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Abstract
Background: Most proteins function by interacting with other molecules. Their interaction
interfaces are highly conserved throughout evolution to avoid undesirable interactions that lead to
fatal disorders in cells. Rational drug discovery includes computational methods to identify the
interaction sites of lead compounds to the target molecules. Identifying and classifying protein
interaction interfaces on a large scale can help researchers discover drug targets more efficiently.

Description: We introduce a large-scale protein domain interaction interface database called
InterPare http://interpare.net. It contains both inter-chain (between chains) interfaces and intra-
chain (within chain) interfaces. InterPare uses three methods to detect interfaces: 1) the geometric
distance method for checking the distance between atoms that belong to different domains, 2)
Accessible Surface Area (ASA), a method for detecting the buried region of a protein that is
detached from a solvent when forming multimers or complexes, and 3) the Voronoi diagram, a
computational geometry method that uses a mathematical definition of interface regions. InterPare
includes visualization tools to display protein interior, surface, and interaction interfaces. It also
provides statistics such as the amino acid propensities of queried protein according to its interior,
surface, and interface region. The atom coordinates that belong to interface, surface, and interior
regions can be downloaded from the website.

Conclusion: InterPare is an open and public database server for protein interaction interface
information. It contains the large-scale interface data for proteins whose 3D-structures are known.
As of November 2004, there were 10,583 (Geometric distance), 10,431 (ASA), and 11,010
(Voronoi diagram) entries in the Protein Data Bank (PDB) containing interfaces, according to the
above three methods. In the case of the geometric distance method, there are 31,620 inter-chain
domain-domain interaction interfaces and 12,758 intra-chain domain-domain interfaces.
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Background
Proteins are the most important class of molecules in a
cell. Most proteins function by interacting with other mol-
ecules, especially other proteins. The interactions among
proteins are highly regulated and tightly conserved
throughout evolution, [1,2] mainly because unnecessary
or unsatisfactory interaction (misinteraction) triggered by
random mutations can lead to molecular dysfunction.
Therefore, interaction interface regions are under pressure
from natural selection and are more conserved [3] com-
pared to other exposed non-interface regions of proteins.
Protein "structural interactomics" to map all the protein
domain interactions is becoming increasingly important
as more complete genome sequences are made available
[4-7]. Now scientists can map the whole human interac-
tome bioinformatically [8], using ever-increasing experi-
mental data coming from methods such as yeast two-
hybrid analysis. Consequently, a higher resolution molec-
ular interaction analysis is also becoming more
important.

Since the 1970s, there has been much effort to determine
the principles of protein-protein recognition. Pioneers in
the field of protein-protein interaction, such as Chothia
and Janin [9], have studied the physical and chemical
properties of protein interaction sites that contribute to
the recognition processes. Colman et al. [10,11] focused
on electrostatic and shape complementarity of interaction
interfaces using EC (Electrostatic Complementarity) and
shape correlation index, respectively. Argos [12] studied
interfaces between protein subunits or protein domains.
He not only investigated the physicochemical properties
of protein interfaces, but also tried to understand the geo-
metric features of protein interfaces using a spline func-
tion [13,14]. Jones and Thornton [15] introduced a
surface patch method to find out the parameters that con-
tribute to the process of protein-protein interaction.
Chakrabarti and Janin [16,17] investigated the structure
of interface region by dissecting it into core and rim based
on different solvent accessibility. They also addressed the
chemical properties of each region.

Recently, there has been a new trend in the study of pro-
tein interfaces. Several groups have introduced computa-
tional geometric and topology methods for the study of
protein interfaces. Most importantly, the Voronoi dia-
gram [18,19,23] has been used to study interfaces of pro-
tein complexes. As early as 1974, Richards [20,21] first
introduced the Voronoi diagram as an application for pro-
tein structure study, although not specifically as an inter-
face analysis tool.

Despite all the efforts to unveil the underlying principles
of protein-protein interaction for over 30 years, there has
not been much progress at the fundamental level since the

research by Chothia and Janin [9]. The interface data
derived from different approaches are not well main-
tained or widely shared amongst scientists. Fortunately,
with the help of faster X-ray crystallography and NMR in
structural biology, there has been an increase in the
number of known three-dimensional protein structures.
This 3D structure information is a good source of data for
the study of protein interfaces.

Here, we introduce a large-scale protein interaction inter-
face database called InterPare (http://interpare.net or
http://psimap.org). InterPare presents interfaces between
protein domains identified by three methods. First, the
interface is detected by calculating the geometric distance
between subunits of multidomain proteins or protein
complexes in the PDB [22,27]. In the second approach,
buried protein regions are identified by calculating the
accessible surface area (ASA) when they form a complex
or an aggregate with other subunits or domains. These
buried regions can be accessible to water when they are in
a free subunit or one domain state. Finally, interfaces are
defined by a geometric and topological approach using
the Voronoi diagram [18,19,23]. InterPare presents pro-
tein interfaces defined by the Voronoi diagram. The inter-
face structure of queried proteins, in the context of the
whole protein configuration, can be viewed with three dif-
ferent molecular viewers on the results page. They are the
Chime [24], Jmol [25], and InterFacer [26]. InterPare also
provides the atomic coordinate files for protein surface,
interior, and interface for further analysis.

Construction and content
Data sets
Proteins in the PDB [22,27] were used to investigate inter-
acting interfaces of protein domains. For a domain defini-
tion, we used the Structural Classification of Proteins
(SCOP) [28,29]. As of this writing, InterPare uses SCOP
1.65 which is based on around 20,600 PDB entries. The
ASTRAL compendium [30,31] provides 3D coordinate
files of domains in SCOP. InterPare contains 10,583,
10,431, and 11,010 PDB entries that have been identified
as containing interacting interfaces according to geometric
distance, ASA, and the Voronoi diagram methods (see
interface identification methods below) respectively. Fig-
ure 1 shows the extent of PDB data sets covered by each
method and their overlap according to the three methods.
Interfaces from 10,109 PDB entries can be commonly
identified by these three methods. All the interfaces
derived by the geometric distance method (green) can
also be detected by the Voronoi method (blue) because
the latter covers all the multidomain proteins in SCOP
(11,010 PDB entries based on SCOP 1.65) by using a
mathematical definition of interfaces. The three interface
identification methods are explained in the following
section.
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Interface identification methods
We identified interaction interfaces of protein domains
by:

1) Calculating the geometric distance between atoms in
different domains (PSIMAP method).

2) Detecting the differences of Accessible Surface Area
(ASA) from all the residues in two states: the detached
individual subunit state and the multimeric state.

3) Calculating Voronoi diagrams.

1. The geometric distance method checks the distance
between atoms in two interacting domains.

Two domains are assumed to interact with each other if
there are at least 5 residue pairs whose atomic distance
falls within 5 Angstrom distance (5-5 rule), according to
the PSIMAP algorithm [32-34]. In this method, domain-
domain interaction interfaces are defined as a set of atoms
satisfying the threshold of the 5-5 rule by using FAC PSI-
MAP method [35]. We define an amino acid residue as an
interface residue if its atoms are within the threshold 5
Angstrom is a threshold based on Van der Waals radii of
interacting atoms and a solvent such as water. The dis-
tance threshold (5 Å is a default) can be varied by users on
the website. As the threshold gets higher the number of
interface residue gets smaller. We used SCOP 1.65 as a
domain definition. It contains 54,745 domains from
20,619 PDB Entries (August 2003). InterPare, at the time
of this writing, contains 26,999 PDB entries (September
2004). At present, there is a faster algorithm available that
uses the convex hull concept [36]. However, the present C
program was efficient enough in that it took only 15 hours
to complete the calculation for all the entries in the PDB.
It is based on a distributed linux cluster system with 22
computing nodes each of which has Intel Xeon 3.0 GHz
CPU and 2 GB memory. Current PSIMAP program can be
freely downloadable from the PSIMAP website [37].

2. The Accessible Surface Area (ASA) method detects pro-
tein regions that are buried and hence excluded from a
solvent when forming a multimer or a complex.

If two or more subunits form a protein complex or aggre-
gate, they have to lose a portion of area that was accessible
by a solvent (typically water). With the ASA method, we
define interface residues as residues that have lost more
than 1 Å2 solvent accessible surface area (ASA) upon
aggregation or complexation [15,38,39]. It can be formu-
lated as follows.

For all residues ( ) in a SCOP domain and their corre-

sponding residues ( ) in a PDB entry,  and  can

be either an interface residue (Interface( , ) = 1) or a

non-interface residue (Interface( , ) = 0) based on

the difference of ASA in that residue. The threshold (1 Å2

in our case) can be selected by the user on the InterPare
website (from 1 Å2 to 5 Å2). As the threshold gets higher,
the number of interface residues gets smaller. An interface

PDB data coverage and overlap of three interface identifica-tion methodsFigure 1
PDB data coverage and overlap of three interface identifica-
tion methods. Numbers in a circle represent the number of 
PDB entries whose interfaces have been identified according 
to ASA (green), PSIMAP (red), and Voronoi (blue) methods. 
In the case of multidomain proteins, 24, 474, and 403 PDB 
entries are exclusively identified by ASA, PSIMAP, and Voro-
noi method, respectively. The main reason for the exclusive 
detection results from the different method of interface iden-
tification. Interfaces from 298 PDB entries, uniquely identi-
fied by the ASA method, are not domain-domain interfaces. 
They are interfaces between a domain and DNA (RNA), or 
between a domain and non-domain region from a different 
chain. The numbers are based on SCOP 1.65. All the PDB 
entries that belong to each category are downloadable on 
the InterPare website.
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region, in a domain, that consists of at least 10 interface
residues is acceptable, and those having less than 10 resi-
dues are considered as artifacts. InterPare only serves
domain interaction interfaces having at least 10 interface
residues. We calculated the ASA of protein molecules
using a program called NACCESS [40,41], an implemen-
tation of the algorithm developed by Lee and Richards
[42]. It calculates the absolute ASA and the relevant ASA
in terms of total residues, side chains, polar atoms, and
non-polar atoms. Relative accessibilities, for each residue
in a domain or a protein, can be expressed as the ratio of
the surface area of a residue in an intact state to that of a
residue in an Ala-X-Ala tri-peptide state [43]. Surface resi-
dues are defined as those that have a relative ASA of more
than 5% [44]. Interior residues are defined as those that
have a relative ASA of less than 5%. This threshold can
also be chosen on the InterPare website. The default van
der Waals radii of atoms were taken from Chothia [43].
We used water of 1.40 van der Waals radii as a solvent. In
Figure 2, a protein domain is shown which is divided into
three regions (interface, interior, surface) according to the
ASA method.

3. The Voronoi diagram, also known as Dirichlet Tessella-
tion, has been widely used in the fields of science and

engineering. The Voronoi diagram was first introduced as
an application for the study of protein structures by Rich-
ards [20,21]. There is a report on defining molecular inter-
faces by Power Diagram; Voronoi Diagram on a weighted
point set [45]. We used the same protocol suggested by
Varshney et al. [45], but applied our own polygon filtering
method and calculated interfaces only between domains
instead of calculating them on protein complexes.

First of all, a three dimensional power-diagram P of the
atoms was constructed. Each face of the power-diagram P
is defined by two adjacent atoms (Figure 3). Power-dia-
grams generate polygons which are bounded by edges. An
edge, represented as a blue solid line in Figure 3, is defined
by two atoms each of which belongs to different domains.
The construction of such a power diagram, in an average
case, will have a time complexity of O(n) (n is number of
atoms in the protein) [46,47] where the number of neigh-
bors for any given atom is bounded by a constant.

To have polygons only close to the interaction region,
marginal polygons need to be filtered out because those
are irrelevant to the interacting interfaces. We removed all
the marginal polygons by using our two-stage polygon
filtering method. At first stage, we removed polygons

Protein structure with respect to their geometrical regionFigure 2
Protein structure with respect to their geometrical region. (a) Schematic diagram representing the interior, interface, and sur-
face of longitudinal section of a protein domain. (b) An example of a 3D structure (SCOP id: d1a25a_) which corresponds to a 
schematic diagram (a). It shows the three areas of a domain (red: protein surface, blue: protein interior, filled-in space model: 
interaction interface). Interface regions are represented as a space-fill model to distinguish them from other regions.
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which do not contain edges defined by interface atoms.
Interface atoms are those in the interface residue defined
by ASA method (see above). The default van der Waals
radii of atoms were taken from Chothia [43]. Polygons are
further filtered out if they have one or more vertices which
are beyond 5 Angstrom distance from the interface atoms.
For each face in P (Figure 3), if two atoms defining a face
belong to different domains from each other, we call such
a face an interface-face. Let us define interface-cells as cells
in the power-diagram P that have at least one interface-
face. Let us define interface-atoms to be those atoms
whose cells are interface-cells. In the InterPare database,
all the interface-atoms between two domain pairs are
stored in a PDB-style file format.

Utility
InterPare contains protein surface, interior, and interface
information from PDB entries. There are three query inter-
faces to access the information in InterPare. Queries can
be 1) keywords, 2) PDB or SCOP IDs, or 3) protein
sequences in FASTA format. In the case of a protein
sequence, InterPare provides a structural domain assign-
ment module using PDB-ISL [48] and PSI-BLAST [49,50]
to assign homologous domains in SCOP to the queried
sequence. All the queries are finally assigned to (a) PDB
ID(s). Figure 4a shows the search interface in the case of a
PDB ID as a query. Relative ASA (see interface identifica-
tion methods above), in Figure 4a, is a criterion for the
protein interior and surface boundaries. There are two
options for the interface definition threshold: one for the
geometric distance method, and another for the ASA
method (See the interface identification method above for
the threshold criteria). Figure 4b shows the results of PDB
ID '1a25' as a query by the ASA method. It contains pro-
tein surface, interior, and interface information. We
implemented Chime [24] and Jmol [25] scripts to let users
view protein 3D structures in a pop-up window when the
links are clicked, as in Figure 4c and 4d. Protein surfaces
and interiors are in red and blue, respectively, and the
interface is viewed in space-fill mode to distinguish it
from other parts of the protein molecule. To view protein
structures, the Chime plug-in and a Java runtime environ-
ment with Java 3D 1.3.1+ are required. The InterFacer
homepage http://www.interfacer.org provides files that
are required to view molecules with InterFacer. Atom
coordinate files of three different regions are available to
download. In addition, 1) the size of the interface and sur-
face area, and 2) amino acid compositions on the surface,
interior, and interface regions are provided on the results
page.

Discussion
The protein interfaceome can be defined as the whole set
of protein interaction interfaces found in cells. There can
be many methods to define such an interface data set. We
use the concept of the hierarchical classification of protein
domains from SCOP. We extend the SCOP classification
to molecular interfaces. The advantage of this approach is
that each interface can be classified in the context of
domain evolution. SCOP Superfamily is the level of clas-
sification where protein structures are clearly known to be
related within the classification group. The protein Family
level in SCOP is a more functionally relevant class, where
each member of the Family is related and functionally
similar. Below Family, there are individual domains. We
applied three algorithms to find interfaces associated with
SCOP. Any protein domain classification system, such as
FSSP [51] and CATH [52], can also be used. The main con-
tribution to structural bioinformatics is that interfaces can

Power diagram of two different domains in 2D representationFigure 3
Power diagram of two different domains in 2D representa-
tion. Light blue circles (atoms) are contained in domain A, 
and green atoms are in domain B. Dotted lines denote Voro-
noi edges between two neighboring atoms, and solid lines 
represent the Voronoi geometrical interface between two 
domains. Any polygon which is adjacent to at least one Voro-
noi geometrical interface is called an interface-cell. If a cell is 
an interface-cell, then we call the atom in the cell an inter-
face-atom. Interface-atoms are slightly darker than non-inter-
face atoms. The InterPare database stores all interface-atom 
information.
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be searched and compared (hence InterPare) by
computer.

We expect that hierarchically similar clusters in the inter-
faceome will have highly conserved interfaces to maintain
their interaction partners. This can provide a new level of
functional prediction capability for the designing of novel

molecules that can interface with proteins and hence con-
trol protein activities.

Conclusion
InterPare is an open and public database server for protein
interaction interface information. It contains large-scale
interface data for proteins whose 3D-structures are
known. We identified 31,620 inter-chain interfaces and

Screen shots from the results page of the InterPare web siteFigure 4
Screen shots from the results page of the InterPare web site. (a) The query box with several options. 'Relative ASA' is a crite-
rion for discerning the interior region of a protein from its surface region. There are two independent criteria for the interface 
definition: '∆ASA' for the ASA method, and 'Distance' for the PSIMAP algorithm. (b) Results of querying the database with 
'1a25' as a PDB ID. 1a25 is a C2 domain from the protein kinase C beta. It consists of two identical domains (d1a25a_ and 
d1a25b_). Results by the ASA method are shown here. The atomic coordinates for the protein surface (Shell), interior (Core), 
and interface (Face) regions are downloadable on this page. (c), (d) The 3D structure of protein '1a25' by Chime and Jmol, 
respectively. Interior regions are blue and surface regions are red. Interface regions are displayed in space-fill model and other 
non-interface regions are displayed in wireframe with a backbone tracing mode.
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12,758 intra-chain interfaces. At this moment, there are
10,583, 10,431, and 11,010 PDB entries whose domain
interaction interfaces have been identified according to
geometric distance, ASA, and Voronoi diagram methods,
respectively. These interfaces are based on protein
domains which are from the SCOP database. By using
SCOP, InterPare is tightly associated with the domain
classification hierarchy, making the search and lookup
convenient.

Availability and requirements
InterPare is available through http://interpare.net. Inter-
Pare is jointly maintained by the National Genome Infor-
mation Center (NGIC) of Korea, Object Interaction
Technologies, Inc., Daejeon, Korea, and the BiO Center
http://bio.cc. It is free to any user.
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PSIMAP: Protein Structural Interactome map

PDB: Protein Data Bank

SCOP: Structural Classification Of Protein structure

FSSP: Fold classification based on Structure-Structure
alignment of Proteins
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