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Abstract
This paper presents a weighted optimization framework that unifies the binary, multi-
valued, continuous, as well as mixture of discrete and continuous treatment, under the
unconfounded treatment assignment. With a general loss function, the framework in-
cludes the average, quantile and asymmetric least squares causal effect of treatment
as special cases. For this general framework, we first derive the semiparametric effi-
ciency bound for the causal effect of treatment, extending the existing bound results
to a wider class of models. We then propose a generalized optimization estimation
for the causal effect with weights estimated by solving an expanding set of equations.
Under some sufficient conditions, we establish consistency and asymptotic normality
of the proposed estimator of the causal effect and show that the estimator attains our
semiparametric efficiency bound, thereby extending the existing literature on efficient
estimation of causal effect to a wider class of applications. Finally, we discuss esti-
mation of some causal effect functionals such as the treatment effect curve and the av-
erage outcome. To evaluate the finite sample performance of the proposed procedure,
we conduct a small scale simulation study and find that the proposed estimation has
practical value. To illustrate the applicability of the procedure, we revisit the literature
on campaign advertise and campaign contributions. Unlike the existing procedures
which produce mixed results, we find no evidence of campaign advertise on campaign
contribution.
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1 Introduction

Modeling and estimating the causal effect of treatment have received considerable attention
from both econometrics and statistics literature (see Hirano, Imbens, and Ridder (2003),
Imbens (2004), Abadie (2005), Heckman and Vytlacil (2005), Angrist and Pischke (2008),
Imbens and Wooldridge (2009), Fan and Park (2010), Chernozhukov, Fernández-Val, and
Melly (2013), Rothe (2017), and Słoczyński and Wooldridge (2018), Athey, Imbens, and
Wager (2018), Wager and Athey (2018) for examples). Most existing studies focus on the
binary treatment where an individual either receives the treatment or does not, ignoring the
treatment intensity. In many applications, however, the treatment intensity is a part of the
treatment, and its causal effect is also of great interest to decision makers. For example,
in evaluating how financial incentives affect health care providers, the causal effect may
depend on not only the introduction of incentive but also the level of incentive. For example,
in evaluating the effect of corporate bond purchase schemes on market quality, the causal
effect may depend not just on whether the bond is selected into the scheme but how much
of it is purchased (see Boneva, Elliot, Kaminska, Linton, Morely, and McLaren, 2018).
Similarly, in studying how taxes affect addictive substance usages, the causal effect may
depend on the imposition of tax as well as the tax rate. In recognition of the importance of
the treatment intensity, the binary treatment literature has been extended to the multi-valued
treatment (e.g., Imbens (2000) and Cattaneo (2010)) and continuous treatment (e.g., Hirano
and Imbens (2004), Imai and van Dyk (2004), Florens, Heckman, Meghir, and Vytlacil
(2008), Fong, Hazlett, and Imai (2018) and Yiu and Su (2018)).

The parameter of primary interest in this literature is the average causal effect of treat-
ment, defined as the difference in response to two levels of treatment by the same individual,
averaged over a set of individuals. The identification and estimation difficulty is that each
individual only receives one level of treatment. To overcome the difficulty, researchers
impose the unconfounded treatment assignment condition, which allows them to find sta-
tistical matches for each observed individual from all other treatment levels. Under this
condition, the average causal effect is estimated in the binary treatment by the difference of
the weighted average responses with the propensity scores as weights (e.g., Rosenbaum and
Rubin (1983), Hirano, Imbens, and Ridder (2003), Busso, DiNardo, and McCrary (2014)).
Other popular methods include regression adjustment (Rubin, 1977, Angrist and Pischke,
2008), matching (Imbens, 2004, Abadie and Imbens, 2006, 2011, 2012, 2016), imputa-
tion (Heckman, Ichimura, and Todd, 1998, Cattaneo and Farrell, 2011), and hybrid method
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(Farrell, 2015, Chernozhukov, Escanciano, Ichimura, and Newey, 2016, Słoczyński and
Wooldridge, 2018). The efficiency bound of the average causal effect in this model is de-
rived by Robins, Rotnitzky, and Zhao (1994) and Hahn (1998), and efficient estimation is
proposed by Robins, Rotnitzky, and Zhao (1994), Hahn (1998), Hirano, Imbens, and Rid-
der (2003), Bang and Robins (2005), Qin and Zhang (2007), Cao, Tsiatis, and Davidian
(2009), Tan (2010), Vansteelandt, Bekaert, and Claeskens (2010), Graham, Pinto, and Egel
(2012), and Chan, Yam, and Zhang (2016). Of particular interest in this literature is the
study by Hirano, Imbens, and Ridder (2003) which shows that the weighted average differ-
ence estimator attains the semiparametric efficiency bound if the weights are estimated by
the empirical likelihood estimation. In the multi-valued treatment, Imbens (2000) general-
izes the propensity score, and Cattaneo (2010) derives the efficiency bound and proposes an
estimator that attains the efficiency bound. In the continuous treatment, Hirano and Imbens
(2004) and Imai and van Dyk (2004) parameterize the generalized propensity score function
and propose a consistent estimation of the average causal effect. Their estimators are not
efficient and could be biased if the generalized propensity score function is misspecified.
Florens, Heckman, Meghir, and Vytlacil (2008) use a control function approach to identify
the average causal effect in the continuous treatment and propose a consistent estimation.
It is unclear if their estimation is efficient. Galvao and Wang (2015) estimate the continu-
ous treatment effects through stabilized weighting. They do not study how to construct the
stabilized weights such that their estimation is efficient. Kennedy, Ma, McHugh, and Small
(2017) propose a nonparametric kernel estimator for the treatment effects curve, again the
efficienct estimation is still unclear. Fong, Hazlett, and Imai (2018) propose an estimation
of the average causal effect of continuous treatment but do not establish consistency of their
estimation. In fact, their simulation results indicate their estimation could be seriously bi-
ased. Yiu and Su (2018) study the average causal effect of both discrete and continuous
treatment by parameterizing propensity scores. Their estimation could be biased if their
parameterization is incorrect.

Without unconfoundedness, several methods have also been developed to conduct
causal analysis, for example, sensitivity analyses (Rosenbaum and Rubin, 1983), bounds
analyses (Manski, 1990, 2003, 2009, Imbens and Manski, 2004), instrumental variables
(Imbens and Angrist, 1994, Angrist, Imbens, and Rubin, 1996, Imbens and Rubin, 1997,
Hong and Nekipelov, 2010, Kitagawa, 2015), regression discontinuity (Hahn, Todd, and
Van der Klaauw, 2001, Imbens and Lemieux, 2008, Lee and Lemieux, 2010, Cattaneo,
Idrobo, and Titiunik, 2017), difference-in-differences (Ashenfelter and Card, 1985, Bertrand,
Duflo, and Mullainathan, 2004, Abadie, 2003, 2005, Donald and Lang, 2007, Athey and Im-
bens, 2006), and synthetic controls (Abadie and Gardeazabal, 2003, Abadie, Diamond, and
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Hainmueller, 2010, 2015).
In addition to the average causal effect of treatment (ATE), it is also important to in-

vestigate the distributional impact of treatment. For instance, a decision maker may be
interested in the causal effect of a treatment on the outcome dispersion or on the lower tail
of the outcome distribution. Doksum (1974) and Lehmann (1975) introduce the quantile
causal effect of treatment (QTE). Firpo (2007) computes the efficiency bound and proposes
an efficient estimation of QTE for the binary treatment. For additional studies on QTE, we
refer to Abadie, Angrist, and Imbens (1998), Chernozhukov and Hansen (2005), Angrist
and Pischke (2008), Frölich and Melly (2013), and Donald and Hsu (2014).

To the best of our knowledge, we are unaware of existence of any studies that compute
the efficiency bound and propose efficient estimation of the causal effect in the continu-
ous or mixture of discrete and continuous treatment under general loss function that per-
mits ATE and QTE. The main objective of this paper is to present a weighted optimization
framework that unifies the binary, multi-valued, continuous as well as mixture of discrete
and continuous treatment and allows for general loss function, where the weights are called
the stabilized weights by Robins, Hernán, and Brumback (2000) and are defined as the ratio
of the marginal probability distribution of the treatment status over the conditional prob-
ability distribution of the treatment status given covariates. For this general framework,
we first apply the approach of Bickel, Klaassen, Ritov, and Wellner (1993) to compute the
efficiency bound of the causal effect of treatment, extending the semiparametric efficiency
bound results of Hahn (1998), Firpo (2007), and Cattaneo (2010) from the binary treat-
ment to a variety of treatments and to the general loss function. Our bound reveals that the
weighted optimization with known stabilized weights does not produce efficient estimation
since it fails to account for the information restricting the stabilized weights. Similar obser-
vation is also noted by Hirano, Imbens, and Ridder (2003) in the binary treatment. Here we
show that their observation holds true for much wider class of treatment models. We ex-
ploit the information that the stabilized weights satisfy some (finite but expanding number
of) equations by estimating the stabilized weights from those equations and then estimate
the causal effect by the generalized optimization with the true stabilized weights replaced
by the estimated weights. Under some sufficient conditions, we show that our proposed
estimator is consistent and asymptotically normally distributed and, more importantly, it at-
tains our semiparametric efficiency bound, thereby extending the efficient estimation work
of Hirano, Imbens, and Ridder (2003), Firpo (2007), and Cattaneo (2010) to a much wider
class of treatment models.

The paper is organized as follows. Section 2 sets up the basic framework, Section 3
computes the semiparametric efficiency bound of the causal effect of treatment, Section 4
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presents a generalized optimization estimator, Section 5 establishes large sample proper-
ties of the proposed estimator, Section 6 presents a consistent covariance matrix, Section 7
proposes two data-driven approaches for selecting tunning parameters, Section 8 discusses
some extensions, Section 9 reports on a simulation study, Section 10 presents an applica-
tion, followed by some concluding remarks in Section 11. All technical proofs and extra
simulation results are relegated to the supplemental material Ai, Linton, Motegi, and Zhang
(2019).

2 Basic framework and notation

Let T denote the observed treatment status variable with support T ⊂ R, where T is
either a discrete or a continuous or a mixture of discrete and continuous subset, and has a
marginal probability distribution function FT (t). Let Y ∗(t) denote the potential response
when treatment T = t is assigned. Let L(·) denote a known convex loss function whose
derivative, denoted by L′(·), exists almost everywhere. For the leading part of the paper, we
shall maintain that there exists a parametric causal effect function g(t; β) with the unknown
value β0 ∈ Rp (with p ∈ N) uniquely solving:

β0 = arg min
β

∫
T
E [L (Y ∗(t)− g(t;β))] dFT (t). (2.1)

The parameterization of the causal effect is restrictive. Some extensions to the unspecified
causal effect function shall be discussed later in the paper (see Section 8).

The generality of model (2.1) permits many important models and much more. For ex-
ample, it includes the average causal effect of binary treatment studied in Hahn (1998) and
Hirano, Imbens, and Ridder (2003) (i.e., T ={0, 1}, L(v) = v2 and g(t; β0) = β0 + β1t),
the quantile causal effect of binary treatment studied in Firpo (2007) (i.e., T ={0, 1},
L(v) = v(τ − I(v ≤ 0)) is an almost everywhere differentiable function with τ ∈ (0, 1)

and g(t;β0) = tβ1 + (1 − t)β0), the average causal effect of multi-valued treatment
studied in Cattaneo (2010) (i.e., T ={0, 1, . . . , J} for some J ∈ N, L(v) = v2 and
g(t;β0) =

∑J
j=0 βjI(t = j)), and the average causal effect of continuous treatment studied

in Hirano and Imbens (2004) (i.e., L(v) = v2 and E[Y ∗(t)] = g(t;β0)). It also includes the
quantile causal effect of multi-valued (i.e., L(v) = v(τ − I(v ≤ 0)) with τ ∈ (0, 1) and
g(t;β0) =

∑J
j=0 βjI(t = j)) and continuous treatment (i.e., L(v) = v(τ − I(v ≤ 0)) and

inf {q : P(Y ∗(t) ≥ q) ≤ τ} = g(t;β0)). The latter has never been studied in the existing
literature. Moreover, with L(v) = v2 |τ − I(v ≤ 0)|, it covers asymmetric least squares
estimation of the causal effect of (binary, multi-valued, continuous, mixture of discrete and
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continuous) treatment. The asymmetric least squares regression received attention from
some noted econometricians (see Newey and Powell (1987)) but zero attention in the causal
effect literature.

The problem with (2.1) is that the potential outcome Y ∗(t) is not observed for all t. Let
Y := Y ∗(T ) denote the observed response. One may attempt to solve:

min
β

E[L(Y − g(T ;β))].

However, if there exists a selection into treatment, the true value β0 does not solve the
above minimization problem. Indeed, in this case, the observed response and treatment as-
signment data alone cannot identify β0. To address this identification issue, most studies in
the literature impose a selection on observable condition (e.g., Hirano, Imbens, and Ridder
(2003), Imai and van Dyk (2004) and Fong, Hazlett, and Imai (2018)). Specifically, let X
denote a vector of covariates. The following condition shall be maintained throughout the
paper.

Assumption 1 (Unconfounded Treatment Assignment). For all t ∈ T , given X , T is inde-
pendent of Y ∗(t), i.e., Y ∗(t) ⊥ T |X, for all t ∈ T .

Let FT |X denote the conditional probability distribution of T given the observed covari-
ates X and let dFT |X denote the probability measure. In the literature, dFT |X is called the
generalized propensity score (Hirano and Imbens, 2004, Imai and van Dyk, 2004). Suppose
that dFT |X(T |X) is positive everywhere and denote

π0(T,X) :=
dFT (T )

dFT |X(T |X)
.

The function π0(T,X) is called the stabilized weight in Robins, Hernán, and Brumback
(2000). Under Assumption 1, we obtain

E[π0(T,X)L(Y − g(T ;β))] =

∫
E [L(Y ∗(t)− g(t;β))] dFT (t) (2.2)

(see Appendix A), and hence the true value β0 solves the weighted optimization problem:

β0 = arg min
β

E[π0(T,X)L(Y − g(T ;β))]. (2.3)

This result is very insightful. It tells us that the selection bias in the unconfounded treatment
assignment can be corrected through covariate-balancing. More importantly, it says that
the true value β0 can be identified from the observed data. The weighted optimization (2.3)
provides a unified framework for estimating the causal effect of a variety of treatments,
including binary, multi-level, continuous and mixture of discrete and continuous treatment,
and under general loss function. The goal of this paper is to compute the semiparametric
efficiency bound and present an efficient estimation of β0 under this general framework.
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3 Efficiency bound

We begin by applying the approach of Bickel, Klaassen, Ritov, and Wellner (1993) to com-
pute the semiparametric efficiency bound of the parameter β0 defined by (2.1) under As-
sumption 1. This gives the least possible variance achievable by a regular estimator in the
semiparametric model. The result is presented in the following theorem.

Theorem 1. Suppose that g(T ;β) is twice differentiable with respect to β in the param-
eter space Θ ⊂ Rp, with m(T ;β0) := ∇βg(T ;β0), and E [L′(Y − g(T ;β))|Y,X] is dif-
ferentiable with respect to β ∈ Θ. Denote ε(T,X;β0) := E[L′(Y − g(T ;β0))|T,X],
H0 := −∇βE [π0(T,X)L′(Y − g(T ;β))m(T ;β)]

∣∣
β=β0

, and

ψ(Y, T,X;β0) := π0(T,X)m(T ;β0)L′(Y − g(T ;β0))− π0(T,X)m(T ;β0)ε(T,X;β0)

+ E [ε(T,X;β0)π0(T,X)m(T ;β0)|T ] + E [ε(T,X;β0)π0(T,X)m(T ;β0)|X] .

Suppose thatH0 is nonsingular and E
[
ψ(Y, T,X;β0)ψ(Y, T,X;β0)>

]
exists and is finite.

Under Assumption 1, namely Y ∗(t) ⊥ T |X for all t ∈ T , and model (2.1), the efficient
influence function of β0 is given by

Seff (Y, T,X;β0) = H−1
0 ψ(Y, T,X;β0).

Consequently, the efficient variance bound of β0 is

Veff = E
[
Seff (Y, T,X;β0)Seff (Y, T,X;β0)>

]
.

The proof of Theorem 1 is given in the supplemental material Ai, Linton, Motegi, and
Zhang (2019, Section 2.1). We can rewrite the influence function ψ(Y, T,X;β0) defined in
Theorem 1 in the more intuitive form: denote % (Y, T,X;β) := π0(T,X)m(T ;β0)L′(Y −
g(T ;β)) and

ψ(Y, T,X;β0) = % (T,X, Y ;β0)− resadd% (T,X, Y ;β0) ,

where the operator resadd(·) is defined by

resaddf (Y, T,X) := E [f (T,X, Y ) |T,X]− Eadd [f(T,X, Y )|T,X] ,

Eadd [f(T,X, Y )|T,X] := E [f(T,X, Y )|T ] + E [f(T,X, Y )|X] .

where the operator Eadd[·] projects a random variable on to the space of additive functions

{g(T,X) : g(T,X) = hT (T ) + hX(X)}
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inside the space generated by T,X , except that the projection is with respect to product
measure dFT (t)× dFX(x) (Nielsen and Linton, 1998).

In the continuous case π0(T,X) can be written as

π0(T,X) =
fT (T )fX(X)

fT,X(T,X)

and we know that −E[log π(T,X)] is the Kullback-Leibler divergence of the joint density
from the product of the marginals. The property of π0(T,X) in Theorem 1 can also be
stated as that for any function g(T,X):

E [π0(T,X)g(T,X)] =

∫ ∫
g(t,x)fT (t)dtfX(x)dx,

which is the expectation of g(T,X) taken with respect to the product measure fT (t)fX(x)dtdx.
In the case where g(T,X) is separable the resulting moment factorizes, that is,

E [π0(T,X)u(T )v(X)] = E [u(T )]E [v(X)] .

Kernel estimators will not satisfy the sample version of this property but they will satisfy
the smoothed empirical version, that is,∫

π̂0(t,x)u(t)v(x)dFN(t,x) 6=
∫
u(t)dFN(t)

∫
v(x)dFN(x),

where FN(t,x) is the joint empirical measure and FN(t) and FN(x) are the marginals.
However, it will satisfy∫

π̂0(t,x)u(t)v(x)dF ∗N(t,x) =

∫
u(t)dF ∗N(t)

∫
v(x)dF ∗N(x),

where F ∗n(t,x) is the smoothed empirical (i.e., dF ∗N(t,x) is the kernel density estimator
used in constructing π̂0(t,x)).

It is worth noting that our bound Veff is equal to the bound of Hahn (1998) for the case
of binary average treatment, the bound of Cattaneo (2010) for the case of multi-valued aver-
age treatment, and the bound of Firpo (2007) for the case of binary quantile treatment (see
Ai, Linton, Motegi, and Zhang, 2019, Sections 2.2-2.4). Moreover, our bound applies to a
much wider class of models, including quantile causal effect of multi-valued, continuous
and mixture of discrete and continuous treatment as well as the asymmetric least squares
estimation of the causal effect of all kinds of treatments.

Based on the expression of the efficient influence function, many existing literature
construct the efficient estimator by solving the estimated efficient score equation (Athey,
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Imbens, Pham, and Wager, 2017, Chernozhukov, Chetverikov, Demirer, Duflo, Hansen,
Newey, and Robins, 2018). Such kind of estimators typically have double or multiple ro-
bustness property. However, our the efficient influence function Seff (T,X, Y ;β) involves
five unknown functionals fT (T ), fT |X(T |X), ε(T,X;β), E[π0(T,X)ε(T,X;β)m(T,β)|T ],
and E[π0(T,X)ε(T,X;β)m(T,β)|X]. Estimation of these functionals are quite difficult
in practice, and the peformance of estimated β0 would be poor. Instead of explicitly es-
timating the efficient influence function Seff , we propose a simple weighted optimization
estimator based on (2.3) by estimating the stabilized weights π0(T,X).

It is also worth noting that, if the stabilized weights are known and g(t;β0) is correctly
specified, one can estimate β0 by solving the sample analogue of the weighted optimization
(2.3). The asymptotic variance of the estimator is

Vineff = E
[
Sineff (Y, T,X;β0)Sineff (Y, T,X;β0)>

]
,

with
Sineff (Y, T,X;β0) = H−1

0 · π0(T,X)m(T ;β0)L′ {Y − g(T ;β0)} .

It is easy to show that Vineff > Veff (see Proposition B.1 of Appendix B), implying that
the weighted optimization estimator is not efficient. This follows because the weighted
optimization does not account for the restriction on the stabilized weight π0(t,x):

E [π0(T,X)u(T )v(X)] = E[u(T )] · E[v(X)] (3.1)

holds for any suitable functions u(t) and v(x). Incorporating restriction (3.1) into the es-
timation of the causal effect can improve efficiency. Similar observation is also noted by
Hirano, Imbens, and Ridder (2003) in the binary treatment. Exactly how to incorporate
restriction (3.1) into the estimation is the subject of the next section.

4 Efficient estimation

One way to incorporate (3.1) into the estimation is to estimate the stabilized weights from
(3.1) and then implement (2.3) with the estimated weights. But before doing so, we must
verify that (3.1) uniquely identifies π0(T,X). After some manipulations, it is straightfor-
ward to show that

E [π(T,X)u(T )v(X)] = E[u(T )] · E[v(X)]

holds for any suitable functions u(t) and v(x) if and only if π(T,X) = π0(T,X). There-
fore, condition (3.1) identifies the stabilized weights. The challenge now is that (3.1) im-
plies infinite number of equations. With a finite sample of observations, it is impossible
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to solve infinite number of equations. To overcome this difficulty, we approximate the (in-
finite dimensional) function space with the (finite dimensional) sieve space. Specifically,
let uK1(T ) = (uK1,1(T ), . . . , uK1,K1(T ))> and vK2(X) = (vK2,1(X), . . . , vK2,K2(X))>

denote the known basis functions with dimensions K1 ∈ N and K2 ∈ N respectively, and
let K := K1 · K2. The functions uK1(t) and vK2(x) are called the approximation sieves
that can approximate any suitable functions u(t) and v(x) arbitrarily well (see Chen (2007)
for more discussion on sieve approximation). Since the sieve approximating space is also a
subspace of the functional space, π0(T,X) satisfies

E
[
π0(T,X)uK1(T )vK2(X)>

]
= E[uK1(T )] · E[vK2(X)]>. (4.1)

Unfortunately, it is not the only solution. Indeed, for any monotonic increasing and globally
concave function ρ(v), with

Λ∗K1×K2
= arg max

Λ∈RK1×K2

E
[
ρ(uK1(T )>ΛvK2(X))

]
− E[uK1(T )]>ΛE[vK2(X)], (4.2)

π∗K(T,X) = ρ′
(
uK1(T )>Λ∗K1×K2

vK2(X)
)

also solves (4.1), where ρ′(v) denotes the first
derivative. Let πK(T,X) = ρ′

(
uK1(T )>ΛK1×K2vK2(X)

)
denote the best approximation

of π0(T,X) under the sup norm L∞ and suppose that ‖πK(·, ·)−π0(·, ·)‖∞ = O(K−α) for
some α > 0. Then,

‖π∗K(T,X)− π0(T,X)‖L2

=O (max {‖π∗K(T,X)− πK(T,X)‖L2 , ‖πK(·, ·)− π0(·, ·)‖∞})
= max

{
O
(
K−α

)
, O(K−α)

}
= O

(
K−α

)
.

(see Ai, Linton, Motegi, and Zhang, 2019, Lemma 3.1).

Let {Ti,Xi, Yi}Ni=1 denote an independently and identically distributed sample of ob-
servations drawn from the joint distribution of (T,X, Y ). We propose to estimate the stabi-
lized weights πi = π0(Ti,Xi) by solving the entropy maximization problem: max

{
−
∑N

i=1 πi log πi

}
subject to 1

N

∑N
i=1 πiuK1(Ti)vK2(Xi)

> =
(

1
N

∑N
i=1 uK1(Ti)

)(
1
N

∑N
j=1 vK2(Xj)

>
)
.

(4.3)
The primal problem (4.3) is difficult to compute. We instead consider its dual problem
that can be solved by numerically efficient and stable algorithms. Specifically, let ρ(v) :=

−e−v−1 for any v ∈ R, Tseng and Bertsekas (1991) showed that the dual solution is given
by:

π̂K(Ti,Xi) := ρ′
(
uK1(Ti)

>Λ̂K1×K2vK2(Xi)
)
,

10



where Λ̂K1×K2 is the maximizer of the strictly concave function ĜK1×K2 defined by

Λ̂K1×K2
= arg max

Λ
ĜK1×K2

(Λ) :=
1

N

N∑
i=1

ρ
(
uK1(Ti)

>ΛvK2(Xi)
)
−

(
1

N

N∑
i=1

uK1(Ti)

)>
Λ

 1

N

N∑
j=1

vK2(Xj)

 .

(4.4)

The duality between (4.3) and (4.4) is shown in Appendix C. By Ai, Linton, Motegi, and
Zhang (2019, Corollary 3.3), we have∫

T ×X
|π̂K(t,x)− π∗K(t,x)|2 dFT,X(t,x) = Op

(√
K

N

)
.

Having estimated the weights, we now estimate β0 by applying the generalized optimiza-
tion:

β̂ = arg min
β

N∑
i=1

π̂K(Ti,Xi)L (Yi − g(Ti;β)) . (4.5)

Remarks:

1. Alternatively, one can estimate the stabilized weights by estimating the generalized
propensity score function as well as the marginal distribution of the treatment variable
nonparametrically (e.g., kernel estimation). But these alternatively estimated weights
do not satisfy empirical moment in (4.3) and may not result in efficient estimation of
the causal effect.

2. The primal problem (4.3) is different from the empirical likelihood (Smith, 1997,
Imbens, 2002). Notice that ρ(v) = −e−v−1 satisfies the invariance property (i.e.,
−ρ′′(v) = ρ′(v)). It turns out that this invariance property is critical for establishing
consistency of the generalized optimization estimator. Any other choice of ρ(·) that
does not have the invariance property may result in biased causal effect estimate.

3. The proposed estimation (4.5) is a semiparametric estimation problem that contains
both finite dimensional and infinite unknown parameters. The general semiparamer-
tic estimation problems have been studied by Ai and Chen (2003) and Chen, Linton,
and Van Keilegom (2003). Ai and Chen (2003) study the large sample properties
under smooth objective functions, and Chen, Linton, and Van Keilegom (2003) ex-
tend those to nonsmooth criterion functions. (4.5) is a special case of the general
setting of Chen, Linton, and Van Keilegom (2003). Indeed, we will apply their result
(e.g. Theorem 2 of Chen, Linton, and Van Keilegom (2003), page 1594) to derive the
asymptotic properties of β̂. However, there is a major difference. Our focus is on the

11



efficiency bound derivation and efficient estimation, whereas their focus is on deriv-
ing the asymptotic properties of the sequential estimator under high level conditions
(e.g. Condition 2.6, page 1594). These high level conditions are nontrivial to verify.
Most of our derivations are indeed verifying those high level conditions, see Section
4.2 of the supplemental material Ai, Linton, Motegi, and Zhang (2019).

5 Large sample properties

To establish the large sample properties of the generalized optimization estimator, we first
show that the estimated weight function π̂K(t,x) is consistent and compute its convergence
rates under both L∞ norm and the L2 norm. The following conditions shall be imposed.

Assumption 2. (i) The support X of X is a compact subset of Rr. The support T of the
treatment variable T is a compact subset of R. (ii) There exist two positive constants η1 and
η2 such that

0 < η1 ≤ π0(t,x) ≤ η2 <∞ , ∀(t,x) ∈ T × X .

Assumption 3. There exist ΛK1×K2 ∈ RK1×K2 and a positive constant α > 0 such that

sup
(t,x)∈T ×X

∣∣(ρ′−1 (π0(t,x))− uK1(t)
>ΛK1×K2vK2(x)

∣∣ = O(K−α).

Assumption 4. (i) For every K1 and K2, the smallest eigenvalues of E
[
uK1(T )uK1(T )>

]
and E

[
vK2(X)vK2(X)>

]
are bounded away from zero uniformly in K1 and K2. (ii) There

are two sequences of constants ζ1(K1) and ζ2(K2) satisfying supt∈T ‖uK1(t)‖ ≤ ζ1(K1)

and supx∈X ‖vK2(x)‖ ≤ ζ2(K2), K = K1(N)K2(N) and ζ(K) := ζ1(K1)ζ2(K2), such
that ζ(K)K−α → 0 and ζ(K)

√
K/N → 0 as N →∞.

Assumption 2 (i) restricts both the covariates and treatment level to be bounded. This
condition is restrictive but convenient for computing the convergence rate under L∞ norm.
It is commonly imposed in the nonparametric regression literature. This condition can be
relaxed, however, if we restrict the tail distribution of (X, T ). Assumption 2 (ii) restricts
the weight function to be bounded and bounded away from zero. Given Assumption 2
(i), this condition is equivalent to dFT |X(T |X) being bounded away from zero, meaning
that each type of individuals (denoted by X) always have a sufficient portion participating
in each level of treatment. This restriction is important for our analysis since each indi-
vidual participates only in one level of treatment and this condition allows us to construct
her statistical counterparts from all other treatments. Although Assumption 2 (ii) is useful
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in causal analysis and establishing the convergence rates, it is not essential and could be
relaxed by allowing η1 (resp. η2) to depend on N and go to zero (resp. infinity) slowly,
as N → ∞. Notice that uK1(t)

>ΛvK2(x) is a linear sieve approximation to any suitable
function of (X, T ). Assumption 3 requires the sieve approximation error of ρ′−1 (π0(t,x))

to shrink at a polynomial rate. This condition is satisfied for a variety of sieve basis func-
tions. For example, if both X and T are discrete, then the approximation error is zero for
sufficient large K and in this case Assumption 3 is satisfied with α = +∞. If some compo-
nents of (X, T ) are continuous, the polynomial rate depends positively on the smoothness
of ρ′−1 (π0(t,x)) in continuous components and negatively on the number of the continu-
ous components. We will show that the convergence rate of the estimated weight function
(and consequently the rate of the generalized optimization estimator) is bounded by this
polynomial rate. Assumption 4 (i) essentially ensures the sieve approximation estimator
is non-degenerate. Similar condition is common in the sieve regression literature (see An-
drews (1991) and Newey (1997)). If the approximation error is nonzero, Assumption 4 (ii)
requires it to shrink to zero at an appropriate rate as sample size increases.

Under these conditions, we are able to establish the following theorem:

Theorem 2. Suppose that Assumptions 2-4 hold. Then, we obtain the following:∫
T ×X
|π̂K(t,x)− π0(t,x)|2dFT,X(t,x) = Op

(
max

{
K−2α,

K

N

})
,

1

N

N∑
i=1

|π̂K(Ti,Xi)− π0(Ti,Xi)|2 = Op

(
max

{
K−2α,

K

N

})
.

The proof of Theorem 2 immediately follows from the supplemental material Ai, Lin-
ton, Motegi, and Zhang (2019, Lemma 3.1 & Corollary 3.3).

The following additional condition is needed to establish the consistency of the pro-
posed estimator β̂.

Assumption 5. (i) The parameter space Θ ⊂ Rp is a compact set and the true parameter
β0 is in the interior of Θ , where p ∈ N. (ii) E

[
supβ∈Θ |L (Y − g(T ;β)) |2

]
<∞.

Assumption 5 (i) is commonly imposed in the nonlinear regression, but can be relaxed
if g(t;β) is linear in β. Assumption 5 (ii) is an envelope condition that is sufficient for the
applicability of the uniform law of large numbers.

Under these and other conditions, we establish the consistency of the generalized opti-
mization estimator.

Theorem 3. Suppose that Assumptions 1-5 hold. Then, ‖β̂ − β0‖
p−→ 0.
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To establish the asymptotic distribution of the proposed estimator, we need some smooth-
ness condition on the regression function and some under-smoothing condition on the sieve
approximation (i.e., larger K than needed for consistency). We also have to address the
possibility of a nonsmooth loss function. These conditions are presented below.

Assumption 6.

(i) The loss function L(v) is differentiable almost everywhere, g(t;β) is twice contin-
uously differentiable in β ∈ Θ and we denote its first derivative by m(t;β) :=

∇βg(t;β);

(ii) E [π0(T,X)L′(Y − g(T ;β))m(T ;β)] is differentiable with respect to β and H0 :=

−∇βE [π0(T,X)L′(Y − g(T ;β))m(T ;β)]
∣∣∣
β=β0

is nonsingular;

(iii) ε(t,x;β0) := E[L′(Y − g(T ;β0))|T = t,X = x] is continuously differentiable in
(t,x);

(iv) Suppose that N−1
∑N

i=1 π̂K(Ti,Xi)L
′
(
Yi − g(Ti; β̂)

)
m(Ti; β̂) = op(N

−1/2) holds
with probability approaching one.

Assumption 7. (i) E
[
supβ∈Θ |L′(Y − g(T ;β))2+δ

]
<∞ for some δ > 0; (ii) The function

class {L′(y − g(t;β)) : β ∈ Θ} satisfies:

E

[
sup

β1:‖β1−β‖<δ
|L′(Y − g(T ;β1))− L′(Y − g(T ;β))|2

]1/2

≤ a · δb

for any β ∈ Θ and any small δ > 0 and for some finite positive constants a and b.

Assumption 6 (i) imposes sufficient regularity conditions on both regression function
and loss function. These conditions permit nonsmooth loss functions and are satisfied by
the example loss functions mentioned in previous sections. Assumption 6 (ii) ensures that
the efficient variance to be finite. Assumption 6 (iv) is essentially the first order condition,
similar to the one imposed in Z-estimation. Again, this first order condition is satisfied
by popular nonsmooth loss functions, see Pakes and Pollard (1989). Assumption 7 is a
stochastic equicontinuity condition which is needed for establishing weak convergence, see
Andrews (1994). Again, it is satisfied by widely used nonsmooth loss functions.

Under above sufficient conditions, we have the following theorem:
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Theorem 4. Suppose that Assumptions 1-7 hold, and strengthen Assumption 4 (ii) to

Assumption 4 (ii)′ ζ(K)
√
K2/N → 0 and

√
NK−α → 0.

Then,
√
N
(
β̂ − β0

)
d−→ N (0, Veff ), where Veff = E

[
Seff (T,X, Y ;β0)Seff (T,X, Y ;β0)>

]
.

Therefore, β̂ attains the semi-parametric efficiency bound of Theorem 1.

Assumption 4 (ii)′ imposes further restriction on the smoothing parameter (K) so that
the sieve approximation is under-smoothed. This condition is stronger than Assumption
4 (ii) but it is commonly imposed in the semiparametric regression literature. The proof
of Theorem 4 is given in the supplemental material Ai, Linton, Motegi, and Zhang (2019,
Section 4).

6 Variance estimation

In order to conduct statistical inference, a consistent covariance matrix is needed. The-
orem 1 suggests that such consistent covariance can be obtained by replacing H0 and
ψ(Y, T,X;β0) with some consistent estimates. Since the nonsmooth loss function may
invalidate the exchangeability between the expectation and derivative operator, some care
in the estimation of H0 is warranted. Using the tower property of conditional expectation,
we rewrite H0 as:

H0 =−∇βE [π0(T,X)E [L′(Y − g(T ;β))|T,X]m(T ;β)]
∣∣∣
β=β0

=− E
[
π0(T,X)∇βE [L′(Y − g(T ;β))|T,X]

∣∣∣
β=β0

m(T ;β0)>
]

− E [π0(T,X)E [L′(Y − g(T ;β0))|T,X]∇βm(T ;β0)] .

Applying integration by parts (see Appendix D), we obtain

∇βE [L′(Y − g(T ;β))|T = t,X = x]
∣∣∣
β=β0

=E

[
L′(Y − g(T ;β0))

∂
∂y
fY,T,X(Y, T,X)

fY,T,X(Y, T,X)

∣∣∣∣T = t,X = x

]
m(t;β0) (6.1)

and consequently

H0 = −E

[
π0(T,X)L′(Y − g(T ;β0))

{
∂
∂y
fY,T,X(Y, T,X)

fY,T,X(Y, T,X)
m(T ;β0)m(T ;β)> +∇βm(T ;β0)>

}]
.
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The density fY,T,X(y, t,x) can be estimated via the widely used sieve extremum estimator
(Chen, 2007, Example 2.6, page 5565):

f̂Y,T,X(y, t,x) :=
exp

(
â>K0

rK0(y, t,x)
)∫

Y×T ×X exp
(
â>K0

rK0(y, t,x)
)
dydtdx

,

where âK0 ∈ RK0 (K0 ∈ N) maximizes the following concave objective function:

âK0 := arg max
a∈RK0

1

N

N∑
i=1

[
a>rK0(Yi, Ti,Xi)− log

∫
Y×T ×X

exp
(
a>rK0(y, t,x)

)
dydtdx

]
,

and rK0(t, y,x) is a K0-dimensional sieve basis. Then H0 can be estimated by

Ĥ := − 1

N

N∑
i=1

π̂K(Ti,Xi)L
′(Yi−g(Ti; β̂))

{
∂
∂y
f̂Y,T,X(Yi, Ti,Xi)

f̂Y,T,X(Yi, Ti,Xi)
m(Ti; β̂)m(Ti; β̂)> +∇βm(Ti; β̂)

}
.

Also, ψ(Y, T,X;β0) can be directly estimated by the sieve estimator:

ψ̂(Y, T,X; β̂) = π̂K(T,X)L′(Y − g(T ; β̂))m(T ; β̂)− π̂K(t,x)Ê
[
L′(Y − g(T ; β̂))|T,X

]
m(T ; β̂)

+ Ê
[
π̂K(Ti,Xi)L

′(Y − g(T ; β̂))|T
]
m(T ; β̂) + Ê

[
π̂K(Ti,Xi)L

′(Y − g(T ; β̂))|X
]
m(T ; β̂),

where

Ê
[
L′(Y − g(T ; β̂))|T,X

]
:=

[
N∑
i=1

L′(Yi − g(Ti; β̂))wK0(Ti,Xi)
>

][
N∑
i=1

wK0(Ti,Xi)wK0(Ti,Xi)
>

]−1

wK0(T,X),

Ê
[
π̂K(Ti,Xi)L

′(Y − g(T ; β̂))|T
]

:=

[
N∑
i=1

π̂K(Ti,Xi)L
′(Yi − g(Ti; β̂))uK0

(Ti)
>

][
N∑
i=1

uK0
(Ti)uK0

(Ti)
>

]−1

uK0
(T ),

Ê
[
π̂K(Ti,Xi)L

′(Y − g(T ; β̂))|X
]

:=

[
N∑
i=1

π̂K(Ti,Xi)L
′(Yi − g(Ti; β̂))vK0

(Xi)
>

][
N∑
i=1

vK0
(Xi)vK0

(Xi)
>

]−1

vK0
(X).

The asymptotic covariance is estimated by

V̂ := Ĥ−1

{
1

N

N∑
i=1

ψ̂(Yi, Ti,Xi; β̂)ψ̂(Yi, Ti,Xi; β̂)>

}
(Ĥ>)−1.

It is well known that the sieve extreme estimation is uniformly strong consistent (in al-
most surely sense), see Chen (2007, Theorem 3.1). Also from Theorems 2 and 3, we have
sup(t,x)∈T ×X |π̂K(t,x) − π0(t,x)| = op(1) and ‖β̂ − β0‖ → 0. With these results, we
obtain the consistency of V̂ .

Theorem 5. Suppose that Assumptions 1-5 hold. Then, V̂ converges to Veff in probability.
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7 Selection of tunning parameters

The large sample properties of the proposed estimator permit a wide range of values of K1

and K2. This presents a dilemma for applied researchers who have only one finite sample
and would like to have some guidance on the selection of smoothing parameters. In this
section, we present two data-driven approaches to select K1 and K2. The first one is simply
minimizing a (penalized) loss function. Define

L̄(K1, K2) =
1

N

N∑
i=1

π̂K(Ti,Xi)L(Yi − g(Ti; β̂)).

There are several ways to penalize using large K1 or K2:

No penalty. L(K1, K2) = L̄(K1, K2).

Additive penalty. L(K1, K2) = (1 + 2(K1 +K2)/N)× L̄(K1, K2).

Multiplicative penalty. L(K1, K2) = (1 + 2K1K2/N)× L̄(K1, K2).

Choose (K∗1 , K
∗
2) that minimizes L(K1, K2) in some choice sets (K1, K2) ∈ K1 ×K2.

The second approach is the J-folder cross validation which proceeds as follows.

1. We divide N samples into J groups, (say J = 5 or 10), and let n = N/J . The data
in the jth group is denoted by Sj = {X(j)

i , T
(j)
i , Y

(j)
i : i = 1, ..., n} for j ∈ {1, .., J}.

2. For each j ∈ {1, ..., J}, we denote the dataset S(−j) = {Xi, Ti, Yi}Ni=1/Sj . We
compute the following quantities based on S(−j):

Λ̂
(−j)
K1×K2

= arg max
Λ

Ĝ
(−j)
K (Λ)

=
1

N − n
∑

i∈S(−j)

ρ
(
u>K1

(Ti)ΛvK2(Xi)
)
−

 1

N − n
∑

i∈S(−j)

u>K1
(Ti)

Λ

 1

N − n
∑

i∈S(−j)

vK2(Xi)


and

π̂
(−j)
K (T,X) = ρ′

(
u>K1

(T )Λ̂
(−j)
K1×K2

vK2(X)
)

and
β̂

(−j)
K = arg min

∑
i∈S(−j)

π̂
(−j)
K (Ti,Xi) {Yi − g(Ti;β)}2 .
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3. We choose optimal K1 and K2 so that the following cross validation criterion is min-
imized:

CV (K1, K2) =
J∑
j=1

∑
k∈Sj

π̂
(−j)
K (Tk,Xk)

{
Yk − g

(
Tk; β̂

(−j)
K

)}2

 .

8 Some extensions

The condition (2.1) that the causal effect is parameterized may be restrictive for some ap-
plications. To relax this condition, we can consider the nonparametric specification:

min
g(·)

∫
T
E [L (f(Y ∗(t))− g(t))] dFT (t),

where f(·) is a known function while g(·) is unknown. Under Assumption 1, above opti-
mization is equivalent to

min
g(·)

E [π0(T,X)L(f(Y )− g(T ))] .

We can estimate g(·) through the weighted nonparametric sieve regression:

min
g(·)∈HK1

N∑
i=1

π̂K(Ti,Xi)L(f(Yi)− g(Ti)),

whereHK1 :=
{
g(·) : T → R, g(t) = λ>uK1(t) : λ ∈ RK1

}
is a specified sieve space. Ex-

tension to the general loss function requires considerable derivation and shall be dealt with
in a separate paper. In this section, we only consider three particular cases: (i) the treat-
ment effect curve θ(t) := E[Y ∗(t)], which corresponds to L(v) = v2 and f(Y ) = Y ; (ii)
the average effect ψ :=

∫
T E[θ(t)]dFT (t) proposed by Kennedy, Ma, McHugh, and Small

(2017).

8.1 Estimation of effect curve

We begin with estimation of θ(t). Note that, for all t ∈ T and under Assumption 1, we can
rewrite θ(t) as

θ(t) = E[Y ∗(t)] = E [π0(T,X)Y |T = t] .
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With π0(T,X) replaced by π̂K(T,X), we estimate θ(t) by regressing π̂K(T,X)Y on
uK1(T ):

θ̂K(t) =

[
N∑
i=1

π̂K(Ti,Xi)YiuK1(Ti)
>

][
N∑
i=1

uK1(Ti)uK1(Ti)
>

]−1

uK1(t).

To aid presentation of the asymptotic properties of θ̂K(t), we denote

εi = π0(Ti,Xi)Yi − E [π0(Ti,Xi)Yi|Ti,Xi] + E [π0(Ti,Xi)Yi|Xi]− E [π0(Ti,Xi)Yi] ,

σ2(Ti) = V ar(εi|Ti), ΣK1×K1 = E[uK1(T )u>K1
(T )σ2(T )] , ΦK1×K1 = E[uK1(T )u>K1

(T )],

and
VK(t) = u>K1

(t)Φ−1
K1×K1

ΣK1×K1Φ
−1
K1×K1

uK1(t).

Theorem 6. Suppose that for some α̃ > 0, there exists some γ∗ ∈ RK1 such that supt∈T |θ(t)−
(γ∗)>uK1(t)| = O(K−α̃1 ) and σ2(t) is bounded, and that Assumptions 1-6 hold. Then:

1. (Consistency)∫
T
|θ̂K(t)− θ(t)|2dFT (t) = Op

(
ζ(K)2K

N
+ ζ(K)2K−2α +K−2α̃

1

)
and

sup
t∈T
|θ̂K(t)− θ(t)| = Op

[
ζ1(K1)

(
ζ(K)

√
K/N + ζ(K)K−2α +K−α̃1

)]
.

2. (Asymptotic Normality) suppose
√
NK−α̃ → 0 for any fixed t ∈ T ,

√
NVK(t)−1/2

[
θ̂K(t)− θ(t)

]
d−→ N(0, 1).

See Ai, Linton, Motegi, and Zhang (2019, Section 5.1) for a proof of Theorem 6.

8.2 Efficient estimation of average effect

To estimate the average effect ψ, we notice that

ψ = E[π0(T,X)Y ].

Hence, we estimate ψ by

ψ̂K =
1

N

N∑
i=1

π̂K(Ti,Xi)Yi.

The following theorem establishes the asymptotic distribution of ψ̂K and shows that ψ̂K
attains the efficiency bound of ψ derived by Kennedy, Ma, McHugh, and Small (2017).
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Theorem 7. Under all assumptions stated in Theorem 4. Then:

1. (Consistency) ψ̂K
p−→ ψ;

2. (Asymptotic Efficiency)
√
N(ψ̂K − ψ)

d−→ N(0, V ψ
eff ), where V ψ

eff = E
[(
Sψeff

)2
]

and

Sψeff (T,X, Y ) = π0(T,X) {Y − E[Y |X, T ]}+ {E[π0(T,X)Y |X]− E[π0(T,X)Y ]}
+ {E[π0(T,X)Y |T ]− E[π0(T,X)Y ]} .

See Ai, Linton, Motegi, and Zhang (2019, Section 5.2) for a proof of Theorem 7.

9 Monte Carlo simulations

The large sample properties established in previous sections do not indicate how the gener-
alized optimization estimator behaves in finite samples. To evaluate its finite sample perfor-
mance, we conduct a simulation study on a continuous treatment. We present a simulation
design in Section 9.1 and results in Section 9.2.

9.1 Simulation design

Let Xi = (X1i, X2i)
> be covariates, and assume that Xi

i.i.d.∼ N(0, I2). Error terms are
drawn mutually independently as ξi

i.i.d.∼ N(0, 1) and εi
i.i.d.∼ N(0, 1). Consider four data

generating processes (DGPs):

DGP-L1 T = 1 + 0.2X1 + ξ and Y = 1 +X1 + T + ε. (X2 does not play any role,
and X1 affects T and Y linearly.)

DGP-NL1 T = 0.1X2
1 + ξ and Y = X2

1 + T + ε. (X2 does not play any role, and
X1 affects T and Y non-linearly.)

DGP-L2 T = 1 + 0.2
∑2

j=1 Xj + ξ and Y = 1 + (1/2)
∑2

j=1Xj + T + ε. (X1 and
X2 affect T and Y linearly.)

DGP-NL2 T = 0.1(
∑2

j=1Xj)
2 + ξ and Y = 1/2 + [(1/2)

∑2
j=1Xj]

2 + T + ε. (X1

and X2 affect T and Y non-linearly.)
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For each DGP, the true link function is E[Y (t)] = 1 + t, a simple linear function with
β∗1 = β∗2 = 1. Below we use a linear link function g(Ti; β) = β1 + β2Ti, compute the
generalized optimization estimator β̂ = (β̂1, β̂2)>, and examine its performance.

To compute the generalized optimization estimator, two approximating basis functions
uK1(T ) and vK2(X) need to be specified. For uK1(T ), K1 ∈ {2, 3, 4} ≡ K1 is considered:

u2(T ) = (1, T )>, u3(T ) = (1, T, T 2)>, u4(T ) = (1, T, T 2, T 3)>.

For vK2(X), the choice set K2 depends on the number of covariates. For DGP-L1 and
DGP-NL1, K2 ∈ {2, 3, 4} ≡ K1

2 is considered:

v2(X1) = (1, X1)>, v3(X1) = (1, X1, X
2
1 )>, v4(X1) = (1, X1, X

2
1 , X

3
1 )>. (9.1)

For DGP-L2 and DGP-NL2, K2 ∈ {3, 6, 10} ≡ K2
2 is considered:

v3(X) = (1, X1, X2)>, (9.2)

v6(X) = (1, X1, X2, X
2
1 , X

2
2 , X1X2)>,

v10(X) = (1, X1, X2, X
2
1 , X

2
2 , X1X2, X

3
1 , X

3
2 , X

2
1X2, X1X

2
2 )>.

Besides fixed pairs of (K1, K2) ∈ K1×K2, the data-driven selections described in Sec-
tion 7 are employed. First, the (penalized) loss function approaches are implemented with
L(Yi−g(Ti; β̂)) = (Yi− β̂1− β̂2Ti)

2. Second, the J-folder cross validation is implemented
with J ∈ {5, 10}.

We also compute the covariate balancing generalized propensity score estimator pro-
posed by Fong, Hazlett, and Imai (2018) under the quadratic loss function. Fong, Hazlett,
and Imai (2018) use a linear model specification. Hence, their specification is correct under
DGP-L1 and DGP-L2 while it is incorrect under DGP-NL1 and DGP-NL2.

Our proposed estimator and Fong, Hazlett, and Imai’s (2018) estimator are computed
in a simulated sample with size N ∈ {100, 500, 1000}, after which another sample is gen-
erated and both estimators are computed again. This exercise is repeated M = 1000 times.

To evaluate the performance of point estimation, the bias, standard deviation, and root
mean squared error (RMSE) of β̂1 and β̂2 are calculated from (a subset of) M = 1000

simulations. In a small portion of the M = 1000 samples, π̄N ≡ (1/N)
∑N

i=1 π̂K(Ti,Xi),
which should be equal to 1 in theory, takes a value far from 1 due to numerical instability
in the computation of Λ∗K1×K2

. The maximization with respect to Λ should lead to a global
maximizer Λ∗K1×K2

in theory, but optimizing the K1K2 elements of Λ all at once is often
hard in practical computation. Hence, we calculate the bias, standard deviation, and RMSE
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from Monte Carlo samples such that π̄N ∈ [0.5, 2]. Other few samples having π̄N /∈ [0.5, 2]

are simply discarded.
We also evaluate the performance of variance estimation. The true covariance matrix

of β̂ is written as

Veff =

[
V11 V12

V12 V22

]
.

Different DGPs have different true values of (V11, V12, V22), and they are computed in Sec-
tion 6.2 of the supplemental material Ai, Linton, Motegi, and Zhang (2019). For each
DGP, we compute β̂ based on (K1, K2) that leads to sharp point estimation. Then we
use other sieve bases of dimension (K ′1, K

′
2) ∈ K1 × K2 to re-estimate the propensity

score πK′(T,X). We allow (K1, K2) and (K ′1, K
′
2) to be different from each other since

π̂K(T,X) that leads to sharp point estimation might be different from π̂K′(T,X) that leads
to sharp variance estimation.

Using π̂K′(T,X) and variance-specific sieve bases vM0(X) and wK0(T,X), the vari-
ance estimator V̂eff is computed. For vM0(X), M0 ∈ {2, 3} is used for DGP-L1 and
DGP-NL1 and M0 ∈ {3, 6} is used for DGP-L2 and DGP-NL2 (see (9.1) and (9.2)). For
wK0(T,X), K0 ∈ {3, 5} is used for DGP-L1 and DGP-NL1:

w3(T,X1) = (1, T,X1)>, w5(T,X1) = (1, T,X1, T
2, X2

1 )>.

K0 ∈ {4, 8} is used for DGP-L2 and DGP-NL2:

w4(T,X) = (1, T,X1, X2)>, w8(T,X) = (1, T,X1, X2, T
2, X2

1 , X
2
2 , TX1)>.

Data-driven selection of (K ′1, K
′
2,M0, K0) is beyond the scope of the present paper.

9.2 Simulation results

We discuss point estimation first, and then discuss variance estimation. See Tables 1-2
for point estimation results on DGP-L1; Tables 3-4 for DGP-NL1; Tables 5-6 for DGP-L2;
Tables 7-8 for DGP-NL2. We also draw bar charts that depict the share of (K1, K2) selected
by each data-driven method. See Figures 1-2 for the bar charts for DGP-L1; Figures 3-4 for
DGP-NL1; Figures 5-6 for DGP-L2; Figures 7-8 for DGP-NL2.

Unless otherwise noted, we discuss results on the causal parameter β2 only, since it
is economically more important than the constant β1. Under DGP-L1, the generalized
optimization estimator (labeled as GOE) has small enough RMSE for any fixed (K1, K2)

(Table 2). It is not a surprising result since DGP-L1 has a simple linear structure. The
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data-driven methods often choose (K∗1 , K
∗
2) = (2, 2), the simplest possible approximation

basis (Figures 1-2). The RMSE of the covariate balancing generalized propensity score
estimator (labeled as CBGPS) is even smaller than the RMSE of GOE. It is not surprising
since CBGPS has a correct parametric specification under DGP-L1.

Under DGP-NL1, GOE dominates CBGPS. GOE leads to small enough RMSE for
both β1 and β2 as long as K2 ≥ 3. The relatively large RMSE under K2 = 2 suggests that
X2

1 needs to be included in vK2(X1) (see (9.1)). That is a reasonable result since DGP-NL1
has a quadratic structure. As desired, any data-driven method considered often selects pairs
with K2 ≥ 3 (Figures 3-4). CBGPS, in contrast, fails with the bias for β2 being around 0.2.
The bias arises because the linear specification of CBGPS is incorrect under DGP-NL1.
This result highlights that GOE performs well for both linear and nonlinear scenarios while
CBGPS performs well for linear scenarios only.

The two-covariate scenarios yield similar implications to the single-covariate scenar-
ios. Under DGP-L2, GOE with any fixed (K1, K2) has small RMSE (Table 6). The data-
driven methods often choose (K∗1 , K

∗
2) = (2, 3), the simplest possible approximation basis

(Figures 5-6). The RMSE of CBGPS is even smaller than the RMSE of GOE due to the
linear structures of DGP-L2.

Under DGP-NL2, GOE withK2 ≥ 6 leads to small RMSE, and any data-driven method
considered often selects pairs withK2 ≥ 6 as desired (Tables 7-8 and Figures 7-8). CBGPS,
in contrast, fails with substantial bias of around 0.17 for β2. This result again highlights the
remakable advantage of GOE relative to CBGPS.

Summarizing point estimation, the generalized optimization estimator performs well
in finite samples, and the performance is still good even when the true DGP is nonlinear. In
contrast, the existing alternative estimator of Fong, Hazlett, and Imai (2018) is sensitive to
model misspecification.

We now discuss variance estimation results. The values of true covariance matrix,
Veff , are also provided in Tables 9-12. See Ai, Linton, Motegi, and Zhang (2019, Section
6) for how to compute the true values. For each DGP, we compute β̂ via (K1, K2) = (2, 2)

for DGP-L1, (2, 3) for DGP-NL1, (2, 3) for DGP-L2, and (2, 6) for DGP-NL2. Recall
from Tables 1-8 that those values are optimal values that lead to smallest MSEs in point
estimation. Then we present in Tables 9-12 the bias, standard deviation, and RMSE of
V̂eff with respect to Veff , where (K ′1, K

′
2,M0, K0) = (3, 3, 3, 5) for DGP-L1, (3, 3, 3, 5)

for DGP-NL1, (3, 3, 6, 8) for DGP-L2, and (2, 10, 3, 4) for DGP-NL2. Under those values,
we observe desired results that V̂eff converges to Veff as sample size N increases. When
N = 1000, the bias and standard deviation are small enough. Under DGP-NL1 and DGP-
NL2, CBGPS suffers from large bias in variance estimation (Tables 10 and 12). That is
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reasonable since the point estimation is already biased (Tables 3-4 and 7-8).

10 Empirical application

To illustrate the applicability of the generalized optimization procedure, we revisit U.S.
presidential campaign data analyzed by Urban and Niebler (2014) and Fong, Hazlett, and
Imai (2018). The motivation of the original study, Urban and Niebler (2014), is well sum-
marized in Fong, Hazlett, and Imai (2018, Section 2):

Urban and Niebler (2014) explored the potential causal link between advertis-
ing and campaign contributions. Presidential campaigns ordinarily focus their
advertising efforts on competitive states, but if political advertising drives more
donations, then it may be worthwhile for candidates to also advertise in non-
competitive states. The authors exploit the fact that media markets sometimes
cross state boundaries. This means that candidates may inadvertently advertise
in noncompetitive states when they purchase advertisements for media markets
that mainly serve competitive states. By restricting their analysis to noncom-
petitive states, the authors attempt to isolate the effect of advertising from that
of other campaigning, which do not incur these media market spillovers.

The treatment of interest, the number of political advertisements aired in each zip code,
can be regarded as a continuous variable since it takes a range of values from 0 to 22379
across N = 16265 zip codes. Urban and Niebler (2014) restricted themselves to a binary
treatment framework, and they dichotomized the treatment variable by examining whether
a zip code received more than 1000 advertisements or not. Their empirical results suggest
that advertising in non-competitive states had a significant impact on the level of campaign
contributions.

Dichotomizing a continuous treatment variable requires an ad-hoc choice of a cut-off
value, and it makes an empirical result hard to interpret. Fong, Hazlett, and Imai (2018) an-
alyzed the continuous version of the treatment variable, taking advantage of their proposed
CBGPS method. Their empirical results suggest, contrary to Urban and Niebler (2014),
that advertising in non-competitive states did not have a significant impact on the level of
campaign contributions (cf. Fong, Hazlett, and Imai, 2018, Table 2).

As shown in Section 9, our generalized optimization estimator has a better performance
than Fong, Hazlett, and Imai’s (2018) CBGPS estimator. Our estimator exhibits a solid
performance even if a DGP of treatment Ti or outcome Yi is nonlinear in covariateXi. It is
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thus of interest to apply our approach to the continuous version of the treatment variable in
order to see how results change.

10.1 Fong, Hazlett, and Imai’s (2018) CBGPS approach

We begin with Fong, Hazlett, and Imai’s (2018) CBGPS estimator as a benchmark. It
requires a choice of pre-treatment covariates Xi in a generalized propensity score model.
There are eight covariates

X1 =



log(Population)

%Over 65

log(Income + 1)

%Hispanic

%Black

Population Density

%College Graduates

Can Commute


. (10.1)

Subscript i is omitted for brevity, but (10.1) is defined for each zip code i ∈ {1, . . . , N}.
The definition of each covariate is almost self-explanatory (see Fong, Hazlett, and Imai,
2018, Sec. 5 for more details). Following Fong, Hazlett, and Imai (2018, Table 1), we add
squared terms to construct a 15× 1 vector of pre-treatment covariates:

X =



X1

{log(Population)}2

{%Over 65}2

{log(Income + 1)}2

{%Hispanic}2

{%Black}2

{Population Density}2

{%College Graduates}2


. (10.2)

The square of “Can Commute” is not added since it is a binary indicator of whether it
is possible to commute to zip code i from a competitive state so that Can Commute =

{Can Commute}2.
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Let Ti be the treatment of interest (i.e. the number of political advertisements aired in
each zip code). The CBGPS approach assumes that the standardized treatment variable

T ∗i = s
−1/2
T (Ti − T̄ ) (10.3)

follows the standard normal distribution, where T̄ = (1/N)
∑N

i=1 Ti and sT = (1/(N −
1))
∑N

i=1(Ti − T̄ )2. Given the data of political advertisements, the normality assumption is
far from satisfied (see Panel 1 of Figure 9). Fong, Hazlett, and Imai (2018) therefore run a
Box-Cox transformation T ′i = {(Ti + 1)λ − 1}/λ with λ = −0.16 and then standardize T ′i
according to (10.3). They choose λ = −0.16 since it yields the greatest correlation between
the sample quantiles of the standardized treatment and the corresponding theoretical quan-
tiles of the standard normal distribution. As Fong, Hazlett, and Imai (2018, p.15) admit, the
Gaussian approximation is very poor even after running the Box-Cox transformation (see
Panels 2-3 of Figure 9). This result suggests that the normality of a standardized treatment
is often a too strong assumption to make in practice.

For an outcome model, we consider four cases for covariates Zi:

Case #1. Zi = [Ti, T
2
i , 1]>.

Case #2. Zi = [Ti, T
2
i ,SD

>
i ]>.

Case #3. Zi = [Ti, T
2
i , 1,X

>
1i]
>.

Case #4. Zi = [Ti, T
2
i ,SD

>
i ,X

>
1i]
>.

Note that SDi = [SD1i, SD2i, . . . , SD24i]
>, where SDji is a binary indicator that equals

1 if zip code i belongs to state j and equals 0 otherwise. Any zip code contained in the
dataset belongs to one and only one of 24 states (e.g. Alabama, Arkansas, . . . , Wyoming).

For each of Cases #1–#4, we compute the CBGPS estimator and its asymptotic 95%
confidence bands (see Fong, Hazlett, and Imai, 2018, Sec. 3.2 for procedures). Our main
interest lies in the parameters of (Ti, T

2
i ) and their statistical significance. See Table 13 for

results. It is evident that the empirical results depend critically on a specification of Zi.
In Case #2, Ti has a significantly positive impact on Yi and T 2

i has a significantly negative
impact on Yi. In the other three cases, both Ti and T 2

i have insignificant impacts on Yi.

10.2 Generalized optimization approach

A practical advantage of our proposed approach over the CBGPS approach is that we do
not require the normality assumption for the treatment variable T . As indicated in Figure 9,
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the normality assumption is too strong for the number of political advertisements aired in
each zip code whether or not the Box-Cox transformation is implemented. The generalized
optimization approach allows us to work with the original treatment variable (Panel 1 of
Figure 9).

We assume that the link function is quadratic with p = 3:

g(T,β) = β1 + β2T + β3T
2.

Our covariatesX are chosen to be identical to Eq. (10.2). Given that the dimension ofX is
as large as 15, we use simple polynomials with K1 = 3 and K2 = 16 to compute π̂K(T,X)

and β:
uK1(T ) = [1, T, T 2]>, vK2(X) = [1,X>]>.

To compute variance estimator V̂eff , we use the same propensity score π̂K(T,X) and
variance-specific polynominals with M0 = 3 and K0 = 17:

vM0(X) = [1,X>]>, wK0(T,X) = [1, T,X>]>.

See Table 14 for results. Neither β̂2 nor β̂3 is different from 0 at the 5% level. Hence
there do not exist statistically significant impacts of the political advertisements on the level
of campaign contributions Y .

11 Conclusions

In this paper we present a weighted optimization framework that unifies the binary, multi-
valued, continuous and a mixture of discrete and continuous treatment, under the condition
of unconfounded treatment assignment. Under this general framework, we first apply the
result of Bickel, Klaassen, Ritov, and Wellner (1993) to compute the semiparametric ef-
ficiency bound for the causal effect of treatment under a general loss function. We then
propose a generalized optimization estimation with the weights estimated by solving an
expanding set of equations. These equations impose restriction on the weights and extract
valuable information about the causal effect. Under some sufficient conditions, we establish
consistency and asymptotic normality of the generalized optimization estimator and show
that it attains the semiparametric efficiency bound. Since none of the existing studies has
investigated efficient estimation of the continuous treatment model, our efficiency bound
result and efficient estimation extend the existing literature on the binary and multi-valued
treatment to the continuous treatment model. To relax the parametric restriction, we also
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discuss the nonparametric specification of the causal link function, and propose estimators
for both average treatment effects curve and average effect.

There are several extensions worth pursuing in future projects. First, estimation of the
nonparametric causal effect function under general loss function has not been completely
dealt with in this paper. But this is an important extension since it removes the burden
of parameterizing the causal effect. Second, extension of the current setting to that with
high dimensional covariates is also an important project. Third, panel data are common
in empirical literature. Our approach is readily applicable to those data, though efficiency
issue is more difficult. All these extensions shall be taken up in future studies.
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Appendix

A Proof of (2.2)

Using the law of iterated expectation and Assumption 1, we can deduce that

E [π0(T,X)L (Y − g(T ;β))]

=E [E[π(T,X)L(Y ∗(T )− g(T ;β))|T,X]]

=

∫
π0(t,x) · E[L(Y ∗(T )− g(T ;β))|T = t,X = x] dFT |X(t|x)dFX(x)
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=

∫
E [L(Y ∗(t)− g(t;β))|T = t,X = x] dFT (t)dFX(x)

=

∫
E [L(Y ∗(t)− g(t;β))|X = x] dFT (t)dFX(x) (using Assumption 1)

=

∫
E [L(Y ∗(t)− g(t;β))] dFT (t).

B Asymptotic result when π0(T,X) is known
Suppose the stabilized weights π0(T,X) is known, the weighted optimization estimator of
β0, denoted by β∗, is

β∗ = min
β

N∑
i=1

π0(Ti,Xi)L(Yi − g(Ti; β)).

We also assume the asymptotic first order condition

1

N

N∑
i=1

π0(Ti,Xi)L
′(Yi − g(Ti;β

∗))m(Ti;β
∗) = oP (N−1/2) (B.1)

holds with probability approaching to one.

Proposition B.1 Suppose Assumptions 5, 6 (i-ii), and 7 hold, and (B.1) holds, then we have

1. β∗
p−→ β0;

2.
√
N(β∗ − β0)

d−→ N (0, Vineff ), where

Vineff := H−1
0 · E

[
π0(T,X)2L′(Y − g(T ;β0))2m(T ;β0)m(T ;β0)>

]
·H−1

0 ;

3. furthermore, if E [L′(Y (t)− g(t;β0))] = 0 holds for all t ∈ T , then Vineff ≥ Veff in
the sense of that c> · Vineff · c ≥ c> · Veff · c for any vector c ∈ Rp.

Proof. By Assumption 5 and the uniform law of large number, we obtain

1

N

N∑
i=1

π0(Ti,Xi)L {Yi − g(Ti;β)} → E [π0(T,X)L {Y − g(T ;β)}] in probability uniformly overβ,

which implies the consistency result ‖β∗ − β0‖
p−→ 0.

The first order condition (B.1) holds with probability approaching to one. Note that
L′(·) may not be a differentiable function, e.g. L′(v) = τ − I(v < 0) in quantile regres-
sion, we cannot simply apply Mean Value Theorem on (B.1) to obtain the expression for
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√
N(β∗−β0). To solve this problem, we resort to the empirical process theory in Andrews

(1994). Define

f(β) := E [π0(T,X)L′(Y − g(T ;β))m(T ;β)] ,

which is a differentiable function in β and by (2.3) f(β0) = 0. Using Mean Value Theorem,
we can obtain

0 =
√
Nf(β0) =

√
Nf(β∗)−∇βf(β̄) ·

√
N(β∗ − β0) ,

where β̄ lies on the line joining β∗ and β0. Because ∇βf(β) is continuous in β at β0, and
‖β∗ − β0‖

p−→ 0, then we have
√
N(β∗ − β0) = [∇βf(β0)]−1 ·

√
Nf(β∗).

Define the empirical process

νN(β) =
1√
N

N∑
i=1

{π0(Ti,Xi)L
′(Yi − g(Ti;β))m(Ti;β)− E [π0(T,X)L′(Y − g(T ;β))m(T ;β)]} .

By (B.1) and the definition of νN(β), we have

√
N(β∗ − β0) =∇βf(β0)−1 ·

{
√
Nf(β∗)− 1√

N

N∑
i=1

π0(Ti,Xi)L
′(Yi − g(Ti;β

∗))m(Ti;β
∗)

+
1√
N

N∑
i=1

π0(Ti,Xi)L
′(Yi − g(Ti;β

∗))m(Ti;β
∗)

}
=−∇βf(β0)−1 · νN(β∗) + op(1)

=H−1
0 ·

{
(νN(β∗)− νN(β0)) + νN(β0)

}
+ op(1) .

By Assumptions 6, 7, Theorems 4 and 5 of Andrews (1994), we have that νN(·) is stochas-
tically equicontinuous, which implies νN(β∗)− νN(β0)

p−→ 0. Therefore,

√
N(β∗ − β0) = H−1

0

1√
N

N∑
i=1

π0(Ti,Xi)L
′(Yi − g(Ti;β0))m(Ti;β0) + op(1) ,

then we can conclude that the asymptotic variance of
√
N(β∗ − β0) is V

ineff
.

We next show Vineff ≥ Veff . From Theorem 1, we have

Veff = H−1
0 ·

{
E
[
π0(T,X)2L′(Y − g(T ;β0))2m(T ;β0)m(T ;β0)>

]
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+ E
[
E[π0(T,X)L′(Y − g(T ;β0))m(T ;β0)|T,X] · E[π0(T,X)L′(Y − g(T ;β0))m(T ;β0)|T,X]>

]
+ E

[
E[π0(T,X)L′(Y − g(T ;β0))m(T ;β0)|X] · E[π0(T,X)L′(Y − g(T ;β0))m(T ;β0)|X]>

]
+ E

[
E[π0(T,X)L′(Y − g(T ;β0))m(T ;β0)|T ] · E[π0(T,X)L′(Y − g(T ;β0))m(T ;β0)|T ]>

]
− 2 · E

[
E[π0(T,X)L′(Y − g(T ;β0))m(T ;β0)|T,X] · π0(T,X)L′(Y − g(T ;β0))m(T ;β0)>

]
− 2 · E

[
E[π0(T,X)L′(Y − g(T ;β0))m(T ;β0)|T,X] · E[π0(T,X)L′(Y − g(T ;β0))m(T ;β0)|X]>

]
− 2 · E

[
E[π0(T,X)L′(Y − g(T ;β0))m(T ;β0)|T,X] · E[π0(T,X)L′(Y − g(T ;β0))m(T ;β0)|T ]>

]
+ 2 · E

[
π0(T,X)L′(Y − g(T ;β0))m(T ;β0) · E[π0(T,X)L′(Y − g(T ;β0))m(T ;β0)|X]>

]
+ 2 · E

[
π0(T,X)L′(Y − g(T ;β0))m(T ;β0) · E[π0(T,X)L′(Y − g(T ;β0))m(T ;β0)|T ]>

]
+ 2 · E

[
E[π0(T,X)L′(Y − g(T ;β0))m(T ;β0)|T ] · E[π0(T,X)L′(Y − g(T ;β0))m(T ;β0)|X]>

]}
H−1

0

=H−1
0

{
E
[
π0(T,X)2L′(Y − g(T ;β0))2m(T ;β0)m(T ;β0)>

]
− E

[
E[π0(T,X)L′(Y − g(T ;β0))m(T ;β0)|T,X] · E[π0(T,X)L′(Y − g(T ;β0))m(T ;β0)|T,X]>

]
+ E

[
E[π0(T,X)L′(Y − g(T ;β0))m(T ;β0)|X] · E[π0(T,X)L′(Y − g(T ;β0))m(T ;β0)|X]>

]}
H−1

0 ,

where the last equality holds by noting

E[π0(T,X)L′(Y − g(T ;β0))m(T ;β0)|T = t] = E [L′(Y ∗(t)− g(t;β0))] ·m(t;β0) = 0 ,

since the model is correctly specified, i.e. E [L′(Y ∗(t)− g(t;β0))] = 0 for t ∈ T . There-
fore,

Vineff − Veff

=H−1
0

{
E
[
E[π0(T,X)L′(Y − g(T ;β0))m(T ;β0)|T,X] · E[π0(T,X)L′(Y − g(T ;β0))m(T ;β0)|T,X]>

]
− E

[
E[π0(T,X)L′(Y − g(T ;β0))m(T ;β0)|X] · E[π0(T,X)L′(Y − g(T ;β0))m(T ;β0)|X]>

]}
H−1

0 ≥ 0 ,

where the last inequality holds by using Jensen’s inequality:

E
[
E[π0(T,X)(Y − g(T ;β0))m(T ;β0)|X] · E[π0(T,X)(Y − g(T ;β0))m(T ;β0)|X]>

]
=E

[
E [E[π0(T,X)(Y − g(T ;β0))m(T ;β0)|T,X]|X] · E [E[π0(T,X)(Y − g(T ;β0))m(T ;β0)|T,X]|X]

>
]

<E
[
E[π0(T,X)(Y − g(T ;β0))m(T ;β0)|T,X] · E[π0(T,X)(Y − g(T ;β0))m(T ;β0)|T,X]>

]
.
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C Duality of primal problem (4.3)

Let

π := (π1, . . . , πN)> , f(π) :=
N∑
i=1

πi log πi ,

the primal problem (4.3) can be written as:
min f(π)

subject to N−1
∑N

i=1 πiuK1,k(Ti)vK2,k′(Xi) = ūK1,k · v̄K2,k′ ,

k ∈ {1, ..., K1} , k′ ∈ {1, ..., K2} ,

(C.1)

where

ūK1,k :=
1

N

N∑
j=1

uK1,k(Tj) , v̄K2,k′ :=
1

N

N∑
j=1

vK2,k′(Xj) ,

and uK1,k(T ) (resp. vK2,k′) is the kth (resp. k′th) component of uK1(T ) (resp. vK2(X)).
Let mK1K2(T,X) be a K = K1 · K2 dimensional vector function whose elements are
{uK1,k(T )vK2,k′(X); k = 1, ..., K1, k

′ = 1, ..., K2}, and we define

EK1K2×N := (mK1K2(T1,X1), . . . ,mK1K2(TN ,XN)) .

Let bK1K2 be aK = K1·K2 dimensional vector function whose elements are {ūK1,kv̄K2,k′ ; k =
1, ..., K1, k

′ = 1, ..., K2}. The optimization problem (C.1) becomes minπ f(π)

subject to EK1K2×N · π = N · bK1K2

. (C.2)

By Tseng and Bertsekas (1991), the conjugate convex function of f(·) to be

f ∗(z) = sup
π

N∑
i=1

{ziπi − πi log πi} =
N∑
i=1

{ziπ∗i − π∗i log π∗i } ,

where π∗j satisfies the first order condition:

zj = log π∗j + 1⇒ π∗j = ezj−1 ;
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then we have

f ∗(z) =
N∑
i=1

{
zie

zi−1 − ezi−1(zi − 1)
}

=
N∑
i=1

ezi−1 =
N∑
i=1

−ρ(−zi) ,

where ρ (zj) := −e−zj−1. By Tseng and Bertsekas (1991), the dual problem of (C.2) is

max
λ∈RK

{
λ> (N · bK1K2)− f ∗

(
λ>EK1K2,N

)}
= max

Λ∈RK1×K2

N∑
j=1

{
ū>K1

Λv̄K2 + ρ
(
−uK1(Tj)

>ΛvK2(Xj)
)}

= max
Λ∈RK1×K2

N∑
j=1

{
ρ
(
uK1(Tj)

>ΛvK(Xj)
)
− ū>K1

Λv̄K2

}
= max

Λ∈RK1×K2

ĜK1×K2(Λ), (C.3)

where E(j)
K1K2,N

is the jth column of EK1K2×N and

GK1×K2(Λ) =
1

N

N∑
j=1

ρ(uK1(Tj)
>ΛvK(Xj))− ū>K1

Λv̄K2 .

Therefore, the dual solution of (4.3) is given by

π̂K(Ti,Xi) = ρ′
(
uK1(Ti)

>Λ̂K1×K2vK2(Xi)
)
, (C.4)

where Λ̂K1×K2 is the maximizer of the strictly concave objective function ĜK1×K2 .

D Proof of (6.1)

∇βE [L′(Y − g(T ;β))|T = t,X = x]
∣∣∣
β=β0

=∇β

[∫
R
L′(y − g(t;β))fY |T,X(y|t,x)dy

] ∣∣∣
β=β0

=∇β

[∫
R
L′(z)fY |T,X(z + g(t;β)|t,x)dz

] ∣∣∣
β=β0

(use z = y − g(t;β))

=

∫
R
L′(z) · ∂

∂y
fY |T,X(z + g(t;β0)|t,x)dz ·m(t;β0)

=

∫
R
L′(y − g(t;β)) · ∂

∂y
fY |T,X(y|t,x)dy ·m(t;β0)
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=

∫
R
L′(y − g(t;β)) ·

∂
∂y
fY |T,X(y|t,x)

fY |T,X(y|t,x)
fY |T,X(y|t,x)dy ·m(t;β0)

=

∫
R
L′(y − g(t;β)) ·

∂
∂y
fY,T,X(y, t,x)

fY,T,X(y, t,x)
fY |T,X(y|t,x)dy ·m(t;β0)

=E

[
L′(Y − g(T ;β0))

∂
∂y
fY,T,X(Y, T,X)

fY,T,X(Y, T,X)

∣∣∣∣T = t,X = x

]
m(t;β0).

40



Table 1: Simulation results on point estimation of intercept β1 under DGP-L1 (β∗1 = 1)

N = 100 N = 500 N = 1000

(K1,K2) Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE (2, 2) 0.002 0.108 0.108 0.001 0.047 0.047 0.002 0.034 0.034

GOE (2, 3) −0.002 0.106 0.106 0.001 0.046 0.046 −0.000 0.034 0.034

GOE (2, 4) 0.009 0.117 0.117 0.008 0.048 0.049 0.009 0.035 0.036

GOE (3, 2) 0.005 0.108 0.109 0.001 0.049 0.049 0.002 0.034 0.034

GOE (3, 3) 0.002 0.119 0.119 0.004 0.049 0.049 0.007 0.035 0.036

GOE (3, 4) 0.010 0.123 0.123 0.012 0.052 0.053 0.017 0.036 0.040

GOE (4, 2) 0.013 0.114 0.115 0.004 0.048 0.048 0.005 0.034 0.034

GOE (4, 3) 0.011 0.127 0.128 0.014 0.051 0.052 0.013 0.038 0.040

GOE (4, 4) 0.020 0.133 0.134 0.017 0.052 0.055 0.019 0.037 0.042

GOE MSE (none) 0.006 0.110 0.110 0.009 0.048 0.049 0.008 0.034 0.035

GOE MSE (add) 0.005 0.105 0.105 0.004 0.047 0.048 0.005 0.034 0.035

GOE MSE (multi) −0.004 0.105 0.105 0.003 0.046 0.046 0.002 0.034 0.034

GOE CV (J = 5) 0.000 0.107 0.107 0.001 0.046 0.046 0.001 0.033 0.033

GOE CV (J = 10) −0.000 0.104 0.104 0.001 0.046 0.046 0.001 0.032 0.032

CBGPS - 0.003 0.144 0.144 0.001 0.065 0.065 0.003 0.047 0.047

DGP-L1: T = 1 + 0.2X1 + ξ and Y = 1 + X1 + T + ε, where X1 ∼ N(0, 1). “GOE” is the proposed generalized

optimization estimator. K1 and K2 are the dimensions of the polynomials of T and X1, respectively. “MSE (none)”

signifies that we pick (K1,K2) that minimizes MSE(K1,K2) = N−1 ∑N
i=1 π̂K(Ti, X1i)(Yi − β̂1 − β̂2Ti)

2. “MSE

(add)” signifies that we pick (K1,K2) that minimizes (1+2(K1 +K2)/N)×MSE(K1,K2). “MSE (multi)” signifies

that we pick (K1,K2) that minimizes (1 + 2K1K2/N) ×MSE(K1,K2). “CV” signifies that we pick (K1,K2) that

minimizes the loss function of the J-folder cross validation with J ∈ {5, 10}. The choice set of (K1,K2) is the nine pairs

listed in the table. “CBGPS” is Fong, Hazlett, and Imai’s (2018) parametric covariate balancing generalized propensity

score estimator. The number of Monte Carlo iterations is M = 1000.
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Table 2: Simulation results on point estimation of slope β2 under DGP-L1 (β∗2 = 1)

N = 100 N = 500 N = 1000

(K1,K2) Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE (2, 2) −0.002 0.185 0.185 −0.000 0.081 0.081 −0.001 0.056 0.056

GOE (2, 3) 0.010 0.178 0.178 −0.001 0.080 0.080 0.004 0.057 0.057

GOE (2, 4) −0.000 0.196 0.196 −0.005 0.083 0.083 −0.001 0.057 0.057

GOE (3, 2) −0.002 0.185 0.185 −0.001 0.081 0.081 0.002 0.057 0.057

GOE (3, 3) −0.001 0.190 0.190 0.000 0.080 0.080 −0.003 0.057 0.057

GOE (3, 4) −0.007 0.201 0.201 −0.011 0.085 0.086 −0.011 0.060 0.061

GOE (4, 2) −0.005 0.184 0.185 −0.002 0.080 0.080 −0.000 0.055 0.055

GOE (4, 3) −0.007 0.205 0.205 −0.006 0.083 0.084 −0.011 0.060 0.061

GOE (4, 4) −0.020 0.207 0.208 −0.012 0.084 0.084 −0.013 0.062 0.064

GOE MSE (none) 0.002 0.171 0.171 −0.008 0.079 0.080 −0.006 0.057 0.058

GOE MSE (add) −0.013 0.169 0.170 −0.005 0.076 0.076 −0.002 0.057 0.057

GOE MSE (multi) 0.003 0.165 0.165 −0.001 0.079 0.079 −0.003 0.056 0.056

GOE CV (J = 5) 0.006 0.191 0.191 0.004 0.080 0.080 0.001 0.058 0.058

GOE CV (J = 10) 0.005 0.182 0.182 0.001 0.079 0.079 0.001 0.057 0.057

CBGPS - −0.002 0.102 0.103 −0.002 0.045 0.046 −0.002 0.032 0.032

DGP-L1: T = 1 + 0.2X1 + ξ and Y = 1 + X1 + T + ε, where X1 ∼ N(0, 1). “GOE” is the proposed generalized

optimization estimator. K1 and K2 are the dimensions of the polynomials of T and X1, respectively. “MSE (none)”

signifies that we pick (K1,K2) that minimizes MSE(K1,K2) = N−1 ∑N
i=1 π̂K(Ti, X1i)(Yi − β̂1 − β̂2Ti)

2. “MSE

(add)” signifies that we pick (K1,K2) that minimizes (1+2(K1 +K2)/N)×MSE(K1,K2). “MSE (multi)” signifies

that we pick (K1,K2) that minimizes (1 + 2K1K2/N) ×MSE(K1,K2). “CV” signifies that we pick (K1,K2) that

minimizes the loss function of the J-folder cross validation with J ∈ {5, 10}. The choice set of (K1,K2) is the nine pairs

listed in the table. “CBGPS” is Fong, Hazlett, and Imai’s (2018) parametric covariate balancing generalized propensity

score estimator. The number of Monte Carlo iterations is M = 1000.
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Table 3: Simulation results on point estimation of intercept β1 under DGP-NL1 (β∗1 = 1)

N = 100 N = 500 N = 1000

(K1,K2) Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE (2, 2) 0.180 0.179 0.254 0.195 0.084 0.213 0.192 0.058 0.201

GOE (2, 3) −0.002 0.106 0.106 −0.001 0.045 0.045 0.002 0.032 0.032

GOE (2, 4) 0.012 0.118 0.118 0.005 0.047 0.048 0.006 0.034 0.034

GOE (3, 2) 0.170 0.183 0.250 0.191 0.082 0.208 0.192 0.057 0.201

GOE (3, 3) 0.010 0.131 0.131 0.007 0.048 0.048 0.006 0.034 0.035

GOE (3, 4) 0.013 0.132 0.133 0.010 0.051 0.052 0.011 0.037 0.039

GOE (4, 2) 0.176 0.187 0.257 0.188 0.086 0.206 0.192 0.058 0.201

GOE (4, 3) 0.019 0.136 0.138 0.015 0.053 0.055 0.011 0.036 0.037

GOE (4, 4) 0.024 0.139 0.141 0.016 0.055 0.058 0.017 0.037 0.040

GOE MSE (none) 0.006 0.132 0.132 0.012 0.055 0.056 0.011 0.041 0.043

GOE MSE (add) 0.001 0.123 0.123 0.015 0.059 0.061 0.010 0.043 0.044

GOE MSE (multi) 0.021 0.135 0.137 0.015 0.060 0.062 0.012 0.045 0.047

GOE CV (J = 5) 0.089 0.166 0.188 0.053 0.091 0.105 0.039 0.076 0.086

GOE CV (J = 10) 0.075 0.152 0.170 0.052 0.089 0.103 0.038 0.075 0.084

CBGPS - −0.035 0.234 0.237 −0.024 0.076 0.080 −0.022 0.052 0.057

DGP-NL1: T = 0.1X2
1 +ξ and Y = X2

1 +T+ε, whereX1 ∼ N(0, 1). “GOE” is the proposed generalized optimization

estimator. K1 and K2 are the dimensions of the polynomials of T and X1, respectively. “MSE (none)” signifies that we

pick (K1,K2) that minimizes MSE(K1,K2) = N−1 ∑N
i=1 π̂K(Ti, X1i)(Yi − β̂1 − β̂2Ti)

2. “MSE (add)” signifies

that we pick (K1,K2) that minimizes (1 + 2(K1 +K2)/N) ×MSE(K1,K2). “MSE (multi)” signifies that we pick

(K1,K2) that minimizes (1 + 2K1K2/N) ×MSE(K1,K2). “CV” signifies that we pick (K1,K2) that minimizes

the loss function of the J-folder cross validation with J ∈ {5, 10}. The choice set of (K1,K2) is the nine pairs listed

in the table. “CBGPS” is Fong, Hazlett, and Imai’s (2018) parametric covariate balancing generalized propensity score

estimator. The number of Monte Carlo iterations is M = 1000.
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Table 4: Simulation results on point estimation of slope β2 under DGP-NL1 (β∗2 = 1)

N = 100 N = 500 N = 1000

(K1,K2) Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE (2, 2) −0.029 0.171 0.174 −0.020 0.075 0.078 −0.021 0.055 0.059

GOE (2, 3) 0.001 0.175 0.175 −0.003 0.074 0.074 −0.000 0.054 0.054

GOE (2, 4) −0.004 0.177 0.177 −0.001 0.080 0.080 −0.000 0.057 0.057

GOE (3, 2) −0.042 0.168 0.173 −0.021 0.075 0.077 −0.021 0.054 0.058

GOE (3, 3) −0.017 0.186 0.187 −0.001 0.081 0.081 0.002 0.056 0.056

GOE (3, 4) −0.025 0.180 0.182 −0.004 0.080 0.080 −0.000 0.058 0.058

GOE (4, 2) −0.063 0.170 0.181 −0.028 0.076 0.081 −0.023 0.053 0.058

GOE (4, 3) −0.015 0.197 0.197 −0.002 0.087 0.087 0.001 0.058 0.058

GOE (4, 4) −0.044 0.187 0.192 −0.011 0.081 0.082 −0.003 0.058 0.058

GOE MSE (none) −0.061 0.175 0.185 −0.021 0.078 0.081 −0.013 0.057 0.058

GOE MSE (add) −0.075 0.164 0.180 −0.021 0.079 0.081 −0.015 0.054 0.056

GOE MSE (multi) −0.057 0.171 0.181 −0.017 0.077 0.079 −0.013 0.055 0.056

GOE CV (J = 5) −0.035 0.174 0.177 −0.010 0.079 0.079 −0.006 0.055 0.056

GOE CV (J = 10) −0.026 0.171 0.173 −0.013 0.077 0.078 −0.006 0.055 0.055

CBGPS - 0.189 0.186 0.266 0.190 0.080 0.206 0.195 0.055 0.203

DGP-NL1: T = 0.1X2
1 +ξ and Y = X2

1 +T+ε, whereX1 ∼ N(0, 1). “GOE” is the proposed generalized optimization

estimator. K1 and K2 are the dimensions of the polynomials of T and X1, respectively. “MSE (none)” signifies that we

pick (K1,K2) that minimizes MSE(K1,K2) = N−1 ∑N
i=1 π̂K(Ti, X1i)(Yi − β̂1 − β̂2Ti)

2. “MSE (add)” signifies

that we pick (K1,K2) that minimizes (1 + 2(K1 +K2)/N) ×MSE(K1,K2). “MSE (multi)” signifies that we pick

(K1,K2) that minimizes (1 + 2K1K2/N) ×MSE(K1,K2). “CV” signifies that we pick (K1,K2) that minimizes

the loss function of the J-folder cross validation with J ∈ {5, 10}. The choice set of (K1,K2) is the nine pairs listed

in the table. “CBGPS” is Fong, Hazlett, and Imai’s (2018) parametric covariate balancing generalized propensity score

estimator. The number of Monte Carlo iterations is M = 1000.
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Table 5: Simulation results on point estimation of intercept β1 under DGP-L2 (β∗1 = 1)

N = 100 N = 500 N = 1000

(K1,K2) Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE (2, 3) 0.003 0.108 0.108 0.002 0.050 0.050 0.001 0.034 0.034

GOE (2, 6) 0.030 0.125 0.129 0.026 0.051 0.058 0.025 0.038 0.045

GOE (2, 10) 0.045 0.131 0.138 0.042 0.052 0.067 0.040 0.037 0.055

GOE (3, 3) 0.015 0.116 0.117 0.020 0.052 0.056 0.015 0.036 0.040

GOE (3, 6) 0.029 0.129 0.132 0.031 0.056 0.064 0.030 0.041 0.050

GOE (3, 10) 0.041 0.142 0.148 0.036 0.056 0.066 0.035 0.039 0.053

GOE (4, 3) 0.024 0.126 0.128 0.024 0.051 0.057 0.022 0.038 0.044

GOE (4, 6) 0.034 0.137 0.141 0.037 0.057 0.067 0.037 0.038 0.053

GOE (4, 10) 0.039 0.153 0.158 0.028 0.055 0.062 0.031 0.039 0.049

GOE MSE (none) 0.030 0.110 0.114 0.024 0.050 0.056 0.021 0.037 0.042

GOE MSE (add) 0.015 0.105 0.106 0.017 0.049 0.052 0.017 0.036 0.039

GOE MSE (multi) 0.005 0.107 0.107 0.005 0.050 0.050 0.010 0.035 0.037

GOE CV (J = 5) 0.010 0.106 0.106 0.006 0.050 0.050 0.005 0.036 0.036

GOE CV (J = 10) 0.011 0.107 0.107 0.003 0.047 0.047 0.005 0.034 0.034

CBGPS - −0.003 0.156 0.156 0.003 0.070 0.070 −0.001 0.049 0.049

DGP-L2: T = 1 + 0.2
∑2

j=1Xj + ξ and Y = 1 + (1/2)
∑2

j=1Xj + T + ε, where X1, X2
i.i.d.∼ N(0, 1).

“GOE” is the proposed generalized optimization estimator. K1 and K2 are the dimensions of the polynomi-

als of T and X = (X1, X2)
>, respectively. “MSE (none)” signifies that we pick (K1,K2) that minimizes

MSE(K1,K2) = N−1 ∑N
i=1 π̂K(Ti,Xi)(Yi − β̂1 − β̂2Ti)

2. “MSE (add)” signifies that we pick (K1,K2) that

minimizes (1 + 2(K1 + K2)/N) ×MSE(K1,K2). “MSE (multi)” signifies that we pick (K1,K2) that minimizes

(1 + 2K1K2/N) ×MSE(K1,K2). “CV” signifies that we pick (K1,K2) that minimizes the loss function of the J-

folder cross validation with J ∈ {5, 10}. The choice set of (K1,K2) is the nine pairs listed in the table. “CBGPS” is

Fong, Hazlett, and Imai’s (2018) parametric covariate balancing generalized propensity score estimator. The number of

Monte Carlo iterations is M = 1000.
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Table 6: Simulation results on point estimation of slope β2 under DGP-L2 (β∗2 = 1)

N = 100 N = 500 N = 1000

(K1,K2) Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE (2, 3) −0.004 0.163 0.163 −0.003 0.075 0.075 0.003 0.053 0.053

GOE (2, 6) −0.019 0.178 0.179 −0.013 0.078 0.079 −0.010 0.056 0.057

GOE (2, 10) −0.036 0.196 0.199 −0.031 0.076 0.082 −0.030 0.056 0.064

GOE (3, 3) −0.005 0.178 0.178 −0.004 0.078 0.079 −0.001 0.054 0.054

GOE (3, 6) −0.038 0.190 0.194 −0.027 0.084 0.088 −0.025 0.060 0.065

GOE (3, 10) −0.036 0.207 0.210 −0.033 0.082 0.088 −0.028 0.058 0.065

GOE (4, 3) −0.014 0.188 0.188 −0.006 0.081 0.081 −0.007 0.058 0.058

GOE (4, 6) −0.037 0.202 0.205 −0.034 0.082 0.089 −0.028 0.058 0.065

GOE (4, 10) −0.026 0.213 0.215 −0.025 0.083 0.086 −0.027 0.058 0.065

GOE MSE (none) −0.028 0.162 0.165 −0.019 0.072 0.075 −0.014 0.052 0.054

GOE MSE (add) −0.009 0.160 0.161 −0.014 0.072 0.073 −0.010 0.052 0.053

GOE MSE (multi) −0.006 0.163 0.163 −0.002 0.073 0.073 −0.006 0.052 0.052

GOE CV (J = 5) 0.003 0.161 0.161 0.001 0.075 0.075 0.001 0.052 0.052

GOE CV (J = 10) 0.003 0.164 0.164 −0.001 0.071 0.071 −0.002 0.053 0.053

CBGPS - −0.003 0.114 0.114 −0.001 0.050 0.050 −0.001 0.036 0.036

DGP-L2: T = 1 + 0.2
∑2

j=1Xj + ξ and Y = 1 + (1/2)
∑2

j=1Xj + T + ε, where X1, X2
i.i.d.∼ N(0, 1).

“GOE” is the proposed generalized optimization estimator. K1 and K2 are the dimensions of the polynomi-

als of T and X = (X1, X2)
>, respectively. “MSE (none)” signifies that we pick (K1,K2) that minimizes

MSE(K1,K2) = N−1 ∑N
i=1 π̂K(Ti,Xi)(Yi − β̂1 − β̂2Ti)

2. “MSE (add)” signifies that we pick (K1,K2) that

minimizes (1 + 2(K1 + K2)/N) ×MSE(K1,K2). “MSE (multi)” signifies that we pick (K1,K2) that minimizes

(1 + 2K1K2/N) ×MSE(K1,K2). “CV” signifies that we pick (K1,K2) that minimizes the loss function of the J-

folder cross validation with J ∈ {5, 10}. The choice set of (K1,K2) is the nine pairs listed in the table. “CBGPS” is

Fong, Hazlett, and Imai’s (2018) parametric covariate balancing generalized propensity score estimator. The number of

Monte Carlo iterations is M = 1000.
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Table 7: Simulation results on point estimation of intercept β1 under DGP-NL2 (β∗1 = 1)

N = 100 N = 500 N = 1000

(K1,K2) Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE (2, 3) 0.167 0.127 0.210 0.185 0.059 0.194 0.183 0.042 0.187

GOE (2, 6) 0.027 0.123 0.126 0.023 0.053 0.058 0.025 0.039 0.047

GOE (2, 10) 0.037 0.127 0.132 0.041 0.052 0.066 0.038 0.038 0.053

GOE (3, 3) 0.160 0.132 0.208 0.181 0.061 0.190 0.181 0.041 0.186

GOE (3, 6) 0.027 0.126 0.129 0.031 0.051 0.060 0.030 0.039 0.049

GOE (3, 10) 0.033 0.140 0.144 0.034 0.053 0.063 0.035 0.038 0.051

GOE (4, 3) 0.162 0.136 0.212 0.178 0.061 0.188 0.181 0.042 0.185

GOE (4, 6) 0.031 0.132 0.136 0.034 0.054 0.064 0.036 0.039 0.053

GOE (4, 10) 0.039 0.139 0.144 0.028 0.054 0.060 0.032 0.039 0.050

GOE MSE (none) 0.019 0.121 0.123 0.027 0.052 0.059 0.028 0.036 0.046

GOE MSE (add) 0.034 0.121 0.126 0.029 0.051 0.058 0.028 0.037 0.046

GOE MSE (multi) 0.078 0.117 0.141 0.038 0.057 0.069 0.028 0.040 0.049

GOE CV (J = 5) 0.109 0.127 0.168 0.064 0.073 0.096 0.046 0.053 0.070

GOE CV (J = 10) 0.105 0.127 0.165 0.061 0.071 0.094 0.042 0.051 0.066

CBGPS - −0.042 0.129 0.136 −0.040 0.054 0.068 −0.036 0.038 0.053

DGP-NL2: T = 0.1(
∑2

j=1Xj)
2 + ξ and Y = 1/2 + [(1/2)

∑2
j=1Xj ]

2 + T + ε, where X1, X2
i.i.d.∼

N(0, 1). “GOE” is the proposed generalized optimization estimator. K1 and K2 are the dimensions of the poly-

nomials of T and X = (X1, X2)
>, respectively. “MSE (none)” signifies that we pick (K1,K2) that minimizes

MSE(K1,K2) = N−1 ∑N
i=1 π̂K(Ti,Xi)(Yi − β̂1 − β̂2Ti)

2. “MSE (add)” signifies that we pick (K1,K2) that

minimizes (1 + 2(K1 + K2)/N) ×MSE(K1,K2). “MSE (multi)” signifies that we pick (K1,K2) that minimizes

(1 + 2K1K2/N) ×MSE(K1,K2). “CV” signifies that we pick (K1,K2) that minimizes the loss function of the J-

folder cross validation with J ∈ {5, 10}. The choice set of (K1,K2) is the nine pairs listed in the table. “CBGPS” is

Fong, Hazlett, and Imai’s (2018) parametric covariate balancing generalized propensity score estimator. The number of

Monte Carlo iterations is M = 1000.
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Table 8: Simulation results on point estimation of slope β2 under DGP-NL2 (β∗2 = 1)

N = 100 N = 500 N = 1000

(K1,K2) Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE (2, 3) −0.037 0.125 0.130 −0.036 0.054 0.065 −0.036 0.037 0.052

GOE (2, 6) −0.008 0.141 0.141 0.005 0.062 0.062 0.007 0.045 0.045

GOE (2, 10) −0.022 0.136 0.138 −0.007 0.059 0.060 −0.007 0.043 0.044

GOE (3, 3) −0.045 0.123 0.131 −0.036 0.052 0.063 −0.037 0.037 0.052

GOE (3, 6) −0.031 0.132 0.135 −0.012 0.060 0.061 −0.005 0.045 0.045

GOE (3, 10) −0.031 0.147 0.151 −0.016 0.061 0.063 −0.014 0.043 0.045

GOE (4, 3) −0.049 0.128 0.137 −0.039 0.055 0.068 −0.037 0.038 0.053

GOE (4, 6) −0.032 0.148 0.151 −0.014 0.060 0.061 −0.009 0.044 0.045

GOE (4, 10) −0.046 0.155 0.162 −0.016 0.059 0.061 −0.016 0.044 0.047

GOE MSE (none) −0.056 0.134 0.146 −0.023 0.057 0.061 −0.018 0.042 0.045

GOE MSE (add) −0.044 0.128 0.136 −0.022 0.056 0.060 −0.021 0.041 0.047

GOE MSE (multi) −0.048 0.121 0.130 −0.022 0.054 0.058 −0.017 0.040 0.043

GOE CV (J = 5) −0.027 0.123 0.125 −0.013 0.056 0.058 −0.007 0.043 0.044

GOE CV (J = 10) −0.030 0.125 0.129 −0.013 0.058 0.059 −0.009 0.044 0.044

CBGPS - 0.168 0.139 0.218 0.177 0.058 0.186 0.183 0.041 0.188

DGP-NL2: T = 0.1(
∑2

j=1Xj)
2 + ξ and Y = 1/2 + [(1/2)

∑2
j=1Xj ]

2 + T + ε, where X1, X2
i.i.d.∼

N(0, 1). “GOE” is the proposed generalized optimization estimator. K1 and K2 are the dimensions of the poly-

nomials of T and X = (X1, X2)
>, respectively. “MSE (none)” signifies that we pick (K1,K2) that minimizes

MSE(K1,K2) = N−1 ∑N
i=1 π̂K(Ti,Xi)(Yi − β̂1 − β̂2Ti)

2. “MSE (add)” signifies that we pick (K1,K2) that

minimizes (1 + 2(K1 + K2)/N) ×MSE(K1,K2). “MSE (multi)” signifies that we pick (K1,K2) that minimizes

(1 + 2K1K2/N) ×MSE(K1,K2). “CV” signifies that we pick (K1,K2) that minimizes the loss function of the J-

folder cross validation with J ∈ {5, 10}. The choice set of (K1,K2) is the nine pairs listed in the table. “CBGPS” is

Fong, Hazlett, and Imai’s (2018) parametric covariate balancing generalized propensity score estimator. The number of

Monte Carlo iterations is M = 1000.
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Table 9: Simulation results on variance estimation under DGP-L1

N = 100

V11 (truth: 3.142) V12 (truth: −1.097) V22 (truth: 1.097)

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE 0.172 1.273 1.285 −0.117 0.725 0.735 0.109 0.573 0.584

CBGPS −1.109 1.298 1.707 0.113 0.421 0.436 −0.124 0.365 0.385

N = 500

V11 (truth: 3.142) V12 (truth: −1.097) V22 (truth: 1.097)

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE 0.025 0.458 0.458 −0.021 0.283 0.284 0.037 0.253 0.256

CBGPS −1.043 0.318 1.091 0.038 0.212 0.215 −0.037 0.187 0.190

N = 1000

V11 (truth: 3.142) V12 (truth: −1.097) V22 (truth: 1.097)

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE 0.026 0.333 0.334 −0.007 0.201 0.201 0.018 0.164 0.165

CBGPS −1.013 0.244 1.042 0.013 0.173 0.174 −0.012 0.162 0.162

DGP-L1: T = 1 + 0.2X1 + ξ and Y = 1 + X1 + T + ε, where X1 ∼ N(0, 1). “GOE” is the proposed
generalized optimization estimator. (K1,K2) = (2, 2) is used to compute π̂K(T,X1), which is used to
estimate β. (K ′1,K

′
2,M0,K0) = (3, 3, 3, 5) is used to compute π̂K′(T,X1), which is used to estimate Veff .

“CBGPS” is Fong, Hazlett, and Imai’s (2018) parametric covariate balancing generalized propensity score
estimator. We report the bias, standard deviation, and RMSE of each element of the variance estimator V̂eff
across M = 1000 Monte Carlo samples.
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Table 10: Simulation results on variance estimation under DGP-NL1

N = 100

V11 (truth: 3.043) V12 (truth: −0.118) V22 (truth: 1.074)

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE −0.427 0.812 0.917 0.054 0.582 0.584 0.214 0.615 0.651

CBGPS −0.273 1.149 1.181 0.381 0.713 0.809 1.644 1.252 2.067

N = 500

V11 (truth: 3.043) V12 (truth: −0.118) V22 (truth: 1.074)

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE −0.249 0.439 0.505 0.078 0.260 0.271 0.027 0.188 0.190

CBGPS −0.205 0.338 0.395 0.501 0.387 0.633 2.147 0.885 2.323

N = 1000

V11 (truth: 3.043) V12 (truth: −0.118) V22 (truth: 1.074)

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE −0.235 0.309 0.389 0.071 0.191 0.204 0.005 0.136 0.136

CBGPS −0.205 0.229 0.307 0.507 0.268 0.574 2.172 0.660 2.270

DGP-NL1: T = 0.1X2
1 + ξ and Y = X2

1 + T + ε, where X1 ∼ N(0, 1). “GOE” is the proposed generalized
optimization estimator. (K1,K2) = (2, 3) is used to compute π̂K(T,X1), which is used to estimate β.
(K ′1,K

′
2,M0,K0) = (3, 3, 3, 5) is used to compute π̂K′(T,X1), which is used to estimate Veff . “CBGPS”

is Fong, Hazlett, and Imai’s (2018) parametric covariate balancing generalized propensity score estimator.
We report the bias, standard deviation, and RMSE of each element of the variance estimator V̂eff across
M = 1000 Monte Carlo samples.
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Table 11: Simulation results on variance estimation under DGP-L2

N = 100

V11 (truth: 2.840) V12 (truth: −1.236) V22 (truth: 1.236)

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE −0.098 1.016 1.021 0.037 0.619 0.620 0.002 0.544 0.544

CBGPS 0.091 16.173 16.173 −0.159 7.307 7.308 −0.039 3.464 3.464

N = 500

V11 (truth: 2.840) V12 (truth: −1.236) V22 (truth: 1.236)

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE −0.096 0.533 0.541 0.035 0.346 0.348 −0.021 0.300 0.301

CBGPS −0.652 0.429 0.780 0.124 0.296 0.320 −0.122 0.259 0.287

N = 1000

V11 (truth: 2.840) V12 (truth: −1.236) V22 (truth: 1.236)

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE −0.098 0.429 0.440 0.029 0.285 0.287 −0.012 0.240 0.241

CBGPS −0.582 0.423 0.720 0.072 0.283 0.292 −0.071 0.271 0.280

DGP-L2: T = 1 + 0.2
∑2

j=1Xj + ξ and Y = 1 + (1/2)
∑2

j=1Xj + T + ε, where X1, X2
i.i.d.∼ N(0, 1).

“GOE” is the proposed generalized optimization estimator. (K1,K2) = (2, 3) is used to compute π̂K(T,X),
which is used to estimate β. (K ′1,K

′
2,M0,K0) = (3, 3, 6, 8) is used to compute π̂K′(T,X), which is used

to estimate Veff . “CBGPS” is Fong, Hazlett, and Imai’s (2018) parametric covariate balancing generalized
propensity score estimator. We report the bias, standard deviation, and RMSE of each element of the variance
estimator V̂eff across M = 1000 Monte Carlo samples.
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Table 12: Simulation results on variance estimation under DGP-NL2

N = 100

V11 (truth: 1.867) V12 (truth: −0.476) V22 (truth: 1.458)

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE −0.104 0.602 0.610 0.309 0.474 0.566 −0.056 0.730 0.732

CBGPS −0.499 0.284 0.574 0.410 0.272 0.492 −0.104 0.496 0.507

N = 500

V11 (truth: 1.867) V12 (truth: −0.476) V22 (truth: 1.458)

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE −0.058 0.326 0.331 0.132 0.304 0.331 0.048 0.466 0.468

CBGPS −0.426 1.294 1.363 0.434 0.175 0.468 0.155 0.643 0.662

N = 1000

V11 (truth: 1.867) V12 (truth: −0.476) V22 (truth: 1.458)

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE −0.015 0.301 0.301 0.085 0.288 0.300 0.094 0.376 0.388

CBGPS −0.467 0.134 0.486 0.438 0.123 0.455 0.185 0.307 0.358

DGP-NL2: T = 0.1(
∑2

j=1Xj)
2 +ξ and Y = 1/2+[(1/2)

∑2
j=1Xj ]

2 +T +ε, whereX1, X2
i.i.d.∼ N(0, 1).

“GOE” is the proposed generalized optimization estimator. (K1,K2) = (2, 6) is used to compute π̂K(T,X),
which is used to estimate β. (K ′1,K

′
2,M0,K0) = (2, 10, 3, 4) is used to compute π̂K′(T,X), which is used

to estimate Veff . “CBGPS” is Fong, Hazlett, and Imai’s (2018) parametric covariate balancing generalized
propensity score estimator. We report the bias, standard deviation, and RMSE of each element of the variance
estimator V̂eff across M = 1000 Monte Carlo samples.

52



Table 13: Empirical results of Fong, Hazlett, and Imai’s (2018) CBGPS approach

Covariates Parameter of Ti Parameter of T 2
i

Case #1 Zi = [Ti, T
2
i , 1]>

0.088

(0.456)

[−0.804, 0.981]

−8.5× 10−6

(2.3× 10−5)

[−5.4× 10−5, 3.7× 10−5]

Case #2 Zi = [Ti, T
2
i ,SD

>
i ]>

1.333

(0.444)

[0.462, 2.204]

−8.6× 10−5

(2.0× 10−5)

[−1.3× 10−4,−4.6× 10−5]

Case #3 Zi = [Ti, T
2
i , 1,X

>
1i]
>

−0.545

(0.423)

[−1.373, 0.284]

−2.2× 10−5

(2.2× 10−5)

[−6.6× 10−5, 2.1× 10−5]

Case #4 Zi = [Ti, T
2
i ,SD

>
i ,X

>
1i]
>

−0.216

(0.422)

[−1.044, 0.611]

2.7× 10−5

(2.1× 10−5)

[−1.4× 10−5, 6.8× 10−5]

X1i is a vector of eight covariates used in the generalized propensity score model (cf. Eq. (10.1)). SDi =

[SD1i, SD2i, . . . , SD24i]
>, where SDji is a binary indicator that equals 1 if zip code i belongs to state j and

equals 0 otherwise. Any zip code contained in the dataset belongs to one and only one of 24 states. In this table we

report the CBGPS estimates for the parameters of Ti and T 2
i as well as their standard errors in round brackets and

95% confidence bands in square brackets.
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Table 14: Empirical results of the generalized optimization approach

β1 β2 β3

Point estimate 22.09 −4.7× 10−4 1.5× 10−8

Standard error 1.214 0.001 4.3× 10−8

95% confidence band [19.71, 24.47] [−0.002, 0.001] [−7.0× 10−8, 1.0× 10−7]

The link function is g(T,β) = β1 + β2T + β3T
2. Covariates X are defined in Eq. (10.2).
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Figure 1: Share of (K1, K2) selected under DGP-L1 (MSE criteria)
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DGP-L1: T = 1+X1+ξ and Y = 1+X1+T+ε. K1 andK2 are the dimensions of the polynomials of T andX1, respec-

tively. “No penalty” signifies that we pick (K1,K2) that minimizes MSE(K1,K2) = N−1 ∑N
i=1 π̂K(Ti, X1i)(Yi −

β̂1 − β̂2Ti)
2. “Additive” signifies that we pick (K1,K2) that minimizes (1 + 2(K1 + K2)/N) × MSE(K1,K2).

“Multiplicative” signifies that we pick (K1,K2) that minimizes (1 + 2K1K2/N) ×MSE(K1,K2). In this figure we

plot the empirical probability of selecting each pair across M = 1000 Monte Carlo samples. The choice set of (K1,K2)

is the nine pairs put on the horizontal axis.
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Figure 2: Share of (K1, K2) selected under DGP-L1 (J-folder cross validation)
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DGP-L1: T = 1 +X1 + ξ and Y = 1 +X1 + T + ε. K1 and K2 are the dimensions of the polynomials of T and X1,

respectively. We pick (K1,K2) that minimizes the loss function of the J-folder cross validation with J ∈ {5, 10}. In

this figure we plot the empirical probability of selecting each pair across M = 1000 Monte Carlo samples. The choice

set of (K1,K2) is the nine pairs put on the horizontal axis.
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Figure 3: Share of (K1, K2) selected under DGP-NL1 (MSE criteria)
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DGP-NL1: T = X2
1 + ξ and Y = X2

1 + T + ε. K1 and K2 are the dimensions of the polynomials of T and X1, respec-

tively. “No penalty” signifies that we pick (K1,K2) that minimizes MSE(K1,K2) = N−1 ∑N
i=1 π̂K(Ti, X1i)(Yi −

β̂1 − β̂2Ti)
2. “Additive” signifies that we pick (K1,K2) that minimizes (1 + 2(K1 + K2)/N) × MSE(K1,K2).

“Multiplicative” signifies that we pick (K1,K2) that minimizes (1 + 2K1K2/N) ×MSE(K1,K2). In this figure we

plot the empirical probability of selecting each pair across M = 1000 Monte Carlo samples. The choice set of (K1,K2)

is the nine pairs put on the horizontal axis.
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Figure 4: Share of (K1, K2) selected under DGP-NL1 (J-folder cross validation)
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DGP-NL1: T = X2
1 + ξ and Y = X2

1 + T + ε. K1 and K2 are the dimensions of the polynomials of T and X1,

respectively. We pick (K1,K2) that minimizes the loss function of the J-folder cross validation with J ∈ {5, 10}. In

this figure we plot the empirical probability of selecting each pair across M = 1000 Monte Carlo samples. The choice

set of (K1,K2) is the nine pairs put on the horizontal axis.
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Figure 5: Share of (K1, K2) selected under DGP-L2 (MSE criteria)
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DGP-L2: T = 1 + (1/2)
∑2

j=1Xj + ξ and Y = 1 + (1/2)
∑2

j=1Xj + T + ε. K1 and K2 are the dimensions

of the polynomials of T and X = (X1, X2)
>, respectively. “No penalty” signifies that we pick (K1,K2) that min-

imizes MSE(K1,K2) = N−1 ∑N
i=1 π̂K(Ti,Xi)(Yi − β̂1 − β̂2Ti)

2. “Additive” signifies that we pick (K1,K2)

that minimizes (1 + 2(K1 + K2)/N) ×MSE(K1,K2). “Multiplicative” signifies that we pick (K1,K2) that min-

imizes (1 + 2K1K2/N)×MSE(K1,K2). In this figure we plot the empirical probability of selecting each pair across

M = 1000 Monte Carlo samples. The choice set of (K1,K2) is the nine pairs put on the horizontal axis.
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Figure 6: Share of (K1, K2) selected under DGP-L2 (J-folder cross validation)
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DGP-L2: T = 1 + (1/2)
∑2

j=1Xj + ξ and Y = 1 + (1/2)
∑2

j=1Xj + T + ε. K1 and K2 are the dimensions of the

polynomials of T andX = (X1, X2)
>, respectively. We pick (K1,K2) that minimizes the loss function of the J-folder

cross validation with J ∈ {5, 10}. In this figure we plot the empirical probability of selecting each pair acrossM = 1000

Monte Carlo samples. The choice set of (K1,K2) is the nine pairs put on the horizontal axis.
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Figure 7: Share of (K1, K2) selected under DGP-NL2 (MSE criteria)
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DGP-NL2: T = 1/2 + ((1/2)
∑2

j=1Xj)
2 + ξ and Y = 1/2 + ((1/2)

∑2
j=1Xj)

2 + T + ε. K1 and K2 are the

dimensions of the polynomials of T and X = (X1, X2)
>, respectively. “No penalty” signifies that we pick (K1,K2)

that minimizesMSE(K1,K2) = N−1 ∑N
i=1 π̂K(Ti,Xi)(Yi−β̂1−β̂2Ti)

2. “Additive” signifies that we pick (K1,K2)

that minimizes (1+2(K1+K2)/N)×MSE(K1,K2). “Multiplicative” signifies that we pick (K1,K2) that minimizes

(1 + 2K1K2/N) ×MSE(K1,K2). In this figure we plot the empirical probability of selecting each pair across M =

1000 Monte Carlo samples. The choice set of (K1,K2) is the nine pairs put on the horizontal axis.
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Figure 8: Share of (K1, K2) selected under DGP-NL2 (J-folder cross validation)
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DGP-NL2: T = 1/2+((1/2)
∑2

j=1Xj)
2+ξ and Y = 1/2+((1/2)

∑2
j=1Xj)

2+T+ε. K1 andK2 are the dimensions

of the polynomials of T and X = (X1, X2)
>, respectively. We pick (K1,K2) that minimizes the loss function of the

J-folder cross validation with J ∈ {5, 10}. In this figure we plot the empirical probability of selecting each pair across

M = 1000 Monte Carlo samples. The choice set of (K1,K2) is the nine pairs put on the horizontal axis.

62



Figure 9: Empirical distributions of political advertisements

1. Original T 2. Box-Cox 3. Box-Cox & Std.

In this figure we draw histograms of the treatment variable studied in Fong, Hazlett, and Imai (2018) (i.e. the
number of political advertisements aired in each zip code). Panel 1 plots the original treatment T ; Panel 2
plots T ′, namely the treatment after running the Box-Cox transformation with λ = −0.16; Panel 3 plots T ∗,
namely the standardized version of T ′. For each histogram, the sum of the heights of bars is normalized to 1
so that the vertical axis is associated with empirical probability.

63



Supplemental Material for
“A Unified Framework for Efficient Estimation of

General Treatment Models ”

Chunrong Ai∗– University of Florida
Oliver Linton†– University of Cambridge

Kaiji Motegi‡– Kobe University
Zheng Zhang§– Renmin University of China

This draft: March 18, 2019

∗Department of Economics, University of Florida. E-mail: chunrong.ai@warrington.ufl.edu
†Faculty of Economics, University of Cambridge. E-mail: obl20@cam.ac.uk
‡Graduate School of Economics, Kobe University. E-mail: motegi@econ.kobe-u.ac.jp
§Institute of Statistics and Big Data, Renmin University of China. E-mail: zhengzhang@ruc.edu.cn

1



Contents

1 Assumptions 3

2 Efficiency Bound 4

2.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Particular Case I: Binary Average Treatment Effects . . . . . . . . . . . . . . . . 8

2.3 Particular Case II: Multiple Average Treatment Effects . . . . . . . . . . . . . . . 11

2.4 Particular Case III: Binary Quantile Treatment Effects . . . . . . . . . . . . . . . 14

3 Convergence Rate of Estimated Stabilized Weights 16

3.1 Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Lemma 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Corollary 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Efficient Estimation 33

4.1 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Proof of (36) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Some Extensions 45

5.1 Proof of Theorem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Proof of Theorem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Variance Estimation in Monte Carlo Simulations 56

6.1 Proposed Variance Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 True Values of Veff in Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . 57

6.2.1 DGP-L1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.2 DGP-NL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2



1 Assumptions
Assumption 1.1 (Unconfounded Treatment Assignment) For all t ∈ T , given X , T is

independent of Y ∗(t), i.e., Y ∗(t) ⊥ T |X, for all t ∈ T .

Assumption 1.2 The support X of X is a compact subset of Rr. The support T of the treatment

variable T is a compact subset of R.

Assumption 1.3 There exist two positive constants η1 and η2 such that

0 < η1 ≤ π0(t,x) ≤ η2 <∞ , ∀(t,x) ∈ T × X .

Assumption 1.4 There exist ΛK1×K2 ∈ RK1×K2 and a positive constant α > 0 such that

sup
(t,x)∈T ×X

∣∣(ρ′−1 (π0(t,x))− uK1(t)
⊤ΛK1×K2vK2(x)

∣∣ = O(K−α).

Assumption 1.5 For every K1 and K2, the smallest eigenvalues of E
[
uK1(T )uK1(T )

⊤] and

E
[
vK2(X)vK2(X)⊤

]
are bounded away from zero uniformly in K1 and K2.

Assumption 1.6 There are two sequences of constants ζ1(K1) and ζ2(K2) satisfying

supt∈T ∥uK1(t)∥ ≤ ζ1(K1) and supx∈X ∥vK2(x)∥ ≤ ζ2(K2), K = K1(N)K2(N) and ζ(K) =

ζ1(K1)ζ2(K2), such that ζ(K)K−α → 0 and ζ(K)
√
K/N → 0 as N → ∞.

Assumption 1.7 The parameter space Θ ⊂ Rp is a compact set and the true parameter β0 is in

the interior of Θ , where p ∈ N.

Assumption 1.8 There exists a unique solution β0 for the optimization problem

min
β∈Θ

∫
T
E [L(Y ∗(t)− g(t;β))] dFT (t) .

Assumption 1.9 E
[
supβ∈Θ |L (Y − g(T ;β)) |2

]
<∞.

Assumption 1.10 The following conditions hold true:

1. g(t;β) is twice continuously differentiable in β ∈ Θ;

2. L(Y − g(T ;β)) is differentiable in β with probability one, i.e., for any directional vector

η ∈ Rp, there exists an integrable random variable L′(Y − g(T ;β)) such that

P
(
lim
ϵ→0

L(Y − g(T ; β + ϵη))− L(Y − g(T ;β))

ϵ
= L′(Y − g(T ;β)) · ⟨m(T ;β),η⟩Rp

)
= 1,
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where ⟨·, ·⟩Rp is the inner product in Euclidean space Rp;

3. E [L′(Y − g(T ;β0))
2] <∞.

Assumption 1.11 Suppose that

1

N

N∑
i=1

π̂K(Ti,X i)L
′
(
Yi − g(Ti; β̂)

)
m(Ti; β̂) = oP (N

−1/2)

holds with probability approaching one.

Assumption 1.12 E [π0(T,X)L′(Y − g(T ;β))m(T ;β)] is differentiable with respect to β and

H0 := −∇βE [π0(T,X)L′(Y − g(T ;β))m(T ;β)]
∣∣∣
β=β0

is nonsingular.

Assumption 1.13 ε(t,x;β0) := E[L′(Y − g(T ;β0))|T = t,X = x] is continuously differentiable

in (t,x).

Assumption 1.14

1. E
[
supβ∈Θ |L′(Y − g(T ;β))2+δ

]
<∞ for some δ > 0;

2. The function class {L′(y − g(t;β)) : β ∈ Θ} satisfies:

E

[
sup

β1:∥β1−β∥<δ

|L′(Y − g(T ;β1))− L′(Y − g(T ;β))|2
]1/2

≤ a · δb

for any ∀β ∈ Θ and any small δ > 0 and for some finite positive constants a and b.

Assumption 1.15 ζ(K)
√
K4/N → 0 and

√
NK−α → 0 as N → ∞.

2 Efficiency Bound

2.1 Proof of Theorem 1

Without loss of generality, we only consider the distribution of (T,X, Y ) to be absolutely

continuous with respect to Lebesgue measure, i.e., there exists a density function fT,X,Y (t,x, y)

such that dFT,X,Y (t,x, y) = fT,X,Y (t,x, y)dtdxdy. For discrete cases, the proof can be established

by using a similar argument.
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We follow the approach of Bickel, Klaassen, Ritov, and Wellner (1993, Section 3.3) to derive

the variance bound of β0, see also Tchetgen Tchetgen and Shpitser (2012). Let
{
fα
Y,T,X(y, t,x)

}
α∈R

denote a one dimensional regular parametric submodel with fα=0
Y,T,X(y, t,x) = fY,T,X(y, t,x). By

definition, β0 solves following equation:∫
T
E [m(t;β0)L

′ (Y ∗(t)− g (t;β0))] fT (t)dt = 0 . (1)

By Assumption 1.1, (1) is equivalent to∫
T

∫
X
E [m(T ;β0)L

′ (Y − g (T ;β0)) |T = t,X = x] fX(x)fT (t)dxdt = 0 .

Therefore, the parameter β(α) induced by the submodel fα
Y,T,X(y, t,x) satisfies:∫

T

∫
X
m(t;β(α)) · Eα [L′ (Y − g (t;β(α))) |T = t,X = x] fα

T (t)f
α
X(x)dxdt = 0 , (2)

where Eα [·|T = t,X = x] denotes taking expectation with respect to the submodel fα
Y |T,X(·|t,x).

Differentiating both sides of (2) with respect to α, evaluating at α = 0 and using the condition

Y ∗(t) ⊥ T |X, we can deduce that

0 =

∫
T

∫
X

∂

∂α

∣∣∣∣
α=0

{m(t;β(α))Eα [L′(Y − g(t;β(α)))|T = t,X = x] fα
T (t)f

α
X(x)} dxdt

=

∫
T

∫
X
E [L′(Y − g(t;β0))|T = t,X = x] fT (t)fX(x)∇βm(t;β0)dxdt ·

∂

∂α

∣∣∣∣
α=0

β(α)

+

∫
X×T

E[L′(Y − g(t;β0))|T = t,X = x]m(t;β0) ·
∂

∂α
fα
X(x)

∣∣∣∣
α=0

fT (t)dxdt

+

∫
Y×X×T

m(t;β0)L
′(y − g(t;β0)) ·

∂

∂α
fα
Y |T,X(y|t,x)

∣∣∣∣
α=0

fX(x)fT (t)dydxdt

+

∫
X×T

m(t;β0) · ∇βE[L′(Y ∗(t)− g(t;β))|T = t,X = x]

∣∣∣∣∣
β=β0

· ∂
∂α

∣∣∣∣
α=0

β(α) · fT (t)fX(x)dxdt

+

∫
X×T

E[L′(Y − g(t;β0))|T = t,X = x]m(t;β0) ·
∂

∂α
fα
T (t)

∣∣∣∣
α=0

fX(x)dxdt

=

∫
T

∫
X
E [L′(Y ∗(t)− g(t;β0))|X = x] fT (t)fX(x)∇βm(t;β0)dxdt ·

∂

∂α

∣∣∣∣
α=0

β(α)

+

∫
X×T

E[L′(Y − g(t;β0))|T = t,X = x]m(t;β0) ·
∂

∂α
fα
X(x)

∣∣∣∣
α=0

fT (t)dxdt
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+

∫
Y×X×T

m(t;β0)L
′(y − g(t;β0)) ·

∂

∂α
fα
Y |T,X(y|t,x)

∣∣∣∣
α=0

fX(x)fT (t)dydxdt

+

∫
X×T

m(t;β0) · ∇βE[L′(Y ∗(t)− g(t;β))|X = x]

∣∣∣∣∣
β=β0

· fT (t)fX(x)dxdt ·
∂

∂α

∣∣∣∣
α=0

β(α)

+

∫
X×T

E[L′(Y − g(t;β0))|T = t,X = x]m(t;β0) ·
∂

∂α
fα
T (t)

∣∣∣∣
α=0

fX(x)dxdt

=

∫
T
E[L′(Y ∗(t)− g(t;β0))] · fT (t)∇βm(t;β0)dt ·

∂

∂α

∣∣∣∣
α=0

β(α)

+

∫
X×T

E[L′(Y − g(t;β0))|T = t,X = x]m(t;β0) ·
∂

∂α
fα
X(x)

∣∣∣∣
α=0

fT (t)dxdt

+

∫
Y×X×T

m(t;β0) · L′(y − g(t;β0)) ·
∂

∂α
fα
Y |T,X(y|t,x)

∣∣∣∣
α=0

fX(x)fT (t)dydxdt

+

∫
T
∇βE[L′(Y ∗(t)− g(t;β))]

∣∣∣∣
β=β0

m(t;β0) · fT (t)dt ·
∂

∂α

∣∣∣∣
α=0

β(α)

+

∫
X×T

E[L′(Y − g(t;β0))|T = t,X = x]m(t;β0) ·
∂

∂α
fα
T (t)

∣∣∣∣
α=0

fX(x)dxdt

=∇β

{∫
T
E[L′(Y ∗(t)− g(t;β))] ·m(t;β)fT (t)dt

} ∣∣∣∣∣
β=β0

· ∂
∂α

∣∣∣∣
α=0

β(α)

+

∫
X×T

E[L′(Y − g(t;β0))|T = t,X = x]m(t;β0) ·
∂

∂α
fα
X(x)

∣∣∣∣
α=0

fT (t)dxdt

+

∫
Y×X×T

m(t;β0) · L′(y − g(t;β0)) ·
∂

∂α
fα
Y |T,X(y|t,x)

∣∣∣∣
α=0

fX(x)fT (t)dydxdt

+

∫
X×T

E[L′(Y − g(t;β0))|T = t,X = x]m(t;β0) ·
∂

∂α
fα
T (t)

∣∣∣∣
α=0

fX(x)dxdt.

Since H0 = −∇β

{∫
T E[L′(Y ∗(t)− g(t;β))] ·m(t;β)fT (t)dt

} ∣∣∣∣∣
β=β0

is invertible by Assumption

1.9, we get

∂

∂α

∣∣∣∣
α=0

β(α) = H−1
0 ·

{∫
X×T

E[L′(Y − g(t;β0))|T = t,X = x]m(t;β0) ·
∂

∂α
fα
X(x)

∣∣∣∣
α=0

fT (t)dxdt

+

∫
Y×X×T

m(t;β0) · L′(y − g(t;β0)) ·
∂

∂α
fα
Y |T,X(y|t,x)

∣∣∣∣
α=0

fX(x)fT (t)dydxdt

+

∫
X×T

E[L′(Y − g(t;β0))|T = t,X = x]m(t;β0) ·
∂

∂α
fα
T (t)

∣∣∣∣
α=0

fX(x)dxdt

}
.

The efficient influence function of β0, denoted by Seff (Y, T,X;β0), is a unique function satisfying
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the following equation:

∂

∂α

∣∣∣∣
α=0

β(α) = E
[
Seff (Y, T,X;β0)

∂

∂α

∣∣∣∣
α=0

log fα
Y,X,T (Y,X, T )

]
. (3)

Therefore, to justify our theorem, it suffices to substitute Seff (Y, T,X;β0) = H−1
0 ψ(Y, T,X;β0)

into (3) and check the validity. Note that

E
[
Seff (Y, T,X;β0)

∂

∂α

∣∣∣∣
α=0

log fα
Y,X,T (Y,X, T )

]
=H−1

0

∫
X×T ×Y

ψ(y, t,x;β0)
∂

∂α

∣∣∣∣
α=0

fα
Y |X,T (y|x, t)fT,X(t,x)dydxdt (4)

+H−1
0

∫
X×T ×Y

ψ(y, t,x;β0)fY |X,T (y|x, t)
∂

∂α

∣∣∣∣
α=0

fα
T |X(t|x)fX(x)dydxdt (5)

+H−1
0

∫
X×T ×Y

ψ(y, t,x;β0)fY |X,T (y|x, t)fT |X(t|x)
∂

∂α

∣∣∣∣
α=0

fα
X(x)dydxdt. (6)

For the term (4), we have

(4) =H−1
0

∫
X×T ×Y

{
fT (t)

fT |X(t|x)
m(t;β0) · L′(y − g(t;β0))−

fT (t)

fT |X(t|x)
m(t;β0) · ε(t,x;β0)

+ E [ε(T,X;β0)π0(T,X)m(T ;β0)|X = x] + E [ε(T,X;β0)π0(T,X)m(T ;β0)|T = t]

}
× ∂

∂α

∣∣∣∣
α=0

fα
Y |X,T (y|x, t)fT,X(t,x)dydxdt

=H−1
0

∫
X×T ×Y

fT (t)

fT |X(t|x)
m(t;β0) · L′(y − g(t;β0)) ·

∂

∂α

∣∣∣∣
α=0

fα
Y |X,T (y|x, t)fT,X(t,x)dydxdt

=H−1
0

∫
X×T ×Y

m(t;β0) · L′(y − g(t;β0)) ·
∂

∂α

∣∣∣∣
α=0

fα
Y |X,T (y|x, t)fT (t)fX(x)dydxdt.

For the term (5), we have

(5) =H−1
0

∫
X×T ×Y

{
fT (t)

fT |X(t|x)
m(t;β0) · L′(y − g(t;β0))−

fT (t)

fT |X(t|x)
m(t;β0) · ε(t,x;β0)

+ E [ε(T,X;β0)π0(T,X)m(T ;β0)|X = x] + E [ε(T,X;β0)π0(T,X)m(T ;β0)|T = t]

}
× fY |X,T (y|x, t)

∂

∂α

∣∣∣∣
α=0

fα
T |X(t|x)fX(x)dydxdt

=H−1
0

∫
X×T

{
E [ε(T,X;β0)π0(T,X)m(T ;β0)|X = x] + E [ε(T,X;β0)π0(T,X)m(T ;β0)|T = t]

}
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· ∂
∂α

∣∣∣∣
α=0

fα
T |X(t|x)fX(x)dxdt

=H−1
0

∫
X×T

E [ε(T,X;β0)π0(T,X)m(T ;β0)|T = t] · ∂
∂α

∣∣∣∣
α=0

fα
T |X(t|x)fX(x)dxdt

=H−1
0

∫
X×T

E [ε(T,X;β0)π0(T,X)m(T ;β0)|T = t] · ∂
∂α

∣∣∣∣
α=0

fα
T (t)dt

=H−1
0

∫
X×T

ε(t,x;β0)
fT (t)

fT |X(t|x)
m(t;β0) ·

∂

∂α

∣∣∣∣
α=0

fα
T (t) · fX|T (x|t)dxdt

=H−1
0

∫
X×T

ε(t,x;β0)m(t;β0) ·
∂

∂α

∣∣∣∣
α=0

fα
T (t) · fX(x)dxdt,

where the first equality holds in accordance with the definition of
∫
Y L

′(y−g(t;β0))fY |X,T (y|x, t)dy =:

ε(t,x;β0).

For the term (6), we have

(6) =H−1
0

∫
X×T ×Y

{
fT (t)

fT |X(t|x)
m(t;β0) · L′(y − g(t;β0))−

fT (t)

fT |X(t|x)
m(t;β0) · ε(t,x;β0)

+ E [ε(T,X;β0)π0(T,X)m(T ;β0)|X = x] + E [ε(T,X;β0)π0(T,X)m(T ;β0)|T = t]

}
× fY |X,T (y|x, t)fT |X(t|x)

∂

∂α

∣∣∣∣
α=0

fα
X(x)dydxdt

=H−1
0

∫
X×T

{
E [ε(T,X;β0)π0(T,X)m(T ;β0)|X = x] + E [ε(T,X;β0)π0(T,X)m(T ;β0)|T = t]

}
× fT |X(t|x) ·

∂

∂α

∣∣∣∣
α=0

fα
X(x)dxdt

=H−1
0

∫
X×T

E [ε(T,X;β0)π0(T,X)m(T ;β0)|X = x] · fT |X(t|x) ·
∂

∂α

∣∣∣∣
α=0

fα
X(x)dxdt

=H−1
0

∫
X
E [ε(T,X;β0)π0(T,X)m(T ;β0)|X = x] · ∂

∂α

∣∣∣∣
α=0

fα
X(x)dx

=H−1
0

∫
X×T

ε(t,x;β0)m(t;β0) · fT (t) ·
∂

∂α

∣∣∣∣
α=0

fα
X(x)dxdt.

We have proved (3) holds, hence Seff is the efficient influence function of β0.

2.2 Particular Case I: Binary Average Treatment Effects

In this section, we show that when T ∈ {0, 1}, g(t;β) = β0 + β1 · t and L(v) = v2, our general

efficiency bound derived in Theorem 3.1 reduces to the well-known efficiency bound for average

treatment effects in Robins, Rotnitzky, and Zhao (1994) and Hahn (1998). In accordance with
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our identification condition, β0 and β1 are identified by minimizing the following loss function

∑
t∈{0,1}

E[(Y ∗(t)− β0 − β1 · t)2] · P(T = t).

The solutions are given by

β0 = E[Y ∗(0)], β1 = E[Y ∗(1)− Y ∗(0)].

Here β1 is the average treatment effects.

Corollary 2.1 Suppose T ∈ {0, 1}, L(v) = v2, g(t;β) = β0+β1 · t and the conditions in Theorem

3.1 hold, the efficient influence functions of β0 and β1 given by Theorem 3.1 reduce to

Seff (T,X, Y ; β0) = ϕ2(T,X, Y ; β0),

Seff (T,X, Y ; β1, β0) = ϕ2(T,X, Y ; β0)− ϕ1(T,X, Y ; β1, β0),

where

ϕ1(T,X, Y ;β) =
T

P(T = 1|X)
· Y ∗(1)−

{
T

P(T = 1|X)
− 1

}
· E[Y ∗(1)|X]− β0 − β1,

ϕ2(T,X, Y ;β) =
1− T

P(T = 0|X)
· Y ∗(0)−

{
1− T

P(T = 0|X)
− 1

}
· E[Y ∗(0)|X]− β0,

and they are the same as the efficient influence functions given in Robins, Rotnitzky, and Zhao

(1994) and Hahn (1998).

Proof. Using our notation, we have

β0 = (β0, β1)
⊤ , g(t;β0) = β0 + β1 · t, m(t;β0) =

[
1

t

]
, H0 = E

[
m(T ;β0)m(T ;β0)

⊤] ,
ε(T,X;β0) = T · {E[Y ∗(1)− Y ∗(0)|X]− β1}+ E[Y ∗(0)|X]− β0,

π0(T,X) =
T · p+ (1− T ) · q

T · P(T = 1|X) + T · P(T = 0|X)
=

T

P(T = 1|X)
· p+ 1− T

P(T = 0|X)
· q,

where p = P(T = 1) and q = P(T = 0). In accordance with our Theorem 3.1, the efficient

influence function of (β0, β1) is

H−1
0

{
π0(T,X)m(T ;β0) {Y − E[Y |X, T ]}+ E [ε(T,X;β0)π0(T,X)m(T ;β0)|X]

}
.

9



With some computation, we have

H−1
0 =

[
1 p

p p

]−1

=
1

pq
·

[
p −p
−p 1

]
=

[
1
q

−1
q

−1
q

1
pq

]
. (7)

and

π0(T,X)m(T ;β0) {Y − E[Y |X, T ]}

=
T

P(T = 1|X)
· p ·

[
1

T

]
·
{
Y − T · E[Y ∗(1)|X]− (1− T ) · E[Y ∗(0)|X]

}

+
1− T

P(T = 0|X)
· q ·

[
1

T

]
·
{
Y − T · E[Y ∗(1)|X]− (1− T ) · E[Y ∗(0)|X]

}

=
T

P(T = 1|X)
· p ·

[
1

1

]
·
{
Y ∗(1)− E[Y ∗(1)|X]

}
+

1− T

P(T = 0|X)
· q ·

[
1

0

]
·
{
Y ∗(0)− E[Y ∗(0)|X]

}

=

 T
P(T=1|X)

· {Y ∗(1)− E[Y ∗(1)|X]} · p+ 1−T
P(T=0|X)

· {Y ∗(0)− E[Y ∗(0)|X]} · q

T
P(T=1|X)

· {Y ∗(1)− E[Y ∗(1)|X]} · p

 (8)

and

E [ε(T,X;β0)π0(T,X)m(T ;β0)|X]

=E

[(
T · {E[Y ∗(1)− Y ∗(0)|X]− β1}+ E[Y ∗(0)|X]− β0

)
· T

P(T = 1|X)
· p ·

[
1

T

] ∣∣∣∣X
]

+ E

[(
T · {E[Y ∗(1)− Y ∗(0)|X]− β1}+ E[Y ∗(0)|X]− β0

)
· 1− T

P(T = 0|X)
· q ·

[
1

T

] ∣∣∣∣X
]

=E

[(
E[Y ∗(1)|X]− β1 − β0

)
· T

P(T = 1|X)
· p ·

[
1

1

] ∣∣∣∣X
]

+ E

[(
E[Y ∗(0)|X]− β0

)
· 1− T

P(T = 0|X)
· q ·

[
1

0

] ∣∣∣∣X
]

=


(
E[Y ∗(1)|X]− β1 − β0

)
· p+

(
E[Y ∗(0)|X]− β1

)
· q(

E[Y ∗(1)|X]− β1 − β0

)
· p

 . (9)

10



Therefore, with (7), (8), and (9) we can obtain that

π0(T,X)m(T ;β0) {Y − E[Y |X, T ]}+ E [ε(T,X;β0)π0(T,X)m(T ;β0)|X]

=

p · ϕ1(T,X, Y ;β0) + q · ϕ2(T,X, Y ;β0)

p · ϕ1(T,X, Y ;β0)

 ,

and the efficient influence functions of β1 and β2 are given by

[
1
q

−1
q

−1
q

1
pq

]
·

p · ϕ1(T,X, Y ;β) + q · ϕ2(T,X, Y ;β)

p · ϕ1(T,X, Y ;β)

 =

 ϕ2(T,X, Y ;β)

ϕ1(T,X, Y ;β)− ϕ2(T,X, Y ;β) .

 .

2.3 Particular Case II: Multiple Average Treatment Effects

In this section, we show that when T ∈ {0, 1, ..., J}, J ∈ N, g(t;β) =
∑J

j=0 βj · I(t = j)

and L(v) = v2, our general efficiency bound derived in Theorem 3.1 reduces to the efficiency

bound of multi-level treatment effects given in Cattaneo (2010). In accordance with our proposed

identification condition, {βj}Jj=0 are identified by minimizing the following loss function

J∑
j=0

E
[
(Y ∗(j)− βj)

2
]
· P(T = j).

The solutions are βj = E[Y ∗(j)] for j ∈ {0, ..., J}.

Corollary 2.2 Suppose T ∈ {0, 1, ..., J}, J ∈ N, g(t;β) =
∑J

j=0 βj · I(t = j), L(v) = v2, and the

conditions in Theorem 3.1 hold, the efficient influence functions of {βj}Jj=0 given by Theorem 3.1

reduce to

Seff (T,X, Y ; βj) =
I(T = j)

P(T = j|X)
· {Y ∗(j)− E[Y ∗(j)|X]}+ E[Y ∗(j)|X]− βj, j ∈ {0, ..., J},

and they are the same as the efficient influence functions given in Cattaneo (2010).
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Proof. Using our notation, we have

β0 = (β0, ..., βJ)
⊤, g(t;β0) =

J∑
j=0

βj · I(t = j), m(t;β0) =


I(t = 0)

I(t = 1)
...

I(t = J)

 , H0 = E
[
m(T ;β0)m(T ;β0)

⊤] .

Then

ε(T,X;β0) =E[Y |T,X]− g(T ;β0)

=
J∑

j=0

E[Y ∗(j)|X] · I(t = j)−
J∑

j=0

βj · I(T = j)

=
J∑

j=0

(E[Y ∗(j)|X]− βj) · I(T = j)

and

π0(T,X) =
J∑

j=0

I(T = j)

P(T = j|X)
· pj, where pj = P(T = j).

Then we have

H−1
0 = E

[
m(T ;β0)m(T ;β0)

⊤]−1
=


p−1
0

p−1
1

· · ·
p−1
J

 ,

and

π0(T,X)m(T ;β0) {Y − E[Y |X, T ]}

=

{
J∑

j=0

I(T = j)

P(T = j|X)
· pj

}
·


I(T = 0)

I(T = 1)
...

I(T = J)

 ·
{
Y −

J∑
j=0

I(T = j) · E[Y ∗(j)|X]

}
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=


I(T = 0)

I(T = 1)
...

I(T = J)


{

J∑
j=0

I(T = j)

P(T = j|X)
· pj · Y ∗(j)−

J∑
j=0

I(T = j)

P(T = j|X)
· pj · E[Y ∗(j)|X]

}

=



I(T=0)
P(T=0|X)

· p0 · {Y ∗(0)− E[Y ∗(0)|X]}
I(T=1)

P(T=1|X)
· p1 · {Y ∗(1)− E[Y ∗(1)|X]}

...

I(T=J)
P(T=J |X)

· pJ · {Y ∗(j)− E[Y ∗(j)|X]}

 (10)

and

ε(T,X;β0)π0(T,X)m(T ;β0)

=

{
J∑

j=0

(E[Y ∗(j)|X]− βj) · I(T = j)

}{
J∑

j=0

I(T = j)

P(T = j|X)
· pj

}
I(T = 0)

I(T = 1)
...

I(T = J)



=


I(T=0)

P(T=0|X)
· p0 · {E[Y ∗(0)|X]− β0}

I(T=1)
P(T=1|X)

· p1 · {E[Y ∗(1)|X]− β1}
...

I(T=J)
P(T=J |X)

· pJ · {E[Y ∗(j)|X]− βJ}


and

E [ε(T,X;β0)π0(T,X)m(T ;β0)|X] =


p0 · {E[Y ∗(0)|X]− β0}

p1 · {E[Y ∗(1)|X]− β1}
...

pJ · {E[Y ∗(j)|X]− βJ}

 . (11)

From Theorem 3.1, the efficient influence function of β0 = (β0, ..., βJ) is given by

H−1
0 {π0(T,X)m(T ;β0) {Y − E[Y |X, T ]}+ E [ε(T,X;β0)π0(T,X)m(T ;β0)|X]}
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=



I(T=0)
P(T=0|X)

· {Y ∗(0)− E[Y ∗(0)|X]}+ E[Y ∗(0)|X]− β0

I(T=1)
P(T=1|X)

· {Y ∗(1)− E[Y ∗(1)|X]}+ E[Y ∗(1)|X]− β1
...

I(T=J)
P(T=J |X)

· {Y ∗(j)− E[Y ∗(j)|X]}+ E[Y ∗(j)|X]− βJ

 ,

which is the same as the efficient influence function developed in Corollary 1 of Cattaneo (2010).

2.4 Particular Case III: Binary Quantile Treatment Effects

In this section, we show that when T ∈ {0, 1} is a binary treatment variable, L(v) = v(τ−I(v ≤
0)) is the check function with τ ∈ (0, 1), and g(t;β0) = β0 · (1 − t) + β1 · t, where β0 = (β0, β1),

our general efficiency bound derived in Theorem 3.1 reduces to the efficiency bound of quantile

treatment effects given in Firpo (2007). In accordance with our identification condition, β0 and

β1 are identified by minimizing the following loss function

∑
j∈{0,1}

P(T = j) · E [(Y ∗(j)− βj) {τ − I(Y ∗(j) ≤ βj)}] .

The solutions are β0 = inf{q : P(Y ∗(0) ≤ q) ≥ τ} and β1 = inf{q : P(Y ∗(1) ≤ q) ≥ τ}, which are

the τ th quantiles of potential outcomes.

Corollary 2.3 Let T ∈ {0, 1}, fY ∗(1) and fY ∗(0) be the probability densities of the potential out-

comes Y ∗(1) and Y ∗(0) respectively, g(t;β0) = β0 · (1 − t) + β1 · t, L(v) = v(τ − I(v ≤ 0)), and

the conditions in Theorem 3.1 hold, then the efficient influence function of β0 given by Theorem

3.1 reduces to

Seff (Y, T,X;β0) =

 1−T
P(T=0|X)

·
{

τ−I(Y ∗(0)≤β0)
fY ∗(0)(β0)

}
−
(

1−T
P(T=0|X)

− 1
)
· E
[
τ−I(Y ∗(0)≤β0)

fY ∗(0)(β0)

∣∣X]
T

P(T=1|X)
·
{

τ−I(Y ∗(1)≤β1)
fY ∗(1)(β1)

}
−
(

T
P(T=1|X)

− 1
)
· E
[
τ−I(Y ∗(1)≤β1)

fY ∗(1)(β1)

∣∣X]
 ,

which is the same as the efficient influence function given in Firpo (2007).

Proof. Using our notation, we have

β0 = (β0, β1)
⊤, g(t;β0) = β0 · (1− t) + β1 · t, m(t;β0) =

[
1− t

t

]
,

L(v) = v(τ − I(v ≤ 0)), L′(v) = τ − I(v ≤ 0) a.s.,
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ε(T,X;β0) = T · E[τ − I(Y ∗(1) ≤ β1)|X] + (1− T ) · E[τ − I(Y ∗(0) ≤ β0)|X],

π0(T,X) =
T

P(T = 1|X)
· p+ 1− T

P(T = 0|X)
· q , p = P(T = 1), q = P(T = 0).

Direct computation yields

π0(T,X)m(T ;β0)L
′(Y − g(T ;β0))

=

{
T

P(T = 1|X)
· p+ 1− T

P(T = 0|X)
· q
}
·

[
1− T

T

]
·
{
τ − I(Y ≤ β0 · (1− T ) + β1 · T )

}

=

 1−T
P(T=0|X)

· q · {τ − I(Y ∗(0) ≤ β0)}
T

P(T=1|X)
· p · {τ − I(Y ∗(1) ≤ β1)}


and

π0(T,X)m(T ;β0)ε(T,X;β0) =

 1−T
P(T=0|X)

· q · E [τ − I(Y ∗(0) ≤ β0)|X]

T
P(T=1|X)

· p · E [τ − I(Y ∗(1) ≤ β1)|X]


and

E [π0(T,X)m(T ;β0)ε(T,X;β0)|X] =

q · E [τ − I(Y ∗(0) ≤ β0)|X]

p · E [τ − I(Y ∗(1) ≤ β1)|X]


and

H0 =∇βE [π0(T,X)m(T ;β)L′(Y − g(T ;β))] =

[
−q · fY ∗(0)(β0) 0

0 −p · fY ∗(1)(β1)

]
.

Therefore, by Theorem 3.1, the efficient influence function of β0 is

Seff (Y, T,X;β0)

=H−1
0 ·

{
π0(T,X)m(T ;β0)L

′(Y − g(T ;β0))− π0(T,X)m(T ;β0)ε(T,X;β0)

+ E [ε(T,X;β0)π0(T,X)m(T ;β0)|X]

}

=

q−1 · 1
fY ∗(0)(β0)

0

0 p−1 · 1
fY ∗(1)(β1)
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×

 1−T
P(T=0|X)

· q · {τ − I(Y ∗(0) ≤ β0)} − q ·
(

1−T
P(T=0|X)

− 1
)
· E [τ − I(Y ∗(0) ≤ β0)|X]

T
P(T=1|X)

· p · {τ − I(Y ∗(1) ≤ β1)} − p ·
(

T
P(T=1|X)

− 1
)
· E [τ − I(Y ∗(1) ≤ β1)|X]



=


1−T

P(T=0|X)
·
{

τ−I(Y ∗(0)≤β0)
fY ∗(0)(β0)

}
−
(

1−T
P(T=0|X)

− 1
)
· E
[
τ−I(Y ∗(0)≤β0)

fY ∗(0)(β0)

∣∣∣∣X]
T

P(T=1|X)
·
{

τ−I(Y ∗(1)≤β1)
fY ∗(1)(β1)

}
−
(

T
P(T=1|X)

− 1
)
· E
[
τ−I(Y ∗(1)≤β1)

fY ∗(1)(β1)

∣∣∣∣X]
 ,

which coincides with efficiency bound derived in Firpo (2007).

3 Convergence Rate of Estimated Stabilized Weights
In this section, we establish the convergence rate of estimated stabilized weights π̂K(T,X).

Let G∗
K1×K2

, Λ∗
K1×K2

and π∗
K(t,x) be the theoretical counterparts of ĜK1×K2 , Λ̂K1×K2 and π̂K(t,x)

respectively:

G∗
K1×K2

(Λ) :=E[ĜK1×K2(Λ)] = E
[
ρ
(
uK1(T )

⊤ΛvK2(X)
)]

− E[uK1(T )
⊤] · Λ · E[vK2(X)],

Λ∗
K1×K2

:= argmaxG∗
K1×K2

(Λ),

π∗
K(t,x) :=ρ

′ (uK1(t)
⊤Λ∗

K1×K2
vK2(x)

)
.

As discussed in Appendix A.3, we assume the sieve bases uK1(T ) and vK2(X) are orthonormalized,

i.e.,

E
[
uK1(T )u

⊤
K1
(T )
]
= IK1×K1 , E

[
vK2(X)v⊤K2

(X)
]
= IK2×K2 . (12)

Let

ζ1(K1) := sup
t∈T

∥uK1(t)∥ , ζ2(K2) := sup
x∈X

∥vK2(x)∥ , K = K1 ·K2 , ζ(K) = ζ1(K1)ζ2(K2).

We also recall the following property satisfied by π0(T,X): for any integrable functions u(t) and

v(X),

E [π0(T,X)u(T )v(X)] = E[u(T )] · E[v(X)]. (13)

3.1 Lemma 3.1

The first lemma states that π∗
K(t,x) is arbitrarily close to the true stabilized weights π0(t,x).
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Lemma 3.1 Under Assumption 1.2-1.6, we have

sup
(t,x)∈T ×X

|π0(t,x)− π∗
K(t,x)| = O

(
K−αζ(K)

)
,

and

E
[
|π0(T,X)− π∗

K(T,X)|2
]
= O

(
K−2α

)
,

and
1

N

N∑
i=1

|π0(Ti,X i)− π∗
K(Ti,X i)|2 = Op

(
K−2α

)
.

Proof. By Assumption 1.3, π0(t,x) ∈ [η1, η2], ∀(t,x) ∈ T × X and (ρ′)−1 is strictly decreasing.

Define

γ := sup
(t,x)∈T ×X

(ρ′)−1 (π0(t,x)) ≤ (ρ′)−1(η1) and γ := inf
(t,x)∈T ×X

(ρ′)−1 (π0(t,x)) ≥ (ρ′)−1(η2),

which are two finite constants. By Assumptions 1.4, there exist a constant C > 0 and a K1 ×K2

matrix ΛK1×K2 ∈ RK1×K2 such that

sup
(t,x)∈T ×X

∣∣(ρ′)−1 (π0(t,x))− uK1(t)
⊤ΛK1×K2vK2(x)

∣∣ < CK−α,

which implies

uK1(t)
⊤ΛK1×K2vK2(x) ∈

(
(ρ′)−1 (π0(t,x))− CK−α, (ρ′)−1 (π0(t,x)) + CK−α

)
(14)

⊂
[
γ − CK−α, γ + CK−α

]
, ∀(t,x) ∈ T × X ,

and

ρ′
(
uK1(t)

⊤ΛK1×K2vK2(x) + CK−α
)
− ρ′(uK1(t)

⊤ΛK1×K2vK2(X))

<π0(t,x)− ρ′
(
uK1(t)

⊤ΛK1×K2vK2(x)
)

<ρ′
(
uK1(t)

⊤ΛK1×K2vK2(x)− CK−α
)
− ρ′(uK1(t)

⊤ΛK1×K2vK2(x)) , ∀(t,x) ∈ T × X .

Let Γ1 := [γ − 1, γ + 1], by Mean Value Theorem, for large enough K, there exist

ξ1(t,x) ∈
(
uK1(t)

⊤ΛK1×K2vK2(x), uK1(t)
⊤ΛK1×K2vK2(x) + CK−α

)
⊂
[
γ − CK−α, γ + 2CK−α

]
⊂ Γ1 ,
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ξ2(t,x) ∈
(
uK1(t)

⊤ΛK1×K2vK2(x)− CK−α, uK1(t)
⊤ΛK1×K2vK2(x)

)
⊂
[
γ − 2CK−α, γ + CK−α

]
⊂ Γ1,

such that

ρ′
(
uK1(t)

⊤ΛK1×K2vK2(x) + CK−α
)
− ρ′

(
uK1(t)

⊤ΛK1×K2vK2(x)
)
= ρ′′(ξ1(t, x))CK

−α ≥ −a1CK−α

and

ρ′
(
uK1(t)

⊤ΛK1×K2vK2(x)− CK−α
)
− ρ′

(
uK1(t)

⊤ΛK1×K2vK2(x)
)
= −ρ′′(ξ2(t,x))CK−α ≤ a2CK

−α,

where −a1 := infγ∈Γ1 ρ
′′(γ) and a2 := supγ∈Γ1

(−ρ′′(γ)). Let a := max{a1, a2}, we have

sup
(t,x)∈T ×X

∣∣π0(t,x)− ρ′
(
uK1(t)

⊤ΛK1×K2vK2(x)
)∣∣ < aCK−α. (15)

For some fixed C2 > 0 (to be chosen later), define

ΥK1×K2 :=
{
Λ ∈ RK1×K2 : ∥Λ− ΛK1×K2∥ ≤ C2K

−α
}
.

For sufficiently large K1 and K2, we have that ∀Λ ∈ ΥK1×K2 , ∀(t,x) ∈ T × X ,

∣∣uK1(t)
⊤ΛvK2(x)− uK1(t)

⊤ΛK1×K2vK2(x)
∣∣

≤∥Λ− ΛK1×K2∥ · sup
x∈X

∥vK2(x)∥ · sup
t∈T

∥uK1(t)∥ ≤ C2K
−αζ1(K1)ζ2(K2).

Then in light of (14) and Assumption 1.15, for large enough K1 and K2, ∀Λ ∈ ΥK1×K2 and

∀(t,x) ∈ T × X , we can deduce that

uK1(t)
⊤ΛvK2(x) ∈

(
uK1(t)

⊤ΛK1×K2vK2(x)− C2K
−αζ1(K1)ζ2(K2), (16)

uK1(t)
⊤ΛK1×K2vK2(x) + C2K

−αζ1(K1)ζ2(K2)
)

⊂
[
γ − CK−α − C2K

−αζ1(K1)ζ2(K2),

γ + CK−α + C2K
−αζ1(K1)ζ2(K2)

]
⊂ Γ1.

By definition

G∗
K1×K2

(Λ) = E
[
ρ
(
uK1(T )

⊤ΛvK2(X)
)]

− E[uK1(T )]
⊤ΛE[vK2(X)],
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is a strictly concave function of Λ. By (13), the formula tr(AB) = tr(BA) for matrices A and B,

the facts E
[
vK2(X)vK2(X)⊤

]
= IK2×K2 and E

[
uK1(T )uK1(T )

⊤] = IK1×K1 , we can deduce that

∥∇G∗
K1×K2

(ΛK1×K2)∥2

=
∥∥E [ρ′ (uK1(T )

⊤ΛK1×K2vK2(X)
)
uK1(T )vK2(X)⊤

]
− E[uK1(T )]E[vK2(X)]⊤

∥∥2
=
∥∥E [ρ′ (uK1(T )

⊤ΛK1×K2vK2(X)
)
uK1(T )vK2(X)⊤

]
− E[π0(T,X)uK1(T )vK2(X)]⊤

∥∥2 (by (13))

=

∥∥∥∥∥E
[√

π0(T,X)

{
ρ′
(
uK1(T )

⊤ΛK1×K2vK2(X)
)
− π0(T,X)

}√
π0(T,X)

uK1(T )vK2(X)⊤

]∥∥∥∥∥
2

=tr

{
E

[√
π0(T,X)

{
ρ′
(
uK1(T )

⊤ΛK1×K2vK2(X)
)
− π0(T,X)

}√
π0(T,X)

uK1(T )vK2(X)⊤

]

× E

[√
π0(T,X)

{
ρ′
(
uK1(T )

⊤ΛK1×K2vK2(X)
)
− π0(T,X)

}√
π0(T,X)

vK2(X)uK1(T )
⊤

]}

=tr

{
E

[√
π0(T,X)

{
ρ′
(
uK1(T )

⊤ΛK1×K2vK2(X)
)
− π0(T,X)

}√
π0(T,X)

uK1(T )vK2(X)⊤

]
· E
[
uK2(X)uK2(X)⊤

]
× E

[√
π0(T,X)

{
ρ′
(
uK1(T )

⊤ΛK1×K2vK2(X)
)
− π0(T,X)

}√
π0(T,X)

vK2(X)uK1(T )
⊤

]
· E
[
uK1(T )uK1(T )

⊤]}

=E

[
tr

{
uK1(T )

⊤ · E

[√
π0(T,X)

{
ρ′
(
uK1(T )

⊤ΛK1×K2vK2(X)
)
− π0(T,X)

}√
π0(T,X)

uK1(T )vK2(X)⊤

]
· E
[
uK2(X)uK2(X)⊤

]
× E

[√
π0(T,X)

{
ρ′
(
uK1(T )

⊤ΛK1×K2vK2(X)
)
− π0(T,X)

}√
π0(T,X)

vK2(X)uK1(T )
⊤

]
· uK1(T )

}]

=E

[
π0(T,X) · uK1(T )

⊤ · E

[√
π0(T,X)

{
ρ′
(
uK1(T )

⊤ΛK1×K2vK2(X)
)
− π0(T,X)

}√
π0(T,X)

uK1(T )vK2(X)⊤

]
· uK2(X)

× ·uK2(X)⊤E

[√
π0(T,X)

{
ρ′
(
uK1(T )

⊤ΛK1×K2vK2(X)
)
− π0(T,X)

}√
π0(T,X)

vK2(X)uK1(T )
⊤

]
· uK1(T )

]
(by (13))

=E

[∣∣∣∣π0(T,X)
1
4uK1(T )E

[√
π0(T,X)

{
ρ′
(
uK1(T )

⊤ΛK1×K2vK2(X)
)
− π0(T,X)

}√
π0(T,X)

uK1(T )vK2(X)⊤

]
π0(T,X)

1
4 vK2(X)

∣∣∣∣2
]
.

(17)

Note that the term in the last expression

π0(T,X)
1
4uK1(T )·E

[√
π0(T,X)

{
ρ′
(
uK1(T )

⊤ΛK1×K2vK2(X)
)
− π0(T,X)

}√
π0(T,X)

uK1(T )vK2(X)⊤

]
π0(T,X)

1
4 vK2(X)

is the L2(dFT,X)-projection of
{ρ′(uK1

(T )⊤ΛK1×K2
vK2

(X))−π0(T,X)}√
π0(T,X)

on the space spanned by {π0(T,X)
1
4uK1(T ),

π0(T,X)
1
4 vK2(X)}, which implies that

E

[∣∣∣∣π0(T,X)
1
4uK1(T )E

[√
π0(T,X)

{
ρ′
(
uK1(T )

⊤ΛK1×K2vK2(X)
)
− π0(T,X)

}√
π0(T,X)

uK1(T )vK2(X)⊤

]
π0(T,X)

1
4 vK2(X)

∣∣∣∣2
]
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≤E

[∣∣∣∣
{
ρ′
(
uK1(T )

⊤ΛK1×K2vK2(X)
)
− π0(T,X)

}√
π0(T,X)

∣∣∣∣2
]
. (18)

Now, with (17), (18), we can obtain that

∥∇G∗
K1×K2

(ΛK1×K2)∥

≤E

[∣∣∣∣
{
ρ′
(
uK1(T )

⊤ΛK1×K2vK2(X)
)
− π0(T,X)

}√
π0(T,X)

∣∣∣∣2
] 1

2

≤ 1
√
η1

sup
(t,x)∈T ×X

∣∣ρ′ (uK1(t)
⊤ΛK1×K2vK2(x)

)
− π0(t,x)

∣∣ (by Assumption 1.3)

≤ aC
√
η1

·K−α (by (15)). (19)

Note that for any Λ ∈ ∂ΥK1×K2 , i.e. ∥Λ− ΛK1×K2∥ = C2K
−α, by Mean Value Theorem and the

fact ρ′′(y) = −ρ′(y), we can deduce that

G∗
K1×K2

(Λ)−G∗
K1×K2

(ΛK1×K2)

=

K2∑
j=1

(λj − λKj )⊤
∂

∂λi
G∗

K1×K2
(λK1 , . . . , λ

K
K2

)

+

K2∑
l=1

K2∑
j=1

1

2
(λj − λKj )⊤

∂2

∂λi∂λl
G∗

K1×K2
(λ̄K1 , . . . , λ̄

K
K2

)(λl − λKl )

≤ ∥Λ− ΛK1×K2∥ ∥∇G∗
K1×K2

(ΛK1×K2)∥

+
1

2

K2∑
l=1

K2∑
j=1

(λj − λKj )⊤E
[
ρ′′
(
u⊤K1

(T )Λ̄K1×K2vK2(X)
)
uK1(T )uK1(T )

⊤vK2,j(X)vK2,l(X)
]
(λl − λKl )

= ∥Λ− ΛK1×K2∥ ∥∇G∗
K1×K2

(ΛK1×K2)∥

− 1

2

K2∑
l=1

K2∑
j=1

(λj − λKj )⊤E

[
ρ′
(
u⊤K1

(T )Λ̄K1×K2vK2(X)
)

π0(T,X)
π0(T,X)uK1(T )uK1(T )

⊤vK2,j(X)vK2,l(X)

]
(λl − λKl )

≤ ∥Λ− ΛK1×K2∥ ∥∇G∗
K1×K2

(ΛK1×K2)∥

− a3
2η2

K2∑
l=1

K2∑
j=1

(λj − λKj )⊤E
[
π0(T,X)uK1(T )uK1(T )

⊤vK2,j(X)vK2,l(X)
]
(λl − λKl ) (by a3 = inf

y∈Γ1

{ρ′(y)})

= ∥Λ− ΛK1×K2∥ ∥∇G∗
K1×K2

(ΛK1×K2)∥

− a3
2η2

K2∑
l=1

K2∑
j=1

(λj − λKj )⊤E
[
uK1(T )uK1(T )

⊤
]
E [vK2,j(X)vK2,l(X)] (λl − λKl ) (by (13))
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= ∥Λ− ΛK1×K2∥ ∥∇G∗
K1×K2

(ΛK1×K2)∥ −
a3
2η2

K2∑
l=1

K2∑
j=1

(λj − λKj )⊤E [vK2,j(X)vK2,l(X)] (λl − λKl )

= ∥Λ− ΛK1×K2∥ ∥∇G∗
K1×K2

(ΛK1×K2)∥ −
a3
2η2

K2∑
j=1

(λj − λKj )⊤(λj − λKj )

= ∥Λ− ΛK1×K2∥ ∥∇G∗
K1×K2

(ΛK1×K2)∥ −
a3
2η2

∥Λ− ΛK1×K2∥
2

= ∥Λ− ΛK1×K2∥
(
∥∇G∗

K1×K2
(ΛK1×K2)∥ −

a3
2η2

∥Λ− ΛK1×K2∥
)

≤ ∥Λ− ΛK1×K2∥
(
aC
√
η1
K−α − a3

2η2
· C2K

−α

)
, (by (19))

where Λ̄K1×K2 = (λ̄K1 , ..., λ̄
K
K2
) lies on the line joining Λ = (λ1, ..., λK2) and ΛK1×K2 = (λK1 , ..., λ

K
K2
),

which implies u⊤K1
(t)Λ̄K1×K2vK2(x) ∈ Γ1 by (16); a3 = infy∈Γ1{ρ′(y)} > 0 is a finite pos-

itive constant; the fourth and fifth equalities follow from E
[
uK1(T )uK1(T )

⊤] = IK1×K1 and

E
[
vK2(X)vK2(X)⊤

]
= IK2×K2 respectively. Therefore, by choosing

C2 >
2η2
a3

· aC√
η1
,

we can obtain the following conclusion:

G∗
K1×K2

(ΛK1×K2) > G∗
K1×K2

(Λ) , ∀Λ ∈ ∂ΥK1×K2 . (20)

Since G∗
K1×K2

is continuous, (20) implies that there exists a local maximum of G∗
K1×K2

in the

interior of ΥK1×K2 . Note that G∗
K1×K2

is strictly concave with a unique global maximum point

Λ∗
K1×K2

, therefore we can claim that

Λ∗
K1×K2

∈ Υ◦
K1×K2

, i.e. ∥Λ∗
K1×K2

− ΛK1×K2∥ = O(K−α) . (21)

By Mean Value Theorem, (16) and (21), we can deduce that

|ρ′ (uK1(t)ΛK1×K2vK2(x))− ρ′
(
uK1(t)Λ

∗
K1×K2

vK2(x)
)
|

=|ρ′′(ξ∗(t,x))|
∣∣uK1(t)ΛK1×K2vK2(x)− uK1(t)Λ

∗
K1×K2

vK2(x)
∣∣

≤− ρ′′(ξ∗(t,x))× ∥ΛK1×K2 − Λ∗
K1×K2

∥ × sup
t∈T

∥uK1(t)∥ × sup
x∈X

∥vK2(x)∥

≤a2C2K
−αζ1(K1)ζ2(K2) ,
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where a2 = supγ∈Γ1
{−ρ′′(γ)} < ∞ is a finite positive constant, and ξ∗(t,x) lies between the

point uK1(t)
⊤Λ∗

K1×K2
vK2(x) and uK1(t)

⊤ΛK1×K2vK2(x) (note (16) implies ξ∗(t,x) ∈ Γ1 for all

(t,x) ∈ T × X and large enough K). Therefore, using the triangle inequality, and Assumption

1.15, we can have

sup
(t,x)∈T ×X

|π0(t,x)− π∗
K(t,x)|

≤ sup
(t,x)∈T ×X

|π0(t,x)− ρ′ (uK1(t)ΛK1×K2vK2(x))|

+ sup
(t,x)∈T ×X

∣∣ρ′ (uK1(t)ΛK1×K2vK2(x))− ρ′
(
uK1(t)Λ

∗
K1×K2

vK2(x)
)∣∣

≤ aCK−α + a2C2K
−αζ1(K1)ζ2(K2) = O

(
K−αζ(K)

)
,

where ζ(K) = ζ1(K1)ζ2(K2).

We next prove E
[
|π0(T,X)− π∗

K(T,X)|2
]
= O (K−2α). By Assumption 1.15, we can deduce

that

E
[
|π0(T,X)− π∗

K(T,X)|2
]

≤2 · E
[
|π0(T,X)− ρ′ (uK1(T )ΛK1×K2vK2(X))|2

]
+ 2 · E

[∣∣ρ′ (uK1(T )Λ
∗
K1×K2

vK2(X)
)
− ρ′ (uK1(T )ΛK1×K2vK2(X))

∣∣2]
≤2 · sup

(t,x)∈T ×X
|π0(t,x)− ρ′ (uK1(t)ΛK1×K2vK2(x))|

2
+ 2 sup

γ∈Γ1

|ρ′′(γ)|2 · E
[∣∣u⊤K1

(T )
{
Λ∗
K1×K2

− ΛK1×K2

}
vK2(X)

∣∣2]
≤O(K−2α) +O(1) · E

[∣∣u⊤K1
(T )

{
Λ∗
K1×K2

− ΛK1×K2

}
vK2(X)

∣∣2] .
We next compute the order of E

[∣∣u⊤K1
(T )

{
Λ∗

K1×K2
− ΛK1×K2

}
vK2(X)

∣∣2]. Note that E[uK1(T )uK1(T )
⊤] =

IK1×K1 , E[vK2(X)vK2(X)⊤] = IK2×K2 , (13), (21) and Assumption 1.3, we can deduce that

E
[∣∣u⊤K1

(T )
{
Λ∗
K1×K2

− ΛK1×K2

}
vK2(X)

∣∣2]
=E

[
u⊤K1

(T )
{
Λ∗
K1×K2

− ΛK1×K2

}
vK2(X)vK2(X)⊤

{
Λ∗
K1×K2

− ΛK1×K2

}⊤
uK1(T )

]
=E

[
1

π0(T,X)
π0(T,X)u⊤K1

(T )
{
Λ∗
K1×K2

− ΛK1×K2

}
vK2(X)vK2(X)⊤

{
Λ∗
K1×K2

− ΛK1×K2

}⊤
uK1(T )

]
≤ 1

η1
· E
[
π0(T,X)u⊤K1

(T )
{
Λ∗
K1×K2

− ΛK1×K2

}
vK2(X)vK2(X)⊤

{
Λ∗
K1×K2

− ΛK1×K2

}⊤
uK1(T )

]
=

1

η1
·
∫
T
u⊤K1

(t)
{
Λ∗
K1×K2

− ΛK1×K2

}
E
[
vK2

(X)vK2
(X)⊤

] {
Λ∗
K1×K2

− ΛK1×K2

}⊤
uK1

(t)dFT (t) (by (13))

=
1

η1
·
∫
T
u⊤K1

(t)
{
Λ∗
K1×K2

− ΛK1×K2

}
·
{
Λ∗
K1×K2

− ΛK1×K2

}⊤
uK1(t)dFT (t)

=
1

η1
·
∫
T
tr

({
Λ∗
K1×K2

− ΛK1×K2

}
·
{
Λ∗
K1×K2

− ΛK1×K2

}⊤
uK1

(t)u⊤K1
(t)

)
dFT (t)
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=
1

η1
· tr

({
Λ∗
K1×K2

− ΛK1×K2

}
·
{
Λ∗
K1×K2

− ΛK1×K2

}⊤)

≤ 1

η1
· ∥Λ∗

K1×K2
− ΛK1×K2∥2 = O(K−2α). (by (21)) (22)

Therefore, we can obtain

E
[
|π0(T,X)− π∗

K(T,X)|2
]
= O

(
K−2α

)
.

We finally prove N−1
∑N

i=1 |π0(Ti,X i)− π∗
K(Ti,X i)|2 = Op (K

−2α). Note that by (22), we can

have

E

{ 1

N

N∑
i=1

∣∣u⊤K1
(Ti)

{
Λ∗
K1×K2

− ΛK1×K2

}
vK2(Xi)

∣∣2 − E
[∣∣u⊤K1

(T )
{
Λ∗
K1×K2

− ΛK1×K2

}
vK2(X)

∣∣2]}2


≤ 1

N
· E
[∣∣u⊤K1

(T )
{
Λ∗
K1×K2

− ΛK1×K2

}
vK2

(X)
∣∣4]

≤ 1

N
· E
[∣∣u⊤K1

(T )
{
Λ∗
K1×K2

− ΛK1×K2

}
vK2(X)

∣∣2] · sup
(t,x)∈T ×X

∣∣u⊤K1
(t)
{
Λ∗
K1×K2

− ΛK1×K2

}
vK2(x)

∣∣2
≤ 1

N
·O(K−2α) · ζ1(K1)

2ζ2(K2)
2 ·
∥∥Λ∗

K1×K2
− ΛK1×K2

∥∥2 ≤ 1

N
· ζ(K)2 ·O(K−4α),

then in light of Chebyshev’s inequality and Assumption 1.6, we have

1

N

N∑
i=1

∣∣u⊤K1
(Ti)

{
Λ∗

K1×K2
− ΛK1×K2

}
vK2(X i)

∣∣2 − E
[∣∣u⊤K1

(T )
{
Λ∗

K1×K2
− ΛK1×K2

}
vK2(X)

∣∣2]
=Op

(
ζ(K)√
N
K−2α

)
= op

(
K−2α

)
. (23)

With (21), (22), (23), and Assumption 1.3, we can deduce that

1

N

N∑
i=1

|π0(Ti,X i)− π∗
K(Ti,X i)|2

≤ 2

N

N∑
i=1

|π0(Ti,X i)− ρ′ (uK1(Ti)ΛK1×K2vK2(X i))|2

+
2

N

N∑
i=1

∣∣ρ′ (uK1(Ti)Λ
∗
K1×K2

vK2(X i)
)
− ρ′ (uK1(Ti)ΛK1×K2vK2(X i))

∣∣2
≤2 sup

(t,x)∈T ×X
|π0(t,x)− ρ′ (uK1(t)ΛK1×K2vK2(x))|

2

+ sup
γ∈Γ1

|ρ′′(γ)|2 · 2

N

N∑
i=1

∣∣u⊤K1
(Ti)

{
Λ∗

K1×K2
− ΛK1×K2

}
vK2(X i)

∣∣2
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≤2 sup
(t,x)∈T ×X

|π0(t,x)− ρ′ (uK1(t)ΛK1×K2vK2(x))|
2

+ 2 · sup
γ∈Γ1

|ρ′′(γ)|2 · E
[∣∣u⊤K1

(T )
{
Λ∗

K1×K2
− ΛK1×K2

}
vK2(X)

∣∣2]+ op
(
K−2α

)
=O(K−2α) +O(K−2α) + op

(
K−2α

)
= Op

(
K−2α

)
. (by (21))

3.2 Lemma 3.2

Lemma 3.2 Under Assumption 1.2-1.6, we have

∥∥∥Λ̂K1×K2 − Λ∗
K1×K2

∥∥∥ = Op

(√
K

N

)
.

Proof. Define

ŜN :=
1

N

N∑
i=1

K2∑
l=1

K2∑
j=1

(λj − λ∗j)
⊤π0(Ti,X i)uK1(Ti)uK1(Ti)

⊤(λl − λ∗l )vK2,j(X i)vK2,l(X i),

where λj and λ
∗
j are the j-th column of Λ and Λ∗

K1×K2
respectively. Since ŜN is symmetric, using

(13) and the facts that E
[
uK1(T )uK1(T )

⊤] = IK1×K1 and E
[
vK2(X)vK2(X)⊤

]
= IK2×K2 , we can

have

E
[
ŜN

]
=

K2∑
l=1

K2∑
j=1

(λj − λ∗j)
⊤E
[
π0(T,X)uK1(T )uK1(T )

⊤vK2,j(X)vK2,l(X)
]
(λl − λ∗l )

=

K2∑
l=1

K2∑
j=1

(λj − λ∗j)
⊤E
[
uK1(T )uK1(T )

⊤]E[vK2,j(X)vK2,l(X)](λl − λ∗l )

=

K2∑
j=1

(λj − λ∗j)
⊤(λj − λ∗j) =

∥∥Λ− Λ∗
K1×K2

∥∥ .
Then we can further deduce that

E
[∣∣∣ŜN −

∥∥Λ− Λ∗
K1×K2

∥∥∣∣∣2]
=E[Ŝ2

N ]− 2E[ŜN ]
∥∥Λ− Λ∗

K1×K2

∥∥+ ∥∥Λ− Λ∗
K1×K2

∥∥2
=
N

N2
· E

( K2∑
l=1

K2∑
j=1

(λj − λ∗j)
⊤π0(T,X)uK1(T )uK1(T )

⊤(λl − λ∗l )vK2,j(X)vK2,l(X)

)2
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+ 2 · C
2
N

N2
· E

[
K2∑
l=1

K2∑
j=1

(λj − λ∗j)
⊤π0(T,X)uK1(T )uK1(T )

⊤(λl − λ∗l )vK2,j(X)vK2,l(X)

]2
−
∥∥Λ− Λ∗

K1×K2

∥∥2
=

1

N
E

( K2∑
l=1

K2∑
j=1

(λj − λ∗j)
⊤π0(T,X)uK1(T )uK1(T )

⊤(λl − λ∗l )vK2,j(X)vK2,l(X)

)2


+
N(N − 1)

N2
· E
[
ŜN

]2
−
∥∥Λ− Λ∗

K1×K2

∥∥2
=

1

N
E

( K2∑
l=1

K2∑
j=1

(λj − λ∗j)
⊤π0(T,X)uK1(T )uK1(T )

⊤(λl − λ∗l )vK2,j(X)vK2,l(X)

)2


− 1

N

∥∥Λ− Λ∗
K1×K2

∥∥2
<

1

N
E

( K2∑
l=1

K2∑
j=1

(λj − λ∗j)
⊤π0(T,X)uK1(T )uK1(T )

⊤(λl − λ∗l )vK2,j(X)vK2,l(X)

)2
 .

In light of the fact that

0 ≤ y⊤
{
π0(t,x)uK1(t)uK1(t)

⊤} y ≤ η2ζ1(K1)
2y⊤y , ∀y ∈ RK1 , ∀(t,x) ∈ T × X ,

we can deduce that

K2∑
l=1

K2∑
j=1

(λj − λ∗j)
⊤ {π0(T,X)uK1(T )uK1(T )

⊤} (λl − λ∗l )vK2,j(X)vK2,l(X)

=

[
K2∑
j=1

vK2,j(X)(λj − λ∗j)
⊤

]
·
{
π0(T,X)uK1(T )uK1(T )

⊤} · [ K2∑
l=1

(λl − λ∗l )vK2,l(X)

]

≤η2 · ∥uK1(T )∥2 ·

∥∥∥∥∥
K2∑
i=1

(λi − λ∗i )
⊤vK2,i(X)

∥∥∥∥∥
2

≤η2 · ∥uK1(T )∥2 ·

(
K2∑
i=1

∥λi − λ∗i ∥2
)(

K2∑
i=1

vK2,i(X)2

)
=η2 · ∥uK1(T )∥2 ·

∥∥Λ− Λ∗
K1×K2

∥∥2 ∥vK2(X)∥2.

Therefore, we can obtain that

E
[∣∣∣ŜN −

∥∥Λ− Λ∗
K1×K2

∥∥∣∣∣2]
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≤ 1

N
η22 · E

[
∥uK1(T )∥4 · ∥vK2(X)∥4

]
·
∥∥Λ− Λ∗

K1×K2

∥∥4
≤ 1

N
η22 · ζ1(K1)

2 · ζ2(K2)
2 · E

[
∥uK1(T )∥2 · ∥vK2(X)∥2

]
·
∥∥Λ− Λ∗

K1×K2

∥∥4
=

1

N
η22 · ζ1(K1)

2 · ζ2(K2)
2 · E

[
1

π0(T,X)
· π0(T,X)∥uK1(T )∥2 · ∥vK2(X)∥2

]
·
∥∥Λ− Λ∗

K1×K2

∥∥4
≤ 1

N

η22
η1

· ζ1(K1)
2 · ζ2(K2)

2 · E
[
π0(T,X)∥uK1(T )∥2 · ∥vK2(X)∥2

]
·
∥∥Λ− Λ∗

K1×K2

∥∥4 (by Assumption 1.3)

=
1

N

η22
η1

· ζ1(K1)
2 · ζ2(K2)

2 · E
[
∥uK1(T )∥2

]
· E
[
∥vK2(X)∥2

]
·
∥∥Λ− Λ∗

K1×K2

∥∥4 (by (13))

=
1

N

η22
η1

· ζ1(K1)
2 · ζ2(K2)

2 ·K1 ·K2 ·
∥∥Λ− Λ∗

K1×K2

∥∥4 (since E[∥uK1(T )∥2] = K1 and E[∥vK2(X)∥2] = K2)

=
1

N

η22
η1

· ζ(K)2 ·K ·
∥∥Λ− Λ∗

K1×K2

∥∥4 . (since ζ(K) = ζ1(K1)ζ2(K2) and K = K1 ·K2) (24)

Considering the event set

EN :=

{
ŜN >

1

2

∥∥Λ− Λ∗
K1×K2

∥∥2 , Λ ̸= Λ∗
K1×K2

}
,

by Chebyshev’s inequality, (24), and Assumption 1.15 we can get

P
(∣∣∣ŜN −

∥∥Λ− Λ∗
K1×K2

∥∥2∣∣∣ ≥ 1

2

∥∥Λ− Λ∗
K1×K2

∥∥2 , Λ ̸= Λ∗
K1×K2

)

≤
4E
[∣∣∣ŜN −

∥∥Λ− Λ∗
K1×K2

∥∥∣∣∣2]∥∥Λ− Λ∗
K1×K2

∥∥4
≤ 4

N

η22
η1

· ζ(K)2 ·K ≤ O

(
ζ(K)2K

N

)
= o(1),

which implies that for any ϵ > 0, there exists N0(ϵ) ∈ N such that N > N0(ϵ) large enough

P ((EN)
c) < P

(∣∣∣ŜN −
∥∥Λ− Λ∗

K1×K2

∥∥2∣∣∣ ≥ 1

2

∥∥Λ− Λ∗
K1×K2

∥∥2 , Λ ̸= Λ∗
K1×K2

)
<
ϵ

2
. (25)

Note that

∂

∂λj
ĜK1×K2(λ1, . . . , λK2)

=
1

N

N∑
i=1

ρ′
(
u⊤K1

(Ti)ΛvK2(X i)
)
uK1(Ti)vK2,j(X i)−

1

N2

N∑
i=1

N∑
l=1

uK1(Ti)vK2,j(X l)
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=
1

N

N∑
i=1

{
ρ′
(
u⊤K1

(Ti)ΛvK2(X i)
)
uK1(Ti)vK2,j(X i)− E[vK2,j(X)]uK1(Ti)

}
− 1

N

N∑
i=1

uK1(Ti)

{
1

N

N∑
l=1

vK2,j(X l)− E[vK2,j(X)]

}

and

∂

∂λj
G∗

K1×K2
(λ1, . . . , λK2) = E

[
ρ′
(
u⊤K1

(Ti)ΛvK2(X i)
)
uK1(Ti)vK2,j(X i)

]
− E[uK1(T )] · E[vK2,j(X)].

Since Λ∗
K1×K2

is the unique maximizer of G∗
K1×K2

(·), then for each j ∈ {1, . . . , K2},

∂

∂λj
G∗

K1×K2
(λ∗1, . . . , λ

∗
K2
)

=E
[
ρ′
(
u⊤K1

(T )Λ∗
K1×K2

vK2(X)
)
uK1(T )vK2,j(X)

]
− E[uK1(T )]E[vK2,j(X)] = 0.

Therefore, for large enough K, we can deduce that

E
[
∥∇ĜK1×K2(Λ

∗
K1×K2

)∥2
]
=

K2∑
j=1

E

[∥∥∥∥ ∂

∂λj
ĜK1×K2(λ

∗
1, . . . , λ

∗
K2

)

∥∥∥∥2
]

(26)

≤2

K2∑
j=1

E

∥∥∥∥∥ 1

N

N∑
i=1

{
ρ′
(
u⊤K1

(Ti)Λ
∗
K1×K2

vK2(Xi)
)
uK1(Ti)vK2,j(Xi)− E[vK2,j(X)]uK1(Ti)

}∥∥∥∥∥
2


+ 2

K2∑
j=1

E

∥∥∥∥∥ 1

N

N∑
i=1

uK1(Ti)

{
1

N

N∑
l=1

vK2,j(X l)− E[vK2,j(X)]

}∥∥∥∥∥
2


=
2

N2

K2∑
j=1

N∑
i=1

E
[∥∥∥ρ′ (u⊤K1

(Ti)Λ
∗
K1×K2

vK2(Xi)
)
uK1(Ti)vK2,j(Xi)− E[vK2,j(X)]uK1(Ti)

∥∥∥2]

+ 2

K2∑
j=1

E

∥∥∥∥∥ 1

N

N∑
i=1

uK1(Ti)

{
1

N

N∑
l=1

vK2,j(X l)− E[vK2,j(X)]

}∥∥∥∥∥
2


≤ 2

N2

K2∑
j=1

N∑
i=1

E
[∥∥∥ρ′ (u⊤K1

(Ti)Λ
∗
K1×K2

vK2(Xi)
)
uK1(Ti)vK2,j(Xi)− E[vK2,j(X)]uK1(Ti)

∥∥∥2]

+ 2

K2∑
j=1

E

∣∣∣∣∣ 1N
N∑
l=1

vK2,j(X l)− E[vK2,j(X)]

∣∣∣∣∣
2
 · E

∥∥∥∥∥ 1

N

N∑
i=1

uK1(Ti)

∥∥∥∥∥
2


≤ 4

N

K2∑
j=1

{
E
[∥∥∥ρ′ (u⊤K1

(T )Λ∗
K1×K2

vK2(X)
)
uK1(T )vK2,j(X)

∥∥∥2] + E[vK2,j(X)2]E
[
∥uK1(T )∥2

]}
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+
2

N

K2∑
j=1

E
[
vK2,j(X)2

]
· E
[
∥uK1(T )∥

2
]

=
4

N

K2∑
j=1

{
E

[∣∣ρ′ (u⊤K1
(T )Λ∗

K1×K2
vK2(X)

)∣∣2
π0(T,X)

· π0(T,X) · ∥uK1(T )vK2,j(X)∥2
]
+ E[vK2,j(X)2]E

[
∥uK1(T )∥2

]}

+
2

N

K2∑
j=1

E
[
vK2,j(X)2

]
· E
[
∥uK1(T )∥

2
]

≤ 4

N

K2∑
j=1

{(
supγ∈Γ1

ρ′(γ)
)2

η1
· E
[
π0(T,X) · ∥uK1(T )vK2,j(X)∥2

]
+ E[vK2,j(X)2]E

[
∥uK1(T )∥2

]}

+
2

N

K2∑
j=1

E
[
vK2,j(X)2

]
· E
[
∥uK1(T )∥

2
]

=
4

N

K2∑
j=1

{(
supγ∈Γ1

ρ′(γ)
)2

η1
· E
[
vK2,j(X)2

]
E
[
∥uK1(T )∥

2
]
+ E[vK2,j(X)2]E

[
∥uK1(T )∥2

]}

+
2

N

K2∑
j=1

E
[
vK2,j(X)2

]
· E
[
∥uK1(T )∥

2
]

≤ 1

N

 4

η1

(
sup
γ∈Γ1

ρ′(γ)

)2

+ 4 + 2

 · E
[
∥uK1(T )∥

2
] K2∑
j=1

E
[
vK2,j(X)2

]

=
1

N

 4

η1

(
sup
γ∈Γ1

ρ′(γ)

)2

+ 6

K1K2 = C2
4

K

N
,

where the last inequality follows by Assumption 1.15 and C4 :=
√

4
η1

(
supγ∈Γ1

ρ′(γ)
)2

+ 6 is a

finite universal constant.

Let ϵ > 0, fix C5(ϵ) > 0 (to be chosen later) and define

Υ̂K1×K2(ϵ) :=

{
Λ ∈ RK1×K2 : ∥Λ− Λ∗

K1×K2
∥ ≤ C5(ϵ)C4

√
K

N

}
.

For ∀Λ ∈ Υ̂K1×K2(ϵ),∀(t,x) ∈ T × X , we can have

∣∣uK1(t)
⊤ΛvK2(x)− uK1(t)

⊤Λ∗
K1×K2

vK2(x)
∣∣

≤∥Λ− Λ∗
K1×K2

∥ sup
t∈T

∥uK1(t)∥ sup
x∈X

∥vK2(x)∥ ≤ C5(ϵ)C4

√
K

N
ζ1(K1)ζ2(K2),
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thus for large enough N , in accordance with Assumption 1.15 and (14), we have

uK1(t)
⊤ΛvK2(x) ∈

[
uK1(t)

⊤Λ∗
K1×K2

vK2(x)− C5(ϵ)C4ζ1(K1)ζ2(K2)

√
K

N
,

uK1(t)
⊤Λ∗

K1×K2
vK2(x) + C5(ϵ)C4ζ1(K1)ζ2(K2)

√
K

N

]

⊂

[
γ − CK−α − C5(ϵ)C4ζ1(K1)ζ2(K2)

√
K

N
,

γ + CK−α + C5(ϵ)C4ζ1(K1)ζ2(K2)

√
K

N

]
⊂ Γ2(ϵ) , (27)

where Γ2(ϵ) :=
[
γ − 1− C5(ϵ), γ + 1 + C5(ϵ)

]
is a compact set and independent of (t,x).

For any Λ ∈ ∂Υ̂K1×K2(ϵ), there exists Λ̄ on the line joining Λ and Λ∗
K1×K2

such that

ĜK1×K2(Λ) =ĜK1×K2(Λ
∗
K1×K2

) +

K2∑
j=1

(λj − λ∗j)
⊤ ∂

∂λi
ĜK1×K2(λ

∗
1, . . . , λ

∗
K2
)

+
1

2

K2∑
l=1

K2∑
j=1

(λj − λ∗j)
⊤ ∂2

∂λi∂λl
ĜK1×K2(λ̄1, . . . , λ̄K2)(λl − λ∗l ) ,

where λ̄j denotes the j-th column of Λ̄. For the second order term in above equality, note that

u⊤K1
(t)Λ̄vK2(x) ∈ Γ2(ϵ) for all (t,x) ∈ T × X , we can further deduce that

K2∑
l=1

K2∑
j=1

(λj − λ∗j)
⊤ ∂2

∂λi∂λl
ĜK1×K2(λ̄1, . . . , λ̄K2)(λl − λ∗l ) (28)

=
1

N

N∑
i=1

K2∑
j=1

K2∑
l=1

(λj − λ∗j)
⊤uK1(Ti)ρ

′′ (u⊤K1
(Ti)Λ̄vK2(X i)

)
(λl − λ∗l )

⊤uK1(Ti)vK2,j(X i)vK2,l(X i)

≤− b̄(ϵ)

N

N∑
i=1

K2∑
j=1

K2∑
l=1

(λj − λ∗j)
⊤uK1(Ti)uK1(Ti)

⊤(λl − λ∗l )vK2,j(X i)vK2,l(X i)

=− b̄(ϵ)

N

N∑
i=1

K2∑
j=1

K2∑
l=1

1

π0(Ti,X i)
(λj − λ∗j)

⊤π0(Ti,X i)uK1(Ti)uK1(Ti)
⊤(λl − λ∗l )vK2,j(X i)vK2,l(X i)

≤− b̄(ϵ)

Nη2

N∑
i=1

K2∑
j=1

K2∑
l=1

(λj − λ∗j)
⊤π0(Ti,X i)uK1(Ti)uK1(Ti)

⊤(λl − λ∗l )vK2,j(X i)vK2,l(X i)
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=− b̄(ϵ)

η2
ŜN ,

where −b̄(ϵ) := supγ∈Γ2(ϵ) ρ
′′(γ) < ∞ for each fixed ϵ. Therefore, on the event EN and for large

enough N , we can deduce that for any Λ ∈ ∂Υ̂K1×K2(ϵ),

on the event EN : ĜK1×K2(Λ)− ĜK1×K2(Λ
∗
K1×K2

) (29)

=

K2∑
j=1

(λj − λ∗j)
⊤ ∂

∂λi
ĜK1×K2(λ

∗
1, . . . , λ

∗
K2
)

+

K2∑
l=1

K2∑
j=1

1

2
(λj − λ∗j)

⊤ ∂2

∂λi∂λl
ĜK1×K2(λ̄1, . . . , λ̄K2)(λl − λ∗l )

≤
∥∥Λ− Λ∗

K1×K2

∥∥ ∥∇ĜK1×K2(Λ
∗
K1×K2

)∥ − b̄(ϵ)

2η2
ŜN (by (28))

≤
∥∥Λ− Λ∗

K1×K2

∥∥ ∥∇ĜK1×K2(Λ
∗
K1×K2

)∥ − b̄(ϵ)

4η2

∥∥Λ− Λ∗
K1×K2

∥∥2
=
∥∥Λ− Λ∗

K1×K2

∥∥(∥∇ĜK1×K2(Λ
∗
K1×K2

)∥ − b̄(ϵ)

4η2

∥∥Λ− Λ∗
K1×K2

∥∥) ,

where the second inequality follows from definition of the event EN .

Note that for sufficiently large N , by Chebyshev’s inequality and (26) we have

P
{
∥∇ĜK1×K2(Λ

∗
K1×K2

)∥ ≥ b̄(ϵ)

4η2

∥∥Λ− Λ∗
K1×K2

∥∥} (30)

≤16η22
b̄(ϵ)2

·
E
[∥∥∥∇ĜK1×K2(Λ

∗
K1×K2

)
∥∥∥2]∥∥Λ− Λ∗

K1×K2

∥∥2 ≤ 16η22
b̄(ϵ)2C2

5(ϵ)
≤ ϵ

2
,

where the last inequality holds by choosing

C5(ϵ) ≥

√
32η22
b̄(ϵ)2ϵ

.

Therefore, for sufficiently large N , by (25) and (30) we can derive

P
(
(EN)

c or ∥∇ĜK1×K2(Λ
∗
K1×K2

)∥ ≥ b̄(ϵ)

2η2

∥∥Λ− Λ∗
K1×K2

∥∥) ≤ ϵ

2
+
ϵ

2
= ϵ
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⇒P
(
EN and ∥∇ĜK1×K2(Λ

∗
K1×K2

)∥ < b̄(ϵ)

2η2

∥∥Λ− Λ∗
K1×K2

∥∥) > 1− ϵ. (31)

With (29) and (31), we can obtain that

P
{
ĜK1×K2(Λ)− ĜK1×K2(Λ

∗
K1×K2

) < 0, ∀Λ ∈ ∂Υ̂K1×K2(ϵ)
}
≥ 1− ϵ .

Note that the event
{
ĜK1×K2(Λ

∗
K1×K2

) > ĜK1×K2(Λ), ∀Λ ∈ ∂Υ̂K1×K2(ϵ)
}
implies that there exists

a local maximizer in the interior of Υ̂K1×K2(ϵ). Since ĜK1×K2(·) is strictly concave and Λ̂K1×K2 is

the unique global maximizer of ĜK1×K2 , then

P
(
Λ̂K1×K2 ∈ Υ̂K1×K2(ϵ)

)
> 1− ϵ, (32)

i.e.
∥∥∥Λ̂K1×K2 − Λ∗

K1×K2

∥∥∥ = Op

(√
K
N

)
.

3.3 Corollary 3.3

The next corollary states that π̂K(t,x) is arbitrarily close to π∗
K(t,x).

Corollary 3.3 Under Assumption 1.2-1.6, we have

sup
(t,x)∈T ×X

|π̂K(t,x)− π∗
K(t,x)| = Op

(
ζ(K)

√
K

N

)
,

and ∫
T ×X

|π̂K(t,x)− π∗
K(t,x)|2dFT,X(t,x) = Op

(
K

N

)
,

and
1

N

N∑
i=1

|π̂K(Ti,X i)− π∗
K(Ti,X i)|2 = Op

(
K

N

)
.

Proof. From the proof of Lemma 3.2, we know the facts P
(
Λ̂K1×K2 ∈ Υ̂K1×K2(ϵ)

)
> 1 − ϵ and

(27). Then for any element Λ̃K1×K2 lying on the line joining Λ̂K1×K2 and Λ∗
K1×K2

, we can have

that P(uK1(t)
⊤Λ̃K1×K2vK2(x) ∈ Γ2(ϵ) for all (t,x) ∈ T × X ) ≥ 1− ϵ, which implies

sup
(t,x)∈T ×X

|ρ′′(uK1(t)Λ̃K1×K2vK2(x))| = Op(1). (33)
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Using Mean Value Theorem, Lemma 3.1, and (33), we can obtain that

sup
(t,x)∈T ×X

|π̂K(t,x)− π∗
K(t,x)|

= sup
(t,x)∈T ×X

|ρ′
(
uK1(t)Λ̂K1×K2vK2(x)

)
− ρ′

(
uK1(t)Λ

∗
K1×K2

vK2(x)
)
|

≤ sup
(t,x)∈T ×X

|ρ′′(uK1(t)Λ̃K1×K2vK2(x))| sup
(t,x)∈T ×X

∣∣∣uK1(t)Λ̂K1×K2vK2(x)− uK1(t)Λ
∗
K1×K2

vK2(x)
∣∣∣

≤Op(1) · ∥Λ̂K1×K2 − Λ∗
K1×K2

∥ · sup
t∈T

∥uK1(t)∥ · sup
x∈X

∥vK2(x)∥

≤Op(1) ·Op

(√
K

N

)
ζ1(K1) · ζ2(K2) = Op

(
ζ(K)

√
K

N

)
.

Note that by Mean Value Theorem and (33), we can deduce that∫
T ×X

|π̂K(t,x)− π∗
K(t,x)|2dFT,X(t,x)

≤ sup
(t,x)∈T ×X

|ρ′′(uK1(t)Λ̃K1×K2vK2(x))|2
∫
T ×X

∣∣∣uK1(t)
{
Λ̂K1×K2 − Λ∗

K1×K2

}
vK2(x)

∣∣∣2 dFT,X(t,x)

≤Op(1) ·
∫
T ×X

∣∣∣uK1(t)
{
Λ̂K1×K2 − Λ∗

K1×K2

}
vK2(x)

∣∣∣2 dFT,X(t,x).

We estimate
∫
T ×X

∣∣∣uK1(t)
{
Λ̂K1×K2 − Λ∗

K1×K2

}
vK2(x)

∣∣∣2 dFT,X(t,x). Note that E[uK1(T )[uK1(T )
⊤] =

IK1×K1 , E[vK2(X)vK2(X)⊤] = IK2×K2 , (13) and Assumption 1.3, we can deduce that∫
T ×X

∣∣∣uK1(t)
{
Λ̂K1×K2 − Λ∗

K1×K2

}
vK2(x)

∣∣∣2 dFT,X(t,x)

≤
∫
T ×X

u⊤K1
(t)
{
Λ̂K1×K2 − Λ∗

K1×K2

}
vK2(x)vK2(x)

⊤
{
Λ̂K1×K2 − Λ∗

K1×K2

}⊤
uK1(t)dFT,X(t,x)

=

∫
T ×X

1

π0(t,x)
π0(t,x)u

⊤
K1

(t)
{
Λ̂K1×K2 − Λ∗

K1×K2

}
vK2(x)vK2(x)

⊤
{
Λ̂K1×K2 − Λ∗

K1×K2

}⊤
uK1(t)dFT,X(t,x)

≤ 1

η1

∫
T ×X

π0(t,x) · u⊤K1
(t)
{
Λ̂K1×K2 − Λ∗

K1×K2

}
vK2(x)vK2(x)

⊤
{
Λ̂K1×K2 − Λ∗

K1×K2

}⊤
uK1(t)dFT,X(t,x)

=
1

η1

∫
T
u⊤K1

(t)
{
Λ̂K1×K2 − Λ∗

K1×K2

}(∫
X
vK2(x)vK2(x)

⊤dFX(x)

){
Λ̂K1×K2 − Λ∗

K1×K2

}⊤
uK1(t)dFT (t)

=
1

η1

∫
T
u⊤K1

(t)
{
Λ̂K1×K2 − Λ∗

K1×K2

}{
Λ̂K1×K2 − Λ∗

K1×K2

}⊤
uK1(t)dFT (t)

=
1

η1
tr

({
Λ̂K1×K2 − Λ∗

K1×K2

}{
Λ̂K1×K2 − Λ∗

K1×K2

}⊤
∫
T
uK1(t)u

⊤
K1

(t)dFT (t)

)
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=
1

η1
tr

({
Λ̂K1×K2 − Λ∗

K1×K2

}{
Λ̂K1×K2 − Λ∗

K1×K2

}⊤
)

=
1

η1
·
∥∥∥Λ̂K2×K2 − Λ∗

K1×K2

∥∥∥2 = Op

(
K

N

)
. (34)

Then we obtain ∫
T ×X

|π̂K(t,x)− π∗
K(t,x)|2dFT,X(t,x) = Op

(
K

N

)
.

Similar to (23), we have

1

N

N∑
i=1

∣∣∣u⊤K1
(Ti)

{
Λ̂K1×K2 − Λ∗

K1×K2

}
vK2(Xi)

∣∣∣2 − ∫
T ×X

∣∣∣uK1(t)
{
Λ̂K1×K2 − Λ∗

K1×K2

}
vK2(x)

∣∣∣2 dFT,X(t,x)

=Op

(
ζ(K)√
N

· ∥Λ̂K1×K2 − Λ∗
K1×K2

∥2
)

= Op

(
ζ(K)√
N

· K
N

)
= op

(
K

N

)
. (35)

where the last equality holds in light of Assumption 1.6. Hence, with (34) and (35), we have

1

N

N∑
i=1

|π̂K(Ti,X i)− π∗
K(Ti,X i)|2

≤ sup
(t,x)∈T ×X

|ρ′′(uK1(t)Λ̃K1×K2vK2(x))|2 ·
1

N

N∑
i=1

∣∣∣uK1(Ti)
{
Λ̂K1×K2 − Λ∗

K1×K2

}
vK2(X i)

∣∣∣2
≤Op(1) ·

∫
T ×X

∣∣∣uK1(t)
{
Λ̂K1×K2 − Λ∗

K1×K2

}
vK2(x)

∣∣∣2 dFT,X(t,x) + op

(
K

N

)
≤Op

(
K

N

)
+ op

(
K

N

)
= Op

(
K

N

)
.

4 Efficient Estimation

4.1 Proof of Theorem 4

The proposed estimator β̂ is a special case of Chen, Linton, and Van Keilegom (2003), where

the authors establish the consistency and asymptotic normality of a class of semiparametric

optimization estimators under that the criterion function does not satisfy standard smoothness

conditions. The asymptotic distribution of the proposed estimator can be derived by applying
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Theorem 2 of Chen, Linton, and Van Keilegom (2003). Using their notation, we denote

MN(β, π(·)) :=
1

N

N∑
i=1

π(Ti,X i)L
′ (Yi − g(Ti;β))m(Ti;β),

M(β, π(·)) := E[MN(β, π(·))] = E [π(T,X)L′ (Y − g(T ;β))m(T ;β)] .

The ordinary derivative Γ1(β, π(·)) in β of M(β, π(·)) is

Γ1(β, π(·))(β̄ − β) = : lim
τ→0

M(β + τ(β̄ − β), π(·))−M(β, π(·))
τ

=∇βE [π(T,X)L′ (Y − g(T ;β))m(T ;β)] ,

and the functional derivative Γ2(β, π0(·))[π(·)−π0(·)] ofM(β, π0(·)) along the direction π(·)−π0(·)
is

Γ2(β, π0(·))[π(·)− π0(·)] := lim
τ→0

M(β, π0(·) + τ(π(·)− π0(·)))−M(β, π0(·))
τ

=E [(π(T,X)− π0(T,X))L′ (Y − g(T ;β))m(T ;β)] .

In order to apply Theorem 2 of Chen, Linton, and Van Keilegom (2003), we need to verify their

Conditions (2.1)-(2.6) hold. Conditions (2.1)-(2.5) of Chen, Linton, and Van Keilegom (2003) can

be easily verified by using following facts:

• Theorem 10 ensures ∥β̂ − β0∥
p−→ 0;

• Assumption 1.11 implies ∥MN(β̂, π̂K(·))∥ =
∥∥∥N−1

∑N
i=1 π̂K(Ti,X i)m(Ti; β̂)L

′{Yi − g(Ti; β̂)}
∥∥∥ =

oP (1/
√
N);

• Assumption 1.15 implies K = op(N
1/4) and K−α = op(N

−1/2), then by Theorem 5.6 we

have
∫
T ×X |π̂K(t,x) − π0(t,x)|2dFT,X(t,x) = Op (K

−α) + Op

(√
K/N

)
= oP (N

−1/2) +

oP (N
−3/8) ≤ op(N

−1/4).

The most important step toward the application of Theorem 2 of Chen, Linton, and Van Keilegom

(2003) is to check their Condition (2.6) holds, which states that there exits some finite matrix V1

such that

√
N {MN(β0, π0(·)) + Γ2(β0, π0(·))[π̂K(·)− π0(·)]}

d−→ N(0, V1). (36)
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If Conditions (2.1)-(2.6) hold, Theorem 2 of Chen, Linton, and Van Keilegom (2003) ensures that

√
N
(
β̂ − β0

)
d−→ N (0,Ω),

where Ω := Γ1(β0, π0(·))−1V1(Γ1(β0, π0(·))−1)⊤ = H−1
0 V1(H

−1
0 )⊤. However, Chen, Linton, and Van Keilegom

(2003) do not give the expression of V1 and the verification of (36) is difficult which is also admitted

by the authors themselves (see the first paragraph in Section 3.3 of Chen, Linton, and Van Keilegom

(2003)). In Section 4.2, we prove (36) holds and give

V1 = E[ψ(Y, T,X;β0)ψ(Y, T,X;β0)
⊤].

Therefore, we can have Ω = Veff which justifies Theorem 3.17.

4.2 Proof of (36)

Before proving (36), we prepare some preliminary notation and results that will be used later.

Since Λ̂K1×K2 is a unique maximizer of the concave function ĜK1×K2 , then

1

N

N∑
i=1

ρ′
(
uK1(Ti)

⊤Λ̂K1×K2vK2(X i)
)
uK1(Ti)vK2(X i)

⊤ − 1

N2

N∑
i=1

N∑
l=1

uK1(Tl)vK2(X i)
⊤ = 0.

Using Mean Value Theorem, we can have

1

N

N∑
i=1

ρ′
(
uK1(Ti)

⊤Λ∗
K1×K2

vK2(X i)
)
uK1(Ti)vK2(X i)

⊤

+
1

N

N∑
i=1

ρ′′
(
uK1(Ti)

⊤Λ̃K1×K2vK2(X i)
)
uK1(Ti)uK1(Ti)

⊤
{
Λ̂K1×K2 − Λ∗

K1×K2

}
vK2(X i)vK2(X i)

⊤

=
1

N2

N∑
i=1

N∑
l=1

uK1(Tl)vK2(X i)
⊤ , (37)

where Λ̃K1×K2 lies on the line joining from Λ̂K1×K2 to Λ∗
K1×K2

. We define the following notation:

ÂK1×K2 := Λ̂K1×K2 − Λ∗
K1×K2

, (38)

ÃK1×K2 := Λ̃K1×K2 − Λ∗
K1×K2

, (39)
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and

A∗
K1×K2

:= ∇ĜK1×K2

(
Λ∗

K1×K2

)
=

1

N

N∑
i=1

ρ′
(
uK1(Ti)

⊤Λ∗
K1×K2

vK2(X i)
)
uK1(Ti)vK2(X i)

⊤ −

(
1

N

N∑
l=1

uK1(Tl)

)(
1

N

N∑
i=1

vK2(X i)
⊤

)
.

(40)

In light of (26) we have ∥∥A∗
K1×K2

∥∥ = Op

(√
K

N

)
.

From (37), A∗
K1×K2

can also be written as

A∗
K1×K2

= − 1

N

N∑
i=1

ρ′′
(
uK1(Ti)

⊤Λ̃K1×K2vK2(X i)
)
uK1(Ti)uK1(Ti)

⊤
{
Λ̂K1×K2 − Λ∗

K1×K2

}
vK2(X i)vK2(X i)

⊤.

(41)

We now start to (36). We decompose
√
N {MN(β0, π0(·)) + Γ2(β0, π0(·))[π̂K(·)− π0(·)]} as

follows:

√
N {MN (β0, π0(·)) + Γ2(β0, π0(·))[π̂K(·)− π0(·)]}

=
1√
N

N∑
i=1

{
π0(Ti,Xi)L

′ {Yi − g (Ti;β0)}m(Ti;β0) +

∫
T

∫
X
(π̂K(t,x)− π0(t,x)) ε(x, t;β0)m(t;β0)dFX,T (x, t)

}

=
√
N

∫
T

∫
X
m(t;β0)ε(t,x;β0) (π

∗
K(t,x)− π0(t,x)) dFX,T (x, t)

+
√
N

∫
T

∫
X
(π̂K(t,x)− π∗K(t,x)) ε(x, t;β0)m(t;β0)dFX,T (x, t)

+
1√
N

N∑
i=1

π0(Ti,Xi)L
′ {Yi − g (Ti;β0)}m(Ti;β0)

=
√
N

∫
T

∫
X
m(t;β0)ε(t,x;β0) (π

∗
K(t,x)− π0(t,x)) dFX,T (x, t) (42)

+
√
N

∫
T

∫
X
(π̂K(t,x)− π∗K(t,x)) ε(x, t;β0)m(t;β0)dFX,T (x, t) (43)

−
√
N

∫
T

∫
X
ε(t,x;β0)ρ

′′
(
u⊤K1

(t)Λ̃K1×K2vK2(x)
)
u⊤K1

(t)ÂK1×K2vK2(x)m(t;β0)dFX,T (x, t)

+
√
N

∫
T

∫
X
ε(t,x;β0)ρ

′′
(
u⊤K1

(t)Λ̃K1×K2vK2(x)
)
u⊤K1

(t)ÂK1×K2vK2(x)m(t;β0)dFX,T (x, t) (44)

36



−
√
N

∫
T

∫
X
ε(t,x;β0)ρ

′′
(
u⊤K1

(t)Λ∗
K1×K2

vK2(x)
)
u⊤K1

(t)A∗
K1×K2

vK2(x)m(t;β0)dFX,T (x, t)

+
√
N

∫
X
ε(t,x;β0)ρ

′′
(
u⊤K1

(t)Λ∗
K1×K2

vK2(x)
)
u⊤K1

(t)A∗
K1×K2

vK2(x)m(t;β0)dFX,T (x, t) (45)

+
1√
N

N∑
i=1

{
π0(Ti,Xi)m(Ti;β0)ε(Ti,Xi;β0)− E [π0(T,X)m(T ;β0)ε(T,x;β0)|X = Xi]

− E [π0(T,X)m(T ;β0)ε(T,x;β0)|T = Ti]

}

+
1√
N

N∑
i=1

{
π0(Ti,Xi)L

′ {Yi − g (Ti;β0)}m(Ti;β0)− π0(Ti,Xi)m(Ti;β0)ε(Ti,Xi;β0) (46)

+ E [π0(T,X)m(T ;β0)ε(T,X;β0)|X = Xi] + E [π0(T,X)m(T ;β0)ε(T,x;β0)|T = Ti]

}
,

where ÂK1×K2 and A∗
K1×K2

are defined in (38) and (41). We show that the terms (42)-(45) are

all of op(1), while the term (46) is asymptotically normal.

For term (42): By Lemma 3.1 and Assumption 1.15, we can deduce that∥∥∥√N · E [m(T ;β0)ε(T,X;β0) (π
∗
K(T,X)− π0(T,X))]

∥∥∥
≤
√
N sup

t∈T
∥m(t;β0)∥ · E[|ε(T,X;β0)|2]

1
2 · E

[
|π∗

K(T,X)− π0(T,X)|2
] 1

2 = O
(√

NK−α
)
.

For term (43): By Mean Value Theorem and the definition of ÂK1×K2 in (38), the term (43) is

exactly equal to zero.

For term (44): We can telescope (44) as follows:

√
N

∫
T

∫
X
m(t;β0)ε(t,x;β0)ρ

′′
(
u⊤K1

(t)Λ̃K1×K2vK2(x)
)
u⊤K1

(t)ÂK1×K2vK2(x)dFX,T (x, t)

−
√
N

∫
T

∫
X
m(t;β0)ε(t,x;β0)ρ

′′ (u⊤K1
(t)Λ∗

K1×K2
vK2(x)

)
u⊤K1

(t)A∗
K1×K2

vK2(x)dFX,T (x, t)

=
√
N

∫
T

∫
X
m(t;β0)ε(t,x;β0)

{
ρ′′
(
u⊤K1

(t)Λ̃K1×K2vK2(x)
)
− ρ′′

(
u⊤K1

(t)Λ∗
K1×K2

vK2(x)
)}

× u⊤K1
(t)ÂK1×K2vK2(x)dFX,T (x, t) (47)

+
√
N

∫
T

∫
X
m(t;β0)ε(t,x;β0)ρ

′′ (u⊤K1
(t)Λ∗

K1×K2
vK2(x)

)
u⊤K1

(t)

×
{
ÂK1×K2 − A∗

K1×K2

}
vK2(x)dFX,T (x, t). (48)

37



For the term (47), by Mean Value Theorem,

(47) =
√
N

∫
T

∫
X
m(t;β0)ε(t,x;β0)ρ

′′′ (ξ3(t,x))
{
u⊤K1

(t)ÃK1×K2vK2(x)
}{

u⊤K1
(t)ÂK1×K2vK2(x)

}
dFX,T (x, t).

Since ξ3(t,x) lies between uK1(t)
⊤Λ∗

K1×K2
vK2(x) and uK1(t)

⊤Λ̃∗
K1×K2

vK2(x), which implies ξ3(t,x)

lies between uK1(t)
⊤Λ∗

K1×K2
vK2(x) and uK1(t)

⊤Λ̂∗
K1×K2

vK2(x). Then in light of (27) and (32), we

have P (ξ3(t,x) ∈ Γ2(ϵ), ∀(t,x) ∈ T × X ) > 1− ϵ, therefore,

sup
(t,x)∈T ×X

|ρ′′′ (ξ3(t,x)) | = Op(1) . (49)

With (34), (49), the fact ∥ÃK1×K2∥ ≤ ∥ÂK1×K2∥, Lemma 3.2, and Assumption 1.15, we can derive

that

∥(47)∥ ≤
√
N sup

(t,x)∈T ×X
|ρ′′′ (ξ3(t,x))| sup

t∈T
∥m(t;β0)∥ · sup

(t,x)∈T ×X
|ε(t,x;β0)|

·
∫
T

∫
X

∣∣∣uK1(t)
⊤ÃK1×K2vK2(x)

∣∣∣ · ∣∣∣u⊤K1
(t)ÂK1×K2vK2(x)

∣∣∣ dFX,T (x, t)

≤
√
N ·Op(1) ·O(1) ·O(1) ·

{∫
T

∫
X

∣∣∣uK1(t)
⊤ÃK1×K2vK2(x)

∣∣∣2 dFX,T (x, t)

} 1
2

·
{∫

T

∫
X

∣∣∣u⊤K1
(t)ÂK1×K2vK2(x)

∣∣∣2 dFX,T (x, t)

} 1
2

=
√
N ·Op(1) ·O(1) ·O(1) ·Op

(√
K

N

)
·Op

(√
K

N

)
= Op

(√
K2

N

)
(by ((34))).

(50)

For the term (48), we first compute the probability order of ∥A∗
K1×K2

− ÂK1×K2∥. Using (41),

the fact ρ′′(v) = −ρ′(v) and Mean Value Theorem, we have

A∗
K1×K2

− ÂK1×K2

=− 1

N

N∑
i=1

ρ′′
(
u⊤K1

(Ti)Λ
∗
K1×K2

vK2(Xi)
)
uK1(Ti)uK1(Ti)

⊤ÂK1×K2vK2(Xi)v
⊤
K2

(Xi)

− 1

N

N∑
i=1

ρ′′′ (ξ3(Ti,Xi))
{
uK1(T )

⊤ÃK1×K2vK2(Xi)
}
uK1(Ti)uK1(Ti)

⊤ÂK1×K2vK2(Xi)v
⊤
K2

(Xi)

− ÂK1×K2

=
1

N

N∑
i=1

{
ρ′
(
u⊤K1

(Ti)Λ
∗
K1×K2

vK2
(Xi)

)
uK1

(Ti)uK1
(Ti)

⊤ÂK1×K2
vK2

(Xi)v
⊤
K2

(Xi)− ÂK1×K2

}
(51)
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− 1

N

N∑
i=1

ρ′′′ (ξ3(Ti,Xi))
{
uK1(Ti)

⊤ÃK1×K2vK2(Xi)
}
uK1(Ti)uK1(Ti)

⊤ÂK1×K2vK2(Xi)v
⊤
K2

(Xi). (52)

For the term (51), by (13) we can write ÂK1×K2 as

ÂK1×K2 = ET,X

[
π0(T,X)uK1(T )uK1(T )

⊤ÂK1×K2vK2(X)v⊤K2
(X)

]
,

where ET,X [·] denotes taking expectation with respect to (T,X). We telescope (51) as follows:

1

N

N∑
i=1

{
ρ′
(
u⊤K1

(Ti)Λ
∗
K1×K2

vK2(X i)
)
uK1(Ti)uK1(Ti)

⊤ÂK1×K2vK2(X i)v
⊤
K2
(X i)− ÂK1×K2

}

=
1

N

N∑
i=1

{{
ρ′
(
u⊤K1

(Ti)Λ
∗
K1×K2

vK2(X i)
)
− π0(Ti,X i)

}
uK1(Ti)uK1(Ti)

⊤ÂK1×K2vK2(X i)v
⊤
K2
(X i)

}
(53)

− 1

N

N∑
i=1

{
π0(Ti,X i)uK1(Ti)uK1(Ti)

⊤ÂK1×K2vK2(X i)v
⊤
K2
(X i)

− ET,X

[
π0(T,X)uK1(T )uK1(T )

⊤ÂK1×K2vK2(X)v⊤K2
(X)

]}
. (54)

For the term (53), by Lemmas 3.1 and 3.2, we have that

∥∥∥∥ 1

N

N∑
i=1

{
ρ′
(
u⊤K1

(Ti)Λ
∗
K1×K2

vK2(Xi)
)
− π0(Ti,Xi)

}
uK1(Ti)uK1(Ti)

⊤ÂK1×K2vK2(Xi)v
⊤
K2

(Xi)

∥∥∥∥
≤ 1

N

N∑
i=1

∣∣∣ρ′ (u⊤K1
(Ti)Λ

∗
K1×K2

vK2(Xi)
)
− π0(Ti,Xi)

∣∣∣ · ∥uK1(Ti)∥2 · ∥vK2(Xi)∥2 · ∥ÂK1×K2∥

=

{
E
[∣∣∣ρ′ (u⊤K1

(T )Λ∗
K1×K2

vK2(X)
)
− π0(T,X)

∣∣∣ · ∥uK1(T )∥2 · ∥vK2(X)∥2
]
+Op

(
ζ(K)

√
K

N

)}
· ∥ÂK1×K2∥

≤

{
sup

(t,x)∈T ×X
|π∗K(t,x)− π0(t,x)| ·

1

η1
· E
[
π0(T,X)∥uK1(T )∥2∥vK2(X)∥2

]
+Op

(
ζ(K)

√
K

N

)}
· ∥ÂK1×K2∥

=

{
sup

(t,x)∈T ×X
|π∗K(t,x)− π0(t,x)| ·

1

η1
· E
[
∥uK1(T )∥2

]
· E
[
∥vK2(X)∥2

]
+Op

(
ζ(K)

√
K

N

)}
· ∥ÂK1×K2∥

≤

{
O
(
K−αζ(K)

)
·O(K1) ·O(K2) +Op

(
ζ(K)

√
K

N

)}
·Op

(√
K

N

)
≤Op

(
N− 1

2 ζ(K) ·K
3
2
−α
)
.
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For the term (54), define the linear map J (·) : RK1×K2 → R by

J (M) :=
1

N

N∑
i=1

{
π0(Ti,Xi)uK1(Ti)uK1(Ti)

⊤MvK2(Xi)v
⊤
K2

(Xi)− ET,X

[
π0(T,X)uK1(T )uK1(T )

⊤MvK2(X)v⊤K2
(X)

]}
,

then (54) = J (ÂK1×K2). For any fixedM ∈ RK1×K2 , by (13) andM = E[π0(T,X)uK1(T )uK1(T )
⊤M

·vK2(X)v⊤K2
(X)], then we have

E
[
J (M)2

]
=

1

N
· E
[∥∥∥∥π0(T,X)uK1(T )uK1(T )

⊤MvK2(X)v⊤K2
(X)− E

[
π0(T,X)uK1(T )uK1(T )

⊤MvK2(X)v⊤K2
(X)

] ∥∥∥∥2]
≤ 1

N
· E
[∥∥∥∥π0(T,X)uK1(T )uK1(T )

⊤MvK2(X)v⊤K2
(X)

∥∥∥∥2]
≤ 1

N
· η2 · E

[
π0(T,X) · ∥uK1(T )∥4∥vK2(X)∥4

]
· ∥M∥2

=
1

N
· η2 · E[∥uK1(T )∥4] · E[∥vK2(X)∥4] · ∥M∥2

≤ 1

N
· η2 · ζ1(K)2 · ζ2(K)2 · E[∥uK1(T )∥2] · E[∥vK2(X)∥2] · ∥M∥2

= ∥M∥2 ·O
(
ζ(K)2

K

N

)
.

Using Chebyshev’s inequality we have

|J (M)| = ∥M∥Op

(
ζ(K)

√
K

N

)
,

then in light of Lemma 3.2,

(54) = J (ÂK1×K2) = ∥ÂK1×K2∥Op

(
ζ(K)

√
K

N

)
= Op

(
ζ(K)

K

N

)
.

Therefore,

(51) = (53) + (54) = Op

(
N− 1

2 ζ(K) ·K
3
2
−α
)
+Op

(
ζ(K)

K

N

)
.

For the term (52), we can deduce that

∥∥∥∥ 1

N

N∑
i=1

ρ′′′ (ξ3(Ti,X i))
{
uK1(Ti)

⊤ÃK1×K2vK2(X i)
}{

uK1(Ti)uK1(Ti)
⊤ÂK1×K2vK2(X i)v

⊤
K2
(X i)

}∥∥∥∥
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≤ sup
(t,x)∈T ×X

|ρ′′′ (ξ3(t,x))| · ∥ÂK1×K2∥2 ·
1

N

N∑
i=1

∥uK1(Ti)∥3 · ∥vK2(X i)∥3

≤ sup
(t,x)∈T ×X

|ρ′′′ (ξ3(t,x))| · ∥ÂK1×K2∥2 · ζ1(K1) · ζ2(K2) ·
1

N

N∑
i=1

∥uK1(Ti)∥2 · ∥vK2(X i)∥2

≤ sup
(t,x)∈T ×X

|ρ′′′ (ξ3(t,x))| · ∥ÂK1×K2∥2 · ζ(K)

{
E
[
∥uK1(T )∥2∥vK2(X)∥2

]
+Op

(
ζ(K)

√
K

N

)}

≤Op(1) ·Op

(
K

N

)
· ζ(K) ·O(K) = Op

(
ζ(K)

K2

N

)
,

where the fourth inequality follows from (49) and Lemma 3.2. Now, we can obtain

∥ÂK1×K2 − A∗
K1×K2

∥ = (51) + (52) = Op

(
N− 1

2 ζ(K)K
3
2
−α
)
+Op

(
ζ(K)

K

N

)
+Op

(
ζ(K)

K2

N

)
= Op

(
N− 1

2 ζ(K) ·K
3
2
−α
)
+Op

(
ζ(K)

K2

N

)
. (55)

Using (55), Assumptions 1.9 and 1.15, for large enough N , we have

(48) =
∥∥∥∥√N ∫

T

∫
X
m(t;β0)ε(t,x;β0)ρ

′′ (u⊤K1
(t)Λ∗

K1×K2
vK2(x)

)
u⊤K1

(t)
{
ÂK1×K2 −A∗

K1×K2

}
vK2(x)dFX,T (x, t)

∥∥∥∥
≤
√
N sup

t∈T
∥m(t;β0)∥ sup

γ∈Γ1

|ρ′′ (γ) | · E
[
|ε(T,X;β0)|

2
] 1

2 ·
[∫

T ×X

(
uK1(t)

{
ÂK1×K2 −A∗

K1×K2

}
vK2(x)

)2
dFT,X(t,x)

] 1
2

≤
√
N ·O(1) ·O(1) ·O(1) ·O(1) ·O(∥ÂK1×K2 −A∗

K1×K2
∥)

≤Op

(
ζ(K) ·K 3

2−α
)
+Op

(
ζ(K)

K2

√
N

)
, (56)

where the second inequality holds since by using the same argument of establishing (34), we have∫
T ×X

(
uK1(t)

{
ÂK1×K2 − A∗

K1×K2

}
vK2(x)

)2
dFT,X(t,x) = O(∥ÂK1×K2 − A∗

K1×K2
∥).

Therefore, by combining (50) and (56), we can obtain that

(44) = (47) + (48) =Op

(√
K2

N

)
+Op

(
ζ(K) ·K

3
2
−α
)
+Op

(
ζ(K)

K2

√
N

)
=Op

(
ζ(K) ·K

3
2
−α
)
+Op

(
ζ(K)

K2

√
N

)
.
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For term (45): By the definition of A∗
K1×K2

in (40), we have

(45) =
1√
N

N∑
i=1

{∫
T

∫
X
m(t;β0)ε(t,x;β0)ρ

′′ (u⊤K1
(t)Λ∗

K1×K2
vK2(x)

)
u⊤K1

(t) (57)

×
{
uK1(Ti)ρ

′ (uK1(Ti)Λ
∗
K1×K2

vK2(Xi)
)
v⊤K2

(Xi)
}
vK2(x)dFX,T (x, t) +m(Ti;β0)ε(Ti,Xi;β0)π0(Ti,Xi)

}
− 1√

N

N∑
i=1

{∫
T

∫
X
m(t;β0)ε(t,x;β

∗)ρ′′
(
u⊤K1

(t)Λ∗
K1×K2

v⊤K2
(x)
)
u⊤K1

(t)

(
1

N

N∑
l=1

uK1(Tl)

)
(58)

×

 1

N

N∑
j=1

v⊤K2
(Xj)

 vK2(x)dFX,T (x, t) + E [π0(T,X)m(T ;β0)ε(T,X;β0)|X = Xi]

+ E [π0(T,X)m(T ;β0)ε(T,X;β0)|T = Ti]

}
.

We shall show that both (57) and (58) are of op(1). Noting ρ′′ = −ρ′, we can telescope (57) as

follows:

(57) =
1√
N

N∑
i=1

{∫
T

∫
X
m(t;β0)ε(t,x;β0)ρ

′ (u⊤K1
(t)Λ∗

K1×K2
vK2(x)

)
u⊤K1

(t) (59)

×
{
uK1(Ti)

[
− ρ′

(
uK1(Ti)Λ

∗
K1×K2

vK2(Xi)
)
+ π0(Ti,Xi)

]
v⊤K2

(Xi)

}
vK2(x)dFX,T (x, t)

}
− 1√

N

N∑
i=1

{∫
T

∫
X
m(t;β0)ε(t,x;β0)

{
ρ′
(
u⊤K1

(t)Λ∗
K1×K2

vK2(x)
)
− π0(t,x)

}
u⊤K1

(t) (60)

×
{
uK1(Ti)π0(Ti,Xi)v

⊤
K2

(Xi)
}
vK2(x)dFX,T (x, t)

}
− 1√

N

N∑
i=1

{∫
T

∫
X
m(t;β0)ε(t,x;β0)π0(t,x)u

⊤
K1

(t)
{
uK1(Ti)π0(Ti,Xi)v

⊤
K2

(Xi)
}
vK2(x)dFX,T (x, t)

+m(Ti;β0)ε(Ti,Xi;β0)π0(Ti,Xi)

}
. (61)

We shall show that (59), (60) and (61) are all of op(1). Note that second moment of (59) is

E[|(59)|2] = E

[∣∣∣∣∣
∫
T

∫
X
m(t;β0)ε(t,x;β0)ρ

′ (u⊤K1
(t)Λ∗

K1×K2
vK2(x)

)
u⊤K1

(t)

×
{
uK1(Ti)

[
− ρ′

(
uK1(Ti)Λ

∗
K1×K2

vK2(Xi)
)
+ π0(Ti,Xi)

]
v⊤K2

(Xi)

}
vK2(x)dFX,T (x, t)

∣∣∣∣∣
2]

=E

[∣∣∣∣∣
∫
T

∫
X
π0(t,x) ·m(t;β0)ε(t,x;β0)

[
ρ′
(
u⊤K1

(t)Λ∗
K1×K2

vK2(x)
)

π0(t,x)

]
u⊤K1

(t)

×
{
uK1(Ti)

[
− ρ′

(
uK1(Ti)Λ

∗
K1×K2

vK2(Xi)
)
+ π0(Ti,Xi)

]
v⊤K2

(Xi)

}
vK2(x)dFX,T (x, t)

∣∣∣∣∣
2]

≤E

[∣∣∣∣∣
∫
T

∫
X
π0(t,x) ·m(t;β0)ε(t,x;β0)

[
ρ′
(
u⊤K1

(t)Λ∗
K1×K2

vK2(x)
)

π0(t,x)

]
u⊤K1

(t)
{
uK1(Ti)v

⊤
K2

(Xi)
}
vK2(x)dFX,T (x, t)

∣∣∣∣∣
2]
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× sup
(t,x)∈T ×X

{
−ρ′

(
u⊤K1

(t)Λ∗
K1×K2

vK2(x)
)
+ π0(t,x)

}2
=

E

[∣∣∣∣∣m(Ti;β0)ε(Ti,Xi;β0)

[
ρ′
(
u⊤K1

(Ti)Λ
∗
K1×K2

vK2
(Xi)

)
π0(Ti,Xi)

]∣∣∣∣∣
2]

+ o(1)

× sup
(t,x)∈T ×X

{−π∗
K(t,x) + π0(t,x)}2

=O(1) ·O(K−2αζ(K)2) = O(K−2αζ(K)2) → 0, (by Assumption 1.6)

where the third equality holds because∫
T

∫
X
π0(t,x)·m(t;β0)ε(t,x;β0)

[
ρ′
(
u⊤K1

(t)Λ∗
K1×K2

vK2(x)
)

π0(t,x)

]
u⊤K1

(t)
{
uK1(T )v

⊤
K2
(X)

}
vK2(x)dFX,T (x, t)

is the weighted L2-projection of m(t;β0)ε(t,x;β0)

[
ρ′(u⊤

K1
(t)Λ∗

K1×K2
vK2

(x))
π0(t,x)

]
on the space linearly

spanned by {uK1(t), vK2(x)} with the weighted measure π0(t,x)dFT,X(t,x). Similarly, we can

also show (60) and (61) are of op(1). Therefore, (57) is of op(1).

For the term (58), since ρ′′(v) = −ρ′(v) and the fact E [π0(T,X)m(T ;β0)ε(T,X;β0)] = 0, we

telescope it as follows:

(58) =
√
N

∫
T

∫
X
m(t;β0)ε(t,x;β0)ρ

′ (u⊤K1
(t)Λ∗

K1×K2
vK2(x)

)
u⊤K1

(t)

(
1

N

N∑
l=1

uK1(Tl)− E [uK1(T )]

)

×

 1

N

N∑
j=1

v⊤K2
(Xj)− E[v⊤K2

(X)]

 vK2(x)dFX,T (x, t) (62)

+
1√
N

N∑
i=1

{∫
T

∫
X
m(t;β0)ε(t,x;β0)ρ

′ (u⊤K1
(t)Λ∗

K1×K2
vK2(x)

)
u⊤K1

(t)E [uK1(T )] v
⊤
K2

(Xi)vK2(x)dFX,T (x, t)

− E [π0(T,X)m(T ;β0)ε(T,X;β0)|X = Xi]

}
(63)

+
1√
N

N∑
l=1

{∫
T

∫
X
m(t;β0)ε(t,x;β0)ρ

′ (u⊤K1
(t)Λ∗

K1×K2
vK2(x)

)
u⊤K1

(t)uK1(Tl)E[v⊤K2
(X)]vK2(x)dFX,T (x, t)

− E [π0(T,X)m(T ;β0)ε(T,X;β0)|T = Ti]

}
(64)

− 1√
N

N∑
i=1

{∫
T

∫
X
m(t;β0)ε(t,x;β0)ρ

′ (u⊤K1
(t)Λ∗

K1×K2
vK2(x)

)
u⊤K1

(t)E [uK1(T )]E[v⊤K2
(X)]vK2(x)dFX,T (x, t)

− E [π0(T,X)m(T ;β0)ε(T,X;β0)]

}
. (65)

For the term (62), since∥∥∥∥∥ 1

N

N∑
l=1

uK1(Tl)− E [uK1(T )]

∥∥∥∥∥ = Op

(√
K1

N

)
,
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∥∥∥∥∥ 1

N

N∑
j=1

vK2(Xj)− E [vK2(X)]

∥∥∥∥∥ = Op

(√
K2

N

)
,

sup
(t,x)∈T ×X

∣∣ρ′ (u⊤K1
(t)Λ∗

K1×K2
vK2(x)

)∣∣ = O(1) ,

and by Assumptions 1.9, 1.10, and 1.15, we can deduce that

(62) =
√
N ·O(ζ(K))Op

(√
K1

N

)
Op

(√
K2

N

)
= Op

(
ζ(K)

√
K

N

)
= op(1) .

For the term (63), noting the fact that E [π0(T,X)m(T ;β0)ε(T,X;β0)|X] =
∫
T m(t;β0)ε(t,X;β0)

dFT (t), we can rewrite (63) as follows:

(63) =
1√
N

N∑
j=1

{∫
T

∫
X
m(t;β0)ε(t,x;β0)

π∗
K(t,x)

π0(t,x)
u⊤K1

(t)E [uK1(T )] v
⊤
K2
(Xj)vK2(x)dFX(x)dFT (t)

−
∫
T
m(t;β0)ε(t,Xj;β0)dFT (t)

}
.

By computing the second moment of (63), we can obtain that

E
[∥∥∥∥∫

T

∫
X
m(t;β0)ε(t,x;β0)

π∗
K(t,x)

π0(t,x)
u⊤K1

(t)E [uK1(T )] v
⊤
K2

(X)vK2(x)dFX(x)dFT (t)−
∫
T
m(t;β0)ε(t,X;β0)dFT (t)

∥∥∥∥2]
≤E
[∥∥∥∥∫

T

∫
X
m(t;β0)ε(t,x;β0)

π∗
K(t,x)

π0(t,x)
u⊤K1

(t)uK1(T
∗)v⊤K2

(X∗)vK2(x)dFX(x)dFT (t)−m(T ∗;β0)ε(T
∗,X∗;β0)

∥∥∥∥2]
≤2 · E

[∥∥∥∥∫
T

∫
X
m(t;β0)ε(t,x;β0)u

⊤
K1

(t)uK1
(T ∗)v⊤K2

(X∗)vK2
(x)dFX(x)dFT (t)−m(T ∗;β0)ε(T

∗,X∗;β0)

∥∥∥∥2]
+ 2 · E

[∥∥∥∥ ∫
T

∫
X
m(t;β0)ε(t,x;β0)

π∗
K(t,x)− π0(t,x)

π0(t,x)
u⊤K1

(t)uK1(T
∗)v⊤K2

(X∗)vK2(x)dFX(x)dFT (t)

∥∥∥∥2]→ 0,

where T ∗ ∼ FT , X
∗ ∼ FX , and T

∗ is independent of X∗; the first inequality holds by Jensen’s

inequality; the last convergence result follows from Lemma 3.1 and the fact that∫
T

∫
X
m(t;β0)ε(t,x;β0)u

⊤
K1
(t)uK1(T

∗)v⊤K2
(X∗)vK2(x)dFX(x)dFT (t)

is the L2-projection ofm(T ∗;β0)ε(T
∗,X∗;β0) on the space spanned by {uK1(T

∗), vK2(X
∗)}. Thus

(63) is of op(1) by Chebyshev’s inequality. Similar argument can be applied to show that both

(64) and (65) are of op(1). Therefore, we can have that

|(58)| ≤ |(62)|+ |(63)|+ |(64)| = op(1) .
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Then, we can obtain that

|(45)| ≤ |(57)|+ |(58)| = op(1) .

Summing up all orders (42)-(45) and using Assumption 1.15, we have

(42)+ (43)+ (44)+ (45)

=O(
√
NK−α) + 0 +

{
Op

(
ζ(K) ·K

3
2
−α
)
+Op

(
ζ(K)

K2

√
N

)}
+ op(1) = op(1).

5 Some Extensions

5.1 Proof of Theorem 6

(Proof of Consistency). Let

γ̂ =

[
N∑
i=1

uK1(Ti)uK1(Ti)
⊤

]−1 [ N∑
i=1

uK1(Ti)π̂K(Ti,X i)Yi

]

then θ̂K(t) = γ̂⊤uK1(t). By assumption, there exists γ∗ ∈ RK1 such that

sup
t∈T

∣∣E[π0(T,X)Y |T = t]− (γ∗)⊤uK1(t)
∣∣ = O(K−α̃

1 ). (66)

We first claim that

∥γ̂ − γ∗∥ = Op

(
ζ(K)

√
K

N
+ ζ(K)K−α +K−α̃

1

)
, (67)

and the proof will be established later. With the claim (67), we first show that
∫
T |θ̂K(t) −

θ(t)|2dFT (t) = Op

(
ζ(K)2K

N
+ ζ(K)2K−2α +K−2α̃

1

)
. Note that

∫
T
[θ̂K(t)− θ(t)]2dFT (t)

=

∫
T
[γ̂⊤uK1(t)− (γ∗)⊤uK1(t) + (γ∗)⊤uK1(t)− θ(t)]2dFT (t)

≤2(γ̂ − γ∗)⊤
[∫

T
uK1(t)uK1(t)

⊤dFT (t)

]
(γ̂ − γ∗) + 2

∫
T
[(γ∗)⊤uK1(t)− θ(t)]2dFT (t)
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≤2∥γ̂ − γ∗∥2 · λmax

(
E[uK1(T )uK1(T )

⊤]
)
+ 2 sup

t∈T
|(γ∗)⊤uK1(t)− θ(t)|2

=Op

(
ζ(K)2

K

N
+ ζ(K)2K−2α +K−2α̃

1

)
.

With the claim (67), we next show that supt∈T |θ̂K(t) − θ(t)| = Op[ζ1(K1)(ζ(K)
√
K/N +

ζ(K)K−α +K−α
1 )]. Note that

sup
t∈T

|θ̂K(t)− θ(t)|

=sup
t∈T

∣∣γ̂⊤uK1(t)− (γ∗)⊤uK1(t) + (γ∗)⊤uK1(t)− θ(t)
∣∣

≤ sup
t∈T

∥uK1(t)∥ · ∥γ̂ − γ∗∥+ sup
t∈T

|(γ∗)⊤uK1(t)− θ(t)|

≤ζ1(K1) ·

{
Op

(
sup

(t,x)∈T ×X
|π̂K(t, x)− π0(t, x)|

)
+O(K−α̃

1 )

}
+O(K−α̃

1 )

≤Op

[
ζ1(K1)

(
ζ(K)

√
K

N
+ ζ(K)K−α +K−α

1

)]
+O(K−α̃

1 )

=Op

[
ζ1(K1)

(
ζ(K)

√
K

N
+ ζ(K)K−α +K−α̃

1

)]
.

Finally, we turn back to prove the claim (67). Note that

γ̂ − γ∗ =

[
N∑
i=1

uK1(Ti)uK1(Ti)
⊤

]−1 [ N∑
i=1

π̂K(Ti,X i)uK1(Ti)Yi

]
− γ∗

=

[
N∑
i=1

uK1(Ti)uK1(Ti)
⊤

]−1 [ N∑
i=1

uK1(Ti) {π̂K(Ti,X i)− π0(Ti,X i)}Yi

]

+

[
N∑
i=1

uK1(Ti)uK1(Ti)
⊤

]−1 [ N∑
i=1

uK1(Ti){π0(Ti,X i)Yi − E[π0(Ti,X i)Yi|Ti]}

]

+

[
N∑
i=1

uK1(Ti)uK1(Ti)
⊤

]−1 [ N∑
i=1

uK1(Ti)
{
E[π0(Ti,X i)Yi|Ti]− (γ∗)⊤uK1(Ti)

}]
=A1N + A2N + A3N
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where

A1N =

[
N∑
i=1

uK1(Ti)uK1(Ti)
⊤

]−1 [ N∑
i=1

uK1(Ti) {π̂K(Ti,X i)− π0(Ti,X i)}Yi

]
,

A2N =

[
N∑
i=1

uK1(Ti)uK1(Ti)
⊤

]−1 [ N∑
i=1

uK1(Ti){π0(Ti,X i)Yi − E[π0(Ti,X i)Yi|Ti]}

]
,

A3N =

[
N∑
i=1

uK1(Ti)uK1(Ti)
⊤

]−1 [ N∑
i=1

uK1(Ti)
{
E[π0(Ti,X i)Yi|Ti]− (γ∗)⊤uK1(Ti)

}]
.

We first compute the probability order of A1N . We use the following notation:

ĤN := ({π̂K(T1, X1)− π0(T1, X1)}Y1, ..., {π̂K(TN , XN)− π0(TN , XN)}YN)⊤ ,

UN×K1 := (uK1(T1), ..., uK1(TN))
⊤ ,

Φ̂K1×K1 :=
1

N

N∑
i=1

uK1(T )u
⊤
K1
(T ).

Then we can obtain that

∥A1N∥2 =

∥∥∥∥∥∥
[

N∑
i=1

uK1(Ti)uK1(Ti)
⊤

]−1 [ N∑
i=1

uK1(Ti) {π̂K(Ti,X i)− π0(Ti,X i)}Yi

]∥∥∥∥∥∥
2

=N−2tr
(
Φ̂−1

K1×K1
U⊤
N×K1

ĤNĤ
⊤
NUN×K1Φ̂

−1
K1×K1

)
=N−2tr

(
U⊤
N×K1

ĤNĤ
⊤
NUN×K1Φ̂

−1
K1×K1

Φ̂−1
K1×K1

)
=N−2tr

(
Φ̂

−1/2
K1×K1

U⊤
N×K1

ĤNĤ
⊤
NUN×K1Φ̂

−1/2
K1×K1

Φ̂−1
K1×K1

)
≤λmax(Φ̂

−1
K1×K1

)N−2tr
(
Φ̂

−1/2
K1×K1

U⊤
N×K1

ĤNĤ
⊤
NUN×K1Φ̂

−1/2
K1×K1

)
=λmax(Φ̂

−1
K1×K1

)N−1tr
(
ĤNĤ

⊤
NUN×K1(U

⊤
N×K1

UN×K1)
−1U⊤

N×K1

)
≤[λmin(Φ̂K1×K1)]

−1N−1∥ĤN∥2

=[λmin(Φ̂K1×K1)]
−1 · 1

N

N∑
i=1

{π̂K(Ti,X i)− π0(Ti,X i)}2 Y 2
i

≤[λmin(Φ̂K1×K1)]
−1 sup

(t,x)∈T ×X
|π̂K(t, x)− π0(t, x)|2 ·

1

N

N∑
i=1

Y 2
i

≤Op(1) ·Op

(
ζ(K)2K−2α +

ζ(K)2K

N

)
·Op(1)
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=Op

(
ζ(K)2K−2α +

ζ(K)2K

N

)
,

where the first inequality follows from the fact that tr(AB) ≤ λmax(B)tr(A) for any sym-

metric matrix B and positive semidefinite matrix A, the second inequality follows from the

same fact and the fact that UN×K1(U
⊤
N×K1

UN×K1)
−1U⊤

N×K1
is a projection matrix with maximum

eigenvalue 1, and the fourth inequality follows from the facts that |λmin(Φ̂K1×K1)|−1 = Op(1),

sup(t,x)∈T ×X |π̂K(t, x)− π0(t, x)| = Op

(
ζ(K)K−α + ζ(K)

√
K/N

)
and N−1

∑N
i=1 Y

2
i = Op(1).

Next, we compute the probability order of A2N . We can deduce that

∥A2N∥2 =

∥∥∥∥∥∥
[

N∑
i=1

uK1(Ti)uK1(Ti)
⊤

]−1 [ N∑
i=1

uK1(Ti)εi

]∥∥∥∥∥∥
2

=N−2tr
(
Φ̂−1

K1×K1
U⊤
N×K1

ENE⊤
NUN×K1Φ̂

−1
K1×K1

)
=N−2tr

(
U⊤
N×K1

ENE⊤
NUN×K1Φ̂

−1
K1×K1

Φ̂−1
K1×K1

)
≤[λmin(Φ̂K1×K1)]

−2N−2∥U⊤
N×K1

EN∥2 = Op

(
K1

N

)
,

where the last equality follows that |λmin(Φ̂K1×K1)|−1 = Op(1) and N
−2∥U⊤

N×K1
EN∥2 = Op(K1/N)

by Markov’s inequality.

We finally compute the probability order of A3N . We define the notation

RN(γ
∗) =

({
E[π0(T1, X1)Y1|T1]− (γ∗)⊤uK1(T1)

}
, ...,

{
E[π0(TN , XN)YN |TN ]− (γ∗)⊤uK1(TN)

})⊤
,

then it follows that with probability approaching to 1,

∥A3N∥2 =

∥∥∥∥∥∥
[

N∑
i=1

uK1(Ti)uK1(Ti)
⊤

]−1 [ N∑
i=1

uK1(Ti)
{
E[π0(Ti,X i)Yi|Ti]− (γ∗)⊤uK1(Ti)

}]∥∥∥∥∥∥
2

=N−2
∥∥∥Φ̂−1

K1×K1
U⊤
N×K1

RN(γ
∗)
∥∥∥2

=N−2tr
(
Φ̂−1

K1×K1
U⊤
N×K1

RN(γ
∗)RN(γ

∗)⊤UN×K1Φ̂
−1
K1×K1

)
=N−2tr

(
U⊤
N×K1

RN(γ
∗)RN(γ

∗)⊤UN×K1Φ̂
−1
K1×K1

Φ̂−1
K1×K1

)
=N−2tr

(
Φ̂

−1/2
K1×K1

U⊤
N×K1

RN(γ
∗)RN(γ

∗)⊤UN×K1Φ̂
−1/2
K1×K1

Φ̂−1
K1×K1

)
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≤λmax(Φ̂
−1
K1×K1

)N−2tr
(
Φ̂

−1/2
K1×K1

U⊤
N×K1

RN(γ
∗)RN(γ

∗)⊤UN×K1Φ̂
−1/2
K1×K1

)
=λmax(Φ̂

−1
K1×K1

)N−1tr
(
RN(γ

∗)RN(γ
∗)⊤UN×K1(U

⊤
N×K1

UN×K1)
−1U⊤

N×K1

)
≤[λmin(Φ̂K1×K1)]

−1N−1∥RN(γ
∗)∥2

=[λmin(Φ̂K1×K1)]
−1 · 1

N

N∑
i=1

{
E[π0(Ti,X i)Yi|Ti]− (γ∗)⊤uK1(Ti)

}2
= Op(K

−2α̃
1 ),

where the first inequality follows from the fact that tr(AB) ≤ λmax(B)tr(A) for any symmetric

matrix B and positive semidefinite matrix A, the second inequality follows from the same fact

and the fact that UN×K1(U
⊤
N×K1

UN×K1)
−1U⊤

N×K1
is a projection matrix with maximum eigen-

value 1, and the last equality follows from the fact that |λmin(Φ̂K1×K1)|−1 = Op(1) and the fact

that 1
N

∑N
i=1

{
E[π0(Ti,X i)Yi|Ti]− (γ∗)⊤uK1(Ti)

}2 ≤ supt∈T |E[π0(T,X)Y |T ] − (γ∗)⊤uK1(t)|2 =

O(K−2α̃
1 ). Thus we complete the proof of (67).

(Proof of Asymptotic Normality). We have the following decomposition for θ̂(t)− θ(t):

θ̂K(t)− θ(t)

=uK1(t)
⊤(γ̂ − γ∗) + [(γ∗)⊤uK1(t)− θ(t)]

=uK1(t)
⊤

[
1

N

N∑
i=1

uK1(Ti)uK1(Ti)
⊤

]−1 [
1

N

N∑
i=1

uK1(Ti)

{
π̂K(Ti,X i)Yi − E [π0(Ti,X i)Yi|Ti]

}]

+uK1(t)
⊤

[
1

N

N∑
i=1

uK1(Ti)uK1(Ti)
⊤

]−1 [
1

N

N∑
i=1

uK1(Ti) ·
{
E [π0(Ti,X i)Yi|Ti]− (γ∗)⊤uK1(Ti)

}]

+

[
(γ∗)⊤uK1(t)− θ(t)

]
=b1N(t) + b2N(t) + b3N(t) ,

where

b1N(t) = uK1(t)
⊤

[
1

N

N∑
i=1

uK1(Ti)uK1(Ti)
⊤

]−1 [
1

N

N∑
i=1

uK1(Ti)

{
π̂K(Ti,X i)Yi − E [π0(Ti,X i)Yi|Ti]

}]

b2N(t) = uK1(t)
⊤

[
1

N

N∑
i=1

uK1(Ti)uK1(Ti)
⊤

]−1 [
1

N

N∑
i=1

uK1(Ti) ·
{
E [π0(Ti,X i)Yi|Ti]− (γ∗)⊤uK1(Ti)

}]
b3N(t) = (γ∗)⊤uK1(t)− θ(t).
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Then we have that

√
NVK(t)

−1/2
[
θ̂K(t)− θ(t)

]
=
√
NVK(t)

−1/2b1N(t) +
√
NVK(t)

−1/2b2N(t) +
√
NVK(t)

−1/2b3N(t).

We shall show that b1N(t) contributes to the asymptotic variance; and b2N(t)+b3N(t) contributes to

the asymptotic bias which is asymptotically negligible. Thus to complete the proof of asymptotic

normality, it is sufficient to prove the following results:

(i) VK ≥ c∥uK1(t)∥2 for some c > 0;

(ii)
√
NV

−1/2
K b1N(t)

d−→ N(0, 1);

(iii)
√
NV

−1/2
K b2N(t) = op(1);

(iv)
√
NV

−1/2
K b3N(t) = op(1).

We first prove Result (i). Note that λmin(ΣK1×K1) ≥ cσ2λmin(ΦK1×K1) = cσ2λmin(IK1×K1) ≥
cσ2 , we can have

VK =u⊤K1
(t)Φ−1

K1×K1
ΣK1×K1Φ

−1
K1×K1

uK1(t)

≥λmin(ΣK1×K1)u
⊤
K1
(t)Φ−1

K1×K1
Φ−1

K1×K1
uK1(t)

≥cσ2∥uK1(t)∥2.

For the claim (ii). Let

b̃1N(t) = uK1(t)
⊤

[
1

N

N∑
i=1

uK1(Ti)uK1(Ti)
⊤

]−1

×

[
1

N

N∑
i=1

uK1(Ti)

{
π0(Ti,X i)Yi − E [π0(Ti,X i)Yi|Ti,X i] + E [π0(Ti,X i)Yi|X i]− E [π0(Ti,X i)Yi]

}]
.

Similar to the proof of (36), we can have that

√
NVK(t)

−1/2 · (b1N(t)− b̃1N(t)) = op(1) .

Then

√
NVK(t)

−1/2b1N(t)
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=
√
NVK(t)

−1/2b̃1N(t) + op(1)

=
√
NVK(t)

−1/2uK1(t)
⊤Φ̂−1

K1×K1
N−1U⊤

N×K1
EN

=
√
NVK(t)

−1/2uK1(t)
⊤Φ−1

K1×K1
N−1U⊤

N×K1
EN +

√
NVK(t)

−1/2uK1(t)
⊤[Φ̂−1

K1×K1
− Φ−1

K1×K1
]N−1U⊤

N×K1
EN

=B1N,1(t) + B1N,2(t) .

For B1N,1(t), we can simply apply the Liapounov CLT and show that B1N,1(t)
d−→ N(0, 1). For

B1N,2(t), let T = (T1, ..., TN), we can obtain that

E
[
B1N,2(t)

2|T
]

=N−1VK(t)uK1(t)
⊤[Φ̂−1

K1×K1
− Φ−1

K1×K1
] · E

[
U⊤
N×K1

ENE⊤
NUN×K1 |T

]
· [Φ̂−1

K1×K1
− Φ−1

K1×K1
]uK1(t)

=λmax

(
N−1E

[
U⊤
N×K1

ENE⊤
NUN×K1 |T

])
VK(t)uK1(t)

⊤[Φ̂−1
K1×K1

− Φ−1
K1×K1

] · [Φ̂−1
K1×K1

− Φ−1
K1×K1

]uK1(t)

≤λmax

(
N−1E

[
U⊤
N×K1

ENE⊤
NUN×K1 |T

]) {
V −1
K ∥uK1(t)∥2

}
· ∥Φ̂−1

K1×K1
− Φ−1

K1×K1
∥2

=Op(1)Op(1)op(1) = op(1)

where we use the fact that N−1E
[
U⊤
N×K1

ENE⊤
NUN×K1 |T

]
= N−1

∑N
i=1 uK1(Ti)uK1(Ti)

⊤σ2(Ti) has

bounded maximum eigenvalue. Therefore, B1N,1(t) = op(1) by the conditional Chebyshev’s in-

equality. Thus (ii) holds.

For (iii), by Cauchy-Schwarz’s inequality, we can obtain that

√
NV

−1/2
K |b2N(t)|

=N−1/2V
−1/2
K

∣∣∣uK1(t)
⊤Φ̂−1

K1×K1
U⊤
N×K1

RN(γ
∗)
∣∣∣

≤V −1/2
K

{
uK1(t)

⊤Φ̂−1
K1×K1

(
N−1U⊤

N×K1
UN×K1

)
Φ̂−1

K1×K1
uK1(t)

} 1
2 {
RN(γ

∗)⊤RN(γ
∗)
} 1

2

≤V −1/2
K

{
uK1(t)

⊤Φ̂−1
K1×K1

uK1(t)
} 1

2 {
RN(γ

∗)⊤RN(γ
∗)
} 1

2

≤{V −1/2
K ∥uK1(t)∥} · |λmax(Φ

−1
K1×K1

)|
1
2 ·O(N

1
2 ·K−α̃

1 )

=O(1) ·Op(1) · op(1) = op(1) .

Similarly, we can show show that
√
NV

−1/2
K |b3N(t)| = op(1). This completes the proof of the

Theorem.
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5.2 Proof of Theorem 7

Let µ(t, x) = E[Y |T = t,X = x], we decompose
√
N(ψ̂K − ψ) as follows:

√
N(ψ̂K − ψ) =

1√
N

N∑
i=1

{π̂K(Ti,X i)Yi − ψ}

=
1√
N

N∑
i=1

{
(π̂K(Ti,X i)− π∗

K(Ti,X i))Yi −
∫
T

∫
X
(π̂K(t,x)− π∗

K(t,x))µ(x, t)dFX,T (x, t)

}
(68)

+
1√
N

N∑
i=1

{
(π∗

K(Ti,X i)− π0(Ti,X i))Yi −
∫
T

∫
X
µ(t,x) (π∗

K(t,x)− π0(t,x)) dFX,T (x, t)

}
(69)

+
√
N

∫
T

∫
X
µ(t,x) (π∗

K(t,x)− π0(t,x)) dFX,T (x, t) (70)

+
√
N

∫
T

∫
X
(π̂K(t,x)− π∗

K(t,x))µ(x, t)dFX,T (x, t) (71)

−
√
N

∫
T

∫
X
µ(t,x)ρ′′

(
u⊤K1

(t)Λ̃K1×K2vK2(x)
)
u⊤K1

(t)ÂK1×K2vK2(x)m(t;β0)dFX,T (x, t)

+
√
N

∫
T

∫
X
ε(t,x;β0)ρ

′′
(
u⊤K1

(t)Λ̃K1×K2vK2(x)
)
u⊤K1

(t)ÂK1×K2vK2(x)dFX,T (x, t) (72)

−
√
N

∫
T

∫
X
µ(t,x)ρ′′

(
u⊤K1

(t)Λ∗
K1×K2

vK2(x)
)
u⊤K1

(t)A∗
K1×K2

vK2(x)dFX,T (x, t)

+
√
N

∫
X
µ(t,x)ρ′′

(
u⊤K1

(t)Λ∗
K1×K2

vK2(x)
)
u⊤K1

(t)A∗
K1×K2

vK2(x)dFX,T (x, t) (73)

+
1√
N

N∑
i=1

{
π0(Ti,X i)µ(Ti,X i)− E [π0(T,X)µ(T,X)|X = X i]

− E [π0(T,X)µ(T,X)|T = Ti] + E [π0(T,X)µ(T,X)]

}

+
1√
N

N∑
i=1

{
π0(Ti,X i)Yi − π0(Ti,X i)µ(Ti,X i) + E [π0(T,X)µ(T,X)|T = Ti] (74)

+ E [π0(T,X)µ(T,X)|X = X i]− E [π0(T,X)µ(T,X)]− ψ

}
.

Using the similar argument for showing that (42)-(45) are all op(1), we can obtain that the terms

(70)-(73) are all op(1). The term (74) is asymptotically normal and attains the efficiency bound.
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Hence to complete the proof, it suffices to show (68) and (69) are of oP (1).

For term (68):

Denoting (68) by WK and applying Mean Value Theorem twice, we can obtain

WK =
1√
N

N∑
i=1

[
Yiρ

′′
(
u⊤K1

(Ti)Λ̃K1×K2vK2(X i)
)
uK1(Ti)

⊤ÂK1×K2vK2(X i)

−
∫
T

∫
X
µ(t;x)ρ′′

(
u⊤K1

(t)Λ̃K1×K2vK2(x)
)
u⊤K1

(t)ÂK1×K2vK2(x)dFX,T (x, t)

]

=
1√
N

N∑
i=1

[
Yiρ

′′ (u⊤K1
(Ti)Λ

∗
K1×K2

vK2(X i)
)
uK1(Ti)

⊤ÂK1×K2vK2(X i)

−
∫
T

∫
X
µ(t;x)ρ′′

(
u⊤K1

(t)Λ∗
K1×K2

vK2(x)
)
u⊤K1

(t)ÂK1×K2vK2(x)dFX,T (x, t)

]

+
1√
N

N∑
i=1

[
Yiρ

′′′ (ξ3(Ti,X i))
{
uK1(Ti)

⊤ÃK1×K2vK2(X i)
}
uK1(Ti)

⊤ÂK1×K2vK2(X i)

]
−

√
N

∫
T

∫
X
µ(t;x)ρ′′′ (ξ3(t,x))

{
uK1(t)

⊤ÃK1×K2vK2(x)
}
u⊤K1

(t)ÂK1×K2vK2(x)dFX,T (x, t)

=W1K +W2K +W3K ,

where ÃK1×K2 is defined in (39), and

W1K :=
1√
N

N∑
i=1

[
L′ {Yi − g (Ti;β0)}m(Ti;β0)ρ

′′ (u⊤K1
(Ti)Λ

∗
K1×K2

vK2(Xi)
)
uK1(Ti)

⊤ÂK1×K2vK2(Xi)

−
∫
T

∫
X
m(t;β0)ε(t,x;β0)ρ

′′ (u⊤K1
(t)Λ∗

K1×K2
vK2(x)

)
u⊤K1

(t)ÂK1×K2vK2(x)dFX,T (x, t)

]
,

W2K :=
1√
N

N∑
i=1

[
L′ {Yi − g (Ti;β0)}m(Ti;β0)ρ

′′′ (ξ3(Ti,Xi))
{
uK1(Ti)

⊤ÃK1×K2vK2(Xi)
}
uK1(Ti)

⊤ÂK1×K2vK2(Xi)

]
,

W3K := −
√
N

∫
T

∫
X
m(t;β0)ε(t,x;β0)ρ

′′′ (ξ3(t,x))
{
uK1(t)

⊤ÃK1×K2vK2(x)
}
u⊤K1

(t)ÂK1×K2vK2(x)dFX,T (x, t) ,

and ξ3(t,x) lies between uK1(t)Λ̃
⊤
K1×K2

vK2(x) and uK1(t)Λ
∗
K1×K2

vK2(x).

For the term W1K , we have

W1K :=
1√
N

N∑
i=1

[
Yiρ

′′ (u⊤K1
(Ti)Λ

∗
K1×K2

vK2(X i)
)
uK1(Ti)

⊤ÂK1×K2vK2(X i)
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−
∫
T

∫
X
µ(t;x)ρ′′

(
u⊤K1

(t)Λ∗
K1×K2

vK2(x)
)
u⊤K1

(t)ÂK1×K2vK2(x)dFX,T (x, t)

]

=tr

{
1√
N

N∑
i=1

[
Yiρ

′′ (u⊤K1
(Ti)Λ

∗
K1×K2

vK2(X i)
)
vK2(X i)uK1(Ti)

⊤

−
∫
T

∫
X
µ(t;x)ρ′′

(
u⊤K1

(t)Λ∗
K1×K2

vK2(x)
)
vK2(x)u

⊤
K1
(t)dFX,T (x, t)

]
ÂK1×K2

}
=tr

{
UK2×K1ÂK1×K2

}
,

where

UK2×K1 :=
1√
N

N∑
i=1

[
Yiρ

′′ (u⊤K1
(Ti)Λ

∗
K1×K2

vK2(X i)
)
vK2(X i)uK1(Ti)

⊤

−
∫
T

∫
X
µ(t;x)ρ′′

(
u⊤K1

(t)Λ∗
K1×K2

vK2(x)
)
vK2(x)u

⊤
K1
(t)dFX,T (x, t)

]
.

We compute the second moment of UK2×K1 to get that

E
[
∥UK2×K1∥2

]
= E[tr{(UK2×K1)

⊤UK2×K1}]

=E
[
Y 2ρ′′

(
u⊤K1

(T )Λ∗
K1×K2

vK2(X)
)2 ∥vK2(X)∥2∥uK1(T )∥2

]
− tr

{
E[µ(T ;X)ρ′′

(
u⊤K1

(T )Λ∗
K1×K2

vK2(X)
)
uK1(T )v

⊤
K2

(X)] · E[µ(T ;X)ρ′′
(
u⊤K1

(T )Λ∗
K1×K2

vK2(X)
)
vK2(X)uK1(T )

⊤]

}
≤E

[
Y 2ρ′′

(
u⊤K1

(T )Λ∗
K1×K2

vK2(X)
)2 ∥vK2(X)∥2∥uK1(T )∥2

]
≤E[Y 2] · a3 ·O(ζ(K)2) = O(ζ(K)2),

where a3 := sup
γ∈Γ1

|ρ′′(γ)|2 < +∞, the second inequality follows from this definition and the fact

that u⊤K1
(t)Λ∗

K1×K2
vK2(x) ∈ Γ1, ∀(t,x) ∈ T × X when K is large enough. Then in light of

Chebyshev’s inequality, Lemma 3.2 and Assumption 1.15, we have

|W1K | ≤ ∥UK2×K1∥∥ÂK1×K2∥ = Op(ζ(K))Op

(√
K

N

)
= Op

(
ζ(K)

√
K

N

)
.

For the term W3K . With (34), (49), the fact ∥ÃK1×K2∥ ≤ ∥ÂK1×K2∥, Lemma 3.2, and As-

sumption 1.15, we can derive that

∥W3K∥ =

∥∥∥∥√N ∫
T

∫
X
µ(t,x)ρ′′′ (ξ3(t,x))

{
uK1(t)

⊤ÃK1×K2vK2(x)
}
u⊤K1

(t)ÂK1×K2vK2(x)dFX,T (x, t)

∥∥∥∥
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≤
√
N sup

(t,x)∈T ×X
|ρ′′′ (ξ3(t,x))| · sup

(t,x)∈T ×X
|µ(t,x)|

·
∫
T

∫
X

∣∣∣uK1(t)
⊤ÃK1×K2vK2(x)

∣∣∣ · ∣∣∣u⊤K1
(t)ÂK1×K2vK2(x)

∣∣∣ dFX,T (x, t)

≤
√
N ·Op(1) ·O(1) ·

{∫
T

∫
X

∣∣∣uK1(t)
⊤ÃK1×K2vK2(x)

∣∣∣2 dFX,T (x, t)

} 1
2

·
{∫

T

∫
X

∣∣∣u⊤K1
(t)ÂK1×K2vK2(x)

∣∣∣2 dFX,T (x, t)

} 1
2

=
√
N ·Op(1) ·O(1) ·Op

(√
K

N

)
·Op

(√
K

N

)
= Op

(√
K2

N

)
(by ((34))). (75)

For the term W2K , we can deduce that

∥∥∥∥ 1√
N

N∑
i=1

[
Yiρ

′′′ (ξ3(Ti,Xi))
{
uK1

(Ti)
⊤ÃK1×K2

vK2
(Xi)

}
uK1

(Ti)
⊤ÂK1×K2

vK2
(Xi)

]∥∥∥∥
≤

{
1√
N

N∑
i=1

|Yi| · ∥uK1(Ti)∥2∥vK2(Xi)∥2
}

sup
(t,x)∈T ×X

|ρ′′′ (ξ3(t,x)) | · ∥ÂK1×K2∥2

≤
√
N

{
1

N

N∑
i=1

Y 2
i

} 1
2
{

1

N

N∑
i=1

∥uK1(Ti)∥4∥vK2(Xi)∥4
} 1

2

sup
(t,x)∈T ×X

|ρ′′′ (ξ3(t,x)) | · ∥ÂK1×K2∥2

≤
√
N ·Op(1) · {ζ1(K1)ζ2(K2)} ·

{
1

N

N∑
i=1

∥uK1(Ti)∥2∥vK2(Xi)∥2
} 1

2

·Op(1) ·Op

(
K

N

)

≤
√
N ·Op(1) · ζ(K) ·

{
E
[
∥uK1(T )∥2∥vK2(X)∥2

]
+Op

(
ζ(K)

√
K

N

)} 1
2

·Op(1) ·Op

(
K

N

)

≤
√
N ·Op(1) · ζ(K) ·Op(

√
K) ·Op(1) ·Op

(
K

N

)
= Op

(
ζ(K)

√
K3

N

)
,

where the fourth inequality follows from the fact that

E

( 1

N

N∑
i=1

∥uK1(Ti)∥2∥vK2(Xi)∥2 − E
[
∥uK1(T )∥2∥vK2(X)∥2

])2


=
1

N
· E
[(
∥uK1(T )∥2∥vK2(X)∥2 − E

[
∥uK1(T )∥2∥vK2(X)∥2

])2]
≤ 1

N
· E
[
∥uK1(T )∥4∥vK2(X)∥4

]
≤ 1

N
· ζ1(K1)

2ζ2(K2)
2 · E

[
∥uK1(T )∥2∥vK2(X)∥2

]
=

1

N
· ζ1(K1)

2ζ2(K2)
2 · E

[
1

π0(T,X)
· π0(T,X)∥uK1(T )∥2∥vK2(X)∥2

]
≤ 1

N
· 1

η1
· ζ1(K1)

2ζ2(K2)
2 · E

[
π0(T,X)∥uK1(T )∥2∥vK2(X)∥2

]
=

1

N
· 1

η1
· ζ1(K1)

2ζ2(K2)
2 · E

[
∥uK1(T )∥2

]
· E
[
∥vK2(X)∥2

]
= O

(
K

N
ζ(K)2

)
.
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Therefore, we can obtain that

(68) = W1K +W2K +W3K = Op

(
ζ(K)

√
K

N

)
+Op

(
ζ(K)

√
K3

N

)
+Op

(√
K2

N

)
= Op

(
ζ(K)

√
K3

N

)
.

Finally, it follows that the term (68) is of op(1) in light of Assumption 1.15.

For term (69): Note that

E

∥∥∥∥∥ 1√
N

N∑
i=1

{
(π∗

K(Ti,X i)− π0(Ti,X i))Yi − E [µ(T,X) (π∗
K(T,X)− π0(T,X))]

}∥∥∥∥∥
2


≤E
[
(π∗

K(T,X)− π0(T,X))2 Y 2
]
≤ sup

(t,x)∈T ×X
|π∗

K(t,x)− π0(t,x)|2 · E
[
Y 2
]
≤ O(ζ(K)2K−2α),

where the last equality follows from Lemma 3.1. Then by Chebyshev’s inequality, we can claim

that the term (69) is of Op(ζ(K)K−α).

6 Variance Estimation in Monte Carlo Simulations

6.1 Proposed Variance Estimator

In Monte Carlo simulations, the estimated parameter is the average treatment effects, which

corresponds to a differentiable loss function L(v) = v2. The variance estimator can be simply

defined as follows:

V̂eff =

[
1

N

N∑
i=1

m(Ti; β̂)m(Ti; β̂)
⊤

]−1

×

{
1

N

N∑
j=1

[
ψ̂(Yj, Tj,Xj; β̂)−mean(ψ̂)

]
·
[
ψ̂(Yj, Tj,Xj; β̂)−mean(ψ̂)

]⊤}

×

[
1

N

N∑
i=1

m(Ti; β̂)m(Ti; β̂)
⊤

]−1

, (76)

where

ψ̂(Y, T,X; β̂) =π̂K′(T,X)m(T ; β̂){Y − Ê[Y |T,X]}+ Ê [{Y − g(T ; β0)}π0(T,X)m(T ;β0)|X] ,

56



and

Ê [Y |T,X] =

[
N∑
i=1

YiwK0(Ti,X i)
⊤

][
N∑
i=1

wK0(Ti,X i)wK0(Ti,X i)
⊤

]−1

wK0(T,X)

and

Ê [{Y − g(T ; β0)}π0(T,X)m(T ;β0)|X] =

[
N∑
i=1

π̂K′(Ti,X i)(Yi − g(Ti; β̂))m(Ti; β̂)vM0(X i)
⊤

]

×

[
N∑
i=1

vM0(X i)vM0(X i)
⊤

]−1

vM0(X),

and

mean(ψ̂) :=
1

N

N∑
j=1

ψ̂(Yj, Tj,Xj; β̂).

6.2 True Values of Veff in Monte Carlo Simulations

In Section 9 of the main paper, Monte Carlo simulations on variance estimation are performed.

Computing the bias, standard deviation, and RMSE of the variance estimator V̂eff requires to

compute the true variance Veff . We describe how to compute Veff under DGP-L1 in Section 6.2.1

and DGP-NL1 in Section 6.2.2. DGP-L2 and DGP-NL2 are omitted since they can be handled

in the same way as DGP-L1 and DGP-NL1.

To reduce notation, the single covariate X1 is redefined as X. Note that the influence function

is written as

ψ(Y, T,X;β0) =π0(T,X)m(T ;β0){Y − g(T ;β0)} − E [{Y − g(T ;β0)}π0(T,X)m(T ;β0)|T,X]

+ E [{Y − g(T ;β0)}π0(T,X)m(T ;β0)|T ] + E [{Y − g(T ;β0)}π0(T,X)m(T ;β0)|X]

− E [{Y − g(T ;β0)}π0(T,X)m(T ;β0)]

=π0(T,X)m(T ;β0){Y − g(T ;β0)} − E [{Y − g(T ;β0)}π0(T,X)m(T ;β0)|T,X]

+ E [{Y − g(T ;β0)}π0(T,X)m(T ;β0)|X] . (77)
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6.2.1 DGP-L1

Recall that DGP-L1 is

T = 1 + ρT,X ·X + ξ, Y = 1 +X + T + ε. (ρT,X = 0.2)

We have

E[Y |T,X] = 1 +X + T, E[Y (t)] = g(t;β0) = 1 + t.

We directly compute

E [{Y − g(T ;β0)}π0(T,X)m(T ;β0)|T = t,X = x] =

∫
{y − g(t;β0)} ·

fT (t)

fT |X(t|x)
·m(t) · fY |T,X(y|t, x)dy

= m(t) · π0(t, x) · {E[Y |X = x, T = t]− g(t;β0)} = m(t) · π0(t, x) · {1 + x+ t− (1 + t)}

= m(t) · π0(t, x) · x (78)

and

E [{Y − g(T ;β0)}π0(T,X)m(T ;β0)|X = x] =

∫
m(t) · π0(t, x) · x · fT |X(t|x)dt

= x ·
∫
m(t)f(t)dt = x · E[m(T )]. (79)

Substitute (78) and (79) into (77) to get

ψ(Y, T,X;β0) =π0(T,X)m(T ){Y − 1− T} −m(T ) · π0(T,X) ·X +X · E[m(T )]

=π0(T,X) ·m(T ) · {Y − 1−X − T}+X · E[m(T )]

=π0(T,X) · {Y − 1−X − T} ·

[
1

T

]
+

[
X

X

]
. (80)

To compute π0(t, x), note that

fT |X(t|x) =
1√
2π

exp

(
−(t− 1− ρT,X · x)2

2

)
,

fT (t) =
1√

2π · (1 + ρ2T,X)
exp

(
− (t− 1)2

2 · (1 + ρ2T,X)

)
, (T ∼ N(1, 1 + ρ2T,X)).
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Hence,

π0(t, x) =
fT (t)

fT |X(t|x)
=

1√
1 + ρ2T,X

exp

{
ρ2T,X · (t− 1)2 + (1 + ρ2T,X) · ρ2T,X · x2 − 2 · (1 + ρ2T,X) · ρT,X · x(t− 1)

2(1 + ρ2T,X)

}
.

(81)

Using (80) and (81), the true variance can be computed as

Veff =

[
1

N

N∑
i=1

m(Ti)m(Ti)
⊤

]−1{
1

N

N∑
i=1

ψ̂(Yi, Ti, Xi;β0)ψ(Yi, Ti, Xi;β0)
⊤

}[
1

N

N∑
i=1

m(Ti)m(Ti)
⊤

]−1

. (82)

Based on a simulated sample with large enough size N = 108, it follows that V11 = 3.142,

V12 = −1.097, and V22 = 1.097.

6.2.2 DGP-NL1

Recall that DGP-NL1 is

T = ρT,X ·X2 + ξ, Y = X2 + T + ϵ. (ρT,X = 0.1)

We have

E[Y |T,X] = X2 + T, E[Y (t)] = g(t;β0) = 1 + t.

Eq. (78) is now rewritten as

E [{Y − g(T ;β0)}π0(T,X)m(T ;β0)|T = t,X = x] = m(t) · π0(t, x) · {x2 − 1}.

Eq. (79) is now rewritten as

E [{Y − g(T ;β0)}π0(T,X)m(T ;β0)|X = x] = {x2 − 1} · E[m(T )].

Substitute those equations into (77) to get

ψ(Y, T,X;β0) = π0(T,X) · {Y −X2 − T} ·

[
1

T

]
+

[
X2 − 1

{X2 − 1} · ρT,X

]
. (83)
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To compute π0(t, x), note that

fT |X(t|x) =
1√
2π

exp

(
−(t− ρT,X · x2)2

2

)
,

f̂T (t) =
1

Nh

N∑
i=1

k

(
Ti − t

h

)
=

1

Nh

N∑
i=1

1√
2π

exp

(
−(Ti − t)2

2h2

)
,

where k(·) is the kernel function which can be taken as k(z) = (2π)−1/2 exp (−z2/2), and the

bandwith can be taken as, say, h = 0.1. Then

π0(t, x) =
f̂T (t)

fT |X(t|x)
=

1

Nh

N∑
i=1

exp

(
−(Ti − t)2

2h2
+

(t− ρT,X · x2)2

2

)
. (84)

Using (83) and (84), the true variance can be computed from (82). Based on a simulated

sample with large enough size N = 50000, it follows that V11 = 3.043, V12 = −0.118, and

V22 = 1.074.
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