 estimates effective 

population size in older times, whereas in more recent times (<~1e+04 years) it loses 

resolution because there are few very recent coalescences. SMC++ is somewhat more 

accurate in estimating Ne in recent times as it incorporates allele frequencies from a 

larger number of individuals, but it requires a considerable sample size to attain this 

potentiality. MSMC2 and SMC++ gave similar results for Ne values of the Himalayan 

populations, and in a similar time frame, with some showing an increase of Ne in more 

recent times but others maintaining low Ne. In MSMC2 runs, most of the populations 

show a Ne curve similar to other East Asian individuals, with the exceptions of Chetri and 

Tharu who display higher Ne than other Himalayan populations, and similar Ne curves to 

other South Asians (Figure 3.24). 

 

 
Figure 3. 24 MSMC2 Ne plot. The plot shows the Ne for the different Himalayan individuals for each 

population compared to other European, South and East Asians. The x-axis shows the time in years, and the 

y-axis the Ne values. 
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 Within the Himalayan samples, Chepang, Lhokpu, Mönpa and Toto show the 

lowest values of recent Ne, in agreement with a scenario of population isolation and 

genetic drift, which also supports the results from the heterozygosity rate, ROHs and IBD 

analyses. On the other hand, Chetri, Tharu and Lhasa show the highest recent Ne values 

within the Himalayas, in agreement with their recent population growth (Figure 3.25).   

 

 
 

Figure 3. 25 MSMC2 Ne plot. The plots show the Ne for the different Himalayan individuals coloured by 

country. The x-axis shows the time in years and the y-axis the Ne values. A. Nepal, B. Bhutan, C. Tibet, D. 

India. 
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Overall, SMC++ runs display comparable results to MSMC2, with generally low 

recent Ne values across Himalayan populations. Chetri, Tharu and Tibetans from Lhasa 

show the highest Ne compared to other Himalayans. The higher Ne and different curve 

shape in Tibetans may be due to the bigger sample size. Lhokpu show the lowest Ne 

together with Mönpa and Toto (Figure 3.26). It is important to note that the low sample 

sizes for most Himalayan populations prevent reliable estimates in recent times and the 

drop in Ne in recent times in some curves may be affected by this technical limitation. 

 

 
 

Figure 3. 26 SMC++ Ne plot. The plots show the Ne for the different Himalayan individuals, together with 

CEU, CHB and GHI. The x-axis shows the time in years and the y-axis the Ne values. 

 

3.3.2.4.2 Y chromosome and mtDNA demographic inference 
 

The Y chromosomes and mitochondrial DNA (mtDNA) of 87 Himalayan 

individuals were studied and compared with other worldwide populations to understand 

the patterns of population structure and migration as reflected by uniparental makers. 

Both Y chromosome and mtDNA haplogroups of the Himalayan individuals show a 

mixture of South and East Asian lineages. The most common haplogroups for the Y 

chromosome are D1 and O2. The O2 lineage, common in South-East Asian populations 



151 

 

 

 

(265, 266), is the most widespread in the Himalayan region (Figure 3.27). Except for 

Layap, at least one individual from each population belongs to the O2 lineage.  Within O2, 

O2a1 and the O2a2b1 form two separate clades (Figure 3.27). 

 

 
 

Figure 3. 27 Map of Y chromosome haplogroups. The circle areas are proportional to the sample size 

(Bhutanese, Nepalese and Indian = 4, Lhasa=27). 

 

The phylogenetic tree of the Himalayan Y chromosomes plotted together with the 

SGDP samples showed the expected structure, with the Himalayan individuals closely 

clustered with either East or South Asians (Figure 3.28). The most striking feature is the 

star-like expansion of O2a2b1 lineages. Its TMRCA is around 1000 years ago, suggesting 

an enormous male population expansion at this time (Table 3.6). In addition, smaller star-

like expansions are seen in D1a2a1 and R1a1a1b2. The D lineage, that is common in 

Tibetan and Japanese and Andamanese populations (267), is present in Tibetan, Sherpa 

and Layap individuals with the haplogroup D1a2a, whereas the D1a1a is shared between 

Tibetans, one Mönpa and one Limbu individuals. It is interesting to note that the D1a2a1 

cluster contains all high altitude populations (Tibetans, Sherpa and Layap), resembling 

the pattern seen before in this chapter from autosomal data (Figure 3.28). The split time 

for the D lineages are very recent with a TMRCA around 600 years ago (Table 3.6). These 

times are consistent with one another and with the recent split time between the high 
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altitude populations (see the section below). Although the O2 and D haplogroups, that 

indicate an East Asian genetic substrate, are the most prevalent in the samples, South and 

Central Asian haplogroups are also present: the R1a1* haplogroup in Chetri, Layap and 

Tharu individuals showing recent split times although older than O2a2b1 and D1a2 

lineages (TMRCA ~5800 years ago) (Table 3.6) and the R2a* in Chetri and Tshangla that 

are mostly prevalent in the Indian sub-continent (268).  

 

Haplogroup TMRCA  (years ago) 95% C.I. TMRCA (years ago) 
O2a2b1 ~ 1,100 ~980-1,250 

R1a1a1b2 ~5,800 ~5,100-6,600 
D1a2a1 ~580 ~500-640 

 

Table 3. 6 Y chromosome split times within Himalayan individuals. The table reports the TMRCA   and their 

95% C.I. for most prevalent lineages in the Himalayas.  

 

The phylogenetic tree reconstructed using the 1000 Genomes Project samples, 

both GRCh37 and GRCh38, show a very similar phylogeny to the one reconstructed with 

the Simon Diversity Project individuals. (APPENDIX A).  
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Figure 3. 28 Phylogenetic tree of the Y chromosomes 

of Himalayan and worldwide (SGDP) samples. The 

branches are coloured to indicate the haplogroup and 

the triangles represent SGDP lineages absent from 

the Himalayan individuals. The high altitude 

indivduals are coloured in green. 
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The mtDNA analysis shows substantial haplogroup variability, with a mixture of 

East and South Asian lineages (Figure 3.29). The most common lineages are M and the D.  

However, a clear separation between haplogroup distributions is noticeable. The D 

haplogroups, prevalent in North and Eastern Asia (269), are mostly seen in Nepal and the 

region neighbouring it, where Lhokpu and Toto live. The M lineage is widespread in South 

and East Asia with M2, M3, M4 and M5 mostly present in South Asia (270) and also found 

in lowland Himalayan populations.  In contrast, high altitude populations from Tibet, 

Bhutan and the Sherpa show mainly M9a that previously has been associated with 

hypoxic adaptation in Tibetans (271). Sherpa also carry lineages within the A and C 

haplogroups which have previously been reported to be Sherpa-specific (117). 

 

 
 

Figure 3. 29 Map of mtDNA haplogroups. The circle areas are proportional to the sample size (Bhutanese, 

Nepalese and Indian = 4, Lhasa=27). 

 

In contrast to the Y chromosome, Himalayan mtDNAs do not form large clades on 

the phylogenetic tree, but tend to be dispersed with other worldwide individuals, in 

particular from South and East Asia. A main cluster of Himalayans is formed by 

individuals of the haplogroup M9a1a (Figure 3.30).  
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Figure 3. 30 Phylogenetic tree of mtDNA of 

Himalayan samples and other worldwide 

individuals from the 1000 Genomes 

Project. The branches are coloured to 

indicate the haplogroup.  Zooms of the 

M9a1a and D4 haplogroups are indicated 

in the boxes. 
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Some of the terminal branches in the different haplogroups, in particular M, 

include two or more Himalayan individuals with identical sequences, and thus indicate 

very recent divergence. The oldest pairwise split time is dated around 4,700 years (95% 

C.I. 3,700-6,800 years) between one Magar and one Tharu individuals belonging to the 

haplogroup U. I found 25 heteroplasmies that, according to VEP, are all intergenic and 

without any identifiable functional consequences. 

The analyses of the Y chromosome and mtDNA in the Himalayans show that both are 

characterised by South and East Asian lineages. The most striking feature is that Y 

chromosome haplogroups D, R1a and especially O2 are widespread and common in the 

region and show signatures of a strong recent male-specific expansion. (Figure 3.28 and 

3.30, Table 3.6).  

 

3.3.3 Long term demographic history 
 

3.3.3.1 Population split times from other Asians 
 

Population split times were estimated using MSMC2, taking the 50% cross-

coalescence rate as the point estimate for the split time. All of the Himalayan populations 

split from Africans around 50,000-60,000 years ago (Figure 3.31A), as expected. Chetri 

shows less than full separation from the Africans at the most recent times, which could 

be due to the gene flow from Africans, as also seen in ALDER results in the previous 

chapter (Figure 2.10). This is also true for the split time with Europeans which is around 

25,000-35,000 years ago for all the Himalayan populations, but incomplete for Chetri 

(Figure 3.31B).  All of the Himalayan populations split from South Asians around 10,000-

20,000 years ago, with Chetri, Tharu, and Toto splitting most recently at around 10,000-

11,000 years ago and also showing recent gene flow from South Asians. Ghale also display 

recent gene flow from South Asian populations (Figure 3.31C). All of the Himalayan 

populations have recent split times from East Asians at 10,000 years ago or less (Figure 

3.31D); the Tibetans from Lhasa and other high altitude populations split from the 

Chinese Han around 9,000 years ago. 
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Figure 3. 31 MSMC2 analysis of split times. The x-axis shows the time and the y-axis the cross-coalescence 

rate. A rate of 0.5 is taken as indicative of population separation. The curves represent the split time for 

each Himalayan population with the continental populations indicated in the legend. A. Africa, B. Europe, 

C. South Asia, D. East Asia  
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Himalayan populations separated from each other between 3,000 and 10,000 

years ago, and many of them are not clean splits (Figures 3.32, 3.33, 3.34 and 3.35). High 

altitude populations show very similar and recent split times, and lack of full separation 

for many of them, emphasising their genetic similarity and the idea of a single ancestral 

high altitude population that split from East Asians and then diverged into the current 

communities (Figure 3.32A). When comparing populations from Tibet and Bhutan, all 

with a high proportion of East Asian ancestry, Tharu, Chetri and Toto split from Tibetans 

at an earlier time (Figure 3.32B). Although these estimates cannot be interpreted too 

literally because splits are complicated by gene flow, admixture and possible technical 

biases due to phasing, they nevertheless provide important insights into their population 

demography.  

 

 
 

Figure 3. 32 MSMC2 analysis of split times between Himalayan populations.  A. High altitude Himalayan 

populations split times from Tibetans (Lhasa). B. Split times between Chetri, Tharu and Toto from Tibetans.  
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Figure 3. 33 MSMC2 analysis of split times between Himalayan populations.  A. Himalayan populations split 

times from Toto. B. Himalayan populations split times from Tibetans (Lhasa). C. Split from Tharu D. Split 

from Thakali. 
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Figure 3. 34 MSMC2 analysis of split times between Himalayan populations.  A. Split from Chetri B. Chepang 

C. Ghale D. Limbu E. Magar F. Sherpa 
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Figure 3. 35 MSMC2 analysis of split times between Himalayan populations.  A. Split from Bumthang B. 

Kurtöp C. Layap D. Lhokpu E. Mönpa F. Tshangla 
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3.3.3.2 Archaic introgression landscape in the Himalayas 
 

Denisovan and Neanderthal introgressed genetic material in present-day 

Himalayans was investigated using a novel method that does not require an archaic 

reference and is thus more powerful in finding intregressed segments, but allows 

subsequent mapping to these archaic genomes (222). Compared with other worldwide 

individuals from the SGDP, the genome-wide distribution of Neanderthal segments in the 

Himalayans is similar, as expected from a model of shared Neanderthal ancestry in all 

non-African populations due to a single admixture event soon after the exit from Africa 

(contributing approximately 2%) (272) (Figure 3.36). Each Himalayan individual carries 

around 200-260 Neanderthal regions (Vindija + Altai Neanderthals) with a mean 

probability ≥ 0.8. The number and distribution of introgressed segments from the Vindija 

and Altai Neanderthals were very similar across all the individuals tested. Each 

Himalayan individual carries around 50-60 additional Denisova segments, a lot less than 

in Melanesians, as expected (Figure 3.36). The genome-wide distribution of Denisovan 

introgressed segments in Himalayans is similar to those in other East Asian populations 

and more than in South Asians. A total of 2,635 Denisova introgressed segments were 

inferred in the Himalayan individuals, 479 of which are not shared with other SGDP 

worldwide individuals (minimum overlap within segments set at 0.5 to call a shared 

segment). Overlapping the introgressed segments with known gene and regulatory 

annotations from Ensembl revealed 239 to explore for the possible functional impact.  

 

 



163 

 

 

 

 
 

Figure 3. 36 Comparison of archaic introgressed segments in different populations. The green and blue 

segments are Neanderthal (most of the blue are covered by green ones as shared between Altai and 
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Vindija), and the red segments Denisovan. The height of the coloured bar is proportional to the number of 

individuals carrying the segment. A. Nepal, B. Bhutan, C. Tibet, D. India, E. East Asia, F. Melanesia 

 

Because the introgressed regions potentially contain a mix of modern human, 

Neanderthal and Denisovan variants, I specifically extracted SNPs predicted to be 

Denisovan-like by the method. Within these 239 regions, 1,060 SNPs are Denisovan 

specific. I ran VEP on these variants to predict specific function and most likely gene 

association for each of them. Six variants were predicted to be missense and nine 

synonymous, 164 fall within regulatory regions and three are splice region variants 

(APPENDIX B). Possible evolutionary implications of these variants are described later in 

this chapter. 

EPAS1 has been widely studied in Tibetans because they carry an extended 

introgressed Denisovan haplotype associated with high altitude adaptation (104). Thus, 

I have explored this region in more detail, comparing Himalayans with other worldwide 

populations from the SGDP dataset. The introgressed EPAS1 region is widespread across 

the Himalayan populations (127) but mostly absent from other worldwide populations. 

In particular, all Melaneasian individuals examined lack the introgressed EPAS1 region, 

supporting the idea of two pulses of Denisovan introgression, one involving both 

Melanesian and East Asian and a second affecting only East Asians (36). Nevertheless, the 

absence of the EPAS1 introgressed region from Melanesians could also be the result of 

negative selection in this region. Within Himalayans, the region extends over more than 

~350 kb including sequences both upstream and downstream of EPAS1 (Figure 3.38). 

Although the Denisovan segments differ between individuals, EPAS1 and the downstream 

region are present in the majority of Himalayans and include six genes with a complicated 

LD pattern (Figure 3.37). 
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Figure 3. 37 Archaic 

segments near EPAS1. 

Each horizontal lines 

represents an 

individual; black dots 

show archaic SNPs and 

the colour the 

geographical origin of 

the individual.  The two 

black vertical lines 

show EPAS1 gene. 
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3.3.4 Fine-scale positive selection signals  
 

Positive selection in the Himalayan populations was investigated using three 

major approaches to look for new candidate signals and refine the ones reported in the 

previous chapter. Genome-wide single-locus FST (60) between low and high altitude 

Himalayan populations for SNPs and INDELs replicated two regions reported in the last 

chapter, EPAS1 on chromosome 2 and HLA-DQ on chromosome 6 with FST > 0. 3, and also 

discovered a new region on chromosome 7 overlapping the gene ArfGAP With Dual PH 

Domains 1 (ADAP1) with FST between 0.25 and 0.32 (Figures 3.38A and B). ADAP1 is 

involved in the B Cell Receptor signalling and Arf6 signalling pathways. Single locus FST 

of deletions and duplication only replicated the known Tibetan-specific deletion around 

EPAS1 with FST of 0.45 between high and low altitude populations, and found one 

duplication on chromosome 17 (chr17: 46262318-46270696) with derived allele 

frequency of 0.23 in the low altitude populations and absent in high altitude populations 

(Figure 3.38C). This duplication overlaps with a promoter region and it was also found at 

frequency of 0.48 in South Asians in the 1000 Genomes Project (chr17:46264046-

46289131), so the presence for this duplication in Chetri, Toto, Chepang and Tharu could 

be explained by their South Asian genetic background and admixture. 
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Figure 3. 38 Manhattan plots of genome-wide FST between low and high altitude Himalayan populations. 

The x-axis shows the genomic positions and the y-axis the FST values. Each dot is a variant. A. SNPs B. INDELs 

C. CNVs (duplications and deletions). 
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Single locus FST values for the EPAS1 region between Tibetans and Chinese Han 

are very high: In a region of more than 300 kb containing 1,558 SNPs, 95 showed FST ≥ 

0.8, and of which 455 are derived variants in the Denisova genome (Figure 3.39). Variants 

with the highest FST values lie within EPAS1 (FST ≥ 0.9), followed by the region 

downstream of TMEM247 and ATP6V1E2 (FST ≥ 0.8). It is difficult to identify the positively 

selected target variant(s) from these numbers alone, although one of them, rs150877473 

(chr2:46360880-46360880, FST of 0.91), is predicted to fall into a splice site with a 

derived allele frequency of 0.85 in Tibetans and 0.01 in Han Chinese(132).  The derived 

allele (G) has also been associated with Primary familial polycythemia (273).   

 

Figure 3. 39 Manhattan plot of single-locus FST values around EPAS1 between Tibetans and Han Chinese. 

The x-axis shows the genomic positions and y-axis the FST value. Each dot is a variant. The green dots are 

derived variants in the Denisova genome. The black and red lines represent LD blocks within the region. 
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In the attempt to narrow down casual variants, the FineMAV algorithm was 

applied to compare low versus high altitude Himalayan populations, and low and high 

altitude Himalayan populations, to other worldwide populations (1000 Genomes 

Project). FineMAV picked up a strong peak underlying selection in EPAS1 in high altitude 

populations compared to low altitude ones, with the strongest hit being an intronic 

variant rs141366568 (Figure 3.40A). Out of 100 top outliers, almost half (47) fall in or 

nearby EPAS1. This is similar to a pattern of multiple selection candidates observed for 

other adaptively introgressed genomic regions in Europeans (244). The second strongest 

peak in high altitude populations was observed on chromosome 6 in high altitude 

populations and included a missense variant (rs11551421) in HLA-DPB1 as the top 

scoring candidate, followed by variation in Collagen Type XI Alpha 2 Pseudogene 1 

(COL11A2P1) and Orofacial Cleft 1 Candidate 1 (OFCC1) (Figure 3.40A, APPENDIX C) 

(FineMAV score ≥ 3) (Figure 3.41A). On the other hand, no convincing low altitude 

specific adaptation signals were observed. The strongest hits included a missense variant 

on chromosome 2 in the Tenascin N (TNN) gene (rs4894028) previously associated with 

skeletal and cardiac myopathy (274, 275) and two synonymous variants on chromosome 

11 in the Neuron Navigator 2 (NAV2) gene (rs1867115), and on chromosome 5 in the 

DEAD-Box Helicase 41 (DDX41) gene (rs148853192) respectively (APPENDIX C) Figure 

3.40B). However, the derived allele frequency of these variants in low altitude 

populations is around 015-0.20, as seen in other South Asian populations (~0.10-0.25); 

therefore the observed signals illustrate differentiation between high and low altitude 

populations, rather than strong positive selection specific to lowlanders. 
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Figure 3. 40 Manhattan plot of genome-wide FineMAV scores in Himalayans. FineMAV scores calculated for 

genome-wide SNPs in: A. High altitude populations (run against low altitude populations); B.  Low altitude 

populations (run against high altitude populations). Each dot in the Manhattan plots represents a single 

SNP plotted according to coordinates in GRCh37. The threshold (dashed lines) was set to include the top 

100 variants. 
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Subsequently, high and low altitude Himalayans were compared to worldwide 

populations from 1000 Genomes Project phase 3 (AFR, EAS, EUR and SAS) to detect high 

and low latitude specific signals, respectively (Figure 3.41 A and B). Apart from a strong 

EPAS1 signal in highlanders, we also detected a peak on chromosome 22 underlying the 

Von Willebrand Factor Pseudogene 1 (VWFP1), the TPTE Pseudogene 1 (TPTEP1) and the 

XK Related 3 (XKR3) genes found in both high and low altitude populations. This signal is 

shared by both high and lowlanders, therefore was not picked up in the previous 

analyses, and appears to be specific to Himalayan region (found at ~0.7 frequency in 

Himalaya but rather rare elsewhere). However, the function of those genes remains 

enigmatic. Other Himalayan-specific signals shared across altitudes include an intronic 

variant in the Myomesin 2 (MYOM2). MYOM2 is expressed in heart and skeletal muscles 

and interconnects the major structure of sarcomeres (276). Similarly, a signal underlying 

the Serine and Arginine Rich Splicing Factor 10 (SRSF10) on chromosome 1 was picked 

up, a gene that plays a crucial role in cell survival under stress conditions by inhibiting 

the splicing machinery (277). Variants in genes linked to pain perception, thermal 

sensitivity and olfaction were also picked up (CACNA2D3, TXNDC15, TAAR5). Two of the 

top scoring candidates were described as disease associated: missense rs140598 in 

Fibrillin 1 (FBN1) associated with cardiovascular abnormality and Marfan syndrome 

(278), and splice donor rs143909348 in Serine Protease 1 (PRSS1) associated with 

pancreatitis (279). One of the top scoring variants (rs608415) in lowlanders is intronic 

and lies within the Killer Cell Immunoglobulin Like Receptor, Three Ig Domains and Long 

Cytoplasmic Tail 1 (KIR3DL1) gene, involved in the immune response. FineMAV has also 

picked-up well know East Asian signals of selection which are shared with Himalayans, 

namely causal SNPs in ABCC11, EDAR, FUT2, PCDH15, PRSS53 and ZAN (244). However, 

the strength of the signal on those SNPs is reduced by allele sharing with the EAS used in 

this analysis (Figures 3.41 A and B, APPENDIX C). 
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Figure 3. 41 Manhattan plot of genome-wide FineMAV scores in Himalayans. FineMAV scores calculated for 

genome-wide SNPs in: A. High altitude populations (run against 1000GP populations); B. Low altitude 

populations (run against 1000GP populations). Each dot in the Manhattan plots represents a single SNP 

plotted according to coordinates in GRCh37. Yellow dots represent known candidates of positive selection 

in East and South Asians. The threshold (dashed lines) was set to include the top 100 variants. 
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Finally, I investigated whether any of the highly differentiated variants between 

Tibetans and Chinese Han (FST ≥ 0.8) fell within an HIF-2α (EPAS1) binding motif, hypoxia 

responsive element (HRE). The HIF-2α core binding motif is ACGTG with a 2 bp flanking 

region at each side making the extended motif (Figure 3.42). PWMScan predicted 13,198 

genome-wide HIF-2α binding sites on both DNA strands with a p-value threshold of 

1.000e-05 and a cut-off percentage of 99.59%. A total of 1,254 SNPs found in Tibetan 

samples fell within these regions, of which 75 overlapped with broad peaks and 45 with 

narrow peak intervals in aorta tissue, while 81 lay in broad peak regions and 41 in narrow 

peaks in lung tissue. However, only one SNP (chr10: 1056621: C/G), falling in a broad 

peak in aorta tissue, is highly differentiated between Tibetans and Chinese Han. It is fixed 

in Tibetans and absent in Chinese Han (FST =1) and it overlaps with a promoter region 

according to Ensembl Regulatory features. The predicted HIF-2α binding motif is 9 bp on 

chromosome 10:1056617-1056626 (zero-based coordinate system: first base is 0) falling 

in the WD Repeat Domain 37 (WDR37) gene and overlapping with a promoter region.  

 

 
 

Figure 3. 42 HIF-2α Position Weight Matrix Logo. The height of each letter represents its specific weight or 

importance within the motif.  

 

WDR37 is member of a family of genes involved in gene regulation, signal 

transduction and cell cycle progression. The highly differentiated variant is at position 4, 

within the binding core motif (Figure 3.42) and a change from C->G is predicted to 

strongly affect the binding and potentially disrupt the binding site.  However, this variant 
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is present also in most of the other Himalayan individuals and is not highly differentiated 

between low and high altitude populations.  
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3.4 Discussion 
 

This study further refines the Himalayan population demographic history using 

both autosomal and uniparental markers of SNPs, INDELs and CNVs.  It also attempts to 

refine the signals of positive selection to pinpoint the potential functional variants.  

 

In the broadest sense, all the Himalayan populations share proportions of their 

ancestry with other South and East Asian individuals (Figure 3.9A). Nevertheless, within 

Himalayans, population structure is present with Chetri, Tharu, Lhokpu and Toto forming 

outliers in the PCA for both SNPs and INDELs, and in the ADMIXTURE analysis. Tibetan, 

Bhutanese and Sherpa samples cluster together replicating the pattern seen in the 

previous chapter (Figures 3.9 B, C, D and 3.10).  On a finer scale, Himalayan populations 

are described by different proportions of South and East Asian genetic background and 

gene flow from them (Figures 3.15, 3.16 and 3.17). Chetri and Tharu show more genetic 

affinity with South Asians compared to other Himalayan populations and this can explain 

their outlier status in the PCA (Figure 3.9B, C, D). The genetic affinity to South Asians is 

also supported by the high rare variant sharing (f2 and singletons) between Chetri and 

Tharu with South Asian individuals (Figures 3.21, 3.22 and 3.23). Overall, Himalayan 

populations share rare variants within themselves and with neighbouring populations 

suggesting that the connection between these populations extends into very recent times 

(Figures 3.21, 3.22 and 3.23) (280). However, Himalayan populations showed very 

diverse demographic histories. Lhokpu and Toto, followed by Chepang and Mönpa, 

showed extreme genetic drift, replicating the conclusions of the previous chapter, 

characterised by long branches in TreeMix analysis, lower heterozygosity rates (Figure 

3.12) and an increased number of ROHs and shared IBD segments (Figure 3.20), as well 

as very low effective population sizes (Figures 3.25 and 3.26).  In contrast, Chetri and 

Tharu show higher heterozygosity than other populations and carry a significantly higher 

proportion of singletons (Figures 3.4, 3.18 and 3.19), as well as a recent increase of 

effective population size detectable by MSMC2 and SMC++ (Figures 3.25, 3.26), which can 

be explained by very recent gene flow with South Asians. Tibetans are the closest 

population to East Asians (Figure 3.21), in particular Han Chinese (CHB), as expected 

(Figure 3.31) (50, 99).  

 



176 

 

 

 

Himalayan populations show recent split from one another in the last 5,000-9,000 

years. Some of the populations are not completely separated, and show signatures of gene 

flow (Figures 3.32, 3.33. 3.34 and 3.35). In particular, high altitude population show very 

recent split times (between 3,000 and 5,000 years ago) and several are not completely 

separated (Figure 3.32, 3.33, 3.34, 3.35). This supports the hypothesis that high altitude 

populations derive from a single ancestral population that separated from lowland East 

Asians in the last 10,000 years, and then spread and diverged into different populations 

across the Himalayan region in recent times. On the other hand, Chetri and Tharu split 

first from other Himalayan populations in agreement with their lower genetic affinity to 

other Himalayans and higher affinity to South Asians (Figure 3.32B, 3.33, 3.34, 3.35).  

 

The presence of South and East Asian admixture and the recent split times within 

Himalayans is also supported by the Y chromosome and mtDNA analyses (Figures 3.28 

and 3.30), and many lineage split times within the last 5,000 years (Table 3.6). The 

widespread distribution of O2, R1a and D Y chromosome haplogroups, the strong 

clustering of these on the tree and the recent split times within them suggest rapid 

spreading within the region driven by males (Figures 3.27, 3.28 and Table 3.6).    

 

Himalayan populations show a distribution of archaic introgressed tracts similar 

to other South-East Asian populations. However, they carry 239 segments not present in 

other populations (SGDP), some of which overlap with genes and contain Denisovan-

specific SNPs (Figure 3.36). Within the regions overlapping genes, a missense variant 

(rs35211496) has been found in TNFRSF11A on chromosome 18 and a missense and 

synonymous variants (rs76335535, rs139705553) in CYP2F1 on chromosome 19. 

TNFRSF11A codes for a receptor that is essential for osteoclast and lymph node 

development, and been associated with bone pathologies such as arthritis (281). CYP2F1 

codes for a member of the cytochrome P450 superfamily of enzymes and catalyses 

reactions involved in drug metabolism. These genes are involved in immune response 

(282) and xenobiotic biotransformation (283) respectively, and introgressed segments 

in these genes could have played an important role in the adaptation to new 

environments and against pathogens (284-286). The EPAS1 introgressed region is 

widespread across Himalayan individuals and spans over 300 kb downstream and 

partially upstream of EPAS1 (Figures 3.37 and 3.39). EPAS1 itself and the downstream 
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region are enriched of Denisova-specific variants (Figures 3.37 and 3.39). Melanesian 

individuals do not carry the EPAS1 introgressed region, supporting the idea of two pulses 

of Denisovan admixture in Melanesian and East Asians (36).  

 

The high altitude signals of selection in EPAS1 and HLA-DP/DQ from the previous 

chapter were replicated here, and an additional novel region identified (Figure 3.38, 

Figure 3.40A) on chromosome 7 near ADAP1 using both SNPs and INDELs.  ADAP1 is 

regulated by ERB44, which is a direct regulator of HIF-1α and is necessary for the 

transcription of known HIF-1α target genes.  ADAP1 is involved in intracellular signalling 

and microtubule regulation (287, 288). No low altitude specific signal was detected. The 

extensive shared ancestry and gene flow with surrounding populations have decreased 

differentiation and, thus, population-specific derived allele frequency (Figure 3.40B). 

Interestingly, positive selection signals shared between low and high altitude populations 

(Himalayan-specific) were identified. The KIR3DL1 gene is involved in viral immunity and 

it has been linked with immune response against malaria in individuals living in the 

Solomon Islands (Melanesia) (289) (Figure 3.41 A and B).  This gene represents one of 

the highest FineMAV scores in lowlanders and it could be associated with resistance 

against malaria in populations living at the foothills of Himalayas, in the Terai tropical 

forest. Although many highly differentiated variants have been discovered in the EPAS1 

locus, sequence variation data alone were not sufficient to pinpoint the functional 

variants due in part to the complicated LD patterns in the region. Thus, in vitro functional 

exploration of the EPAS1 region is needed to understand the molecular mechanism of 

high altitude adaptation and narrow down the important functional variants within the 

EPAS1 locus. 
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4. Functional investigation of EPAS1 in high 
altitude adaptation 

4.1 Introduction 
 

The first genome-wide surveys of high altitude adaptation in Tibetans were 

carried out in 2010. In one study, using a cohort of Tibetans, the authors found a cluster 

of 31 EPAS1 SNPs in high linkage disequilibrium that correlated significantly with lower 

haemoglobin concentration in these individuals (145). In a second study, using 50 exome 

sequences from individuals of Tibetan ancestry, the authors reported that variants in 

EPAS1 exhibited the strongest signal for high altitude adaptation followed by those in 

other genes associated with the response to hypoxia (99). Several SNPs in and around 

EPAS1 on chromosome 2 had a striking allele frequency difference between highland 

Tibetans and lowland dwelling Han Chinese samples (99). Subsequently,  a more detailed 

analysis of the EPAS1 region by sequencing the whole region of 40 Tibetans and 40 Han 

Chinese samples found that the region had an unusual haplotype structure that could be 

accounted for introgression of DNA from an archaic human species, the Denisovans, into 

modern humans (104). The authors reported that the core Denisovan haplotype in 

EPAS1, which was characterized by five derived alleles of closely linked SNPs (AGGAA) 

lay within a ~32.7 kb introgressed region. Several SNPs in this region were highly 

differentiated and included those with the highest FST value between Tibetans and Han 

Chinese, so this region was therefore considered the best candidate for contributing to 

the high altitude adaptation phenotype in Tibetans (104). 

High coverage whole genome sequencing of 87 Himalayan samples has, as 

discussed in the previous chapter, now shown that the total length of the introgressed 

region spans a ~300 kb genomic region that includes six genes and has an extended LD 

pattern that makes it difficult to narrow down putative functional variants (119). The 

highest FST values between Tibetans and Han Chinese are within the previously reported 

~32.7 kb region; within this region, the five SNPs of the Denisovan core and a candidate 

regulatory variant (rs370299814) upstream it are within the highest differentiated 

between Tibetans and Han Chinese and, thus, they are good functional candidates for 

being positively selected (127). The availability of a testable phenotype described in the 

first chapter, such as the low red blood cell count and low haemoglobin levels in Tibetans, 
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and these genetic candidates make it possible to investigate the underlying biological 

function of high altitude adaptation in Himalayans at a molecular level. A first attempt at 

understanding the role of EPAS1 in high altitude adaptation indicated that the gene was 

somehow downregulated in Tibetans which was in agreement with the low red blood cell 

count in this population (209). However, the experimental conditions used in this study 

could confound results related to hypoxic adaptation, as they compared expression 

profiles of lowlanders sampled at only low altitude with Tibetans samples only at high 

altitude without having reciprocal controls. Moreover, its population samples were not 

properly genetically classified prior to inclusion, with no genotype data available. So, I 

have attempted to address these issues by conducting in-silico analyses and in vitro 

experiments to study the expression levels of EPAS1 at different levels of oxygen in the 

human lymphoblastoid cell lines (LCLs) with and without the introgressed haplotype 

from the 1000 Genomes Project. 

The aims in the chapter, were first to develop a hypoxic protocol that could be 

used to test if the commercially available LCLs could be used as a cellular model for 

studying EPAS1 gene expression. If so, the differentiation of gene expression in the cell 

lines with and without the introgressed haplotype was assessed using both quantitative 

PCR (qPCR) and RNA-sequencing (RNA-Seq).  
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4.2 Material and methods 
 

4.2.1 Samples 
 

Twelve human LCLs and one human lung epithelium cell line (A549) were used in 

this study (290). LCLs grow in suspension and tend to form clusters of cells in culture, 

while the A549 cell line is derived from adenocarcinomic human alveolar basal epithelial 

cells and the cells form a monolayer adherent to the culture flask (291). The LCLs were 

from the 1000 Genomes Project populations (177) and obtained from the NHGRI 

Repository at the Coriell Institute for Medical Research. These included ten cell lines 

belonging to the Chinese Dai population from Xishuangbanna (CDX), China and one 

control sample of European ancestry (CEU) and an additional control sample of Mexican 

ancestry (MXL) which was only used for the RNA-seq experiment (Table 4.1). Four of the 

LCLs are heterozygous for the derived alleles of the five core SNPs in the intogressed 

haplotype (AGGAA) within the EPAS1 region. Within these, three out of four are 

heterozygous for rs370299814. The A549 cell line is commercially available and vials 

were provided by another laboratory (Team 147, Paul Kellam’s lab) within the Wellcome 

Sanger Institute.  
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  EPAS1 EGLN1 ATP6V1E2 

  Core SNPs in the introgressed haplotype (“AGGAA”)    

  rs115321619 rs73926263 rs73926264 rs73926265 rs55981512 rs370299814 rs186996510 rs12097901 rs12986653 

Pop Cell line G/A A/G A/G G/A G/A G/A G/C C/G G/A 

CDX HG00844 G/G A/A A/A G/G G/G G/G G/G C/G G/G 

CDX HG01031 G/G  A/A A/A G/G G/G G/G G/C G/G G/G 

CDX HG00881 G/G A/A A/A G/G G/G G/G G/G C/C G/G 

CDX HG00978 G/A A/G A/G G/A G/A G/A G/G G/G G/A 

CDX HG02390 G/G A/A A/A G/G G/G G/G G/G C/G G/A 

CDX HG02396 G/A A/G A/G G/A G/A G/G G/G C/G G/G 

CDX HG02397 G/A A/G A/G G/A G/A G/A G/G C/G G/A 

CDX HG02190 G/G A/A A/A G/G G/G G/G G/G G/G G/G 

CDX HG02187 G/A A/G A/G G/A G/A G/A G/G C/G G/A 

CDX HG02153 G/G A/A A/A G/G G/G G/G G/G C/G G/G 

CEU GM12878 G/G A/A A/A G/G G/G G/G G/G C/C G/G 

MXL GM19661 G/G A/A A/A G/G G/G G/G G/G C/C G/G 

 
Table 4. 1 EPAS1 genotypes of the LCLs used in this study.  The table contains genotypes for the 12 LCLs analysed as anc/der alleles. Three of them carry the derived 

alleles for both the 5 core SNPs and the putative functional one (rs370299814) while the fourth one only carries the derived alleles of the 5 core SNPs. All other eight 

LCLs are ancestral homozygous for these 6 SNPs.  
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4.2.2 Methods and protocols used for the analyses 
 
4.2.2.1 In silico analysis of 1000 Genomes Project cell line 
sequences 

 
The ~32.7 kb EPAS1 region was compared between 1000 Genomes Project 

individuals and four high coverage Tibetan whole genome sequences (Tib8, Tib14, Tib29, 

Tib34 which have mapped to the same reference sequence), discussed in the previous 

chapter (4). To retrieve haplotype information, the genomic region was phased with 

SHAPEIT using the 1000 Genomes Project data as a reference panel (177, 292). 

Comparison between sequences were performed using a combination of custom scripts 

and vcftools 0.1.14 (230). The haplotype network, which represents the relationships 

between the different haplotypes in the dataset, was generated using the haploNet 

function implemented in the pegas R package (293, 294).  

The genotypes for interesting variants previously associated with high altitude 

adaptation were also retrieved from the 1000 Genome Project samples. Those include 

two variants in EGLN1 (126) and  one in  ATP6V1E2 from the Himalayan SNP-chip data 

(Table 4.1). Likewise, the genotypes for the 4 bp deletion located in the second intron of 

EPAS1 were inspected (50). This small INDEL was reported to have a derived allele 

frequency of 0.629 in Tibetans and 0.08 in Han Chinese. It overlaps the binding sites of 

three transcription factors: the polymerase subunit POLR2A, the HIF co-activator EP300, 

and GATA2 which controls erythroid differentiation. It also lies within an activating 

H3K27Ac mark in seven cell lines (50). 

 

4.2.2.2 In silico analysis of publicly-available RNA-seq data 
 

The expression profile of EPAS1 in different tissues was retrieved from the GTEx 

Portal (198) and ENCODE human RNA-seq data (257, 295). For ENCODE data, gene 

quantification for all RNA-seq (polyA RNA-seq) experiments mapped to build GRCh38 

were downloaded. The EPAS1 expression across all tissues and cell lines available was 

compared with each other as well as with the expression of the HIF-1α, HIF-3α and EGLN1.  
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In addition, Tibetan placenta RNA-seq data from a previous study were analysed 

(209). In this study, 63 term placental samples from highland Tibetans were compared 

with 14 specimens from Han Chinese and tested for EPAS1 differential expression. 

According to their results, both Tibetans and Han Chinese show relatively similar low 

levels of EPAS1 expression. After downloading paired-end reads (fastq files), two 

independent analyses were performed:  

 

1) Variant calling from RNA-seq data. The GATK pipeline for variant calling using 

RNA-seq was followed (225, 227). Aligned reads generated with STAR 2.5.2b 

(296) were processed with Picard 2.6.0 for adding read group information, 

sorting, marking duplicates and indexing. The GATK tool specifically developed for 

RNA-seq data, SplitNCigarReads, was used to split reads into exon fragments and 

hard-clip any sequences overhanging into intronic regions. Finally, variant calling 

was performed using GATK HaplotypeCaller with the –dontUseSoftClippedBases 

argument, which is a new functionality taking into account the information about 

intron-exon split regions from the previous step (225, 227).  The called positions 

were merged with Tibetan and Han Chinese genomic sequences from the previous 

chapter. Principal component analysis (PCA) was performed calculating the 

eigenvectors from the whole-genome sequencing samples and projecting the 

RNA-seq individuals onto the plot to check the ancestry of these samples.  

2) Expression quantification and differential expression. Genomic indexing and 

mapping were generated with STAR 2.5.2b (296) using the GRCh38 human 

reference genome and Ensembl gene annotation files version 88 (54). Gene and 

transcript assembly and quantification was performed with the Cufflinks pipeline 

(297). Cufflinks reports expression levels in Fragments Per Kilobase of transcript 

per Million mapped reads (FPKM), a normalised estimation of gene expression. 

FPKM are estimated from the number of reads mapped to each particular gene 

sequence taking into account the sequencing depth and gene length. A FPKM 

method was applied to the data to see if it was possible to retrieve similar results 

to the original paper using HTseq for transcript quantification which counts the 

number of reads mapping to each specific genomic feature from aligned 

sequencing reads and a file of genomic features (298).  
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4.2.2.3 In silico analysis of EPAS1 evolutionary conserved 
regions 
 

Evolutionarily conserved regions (ECRs) in EPAS1 were compared across 

different species using the ECR Browser from NCBI Dcode.org Comparative Genomics 

Development with the default parameters (ECR length=100 bp and ECR 

similarity=70%)(299). SNPs within these regions were overlapped with the FST results 

between Tibetans and Han Chinese discussed in the previous chapter. A list SNPs showing 

highly differentiation (FST values ≥ 0.5) was retrieved.  

 

4.2.2.4 Cell culture  
 

Cells were routinely cultured in RPMI 1640 medium with L-glutamine (Thermo 

Fisher Scientific, Cat No. 11875093), penicillin and streptomycin (Thermo Fisher 

Scientific, Cat No. 10378-016) and 15% foetal bovine serum (FBS) (Thermo Fisher 

Scientific, Cat No. 10500-056) at 37⁰C in a 5% carbon dioxide 95% air mixture. LCLs were 

passaged or sub-cultured at confluency (1-1.5x106 cells/ml). Similarly, A549 were 

passaged when confluence was reached. Cells were washed with the Dulbecco's 

phosphate-buffered saline solution (DPBS, Thermo Fisher Scientific, Cat No. 14190144), 

detached from the flask surface using phenol red Trypsin-EDTA (0.25%) (Thermo Fisher 

Scientific, Cat No. 25200-056), split in a 1:5 ratio and sub-cultured. All cell lines were 

tested for mycoplasma contamination and resulted negative.  

Eleven LCLs (ten CDX and one CEU) were karyotyped by the Cytogenetic Core 

Facility at the Wellcome Sanger Institute to check potential chromosomal abnormalities 

(300).  Ten randomly selected metaphases from each cell line were karyotyped by M-

FISH and DAPI-banding. The nomenclature of chromosomal aberrations used is in 

agreement with the International System for Human Cytogenetic Nomenclature (301). 
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4.2.2.5 Hypoxic protocol 
 

A hypoxic protocol designed to be performed in a standard cell culture incubator 

(Panasonic MCO-19MUV-PE) was developed (APPENDIX D). Hypoxic conditions (1% O2) 

were reached by controlling the nitrogen levels in the incubator (APPENDIX D). Three 

key points for the success of the protocols are: 1) The use of conditioned medium for 

culturing LCLs; 2) Overnight medium O2 degasification; and 3) Use of six-well plates with 

a small culture volume. Medium degasification and the culturing volume are very 

important for O2 diffusion in the medium. O2 concentration in the gas phase it is different 

from the one experienced by cells at the bottom of a culture flask or plate. To have 

efficient gas diffusion in the medium in both normoxic and hypoxic conditions, I used six-

well plates with a total volume of ~4 ml to reduce diffusion distance and have better 

oxygen diffusion in the liquid phase via overnight medium incubation to degasify hypoxic 

medium and have a stable O2 supply in normoxia.  

LCLs require a quite high cell density to grow properly, and have different lengths 

of the lag phase. The latter is the period of the cell growth cycle where cells adapt to the 

culture conditions and its length depends upon the growth phase of the cell line at the 

time of subculture and the seeding density. Conditioned medium is exhausted medium 

harvested from cultured cells mixed with fresh medium. It contains growth factors, 

metabolites and extracellular matrix proteins secreted into the medium by the cultured 

cells and it considerably helps cell growth. So I used conditioned medium and seeded 

plates to have around 1.5-2x10-6 cells at each time point of the experiment.  

A549 cells were used as positive control as they are widely used to test hypoxic 

conditions (302, 303). It is known that in A549 the HIFs (HIF-1α and EPAS1) are induced 

by acute hypoxia at 4 h and hypoxic factors are constitutively expressed in lung tissues 

(198, 304-306). Different time points (4h, 16h, 24h, 48h, 72h) were used to check for 

EPAS1 expression in LCLs and whether EPAS1 expression was induced similarly to A549, 

or whether it needed chronic exposure to hypoxic conditions (APPENDIX D).   
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4.2.2.6 Gene expression profiling methods 
 

Expression profiling is the measure of the gene activity at a specific time and can 

assay the expression of a few or thousands of genes at once. The quantitative polymerase 

chain reaction (qPCR), also known as real-time PCR, monitors the amplification of a 

targeted DNA molecule during the PCR. Quantitative reverse transcription PCR (RT-

qPCR) is used to quantify gene expression and the starting material is RNA. RNA is first 

retro-transcribed into its complementary DNA (cDNA) by reverse transcriptase. Then, 

the cDNA is used as the template for the qPCR reaction. It can be one-step or two-step, 

with the retro-transcription and quantification being performed in one or two separate 

reactions. Gene expression is detected by using fluorescent molecules such as SYBR 

green, a fluorescent double-stranded DNA (dsDNA)-binding dye. As the PCR reaction 

progresses, at each cycle of amplification SYBR Green dye binds to dsDNA as it 

polymerizes, resulting in an increase in the level of fluorescence at the end of each 

extension step. The quantity of dsDNA product in the reaction is proportional to the 

amount of fluorescence (307, 308). This approach gives a very accurate estimation of 

gene expression for specific target genes, but it is not feasible for a genome-wide screen 

of expression levels.  High throughput measurements, such as RNA-seq, can estimate the 

presence and quantity of thousands of genes in a biological sample at a given time, 

providing a detailed view of gene expression, alternative splicing, and allele-specific 

expression. After RNA extraction and QC steps, barcoded sample libraries are prepared. 

These pools of samples are then sequenced using one of the high throughput platforms 

(309). 

 

4.2.2.7.1 Quantitative reverse transcription PCR (RT-qPCR) 
 

Before conducting RNA-Seq, I carried out preliminary work to establish whether 

EPAS1 could be detected in LCLs and whether its expression was modified in LCLs with 

the introgressed EPAS1 haplotype. A two-step RT-qPCR was performed on the samples 

challenged with hypoxia to assay EPAS1 and other genes (EGLN1, HIF-1α) involved in the 

hypoxic pathway. Expression of target genes was compared between normoxic and 

hypoxic samples and between samples with and without the introgressed haplotype. To 

calibrate target gene expression, housekeeping gene (TUBB) expression was assayed 

(310, 311). RNA extraction was carried out using the QIAGEN RNeasy Mini Kit (QIAGEN, 
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Cat No. 74104) with the RNase-Free DNase Set (QIAGEN, Cat No. 79254). RNA was 

quantified using Nanodrop N80. Subsequently, 500 ng of RNA per sample was reverse 

transcribed into cDNA and used for RT-qPCR (APPENDIX D).  

Primer sequences for qPCR were designed with NCBI Primer-BLAST from the 

NCBI Reference Sequence (RefSeq) for each gene (312) (Table 4.2). I set the minimum 

primer melting temperature (Tm) at 60oC, the optimum at 62oC, the max at 64oC and the 

max Tm difference at 1oC. The amplicon size (PCR product) was set between 70-150 bp 

(optimal length around 100 bp). To avoid amplification of contaminating genomic DNA, 

the primers were designed to span an exon/exon junction. The GC content was around 

40-60% to ensure maximum product stability and each pair of primers had low self-

complementarity to decrease the possibility of primer-dimer formation (313-315).  

 

   Gene                    Primer pair Primer sequences 

  Forward  Reverse  

EPAS1 

 

01 TTCCTGCGAACACACAAGCT TCGGCTTCGGACTCGTTTT 

02 CATGCGCTAGACTCCGAGAAC TACCTGACCCTTGGTGCACAA 

EGLN1 01 CAAAGTTAATTTCTATGCCTGGAAGA CAGGCCCTGCCAGACTTCTA 

HIF-1α 01 ATGTGACCATGAGGAAATGAGAGA TTTTGTTCTTTACCCTTTTTCACAAG 

TUBB 01 TGTATTTGGTCAGTCTGGGGCAG GCAGGCAGTCACAGCTCTCT 

ATP6V1E2 02 AGCCATCCTCTCGGCCTCTA AGAGTTCAGGCCTCCCTTTTGG 

TMEM247 01 ACCTTCCCCAAGATGGTGCC GGACTCTGCCTCCAGATAAGCC 

CRIPT 01 GAACCGTCGTGGGGAAGGAT GCTTTCTTCCACCACTTTCTGTG 

PIGF 01 TAGCTTTGTAGGAGCATGGCTTG GAGATGGGCCATACCTGCCA 

 

Table 4. 2 Primer sequences used for RT-qPCR analyses. 

 

Gene expression was quantified by qPCR with KAPA SYBR FAST (Kapa Biosystems, 

Cat No. KK4604) using an ABI StepOne Plus thermocycler. SYBR Green, together with the 

set of target gene primers (Table 4.2), binds to the DNA and emits a green light detectable 

by the qPCR machine (APPENDIX D).  Target genes were standardised to the 

housekeeping gene TUBB and the gene expression level was calculated as the 

standardised gene expression value: 
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2−ΔΔCT = [(CT gene of interest – CT internal control) hypoxia – (CT gene of interest – CT 

internal control)normoxia] (307) 

 

where CT is the cycle threshold. CT is inversely related to the amount of amplicon in the 

reaction. Thus, the lower the CT, the greater is the gene expression (greater amount of 

amplicon). Differential expression was also assessed as ΔCT=CT (normoxia) -CT (hypoxia) for each 

gene in the PCR reaction (307).  

 

4.2.2.7.2 RNA-seq 
 

RNA-seq analysis was carried out on samples from the experiment performed 

with the hypoxic protocol previously described. A total of 12 lymphoblastoid cell lines 

and a A549 cell line were cultured under normoxic (state conditions) and  hypoxic 

conditions over 72 hours and samples collected at five different time points (4h, 16h, 24h, 

48h and 72h). Two technical replicates for all samples were used. RNA-seq was 

performed by the Wellcome Sanger Institute core facility. Briefly, lysed cells in 350µl of 

QIAGEN buffer RLT (QIAGEN, Cat No. 79216) were provided to the facility where 

automated RNA extraction was performed for all 260 samples. Of these, 257 RNA samples 

passed automated QC step (Qubit 4 Fluorometer). Sequencing libraries were constructed 

for these 257 samples via the New England BioLabs (NEB) RNAseq-AUTO library 

preparation procedure using 100 ng of total RNA in 50 µl water with a RIN (RNA Integrity 

number) of >6. The 257 samples were sequenced using paired end (PE) 75 bp reads over 

4 lanes using an Illumina HiSeq 4000 platform. The raw reads (fastq files) were mapped 

to human reference genome GRCh38.p10 using STAR_2.5.3a (296), incorporating 

GENECODE v27 human gene annotations (gtf file) (316). Sample QC was performed with 

FastQC 0.11.5 and multi-sample aggregation with MultiQC v1.3 (317) and QTLtools 1.1 

bamstat (318). Transcript quantification was performed using featureCounts 1.6.2  (319). 

The Deseq2 1.6.3 R package (320) was used for data exploration following its tutorial 

(https://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/D

ESeq2.html), to test sample-to-sample distances using PCA and whether it was possible 

to detect differential expression in the dataset between hypoxia and normoxia and 

between introgressed and non introgressed samples (Figure 4.1).  

https://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html
https://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html
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Figure 4. 1 Workflow of RNA sequencing experiment. 
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4.3 Results 
 

4.3.1 The EPAS1 introgressed haplotype in the 1000 
Genomes Project data 

The EPAS1 ~ 32.7 kb introgressed region (104) was compared between samples 

from the 1000 Genomes Project, Tibetan and Densiovan (GRCh37, chr2:46567917-

46600661; GRCh38, chr2: 46340778-46373522). Four Tibetan high coverage whole 

genome sequences generated and analysed in the previous chapter were also mapped to 

GRCh37 (Tib8, Tib14, Tib29, Tib34) who have  high sequence similarity to the 

Denisovans. The individual showing the smallest number of sequence differences with 

the Denisovan is Tib29 (8 single nucleotide differences). Out of all the 1000 Genome 

Project individuals, 10 carry the full Densivan-core (AGGAA) haplotype (Table 4.3), 

wheareas 29 individuals carry a partial haplotype (3-4 of the core alleles). Of these 29 

samples, 28 are of African ancestry (6 YRI, 2 MSL, 5 LWK, 4 GWD, 6 ESN, 3 ASW, 2ACB) 

and one of Han Chinese (CHB) ancestry. Three of four inviduals carrying the full 

Denisova-core haplotype, also have the putative functional variant A at rs370299814 

(Table 4.3).  

 

A haplotype network was generated from phased data of all the 39 individuals for 

the ~32.7 kb introgressed region (Figure 4.2). The Tibetans show both haplotypes closest 

to the Denisovan.  The CDX individual HG00978 displays the closest haplotype to the 

Tibetan, followed by other South-East Asian samples carrying the full Denisovan-core 

(Figure 4.2). African samples show many single nucleotide differences in the entire ~32.7 

kb region. Partial core Denisovan haplotypes in Africans can be explained by the presence 

of these alleles in the modern human gene pool before the introgression event (inherited 

from the modern human/Denisovan common ancestor). In contrast, the hypothesis of 

incomplete lineage sorting (ILS) between modern humans and Denisovans for the full 

EPAS1 region seems unlikely (286). A more plausable explanation is an introgression 

event followed by strong positive selection on the haplotype that led to an extended 

haplotype with derived allele frequency > 0.8 in Tibetans and with very strong LD.  
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Other intersting variants in the region around EPAS1 were also screened in the 

1000 Genomes Project samples. The variant in ATP6V1E2, rs12986653, highlighted in the 

positive selection scans discussed in the second chapter, was present in all four 

introgressed cell lines used in the functional analyses (Table 4.1). This variant is an eQTL 

in different tissues including lung and arterial tissues (198, 305). Furthermore, the 4 bp 

deletion in the second EPAS1 intron has an allele frequency of 0.85 in Tibetans, and 

between 0.38 and 0.63 in other high altitude populations. It shows low frequency (0-0.25) 

in low altitude Himalayans. All four introgressed CDX cell lines were heterozygous for 

this deletion. A cell line, HG02390, that does not carry the introgressed haplotype is 

heterozygous for this deletion. The deletion was also heterozygous in the other 1000 

Genomes Project individuals carrying the full Denisovan core (HG00625, NA18566, 

NA18643, HG01847, HG02026, HG03814, HG03931) (Table 4.3). All the other individuals 

in 1000 Genomes Project were homyzygous for the ancestral allele. Two EGLN1 variants, 

rs186996510 and rs12097901, with high derived allele frequency in Tibetans have been 

suggested to promote increased HIF factor degradation under hypoxic conditions (126). 

Surprisingly, these variants are present in both introgressed and non-introgressed 

samples. The derived allele of rs186996510 is found in only one heterozygous individual 

(HG01031) among those used for functional analysis. On the other hand, the derived 

allele of rs12097901 is present in all CDX cell lines in the heterozygous or homozygous 

state (Table 4.1).  

 

  

  



 

 

 

 

1
9
3
 

 
    EPAS1 

       Core Denisovan haplotype (“AGGAA”)   

  rs115321619 rs73926263 rs73926264 rs73926265 rs55981512 rs370299814 

Pop Cell line G/A A/G A/G G/A G/A G/A 

CDX HG00978 G/A A/G A/G G/A G/A G/A 

CDX HG02396 G/A A/G A/G G/A G/A G/G 

CDX HG02397 G/A A/G A/G G/A G/A G/A 

CDX HG02187 G/A A/G A/G G/A G/A G/A 

CHB NA18643 G/A A/G A/G G/A G/A G/A 

CHS HG00625 G/A A/G A/G G/A G/A G/G 

KHV HG01847 G/A A/G A/G G/A G/A G/A 

KHV HG02026 G/A A/G A/G G/A G/A G/A 

BEB HG03814 G/A A/G A/G G/A G/A G/A 

BEB HG03931 G/A A/G A/G G/A G/A G/A 

 

Table 4. 3 The 1000 Genomes Project samples carrying the EPAS1 Denisovan-core introgressed haplotype. The table reports individuals with the Denisovan haplotype. 

Eight out of ten carry also the putative functional variant rs370299814. 
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Figure 4. 2 Haplotype network of the ~32.7 kb EPAS1 introgressed region. The Tibetan individuals show the 

closest haplotype to the Denisovan sample. African haplotypes show large number of differences from the 

Denisovan haplotype. 
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4.3.2 Re-analysis of EPAS1 expression from publicly 
available data 

 

EPAS1 expression was investigated in human tissues and cell lines available in the 

GTex Portal and ENCODE database (257).  According to GTE, EPAS1 is highly expressed 

in lung tissue followed by aortic and adipose tissues (Figure 4.3). Regarding ENCODE 

data, tissue-specific gene quatifications for EPAS1 were compared in order to detect 

where the gene is most highly expressed. Aorta, lung, cardiac tissues, endothelial cells 

and placenta show the highest expression. LCL of GM12878 shows low constitutive levels 

of EPAS1 expression, at a level similar to bronchial fibroblast and certain nervous system 

tissues (Figure 4.4).    

 

 
 

Figure 4. 3 EPAS1 expression across different tissues in the GTEx Portal. On the x-axis are indicated the 

different tissues and on the y-axis are indicated the levels of expression in FTPM (Transcript Per Million). 
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Figure 4. 4  EPAS1 expression across different tissues in the ENCODE database. On the y-axis are indicated 

the different tissues and on the x-axis are indicated the levels of expression in FPKM.  
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EPAS1 expression was compared with other hypoxic factors to see whether their 

expression patterns were similar across the different tissues. HIF-1α shows considerable 

expression across different tissues, with myoblasts from skeletal musculature (LHCN-

M2) and fibroblasts showing the highest values. On the other hand, EPAS1 expression is 

more localised in specific tissues compared to HIF-1α. Overall, HIF-3α has lower 

expression across multiple tissues and is absent from many of them. HIF-1β and EGLN1 

show broad expression patterns across tissues although at very low levels (Figure 4.5). 

EPAS1 and HIF-1α share high sequence homology and can both dimerize with HIF-1β in 

hypoxia and modulate gene expression. However, the two hypoxic factors regulate 

distinct sets of target genes (142). HIF-1α is broadly expressed and probably activates a 

general hypoxic response across tissues, whereas EPAS1 seems to have an action in 

specific tissues (141). There is evidence of temporal organisation of HIF-1α and EPAS1 

hypoxic responses. It seems that the activation of target genes in acute hypoxia is 

primarly by HIF-1α (few hours after hypoxia exposure), whereas in response to chronic 

hypoxia EPAS1 seems to exert a major role. This would explain the broader tissue 

expression of HIF-1α compared to EPAS1 (141) (Figure 4.5). 

 

EPAS1 expression was also investigated in publicly-available Tibetan placental 

villus parenchymal RNA-seq data (209). In the original paper, 63 Tibetan samples and 14 

Han Chinese were sequenced and 72 samples of the 77 were availalble for download. 

However, they do not provide any genotype calls for the Tibetan and Han samples and 

only report the number of Tibetan individuals carrying the adaptive haplotype (Adaptive 

haplotype homozygous= 34, Adaptive haplotype heterozygous= 26, Wild-type haplotype 

homzygous=3). Thus, I performed variant calling from the RNA-seq data according to the 

GATK best practice and merged these genotypes with the Tibetans and Han Chinese 

individuals (CHB from the 1000 Genomes project) described in the previous chapter. PCA 

on these combined samples was performed, projecting the RNA-seq samples onto 

eigenvectors estimated from the Tibetan and Chinese Han sequences to check the 

ancestry of the RNA-seq samples (Figure 4.6A). PC1 separates Tibetans from Han Chinese 

and all RNA-seq samples lie together with Tibetans. The second PC divides Tibetans into 

subsclusters, with the RNA-seq samples mostly grouping with them. None of the RNA-seq 

samples cluster with Han Chinese (Figure 4.6A).   
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Figure 4. 5 Comparison of the hypoxic factors expression levels in different human tissues. The y-axis 

reports the tissues in the ENCODE database, and the x-axis the five major hypoxic genes. Expression levels 

(FPKM) are represented by the different colours as indicated in the legend.  
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After that, I tested EPAS1 differential expression between individuals in the two 

main clusters of RNA-seq samples from the transcript quantifications performed with 

Cufflinks (297). In agreement with the original paper, EPAS1 does not show differential 

expression within the  samples (Figure 4.6B).  However, it is important to note that only 

Tibetans seem to have been sampled for RNA-seq analysis (at least among the 72 

available), so no comparison between Tibetans and Han Chinese was possible.  

 

 

Figure 4. 6 Analysis of publicly-available Tibetan placental RNA-seq data. A. PCA of RNA-seq samples from 

(209) and Tibetan and Han Chinese whole-genome sequencing data. B. EPAS1 differential expression across 

some of the RNA-seq samples. All individuals show similar levels of EPAS1. 
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4.3.3 Sequence conservation patterns in the EPAS1 
locus 
 

Evolutionarily conserved regions (ECRs) were  investigated in the EPAS1 locus 

using the NBCI ECRs  Browser.  Overall,  the entire EPAS1 region shows a high degree of  

similarity  to  other primates, in particular Chimpanzee (panTro3) with > 98% sequence 

identity. Genomic similarity decreases with the increase of phylogenetic distance. ECRs 

are found both at the protein-coding (exon) level and in introns, UTRs,  simple repetitive 

elements and transposons, and intergenic regions (Figure 4.7). Compared with 

Chimpazee, three large ECRs spanning the entire EPAS1 locus with identity > 98.1% have 

been identified (ECR1 = chr2:46293668-46296898; ECR2 = chr2:46296963-46381755; 

ECR3 = chr2:46381818-46386697). The ~32.7 kb introgressed region falls within ECR2. 

Within these ECRs, 737 SNPs have been found.  In particular,  20 SNPs lie in ECR1,  670 in 

ECR2 and 47 in ECR3. Of these, 54 SNPs show high FST values (FST ≥0.5) between Tibetans 

and Han Chinese. All variants are categorised as non-coding by VEP (189). One, 

rs7557402, falls within a splice region and has previously been associated with 

polycythemia and familial erythrocytosis (Illumina Clinical Services Laboratory).  This 

variant has a derived allele frequency (DAF) for the G allele of 0.83 in Tibetans and 0.18 

in Han Chinese. 
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Figure 4. 7 EPAS1 evolutionarily conserved regions (ECRs). The plot shows the proportion of sequence 

identity between humans and other species (tetNig=tetraodon, danRer=zebrafish, fr=fugu, xenTro=frog, 

galGal=chicken, monDom=opussum, mm=mouse, rn=rat, bosTau=cow, canFam=dog, rheMac=rhesus, 

panTro=chimpanzee). Orange= intronic regions, blue= protein-coding exons, green= transposons and 

single repeats,   yellow= UTRs, red= intergenic regions. EPAS1 transcripts and SNPs within the locus are 

also indicated. 
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4.3.4 Cell line karyotyping 
 

The karyotypes of the eleven LCLs were determined. This has been done to 

characterize any additional chromosomal abnormalities, particularly involving 

chromosome 2, that could confound the results. Seven cell lines do not show any 

chromosomal aberration. The other four cell lines display different chromosomal 

aberrations, although none involving chromosome 2 (Table 4.4).  

 

Cell line Karyotype [number of cells] % Cells 

HG00844 46,XY[10] 100% 

HG00881 46,XY[10] 100% 

HG02187 

46,XX[4] 40% 

46,XX,del(9),der(18)t(9;18), 
der(19)t(10;19)[6] 

60% 

HG02190 

46,XX[9] 90% 

46,XX,del(7)[1] 10% 

HG02397 46,XY[10] 100% 

GM12878 

46,XX[9] 90% 

46,XX,t(3;6)[1] 10% 

 
 

                 HG02396 

46,XY [8] 80% 

46,XY,dup(4)[1] 10% 

 47,XY,t(2;3),+14[1] 10% 

HG01310 46,XY [10] 100% 

HG02390 46,XY[10] 100% 

HG02153 46,XX[10] 100% 

HG00978 46,XX[10] 100% 

 

Table 4. 4 Cell line karyotypes. Del = deletion, dup = duplication, t = translocation, der = a derived 

chromosome, + = additional copy of chromosome.  
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4.3.6 EPAS1 expression profiles 
 

The expression of EPAS1 and other genes involved in the hypoxic molecular 

pathway was assessed in LCLs with or without the introgressed haplotype.  The cell 

lines were grown under normoxic (21% O2) and hypoxic (1% O2) conditions for 

different time points up to 72 hours (4h, 16h, 24h, 48h, 72h) and gene expression 

quantified by qPCR and RNA-seq.  

 

4.3.6.1 Hypoxic protocol optimisation 
 

Pilot studies using three LCLs with introgressed haplotype and three without 

together with the A549 cell line were set up to check the effectivness of the hypoxic 

protocol described previously and identify appropriate time points for assessment of 

changes in EPAS1 and other genes (EGLN1 and HIF-1α) expression under hypoxia in 

the different cell lines.  Previous studies showed that two hours of hypoxic exposure 

was deemed to be a too short time to obtain reliable induction of hypoxia in LCLs and 

A549 cell culture. Hence, 4h was selected as the first time point for acute hypoxic 

exposure as in previous studies (304, 306). A second 8h time point was assessed, but 

did not show substantial differences (ΔCT values) in gene expression from the 4 h one. 

EPAS1 differential expression in LCLs was also detected at 24h and 48h of hypoxic 

exposure. Hence, the 4h and 24h time points were used to optimise the protocol. 

Subsequently, I set up an intermediate time point at 16h to investigate the induction 

of EPAS1 expression. I also added a 72h time point to explore putative change in 

EPAS1 expression under chronic hypoxic exposure. This led to a final 5 time point 

experiment (4h, 16h, 24h, 48h, 72h) that was performed and RNA from these 

experiments were sent for RNA-seq. 

 

4.3.6.2 RT-qPCR 
 

RT-qPCR was initially carried out to establish whether  EPAS1 was expressed 

in human LCLs and, if expressed, whether there were differences between the LCLs 

with and without the introgressed haplotype. The total RNA was manually extracted, 

retrotrascribed and qPCR of EPAS1 and other genes (EGLN1 and HIF-1α) involved in 

the hypoxic response was performed at time point of 4 and 24 hours.  
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The shape of the amplification curves passing the CT threshold is similar across 

samples and two time points (Figure 4.8), indicating similar PCR efficiency (307). The 

qPCR results show detectable tested and control gene expression, indicating that the 

LCLs can be a suitable in-vitro model for understanding the role of EPAS1 in hypoxia.  

 

 

Figure 4. 8 qPCR amplification plot of target genes. The amplification plot shows the variation of log 

(ΔRn) with PCR cycle number.  Rn is the reporter signal normalized to the fluorescence signal of the 

reference dye (ROX). ΔRn is Rn minus the baseline. All tested genes show an expression profile that 

passes the CT threshold (dashed line). Each colour represents the row of the input plate. There no 

association between sample conditions and row.   

 

Primer melting curves were inspected for single peaks of amplification around 

the primer melting temperature, indicating the likely amplification of a single product. 

Primer pairs showing multiple peaks were excluded to avoid biases in the 

interpretation of expression quantifications (Figure 4.9). In fact, the number of peaks 

is commonly used to determine the purity of qPCR products (315). EPAS1 expression 

was compared with HIF-1α, EGLN1 and TUBB in LCLs and A549.  The housekeeping 

gene TUBB does not show a change in expression across conditions and, thus, can be 

used as standard control. Slight variation in the cycle threshold (CT) can reflect 

pipetting errors, due to the manual preparation of the qPCR plate and the limited 

precision of the pipette (Figure 4.9). Target genes were standardised to the 

housekeeping gene TUBB and gene expression profiling was calculated as 
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standardised gene expression (2−ΔΔCT = [(CT gene of interest – CT internal 

control)hypoxia – (CT gene of interest – CT internal control)normoxia]) (307). Differential 

expression was also assessed as ΔCT= CT(normxia) – CT(hypoxia). Each cycle change 

corresponds to a two-fold change in expression (307).  

 

 
 

Figure 4. 9 Primer melting temperature curves. The plots show example of melting curves for each 

primer pair across samples. Each colour represents the row of the input plate. There is no association 

between sample conditions and row. The x-axis reports the temperature whereas the y-axis shows the 

rate of the fluorescence variation. The plots report melting curves of two sets of EPAS1 primers. A. 

Example of a good single peak trace. B. Example of a bad melting curve with multiple peaks. 
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Figure 4. 10 CT differences between normoxia and hypoxia at 4 hours. The plot shows the CT for each 

gene across introgressed and non introgressed cell lines. The lower the CT, the higher the expression. 

ΔCT values are also reported for each sample between normoxia and hypoxia. LCLs with the 

introgressed core Denisovan haplotype are indicated in red.  

 

At 4 hours of hypoxic exposure, EPAS1 is highly expressed in A549 cell lines 

(EPAS1_01 ΔCT(normoxia-hypoxia) = 5; EPAS1_02 ΔCT(normoxia-hypoxia) = 6), but it shows very 

low levels in LCLs. Furthermore, no differential expression between the LCLs with and 

without the introgressed haplotype is detectable (Figure 4.10 and 4.11). This 

confirms that the peak of hypoxic factors expression in A549 is around 4 hours.  

Changes in expression between hypoxia and normoxia (ΔCT=4-5) was 

observed for HIF-1α and EGLN1. Both genes showed higher expression (ΔCT) in 

hypoxia in three non introgressed samples (HG02153, HG00881, A549) whereas all 
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introgressed and GM12878 do not show increased EGLN1 and HIF-1α expression in 

hypoxia compared to normoxia. 

 

 

 

 

 

Figure 4. 11 EPAS1 expression at 4 hours hypoxic exposure. The plot reports the standardised gene 

expression for the target genes.  EPAS1 shows high expression in the A549 cell line but not in LCLs. No 

significant differences between the LCLs with and without the introgressed haplotype are detectable.  
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EPAS1 shows an increase in expression at 24h of hypoxic exposure, when the 

differential expression between the LCLs with and without the introgressed 

haplotype was observed. This was further confirmed in different biological samples 

(three LCLs with introgressed haplotype), technical replicates as well as by two 

different pairs of primers for EPAS1 (EPAS1_01 and EPAS1_02). Specifically, in the 

LCLs without the introgressed haplotype, EPAS1 expression increases under hypoxic 

conditions, whereas it does not in the ones heterozygous for the introgressed 

haplotype. Another pilot experiment showed that introgressed cell lines carriyng the 

rs370299814 (HG00978, HG02187, HG02397) and the one without it (HG02396) 

show the same steady EPAS1 expression between normoxia and hypoxia.  Thus 

rs370299814 might not be the functional variant associated with this phenotype. At 

24 hours, A549 does not show high EPAS1 expression or any differential expression 

between normoxia and hypoxia (Figure 4.12 and 4.13). Small changes in expression 

between hypoxia and normoxia (ΔCT=1-3) was observed for HIF-1α and EGLN1.  

 

 

 



209 

 

 

 

 

Figure 4. 12 CT differences between normoxia and hypoxia at 24 hours. The plot shows the CT for each 

gene in LCLs with and without the introgressed haplotype. The lower the CT, the higher the gene 

expression. ΔCT values between normoxia and hypoxia are also reported. The LCLs with the 

introgressed haplotype are in red.  

 

This could mean that in this cell line at 24h, the downstream hypoxia response 

has already been triggered.  Small changes in expression between hypoxia and 

normoxia (ΔCT=1-3) was observed for HIF-1α and EGLN1 but it was lower than at the 

4 hours time points and there was no differential expression between the LCLs with 

and without the introgressed haplotype. (Table 4.1, Figure 4.13).  
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Figure 4. 13 EPAS1 expression at 24 hours hypoxic exposure. The plot reports the standardised gene 
expression for the target genes.  EPAS1 shows differential expression between introgressed and non-
introgressed cell lines. Cell lines in red are introgressed cell lines.  

 

The expression of all the genes lying in the ~300 kb introgressed region was 

assessed (EPAS1, TMEM247, ATP6V1E2, PIGF and CRIPT).  EPAS1 was the only one 

showing a significant change of expression between normoxia and hypoxia and a 

differential expression between LCLs with and without the introgressed haplotypes. 

However, this conclusion needs to be interpreted cautiously because of the extremely 

low expression of some of the genes in the LCLs, where in some of the samples the 

expression level remained undetermined (CT too high), and the results are not 

discussed further or presented here because an improved approach is being pursued, 

as described in the next section.  
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4.3.6.3 RNA-seq 
 

The analysis of the RNA-seq data is ongoing and is currently in its preliminary 

phase. The quality of the data was evaluated and basic analyses to assess the success 

of the experiment were carried out.  

 

4.3.6.3.1 Data QC   
 

The quality of RNA-seq data was assessed using FastQC and samtools flagstat. 

The samples were sequenced over two runs (run one with one lane, run two with 3 

lanes), and QC was performed per lane to identify and exclude possible technical 

biases. Per sample FastQC results were aggregated using Multi QC v1.3. The total 

number of mapped reads per sample ranged between ~5 and 7 million (Figures 4.14 

and 4.15). In all samples, most of the reads were uniquely mapped and most onto 

exons (Figures 4.14 and 4.15 A,B). Most of the samples have around 50% duplicated 

reads, which may be due to the high abundance of a small number of genes rather 

than an indication of PCR over-amplification or low library complexity. Per base 

sequence mean quality score (the range of quality values across all bases at each 

position)) is above 30 for all samples. All reads show good average quality score (per 

sequence quality score > 27); no reads have poor quality. None of the samples show 

adapter contamination. Finally, the N content across all bases was very low across all 

samples.  
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Figure 4. 14 Total number of reads sequenced in the first run (26520). The x-axis shows the total 

number of reads, the y-axis the sample sequenced  (first element = run ID, last element= name of the 

sample representing each cell line (1-13), the replicate (A,B), the condition (N, H) and the time point 

(4,16,24,48,72). 
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Figure 4. 15 Total number of reads sequenced in the second run (26660). The x-axis indicates the total 

number of reads, the y-axis the sample sequenced (first element = run ID, last element= name of the 

sample representing each cell line (1-13), the replicate (A,B), the condition (N, H) and the time point 

(4,16,24,48,72).  

 

No significant differences between the two runs were detected. Both runs 

show samples with a similar number of uniquely mapped reads with most of the reads 

mapping on exonic regions (Figure 4.16) and similar QC results.  

 

 
Figure 4. 16 Proportion of exonic reads in the samples. Most of the reads map to exons for both runs. 

Mean (blue) and median (red) values are indicated on the plots. A Plot for samples in the first run (1 

lane). B Samples in the second run (3 lanes).  
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4.3.6.3.2 Gene expression in hypoxia and normoxia 
 

Expression quantification was performed with featureCounts. The 

quantification matrix was analysed using Deseq2.  PCA using whole-genome 

expression data shows that the samples are clustering for technical replicates and by 

the presence of the introgressed haplotype rather than the oxygen concentration 

exposure (normoxia versus hypoxia) (Figure 4.17 A and B).  

 

 

 

Figure 4. 17 PCA on whole-genome expression in LCL samples. A. 4 hour time point B. 24 hour time 

point.   

 

To test the effectivness of the experiment, I explored differential expression in 

genes between hypoxia and normoxia at the 4 and 24 hours time points. Gene 

expression is known to be regulated by the oxygen levels in the enviroment: in 

particular, expression of hypoxic factors (HIFs) is boosted by hypoxia and, 

consequently, the expression of their target genes. Importantly, response to hypoxia 

depends also on the cell type and the heterogeneity of gene regulation responses 

reflects the different cellular requirements (321, 322). Therefore, I estimated 

differential expression (log2 fold change) from normalised read counts between 

normoxic and hypoxic LCL introgressed and non introgressed samples at 4 and 24 
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hours to see whether I could detect genes that are differentially expressed. Inclusion 

of A549 in preliminary analyses would bias differential expression results due to 

differences in basal gene expression between LCLs and A549. The normalised gene 

read counts for hypoxic conditions were higher than normoxia, supporting possible 

higher gene expression in hypoxia and the activation of set of genes (Figure 4.18).  

 

 
Figure 4. 18 Normalised read count between normoxia and hypoxia. The plot shows the gene read 

counts for all samples in hypoxia and normoxia. Hypoxic samples show higher read count and thus 

possible higher expression of a set of genes.  

  

LCLs across the different time points do show differentially expressed genes 

between normoxia and hypoxia and between introgressed and non introgressed cell 

lines, confirming that the hypoxic condition in the cells was reached throughout the 

experiment (Figure 4.16).  EPAS1 does not show statistically significant differential 
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expression (pvalue adjusted < 0.1) between the samples. However, EPAS1 is not 

highly expressed in LCLs compared to other genes and this could affect the detection 

of its expression using Deseq2 (323) (Figure 4.19 A and B). Different filtering and 

normalisation methods are needed to test reliable detection of differentially 

expressed genes.  
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Figure 4. 19 Differential gene expression between normoxia and hypoxia and introgressed and non 

introgressed samples. The y-axis shows the log2 fold change between the different conditions, the x-

axis the average of the read counts normalized by size. Each gene is represented with a dot. Genes with 

a pvalue adjusted < 0.1 for a significant difference are shown in red. In gold is indicated EPAS1. A. 4 

hour time point B. 24 hour time point. 
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4.4 Discussion 
 

In this study, in silico and in vitro work on understanding the underlying 

biological function of high altitude adaptation in Himalayans has been reported. 

Although the Denisovan introgressed region spans over ~300 kb and contains 

multiple genes and variants, the EPAS1 ~32.7 kb region with the introgressed core, 

together with the adjacent SNP rs55981512, have previously been proposed as 

candidates for involvement in the high altitude phenotype (104, 119). This conclusion 

is supported by multiple lines of evidence presented in this study. Firstly, as seen in 

the previous chapters, the highest FST values between Tibetans and Han Chinese are 

reported for several variants within this region. Secondly, the genomic region around 

the EPAS1 locus shows high evolutionary conservation of  DNA sequence across 

different species with three ECRs (Figure 4.7) that span both intronic and exonic 

regions, suggesting an important role of EPAS1 during development, hypoxic 

response and diseases (132, 142, 324, 325). Lastly, the importance of this locus is 

supported by the preliminary functional results showing differential expression of 

EPAS1 between hypoxia and normoxia and between introgressed and non 

introgressed samples (Figures 4.12 and 4.13). 

We do not know if the Denisovan population was adapted to live at high 

altitude and if the EPAS1 haplotype was selected in Denisovans for this function. It 

could be also that this haplotype carried out a different function in Denisovan 

physiology, unrelated to high altitude adaptation. Thus, the biological functional 

consequences of EPAS1 of the Denisovan haplotype are unknown. Initial attempts at 

characterizing the EPAS1 molecular function showed its downregulation in Tibetans 

and has been tentatively interpreted as agreement with the Tibetan phenotype of low 

red blood cell count (209). However, the published study had many limitations and 

the necessity for new functional studies stimulated the development of the hypoxic 

protocol and experiments described in this chapter. The detection of expression of 

EPAS1 in human LCLs makes them a usable model for hypoxic experiments. The 

comparison of EPAS1 expression levels in LCLs together with a positive control lung 

cell line, A549, confirmed that EPAS1 expression is induced at different time points in 

different cell lines and, thus, can play a role in response to hypoxia (Figures 4.10-

4.13).  
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Analyses of publicly available RNA-seq data show that EPAS1 expression is 

more localised to specific tissues than HIF-1α, which seems to have a more generalist 

function in the hypoxic response (141, 302) (Figure 4.2). In particular, expression of 

EPAS1 shows very high levels in endothelial, cardiac and lung tissues (Figures 4.3and 

4.4).   The differential expression of EPAS1 in LCLs with or without the introgressed 

haplotype supports the hypothesis that this gene is critical for the adaptive response 

to hypoxia (Figures 4.12 and 4.13). However, all cell lines with the introgressed 

haplotype used in this study show similar haplotypes for the entire ~32.7 kb core 

region, which makes it difficult to pinpoint the exact functional variant(s) (Figure 4.2). 

Other genes such as EGLN1 have also been implicated in the high altitude adaptation 

of Tibetans.  The qPCR results show differences in expression of EGLN1 and HIF-1α at 

4 hours of hypoxic exposure although this variability involve only two non 

introgressed LCLs (HG02153 and HG00881) and A549 (Figures 4.9 and4.10). HIF-1α 

expression at 4 hours can support the idea that this gene plays central role in the acute 

phase of hypoxic exposure (141, 306). Particularly, EGLN1 differences in expression 

seem to not correlate with the presence of rs186996510 and rs12097901 suggesting 

that these variants do not have large effects on expression levels, consistent with their 

annotation as missense variants (Table 4.1, Figures 4.10 and 4.11).  

RNA-seq data generated by this study will provide a better understanding of 

the molecular pathway of high altitude adaptation in the Himalayan populations. The 

preliminary QC and analyses of the data show that their quality is sufficiently good 

(Figure 4.13, 4.14 and 4.15). They also show that the hypoxic condition in cell culture 

was reached, and differential expression between hypoxia and normoxia is detectable 

(Figure 4.16 and 4.17). Further comprehensive analyses of the RNA-seq data will 

provide some insight of the possible underlying biological function which could 

hopefully explain some aspects of the mechanism of high altitude adaption of the 

introgressed haplotype in EPAS1 gene. 
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5. General discussion 

5.1 Summary 
 

The geographical structure of the Himalayan region has played a strategic role 

in shaping the genetic, cultural and ethno-linguistic mosaic of South and East Asia. 

Isolation, genetic drift and natural selection have all potentially moulded the genetics 

of populations residing in this area. All these factors make the Himalayan populations 

exceptional candidates for understanding human evolutionary dynamics in a complex 

area.  Although many genetic studies have been published on the Himalayan region, 

most of them have focused on specific populations such Tibetans and Sherpa, or the 

surrounding regions, or on the relationship between Tibetans and Han Chinese (50, 

99, 117, 119).  

In a previous collaborative study, we carried out the first genetic study of a 

broad number of Himalayan populations using autosomal STRs, and highlighted the 

high genetic complexity of the region (111). However, a comprehensive survey of the 

genetic variability and the broad population history of the Himalayan region has been 

missing. In this dissertation, I describe the work done on the genetic characterisation 

of 52 autochthonous groups from Nepal, Bhutan, North India, and the Tibetan Plateau 

in China, and have carried out a preliminary exploration of the biological mechanism 

underlying the genetic adaptation in these populations. Firstly, I elucidated their 

genetic structure and population demography using a combination of SNP-genotype 

data and high coverage whole-genome sequences. All the Himalayan populations 

share ancestry with their geographical neighbours in South and East Asia. 

Nevertheless, Himalayans share a common ancestral population that is abundant in 

most Himalayans, but rare elsewhere, followed by the development of local fine 

structure which is influenced by both language and geography.  An exception, 

however, is that all of the high altitude populations from Tibet, Bhutan and Sherpa 

from Nepal showed a high genetic affinity with recent split times from one another 

during the last 5,000 years, regardless of their geographical and linguistic 

distribution. This conclusion is in contrast to a previous study which suggested a 

geographical cline within high altitude populations, with geographically closer 

populations having more genetic affinity (120) which could be due to the limited 
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number of populations included and lack of Bhutanese populations. The high genetic 

similarity of high altitude populations could be explained by archaeological evidences 

of permanent settlement at extreme high altitudes, above 3000 meters, only from 

~3,600 years ago. The agricultural shift from a millet based economy to a barley one 

seems to have played a role in this transition to higher altitudes. Barley can bear 

better hypoxic conditions, has a longer growing season and it is more frost-hardy 

compared to millet (326, 327). This agricultural shift together with sheep husbandry 

may have allowed people to thrive at extreme high altitudes only in very recent times 

(327). This would support our results suggesting that high altitude adaptation 

originated in a single ancestral population and subsequently spread widely across the 

Himalayas, illustrated by the presence of a shared high altitude genetic component 

correlating with altitude reported here, and the EPAS1 adaptive haplotype being 

widely distributed across the region in an altitude-dependent manner as described 

previously (127). The archaeological evidences would also explain our results of the 

very recent split times within the different high altitude populations.  

It has been suggested that the Himalayas were a corridor for human 

migrations from the Tibetan plateau to South Asia in ancient times, or alternatively 

have represented a natural barrier to gene flow between South and East Asia and 

remained uninhabited until more recent times (105-107, 328). Archaeological 

evidences for intermittent human presence in the Tibetan Plateau date back from at 

least 40,000-30,000 years ago (110, 329). These mostly include human handprints 

and footprints, animal bones and stone artefacts (327). It is plausible that these 

remains are traces of early waves of people reaching those altitudes, possibly tracking 

game. However, it is unlikely these early people would have been the first permanent 

dwellers of the Himalayan region. The population split times between Himalayan and 

South and East Asian populations, as well as their genetic affinities, can shed light on 

the settling and the movements of people in the region. Himalayan populations 

separated first from South Asians between 20,000 and 10,000 years ago and 

subsequently from East Asians around 9,000 years ago. Himalayas also show different 

proportions of South and East Asian recent admixture among themselves. These time 

estimations suggest that the ancestors of present-day Himalayans probably arrived 

through waves of migration during the early Neolithic. Previous studies reported that 

the Tibetans have a high genetic affinity with East Asians and gene flow, in particular 
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to Han Chinese, with a population split time around 7,000-9,000 years ago (118, 119). 

Here, I have further shown that other high altitude populations within this region also 

have a high affinity to East Asians, with a more recent split from East Asian 

populations in comparison to South Asians. This is again supported by archaeological 

evidences that report the establishment of the first villages at elevated altitudes 

(~2,500 m) in the north-eastern Tibetan Plateau, along the Yellow river, from around 

5,200 years ago, possibly due to population expansion from neighbouring areas. It is 

plausible that from these areas populations expanded further up in altitudes and 

colonised the Himalayan arc. As previously mentioned, permanent settlements at 

altitudes greater than 3,000 meters were probably allowed thanks to a shift in the 

agro-pastoral economical system in the last ~3,600 years (327). Although high 

altitude populations are genetically closer to East Asians, they also show different 

degrees of South Asian admixture, like other Himalayan populations probably due 

recent admixture events.  

In contrast, some Nepalese populations (for example, Chetri and Tharu) 

showed a higher proportion of South Asian admixture with an earlier population split 

time from East Asians compared to the South Asian populations. This could suggest 

extensive admixture with other South Asians populations in recent times: This 

hypothesis is supported by the analyses of autosomal markers, Y chromosomes and 

mtDNA. The patterns of rare variant sharing (singletons and f2 variant sharing) and 

admixture analyses such ALDER, highlighted that these gene flows occurred recently, 

between 2,000 and 200 years ago. The Y and mtDNA lineages in the Himalayans are 

commonly found in South and East Asia, and are widespread across the region. The Y 

chromosomes of the Himalayans, however, often form distinct Himalayan-specific 

clusters with very short branches, suggesting a rapid male expansion across the 

region around 1,000 years ago. This could suggest a second hypothesis of the 

colonisation of the Himalayan region: Populations in the South Asian side of the 

Himalayan foothills settled in the area in older times and then mixed with the people 

expanding from East Asia in more recent times. This could explain the later population 

split time from South Asian populations compared to the East Asians. It would also 

explain the rapid male expansion seen in the Y chromosome, comprising mostly East 

Asian haplogroups (O2 and D). Demographic model simulations and additional 
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research on these populations is needed to further understand the peopling of the 

Himalayan region. 

Overall, the genetic evidence supports the hypothesis of the Himalayas being 

used as a corridor for human migration with bidirectional gene flow. The Himalayas 

could also possibly have been used by archaic populations as a corridor between 

South and East Asia. However, further research is needed to understand the area 

occupied by archaic humans such as Denisovans (330, 331).  

The current work thus provides a comprehensive description of the genome-

wide genetic variation and fine-scale population structure in the previously 

underrepresented Himalayan region. The data generated here fill a gap in South and 

East Asia genetic variability and can be used as a reference panel for the region. 

Furthermore, the study highlights how the complex geography and culture in the 

Himalayan region have shaped the evolutionary and population-genetic dynamics. 

Different populations show different degrees of isolation and genetic differentiation 

within the same region. For example, Lhokpu, Mönpa and Toto showed the highest 

genetic drift. Others such as Chetri and Tharu show high population growth and high 

heterozygosity which can be explained by admixture with South Asians. Socio-

cultural structures such as language and the caste system might also have played an 

active role in shaping the population structure in present day Nepal.  

Himalayan populations reside at a broad range of altitudes and in different 

environments, ranging from tropical forest to some of the world’s highest mountain 

peaks, which make them ideal to study genetic adaptation. Several statistical 

frameworks were applied to both SNP-genotype data and whole-genome sequences 

to explore the genetic adaptation at both high and low altitudes. The most convincing 

example of positive selection for low altitude adaptation was the α-thalassaemia 

variant in the Tharu population that is reportedly protective against malaria (46, 

223). High altitude adaptation in Himalayans has been of great interest in the past 

decade and many candidate genes have been associated with it in studies of Tibetans 

and Sherpa. The availability of populations living at a wide range of different altitudes 

gave additional power to validate known loci and identify novel candidates associated 

with high altitude adaptation. EPAS1 selection, its relevance to high altitude 

adaptation, and introgression from Denisovans have previously been reported (99, 

104). However, functional studies of EPAS1 variants has not been systematically 
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carried out and it is still unknown which variants are key and what their underlying 

biological mechanism is. The complicated linkage disequilibrium pattern of the EPAS1 

region, together with the length of over 300 kb of the introgressed region, makes it 

hard to prioritise functional variants. The previous work and studies reported in this 

thesis have together highlighted 14 potential drivers (Figure 5.1, Table 5.1).  

 

Variant Genomic location 

(GRCh38) 

Gene Present in four 

introgressed cell lines 

rs370299814 chr2: 46334261 EPAS1 YES* 

rs115321619 chr2: 46340777 EPAS1 YES 

rs73926263 chr2: 46341541 EPAS1 YES 

rs73926264 chr2:46341878 EPAS1 YES 

rs73926265 chr2:46342631 EPAS1 YES 

rs55981512 chr2: 46343203 EPAS1 YES 

rs150877473 chr2:46360880 EPAS1 YES 

rs141366568 chr2:46366983 EPAS1 YES* 

rs1868092 chr2:46387063 EPAS1 YES** 

rs12986653 chr2:46490951 ATP6V1E2 YES** 

rs982414 chr2:46618437 CRIPT NO 

4bp deletion chr2:46350662-

46350664 

EPAS1 YES*** 

TED (3.4 kb deletion) chr2:46467138-

46470544 

TMEM247 YES**** 

NOTE: * derived allele absent in HG02396, ** present in various 1000 Genomes Project samples, *** 
present in the four introgressed cell lines and HG02390, **** present in various 1000 Genomes Project 
samples but not in HG02396. 
 
Table 5. 1 Potential drivers of selection in the EPAS1 region. In bold are the variants falling within the 

highly differentiated ~32.7 kb region in EPAS1. 

 

EPAS1 plays an important role not only in response to physiological hypoxia, 

but also in development and diseases like cancer. It is essential for correct heart 

development during embryonic stages (132, 324, 332). Understanding the genetics 

and physiology of high altitude adaptation is important not only for those interested 

in human adaptation and evolution, but can be also medically relevant for 

understanding mountain sickness and chronic obstructive pulmonary disease, and for 

cancer development mechanisms and angiogenesis. So understanding the molecular 
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mechanisms and validating variants of EPAS1 for high altitude adaption is a key step 

and in vitro work on EPAS1 differential expression between cell lines with and without 

the introgressed core Denisovan haplotype under hypoxic condition could potentially 

shed light on this. I developed an optimised protocol to carry out the hypoxic 

experiments in normal cell culture incubators. The protocol is user-friendly and can 

be used across different laboratories on any available cell lines. The steady and low 

expression of EPAS1 in introgressed cell lines under hypoxic condition is in agreement 

with the physiological response and phenotype in Himalayans, which is characterized 

by low red blood cell count that is tightly regulated by erythropoietin (EPO).  In light 

of these results, among the potential drivers of selection, I could exclude rs370299814 

and rs141366568 because there was not a difference in EPAS1 expression between 

cell lines with the introgressed haplotype carrying those alleles (HG00987, HG02187 

and HG02397) and the one (HG02396) ancestral for them. Likewise, the TED deletion 

downstream of EPAS1 has been detected in multiple individuals of the 1000 Genomes 

Project, yet is absent in HG02396.  I could also exclude rs982414 because this variant 

was not present in the cell lines used for this study. Furthermore, because change in 

expression levels between introgressed and non-introgressed cell lines only involved 

the EPAS1 gene and not the neighbouring genes (TMEM247, ATP6V1E2, CRIPT, PIGF), 

it is also likely that rs12986653 is not the responsible variant for the assessed 

phenotype. Finally, the 4bp deletion is carried by all four introgressed cell lines 

together with HG02390, a cell line that does not carry the derived state of the other 

variants. Further analyses of RNA-seq and qPCR profiles could help to understand if 

this deletion could be functional in HG02390 and the other introgressed cell lines. On 

the other hand, candidates supported for being potential drivers of the adaptive 

phenotype are the SNPs within the core Denisovan haplotype (rs115321619, 

rs73926263, rs73926264, rs73926265, rs55981512) and the nearby variant 

predicted to affect splicing (rs150877473). All four introgressed cell lines used in this 

project carried all these variants that lie in the ~32.7 kb which includes the most 

highly differentiated variants between Han and Tibetans (FST > 0.85).  
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Figure 5. 1 Genomic location of potential drivers of selection in EPAS1 region. In red are indicated 

variants falling the highly differentiated ~32.7 kb region in EPAS1. 

 

Further studies to understand whether the EPAS1 differential expression 

observed between the introgressed and non-introgressed LCLs involves a cis or trans 

regulation, and to further narrow down the functional variants are still required. 

Furthermore, exploring the potential interaction of EPAS1 with the other candidate 

genes associated with high altitude adaptation would help to identify the molecular 

cascade activated in response to hypoxia in Himalayans.  

In conclusion, the combination of SNP genotyping with whole-genome 

sequences is a powerful approach to study population demographic history and 

genetic adaptation; functional studies are essential to further understand the 

underlying biological mechanism of the genetic adaption to high altitude living in the 

Himalayas.  
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5.2 Next steps 
 

In-depth analyses of the RNA-seq data generated for the introgressed and non-

introgressed cell lines cultured under normoxic and hypoxic conditions will be the 

next steps. These include analysing differential expression of EPAS1 and other genes 

involved in the hypoxic pathway and estimating the impact of specific variants in 

splicing and predicting possible eQTLs, as well as genome-wide changes of expression 

levels in both acute (4 hours) and chronic hypoxia (72 hours) in LCLs and the A549 

cell line. These should allow the understanding of differential response in cell lines 

with and without the EPAS1 core Denisovan introgressed haplotype and other 

variants. Any potentially interesting differentiated genes discovered from RNA-seq 

analyses can subsequently be validated using qPCR. 

The population-genetic studies presented in this thesis have identified several 

other candidates for positive selection at high altitude. A similar approach of 

pinpointing likely functional variants in the sequence data and further exploring their 

function in cell lines can potentially be applied in a systematic way. 
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5.3 Future research 

 Himalayan populations have been poorly represented in genome-wide studies 

of human variation, and even fewer studies of various diseases in populations residing 

at high altitude have been published. The genetic and physiological changes that 

enabled adaption to the harsh environment at high altitude, which include increased 

ultraviolet radiation, hypobaria and hypoxemia, may have altered the susceptibility 

to diseases and innate defence mechanisms against microbial infection in these 

populations. It has been reported that people living in high altitude environments 

have a higher incidence of digestive system disease; the gut wall is an essential barrier 

for preventing bacterial infection and endotoxin entering human organs (333). 

Tibetans have evolved a mechanism of protection against intestinal injuries by 

downregulating EGFR, GRB2, and PTPN11 genes, but have a higher prevalence of 

congenital heart disease in children (334). It has also been reported that young 

children and infants at high altitudes have higher rates of hospitalization for 

bronchiolitis and pneumonia due to respiratory syncytial virus (RSV) infection, and it 

is suggested that physiological adaptation to altitude leads to more severe 

consequences in RSV infections (335). These, together with other reports suggest that 

there are differences in predisposition to diseases and in the immune response to 

pathogens in the high altitude populations (336-339).  Both genome-wide association 

and functional genomic studies are very much needed in these populations to both 

better understand the consequences of high altitude adaptation and improve health 

care for these populations. Some of the Himalayan populations have experienced 

severe bottlenecks and it is important to understand the resulting genetic burden of 

these events. 

A lot more work is needed to further understand the detailed biology and 

function of EPAS1 and the underlying mechanism of high altitude adaptation. Since 

the first reports of EPAS1 being under strong positive selection in Tibetans, it has been 

widely accepted that this gene was associated with high altitude adaptation in this 

population and it was from an introgression event from the Denisovans into modern 

humans (99, 104, 145). Reduced oxygen levels and hypobaric hypoxia can 

considerably challenge the normal life and reproduction of different species and thus 

acting as selective pressure (340). However, EPAS1 plays a plethora of roles in 
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different biological pathways, including immunity against pathogens and athletic 

performance that would have played a key role to escaping predators (341-343). 

Hypoxia inducible factors play an important role regulating both innate and adaptive 

host immune response (344). Oxygen deprivation can dramatically affect running and 

physical resistance performance and hypoxic factors play an important role in 

regulating hypoxic levels in tissues (345). Currently, we do not know which function 

EPAS1 had in the Denisovan population and if the original purpose of the introgressed 

haplotype was to give advantage to live at extreme altitudes. Consequently, we could 

argue that the primary function of EPAS1 was not related to high altitude adaptation. 

High altitude adaptation in humans is an example of convergent evolution in three 

main populations: Himalayans, Andeans and Ethiopians (131, 133, 346). This 

adaptation involves both a set of shared and unshared genes between populations: 

five genes (EDN1, EDNRA, EGLN1, NOS1 and VEGFA) but not EPAS1 are shared across 

the three continental areas suggesting their essentiality in high altitude adaptation 

(Figure 1.1). This could suggest that EPAS1 represents a secondary candidate to high 

altitude adaptation. 

 Despite the original function of EPAS1, more work is needed to understand the 

role of the introgressed haplotype and EPAS1 function in high altitude adaptation. 

First, the differential expression of EPAS1 and other hypoxic factors at the protein 

level should be investigated in cell lines with and without the introgressed haplotype 

under hypoxic conditions. This will need an optimised protocol for protein extraction 

from samples exposed to hypoxia, as hypoxia inducible factors (HIFs) get quickly 

degraded when exposed to normoxia via the VHL-mediated ubiquination pathway 

(347). A potential way around this would be to use proteasome inhibitors such as 

MG132, which is an oxygen scavenger and stabilises the hypoxic condition (347), 

although it can also be toxic to the cells. If the in-depth analyses of the RNA-seq data 

fail to identify plausible functionally important variants in the 300 kb positively 

selected haplotype, an alternative approach would be to sequentially delete sections 

of the introgressed genomic region in suitable cell lines using CRISPR-Cas9 genome 

editing in order to potentially narrow down to the critical genomic area containing 

the functional variants. Subsequently, the variants within the candidate region could 

be further explored at the single point mutation level using the same approach.  
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Many population-genetic studies have identified candidate regions/variants of 

positive selection in different human populations, yet their relevant biological 

function and mechanism in improving reproductive fitness usually remains unknown 

or under-studied. Large-scale functional studies of all variants positively selected in 

any population will provide a comprehensive picture and full understanding of the 

molecular mechanisms and biological interaction network of human adaption and 

their potential health consequences. 
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APPENDIX A 

 

Y chromosome tree of 1000GP and Himalayan 
individuals (GRCh38) 
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APPENDIX B 

 

List of Denisovan introgressed SNPs  

 

Denisovan SNPs within Himalaya- specific introgressed 
tracts  

 

CHR    - chromosome 

POS    -genomic position 

SNP    - SNP rs number 

ALLELE   - archaic allele  

HGNC   -gene name 

CONSEQUENCE  - functional prediction (VEP) 
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Denisova introgressed SNPs 
CHR POS SNP ALLELE HGNC CONSEQUENCE 

1 6354421 rs568534004 G - open_chromatin_region 

1 6367361 rs538578120 C - open_chromatin_region 

1 6389990 rs545807707 G - enhancer 

1 6390320 rs562430899 A - enhancer 

1 6438420 rs577801293 A - CTCF_binding_site 

1 6536773 rs544195746 T - CTCF_binding_site 

1 14049383 rs74557977 T - promoter_flanking_region 

1 14050239 rs78095306 G - promoter_flanking_region 

1 14050615 rs77986549 A - promoter_flanking_region 

1 14060211 rs114023548 C - promoter_flanking_region 

1 14079247 rs532546078 C - promoter_flanking_region 

1 14118977 rs116702257 C - open_chromatin_region 

1 33631004 rs142594804 C - open_chromatin_region 

1 33642134 rs3766817 C - open_chromatin_region 

1 33752272 rs77880723 G - open_chromatin_region 

1 33766943 rs146318909 T - open_chromatin_region 

1 33801928 rs117765738 T - promoter_flanking_region 

1 33804437 rs117836468 C - promoter_flanking_region 

1 113245618 rs368840677 T RHOC splice_region_variant,intron_variant 

1 113250043 rs375619655 A - promoter 

1 167683557 rs376459065 C - promoter_flanking_region 

1 167774578 rs150219328 C - enhancer 

1 167786711 rs147629796 A - TF_binding_site 

1 229477835 rs571590141 A - promoter 

1 232645738 rs7552486 C - open_chromatin_region 

1 232649763 rs766435961 G SIPA1L2 synonymous_variant 

2 21242771 rs200868559 C APOB synonymous_variant 

2 21264999 rs531023775 A - TF_binding_site 

2 21266363 rs570818403 T - promoter_flanking_region 

2 21266980 rs547640128 T - promoter_flanking_region 

2 23265626 rs75127632 T - open_chromatin_region 

2 33363144 rs140066553 C - promoter_flanking_region 

2 33370502 rs79979829 G - open_chromatin_region 

2 33371346 rs79037232 A - open_chromatin_region 

2 45464590 - G,A - promoter_flanking_region 

2 46406589 rs1968635 G - enhancer 

2 46406619 rs1530668 G - enhancer 

2 46409146 rs3754559 T - open_chromatin_region 

2 46412422 rs2278773 G - CTCF_binding_site 

2 46456816 rs79136032 A - promoter_flanking_region 

2 46495437 rs368889159 A - promoter_flanking_region 

2 46521270 rs373013254 T - CTCF_binding_site 
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CHR POS SNP ALLELE HGNC CONSEQUENCE 

2 46533730 rs375877310 T - promoter_flanking_region 

2 46558530 rs375418933 C - promoter_flanking_region 

2 46561400 rs370299814 A - promoter_flanking_region 

2 46561659 rs368706892 T - promoter_flanking_region 

2 46577808 rs555698019 A - promoter_flanking_region 

2 47570709 rs554756783 C - CTCF_binding_site 

2 47630045 rs786202645 T - promoter 

2 47766727 rs538742577 T - CTCF_binding_site 

2 47796858 rs370357176 A - promoter_flanking_region 

2 47798125 rs541185621 T - promoter_flanking_region 

2 47799856 rs570702589 G AC138655.1 missense_variant 

2 97007908 rs774996456 T - open_chromatin_region 

2 101554875 rs78527344 A - open_chromatin_region 

2 101558505 - T,A - open_chromatin_region 

2 109165478 rs199597739 C - open_chromatin_region 

2 109196758 rs143717707 T - enhancer 

2 109253205 rs201901817 T - promoter_flanking_region 

2 167011292 rs3886534 T - TF_binding_site 

2 211442785 - G - CTCF_binding_site 

2 231973651 rs760260232 T HTR2B synonymous_variant 

2 231975795 rs907215603 C - open_chromatin_region 

2 231988965 rs888680018 G - promoter_flanking_region 

2 232011670 rs1042559328 G - open_chromatin_region 

2 232018264 rs764590208 G - open_chromatin_region 

2 232025455 rs1042480674 T - promoter_flanking_region 

2 232035351 rs751952582 G PSMD1 synonymous_variant 

2 232037004 rs1030146827 G - open_chromatin_region 

2 232037080 rs949733786 A - open_chromatin_region 

2 232049910 rs955445159 T - enhancer 

2 232063420 rs980173749 A - promoter 

2 232077473 rs890075866 A - open_chromatin_region 

2 232092252 rs924574717 T - CTCF_binding_site 

2 232100085 rs370669179 T - open_chromatin_region 

2 233791484 rs144485640 G - promoter_flanking_region 

2 234091138 rs70940832 T INPP5D synonymous_variant 

3 15351858 rs139347281 T - promoter_flanking_region 

3 45970944 rs13099120 G - CTCF_binding_site 

3 186710784 rs542973619 T - enhancer 

4 3419093 rs16844311 T RGS12 splice_region_variant,intron 

4 186578505 rs2306704 G - enhancer 

5 67111452 rs117153929 A - open_chromatin_region 

5 77353203 rs117785921 T - open_chromatin_region 

5 142077223 rs117020353 A - promoter_flanking_region 
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CHR POS SNP ALLELE HGNC CONSEQUENCE 

6 7975489 - C - promoter_flanking_region 

6 10521305 rs72821511 C - promoter_flanking_region 

6 10522868 rs72821513 G - promoter_flanking_region 

6 25015153 rs367724830 G - enhancer 

6 30012624 rs114315683 A - open_chromatin_region 

6 35454554 rs75480498 T - promoter_flanking_region 

6 35461867 rs72894781 A - promoter_flanking_region 

6 35471721 rs188389031 C - CTCF_binding_site 

6 56620831 rs145031609 C - enhancer 

6 99958077 rs748665547 A USP45 missense_variant 

6 99964134 rs986920319 T - promoter 

6 100023574 rs330850 C - open_chromatin_region 

6 119631639 - G,T - enhancer 

6 119634071 rs77683431 T - promoter_flanking_region 

6 119634137 rs78585986 G - promoter_flanking_region 

6 119635876 rs3798635 C - promoter_flanking_region 

6 119636240 rs3823001 A - promoter_flanking_region 

6 119636490 rs3798637 A - promoter_flanking_region 

6 119636588 rs3798638 A - promoter_flanking_region 

7 17514707 rs187739737 T - CTCF_binding_site 

7 17514772 rs191428236 A - CTCF_binding_site 

7 80488999 rs79725824 T - open_chromatin_region 

7 80506633 rs138238608 A - TF_binding_site 

7 80513534 rs186257173 G - promoter_flanking_region 

7 149510149 rs740112 T - CTCF_binding_site 

7 149519760 rs202144866 C - open_chromatin_region 

7 149559072 rs200599838 T ZNF862 synonymous_variant 

8 10555301 rs77073793 T C8orf74 missense_variant 

8 21614351 rs559929741 T - enhancer 

8 21614507 rs184078269 T - enhancer 

8 37403652 rs375443835 A - promoter_flanking_region 

8 38446214 rs569518627 A - open_chromatin_region 

8 38483175 rs566392509 G - CTCF_binding_site 

8 53303768 rs1026771210 A - TF_binding_site 

9 36867495 rs17391491 A - CTCF_binding_site 

9 36867507 rs77776435 A - CTCF_binding_site 

9 100871756 rs1035579538 G - promoter_flanking_region 

9 100880885 - A - promoter 

9 113732569 rs16915602 T - open_chromatin_region 

9 138133766 rs940329833 T - CTCF_binding_site 

10 80893337 rs80183004 T - enhancer 

10 112506454 rs531624200 C - CTCF_binding_site 

10 119223386 rs560418517 C - open_chromatin_region 
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10 119236269 rs533194625 T - open_chromatin_region 

10 126236440 rs17695019 C - open_chromatin_region 

11 8615738 - T - promoter 

11 8634657 - A - open_chromatin_region 

11 8634687 rs181255316 C - open_chromatin_region 

11 29287690 rs183865464 A - TF_binding_site 

11 36399086 rs191868665 T - promoter 

11 36402967 rs117520408 G - promoter_flanking_region 

11 36406842 rs117153510 A - open_chromatin_region 

11 83424833 rs80154930 T - TF_binding_site 

11 83436260 rs180851175 G - CTCF_binding_site 

11 110045286 rs1040021791 G - promoter_flanking_region 

11 113954215 rs118050126 C - promoter_flanking_region 

11 125812061 - G,A - TF_binding_site 

11 131618541 rs570541277 C - CTCF_binding_site 

11 131618935 rs530598977 A - open_chromatin_region 

11 131619057 rs546924141 G - open_chromatin_region 

12 6184143 rs2239155 A - promoter_flanking_region 

12 6187788 rs117115831 A - enhancer 

13 21063533 rs202040300 G - CTCF_binding_site 

13 114880593 rs117295582 T - enhancer 

13 114912023 rs12585992 T - CTCF_binding_site 

13 114944785 rs118122842 T - CTCF_binding_site 

14 53618860 rs561056322 A - promoter 

14 79977041 rs77934216 G - open_chromatin_region 

14 91164759 rs78720229 T - enhancer 

14 96728122 rs34334635 A - open_chromatin_region 

15 28340920 rs180681661 T - promoter_flanking_region 

15 71510985 rs543912832 T - open_chromatin_region 

15 85877075 - A,T - enhancer 

16 3026680 rs4149788 A PKMYT1 synonymous_variant 

16 3027039 rs4149785 A PKMYT1 splice_region_variant,intron_variant 

16 87712807 rs936651169 T - CTCF_binding_site 

16 87715900 - G - open_chromatin_region 

16 87717790 rs753264216 G JPH3 synonymous_variant 

16 87732196 - T - TF_binding_site 

16 87736136 rs1027754692 A - promoter_flanking_region 

17 7034452 - A,C - promoter_flanking_region 

18 22585593 rs79111688 G - open_chromatin_region 

18 47638207 rs138261729 G - CTCF_binding_site 

18 47678309 rs371235559 T - open_chromatin_region 

18 47688484 rs374840270 T - CTCF_binding_site 

18 60021761 rs35211496 T TNFRSF11A missense_variant 
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19 2043107 rs146470954 C - promoter_flanking_region 

19 41622495 rs76335535 A CYP2F1 missense_variant 

19 41626271 rs139705553 T CYP2F1 synonymous_variant 

20 2723275 rs574706705 G - CTCF_binding_site 

20 18393782 rs143400891 C - promoter_flanking_region 

20 18395092 rs139700575 T DZANK1 missense_variant 

21 17923179 rs78195113 G - open_chromatin_region 

21 17923777 rs79615460 A - open_chromatin_region 
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APPENDIX C 

 

List of FineMAV candidates  

 

100 top scoring SNPs detected by FineMAV  

 

CHR    - chromosome 

POS    -genomic position 

SNP    - SNP rs number 

HGNC   -gene name 

ANC_ALLELE  -ancestral allele 

DER_ALLELE  -derived allele  

FineMAV_POP -FineMAV score in relevant population 

CONSEQUENCE - functional prediction (VEP) 
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High versus low altitude Himalayans 
High altitude 

CHR POS SNP HGNC ANC_ALLELE DER_ALLELE FineMAV_HIM_H CONSEQUENCE 

1 1417587 rs181312132 ATAD3B . T 2.598 missense_variant 

1 9009451 rs2274329 CA6 G C 2.4202 missense_variant 

1 158549492 rs863362 OR10X1 C T 2.4901 stop_gained 

1 230745328 - RP11-
543E8.2 

C T 2.492 downstream_gene_variant 

1 236195728 rs78916782 NID1 C T 3.234 missense_variant 

2 3358295 rs12612251 TSSC1 T C 2.4011 intron_variant 

2 34525050 rs181481277 AC009499.1 G A 2.4622 downstream_gene_variant 

2 46552202 rs149594770 EPAS1 T A 3.3245 intron_variant 

2 46553044 rs113305133 EPAS1 A G 2.4851 intron_variant 

2 46553781 rs369553078 EPAS1 T A 3.219 intron_variant 

2 46558530 rs375418933 EPAS1 G C 2.5049 intron_variant 

2 46568084 rs150049928 EPAS1 C T 2.4673 intron_variant 

2 46569770 rs73926265 EPAS1 G A 3.2876 intron_variant 

2 46576918 rs76242811 EPAS1 T C 2.9492 intron_variant 

2 46577251 rs188801636 EPAS1 T C 6.2474 intron_variant 

2 46577808 rs555698019 EPAS1 T A 7.3718 intron_variant 

2 46583581 rs189807021 EPAS1 G A 3.1901 intron_variant 

2 46588019 rs150877473 EPAS1 C G 4.6218 splice_region_variant,intron_variant 

2 46589032 rs74898705 EPAS1 C T 2.9138 intron_variant 
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CHR POS SNP HGNC ANC_ALLELE DER_ALLELE FineMAV_HIM_H CONSEQUENCE 

2 46598025 rs141426873 EPAS1 C G 3.2968 intron_variant 

2 4660030 rs116611511 EPAS1 A G 4.6302 intron_variant 

2 46600358 rs369097672 EPAS1 A G 6.6004 intron_variant 

2 46656647 rs56048837 TMEM247 G C 2.736 upstream_gene_variant 

2 46675505 rs77111769 TMEM247 T C 4.9108 intron_variant,non_coding_transcript_variant 

2 46681989 rs117115595 TMEM247 C T 3.9203 intron_variant,non_coding_transcript_variant 

2 46689216 rs115350785 TMEM247 A G 2.5145 intron_variant,non_coding_transcript_variant 

2 46690452 rs1868082 TMEM247 C A 2.4279 intron_variant,non_coding_transcript_variant 

2 46693330 rs182127341 TMEM247 C A 3.0291 intron_variant,non_coding_transcript_variant 

2 46693993 rs116871724 TMEM247 T A 3.2155 intron_variant,non_coding_transcript_variant 

2 46699639 rs58143719 TMEM247 T C 2.7582 intron_variant,non_coding_transcript_variant 

2 46702159 rs113190671 TMEM247 T G 3.3463 intron_variant,non_coding_transcript_variant 

2 46706765 rs192690066 TMEM247 C T 2.6154 intron_variant,non_coding_transcript_variant 

2 46707674 rs116983452 TMEM247 C T 4.6567 intron_variant,non_coding_transcript_variant 

2 46710530 rs79542054 TMEM247 C T 5.9521 intron_variant,non_coding_transcript_variant 

2 46718090 rs12986653 ATP6V1E2 G A 6.1156 intron_variant,non_coding_transcript_variant 

2 46720010 rs75483237 ATP6V1E2 T G 3.0471 intron_variant,non_coding_transcript_variant 

2 46720473 rs117677853 ATP6V1E2 C T 2.6394 intron_variant,non_coding_transcript_variant 

2 46720802 rs117446572 ATP6V1E2 G A 2.8891 intron_variant,non_coding_transcript_variant 

2 46733738 rs117128262 ATP6V1E2 T C 7.11 intron_variant,non_coding_transcript_variant 

2 46743164 rs117024627 ATP6V1E2 T C 2.8849 intron_variant 
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CHR POS SNP HGNC ANC_ALLELE DER_ALLELE FineMAV_HIM_H CONSEQUENCE 

2 46745024 rs13010097 ATP6V1E2 G A 2.8206 intron_variant 

2 46752292 rs78082841 ATP6V1E2 G A 2.6724 intron_variant 

2 46752876 rs150798075 ATP6V1E2 G T 4.4883 intron_variant 

2 46754702 rs138754673 ATP6V1E2 C T 4.1626 intron_variant 

2 46768078 rs75498296 RHOQ C T 6.1009 upstream_gene_variant 

2 46772997 rs74869223 RHOQ A G 3.7979 intron_variant 

2 46792633 rs139501481 RHOQ T A 3.2163 intron_variant 

2 46797843 rs78123734 RHOQ C G 3.0458 intron_variant 

2 46809046 rs17035318 RHOQ C T 2.7835 3_prime_UTR_variant 

2 46840552 rs118024480 CRIPT T C 3.0555 upstream_gene_variant 

2 46846131 rs117720191 CRIPT C T 2.7119 intron_variant 

2 46863851 rs75553031 - A C 4.2158 intergenic_variant 

2 59732957 rs17050199 AC007131.2 C T 2.4261 intron_variant,non_coding_transcript_variant 

2 146866679 rs73001881 - G T 2.7397 intergenic_variant 

2 146963473 rs2552554 - A C 3.3969 intergenic_variant 

2 161767360 rs2138438 - A C 2.6471 regulatory_region_variant 

3 9870862 rs2290304 TTLL3 G A 2.9988 missense_variant 

3 130031522 - - A C 2.7672 intergenic_variant 

3 130031531 rs1045982388 - C T 2.7363 intergenic_variant 

3 130361856 rs16830494 COL6A6 G A 2.8614 missense_variant 

4 164547367 rs9990679 36951 G C 3.0541 intron_variant 
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CHR POS SNP HGNC ANC_ALLELE DER_ALLELE FineMAV_HIM_H CONSEQUENCE 

6 10070806 rs370734563 OFCC1 - A 4.3426 intron_variant,non_coding_transcript_variant 

6 10587038 rs539351 GCNT2 G C 2.5057 missense_variant 

6 31140909 rs79527728 POU5F1 T G 3.6341 upstream_gene_variant 

6 31502767 rs3131628 SNORD117 T C 2.8806 downstream_gene_variant 

6 31506624 - SNORD117 C T 2.6672 upstream_gene_variant 

6 32609212 rs1142326 HLA-DQA1 . T 3.3247 missense_variant 

6 32628022 rs1140347 HLA-DQB1 . G 2.6002 synonymous_variant 

6 33053609 rs11551421 HLA-DPB1 G A 5.6718 missense_variant 

6 33068772 rs79470430 HLA-DPA2 G A 2.9873 upstream_gene_variant 

6 33071744 rs61074882 COL11A2P1 C T 3.7319 non_coding_transcript_exon_variant 

6 33071839 rs61705355 COL11A2P1 C A 4.8989 intron_variant,non_coding_transcript_variant 

6 45709477 rs57630563 - G T 2.4582 regulatory_region_variant 

6 134385155 rs78562617 - C G 2.8132 regulatory_region_variant 

6 143168431 rs79504391 HIVEP2 T C 2.595 intron_variant 

7 9257189 rs1285418 - G A 2.5189 intergenic_variant 

9 89165089 - - T G 3.6425 regulatory_region_variant 

9 129383900 rs10760442 LMX1B G A 2.9083 intron_variant 

10 115086017 rs79267391 - G A 3.2478 regulatory_region_variant 

10 115096759 rs12573692 - G A 2.6265 intergenic_variant 

10 124936990 rs78590159 - G A 2.5057 intergenic_variant 

11 96757271 rs17129673 - A G 2.7382 intergenic_variant 
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CHR POS SNP HGNC ANC_ALLELE DER_ALLELE FineMAV_HIM_H CONSEQUENCE 

12 57626018 rs11557166 SHMT2 C T 2.5305 synonymous_variant 

12 110350819 rs773936923 TCHP A G 2.4872 missense_variant 

14 37154111 rs201299512 SLC25A21 A C 2.8607 stop_gained 

15 37809660 rs113706235 - C T 2.7775 intergenic_variant 

15 90023558 rs17807723 RHCG G A 3.2258 missense_variant 

17 5960915 rs12944495 WSCD1 A G 2.8401 upstream_gene_variant 

18 58221665 - AC010928.1 C A 2.5594 upstream_gene_variant 

18 72573324 rs17055773 ZNF407 A G 2.5544 intron_variant 

18 72578312 rs7227571 ZNF407 C T 2.5691 intron_variant 

19 56030150 - SSC5D - C 2.5428 stop_gained 

22 24468386 rs17854874 CABIN1 G A 2.5506 missense_variant 

22 44608457 rs139203 PARVG A C 2.4746 downstream_gene_variant 

Y 4733000 - - . A 2.4336 intergenic_variant 

Y 6932163 rs373532788 TBL1Y . A 2.9657 missense_variant 
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High versus low altitude Himalayans 
Low altitude 

CHR POS SNP HGNC ANC_ALLELE DER_ALLELE FineMAV_TIB_L CONSEQUENCE 

1 1423286 rs571285142 ATAD3B . C 2.2791 stop_gained 

1 8418541 rs200525338 RERE C T 2.5369 missense_variant 

1 15770022 COSM897576 CTRC . C 2.3754 3_prime_UTR_variant 

1 23418153 rs10799790 LUZP1 T C 2.2911 missense_variant 

1 40773150 rs12077871 COL9A2 . G 2.1929 downstream_gene_variant 

1 1.52E+08 rs150014958 TCHHL1 . G 2.1533 stop_gained 

1 1.88E+08 rs16827680 - A G 3.163 intergenic_variant 

1 2.04E+08 rs11584773 - T C 2.4775 intergenic_variant 

1 2.04E+08 rs11586883 - T G 2.5548 intergenic_variant 

2 18697640 rs16985174 - C G 2.3117 regulatory_region_variant 

2 33701632 rs17594260 RASGRP3 C T 3.3745 intron_variant 

2 46747867 rs2346416 ATP6V1E2 A G 2.3372 upstream_gene_variant 

2 47039991 rs935376 LINC01118 G A 2.9429 upstream_gene_variant 

2 90259979 rs201899294 IGKV1D-8 . C 2.2158 stop_gained 

2 97860471 rs150846613 ANKRD36 . T 2.2178 missense_variant 

2 1.62E+08 rs55762147 - T C 2.2391 intergenic_variant 

2 1.79E+08 rs4894028 TTN C T 3.1114 missense_variant 

2 1.79E+08 rs62621236 TTN A G 2.7474 missense_variant 

2 1.79E+08 rs747122 TTN C T 2.435 missense_variant 
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CHR POS SNP HGNC ANC_ALLELE DER_ALLELE FineMAV_TIB_L CONSEQUENCE 

2 1.79E+08 rs11897366 TTN A C 2.1655 synonymous_variant 

2 1.79E+08 rs10164753 TTN C T 2.903 missense_variant 

2 1.79E+08 rs10497517 TTN A G 2.5016 synonymous_variant 

2 1.79E+08 rs16866425 TTN T C 2.1862 synonymous_variant 

2 1.8E+08 rs4893852 TTN A G 2.6875 intron_variant 

2 1.8E+08 rs13398235 TTN G A 2.6125 intron_variant 

2 1.8E+08 rs11888217 TTN C T 2.2375 intron_variant 

2 1.8E+08 rs4893853 TTN T C 2.17 missense_variant 

2 1.8E+08 rs4894048 TTN C T 2.3025 missense_variant 

2 2.13E+08 rs13390226 ERBB4 G A 3.399 intron_variant 

3 37562369 rs142719179 ITGA9 C T 2.2588 intron_variant 

3 1.14E+08 rs1025399 GRAMD1C A G 2.2304 intron_variant 

3 1.61E+08 rs223125 B3GALNT1 C T 2.1773 missense_variant 

4 1563853 rs111807331 - T C 2.1587 intergenic_variant 

4 1564086 rs113334316 - C T 2.1587 intergenic_variant 

4 9386295 rs35948112 RP11-
1396O13.13 

. A 3.65 stop_gained 

4 48514580 rs550020018 FRYL C T 2.2902 missense_variant 

4 1.57E+08 rs2705453 - G A 2.2468 intergenic_variant 

5 1.09E+08 rs13181131 PJA2 T C 2.4641 intron_variant 

5 1.77E+08 rs148853192 DOK3 G A 3.6507 upstream_gene_variant 

6 10070806 rs370734563 OFCC1 - G 4.1136 intron_variant,non_coding_transcript_variant 
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CHR POS SNP HGNC ANC_ALLELE DER_ALLELE FineMAV_TIB_L CONSEQUENCE 

6 25273653 rs77918027 RP3-
522P13.2 

T C 2.1578 splice_donor_variant,non_coding_transcript_variant 

6 32184835 rs151131761 NOTCH4 C T 2.2516 missense_variant 

6 32573713 rs9270974 - . C 2.2307 intergenic_variant 

6 32578040 rs9271174 - . C 2.2664 regulatory_region_variant 

6 32628022 rs1140347 HLA-DQB1 . A 2.8671 synonymous_variant 

6 1.62E+08 rs9355339 AGPAT4 T C 2.3496 intron_variant 

8 39912400 rs2929103 - G T 2.4331 regulatory_region_variant 

8 90507811 - - C T 4.2429 intergenic_variant 

8 1.11E+08 rs78254607 SYBU C A 2.3738 intron_variant 

8 1.22E+08 rs76075043 - C T 2.4696 intergenic_variant 

9 17922765 rs13294429 - T C 2.2668 intergenic_variant 

9 25530564 rs2183901 - T C 2.5563 intergenic_variant 

9 25538211 rs557419369 - T A 2.9447 intergenic_variant 

9 27062721 rs3429 IFT74 C T 2.8875 missense_variant 

9 34306410 rs17350674 KIF24 C A 2.7489 missense_variant 

9 97321410 rs541509845 FBP2 . C 2.2158 missense_variant 

10 25777562 rs1547685 GPR158 A G 2.2212 intron_variant 

10 34582735 rs11009717 PARD3 T A 3.4654 intron_variant 

10 34599236 rs11009725 PARD3 A C 2.8055 downstream_gene_variant 

10 34604895 rs11009730 PARD3 T G 2.948 intron_variant 

10 34626113 rs10508802 PARD3 A G 2.5882 intron_variant 
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CHR POS SNP HGNC ANC_ALLELE DER_ALLELE FineMAV_TIB_L CONSEQUENCE 

10 77874502 rs182098476 C10orf11 C T 2.3887 intron_variant 

10 78784075 rs7922133 KCNMA1 C T 2.3913 intron_variant 

11 20101744 rs1867115 NAV2 A C 3.0006 synonymous_variant 

11 38827333 rs78267989 - T A 2.5183 intergenic_variant 

11 61643375 rs371188401 FADS3 . C 2.1828 missense_variant 

11 1.26E+08 rs115533243 CDON T C 2.6109 missense_variant 

12 20720679 rs12369747 PDE3A C T 2.6788 intron_variant 

12 49304447 rs58829932 CCDC65 T C 2.3363 intron_variant 

12 49333799 rs2228417 ARF3 G A 2.8613 synonymous_variant 

12 54491224 rs12819039 Y_RNA A G 2.5423 downstream_gene_variant 

12 1.1E+08 rs34725387 MYO1H C T 2.243 missense_variant 

12 1.16E+08 rs11614480 - T C 3.3112 intergenic_variant 

12 1.16E+08 rs11615848 - G T 2.4407 intergenic_variant 

12 1.21E+08 rs206968 RP1-
166H1.2 

G C 2.6672 downstream_gene_variant 

13 73675865 rs914799 FABP5P1 A T 2.5125 upstream_gene_variant 

13 73681090 rs2483174 - G T 2.3963 intergenic_variant 

14 37154111 rs201299512 SLC25A21 A C 2.889 stop_gained 

14 98920402 rs11622215 - A G 2.215 intergenic_variant 

15 53782668 rs12916434 - T A 2.1604 intergenic_variant 

15 53811633 rs12902770 WDR72 T C 2.7249 intron_variant 

15 68628163 rs2306022 ITGA11 C T 2.2775 missense_variant 
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CHR POS SNP HGNC ANC_ALLELE DER_ALLELE FineMAV_TIB_L CONSEQUENCE 

16 6675913 rs11648207 RBFOX1 C T 2.1976 intron_variant 

16 31099000 rs201075024 PRSS53 C T 2.7295 missense_variant 

16 75532994 rs385847 CHST6 C T 2.3838 upstream_gene_variant 

16 75532995 rs116974915 CHST6 C A 2.2713 upstream_gene_variant 

17 1340129 rs145983279 CRK C T 2.3596 missense_variant 

17 56387461 rs372749390 BZRAP1 C T 2.1514 missense_variant 

17 76010121 rs76402227 TNRC6C C T 2.3887 intron_variant 

18 23395887 rs117034580 RN7SL97P C T 2.2664 downstream_gene_variant 

18 54697922 rs2848967 WDR7 A G 2.55 3_prime_UTR_variant 

18 66178930 rs17804596 - C A 2.7036 intergenic_variant 

19 10685705 rs375010828 AP1M2 - C 2.247 missense_variant,splice_region_variant 

19 43233421 rs202207386 PSG3 N C 2.2158 stop_gained 

19 52380625 rs149543099 ZNF577 . G 2.247 stop_gained 

19 56030150 - SSC5D - C 2.568 stop_gained 

X 82751254 rs12860283 - C T 2.3331 intergenic_variant 
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APPENDIX D 

 

Experimental protocols used in this study 

- Hypoxic protocol 
- RT-qPCR protocol 
- SYBR Green qPCR Protocol 
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Hypoxic protocol 

Before starting: 

 Prepare conditioned medium: 

o Culture cells in appropriate size flask (T75, T150) under normal culture 

media (21%O2, 37⁰C, 5% CO2). 

o Collect the medium from cultured cells (handle the flask carefully to avoid 

taking too many cells with the medium) and transfer it to a Falcon tube. 

o Centrifuge the medium from cultured cells at 1500 rpm for 4 minutes to 

remove any cell debris, etc. 

o Collect supernatant from the medium of cultured cells (leave ~1 of medium 

in the Falcon tube with the pellet). 

o Mix the same volume (1:1) of the medium from cultured cells with fresh 

medium (RMPI 1640 [Thermo Fisher cat num: 11875093] + 15/20% FBS 

[Thermo Fisher cat num: 10082139 ] + PenStrep [cat num: 10378016 ). 

o Filter the conditioned medium using a 0.2µm filter [Whatman-SIGMA cat 

num: 10462200] in a new Falcon tube. 

o The conditioned medium can be stored in the fridge. Use it within few days 

(3-4 days).  

 

 Automatic count of cell lines for the experiment using trypan blue or AOPI 

(Cellometer 2000). Check cell viability is above 90%. 

Experimental set up: 

 Two conditions: hypoxia (1% O2, 37⁰C, 5% CO2) and normoxia (21%O2, 37⁰C, 5% 

CO2). 

 Time points: 4h, 16h, 24h, 48h, 72h (time points can vary). 

 Replicates: 2 per sample in each condition.  

 Samples labelling: from 1 to total number of samples, replicates indicated as “A” and 

“B”. Maximise randomisation. 

 

Experimental procedure: 

Day 1 

 Label six-well plates according to experimental set up, indicating the time point, 

sample and replicate (important to be able to process hypoxic samples quickly and 

reduce exposure to normoxia). 

 Prepare six-well plates with conditioned medium: fill each well of the six-well plate 

with 3ml of conditioned medium. Total amount of medium: six wells per plate x 

number of six well plates in the experiment (Note: consider all samples, different 

time points and replicates). 

 Place plates with conditioned medium for hypoxic conditions in the hypoxic 

incubator (1% O2, 37⁰C, 5% CO2) and leave overnight to degasify. 

 Number of cells for each cell line: ~1.5x106 cells/ml.  
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 Take the right amount of total cells for each sample (Note: consider all samples, 

different time points and replicates) and place them in a new T25 flask with some 

fresh medium (this is a critical step if cells are not growing well) and leave them 

overnight to adjust. 

Day 2 

 Centrifuge gently (500 rpm, 4 minutes) cells in T25 flasks from Day 1. 

 Note: Total volume for each well: 3 ml of conditioned medium (prepared in Day 1) + 

0.7ml of cells for 72h time point, 1 ml of cells for 24h and 48h time points and 1.5 ml 

for 4h time point (the small volume of cells is important to reduce re-gasification of 

the hypoxic medium). 

 Re-suspend pellet of each cell lines in the right amount of conditioned medium for 

all samples.  

 Take the six-well plates in the normoxic incubator. Seed plates with 1.5 ml of cells 

for 4h time point and with 1ml of cells for 24h and 48h plates. 

 Take the six-well plates in the hypoxic incubator one at the time. Seed plates with 

1.5 ml of cells for 4h time point, with 1ml of cells for 24h and 48h plates and with 

0.7ml for 72h time point.  

 Once all plates are seeded, wait 1h to allow the hypoxic medium to degasify 

completely again and start counting the time points. 

Day3, Day4, Day5 

 When each time point is reached: 

o Label 15ml Falcon tubes with sample name, time point and replicate. 

o Start processing hypoxic samples. 

o Take plates from incubator and transfer quickly samples to the 

Falcon tubes. 

o Centrifuge cells at 500 rcf (~2000 rpm) for 2/3 minutes. 

o Remove supernatant and re-suspend cells in QIAGEN Buffer RLT 

[QIAGEN cat num: 79216]: pipette well up and down and vortex each 

tube to be sure cells are completely lysed. Work on ice. 

o Freeze samples at -80⁰C.  

o RNA extraction: look RNeasy Mini kit protocol [QIAGEN cat num: 

74104].  
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RT-qPCR protocol 
 
 
RNA extraction 
 
Performed with the Qiagen RNeasy mini RNA extraction kit with DNase treatment. 
RNeasy mini kit: 74104 
DNase set: 79254 
 
Use ~1-2x106 cells per 350 µL buffer RLT. 
 

Reverse Transcriptase Protocol 
 
Aim: To convert total RNA into cDNA for use in quantitative PCR 
 

Nanodrop of total RNA 
 
Measure the total RNA on the nanodrop machine to get the concentration and also to 
determine the purity of the RNA isolated. 
 
The 260/280 ratio estimates the amount of protein contamination (measured at 280nm) 
compared to the nucleotide (measured at 260nm) concentration.  A good RNA extraction 
should have a value of above 1.8. 
 
The 260/230 ratio gives the amount of other impurities (measured at 230nm), such as 
ethanol or salt.   A clean extraction should have a value of above 1.8. 
 
Low values for the 260/280 or 260/230 ratio may cause a slight loss in efficiency  
 

Procedure for reverse transcribing 500ng RNA into cDNA for use 

with quantitative PCR 

To convert the total RNA into cDNA, the protocol uses random primers (a mix of different 
hexamers); these will bind to different parts of the RNA and prime the conversion of the 
single stranded RNA into complementary DNA (cDNA) which can then be used for 
quantitative PCR. 
Reagents  
RNA  
Random Primer  Promega C1181 
dNTP   Life Tech 10 mM 
RNASE OUT  Invitrogen 10777-019 
Superscript II  Invitrogen  18064071 

Step 1 - Denaturation of RNA and Primer 
 
Thaw RNA samples on ice to avoid degradation.  After thawing of all reagents, mix the tubes 
by vortexing briefly and then spin down in a micro centrifuge.   
  
Per reaction 
RNA   500ng made up to a total volume of 11.875uL with nuclease free 
water 
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Random Primer 0.5uL 
dNTP   1uL 
 

1. Add the appropriate amount of nuclease free water, random primer and dNTP 

(primer and dNTP can be added together as a mix) to each tube.  

2. Add 500ng of RNA to each tube and spin down to make sure everything is at the 

bottom. 

3. Incubate at 65⁰C in a heat block for 5min, then snap cool on ice.  This step is to 

denature any secondary structure in the RNA and also to denature the random 

primer; the snap cooling ensures that the structure does not reform.  

4. Spin tubes down and place in a rack at room temperature. 

 
Step 2 - Reverse Transcription of RNA 
 
Per reaction – make as a master mix for appropriate number of samples. 
5x 1st strand buffer 4uL 
0.1M DTT  2uL 
RNase out  0.5uL 
Superscript II  0.125uL 
 

1. Add 6.625uL of the master mix to the side of each tube and then spin down. The final 

reaction volume is 20uL. 

 
2. Incubate in heat block/PCR machine.  

25⁰C  x   10min – primer annealing step 
42⁰C  x   50min – extension step  
70⁰C  x   15min – inactivation of enzyme. 

 
Dilute the cDNA to a final volume of 500uL with nuclease free water prior to use for qPCR. 
 
Use 5 µL of diluted cDNA per 20 µL qPCR reaction. 
 

 
 
 
 
 
 
 
 
 
 
 
 



278 

 

 

 

SYBR Green qPCR Protocol 
 
Based on using ABI StepOne Plus and KAPA SYBR Fast 2x (KK4604) 
Plates: MicroAmp Fast optical 96-well plates (4346906) and some MicroAmp optical 
adhesive film (4311971). 
 
20 µL reaction 
10 µL 2x KAPA SYBR Fast ABI 
0.8 µL 10 µM primer mix 
4.2 µL nuclease-free water 
5 µL dilutes cDNA 
 
ABI StepOne Plus cycling 
 
95 °C – 3minutes 
95 °C – 20 seconds 
61 °C – 20 seconds x40 
72 °C – 20 seconds 
+melt curve to check for single products (you may want to sequence these amplicons to check 
for specificity). 
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