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Summary 
 

Vitamin B12 is synthesised only by prokaryotes yet is widely required by eukaryotes as an 

enzyme cofactor. Roughly half of all algae require vitamin B12, and the phylogenetic distribution of 

this trait suggests that it has evolved on multiple occasions. Previous work using artificial evolution 

generated a metE mutant of Chlamydomonas reinhardtii (hereafter metE7) that requires B12 for 

growth. Here, I use metE7 to investigate how a newly-evolved B12 auxotroph might cope with B12 

limitation and interact with B12-producing bacteria.  

Compared to the closely related natural B12 auxotroph Lobomonas rostrata, metE7 has a 

higher requirement and lower binding affinity for B12. B12 deprivation of metE7 caused an increase in 

cell diameter, indicative of a decreased rate of cell division relative to growth. Other responses 

included an accumulation of starch and triacylglycerides at the expense of polar lipids and free fatty 

acids, and a decrease in photosynthetic pigments, proteins and free amino acids. This is reminiscent of 

nitrogen deprivation, but closer investigation revealed that B12 deprivation caused a substantial 

increase in reactive oxygen species, which preceded a rapid decline in cell viability. This might be 

explained by the observation that there was no induction of non-photochemical quenching, unlike 

under nitrogen deprivation. The metabolite S-adenosyl homocysteine, a potent inhibitor of 

methylation, increased substantially during B12 deprivation, as did the transcripts for several enzymes 

of one-carbon metabolism.  

The rhizobial bacterium Mesorhizobium loti formed a commensal relationship with wild-type 

C. reinhardtii, benefiting from the alga’s photosynthate. When co-cultured with metE7 this interaction 

should be considered a mutualism as the alga was dependent on bacterial B12. Adding B12 or glycerol 

to the coculture increased the cell density of metE7 and M. loti respectively, revealing that the rate of 

nutrient transfer between species was the factor limiting growth. It was unsurprising therefore that 

when grown in triculture, the wild type soon outcompeted metE7, even when M. loti growth and B12 

production were fuelled by added glycerol. B12 release was also shown to be critical for mutualism: a 

mutant of E. coli that released more B12 into the media was, in contrast to its parental strain, able to 

support metE7.  

The mutual support of metE7 and M. loti over 6 months during an artificial evolution 

experiment illustrates that newly-evolved B12 auxotrophs could survive in the presence of B12-

producers, but it was also demonstrated that M. loti could not produce sufficient B12 to favour the 

evolution of B12 dependence in C. reinhardtii. In summary, this work has provided an insight into the 

challenges of evolving B12 auxotrophy making it all the more remarkable that it is such a common 

trait. 
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1 
 

Chapter 1: Introduction 
 

1.1 The evolution of algae 
 

The term algae may evoke images of seaweed or pond scum, but it encompasses an 

astoundingly diverse array of organisms. A widely agreed-upon definition is not forthcoming, but a 

simple and inclusive one might be that algae are a group of eukaryotes that at least at one point in 

their evolution were capable of photosynthesis. This definition however, would include plants while 

excluding what were previously called ‘blue-green algae’ and now termed cyanobacteria. In order to 

exclude plants, some definitions have specified that algae must also lack leaves, stems, and roots. 

Phytoplankton is a similar term to algae, but with a definition of ‘photosynthetic microscopic 

organisms’ it excludes macroalgae while including cyanobacteria. I will use the term algae to refer to 

eukaryotes that possess plastids but are not embryophytes (land plants).  

Oxygenic photosynthesis is thought to have evolved only once in bacteria (Fischer et al., 

2016), and from there been transferred to eukaryotes via endosymbiosis (McFadden, 2001). 

Phylogenetic studies suggest a phagotrophic protist engulfed one or more cyanobacterial cells around 

900-1600 million years ago (Shih & Matzke, 2013; Yoon et al., 2004). Instead of being digested the 

cyanobacteria persisted within the protist cell, and perhaps as the Menage a trois hypothesis (MATH) 

suggests, this was with the help of a member of the Chlamydiales that could remodel the phagocytic 

membrane to produce an inclusion body protecting the cyanobacterium (Ball et al., 2013; Brodie, 

Ball, et al., 2017). They were able to continue to photosynthesise and divide, but with substantial gene 

transfer to the host nucleus the previously free-living bacterium became the wholly-dependent plastid 

found in eukaryotes today (Martin et al., 1998). This photosynthetic eukaryote gave rise to three 

divergent lineages within roughly 200 million years: the green, red, and glaucophyte algae (Dorrell & 

Smith, 2011). Most of algal diversity does not derive from these lineages however, instead it is due to 

secondary endosymbioses of these lineages by distantly related non-photosynthetic protists (Dorrell & 

Smith, 2011; Hong & Wilson, 2013; McFadden, 2001). Euglenids and Chlorarachniophytes arose by 

engulfing green algae, while most other lineages engulfed red algae (Takahashi et al., 2007; Takishita 

et al., 2008). There is also evidence of tertiary symbioses within the dinoflagellates as they contain 

chloroplasts from cryptomonads, diatoms, and haptophytes, which themselves had engulfed red algae 

(Imanian & Keeling, 2007; Tamura et al., 2005).  Dinoflagellates are also unusual in that they possess 

a nuclear-encoded single subunit RuBisCO that was acquired by horizontal gene transfer from 

proteobacteria, and which has replaced the RuBisCO derived from the primary cyanobacterial 

endosymbiont (Janouskovec et al., 2010; Morse et al., 1995; Whitney et al., 1995). Comparatively, the 

study of another dinoflagellate, Durinskia baltica, and its endosymbiont, Glenodinium foliaceum, 
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used transcriptomics to find that there was no endosymbiotic gene transfer, and little functional 

reduction in either partner (Hehenberger et al., 2016).  

Paulinella, a rather unique genus of photosynthetic eukaryotes, does not contain a normal 

plastid, but instead contains so-called ‘chromatophores’, derived from a much more recent 

endosymbiosis of an α cyanobacterium 90-140 million years ago (Delaye et al., 2016). The 1 Mbp 

chromatophore genome is five to ten times larger than most plastids (Brodie, Chan, et al., 2017; 

Nowack et al., 2008), which is partly a result of its relatively recent acquisition, but also likely 

because horizontal gene transfer from other free-living bacteria counteracts the ongoing 

endosymbiotic gene transfer to the nucleus (Nowack et al. 2016). Horizontal and endosymbiotic gene 

transfer, which are common among algae, have hindered the construction of an accurate ‘tree of life’ 

and indeed some authors have suggested ‘uprooting the tree of life’ perhaps replacing it with a ‘ring 

of life’ or ‘web of life’. (Doolittle, 2000; Forterre, 2015; Soucy et al., 2015) 

1.2 The diversity of algae 

 

Considering the diverse evolutionary histories of algae, it should come as no surprise that they 

are geographically widespread and adapted to a variety of niches. Cyanidioschyzon merolae and 

Galdieria sulphuraria are both red algae that inhabit hot springs where temperatures can reach 56°C 

and pH values range from 0.05-3 (Barbier, 2005). In the laboratory C. merolae can resist temperatures 

up to 63°C by increasing expression of heat shock proteins over 1000-fold (Kobayashi et al., 2014). 

On the other end of the spectrum, the diatom Fragilariopsis cylindrus is a dominant species in the sea 

ice niche of polar regions, which owes some of its survival advantage to the upregulation of antifreeze 

proteins in response to cold stress (Bayer-Giraldi et al., 2010, 2011). Polar snow algae from 

Antarctica and the Arctic, such as Chloromonas polyptera and Chloromonas nivalis survive even 

colder temperatures by overwintering as cysts (Remias et al., 2010, 2013), although during the 

growing season, when the cells are photosynthetically active, the temperatures are remarkably stable 

around 0°C (Stibal et al. 2007).  

The most visibly striking adaptation of many snow algae is the ability to change colour from 

green through orange to purple/red by altering the concentrations of pigments such as astaxanthin and 

chlorophylls over the growing season or according to their depth in the snow and hence exposure to 

sunlight (Stibal et al. 2007; Remias et al. 2005, 2013). These snow algal carotenoids serve a 

photoprotective role by dissipating absorbed light energy as heat (Bidigare et al. 1993) and have been 

found to significantly decrease snow surface albedo and hence increase glacier melting, which in turn 

provides a larger habitat for further growth, so completing a positive feedback loop (Lutz et al. 2016; 

Yallop et al. 2012). Another green alga naturally exposed to high light intensities is Chlorella ohadii, 

which was isolated from a biological soil crust in the Negev desert and exhibits the fastest doubling 
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time of any photosynthetic organism, at 1.3 hours (Ananyev et al. 2017; Treves et al. 2013). C. ohadii 

increases its photosynthetic rate with light intensity up to twice that of full sunlight without a 

substantial accumulation of carotenoids or energy dissipation by non-photochemical quenching 

(Treves et al. 2016; Ananyev et al. 2017). Some algae lack all photosynthetic pigments and survive 

heterotrophically, such as Euglena longa. E. longa expresses only one protein from its plastid that is 

not directly involved in gene expression itself (Záhonová et al. 2016), yet oddly enough, and in 

contrast to its close photosynthetic relative Euglena gracilis, plastid gene expression is essential for 

cell growth (Hadariová et al. 2017).  

Algae also vary enormously in size from the smallest known free-living eukaryote 

Ostreococcus tauri, which at 0.8-1.3 µm is smaller than E. coli (Palenik et al. 2007; Marin and Birger 

2014), to the macroalga Macrocystis pyrifera, a giant kelp which can grow at rates of 60 cm per day 

to lengths of 45 m (Steneck et al. 2002). Within the class to which O. tauri belongs there appears to be 

a trend towards reduced size and morphological complexity (Marin and Birger 2014), however, 

overall there is greater support for the idea of evolution trending towards increased size and 

complexity (Carroll 2001). One of the major transitions in organismal complexity is the evolution of 

multicellularity, a phenomenon that has occurred in algae more often than in all other eukaryotes 

(Niklas 2014), and relatively recently in the Volvocine algae: since the divergence of Volvox carteri 

and unicellular species such as Chlamydomonas reinhardtii 200 million years ago (Kirk 1999; Herron 

et al. 2009). Indeed, the evolution of multicellularity has happened more than once within the green 

lineage, since the Volvocales are not the ancestors of green macroalgae and land plants. As was noted 

previously, algal phenotypic diversity is to be expected from their polyphyly, but it is worth 

appreciating how this diversity contributes to their ubiquity.  

1.3 The nutrient requirements of algae 
 

Algae are mainly aquatic oxygenic photolithotrophs and so water and carbon, although 

required in the greatest quantities, rarely limit growth (Howarth 1988). Nonetheless, the low solubility 

and diffusivity of carbon dioxide in water and its molecular similarity to oxygen, which competes for 

the active site of RuBisCO, has driven the evolution of CO2-concentrating mechanisms on multiple 

occasions (Badger et al., 1998; Giordano et al., 2005; Raven, 2010) After carbon, nitrogen is the next 

most abundant element in phytoplankton biomass (Ho et al. 2003), and is thought to limit growth in 

large areas of the ocean (Ryther & Dunstan, 1971; Tyrrell & Law, 1997), while phosphorus is thought 

to be the ultimate limiting factor (Tyrrell, 1999), particularly in fresh waters (Hecky & Kilham, 1988). 

Nitrate and phosphate concentrations in ocean samples show a remarkable degree of correlation at a 

ratio of 16:1, termed the Redfield ratio (Tyrrell, 1999). Phosphorus influx to the ocean is mainly from 

rivers, while the major available form of nitrogen, nitrate, is topped up via the action of nitrogen-
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fixers (Tyrrell, 1999). Under low nitrate conditions nitrogen-fixers have a growth advantage and so 

increase the amount of fixed nitrogen in their environment (Smith, 1983), which forms a negative 

feedback loop maintaining the Redfield ratio. However, the optimum ratios of N:P have been 

estimated to vary between species and conditions from around 8 when growth is exponential to over 

40 when nutrients or light limit growth and investment in resource-acquisition machinery is necessary 

(Klausmeier et al., 2004). Nevertheless, nitrogen fertilisation in estuarine waters was found to have a 

greater impact on fast-growing microalgae than macrophytes, and microalgae required a 3-fold higher 

nitrogen concentration per unit biomass to sustain maximal growth (Pedersen & Borum, 1996).  

Nitrogen and phosphorus are not the only elements that limit phytoplankton growth, in fact in 

polar waters dissolved concentrations of nitrate and phosphate are high and appear underutilised 

(Holm-Hansen, 1985). Iron fertilisation experiments have caused reductions in dissolved nitrate and 

phosphate, and an increase in phytoplankton biomass and photosynthesis, indicating that iron is the 

factor limiting growth in many parts of the globe (Boyd et al., 2000; Martin & Fitzwater, 1988; 

Martin et al., 1990), including those denoted as HNLC (high nitrogen-low chlorophyll). In the tropical 

North Atlantic net photosynthesis was primarily nitrogen-limited, yet phosphorus and iron input from 

Saharan dust deposition stimulated nitrogen fixation and primary productivity indicating that nutrients 

are often co-limiting (Mills et al., 2004). 

For many marine microalgae iron acquisition involves the binding of ferric or ferrous iron at 

the cell surface (Sutak et al., 2012), but the photosynthetic Ochromonas sp. have been shown to 

obtain iron by ingesting bacteria (Maranger et al., 1998). Algae can also acquire nutrients other than 

iron and nitrogen from bacteria, including B vitamins (Helliwell, 2017; Panzeca et al., 2006). Over 

50% and 20% of algae are dependent on vitamins B12 and B1 respectively (Croft et al., 2006), with 

even higher percentages among those contributing to harmful algal blooms (Tang et al., 2010). Large 

areas of the ocean are depleted of these vitamins (Panzeca et al., 2009; Sanudo-Wilhelmy et al., 

2012), and dissolved B12 concentrations in the ocean and freshwater were found to be inversely 

correlated with the abundance of phytoplankton, suggestive of B12 uptake (Ohwada, 1973; Sañudo-

Wilhelmy et al., 2006). Nutrient addition experiments have found that phytoplankton growth in the 

Ross Sea near Antarctica is co-limited by B12 and iron (Bertrand et al., 2007), and in the South 

Atlantic and Northeast Pacific B12 became limiting after nitrogen or iron addition (Browning et al., 

2017; Cohen et al., 2017). It would seem therefore, that algal communities are likely to respond to 

their local nutrient profile in such a way as to maximise productivity, resulting in differences in 

nutrient limitations between species, which leads overall towards multiple nutrient colimitations of the 

community.  
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1.4 Algal responses to nutrient limitation at the cellular level 

1.4.1 Storage, uptake, and recycling 
 

Responding appropriately to nutrient limitation is essential to survival, and as such algae have 

evolved a variety of coping mechanisms. As C. reinhardtii is the most widely used alga in laboratory-

based nutrient limitation studies, the examples given in this section will be restricted to this species. 

C. reinhardtii can store certain nutrients in anticipation of future limitation, for example it over-

accumulates iron (Terauchi et al., 2010) but not copper (Page et al., 2009), even though that 

exacerbates photooxidative stress (Long & Merchant, 2008). Polyphosphate bodies or 

acidocalcisomes are organelles that have been found to contain high levels of phosphate, calcium, 

magnesium and zinc (Ruiz et al., 2001). Mutants of a polyphosphate polymerase subunit showed 

impaired acidocalcisome formation and were found to lose viability more quickly under nitrogen, 

phosphorus, or sulphur deprivation (Aksoy et al., 2014).  

One of the earliest responses of C. reinhardtii to nutrient deprivation is an increase in the 

maximal rate of uptake and affinity for the limiting nutrient (Hill et al., 1996; Yildiz et al., 1994). Iron 

limitation leads to increases in FOX1 and FTR1 transporters (Urzica, Casero, et al., 2012), and 

sulphur limitation to upregulation of the plant-like H+/SO4
2-

 transporter SULTR2 and the animal-like 

Na+/SO4
2-

  transporters SLT1/2 (Pootakham et al., 2010). C. reinhardtii encodes a considerable 

number of nitrogen transporters: 13 putative NO3
-/NO2

- and 8 putative NH4
+ transporters (Fernandez 

& Galvan, 2007), and under nitrogen deprivation preferentially upregulates those with fewer amino 

acids and hence lower nitrogen requirements, such as AMT1 (Schmollinger et al., 2014). Nutrient 

limitation also induces expression of periplasmic enzymes that cleave inorganic groups from organic 

compounds, and so make the nutrient available for uptake. Arylsulfatases, which cleave sulfate from 

organic compounds, are highly upregulated by sulphur limitation, (over 1000-fold at the transcript 

level) (González-Ballester et al., 2010; Zhang et al., 2004), while alkaline phosphatase activity was 

found to increase 300-fold on phosphorus deprivation (Quisel et al., 1996). Increased uptake of 

organic compounds containing the limiting nutrient is also thought to occur, as sulphur limitation 

induces expression of amino acid transporters (AOT2/4) (González-Ballester et al., 2010), and 

nitrogen limitation elevates transcript abundance for urea and purine transporters (Schmollinger et al., 

2014).  

 In addition to increasing its ability to take up limiting nutrients, C. reinhardtii also responds 

to nutrient limitation by being more frugal. Under copper limitation levels of the Cu-containing 

apoprotein plastocyanin decrease and cytochrome c552, which can perform the same role in the 

plastid electron transport chain but contains Fe instead, increases (Merchant & Bogorad, 1986). One 

of the few transcripts that decrease under slight Fe deprivation is a chloroplast-targeted ferredoxin 

(FDX5) which contains a [2Fe-2S] cluster (Glaesener et al., 2013; Jacobs et al., 2009). On the other 
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hand, levels of an Fe-dependent plastidial superoxide dismutase (SOD) are maintained, suggesting 

preferential allocation of Fe. In fact under Fe limitation SOD activity overall is augmented due to a 

1000-fold increase in transcripts for a plastidial Mn-dependent SOD (Page et al., 2012). During 

sulphur deprivation there is a decrease in transcripts for enzymes catalysing the flux from cysteine 

into the methionine cycle, and also for enzymes involved in the formation of the sulphur-containing 

cofactors thiamine and biotin (González-Ballester et al., 2010). Sulphur is also saved by reducing the 

sulphur content of proteins: four cell wall proteins upregulated under sulphur limitation had a cysteine 

+ methionine content of 0.1% compared to 4-8% for the 10 most abundant cell wall proteins 

(González-Ballester et al., 2010; Takahashi et al., 2001). Similarly, LHCBM9, the one light 

harvesting complex protein of PSII with a substantially lower cysteine + methionine content than the 

other 8, is the only one to be upregulated under sulphur deprivation (González-Ballester et al., 2010; 

Nguyen et al., 2008).  

1.4.2 Maintaining redox status 
 

 Responses to the deprivation of most nutrients in C. reinhardtii involve a downregulation of 

photosynthesis (Grossman, 2000; Wykoff et al., 1998). Iron limitation leads to a remodelling of 

photosystem I (PSI) and associated light harvesting complexes (LHCs) to optimise photosynthetic 

function and minimise photo-oxidative damage, without a decrease in photosystem II (PSII) (Moseley 

et al., 2002; Naumann et al., 2007). On the other hand, sulphur and phosphorus deprivation were 

shown to decrease PSII activity by 50% without affecting PSI (Wykoff et al., 1998), resulting in a 

reduced requirement for enzymes to detoxify superoxide produced by PSI (González-Ballester et al., 

2010). A tab2 mutant, which could not maintain PSI under nitrogen deprivation, was unable to 

accumulate triacylglycerides (TAGs), and upregulated photoprotective mechanisms as well as 

expression of enzymes required to eliminate reactive oxygen species (Gargouri et al., 2014). 

Maintaining the balance between NADPH and ATP generation is crucial to avoiding oxidative stress, 

and under nitrogen deprivation processes such as chlororespiration increase (Saroussi et al., 2016) to 

reduce the NADPH:ATP ratio, and power the photoprotective mechanism of non-photochemical 

quenching (Müller et al., 2001). Another important aspect of non-photochemical quenching is 

mediated via carotenoids, and although nitrogen deprivation causes chlorosis due to pigment 

degradation, carotenoids are preferentially maintained so as to dissipate excess absorbed light energy 

as heat (Philipps et al., 2012). 

As well as reducing linear electron flow and so NADPH production under nutrient 

deprivation, C. reinhardtii also increases consumption of NADPH, which is still produced in excess 

of its requirement for cell growth, by synthesising starch and TAGs (Cakmak, Angun, Demiray, et al., 

2012; Kamalanathan et al., 2016; Siaut et al., 2011). The importance of these storage molecules is 

emphasised by the physiology of mutants: sta6, a mutant incapable of producing starch, shows a 
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reduced rate of NADPH re-oxidation and accelerated photoinhibition under nitrogen limitation 

(Krishnan et al., 2015); pgd1, a mutant disrupted in remodelling plastid lipids into TAGs and so 

showing reduced TAG content on nitrogen deprivation had reduced viability unless photosynthetic 

electron transport was blocked (Li et al., 2012). TAG accumulation is also important for cell recovery 

after nutrient deprivation, and mutants such as cht7, compromised in the hydrolysis of TAGs, show 

slower and less ordered recovery from nitrogen deprivation (Tsai et al., 2017).  

 Of the multitude of responses to nutrient limitation, a large proportion appear to be controlled 

by a small number of response regulators. The copper response regulator CRR1 is a transcription 

factor (Kropat et al., 2005), which among other genes increases the expression of the Fe-dependent 

cytochrome c6 under copper limitation, and leads to the degradation of the Cu-dependent plastocyanin 

protein (Eriksson et al., 2004). PSR1, another transcription factor (Wykoff et al., 1999), is responsible 

for 65% of the changes in transcript abundances on phosphate deprivation (Moseley et al., 2006), and 

in a psr1 mutant starch and TAG accumulation and the downregulation of photosynthesis were 

misregulated (Bajhaiya et al., 2016). Transcriptomic studies have also been used with mutants in the 

response to sulphur starvation (González-Ballester et al., 2010; Zhang et al., 2004). snrk2.1 and sac1, 

a serine threonine kinase (Gonzalez-Ballester et al. 2008) and a plasma membrane sensor (Davies et 

al., 1996) respectively, are involved in responding to sulphur deprivation, and among other genes 

induce the expression of a possible transcriptional regulator ARS73a (Aksoy et al., 2013). The fact 

that many of these response regulator mutants have significantly lower viability on nutrient 

deprivation is evidence of their importance. Moreover, the near universality of starch and TAG 

accumulation while downregulating photosynthesis underscores the vital importance of maintaining 

redox status during a cessation of growth.  

1.5 Vitamin B12: structure, synthesis, uptake, and function.  

1.5.1 Structure 
 

 The discovery of an anti-pernicious anaemia factor in liver by Whipple, Minot and Murphy in 

1926 (Elders, 1926), and the elucidation of its structure (illustrated in Figure 1.1a) using X-ray 

crystallography in 1955 by Hodgkin and colleagues (Hodgkin et al., 1956) were the subjects of the 

awarding of two Nobel prizes. The anti-pernicious anaemia factor was first crystallised in 1948 and 

named vitamin B12, but this form, (cyanocobalamin) was later found to be an artefact of the extraction 

process (Rickes et al., 1948). The biologically relevant vitamers of vitamin B12 for humans are 

adenosylcobalamin (AdoCbl) and methylcobalamin (meCbl), which have 5’-deoxyadenosyl and 

methyl groups replacing the cyano group as the upper axial ligand to the cobalt ion (Randaccio et al., 

2010). The cobalt ion is further coordinated by four nitrogen atoms at the centre of a tetrapyrrole, and 

another nitrogen atom in the lower axial ligand dimethylbenzimidazole (DMB).  Two further upper 

axial ligand vitamers of B12 have been described, hydroxocobalamin and glutathionylcobalamin. 
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Hydroxocobalamin, produced in large amounts by some bacteria (Perlman & Barrett, 1959), is the 

third most abundant form of B12 in human plasma (van Kapel et al., 1983) and the most UV-stable 

vitamer (Juzeniene & Nizauskaite, 2013). Hydroxocobalamin is converted to adenosylcobalamin in 

the liver (Fenton & Rosenberg, 1978), and to cyanocobalamin when used as a treatment for cyanide 

poisoning (Hall et al., 2007). Glutathionylcobalamin (GSCbl) is formed on cell entry of 

hydroxocobalamin by reacting with reduced glutathione (GSH) (Xia et al., 2004) and is thought to be 

an intermediate in the formation of the coenzyme vitamers MeCbl and AdoCbl (Suto et al., 2001). 

Others have suggested that it also has a role as an intracellular antioxidant (Birch et al., 2009), and in 

contrast, as a promoter of nitric oxide synthase which produces the reactive oxygen species nitric 

oxide during inflammation (Wheatley, 2007). The name B12 also encompasses other cobalt-containing 

corrinoids that instead of DMB as the lower axial ligand, possess alternative bases. The most well-

known uses adenine (Taga & Walker, 2008). This molecule, called pseudocobalamin, is inactive in 

humans (Dagnelie et al., 1991) and orders or magnitude less bioavailable to many algae (Helliwell et 

al., 2016) but is widely produced and used by cyanobacteria such as Arthrospira sp. (Heal et al., 2017; 

Watanabe et al., 2002).  

1.5.2 Synthesis 
 

 Artificial synthesis of B12 was achieved in 1972 after a collaborative effort involving more 

than 100 scientists over a 10-year period (Woodward, 1973). This large-scale effort was needed 

because of the complexity of the molecule. This is also reflected in the over 20 enzymatic steps 

required for its cellular biosynthesis in nature from the common tetrapyrrole precursor 

uroporphorinogen III (Warren et al., 2002). The adenosylcobalamin biosynthetic pathway, which has 

only been found in prokaryotes, is composed of the convergence of the corrinoid and lower axial 

ligand pathways (Warren et al., 2002). Both of these have aerobic and anaerobic forms, which were 

mainly elucidated by studies in Pseudomonas denitrificans (Heldt et al., 2005) and Salmonella 

enterica (Roessner & Scott, 2006) respectively. S. enterica does however use an aerobic pathway for 

DMB synthesis (Keck et al., 1998). Although eukaryotes are unable to synthesise AdoCbl de novo, 

several species are able to remodel pseudocobalamin to cobalamin if they are also provided with 

DMB (Helliwell, 2017; Helliwell et al., 2016).  

1.5.3 Uptake 
 

 Because no eukaryotes and only 37% of bacteria were predicted to synthesise B12 according 

to their complement of B12 biosynthesis genes (Zhang et al. 2009, Kudahl 2017), many organisms 

have evolved mechanisms to take it up. The BtuBFCD system in Gram-negative bacteria or BtuFCD 

system in Gram-positive bacteria are the best characterised prokaryote B12 uptake systems (Rodionov 
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et al., 2003). BtuB is a TonB-dependent B12-binding protein found exclusively in the outer membrane 

of Gram-negative bacteria (Shultis et al., 2006), while the periplasmic protein BtuF, and the ABC  
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i Figure 1.1 Structure and function of vitamin B12 

 

(a) 

Figure 1.1 Structure and function of vitamin B12. (a) Structure of vitamin B
12 

with corrin ring, 

nucleotide loop, and lower axial ligand (dimethylbenzimidazole (DMB)) labelled. In 
Pseudocobalamin the lower axial ligand, is replaced by adenine. There are 5 known upper axial 
ligands to B

12
: glutathionyl, adenosyl, cyano, hydroxyl, and methyl. (b) The three eukaryotic B

12
-

dependent enzymes and the reactions they catalyse. Methylmalonyl-CoA mutase (MCM) is 
involved in odd-chain fatty acid metabolism, type II ribonucleotide reductase (RNRII) catalyses 
deoxyribose synthesis, and methionine synthase (METH) catalyses the formation of methionine 
and tetrahydrofolate from methyl-tetrahydrofolate and homocysteine. Panel A was taken from 
Cooper 2014, and Panel B was taken from Helliwell 2017, both with permission.  

(a) 

(b) 
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transporter BtuCD, are present in 90% of bacteria that take up B12 (Zhang et al., 2009). In the 

Bacteroidetes, which comprise 80% of the gut microbiome (Consortium et al., 2012), a majority of 

bacteria were found to encode more than one BtuB homolog (Degnan et al., 2014). Bacteroides 

thetaiotaomicron encodes three homologs, two of which provided a selective advantage over the other 

depending on the supplied corrinoids (Degnan et al., 2014). In humans, more than 15 gene products 

are involved in B12 transport or processing (Nielsen et al., 2012). B12 is released from food in the 

stomach and subsequently binds haptocorrin, which is then digested in the duodenum releasing B12 to 

be later bound by intrinsic factor and taken up by endocytosis after interacting with cubam in the 

plasma membrane of ileal enterocytes. B12 is then exported into the bloodstream by an ABC 

transporter MRP1 where it is bound by transcobalamin and carried to cells around the body for uptake 

by the plasma membrane protein CD320. Much less is known about B12 uptake in algae, but in E. 

gracilis it occurs in two stages, an initial rapid and passive phase, followed by a slower energy-

dependent one (Sarhan et al., 1980). In Phaeodactylum tricornutum and Thalassiosira pseudonana, a 

plasma membrane-localised protein called CBA1 is upregulated up to 160-fold in the absence of 

cobalamin, and overexpression of CBA1 lead to increased rate of B12 uptake (Bertrand et al., 2012).  

1.5.4 Function in eukaryotes 
 

In bacteria B12 acts as a cofactor for over 20 enzymes catalysing reactions that fall into one of 

three classes: methyl transfer, isomerisation, or reductive dehalogenation (Banerjee & Ragsdale, 

2003). In eukaryotes on the other hand, and considering the investment in B12 uptake, there are 

remarkably few B12-dependent enzymes, with three overall and just two in animals (Figure 1.1b) 

(Croft et al., 2006; Marsh & Marsh, 1999). Several Protista such as E. gracilis encode a type II 

ribonucleotide reductase (RNR II) which uses the AdoCbl cofactor for the synthesis of 

deoxyribonucleotides from ribonucleotides, the limiting step in DNA synthesis (Elledge et al., 1993; 

Larsson et al., 2010). Unlike RNRI and RNRIII, which both act independently of B12 but are 

obligately aerobic and anaerobic respectively, RNR II can function in both conditions (Torrents et al., 

2006). Methylmalonyl-coA mutase (MCM) is another AdoCbl-dependent isomerase (Takahashi-

Iñiguez et al. 2012), and is involved in odd-chain fatty acid metabolism in mammals (Kennedy et al., 

1990). Increased levels of methylmalonic acid, derived from the MCM substrate methylmalonyl-coA, 

is indicative of vitamin B12 deficiency or mutations in the MCM gene (Mcmullin et al., 2001; Van Der 

Meer et al., 1994). The other B12-dependent enzyme in humans is methionine synthase (METH), 

which uses MeCbl to catalyse the methyl transfer from 5-methyltetrahydrofolate onto homocysteine 

to yield tetrahydrofolate and methionine (Banerjee & Matthews, 1990). An increase in serum 

concentration of the substrate homocysteine has been correlated with risk of cardiovascular disease 

and can indicate either B12 or folate deficiency (Jacobsen, 1998).  
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Plants and fungi are independent of vitamin B12 as they express the B12-independent isoforms 

RNR I and METE, and do not use MCM (Kolberg et al., 2004; Smith et al., 2007). The algal species 

C. reinhardtii and P. tricornutum encode both isoforms of methionine synthase, but in the presence of 

B12 suppress METE (Bertrand et al., 2013; Helliwell et al., 2014). In E. coli, METE has a 50-fold 

lower catalytic rate than METH (Gonzalez et al., 1992), and so is required in high concentrations of 

up to 3-5% of total cellular protein content (Pedersen et al., 1978). METE in C. reinhardtii has been 

found to have lower thermal tolerance than METH (Xie et al., 2013), and in E. coli METE is sensitive 

to high temperature and oxidative stress (Hondorp & Matthews, 2004; Mogk et al., 1999). It seems 

therefore, that B12 dependent-isoforms of ribonucleotide reductase and methionine synthase allow a 

species to power metabolism more efficiently and under a greater range of environmental conditions.  

 

1.6 Methionine synthase and One-carbon metabolism 
 

Methionine synthase connects folate-mediated one-carbon transfers with the activated methyl 

(methionine) cycle (Figure 1.2). Serine, glycine, and formate provide methyl groups to 

tetrahydrofolate (THF) to form folates of various oxidation states from the most oxidised, 10-formyl-

THF, through 5,10-methenyl-THF, 5,10-methylene-THF to the most reduced, 5-methyl-THF (Hanson 

& Roje, 2001). 5,10-methylene-THF contributes to thymidylate and pantothenate synthesis 

(Neuburger et al., 1996; Ottenhof et al., 2004), while 10-formyl-THF is used to produce purines and 

methionyl tRNA (Baggott & Tamura, 2015). But the major anabolic demand for one-carbon folates is 

of 5-methyl-THF for the synthesis of methionine and subsequently S-adenosylmethionine (SAM) 

(Hanson & Roje, 2001; Leung et al., 2017; Reed et al., 2006). Although serine and glycine provide 

large quantities of methyl groups, SAM is the most versatile methyl donor and is often termed the 

‘universal methyl donor’ because histones, DNA, lipids, and various proteins are methylated by 

SAM-utilising methyltransferases (Chiang et al., 1996; Lieber & Packer, 2002).  

 

1.6.1 Methionine cycle 
 

SAM and its demethylated product S-adenosylhomocysteine (SAH) are known to regulate the 

expression of genes such as S-adenosylhomocysteine hydrolase (SAHH) and methionine synthase 

(METH) in bacteria via binding to riboswitches in the 5’UTRs of these transcripts (Corbino et al., 

2005; Wang et al., 2008). In humans SAM reduces the activity of methylene tetrahydrofolate 

reductase (MTHFR) by feedback inhibition, and in all organisms SAH is a competitive inhibitor of 

multiple SAM-utilising methyltransferases (Ueland, 1982). The ratio of SAM:SAH has thus been 
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termed the methylation index, with low values resulting in hypomethylation of a range of compounds 

including DNA (Waterland, 2006).  Hypermethylation of cytosines in DNA and of the lysine 9 

residue of histone 3 (H3K9) are associated with heterochromatin, which contains repetitive regions or 

transposons that are suppressed (Johnson et al., 2002; Rose & Klose, 2014). Therefore, genome 

hypomethylation often relieves this suppression, leading to increased and aberrant gene expression 

(Jones, 2012). SAH and Homocysteine (Hcy) are interconverted by the action of the reversible 

enzyme SAHH which has an equilibrium constant that favours the production of SAH (Guranowski & 

Pawelkiewicz, 1977; Haba & Cantoni, 1958). Despite this, the flux is normally towards homocysteine 

formation due to its rapid removal by conversion to methionine or cystathionine (Hoffman et al., 

1980). In plants, the reverse transulfuration pathway, which produces cysteine from homocysteine via 

cystathionine, does not exist (Datko & Mudd, 1984) but an alternative pathway unique to plants that 

forms part of the S-methylmethionine cycle (Ranocha et al., 2001) can regenerate methionine. This 

pathway, however, forms a futile cycle with no external input of methyl groups (Ranocha et al., 

2001).  

1.6.2 Folate metabolism 
 

5-methyl-THF can accumulate in humans in a phenomenon known as folate trapping if B12 or 

methionine is limiting (Scott & Weir, 1981). In plants, 5-methyl-THF is consumed by a B12-

independent methionine synthase and can also be metabolised by a reversible reaction catalysed by 

MTHFR (Roje et al., 1999). Because of this, and although 5-methyl-THF is one of the most abundant 

folates in plants (Loizeau et al., 2007), folate trapping is unlikely to occur, and MTHFR activity is not 

suppressed by SAM as it is in humans (Roje et al., 1999). Serine hydroxymethyltransferase (SHMT) 

has several isoforms in plants which are targeted to the cytosol, plastid, and mitochondria (Besson et 

al., 1995). Another reversible reaction, the equilibrium position favours the C1 transfer from serine to 

THF to form 5,10-methylene-THF and glycine (Besson et al., 1993). Glycine can donate a further 

carbon to THF and release CO2 and NH3 in the process, a key stage of photorespiration that occurs in 

the mitochondria (Timm et al., 2012).  Overall, in photosynthetic organisms the demand for methyl 

groups for methylation is mainly provided by serine through 5,10-methylene-THF, 5-methyl-THF, 

methionine, and finally SAM (Hanson & Roje, 2001).  
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Figure 1.2 A simplified metabolic map of the C1 cycle in C. reinhardtii. Enzyme abbreviations are 
presented in blue and metabolites in black. Double arrows indicate that the enzyme can catalyse 
the reaction in both directions, i.e. the reaction is reversible.  Enzyme abbreviations: FTL1, 
Formate tetrahydrofolate ligase; METE, B12-independent methionine synthase; METH, B12-
dependent methionine synthase; METM, S-adenosylmethionine synthetase; MTHFD, 
Methylenetetrahydrofolate dehydrogenase; MTHFR, methylenetetrahydrofolate reductase; 
SAH1, S-adenosylhomocysteine hydrolase 1; SHMT2, Serine hydroxymethyltransferase 2. 
Metabolite abbreviations: Hcy, Homocysteine; Met, Methionine; SAH, S-adenosylhomocysteine; 
SAM, S-adenosylmethionine; THF, Tetrahydrofolate; 5-CH3-THF, 5-methyltetrahydrofolate; 5,10-
CH2-THF, 5,10-Methylenetetrahydrofolate; 5,10-CH=THF, 5,10-Methenyltetrahydrofolate; 10-
CHO-THF, 10-formyltetrahydrofolate.  
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1.6.3 Disrupting one-carbon metabolism 
 

In humans, several single nucleotide polymorphisms (SNPs) in genes for enzymes of one-

carbon metabolism, and folate metabolism in particular, have been associated with increased levels of 

homocysteine in the blood, including Thymidylate synthase (TYMS) (Trinh & Laird, 2002), and 

MTHFR (Lievers et al., 2001). Combinations of certain polymorphisms such as in methionine 

synthase (MTR) and MTHFR are particularly associated with higher homocysteine levels (Feix et al., 

2001), but it is in patients with these SNPs that folic acid supplementation can have the greatest 

homocysteine-lowering effects (Qin et al., 2012). Plasma homocysteine has been shown to have a 

highly significant predictive effect for cardiovascular disease (Wald et al., 2002). Despite this, the 

lowering of homocysteine by folic acid supplementation does not reduce the risk of cardiovascular 

disease (Bazzano et al., 2006; Clarke et al., 2010), but there is strong evidence of reducing other 

diseases such as neural tube defects (Atta et al., 2016; Castillo-Lancellotti et al., 2012). Homocysteine 

concentrations in the blood are also negatively correlated with concentrations of vitamin B6 and B12, 

(Selhub et al. 1993) which are cofactors for two homocysteine-metabolising enzymes, cystathionine-

β-synthase (CBS) and MTR respectively (Finkelstein, 1998).  

Folate and vitamin B6 are synthesised de novo in plants (Hanson & Jesse, 2011; Tambasco-

Studart et al., 2005) and vitamin B12 is not necessary for metabolism (Smith et al., 2007), but the 

effects of disrupting one-carbon metabolism have been investigated by application of the antifolate 

drug methotrexate. Methotrexate inhibits growth and disrupts the methyl cycle (Loizeau et al., 2007; 

Wu et al., 1993) leading to a significant increase in the methylation index of Arabidopsis thaliana, but 

the plant appears to respond by prioritising nucleotide synthesis over methylation (Loizeau et al. 

2008). In A. thaliana mutants disrupted in genes for folate synthesis (FPGS1), folate mediated one 

carbon transfer (MTHFD1), or the activated methyl cycle (MAT4), the methylation index decreases 

leading to lower DNA and histone (H3K9) methylation and subsequently transposon derepression 

(Groth et al., 2016; Meng et al., 2018; Zhou et al., 2013).  

It is clear therefore that disruption of one-carbon metabolism can have significant 

consequences on the physiology of an organism irrespective of whether they are dependent on an 

exogenous source of vitamins. However, those organisms that rely on external provision of B6, B9, and 

B12 are perhaps particularly likely to experience changes in flux through the folate and methionine 

cycles and the downstream effects on DNA synthesis and methylation.  
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1.7 Algal symbioses 

1.7.1 Parasitic interactions 
 

Symbiosis is a term that can be used rather broadly to refer to a beneficial or harmful 

interaction between two unrelated organisms. Using this definition, algae engage in a multitude of 

symbioses spread along the parasitism to mutualism continuum.  Non-photosynthetic algae such as 

Plasmodium falciparum and Toxoplasma gondii parasitize humans causing malaria and toxoplasmosis 

respectively (Baumeister et al., 2010; Fichera & Roos, 1997). Some photosynthetic algae are also 

parasites, such as Cephaleuros parasiticus which grows mainly on the leaves of tropical trees (Joubert 

& Rijkenberg, 1971; Vasconcelos et al., 2018). There are also several examples of the converse, algae 

being parasitized, for example Emiliania huxleyi blooms often come to an abrupt end as 

coccolithovirus infections rapidly spread through the population (Schroeder et al., 2003, 2002). 

Outdoor cultures of algal ponds are frequently infected with parasites (Carney & Lane, 2014), and one 

fungal species, Amoeboaphelidium protococcarum, was found to inject its protoplast into the cells of 

the alga Scenedesmus dimorphus (Letcher et al., 2013).  

1.7.2 Interactions with multicellular hosts 
 

It is well known that the Symbiodinium endosymbionts of corals provide photosynthate to 

their hosts (Whitehead, 2003). However, it has only been shown more recently that the nitrogen 

provided by the coral host to Symbiodinium can be derived mainly from heterotrophic diazotrophic 

bacterial communities, which are transferred vertically from coral parent to its larvae (Ceh et al., 

2013; Lema et al., 2012). Although considered a mutualism, the coral host exerts significant control 

over Symbiodinium cell density by producing factors that induce release of photosynthate (Gates et 

al., 1995), limiting the provision of nitrogen (Falkowski et al., 1993), and digesting and extruding the 

algal cells (Titlyanov et al., 1996). In 1879 Anton de Bary first used the term symbiosis to refer to 

lichens (Oulhen et al., 2016), and it is now recognised that some of the most productive lichens are 

tripartite: composed of not only the algal photobiont and fungal mycobiont, but also a nitrogen-fixing 

cyanobiont (Scheidegger, 2016). Many of the algal photobionts can live freely whereas the mycobiont 

is more often obligately symbiotic, which is perhaps why it needs to exert greater control over the 

photobiont to maintain the symbiosis (Muggia et al., 2013; Richardson, 1999).  In addition to these 

well-known lichen and coral interactions, certain algae can also form mutualisms with vertebrates, 

such as the green alga Oophila amblystomatis, which can grow intracellularly in the embryos of the 

salamander Amblystoma maculatum where it supplies oxygen and receives nitrogenous waste in 

return (Kerney et al., 2011). Presence of the alga is correlated with lower embryonic mortality and 

earlier and more synchronised hatching at a larger size and later developmental stage (Gilbert, 1942; 

Graham et al., 2014).  
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1.7.3 Physical interactions with bacteria 
 

 In most of the examples described above the algal partner resided on or within its 

multicellular host, but it is also the case that algae interact with bacteria attached to their surfaces or 

that simply occur in the same environment (Amin et al., 2012). In the oceans the average 

concentrations of bacteria, at 105-106 cells·ml-1, are orders of magnitude lower than in sediments, the 

soil, or the human gut (Whitman et al., 1998). However, there is considerable heterogeneity in their 

distribution, with microscale patches of much higher concentration (Blackburn et al., 1998). Although 

the surfaces of diatoms are often free from bacterial colonisation (Droop & Elson, 1966), the profile 

of bacterial genera that co-occur with specific diatom species is well conserved in different 

geographical locations, and over long periods of cultivation in the laboratory (Amin et al., 2012; 

Behringer et al., 2018). Many bacteria are able to maintain this association in the open ocean using the 

gradient of dissolved organic matter (DOM) in the phycosphere surrounding diatoms to direct their 

chemotaxis (Barbara & Mitchell, 2003; Mitchell et al., 1996). Some marine bacteria, such as 

Shewanella putrefasciens, have high swimming speeds of 100 µm·s-1, and can increase these in the 

presence of algae, allowing them to remain in the phycosphere of a motile alga (Barbara & Mitchell, 

2003; Stocker et al., 2008). The importance of motility for the interactions between bacteria and 

diatoms was illustrated by the fact that flagella mutants of Silicibacter sp. or Dinoroseobacter shibae 

were less able to support the growth of the diatoms Pfiesteria piscicida and Prorocentrum minimum 

respectively (Miller & Belas, 2006; Wang et al., 2015).  

Once the bacteria have located algae, attachment to the cell surface could considerably 

improve the efficiency of nutrient acquisition and transfer. In cultures of the diatom Pseudonitschia 

multiseries, bacteria were found to attach preferentially to certain locations on the frustule, which 

might be sites of organic matter release, and the number of epiphytic bacteria increased as the diatom 

cells entered stationary phase (Kaczmarska et al., 2005). Expression of genes for bacterial attachment 

to algae, as well as attachment itself, has also been found to increase during phytoplankton blooms 

(Bertrand et al., 2015; Mayali et al., 2011; Rinta-Kanto et al., 2012). In addition, bacteria that attached 

to the surface of Thalassiosira weissflogii were found to induce algal aggregation, but only if the 

algae were photosynthetically active (Gärdes et al., 2011).  The diazotrophic cyanobacterium Richelia 

intracellularis, forms an even closer but facultative physical association with diatoms such as 

Rhizosolenia clevei and Hemiaulus sp. by inhabiting their perisplasmic space between the frustule and 

plasmalemma (Sundström, 1984; Villareal, 1990). R. intracellularis was also estimated to be able to 

produce 7.5 times as much organic nitrogen through nitrogen fixation as needed for its own growth 

and to transfer 97% of it to its host (Foster et al., 2011). Cyanobacteria related to Cyanothece sp, have 

become fully integrated as obligate endosymbionts of diatom species in the family Rhopalodiaceae, in 

what are termed spheroid bodies (Nakayama et al., 2011; Prechtl et al., 2004). These spheroid bodies 
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lack genes for photosynthesis, but retain those for nitrogen fixation, and the large proportion of 

pseudogenes they encode suggest they are in the midst of substantial genome reduction (Nakayama et 

al., 2014).  

1.7.4 Chemical interactions with bacteria 
 

Nutrient transfer is a common basis for mutualisms between bacteria and algae, with several 

reports of nitrogen-fixing cyanobacteria improving the growth of diatoms in the ocean  (Fiore et al., 

2010; Foster & Zehr, 2006; Janson et al., 1999; Turk-Kubo et al., 2017). Freshwater and terrestrial 

examples have also been studied, often by combining the bacteria and algae in artificial symbiotic 

cultures and measuring the growth promotion as well as the transfer of nitrogen and carbon using a 

mass spectrometry-based imaging technique called Nano-SIMS (de-Bashan et al., 2016; Hernandez et 

al., 2009). Many rhizobia that promote plant growth through nitrogen fixation also produce B12 

(Palacios et al., 2014), and B12 production is essential for Sinorhizobium meliloti to be able to form a 

symbiosis with Medicago sativa, due to its role as a cofactor in DNA synthesis (Campbell et al., 2006; 

Taga & Walker, 2010). Vitamin B12 is also central to the artificial symbiosis between the soil 

bacterium Mesorhizobium loti and the freshwater alga Lobomonas rostrata (Kazamia et al., 2012), 

and S. meliloti, a related rhizobium, can improve the thermal tolerance of C. reinhardtii by providing 

B12 (Xie et al., 2013). Although many marine bacteria also produce B12, a large proportion of this is 

pseudocobalamin, a form that is only available to certain algal species (Heal et al., 2017; Helliwell et 

al., 2016). However, it has been shown that some algae that take up pseudocobalamin remodel it by 

replacing the lower axial ligand with dimethylbenzimidazole (DMB; see section 1.5.1), and in doing 

so could indirectly support algae that require ‘true’ cobalamin (Helliwell et al., 2016). Certain species 

of algae provide more than an energy source to their bacterial partners: Ostreococus tauri was shown 

to support the niacin, biotin, and p-aminobenzoic acid requirements of Dinoroseobacter shibae in 

return for thiamine and cobalamin (Cooper et al., 2019). On the other hand, other experiments have 

found that algae may reduce the release of organic carbon if they are nutrient replete and so do not 

require the presence of mutualistic bacteria, for example in the co-cultures of L. rostrata and M. loti in 

the presence of B12 (Grant et al., 2014). 

Bacterial mutualists do not always synthesise the compounds required by algae, instead they 

can facilitate its uptake from the environment. For example, Marinobacter sp. increases iron uptake 

by the alga Scripsiella trochoidea by 20-fold when exposed to light, not by releasing iron but by 

producing a photolabile, iron-binding siderophore called vibrioferrin (Amin et al., 2009). An 

Antarctic ice diatom, Amphiprora kufferathii, is frequently found associated with epiphytic bacteria 

that do not appear to improve algal nutrient uptake, but instead protect it against hydrogen peroxide 

using the enzyme catalase, which the alga does not express (Hünken et al., 2008). Mutualistic bacteria 

can also provide protection to their algal hosts by preventing the settling of pathogenic organisms, for 
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example, Pseudoalteromonas tunicata, at a density of only 102-103 cells·cm-2, prevents surface 

colonisation by various marine fungal species that infect its host, Ulva australis (Rao et al., 2007). 

Phaeobacter gallaeciensis is also thought to protect its algal host E. huxleyi by secretion of antibiotics 

and promote its growth by auxin production, however, on detecting p-coumaric acid, an indicator of 

algal senescence, P. gallaeciensis switches to production of roseobacticides which hasten the death of 

E. huxleyi (Seyedsayamdost et al., 2011). Algae and bacteria interact mutualistically in a multitude of 

ways from nutrient provision, to recycling of damaging waste products, and protection against 

pathogens, but as demonstrated by the last example, mutualists, sensing a better opportunity, can 

rapidly switch to a pathogenic lifestyle.   

1.8 Artificial evolution of a B12-dependent alga 
 

Croft et al. (2005) found that over 50% of algal species are dependent upon B12, that the likely 

reason for this dependence was the loss of the B12-independent methionine synthase (METE), causing 

them to rely on the B12-dependent METH, and that as a result they may form symbioses with B12-

producing bacteria in order to survive (Croft et al., 2005). The correlation between the lack of a 

functional copy of METE and a B12-dependent phenotype persists across the tree of life (Figure 1.3a) 

(Helliwell, 2017).  The evolution of B12 dependence amongst certain members of the Volvocine algae 

(Figure 1.3b), such as V. carteri and Gonium pectorale, may have been relatively recent as they still 

encode remnants of the METE gene (Helliwell et al., 2014). In another Volvocine alga, C. reinhardtii, 

METE transcript levels have been found to decrease rapidly to almost undetectable levels within 3 

hours of addition of B12 at 1000 ng·l-1 , and protein levels also declined to a steady state after 36 hours 

(Helliwell et al., 2014). On the other hand, in Coccomyxa subellipsoidea, which lacks the B12-

dependent methionine synthase isoform (METH), no decrease in METE transcript was observed. The 

almost complete suppression of METE under sufficient B12 is likely to make its contribution to 

methionine synthesis and therefore the C1-cycle insignificant. This could allow mutations in the gene 

to occur without any decrease in fitness. 

 Helliwell et al. (2015) cultured C. reinhardtii in media containing 1000 ng·l-1 B12, and within 

500 doublings of the alga observed the evolution of a B12-dependent mutant (Figure 1.4a), which was 

called ‘S-type’ due to its stunted growth on agar lacking B12 (Helliwell et al., 2015). S-type cells 

outcompeted the initial B12-independent strain and were shown to have a significantly higher maximal 

growth rate under replete B12 conditions. Analysis of the METE gene from S-type cells revealed that a 

type II Gulliver-related transposable element (GR-TE) had inserted into the 9th exon (Figure 1.4b). 

When S-type cells were plated on agar lacking B12 it was observed that on rare occasions colonies 

with a wild-type phenotype would arise from within the stunted colony (Figure 1.4c). Analysis of the 

METE gene from these colonies with a wild-type phenotype revealed that they had lost the GR-TE 
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insertion. These isolates were called R-type due to their reversion to B12-independence. When multiple 

colonies with the S-type stunted phenotype were analysed for the presence of the GR-TE, the seventh 

clone that was tested was found to be lacking it (Figure 1.4d). However, it did contain a nine 

nucleotide ‘footprint’ derived from the transposon (Figure 1.4e). This clone was subsequently called 

metE7 and unlike S-type cells would not revert to B12 independence when grown in the absence of 

B12. It was also shown that metE7 growth in media lacking B12 could be rescued by the addition of 

three B12-producing rhizobia: Mesorhizobium loti, Sinorhizobium meliloti, or Rhizobium 

leguminosarum. 
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iii Figure 1.3 Phylogenetic relationships between B12-dependent and B12-independent organisms 
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Figure 1.3 Phylogenetic relationships between B
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-dependent and B
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-independent organisms. (a) 

A schematic illustrating B
12

 requirements of various eukaryotic species (and one prokaryote) 

alongside their gene complements for B
12

-related enzymes. Absence of a functional copy of METE 

is the best predictor of B
12

 requirement. (b) An illustration of the phylogenetic relationship 

between certain Volvocalean species, with those species that can grow independently of B
12

 

indicated by a tick next to their name. These figures were taken from Helliwell, 2017 and Helliwell 
et al., 2013, with permission.  
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Figure 1.4 Laboratory evolution of a stable B
12

-dependent METE mutant of C. reinhardtii: metE7. 

(a) Experimental evolution of C. reinhardtii in high levels of B
12

 produced two phenotypes in the 

absence of B
12

: H-type cells maintained B
12

-independent growth, while S-type cells were unable to 

grow. (b) DNA from S-type and H-type colonies of C. reinhardtii was amplified using primers that 
span a section of the METE gene that contains a Gulliver-related transposable element in S-type 

cells. The lower portion shows the site of insertion of the GR-TE in the 9th exon of the METE gene 
of S-type cells, and some of the GR-TE’s sequence characteristics. (c) Photographs through a 
dissecting microscope of S-type colonies 11 days after plating on TAP agar without B

12
,
 
showing 

that in some cases darker H-type colonies appear to grow from single reversion events. (d) PCR 
products after amplification across the GR-TE insertion site from phenotypically S-type (stunted) 
colonies grown on TAP agar without B

12
. Clone number seven (metE7) produces a band of similar 

size to the ancestral line. (e)  Sequence alignment of ancestral line and metE7 DNA sequences at 
GR-TE insertion site. metE7 contains a 9-nucleotide footprint derived from incomplete excision of 
the GR-TE. All images and diagrams were taken from Helliwell et al., 2015, with permission.  
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1.9 Evolution of symbioses 

1.9.1 The Queens of coevolution 
 

The ‘Red Queen hypothesis’ (RQH) was proposed by Van Valen in 1973 as a way of 

explaining the finding from fossil evidence that species tended to go extinct with a constant 

probability (Van Valen, 1973). This was puzzling because if species A were to outcompete or simply 

outlive species B then it would seem that species A was better adapted and so should be less likely to 

go extinct. This constant probability of extinction therefore suggested varying selection pressures 

driven by constantly evolving antagonistic or competitive species. The hypothesis was subsequently 

widely used as an explanation for the evolution and maintenance of sexual reproduction, particularly 

in response to parasites (Hamilton, 1980; Hamilton et al., 1989; Jaenike & J., 1978; Morran et al., 

2011). The inspiration for naming the hypothesis the ‘Red Queen’, came from Lewis Caroll’s 

‘Through the Looking-Glass’ in which the Queen of Hearts says, ‘It takes all the running you can do 

to stay in the same place’, which seemed to capture the coevolutionary arms-race between 

antagonistic species, such as host and parasite. The ‘Black Queen hypothesis’ (BQH) was devised 

almost four decades later and also provided a theory for coevolution of species (Morris et al., 2012). 

The name was also inspired by a playing card, the Queen of Spades, which in the game of Hearts is a 

card that players aim to get rid of due to the penalty associated with holding it at the end of the game. 

A ‘Black Queen function’ is one that is costly to perform, essential to some members of the 

community that do not perform it, and ‘leaky’, meaning that some portion of its output becomes a 

public good/service (Morris, 2015). Both the Red and Black Queen hypotheses display a strong 

element of negative frequency-dependent fitness: for the Red Queen, hosts with a rare susceptibility 

phenotype are fitter than those with a common phenotype because parasites with the complementary 

virulence factor of the common susceptibility phenotype can spread more easily, hence negatively 

affecting the more common host phenotype; in the BQH, those ‘beneficiary’ strains that depend on 

‘helpers’ for the performance of the Black Queen function become less fit if they dominate the 

community, because in so doing they reduce the number of helpers.  This common theme of fitness 

being negatively frequency-dependent provides a counterargument to the ‘Competitive exclusion 

principle’, which states that species competing for the same limiting nutrients cannot coexist (Hardin, 

1960), and therefore also provides an explanation for the  ‘Paradox of the Plankton’, which observes 

that plankton diversity is substantial despite a nutrient-limited environment (Hutchinson, 1961).  

According to the RQH, continuous improvement or gain of functions and hence increased 

complexity is selected for, while under the BQH it is a race to the bottom by genome streamlining 

(Morris, 2015). The Red and Black Queens therefore contribute to the selective forces that regulate 

genome sizes (Cordero & Polz, 2014; Cuypers & Hogeweg, 2012; Katju & Bergthorsson, 2013), with 

genome simplification being the temporally dominant mode of evolution, punctuated by episodes of 
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complexification (Cuypers & Hogeweg, 2012; Wolf & Koonin, 2013). This does not provide much 

indication however, as to whether competitive or cooperative interactions predominate in the 

microbial world, but there are many proponents of the idea that competition dominates cooperation 

(Foster & Bell, 2012; Hibbing et al., 2010), and vice versa (Elias & Banin, 2012; Schink, 2002). 

Foster et al. (2012), mention that studies which propose cooperation as a dominant mode of 

interaction, such as those focusing on biofilms (Reisner et al. 2006; Burmølle et al. 2006), are 

intentionally unrepresentative (Foster & Bell, 2012). However, there is considerable evidence that 

positive interactions between species can facilitate the culture of the axenically ‘unculturable’ 

through, for example, iron provision by siderophores or release of short peptide signalling molecules 

(D’Onofrio et al., 2010; Nichols et al., 2008; Ohno et al., 1999). 

The realm of the Red Queen is restricted to competitive interactions, and has been seized 

upon in particular to explain how sexual reproduction keeps hosts ahead of parasites, or at least in the 

race (Lively et al., 1990; Moritz et al., 1991). Under the Black Queen, ‘helpers’ tend to experience 

little negative impact from ‘beneficiaries’ (which clearly benefit), and so the hypothesis concerns the 

development and maintenance of commensal interactions (Morris et al., 2012, 2014). Disregarding the 

fact that commensalism occupies an infinitely small space on the continuum from parasitism to 

mutualism, and hence theoretically does not exist, it can in practice lead to prolonged association 

between species and hence provide the opportunity for the evolution of mutualism (Ewald, 1987; 

Harcombe, 2010; Lawrence et al., 2012; Morris, 2015). Indeed, the evolution of mutualism from 

parasitism via commensalism is favoured in cases where a parasite is vertically transmitted (Ewald, 

1987; Yamamura, 1993). Although some mathematical models have found that cooperation can 

evolve and thrive in the presence of other symbiotic strategies (Axelrod & Hamilton, 1981), others 

have found that it is a poor strategy causing loss of autonomy and hence fragility, but also tends to 

take a form akin to mutual exploitation which reduces community productivity (Oliveira et al., 2014). 

Furthermore, parasites and autonomous organisms are nested within predominantly mutualistic clades 

suggesting breakdown of mutualism to parasitism or independence does occur (Sachs & Simms, 

2006).  

1.9.2 The Evolution of cooperation 
 

For cooperation to evolve there must firstly be an advantage to cooperating relative to 

independence. Barker et al. (2017) suggest there are three main advantages to cooperation, 

‘acquisition of otherwise inaccessible goods and services, more efficient acquisition of resources, and 

buffering against variability’ (Barker et al., 2017). The development of the legume-rhizobia symbiosis 

allowed plants to utilise the otherwise inaccessible N2 as a nitrogen source, and rhizobia were able to 

utilise the otherwise inaccessible CO2 as a carbon source (Long, 1989). Certain cyanobacteria with 

simple multicellularity compartmentalise nitrogen fixation into heterocysts, so that nitrogen fixation 
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and photosynthesis occur in separate cells (Kumar et al., 2010). This specialisation improves the 

efficiency of nitrogen acquisition because oxygen, a by-product of oxygenic photosynthesis, inhibits 

the nitrogenase enzyme (Wong & Burris, 1972). In general, specialisation will be favoured if the 

relationship between investment in a trait and its payoff is ‘accelerating’ (West et al., 2015) or 

‘convex’ (Michod, 2006, 2007), i.e. if it pays to invest more specifically than widely. The 

phenomenon of comparative advantage can then be made use of so that after the products of 

specialists have been distributed, all units of the group can gain (Hoeksema & Schwartz, 2003). 

Cooperation can also buffer against variability and so reduce the chance that any individual falls 

below a crucial threshold required for survival, for example, in vampire bats reciprocal food sharing 

occurs as individuals fluctuate between having an excess and shortfall of food (Carter & Wilkinson, 

2013). So, advantages to cooperation are widespread, but they are also often left open to exploitation 

by selfish individuals who do not reciprocate.  

The prisoner’s dilemma is a game where two rational players are presented with two options: 

to cooperate or to defect, and they are not allowed to alter the other player’s decision in any way. This 

gives rise to four possible combination of options, of which one combination is both the Nash 

equilibrium and has the minimum total payoff value (Rapoport & Chammah, 1965). A Nash 

equilibrium is the outcome where switching your option while the other player sticks to theirs will 

cause you to lose out, and vice versa from their perspective (Nash, 1950). Hence it is a dilemma 

because both players are driven by selfish interests to choose the option that results in the lowest total 

benefit. A special case of the prisoner’s dilemma, called the ‘donation game’, more aptly describes the 

barriers to cooperation within and between species (Doebeli & Knowlton, 1998). A ‘cooperator’ 

provides a benefit to the other player at a cost to themselves, where the benefit is greater than the cost. 

In this case, irrespective of the other player’s option it is beneficial to ‘defect’ i.e. not cooperate. 

Therefore, natural selection at the level of the individual should lead to the breakdown of cooperation.  

  Szathmary and Maynard Smith (1995) and later West et al. (2015) argued that the evolution 

of complex lifeforms was not a smooth ramp, but instead was defined by major transitions in 

individuality (Szathmáry & Smith, 1995; West et al., 2015). Individuals that could replicate 

independently prior to the transition could only replicate as part of the group (which they cooperated 

to form) after the transition (Szathmáry & Smith, 1995). In other words, the group becomes the 

individual. Queller et al. (1997) distinguished two types of transition: Fraternal transitions based on 

cooperation between kin, and Egalitarian transitions based on cooperation between distantly related 

individuals (Queller, 1997). The endosymbiosis of a cyanobacterium by a heterotrophic protist is an 

example of well-known egalitarian transition (Queller & Strassmann, 2016), while the development of 

multicellularity in the Volvocales is a well-characterised fraternal one (Herron & Michod, 2008). Note 

that most mutualisms do not meet the strict requirements of an egalitarian transition as they are not 

obligate and horizontal transmission allows for independence of replication (West et al., 2015), for 
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example, interactions between legumes and rhizobia are facultative and rhizobia are not transmitted 

vertically with the host (Maroti & Kondorosi, 2014; Westhoek et al., 2017).   

Perhaps the best-known theory to explain why cooperation persists is ‘group-level selection’, 

which posits that selection can act more strongly at the level of the group than the individual (Wright, 

1945). Therefore, although defectors are fitter than co-operators, groups of co-operators are fitter than 

groups of defectors, and so when starting with mixed groups cooperation can be favoured under 

certain circumstances. If selection is weak and group splitting is rare then cooperation is favoured 

when B/C>1+n/m, where n is the maximum number of individuals per group and m is the number of 

groups (Traulsen & Nowak, 2006). Introducing migration between groups has been found to favour 

defectors (Traulsen & Nowak, 2006), which in essence is equivalent to the hypothesis that vertical 

transmission favours cooperation (Sachs et al., 2011). The ‘Foraging to Farming hypothesis’ (FFH) 

uses the example of a B12-independent alga interacting with B12-producing bacteria to illustrate it’s 

point about how mutualisms might arise in phytoplankton communities (Kazamia et al., 2016). The 

FFH suggests that were an alga to lose METE and so become dependent upon B12, there would be a 

selective advantage to ‘farming’ the B12-producing bacteria by providing photosynthate so that a 

greater quantity and guarantee of B12 supply could be had. The FFH does not specifically address how 

cheating, or reducing photosynthate production, could be deterred or avoided, and so perhaps group-

level selection could offer a mechanism to support the FFH. The number of hypotheses that address 

the paradox of why cooperation between individuals occurs at all is evidence of the broad interest in 

this question. Whether they are competing hypotheses, however, or simply competing metaphors is 

not always clear.  

1.10 Thesis aims and structure 
 

 The overarching aim of this thesis was to provide some insight into the early stages after the 

initial evolution of vitamin B12 dependence in algae, a phenomenon that is predicted to have occurred 

multiple times (Croft et al., 2005). This approach could be compared to the study of the alga P. 

chromatophora, which has formed an endosymbiosis with a cyanobacterium relatively recently, to 

infer the early stages of the formation of photosynthetic organelles (Nowack et al., 2011). Perhaps 

there is no reason to suggest that the metE7 mutant is any different from other mutants of C. 

reinhardtii, in which case this is a study of the function of METE in this alga’s physiology. However, 

the circumstances of its generation by experimental evolution, and the fact that the underlying 

mechanism of its B12 dependence is widely shared among B12 auxotrophs (Helliwell, 2017; Helliwell 

et al., 2011), leads me to believe that study of this mutant will reveal wider evolutionary and 

ecological implications. By way of a visual introduction to the organisms used in this work a 

collection of microscope images is assembled in Figure 1.5. 
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   In chapter three I investigate the responses of metE7 to deprivation of vitamin B12. Firstly, I 

compare the growth of metE7 and the wild-type C. reinhardtii in different concentrations of B12. To 

compare metE7 to a closely related natural B12 auxotroph, both metE7 and L. rostrata were tested for 

their B12 growth response, B12 uptake, and storage. I hypothesised that the most likely consequences 

of B12 deprivation in metE7 would be an alteration in C1-cycle metabolite and enzyme transcript 

abundance, and so measured a subset of these in the wild type and metE7 mutant in B12 replete and 

deplete conditions. A wider variety of cellular composition measurements were then made on metE7 

cells under B12 deprivation, including quantification of protein, starch, lipids, free amino acids, and 

fatty acids. To get a better perspective of the dynamics of the response to B12, C1-cycle metabolites 

and enzyme transcripts were quantified at several time points over 3 days of B12 deprivation and for 2 

days after B12 add-back. Physiological aspects of the response to B12 deprivation, including cell 

viability, PSII maximum efficiency (Fv/Fm), non-photochemical quenching, and production of 

reactive oxygen species were then compared in metE7 and L. rostrata. To have a better idea as to 

whether the differences in the responses of metE7 and L. rostrata might be attributed to the fact that 

L. rostrata has had time to evolve mechanisms to improve survival under B12 deprivation, I decided to 

also measure the response of metE7 to nitrogen deprivation, a condition C. reinhardtii has had ample 

time to evolve coping mechanisms for. metE7 was then exposed to a combination of nitrogen and B12 

deprivation to see whether nitrogen deprivation could elicit responses that would improve survival 

during B12 deprivation. Finally, metE7 lines were sub-cultured weekly over a period of 6 months in 

three different B12 conditions to test whether metE7 could adapt to B12 auxotrophy and improve its 

growth and survival under limiting concentrations of B12.   

 Over the long term, a B12-dependent alga, by definition, will require a source of B12, which in 

the natural environment will ultimately come from B12-producing prokaryotes. In Chapter four I 

investigate how metE7 grows in coculture with B12-producing bacteria. Firstly, however, I test 

whether M. loti has any effect on wild-type C. reinhardtii and vice versa, because Kazamia et al. 

(2012) had previously found that C. reinhardtii would not support M. loti (Kazamia et al., 2012). 

Algal and bacterial growth and B12 production were then compared in cocultures of M. loti with 

metE7 or B12-independent strains of C. reinhardtii, and then also with L. rostrata. To test whether 

metE7 and M. loti were limited in coculture by their partner’s ability to provide their required 

nutrients, B12 or glycerol was added to batch and semi-continuous cocultures, and the changes in algal 

and bacterial cell density recorded. Grant et al., (2014) found that M. loti produced more B12 per cell 

when grown in coculture with L. rostrata (Grant et al., 2014), so to see whether the same was true of 

metE7, B12 concentrations in the media and cell fractions as well as M. loti cell densities were 

compared in axenic cultures and cocultures. To further investigate this, axenic cultures of metE7 were 

added to axenic cultures of M. loti for a short incubation period before specifically removing metE7 

cells by filtration. The uptake of B12 from the media by metE7 cells and any subsequent B12 



 

28 
 

production by M. loti was then measured. Having explored M. loti B12 synthesis in cocultures I then 

examined the role of B12 release into the media, firstly with an M. loti mutant in a component of the 

B12 uptake system (btuF), and subsequently in a btuF mutant of a strain of E. coli engineered to 

produce B12. Finally, I investigated whether M. loti could produce enough B12 to favour the growth of 

a B12-dependent strain of C. reinhardtii over a B12-independent one.  

 In chapter five I discuss the results from the previous two chapters in a broader context and 

suggest experiments that could be performed to build on those results. I focus on the potential of 

developing C. reinhardtii as a model for algal C1-metabolism, how the active response to B12 

deprivation appears rather limited and consider the conditions that might lead to the development of a 

highly cooperative mutualism between a newly evolved B12 auxotroph and B12-producing bacteria.   
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 Figure 1.5 Microscope photographs of the green algae used in this work 

 

 

Figure 1.5 Microscope photographs of the green algae used in this work: (a) B12-replete C. 

reinhardtii metE7; (b) B
12

-replete L. rostrata; (c) B
12

-deprived metE7; (d) Palmelloid of metE7 cells 

after resupplying B
12 

to B
12

-deprived cells; (e) Coculture of metE7 and M. loti; (f) Scanning electron 

microscope photograph of a coculture of metE7 and M. loti. In the lower two panels the location 
of one of the M. loti cells is denoted by an arrow, and in all panels the scale bars represent the 
length written immediately above them.  

(a) (b) 

(c) (d) 

(e) (f) 

v Figure 1.5 Microscope photographs of the green algae used in this work 
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Chapter 2: Methods 
 

2.1 Strains 
 

Two closely related B12-dependent chlorophyte algal strains were used in this study: 

Lobomonas rostrata (SAG 45/2), and Chlamydomonas reinhardtii (metE7). metE7 was derived from 

strain 12 of wild type 137c by experimental evolution: selection for rapid growth under 1000 ng·l-1 

B12 produced a metE (B12-independent methionine synthase) mutant via insertion of a type II 

transposable element, and subsequent incomplete transposition of the element left 9bp behind and 

produced a genetically stable B12-dependent strain hereafter referred to as metE7 (Helliwell et al., 

2015).  

Mesorhizobium loti, a soil dwelling rhizobium that forms facultative symbiotic relationships 

with legumes was used as a B12 producer in most coculture experiments with the B12-dependent algae. 

Strain MAFF303099 was most commonly used, but a btuF and bluB mutant were also used. Two 

Escherichia coli coli strains, ED656 and ED662, were also used as B12-producers, and were received 

as a gift from Dr. Evelyne Deery, University of Kent. Both strains synthesise B12, but ED662 has a 

kanamycin resistance cassette inserted into the gene encoding BtuF. Salmonella typhimurium 

AR3612, a metE and cysG double mutant, was used in bioassays to determine the concentration of B12 

in samples.   

2.2 Algal and bacterial culture conditions 
 

Algal colonies were maintained quarterly on Tris-acetate phosphate (TAP) (Kropat et al., 

2011) + 1000 ng·l-1 cyanocobalamin (B12) agar (1.5%) in sealed transparent plastic tubes at room 

temperature and ambient light. Colony transfer by spreading on the agar surface using sterile loops 

was performed in a laminar flow hood. To initiate liquid cultures colonies were picked and inoculated 

into filter-capped cell culture flasks (NuncTM
,ThermoFisher), or 24 well polystyrene plates 

(Corning®Costar® Merck) containing TAP or Tris minimal medium at less than 60% volume 

capacity, and supplemented with a range of B12 concentrations. Cultures were grown under 

continuous light or a light-dark period of 16hr-8hr, at 100 µE·m-2·s-1, at a temperature of 25⁰C, with 

rotational shaking at 120 rpm in an incubator (InforsHTMultitron; Basel, Switzerland).  

For nutrient starvation experiments the pre-culture TAP media contained 200 ng·l-1 of B12, 

and when cell densities surpassed 1*106 cells·ml-1 or an OD730 nm of 0.2, cultures were washed by 

centrifugation at 2,000 g for 2 minutes, followed by supernatant removal and resuspension of the cell 

pellet in media lacking the nutrient (N or B12), and the process repeated twice more. Cells were 

resuspended in cotton wool-stoppered 500 ml borosilicate conical flasks or nunc flasks to an OD730 
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nm of roughly 0.1. Cultures were grown as above for 96-120 hours with aliquots sampled for analysis 

daily.  

Bacteria were maintained in glycerol stocks stored at -80°C. To prepare these for experiments 

cultures were grown to late log phase in liquid TY or LB media, centrifuged at 10,000 g for 2 

minutes, the pellet resuspended in filter-sterilised 10% glycerol, and the microfuge tube dropped into 

liquid nitrogen for snap freezing followed by storage in a -80°C freezer. To initiate bacterial culture a 

small portion of the glycerol stock was removed by stabbing a pipette tip into the stock and spreading 

on LB and TY agar plates incubated at 37°C overnight or 28°C for 3 days for E. coli and M. loti 

respectively. After confirming the lack of contamination by colony morphology, colonies were picked 

and inoculated into nunc flasks containing Tris minimal medium with 0.1% glycerol. Axenic bacterial 

cultures were incubated under the same conditions as algal cultures, which are described above.  

Cocultures of algae and bacteria were initiated by inoculating them into Tris minimal medium 

from axenic cultures where cell densities had been checked to ensure a ratio of roughly 1:20. In some 

cases cocultures were allowed to acclimate for several days before making a dilution based on the 

algal cell density and starting measurements.  

 

2.3 Algal and bacterial growth measurements 
 

Algal cell density and optical density at 730 and 750 nm were measured using a Z2 particle 

count analyser (Beckman Coulter Ltd.) with limits of 2.974-9.001 µm, and a FluoStar Optima (BMG 

labtech) or Thermo Spectronic UV1 spectrophotometer (ThermoFisher) respectively. Mean cell 

diameter was measured via image analysis of microscope photographs using a MATLAB algorithm 

written by Hannah Laeverenz-Schlogelhofer. These were taken at 100-200* magnification on an 

Olympus BX43 light microscope of 15 µl of culture between a microscope slide and cover slip. Dry 

mass was measured by filtering 20 ml of culture through pre-dried and weighed grade five whatmann 

filter paper (Sigma-Aldrich WHA1005090), drying at 70⁰C for 24 hours, followed by further 

weighing on a Secura mass balance (Sartorius). Viability of algal cells was determined by 10-fold 

serial dilution of a culture aliquot in growth media and spotting 10 µl volumes on TAP + 1000 ng·l-1 

B12 1.5% agar plates, followed by incubation at 25⁰C, 20 µE·m-2·s-1 of continuous light for 96 hours 

and then counting the number of single cells and colonies separately at 100* magnification. M. loti 

and E. coli colony forming unit (CFU) density was measured similarly but on TY or LB plates with 

incubation at 28⁰C in the dark for 3 days or 37°C overnight respectively. E. coli ED662 was 

distinguished from ED656 by its kanamycin resistance and hence ability to grow on LB + 50 µg·ml-1 

kanamycin plates. Single cells for all bacteria were too small to count with a light microscope. When 
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bacteria were grown axenically, optical density was also used as a proxy for cell density with 

measurements at 600 nm on a FluoStar Optima (BMG labtech) spectrophotometer.  

2.4 Pigment quantification 
 

A 1ml aliquot of algal culture with OD730 nm>0.1 was centrifuged at 2,000 g for 2 minutes, 

the supernatant discarded, and the cell pellet resuspended in 1 ml dimethylformamide. Pigments were 

extracted by vortexing for 10 minutes, centrifuging at 10,000 g for 2 minutes, and transfer of the 

supernatant to a 1.5 ml cuvette (Greiner Bio-one). Optical density at 480, 647 and 664.5 nm was 

measured using a Spectrophotometer (ThermoFisher) and using the equations by Inskeep and Bloom 

(Inskeep & Bloom, 1985) and Wellburn (Wellburn, 1994), chlorophyll A, chlorophyll B, and 

carotenoid concentrations were calculated.  

𝐶ℎ𝑙 𝑎 = 12.70𝐴664.5 − 2.79𝐴647  

𝐶ℎ𝑙 𝑏 =  20.70𝐴647 − 4.62𝐴664.5 

𝑇𝑜𝑡𝑎𝑙 𝐶ℎ𝑙 =  17.90𝐴647 + 8.08𝐴664.5 

𝐶ℎ𝑙 𝑥 + 𝑐 (𝑐𝑎𝑟𝑜𝑡𝑒𝑛𝑜𝑖𝑑𝑠) =
1000𝐴480 − 2.14𝐶ℎ𝑙 𝑎 − 70.16𝐶ℎ𝑙 𝑏 

245
 

 

2.5 Protein quantification 
 

The cell pellet from 1 ml of culture was resuspended in 1 ml of 1 M NaOH and vortexed for 1 

minute. The tube was incubated at 100⁰C in a water bath for 5 minutes and left at room temperature to 

cool for 10 minutes. Tubes were centrifuged at 2000 g for 2 minutes and 30 µl of supernatant added to 

a 96 well clear microplate, followed by 270 µl of Bradford dye (Biorad), incubation at room 

temperature for 5 minutes, then absorption measured at 595 nm on a FluoStar Optima (BMG labtech), 

and compared with a standard curve of bovine serum albumin (BSA).  

2.6 Amino acid analysis 
 

10 ml of samples were centrifuged at 2,000 g for 2 minutes, supernatant removed, and cell 

pellet lyophilised at <-40⁰C and <10 Pascals for 12-24 hours in a freeze drier (Edwards Pirani 501). 

The freeze-dried cell pellet was analysed by Dr. Deborah Salmon, University of Exeter, according to 

the protocol provided below:  

5 mg of a freeze‐dried sample of cultures were extracted in acetonitrile, and then re‐extracted 

with 20% methanol spiked with an internal standard containing stable isotope‐labelled amino acids 

(L‐amino acid mix; Sigma‐Aldrich). The supernatants were pooled, and amino acids were derivatised 
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with an AccQ•Tag Ultra derivatization kit (Waters Corp., Milford, MA, USA). HPLC‐ESI‐MS/MS 

quantitative analysis of the amino acids was performed using an Agilent 6420B triple quadrupole 

(QQQ) mass spectrometer (Agilent Technologies, Palo Alto, CA, USA). All ions were scanned in 

positive ion mode and given a dwell time of 50 ms. Data analysis was undertaken using Agilent Mass 

Hunter Quantitative analysis software for QQQ (v.B.07.01). Accurate quantification used the stable 

isotope‐labelled internal standards added during sample extraction, and data were normalized to the 

DW of the samples. 

2.7 SAM, SAH, and Methionine quantification 
 

10ml of samples were centrifuged at 2,000 g for 2 minutes, supernatant removed, and cell 

pellet lyophilised at <-40⁰C and <10 pascals for 12-24 hours. The freeze-dried cell pellet was analysed 

by Dr. Deborah Salmon, University of Exeter, according to the protocol provided below: 

300 µl of 10% methanol (LC-MS grade) spiked with stable isotope-labelled amino acids (L-

amino acid mix, Sigma-Aldrich, Co., St. Louis, MO, USA) was added to each sample.  They were 

vortexed three times, every 10 min, before sonicating for 15 min in an iced water bath.  After a final 

vortex, samples were centrifuged (16,100 x g) for 15 min at 4oC. 150 µl of supernatant was transferred 

to glass MS vials. Samples were kept on ice throughout the extraction procedure, prior to being run on 

the LC-MS QQQ. 

Quantitative analysis was performed using an Agilent 6420B triple quadrupole (QQQ) mass 

spectrometer (Agilent Technologies, Palo Alto, USA) coupled to a 1200 series Rapid Resolution HPLC 

system. 5 µl of sample extract were loaded onto a SeaQuant ZIC HILIC 100A, 3.5 µm, 2.1 x 150 mm 

analytical column (Merck, USA).  For detection using positive ion mode, mobile phase A comprised 

100% LC-MS grade acetonitrile with 0.15% formic acid and mobile phase B was 100% water (LC-MS 

grade) with 0.15% formic acid and 5 mM ammonium formate.  The following gradient was used: 0 min 

– 20% B; 17 min – 80% B; 20 min – 80% B; 21 min – 20% B; followed by a 9 minute re-equilibration 

time.  The flow rate was 0.2 ml min-1 and the column temperature was held at 35 °C for the duration. 

The QQQ source conditions for electrospray ionisation were as follows: gas temperature was 350°C 

with a drying gas flow rate of 11 l·min-1 and a nebuliser pressure of 35 psig. The capillary voltage was 

4 kV. The fragmentor voltage and collision energies were optimised for each compound. Data analysis 

was undertaken using Agilent MassHunter Quantitative Analysis software (version B.01.7.01). 

Methionine concentrations were calculated using the spiked labelled methionine (5 µM) in each sample. 

Concentrations of the other compounds were calculated using calibration curves produced from 

standard concentration dilutions.  Data was normalised to the spiked labelled glycine (50 µM) internal 

standard, and then to the dry weight of each sample.   

 



 

34 
 

2.8 Starch quantification 
 

The cell pellet from 1 ml of sample was resuspended in 1ml acetone, vortexed for 5 minutes, 

pelleted by centrifugation at 10,000 g for 2 minutes, and resuspended in 1ml deionised H2O. Total 

starch from this sample was quantified using a commercial amyloglucosidase enzymatic kit (starch 

assay kit SA-20; Sigma-Aldrich) according to the manufacturer’s instructions. 

2.9 Lipid analysis 
 

All chemicals were purchased from Sigma-Aldrich, unless stated otherwise. Lipid extraction 

was based on a modified Bligh and Dyer method (Bligh & Dyer, 1959; Horst et al., 2012). To extract 

the total lipids, 10 ml of culture was centrifuged at 2000g for 2 minutes, the supernatant removed, 10 

ml of chloroform-methanol (2:1, v/v) added to the pellet, and the tube was vortexed for 15 seconds 

and sonicated for 30 minutes in ice water. Prior to extraction, samples were spiked with 1 mg·ml-1 

C15:0 pentadecanoic acid. 5 ml of deionized water was added followed by centrifugation at 1000 g 

for 3 minutes at 4⁰C for phase separation. The lower chloroform phase was dried in a solvent 

evaporator (45°C; GeneVac EZ-2; SP Scientific, Ipswich, United Kingdom) and resuspended in 200 

µl n-heptane (Escobar Galvis et al., 2001). Triacylglycerides, polar lipids, and free fatty acids in the 

crude total lipid extract were analysed by gas chromatography (GC)-flame ionization detection (FID) 

with a Varion Select Biodiesel for glycerides GC metal column (10 m by 0.32 mm; film thickness, 0.1 

µm; part number CP9076; Agilent Technology)(Horst et al., 2012). TAGs were identified and 

quantified by comparison to a glyceryl tripalmitate standard.  

The total lipid fractions of the samples were converted to fatty acid methyl esters (FAMEs; 

acid catalyzed) as described by Stephenson et al. (Stephenson et al., 2010). The FAMEs were 

separated and identified using gas chromatography (TraceGCUltra; Thermo Scientific) with a Zebron 

ZB-Wax capillary GC column (30m by 0.25 mm; film thickness, 0.25 µm; Phenomenex, United 

Kingdom). The injection volume was 1 µl with a 35:1 split ratio, the injector temperature was 230°C, 

and helium was used as the carrier gas at a constant flow rate of 1.2 ml min-1. The following gradient 

was used: initial oven temperature, 60°C for 2 minutes and then an increase to 150°C at 15°C min-1 

and to 230°C at 3.4°C min-1. The detector temperature was 250°C. FAMEs were identified by mass 

spectrometry and were quantified by comparison with a methyl octadecanoate standard. 

2.10 Transcript quantification 
 

RNA extraction was performed on the liquid nitrogen frozen cell pellet from 10 ml of algal 

culture using the RNeasy® Plant Mini Kit (QIAGEN). Cells were initially lysed by resuspension in 

450 µl buffer RLT + 1% v/v Beta-mercaptoethanol, addition of acid-washed autoclaved glass 



 

35 
 

microbeads and vortexing in 4*10 second intervals at 4⁰C. Manufacturer’s instructions were then 

followed. DNase treatment was carried out using TURBO DNA-free™ kit (Ambion), and cDNA 

synthesis using SuperScript®III First-Strand synthesis system for RT-PCR (Invitrogen) according to 

the manufacturer’s instructions. RNA concentration and purity were quantified using a nanodrop 

spectrophotometer measuring absorbance from 230-280 nm. DNase treatment was assessed by testing 

whether PCR would amplify any products after DNAse treatment but before cDNA synthesis. For 

quantitative PCR, SYBR® Green JumpStart™ Taq ReadyMix™ was used with 0.2 µl cDNA and a 

final concentration of 0.5 µM of each primer in a 10 µl total reaction volume in a Rotor-Gene Q real-

time PCR machine (QIAGEN). The qPCR program involved a 5 minute 95⁰C initial denaturation 

followed by 40 cycles of 95⁰C for 10 seconds, 55⁰C for 15 seconds, 72⁰C for 25 seconds, with a final 

extension at 72⁰C for 90 seconds. Melt curves were generated following directly on from the final 

extension by increasing the temperature from 72 to 95°C in 1°C steps held for 5 seconds each. 

Primers (described in appendix) were designed to anneal across exon-intron boundaries where 

possible to prevent amplification from any remaining gDNA, and otherwise designed to anneal to 

separate exons so that products from gDNA would be larger than the 100-200bp expected from cDNA 

and so could be distinguished by gel electrophoresis. Amplification efficiency and PCR cycle at 

which fluorescence reached a threshold value were calculated using Rotor-Gene Q software v2.02. 

Amplification efficiency was also calculated using a calibration curve based on serial dilutions of 

cDNA and was found to be significantly higher at 1.9-1.98 than the values reported by the Rotor-

Gene Q software. Therefore, although the Pfaffl method for relative quantification of transcripts was 

used, the default (and highest) amplification efficiency of 2.0 was used (Pfaffl, 2001). Several 

housekeeping genes were initially investigated, including RACK1, RPL10A, EEF1, ACTIN, H2B, 

UBQ, GTF5, but finally just RACK1 was selected as being representative of the others.   

2.11 Reactive oxygen species quantification 
 

2 µl of 1 mM 2’,7’ Dichlorofluorescein diacetate (Sigma-Aldrich) dissolved in DMSO was 

added to 198 µl of cell culture in a black f-bottom 96 well plate (Greiner bio-one) and incubated at 

room temperature in the dark for 60 minutes before recording fluorescence at 520 nm after excitation 

at 485 nm in a FluoStar Optima Spectrophotometer (BMG labtech). Fresh cell culture media devoid 

of any cells was used as a blank.  

2.12 Photosynthetic parameter measurement 
 

200 µl of cultures with an OD730 nm>0.1 were transferred to a 96 well plate which was then 

incubated at 25°C in the dark for 20 minutes within the CF imager (technologica). F0 was measured 

prior to, and Fm during, a saturating pulse at 6172 µE·m-2·s-1. The light intensity was increased to 4 
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µE·m-2·s-1 and the cells allowed to acclimate for 30 seconds prior to another set of fluorescence 

measurements before and during a saturating pulse. This was repeated in increasing steps of light 

intensity: 8, 16, 32, 64, 128, 256, 512, 1024, and 2000 µE·m-2·s-1. From these fluorescence 

measurements the CF imager software calculated Non-photochemical quenching (Fm/Fm’-1), PSII 

maximum efficiency (Fv’/Fm’), and the coefficient of photochemical quenching (Fq’/Fv’) at each 

light intensity. 

2.13 Vitamin B12 quantification 
 

Prior to B12 quantification, cultures were separated into fractions. In most cases 1.15 ml of 

culture was centrifuged at 10,000 g for 2 minutes, 1.1 ml of the supernatant was aliquoted into a fresh 

tube, and 1.1 ml of fresh media was used to resuspend the cell pellet. To measure B12 uptake by C. 

reinhardtii and L. rostrata over short time periods the algae were inoculated into syringes capped with 

0.4 µm filters and the filtrate (representing the media as no cells were present) collected at various 

time intervals.  

Vitamin B12 was quantified by measuring the growth of a B12-dependent Salmonella 

typhimurium strain AR3612 when incubated with a certain dilution of the sample of interest. AR3612 

was inoculated from a glycerol stock and spread on an M9-based (Recipe in Appendix) agar plate, 

that was then incubated at 37°C overnight (12-24 hours). 1 ml of 0.9% NaCl solution was added to the 

plate, the colonies scraped into suspension and transferred to a 1.5 ml microfuge tube. The tube was 

centrifuged at 16,000 g for 1 minute, supernatant removed, 1 ml of 0.9% NaCl solution added to 

resuspend the pellet, and the process repeated twice more. Washed AR3612 cells were inoculated into 

2*M9 media (Recipe in Supp. Table 1) at a 2000-fold dilution.  

1.1 ml of the sample of interest was aliquoted into a microfuge tube, placed in a boiling water 

bath for 15 minutes, centrifuged at 16,000 g for 1 minute, and a volume of supernatant inversely 

proportional to its estimated B12 concentration added to a 24 well plate. This bioassay has optimal 

accuracy for solutions with B12 concentrations between 5 and 200 pg·ml-1 when 1ml is added to the 24 

well plate. For solutions predicted to have greater concentrations, lower volumes were added and 

made up to 1ml with deionised water. To this 1ml solution, 1 ml of 2*M9 media inoculated with 

washed AR3612 was added. In parallel to this, 1 ml volumes with known B12 concentrations between 

0 and 300 pg·ml-1 were added to a 24 well plate to create the standard. Plates were incubated at 37°C 

for 16 hours and optical density at 600 nm recorded. Using a logistic equation to connect the optical 

density and B12 concentration of the known solutions, the optical density of wells to which the 

samples had been added could be converted to a B12 concentration.   
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2.14 Artificial Evolution setup 
 

A culture of metE7 cells was plated on TAP +1000 ng·l-1 B12 agar, then eight colonies picked 

and resuspended in TAP + 200 ng·l-1 B12 in a 96 well plate. Each well was split into three wells, each 

in a different 96 well plate containing 200 µl of a different media: TAP +1000 ng·l-1 B12, TAP +25 

ng·l-1 B12, and Tris minimal medium. M. loti was prepared in a similar manner to metE7, except 

preculturing was performed in Tris min + 0.01% glycerol. M. loti was added to the Tris min culture 

containing metE7 at a density roughly 20 times greater than the alga. The 96 well plates were 

incubated at 25°C, under continuous light at 100 µE·m-2·s-1, on a shaking platform at 120 rpm. Each 

week the cultures were diluted: Those in TAP +1000 ng·l-1 B12 were diluted 10,000-fold, TAP +25 

ng·l-1 B12 = 100-fold, and Tris min = 5-fold. Every three weeks 10 µl of serial dilutions of each culture 

was also spotted onto TAP agar + Ampicillin (50 µg·ml-1) and Kasugamycin (75 µg·ml-1) and TAP 

agar + 1000 ng·l-1 B12 to check for B12 independent revertants, and to act as a reserve should 

revertants or other contamination occur later. If cultures were found to be contaminated or contain 

revertants, then at the next transfer they were replaced by colonies from the same well that had grown 

on the TAP agar plates. At two points during the 7-month evolution period all cultures were 

transferred to TAP agar plates where they were stored for 2 weeks during an absence from the lab, 

meaning that the total time in liquid culture was 6 months.  

2.15 Statistics and mathematical models 
 

Shapiro-Wilk test: Many parametric tests, such as Welch’s t-test and Tukey’s range test assume that 

the intra-group data shows a normal distribution about the mean. To satisfy this assumption of 

normality the Shapiro-Wilk test was used and those groups with critical p-values rejected. The 

significant p-value per test was adjusted using the Sidak correction to maintain the family wise error 

rate at 0.05. If at least one group of data was shown to differ significantly from a normal distribution, 

then all the data was log-transformed and the Shapiro-Wilk test repeated. The function used in R was 

‘shapiro.test()’. 

Bartlett’s test: Tukey’s range test also requires the groups of data being compared to show 

homoscedasticity. To satisfy this assumption Bartlett’s test was applied, and any data with a p-

value<0.05 was log-transformed and retested. Only those data with p>0.05 were subsequently tested 

for a difference in means with a parametric test e.g. Tukey’s range test. The function used in R was 

‘bartlett.test()’. 

Welch’s T-test: This test was used to determine if there was a significant difference in the means of 

two groups both containing data that was normally distributed. The function used in R was ‘t.test()’. 
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ANOVA: This test was used to determine if there was a significant difference in the means of more 

than two groups each containing data that was normally distributed. The function used in R was 

‘aov()’ 

Tukey’s range test: When an ANOVA had reported a significant difference in the means of groups of 

data (p<0.05), Tukey’s range test was used to make all pairwise comparisons between groups and 

report on their statistical significance. The function used in R was ‘HSD.test()’.  

Backward stepwise elimination: Linear models were used to explain the relationships between B12 

concentration, M. loti cell density, and whether the culture contained metE7. Starting with a linear 

model where B12 concentration was explained by the interaction between M. loti density and presence 

of algae, the interaction term was removed first, followed by the least significant (highest p-value) of 

the two additive terms. The Bayesian information criterion (BIC) was calculated for each model, as 

was the adjusted R2 value and ANOVA result for the difference between two models connected by the 

removal of one term. The model with the lowest BIC value was selected.   

Verhulst equation:  This was used to fit a model to the optical density data of algal cultures over time 

grown under different B12 concentrations.   𝑁 =
𝐾𝑁0𝑒𝑟𝑡

𝐾+𝑁0(𝑒𝑟𝑡−1)
 

Michaelis-Menten equation: This was used to fit optical density data of algae over different B12 

concentrations. The optical density data was either used from the final timepoint of growth or was the 

predicted carrying capacity (K) from the Verhulst equation above.  𝑉 =
𝑉𝑚𝑎𝑥[𝑆]

𝐾𝑚+[𝑆]
 

4 parameter logistic equation: This was used to fit optical density data of S. typhimurium over 

different B12 concentrations and was found to be more accurate than the Michaelis-Menten equation. 

Rearranging the formula to make [B12] the subject allowed conversion of optical densities of the 

samples to B12 concentrations. 𝑦 = 𝐷 +
𝐴−𝐷

1+(
𝑥

𝐶
)𝐵

  and rearranged 𝑥 = 𝑐(
𝑎−𝑦

𝑦−𝐷
)

1

𝐵 
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Chapter 3: Coping with B12 auxotrophy in the short term 
 

3.1  Introduction 
 

Chlamydomonas reinhardtii is a unicellular, biflagellated, photosynthetic, soil-dwelling 

microalga (Merchant et al., 2007). In this environment macro and micro-nutrients can be 

heterogeneously distributed, and abiotic factors such as temperature and light intensity can vary 

dynamically and drastically over diurnal and annual cycles (Fierer, 2017). As Chlamydomonas is a 

mixotroph, with the ability to survive as a heterotroph or photoautotroph, it is considered a model 

system for improving our understanding of both photosynthesis and dark fermentation (Dubini et al., 

2009; Rochaix, 1995). Chlamydomonas has also been found to have sophisticated mechanisms for 

acclimating to macro and micro nutrient deficiencies (Grossman, 2000). Some of these responses are 

specific to the limiting nutrient, such as increasing expression of high-affinity transporters, increasing 

the recycling of that nutrient, and reducing its use where possible (González-Ballester et al., 2010; 

Saroussi et al., 2017). Others however, are more general and are common to most if not all nutrient 

limitation responses. These include a down-regulation of photosynthesis, a decrease in growth and 

cell division, and an increase in storage compounds such as starch and triacylglycerides (Saroussi et 

al., 2017; Wykoff et al., 1998).  

 

Chlamydomonas reinhardtii itself does not absolutely require vitamin B12, but many of its 

close relatives in the Volvocales do, including Volvox carteri, Gonium pectorale, and Lobomonas 

rostrata (Helliwell et al., 2011). The metabolic reason for their B12 requirement is the lack of a B12-

independent methionine synthase (METE), which renders them reliant on B12 as a cofactor for the 

alternative methionine synthase enzyme (METH) (Helliwell et al., 2011).  Despite being independent, 

C. reinhardtii still appears to respond to vitamin B12 by downregulating the expression of at least 

three proteins, METE, S-adenosylhomocysteine hydrolase (SAH1), and serine 

hydroxymethyltransferase 2 (SHMT2) (Helliwell et al., 2014). Phaeodactylum tricornutum is similar 

to Chlamydomonas in that it has the ability to use B12 without being dependent upon it, and was also 

found to show little difference in overall gene expression in the presence of B12 (Bertrand et al., 2012). 

One of the proteins that was suppressed by high levels of B12 however, was found to have a role in the 

high affinity uptake of vitamin B12 and therefore called cobalamin acquisition protein 1 (CBA1). No 

proteins involved in the uptake of vitamin B12 in Chlamydomonas are well characterised, although 

there is some evidence that a pherophorin in the cell wall binds B12 (Croft 2005).   

 

Helliwell et al. (2015), generated a metE mutant of Chlamydomonas by artificial evolution in 

conditions of high vitamin B12 concentration (Helliwell et al., 2015). This mutant was completely 
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reliant on B12 for growth, but in the presence of the vitamin it had a slight growth advantage over its 

B12-independent progenitor. Further characterisation of the mutant showed that it had acquired a type 

II Gulliver-related transposable element (GRTE) in the 9th exon of the METE gene. Certain isolates of 

the mutant were found to revert to B12 independence, and in all cases analysis of the METE gene 

found that the GRTE had excised completely, restoring the wild type sequence. Sequencing over the 

insertion site in colonies that remained B12-dependent identified one (#7) that lacked most of the 

GRTE, but importantly retained nine nucleotides at the site of insertion, which appeared to prevent 

METE translation. This mutant, which was unable to revert to B12 independence, was called metE7 

and has been the focus of this thesis.  

 

In this chapter I characterize the responses of metE7 to various concentrations of vitamin B12 

and compare it to the responses of its ancestral B12-independent strain. I then go on to compare the 

mutant with a closely related B12 auxotroph, Lobomonas rostrata. During B12 deprivation of metE7 I 

quantify changes in gene expression, cellular composition, photosynthetic activity, and viability, and 

contrast these with changes under nitrogen deprivation, which are known to protect against cell death. 

Finally, I compare strains of metE7 that underwent a further period of experimental evolution for 6 

months under three different B12 conditions to see whether Chlamydomonas can improve its survival 

during B12 deprivation within a relatively short period of time. 

 

3.2 Results 
 

3.2.1 Comparing a B12 auxotroph with its B12-independent ancestor 
 

C. reinhardtii metE7 had previously been shown to require B12 for growth (Helliwell et al., 

2015), but to quantify this more precisely, growth under a range of B12 concentrations was tested to 

develop a dose-response curve. The maximum culture density achieved under three trophic conditions 

was measured for metE7 as well as two B12-independent lines: the ancestral strain and a phenotypic 

revertant. Tris minimal medium was used for photoautotrophic conditions and TAP media for 

heterotrophic and mixotrophic conditions, and cells were inoculated at approximately 100 cells·ml-1. 

Light intensity and duration of 100 µE·m-2·s-1 and 24 hours was used for the mixotrophic and 

photoautotrophic conditions; heterotrophic cultures were maintained in darkness except for 5 minutes 

per day for inspection and measurement of optical density. After 6 days under mixotrophic conditions 

or 8 days otherwise, the optical density of cultures had stopped increasing and cell density was 

measured. Figure 3.1 shows a clear dose-response for metE7 where cell density is limited by B12 

below a certain value, which is dependent on the culture condition. The concentration of B12 at which 

the cell density was half the value achieved under replete B12 (EC50) was 11 ng·l-1
 for both 

heterotrophic and photoautotrophic conditions and 95 ng·l-1 for mixotrophic conditions. At 
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concentrations of B12 roughly twice these values metE7 reaches similar densities to the ancestral and 

revertant lines in all three media. As expected from previous studies (Moon et al., 2013), this is higher 

in mixotrophic culture than in either heterotrophic or photoautotrophic conditions. Across these 

conditions under replete B12 the ancestral line grew to a slightly higher density than the revertant, and 

metE7 reached an intermediate level. Both the ancestral and revertant lines showed little response to 

vitamin B12 concentration, but there was a slight reduction in the densities of the revertant line by high 

B12 concentrations. Measurements of vitamin B12 in freshwater have shown that concentrations are 

usually below 15 ng·l-1, hence metE7 would most likely be limited for vitamin B12 under normal 

environmental conditions (Daisley, 1969; Ohwada, 1973).  

 

Figure 3.2a illustrates how the methionine and folate cycles are linked by the action of 

methionine synthases, or in the case of metE7, just the B12-dependent METH isoform. B12 deprivation 

is therefore likely to limit growth of metE7 by restricting the transfer of methyl groups from methyl-

tetrahydrofolate to homocysteine. To test this hypothesis, B12 sufficient (200 ng·l-1) cultures of the 

ancestral and metE7 strains were washed and transferred to B12 replete (1000 ng·l-1) and deprived (no 

B12) conditions and incubated for 30 hours. The cultures were then pelleted by centrifugation and 

lyophilised overnight before being sent to Dr. Deborah Salmon at the University of Exeter who 

measured methionine cycle metabolites by High performance liquid chromatography coupled to mass 

spectrometry (HPLC/MS). Homocysteine concentrations were too low to be accurately measured, but 

methionine, S-adenosylhomocysteine (SAH) and S-adenosylmethionine (SAM) were quantified 

(Figure 3.2b). B12 deprivation had no effect on the metabolites in the ancestral line, where levels of all 

three were identical in the presence or absence of B12. However, in metE7 B12 deprivation increased 

both methionine and SAH concentrations without altering the level of SAM. This resulted in a 10-fold 

decrease in the SAM:SAH ratio from 32 to 3.1. The SAM:SAH ratio is often termed ‘methylation 

potential’ due to the fact that SAM is a universal methyl donor, and SAH is a competitive inhibitor of 

these methylation reactions (Melnyk et al., 2000). The interconversion of homocysteine and S-

adenosylhomocysteine is catalysed by S-adenosylhomocysteine hydrolase, a reversible reaction with 

an equilibrium that favours the production of S-adenosylhomocysteine (Palmer & Abeles, 1979; 

Turner et al., 2000). Under normal conditions the methionine cycle operates by maintaining low levels 

of homocysteine, but with flux impeded at the methionine synthase step in metE7 during B12 

deprivation it was expected that homocysteine would accumulate and cause an increase in S-

adenosylhomocysteine. Reduced flux through methionine synthase was predicted to cause the 

concentration of methionine and SAM to decrease, however, this was not the case and might indicate 

a reduced use of methionine, for example, in protein synthesis. 
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Figure 3.1. Maximum cell density achieved by three lines of C. reinhardtii in different trophic 
conditions and a range of Cobalamin (B12) concentrations. The three lines include the ‘ancestral’ line 

prior to experimental evolution, ‘metE7’, a stable B12-dependent line, and ‘revertant’, a B12 

independent line that had reverted from a B12-dependent line. Cultures were grown heterotrophically 

(TAP medium in the dark), mixotrophically (TAP medium in continuous light), and photoautotrophically 

(Tris minimal medium in continuous light). B12 concentrations ranged from 0.5 to 512 ng·l
-1

 and 

precultures of the algae, which were grown with 200 ng·l
-1

 
B

12
, were washed thrice and inoculated at a 

density of roughly 100 cells·ml
-1

. Cell density was measured by particle counter after 6 days of growth 
for mixotrophic cultures or 8 days for heterotrophic and photoautotrophic conditions. Orange = 
Ancestral, Green = metE7, Purple = Revertant, error bars = sd, n=3. 

vi Figure 3.1 Growth of C. reinhardtii lines in different trophic conditions and B12 concentrations 
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Figure 3.2 Metabolites and enzymes of the C1-cycle in C. reinhardtii. (a) Metabolic map of a 
portion of the C1 cycle centred around METE and METH, with enzyme abbreviations in blue, 
metabolite abbreviations in black, and arrows depicting enzyme-catalysed reactions. (b) 
Abundance of 3 methionine cycle metabolites measured by HPLC in the ancestral line and metE7 
in B

12
 replete (blue) and deprived (red) conditions after 30 hours of growth. (c) Abundance of 6 

transcripts for enzymes of the C1 cycle measured by RT-qPCR on RNA extracted from the 
ancestral line and metE7 in B

12
 replete (blue) and deprived (red) conditions after 30 hours of 

growth. Error bars = sd, n=3-4. Abbreviations: Met = Methionine, SAH = S-adenosylhomocysteine, 
SAM = S-adenosylmethionine, METE = B

12
-independent methionine synthase, METH = B

12
-

dependent methionine synthase, METM = S-adenosylmethionine synthetase, MTHFR = 
methylenetetrahydrofolate reductase, SAH1=S-adenosylhomocysteine hydrolase, SHMT2=Serine 
hydroxymethyltransferase 2.  

(b) (c) 

**     *      ns       *       *       * ***   ***    **   ***    **   ***   ns         ns         ns               ***     ***       ns 

vii Figure 3.2 Metabolites and enzymes of the C1-cycle in C. reinhardtii 
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Three enzymes, METE, SAH1, and SHMT2, were found by Helliwell et al. (2014) to be 

downregulated in C. reinhardtii on addition of B12 (Helliwell et al., 2014). These catalyse three 

reactions adjacent to one another in the C1 cycle (Figure 3.2a). In addition to these, a further three 

enzymes that catalyse C1 cycle reactions adjacent to methionine synthase were chosen for 

quantification in B12 replete and deprived conditions. RNA was extracted from the same samples used 

for analysis of methionine cycle metabolites, and after reverse transcription the cDNA was used in 

quantitative PCR to infer transcript abundances (Figure 3.2c). These levels were normalised to the 

commonly used housekeeping gene RACK1. In the ancestral line, the three most upregulated 

transcripts under B12 deprivation relative to B12 replete conditions were the ones previously identified 

by Helliwell et al., METE, SHMT2, and SAH1 at 170, 7.0 and 4.4-fold respectively (Figure 3.2b). 

The other three, METH, MTHFR, and METM, were upregulated to a lesser extent of 3.4, 2.2 and 2.0-

fold respectively. In metE7 all six transcripts also increased under B12 deprivation, but the magnitude 

of the increase was greater for all genes except for METE, which at 190-fold was not significantly 

greater than the ancestral line. The upregulation of SHMT2, SAH1, MTHFR, and METM transcripts 

in the ancestral line under B12 deplete conditions might be in response to limited flux through the 

pathway, which would indicate that METE activity cannot fully substitute for METH activity under 

B12 replete conditions. In metE7 this upregulation is more extreme, particularly for SHMT2 at 94-fold, 

but because B12 is clearly the limiting factor it would be ineffective in maintaining the methionine 

cycle. 

 

3.2.2 Comparing a recently evolved and a natural B12 auxotroph 
 

The ancestral and metE7 line showed clear differences in their responses to B12 in terms of C1 

cycle metabolites and transcripts, which was unsurprising considering that methionine synthesis is 

vital for metabolism. Perhaps a fairer comparison with metE7 might therefore be another alga lacking 

METE. Lobomonas rostrata is a closely related green alga with similar physiology (Belcher & Swale, 

1961; Croft et al., 2005; Helliwell et al., 2016; Kazamia et al., 2012). Previous work in our laboratory 

sequenced the L. rostrata transcriptome and comparison of the transcripts with those of sequenced 

algae found that it is most closely related to C. reinhardtii and V. carteri, both in the Volvocales 

(Helliwell et al., 2018). metE7 and L. rostrata were inoculated at 10,000 cells·ml-1
 and grown under 

mixotrophic conditions, i.e. TAP media in constant illumination at 100 µE·m-2·s-1 for 5 and 9 days 

respectively before quantification of culture density on a spectrophotometer. Comparing the carrying 

capacities of each species showed that at high levels of vitamin B12 metE7 grows to a higher density, 

while at lower levels, below 60 ng·l-1, L. rostrata achieved the higher density (Figure 3.3a). Together 

these factors meant that L. rostrata had a considerably lower concentration required to reach half its 

maximum capacity (EC50). This lower EC50 might be advantageous under the majority of 

environmental conditions where B12 is frequently below 20 ng·l-1 (Daisley, 1969; Daisley & Fisher, 
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1958; Ohwada, 1973; Ohwada & Taga, 1972; Panzeca et al., 2009; Sañudo-Wilhelmy et al., 2014), 

and so may reflect natural selection for increased growth at low concentrations of B12.  

 

Another way of surviving extended periods of low vitamin B12 might be by storing 

significantly more B12 than the minimum requirement for growth. L. rostrata and metE7 were 

saturated with B12 by culturing them in TAP media with 10 µg·l-1 of B12 for 24 hours before pelleting 

the cells, washing them thrice, and then resuspending them in TAP media. Optical density of the 

cultures was then followed for 12 days with a 10-fold dilution required at day 6 to allow the culture to 

continue growing until it was limited by B12. metE7 grew more quickly but stopped growing after 2 

days (Figure 3.3b). L. rostrata growth on the other hand, continued for 10 days and reached an optical 

density roughly 10 times greater than metE7. Together these results suggest that metE7 would 

frequently be limited by the concentration of B12 in the environment and that L. rostrata provides one 

example of a natural B12 auxotroph which is unsurprisingly better adapted to survival under these 

conditions.  

 

To investigate whether the improved growth of L. rostrata at low B12 was a product of 

increased uptake, B12 absorption from media with various starting B12 concentrations was measured 

for both metE7 and L. rostrata. After incubating the algal cells at an optical density of 0.01 in 1 ml of 

TAP media containing known concentrations of B12 for 1 hour, the cells were pelleted by 

centrifugation and the supernatant used for measuring the remaining B12 concentration using the 

bioassay with a metEcysG mutant of Salmonella typhimurium. B12 uptake was subsequently calculated 

by subtracting the amount of B12 remaining in the media from the initial amount of B12 added. The 

results (Figure 3.3c) showed that although uptake varied considerably between replicates of each 

species, B12 uptake increased as its initial concentration increased and saturated at around 150 ng·l-1 

B12. Despite there being no statistically significant difference in B12 uptake at any one concentration 

of B12 between the species, the trend was for L. rostrata to take up more B12 at low concentrations and 

less B12 at high concentrations, suggestive of a higher affinity and lower capacity uptake system. 

Further testing with a larger number of biological replicates and under greater variety of conditions 

could help to identify whether this difference indeed exists. Nonetheless, there was some further 

evidence that B12 uptake differed between metE7 and L. rostrata. Cultures with an optical density of 

0.01 were inoculated with either 10 or 100 ng·l-1 B12 and maintained in suspension in syringe bodies 

for a 4-hour period. During this period small volumes of culture were pressed through a 0.4 µm filter 

at various intervals and the B12 concentration of this filtrate (representing cell-free media) measured as 

before (Figure 3.3d). When B12 concentrations started at 100 ng·l-1 uptake was rapid for both species 

with most occurring in the first 10 minutes. Uptake by L. rostrata was lower and saturated more 

quickly than for metE7 at this higher starting concentration. However, when starting at 10 ng·l-1, 

uptake by L. rostrata was greater than that of metE7.   
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Figure 3.3 Comparison of the response of metE7 and L. rostrata to vitamin B
12

. (a) Cell density 

achieved after 5 or 9 days of growth for metE7 or L. rostrata respectively in TAP media containing 

a range of B
12

 concentrations. (b) Algae saturated with vitamin B
12

 by preculturing in 10,000 ng·l
-1 

B
12

, were washed and resuspended in TAP media lacking B
12

 and allowed to grow for 12 days, with 

a 10-fold dilution occurring on day six. (c) Vitamin B
12 

taken up from the media after inoculating 

algae at an optical density of 0.01 into TAP media with various B
12

 concentrations and allowing 

them to absorb B
12 

for 1 hour. (d) Vitamin B
12 

remaining in the media into which algae were 

inoculated at an optical density of 0.01 over a period of 4 hours, starting at either high (~100 ng·l
-

1
) or low (~10 ng·l

-1
) concentrations of B

12
. green = metE7, grey = L. rostrata, n>=4, error bars = sd, 

except for figure c for which error bars = std. error as various experimental results were 
combined.  

(b) 

(d) 

(a) 

(c) 

viii Figure 3.3 Comparison of the response of metE7 and L. rostrata to vitamin B12 
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3.2.3 Characterising the changes in cellular composition during B12 deprivation 
 

The macromolecular composition of C. reinhardtii cells can change considerably under 

nutrient deprivation (Juergens et al., 2016). These changes are often very similar irrespective of the 

limiting nutrient (Grossman, 2000; Saroussi et al., 2017). Therefore, I hypothesized that B12 limitation 

would induce certain similar responses, such as an increase in energy storage compounds. metE7 cells 

were precultured in TAP with sufficient B12 (200 ng·l-1) to reduce the subsequent carryover of stored 

vitamin, then washed and resuspended in TAP with or without 1000 ng·l-1 B12 and cultured for 4 days 

mixotrophically. Cultures were visually inspected by microscopy (Figure 3.4a), and cell density and 

diameter, which were measured daily (Figure 3.4b), were found to decrease and increase respectively 

on B12 deprivation relative to B12 replete conditions. The amounts of starch, proteins, pigments, 

triglycerides, free fatty acids, and polar lipids were measured in the middle and end of the growth 

period (day 2 and 4) (Figure 3.4c). Starch showed a substantial increase under B12 limited conditions 

making up roughly 30% of cell dry weight by day 2, compared to only 5% in the B12 replete treatment. 

Triglycerides had also increased to 3% and later 4.5% by day 4.  Both the increase in these 

compounds and the relative timing of that increase, albeit the low time resolution of these 

measurements, were similar to those observed for Chlamydomonas under other nutrient deprivation 

conditions: Starch tends to increase earlier and more sharply than triglycerides (Juergens et al., 2016; 

Siaut et al., 2011). Although triglycerides increased, both polar lipids and free fatty acids decreased to 

such an extent that the overall lipid levels remained at roughly 8-10% of cell dry weight in both 

conditions. This might suggest that TAG accumulation during B12 deprivation is not a result of de 

novo fatty acid synthesis, but a result of transfer of fatty acids from membrane lipids. Protein levels 

declined under B12 deprivation to 15 and 10% of cell dry weight on days 2 and 4 respectively, while 

under B12 replete conditions they were mainly in the range of 20 to 25%. Chlorophyll levels decreased 

even more substantially so that after 4 days of B12 deprivation levels were at 0.5% of cell dry weight, 

7-fold lower than in B12 replete conditions, although whether this was due to reduced synthesis, 

degradation or bleaching is uncertain. On day 4, samples were pelleted by centrifugation and 

lyophilised before sending them to Dr. Deborah Salmon at the University of Exeter for free amino 

acid quantification using HPLC. As with the protein content, amino acid concentrations were lower 

under B12-limited conditions, but to an even greater extent (Figure 3.5a). The only amino acid which 

was more abundant under B12-limited conditions was glutamine, but arginine, glutamic acid, and 

serine levels were relatively similar in both conditions. The most statistically significant decrease was 

in methionine, which disagrees with the result mentioned previously, although the samples were taken 

from cultures at different times during B12 deprivation and measured by a different method. Several 

other amino acids including isoleucine, leucine, lysine, and tryptophan decreased to an even greater 

extent (6-9 fold) than methionine under B12 deprivation. Total fatty acids were derivatised from lipid 

extracts taken from cell pellets sampled on day 4, then esterified and quantified using gas 
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chromatography-mass spectrometry (Figure 3.5b). The most abundant fatty acid was palmitic acid 

(C16:0) in B12-limited conditions and α Linolenic acid (C18:3) in B12 replete conditions. The degree 

of fatty acid saturation was considerably higher under B12 limited conditions and the total level of 

fatty acids was also slightly higher.  

 

In addition to those genes for which transcript abundance was tested previously, three further 

genes whose enzymes are also involved in one carbon metabolism were analysed on day 2 (Figure 

3.5c). None of these showed a significant increase under B12 limitation after 48 hours relative to B12 

replete conditions, and one, Formate-tetrahydrofolate ligase (FTL1), showed a significant decrease. 

The previously tested six genes all showed an increase under B12 limitation and hence agreed with the 

former results, with METE, SHMT2, and SAH1 again being the most highly upregulated.  

 

Having concentrated on the abundance of various compounds and transcripts after a certain 

period of vitamin B12 deprivation, I decided to refocus on methionine cycle metabolites and 

transcripts but to improve the time resolution during B12 deprivation and add-back (Figure 3.6). metE7 

cells were precultured mixotrophically with sufficient B12 (200 ng·l-1), and then washed and 

transferred to media lacking B12, but to which 1000 ng·l-1 was added 3 days later. Methionine, SAM, 

and SAH concentrations were measured as described before by Dr. Deborah Salmon at the University 

of Exeter (Figure 3.6a). SAH levels were found to rise considerably, by a factor of 100, during the 

first 24 hours of B12 deprivation. SAM levels also increased over this period but only by 3-fold, and 

then maintained that level until B12 was added back on day 3. SAH levels on the other hand declined 

considerably between day 1 and day 3, before the addition of B12. After addition of B12, both SAM 

and SAH decreased, almost to their original concentrations. Methionine levels were considerably 

more variable, particularly in the first 12 hours of B12 deprivation. Despite being the product of the 

limiting reaction, methionine levels were actually higher after 24 hours of B12 deprivation and 

declined steadily from thereon with relatively little impact from the addition of vitamin B12.  
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10µm 

10µm 

(a) 

(b) (c) 

Figure 3.4   Growth and macromolecular composition of metE7 cells under B
12

 replete or limited 

conditions. (a) Microscope photographs taken at 1000* magnification of metE7 cells grown in TAP 

medium in B
12

 replete (1000 ng·l
-1

) or B
12 

limited (0 ng·l
-1

) conditions over a period of 4 days (b) 

Growth (optical density at 730nm and cell density) and mean cell diameter of metE7 cells over the 
4-day period. (c) Macromolecular composition of cells on day 2 and day 4 of the growth period 
expressed as mg of that compound per gram of algal dry mass. blue = B

12 
replete, red = B

12
 

limited, error bars = sd, n=5, *=p<0.05, ***=p<0.001 (Welch’s t test).  

ix Figure 3.4 Growth and macromolecular composition of metE7 cells under B12 replete or limited 
conditions 



 

50 
 

 

Figure 3.5 Concentrations of various compounds or transcripts in metE7 under B
12 

replete or 

limited conditions. (a) Cell pellets sampled on day 4 of growth were lyophilised and then amino 
acids quantified by HPLC (Performed by Dr. Deborah Salmon, University of Exeter). (b) Total lipids 
were extracted on day 4, lipids were derivatised and fatty acids esterified before quantification by 
GC-MS. (c) RNA extracted from cell pellets frozen in liquid nitrogen on day 2 was reverse 
transcribed and cDNA quantified by qPCR. Most gene abbreviations are mentioned in Figure 3.2, 
the remaining are as follows: FTL1=Formate tetrahydrofolate ligase, METC=Cystathionine beta 
lyase, MTHFD=Methylenetetrahydrofolate dehydrogenase, TYMS=Thymidilate synthase. blue = 
B

12
 replete, red = B

12
 limited, error bars = sd, n=5, *=p<0.05, **=p<0.01, ***=p<0.001 (Welch’s t 

test).  

(a) 

(b) (c) 

x Figure 3.5 Concentrations of various compounds or transcripts in metE7 under B12 replete or 
limited conditions 
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(a) 

(b) 

(c) 

Figure 3.6 Changes in C1 cycle metabolites and enzyme transcripts during B
12

 deprivation (days 0-

3), and B
12

 add-back (day 3-5). (a) Cell pellets were lyophilised and then C1 cycle metabolites 

quantified by HPLC (Performed by Dr. Deborah Salmon, University of Exeter). (b) and (c) RNA 
extracted from cell pellets frozen in liquid nitrogen was reverse transcribed and cDNA quantified 
by qPCR, with abundance normalised to the housekeeping gene RACK1. Only 6 genes in panel b 
were analysed throughout the 5 days, while those in panel c were only analysed during B

12
 

deprivation (days 0-3). Vertical dashed line indicates the timing of B
12

 addition to a concentration 

of 1000 ng·l
-1

.  Error bars = sd, n >= 3.  

xi Figure 3.6 C1-cycle metabolites and enzyme transcripts during B12 deprivation and 
replenishment 



 

52 
 

 

From the set of six transcripts that were shown to increase under B12 deprivation at 30 and 48 

hours (Figure 3.2b and 3.5c), all of the increase occurred in the first 6 hours after transfer to B12-free 

media (Figure 3.6b). These levels then declined slowly over the next 3 days until the addition of B12, 

at which point the decline was more significant, with the majority occurring within 8 hours. three 

further genes involved in the C1 cycle, Methylene tetrahydrofolate dehydrogenase (MTHFD1), 

Thymidylate synthase (TYMS), and FTL1, which did not previously show an increase under B12 

limitation were also tested (Figure 3.6c). As expected, there was little change in MTHFD1 and TYMS 

transcript abundance during B12 deprivation, but the changes that did occur were highly correlated 

with one another. The FTL1 results were also in agreement, with a decrease during B12 deprivation. 

The other three transcripts in Figure 3.6c all code for methyltransferases: Diacylglyceryl-N,N,N-

trimethylhomoserine synthesis protein (BTA1), Protein-/Histone-arginine N-methyltransferase 

(PRMT1), and Cytosine-C5 specific DNA methyltransferase (DMT1). Only PRMT1 significantly 

changed from day 0 to day 3, decreasing 9-fold. Although several of the transcript abundance profiles 

in Figure 3.6b were somewhat similar to those for the metabolites SAM and SAH in Figure 3.6a, there 

are important differences, including the fact that transcript abundance increases more rapidly and 

earlier than metabolites. This might suggest that expression of these genes is initially controlled by 

B12 rather than C1 cycle metabolite abundance.  

3.2.4 Comparing nitrogen and B12 deprivation in metE7 and B12 deprivation in L. 

rostrata 
 

I previously showed that L. rostrata has a lower requirement for vitamin B12 than metE7 and 

so decided to investigate how different its response to B12 deprivation was, particularly with respect to 

maintaining viability. Initially both algae were cultured mixotrophically with 200 ng·l-1 B12. They 

were both then washed and transferred to TAP media lacking B12 and cultured as before. As expected, 

L. rostrata continued to grow in the B12 deplete media, while there was no further substantial growth 

of metE7 (Figure 3.7a-b). Photosystem II maximum efficiency, measured as Fv/Fm, and viability, 

measured as the proportion of cells that could form colonies on nutrient replete agar, declined in both 

strains over the 6-day period, however the decline was more severe in metE7 (Figure 3.7c-d). Non-

photochemical quenching in L. rostrata started at a higher value and declined more slowly than in 

metE7, however by day 4 the levels of NPQ was similar in both strains as they had risen in metE7 

cells from day 1 to 6 (Figure 3.7e). Reactive oxygen species, which were measured by fluorescence of 

dichlorodihydrofluorescein diacetate (DCFDA) and normalised to the cell density, were slightly 

higher in metE7 cells and there was a trend towards an increase throughout the B12 deprivation period 

(Figure 3.7f). 
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The comparison with L. rostrata was meant as a representative example of other naturally 

B12-dependent algae. Instead of attempting to improve the evidence for this hypothesis that metE7 is 

poorly adapted to coping with B12 deprivation by using other closely related B12 auxotrophs, I instead 

decided to focus on how metE7 would respond to deprivation of a nutrient for which it has had a long 

time to evolve acclimatory responses. As one of the best studied nutrient deprivation responses in C. 

reinhardtii is to a lack of nitrogen I decided to compare this response in metE7 with B12 deprivation in 

metE7 and in L. rostrata. Cells were precultured in sufficient B12 conditions (200 ng·l-1) before being 

washed and transferred to B12-free or B12-replete (1000 ng·l-1) but nitrogen-free TAP media and 

cultured mixotrophically for 4 days. As the cultures had been transferred early during log-phase in the 

precultures, metE7 continued to grow for longer than in the other experiments reported in this chapter. 

Figure 3.8a shows that the initial growth rate of metE7 under nitrogen deprivation conditions was 

considerably slower than the B12-deprived cultures, and B12-deprived L. rostrata growth rate was the 

intermediate of the three. After two days however, B12-deprived metE7 reached a maximum and 

declined thereafter, while L. rostrata, and nitrogen-deprived metE7 growth continued throughout. B12-

deprived metE7 cells also increased in diameter more quickly than nitrogen-deprived metE7, while L. 

rostrata cell diameter decreased over the first day, but then increased over the next 3 days so that by 

day 4 there was little difference between the three treatments (Figure 3.8b). Changes in cell viability, 

shown in Figure 3.8c, differed markedly between treatments. B12-deprived L. rostrata maintained 

roughly 90% viability over the 4-day period, while B12-deprived metE7 viability declined dramatically 

from day 1 onwards, ending up at 7% on day 4. In nitrogen-deprived metE7, after a substantial 

decrease of more than 50% on the first day, viability then recovered to 80%. PSII maximum 

efficiency (Fv/Fm) is often used as an indicator of phytoplankton nutrient stress (Parkhill et al., 2001), 

so it would seem from the results in Figure 3.8d that metE7 under both nutrient deprivation conditions 

was more stressed than L. rostrata. Fv/Fm declined most rapidly under nitrogen deprivation, but with 

a slight delay there was also a decrease under B12 deprivation. Although Fv/Fm also declined initially 

in L. rostrata it had stabilised after roughly one day at around 0.5.  
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xii Figure 3.7 Comparison of L. rostrata and metE7 during B12 deprivation 

(b) 

(d) 

(f) 

(a) 

(c) 

(e) 

Figure 3.7 Comparison of L. rostrata and metE7 during B
12

 deprivation over 6 days. (a) Optical 

density at 730 nm of cultures, (b) Total cell density of cultures, (c) Proportion of cells that could 
form colonies (Viability), (d) PSII maximum efficiency measured by chlorophyll fluorescence, (e) 
Non-photochemical quenching measured by chlorophyll fluorescence, (f) Reactive oxygen species 
measured by DCFDA fluorescence and normalised per cell. Grey = L. rostrata, Red = metE7, error 
bars = sd, n=6.  
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Figure 3.8 Comparison of metE7 under B
12

 deprivation with metE7 under nitrogen deprivation, 

and L. rostrata under B
12

 deprivation. (a) Optical density at 750 nm of cultures, (b) Mean cell 

diameter measured by image analysis of microscope photographs, (c) Proportion of cells that that 
could form colonies (Viability), (d) PSII maximum efficiency measured by chlorophyll fluorescence. 
Blue-dashed = metE7 –nitrogen, red = metE7 – B

12
, grey = L. rostrata –B

12
, error bars = sd, n=5.  

(b) 

(d) 

(a) 

(c) 

xiii Figure 3.8 Comparison of metE7 under B12 deprivation with metE7 under nitrogen deprivation 
and L. rostrata under B12 deprivation 
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xiv Figure 3.9 Comparison of metE7 under a combination of nutrient deprivation conditions 

(b) 

(d) 

(f) 

(a) 

(c) 

(e) 

Figure 3.9 Comparison of metE7 under a combination of nutrient deprivation conditions. (a) 
Optical density at 730nm of cultures, (b) Density of colony forming units (viable cells), (c) Non-
photochemical quenching measured by chlorophyll fluorescence, (d) Reactive oxygen species 
measured by DCFDA fluorescence and normalised per cell (e) Total chlorophyll measured by 
spectrophotometer and normalised per cell, (f) carotenoids measured by spectrophotometer and 
normalised per cell. Blue solid = nutrient replete, red solid = B

12
 limited, blue dashed = nitrogen 

limited, red dashed = both nitrogen and B
12

 limited. Error bars = sd, n=4.  
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xv Figure 3.10 Comparison of metE7 under a combination of nutrient deprivation conditions 2 

Figure 3.10 Comparison of metE7 under a combination of nutrient deprivation conditions. (a) 
Proportion of cells that could form colonies on nutrient replete agar, (b) ROS measured by DCFDA 
fluorescence and normalised both per cell and to the nutrient replete treatment. Blue solid = 
nutrient replete, red solid = B

12
 limited, blue dashed = nitrogen limited, red dashed = both 

nitrogen and B
12

 limited. Error bars = sd, n = 4.  

(a) 

(b) 
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3.2.5  Combining B12 and nitrogen deprivation 
 

metE7 had survived nitrogen deprivation better than B12 deprivation (Figure 3.8c), but it was 

unclear whether the metabolic role of B12 would make it make it intrinsically more difficult to cope 

without than a nitrogen source. To test whether this was the case, or if C. reinhardtii had instead 

evolved mechanisms to cope with nitrogen deprivation which could cross-protect against B12 

deprivation, metE7 cells were cultured in media lacking both nitrogen and B12. As before, metE7 cells 

were grown mixotrophically with 200 ng·l-1 B12 before being washed and resuspended in TAP media 

with 1000 ng·l-1 of B12 or media either lacking ammonium, B12, or both ammonium and B12. 

Following resuspension, growth in the three nutrient-deprived conditions was similar and 

considerably lower than in the nutrient replete condition (Figure 3.9a). This confirmed that the cells 

were indeed nutrient-deprived, and that the severity of the limitation, in terms of restricting growth, 

was similar for B12 and nitrogen. However, the number of colony forming units per ml of culture (a 

measure of the total number of viable cells) was significantly different between the nutrient-depleted 

conditions: under B12 deprivation alone CFU·ml-1 declined substantially after two days relative to the 

nitrogen deplete conditions (Figure 3.9b). The combination of nitrogen and B12 deprivation did not 

cause a similar decrease in the number of colony-forming units. Measurements of non-photochemical 

quenching (NPQ) showed that in the first 12 hours there was a decline under both B12 deplete and 

nutrient replete conditions, whereas under both nitrogen deplete conditions there was a temporary 

increase (Figure 3.9c). After 24 hours the levels of NPQ remained low in all three nutrient-deplete 

conditions but increased substantially in the nutrient replete conditions in parallel with the cells 

entering stationary phase. The levels of reactive oxygen species were reasonably similar between 

treatments across the whole growth period, except for on day 2 where both B12 depleted conditions 

showed an increase (Figure 3.9d). The ROS signal from B12 deficient conditions was also significantly 

higher than the treatment deficient in both nitrogen and B12. The B12 deficient treatment was also the 

most obvious outlier in the measurements of chlorophyll and carotenoids (Figure 3.9e-f). In this 

treatment the levels of both pigment groups increased over the first 24 hours, although it is unclear to 

what extent this may be due to the increase in cell diameter that was previously observed under B12 

deprivation (Figure 3.4b and 3.8b). By day 5 the levels of both pigments were lowest in the B12 

deficient treatment, following 3 days of precipitous decline. The chlorophyll:carotenoid ratio in the 

nutrient replete conditions remained steady throughout, whereas under both nitrogen deficient 

conditions carotenoids actually increased from day 1 to day 3, and there was a continuous decrease in 

the chlorophyll:carotenoid ratio over the 5 days. A decrease in chlorophyll is a commonly observed 

phenomenon in C. reinhardtii under nutrient deprivation, as is the decrease in chorophyll:carotenoid 

ratio, which is known to protect against the excess absorption of light energy via dissipating some of 

it as heat. These responses can reduce the excitation of chlorophyll and hence reduce the production 

of singlet oxygen, a damaging reactive oxygen species (Müller et al., 2001). Therefore, it is 
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conceivable that these responses to nitrogen deprivation are involved in protecting against the increase 

in reactive oxygen species seen under B12 deprivation alone. To determine whether the high levels of 

reactive oxygen species on Day 2 of B12 deprivation was reflective of reality or simply an anomaly, 

the experiment was repeated with higher time resolution. The results, shown in Figure 3.10a-b, were 

in agreement that cell viability declines most substantially after 2 days of B12 deprivation, which 

coincides with the peak in reactive oxygen species per cell. 

 

3.2.6 Artificial evolution of metE7 under B12 deprived conditions 
 

Artificial evolution has been increasingly used in the field of microbiology due to the short 

generation times of microbes and hence the ability to apply a severe selection pressure and to see 

genetic changes in a relatively short space of time (Kawecki et al., 2012). The metE7 mutant, was 

generated by artificial evolution, and I decided that this approach could also be used to see how it (a 

newly evolved B12 auxotroph) would subsequently adapt to a decrease in the concentration of vitamin 

B12. Three conditions were chosen:  Condition A was the same as had been previously used (Helliwell 

et al., 2015), namely TAP media with 1000 ng·l-1 B12 cultured in continuous light; condition B was 

the same except for the fact that the B12 concentration was 25 ng·l-1 (an amount that causes B12 

deprivation); in condition C, TAP media was replaced with Tris minimal medium with no B12, but in 

its place a B12-producing bacteria, Mesorhizobium loti, was inoculated. There were also differences in 

the dilution rates: condition A, B, and C had dilution rates of 10000, 100, and 5 times per week 

respectively to reflect the different growth rates and to maintain selection pressure. All the cultures 

were subbed once per week over a total period of seven months in which there were two periods of 

two weeks long each where cultures were plated out on agar and checked for contamination as well as 

the presence of vitamin B12-independent revertants. Cultures were also plated out onto agar in parallel 

with the liquid cultures when wells were suspected of containing B12-independent revertants. When 

this was confirmed to be the case genetically and phenotypically, a B12-dependent colony from the 

same line was picked and inoculated into the liquid media to continue the artificial evolution 

experiment. Vitamin B12-independent lines arose in or contaminated one, six, and five cultures in 

conditions A, B, and C respectively, and were removed as mentioned above. After the seven months 

under selective conditions all cultures had survived and been maintained without contamination, 

including the M. loti in condition C. Isolates from these three conditions were compared with the 

progenitor metE7 line and L. rostrata that had both been maintained on Tris min agar, in terms of 

their growth response to different concentrations of B12 and their response to being resuspended in 

B12-free media. This experimental evolution setup is illustrated in Figure 3.11.  

Overall, the differences between the lines evolved in different conditions was small, and in 

many lines, growth had slowed or stopped in the lower B12 concentrations while it continued in the 
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higher B12 concentrations (Figure 3.12a). Non-linear regression was used to find parameters for the 

Verhulst equation to best fit the OD730 nm data over the growth period at different B12 concentrations 

for each of the algal lines. The estimated carrying capacity from the Verhulst equation at each B12 

concentration was then used to fit a Michaelis-Menten equation and so calculate two parameters: 

carrying capacity under replete B12, and the EC50 (concentration required for 50% of maximal growth) 

for B12. The predicted carrying capacity under replete B12 conditions of all the evolved metE7 lines 

was lower than the progenitor line (Figure 3.12b). L. rostrata had a significantly lower carrying 

capacity than the progenitor metE7, as was shown in Figure 3.3a, but it was not significantly lower 

than the lines evolved under limited levels of B12 (conditions B and C). The EC50 for B12 was 

significantly lower for L. rostrata than any metE7 line, and all evolved lines had lower EC50 values 

than the progenitor (Figure 3.12c). In addition, the metE7 lines evolved in the presence of M. loti 

(condition C) had a lower EC50 than the lines evolved in TAP with 1000 ng·l-1 B12 (condition A).  

 

During B12 deprivation the differences were again small between lines but the order from 

maximal to minimal growth after resuspension was L. rostrata, lines C, B, A, then metE7 (Figure 

3.13a). Lines B, A and metE7 showed no statistical difference in optical density on day 6, but were 

significantly lower than line C, which in turn was significantly lower than L. rostrata. With respect to 

viability on day 6, it was again L. rostrata which had the greatest value, but this was not significantly 

higher than line B (Figure 3.13b). Although line B was not statistically higher than lines C or metE7 it 

was significantly higher than line A, which had the lowest value. Fv/Fm was also greatest on day 6 in 

L. rostrata, and the order from highest to lowest was the same as the order of culture optical density 

as were the statistical groupings produced by the post-hoc Tukey test. Overall, the findings are not 

particularly clear, however there appears to be a trade-off between growth rate and maintaining 

viability under B12 deprivation conditions, with those lines evolved in lower levels of B12 (axenically 

or in coculture) having slower maximal growth rates under replete B12 but improved absolute growth 

and survival under B12-deprived conditions. 
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xvi Figure 3.11 Diagram for the experimental evolution setup and the experiments used to analyse 
the evolved lines 

Figure 3.11 Diagram for the experimental evolution setup and the experiments used to analyse 
the evolved lines. metE7 was inoculated into three different media: condition A was TAP medium 

+ 1000 ng·l
-1

 B
12

; condition B was TAP medium + 200 ng·l
-1

 B
12

; condition C was Tris minimal 

medium. M. loti, a B
12

-producing bacterium, was also inoculated into condition C. All 24 cultures 

(8 biological replicates in each condition) were cultured at 25 °C in continuous light at 100 µE·m
-

2
·s

-1 
with rotational shaking at 120 rpm for 1 week, after which cultures in conditions A, B, and C 

were diluted 10,000, 100, and 5-fold respectively into fresh medium of the same composition. 
This was repeated for a total of 26 weeks, or six months. The experimentally evolved lines were 
tested for their growth response to different concentrations of B

12
 and their response to B

12
 

deprivation over a period of six days.  
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xvii Figure 3.12 B12 growth response of experimental evolution lines of metE7 and wild type L. 
rostrata 

Figure 3.12 Growth under different concentrations of B
12

 of L. rostrata, the metE7 progenitor 

strain, and its experimental evolution descendants. (a)  Raw data of optical density at 730 nm 
over 10 days of different strains cultured mixotrophically in different B

12
 concentrations. (b) The 

calculated carrying capacity of cultures in replete B
12

. (c) The concentration of B
12

 required to 

produce 50% of maximal growth (EC
50

). Both values were calculated by using non-linear 

regression to first fit a Verhulst equation to the optical density data to find carrying capacities at 
different B

12
 concentrations, followed by a Monod equation to connect B

12
 concentration to 

carrying capacity. Statistical groupings were determined using Tukey’s test. Line A (red)= 

evolution under 1000 ng·l
-1 

B
12

, Line B (brown)= evolution under 25 ng·l
-1 

B
12

,  and Line C (green)= 

evolution with M. loti in Tris min), the progenitor metE7 strain (purple), or L. rostrata (blue). Error 
bars = sd, n = 6.  

(a) 

(b) (c) 
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xviii Figure 3.13 B12 deprivation of experimental evolution lines of metE7 and wild type L. rostrata 

(b) 

(d) 

(a) 

(c) 

Figure 3.13 B
12

 deprivation of L. rostrata, the metE7 progenitor strain, and its experimental 

evolution descendants. Cultures were initially grown in 200 ng·l
-1

 B
12

 TAP medium before washing 

and resuspending in B
12

-free TAP medium (a) Growth measured by optical density at 730 nm, (b) 

Proportion of cells that could form colonies, (c) PSII maximum efficiency measured by chlorophyll 
fluorescence, (d) Non-photochemical quenching measured by chlorophyll fluorescence. Line A 

(red)= evolution under 1000 ng·l
-1 

B
12

, Line B (brown)= evolution under 25 ng·l
-1 

B
12

,  and Line C 

(green)= evolution with M. loti in Tris min), the progenitor metE7 strain (purple), or L. rostrata 
(blue). Errorbars = sd, n = 6.  
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3.3  Discussion 
 

In this chapter I focussed on characterising the way a recently evolved B12 auxotroph (metE7) 

responds to vitamin B12. To put this into context, and without simply referring to the literature, I 

compared metE7 to wild type C. reinhardtii and L. rostrata, and B12 deprivation to nitrogen 

deprivation. I also compared various strains of metE7 that underwent a period of experimental 

evolution with selection for ability to grow on high or low levels of B12 or in coculture with a B12-

producer, M. loti.  

3.3.1  Growth of metE7 is B12 dose-dependent 
 

In 1905 F. F. Blackman developed the idea of limiting factors, including light and CO2 

availability, with respect to the rate of plant photosynthesis and growth (Blackman, 1903). Vitamin 

B12 is not required by plants or by wild type C. reinhardtii but is clearly the limiting factor in the 

growth of metE7 up until a certain concentration, which itself is determined by the growth conditions. 

The most favourable growth conditions, where both light and a carbon source are present, requires the 

highest concentrations of B12 for it to cease to be the limiting factor. In 1913 Michaelis and Menten 

derived an equation linking the velocity of an enzyme-catalysed reaction to the concentration of its 

substrate (Michaelis & Menten, 1913), and in 1949 Monod found that an equation of the same form 

described the relationship between the division rate of Escherichia coli and glucose concentration 

(Monod, 1949). The connection between metE7 final cell density and B12 concentration can be 

approximated well by an equation of the same form, but it is important to note that the dependent 

variable measured here was cell density not growth rate. Therefore, the B12 concentration at which 

cell density is half maximal would be more aptly denoted by the term EC50 rather than the half 

velocity constant (Ks) used in the Monod equation. The maximal cell density achieved under non-

limiting B12 concentrations would substitute for the term µmax in the Monod equation. The difference 

in the cell density achieved in mixotrophic and heterotrophic conditions under non-limiting B12 was 

reversed for limiting B12 i.e. cell density at B12 concentrations below 16 ng·l-1 were greater in 

heterotrophic conditions. This could be due to light having a detrimental effect on growth or survival 

when B12 is severely depleted. However, it might simply be an artefact of judging when carrying 

capacity was achieved, which was done manually using an average optical density reading across all 

B12 concentrations, whereas in fact the time required may vary considerably with B12 concentration 

and be dependent upon the presence of light or acetate. The reason for the small but consistently 

lower carrying capacity of the revertant line compared with the ancestral is also unclear, as is the 

slight negative correlation between B12 and carrying capacity for the revertant line. It also wasn’t 

investigated whether very high levels of B12 would significantly inhibit growth of all strains, but no 
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adverse effects have been associated with excess B12 intake in humans and no tolerable upper intake 

level has been set even though studies have administered doses 500-2500 times the recommended 

daily allowance (Institute of Medicine (US), 1998).  

3.3.2  B12 alters methionine cycle metabolites in metE7 but not wild type C. 

reinhardtii 
 

By many accounts one-carbon metabolism is a finely tuned set of reactions, which when 

disrupted has multiple significant effects on an organism’s physiology (Groth et al., 2016; Hanson & 

Roje, 2001; Kim et al., 2015; Lucock, 2004; Moll & Davis, 2017). Within one-carbon metabolism, the 

metabolite S-adenosyl-L-methionine (SAM) plays a major role as the donor of methyl groups to 

DNA, mRNA, histones, proteins and lipids (Chiang et al., 1996). The demethylated product of these 

reactions, S-adenosyl-L-homocysteine, has been shown to bind with higher affinity to 

methyltransferases than does SAM itself, and so the ratio of SAM:SAH is termed the methylation 

potential (Melnyk et al., 2000). The finding that B12 had no effect on the concentration of methionine, 

SAM or SAH in the ancestral line of C. reinhardtii suggests that METE and METH are fully able to 

substitute for one another. The abundances of METE and METH protein were not measured here, 

however, in P. tricornutum METE protein levels are 60-fold higher than METH (Bertrand et al., 

2013), and in C. reinhardtii, proteomics and RNAseq experiments found that METE was the more 

abundant isoform (Blaby et al., 2015; Park et al., 2015).  The reason for the higher abundance of 

METE may be due to a lower maximal catalytic rate, as has been observed in E. coli (Gonzalez et al., 

1992). In metE7 the roughly 10-fold increase in SAH and resultant decrease in SAM:SAH ratio 

(Figure 3.2b) could substantially impact methylation, resulting perhaps in DNA hypomethylation as 

has been shown in humans (James et al., 2002; Yi et al., 2000). Another major SAM-consuming 

pathway in mammals is the trimethylation of the lipid phosphatidylethanolamine (PE) to 

phosphatidylcholine (PC) (Noga et al., 2003). C. reinhardtii lacks PC, instead containing 

Diacylglycerol-N,N,N-trimethylhomoserine (DGTS), which is formed from the trimethylation of 

diacylglycerols (Riekhof et al., 2005). Alteration in methylation potential is therefore likely to impact 

lipid metabolism.  

Homocysteine levels were not accurately measured, however, in humans there is good 

evidence of a strong correlation between SAH and homocysteine levels (Yi et al., 2000), due to the 

reversible nature of the conversion of SAH and homocysteine by adenosylhomocysteinase (Palmer & 

Abeles, 1979). Therefore, it is quite plausible that homocysteine levels would have increased in metE7 

under B12 deprivation, especially considering that Croft et al. (2005) showed that this is the case in L. 

rostrata. The observed increase in methionine during B12 deprivation of metE7 is not easily 

explicable. Methionine synthase deficiency, hyperhomocysteinemia, and high levels of SAH in 



 

66 
 

mammalian plasma is often associated, conversely, with low levels of methionine (Duncan et al., 

2013; Engbersen et al., 1995; Watkin & Rosenblatt, 1989). This agrees with a separate set of 

measurements made in this chapter of methionine in B12 deprived and replete metE7 cells 4 days after 

treatment. Therefore, it is possible that the timing or severity of B12 deficiency plays a role in the 

change in methionine concentration. Methionine levels during B12 deprivation in metE7 would likely 

differ to some extent from humans anyway due to a different complement of methionine-generating 

enzymes, e.g. C. reinhardtii lacks betaine-homocysteine methyltransferase (BHMT), and humans lack 

homocysteine s-methyltransferase (HMT), which is involved in the S-methylmethionine cycle, a 

pathway unique to photosynthetic organisms (Hanson & Roje, 2001). Increased homocysteine 

methylation by HMT, or increased net protein catabolism, and a reduction in SAM synthesis might all 

contribute to higher methionine levels.    

3.3.3  Transcripts of C1-cycle enzymes are altered by B12 and C1-cycle status 
 

Analysis of various human tissues has shown that SAH and Hcy concentrations are 

significantly correlated with transcript abundances of several enzymes involved in methylation and 

one carbon metabolism (Chen et al., 2010). In bacteria some enzymes of the methionine cycle have 

been found to contain SAM and SAH riboswitches (Edwards et al., 2010; Wang et al., 2008), however 

only riboswitches responsive to Thiamine pyrophosphate (TPP) have been found in eukaryotes 

(Moldovan et al., 2018; Serganov & Nudler, 2013). Nonetheless, transcription of at least three genes 

from C. reinhardtii involved in one carbon metabolism are regulated by vitamin B12 via other 

mechanisms. The abundances of six transcripts involved in one carbon metabolism were measured in 

metE7 and the ancestral line in B12-deprived and replete conditions and showed that almost all genes 

in both strains were significantly upregulated under B12 deprivation. However, the degree of 

upregulation was considerably greater for all genes in metE7 than the ancestral strain, except for 

METE which was similar in both strains. This suggests that B12 itself is likely to exert some control, 

whether directly or indirectly, on the expression of these enzymes at the transcript level, but that the 

status of one carbon metabolism might also have an impact. Under B12 deprivation conditions, the 

activity of METH would be compromised, yet in both C. reinhardtii strains it was upregulated. In 

contrast, for P. tricornutum, an alga that encodes METE and is B12-independent, lack of B12 decreases 

METH protein abundance (Bertrand et al., 2013), while for T. pseudonana, which lacks METE, 

METH transcript abundance increases (Bertrand et al., 2012). The fact that C. reinhardtii is more 

similar in this respect to a B12 auxotroph might facilitate the acclimation to B12 auxotrophy. Some of 

the most highly upregulated transcripts in T. pseudonana and P. tricornutum under B12 deprivation 

include homologs of METM, MTHFR and SAH1, reflecting what was found in this work, and also by 

Helliwell et al., (2014) (Bertrand et al., 2012; Helliwell et al., 2014). In a study of the C. reinhardtii 

diurnal transcriptome these genes formed a cluster, which also contained METE, METH, and SHMT2, 
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whose transcripts were significantly more abundant in the day than night (Blaby et al., 2015). Under 

sulphur and nitrogen deprivation conditions however, these C1 cycle genes are downregulated, 

suggesting that their upregulation during B12 deprivation is not a general response to stress, but a 

nutrient-specific one (González-Ballester et al., 2010; Wase et al., 2014).  

3.3.4  metE7 has a higher B12 requirement than the natural B12 auxotroph L. rostrata 
 

metE7 was found to have a significantly higher requirement for B12 than L. rostrata: The 

concentration of B12 required for each strain to reach half maximal density (EC50) was 39 and 15 ng·l-1
 

respectively (Figure 3.3a). For metE7 this translates to a minimal requirement of B12 of roughly 1500-

2000 molecules per cell. In terms of concentration within the cell works out to be roughly 25 nM, 

which is within the range (0.35-590nM) reported by Tang et al., (2010) for marine B12 auxotrophic 

harmful algal bloom species (Tang et al., 2010), and similar to the average concentration in the human 

body at 40 nM (Hoglund et al., 1966). As a partial consequence of a higher requirement for B12, 

metE7 underwent fewer doublings after being saturated with B12 than L. rostrata (Figure 3.3b). When 

growth had ceased the population of metE7 and L. rostrata cells had increased 38-fold and 160-fold 

respectively. The ability to rapidly take up and store large amounts of B12 would presumably provide a 

selective advantage for B12 auxotrophs which might compete for B12 produced during bacterial 

blooms. An alternative strategy to surviving on stored B12 during periods between bacterial blooms 

could perhaps be to have a high affinity uptake system to utilise the low concentrations produced by 

lower densities of bacteria or other lysed cells. The difference in B12 uptake between metE7 and L. 

rostrata is not statistically significant at any initial concentration of B12. It is telling nonetheless that 

the mean uptake for metE7 is lower than for L. rostrata for all initial concentrations of B12 below 50 

ng·l-1 and higher above 50 ng·l-1 (Figure 3.3c). In agreement with this observation is the fact that over 

a 4-hour period the B12 uptake by metE7 is less at the low starting concentration and greater at the 

higher concentration (Figure 3.3d). The dynamics of uptake are reasonably similar between strains, 

and the fact that the majority occurs within the first 15 minutes or so is similar to the finding by 

Sarhan et al. (1980) that B12 uptake by E. gracilis is biphasic with a rapid, passive initial stage, 

followed by an energy-dependent and slower second stage (Sarhan et al., 1980). The effect of starting 

concentration on B12 uptake, although small, might indicate that the proteins that bind or transport 

cobalamin in L. rostrata have a higher affinity, but perhaps a lower turnover or abundance than in C. 

reinhardtii. B12 binding proteins were only recently discovered in algae: Cobalamin acquisition 

protein 1 (CBA1) was discovered in P. tricornutum and T. pseudonana and inferred by sequence 

similarity to exist in several diatoms (Bertrand et al., 2012). CBA1 was upregulated in T. pseudonana 

and to a lesser extent in P. tricornutum under B12 deprivation, and it would be interesting to see how 

B12 deprivation affects uptake in L. rostrata and C. reinhardtii.  
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3.3.5  Deprivation of B12 induces similar changes to cell composition as other 

nutrients 
 

 The average cell diameter of metE7 cells was found to increase rapidly during B12 deprivation 

(Figure 3.4a-b). In many bacteria species division by binary fission restricts the variation in cell size 

to little over 2-fold (Taheri-Araghi et al., 2015), C. reinhardtii on the other hand, undergoes a multiple 

fission cell cycle, also referred to as palintomy (Cross & Umen, 2015). Growth happens in the light, 

and between one and five division cycles occur soon after the transition to darkness, resulting in the 

brief existence of palmelloids of up to 32 cells prior to flagellation and dissociation of the daughter 

cells. A culture of C. reinhardtii synchronised by a diurnal light period can have an average cell size 

significantly different from the mean, as can one affected by nutrient deprivation. Deprivation of 

sulphur, and to a lesser extent nitrogen, increases cell biovolume due to decreased cell division 

(Cakmak, Angun, Demiray, et al., 2012). One of the earliest discovered symptoms of folate and B12 

deficiency in humans was macrocytic anaemia, an increase in mean erythrocyte volume (Zuelzer & 

Ogden, 1946). This is a consequence of methyl-folate trapping limiting thymidylate synthesis and 

hence DNA replication, which prevents progression to mitosis (Haurani, 1973; Hoffbrand & Jackson, 

1993).  Increased cell volume during B12 deprivation has also been observed in algae: In Euglena 

gracilis cell sizes take on a bimodal distribution with larger cells that appear unable to divide 

(Shehata.E. & Kempner, 1978). In light of this evidence, the increase in metE7 cell size on B12 

deprivation seems more likely a result of folate trapping and reduced DNA synthesis than a concerted 

downregulation of cell division, as occurs in C. reinhardtii when nutrients are limiting (Cakmak, 

Angun, Demiray, et al., 2012; Grossman, 2000).  

 B12 deprivation of metE7 caused a slow but substantial decline in total chlorophyll (Figure 

3.4c) while maintaining the ratio of chlorophyll a:b. Chlorosis is a common symptom of nutrient 

deficiency in C. reinhardtii, evident in nitrogen, sulphur, iron, and zinc limiting conditions (Kropat et 

al., 2011). The decrease in chlorophyll content is thought to mainly result from a cessation in 

synthesis while cell growth continues causing a diluting effect, but degradation may also play a role 

(Juergens et al., 2015; Schmollinger et al., 2014). The decrease in total protein content of metE7 over 

4 days of B12 deprivation occurred more slowly and was less substantial than has been reported under 

nitrogen and sulphur deprivation (an 80% reduction within 1 day) (Cakmak, Angun, Demiray, et al., 

2012). As proteins are the major nitrogen-containing macromolecules in the cell it makes sense that 

nitrogen limitation would limit protein synthesis, and sulphur limitation has shown to cause a greater 

decrease in transcripts for proteins with a high sulphur content (González-Ballester et al., 2010). For 

B12 limitation, the reduced rate of methionine synthesis could restrict protein synthesis, but this 

hypothesis does not stand up to the observation that methionine levels, at least at one timepoint, were 

not lower in metE7 during B12 deprivation. The turnover of protein may provide some of the carbon 
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for starch or TAG production, both of which increased under B12 deprivation (Msanne et al., 2012). 

There was no further increase in starch content between 2 and 4 days of deprivation, which is 

consistent with the finding that starch increases in the initial stages of nutrient limitation (Juergens et 

al., 2016; Siaut et al., 2011). The slight increase in starch from day 2 to 4 in B12-replete conditions 

could suggest that as the cells enter stationary phase energy is produced in excess of that required for 

cell maintenance and so is diverted into the synthesis of starch (Juergens et al., 2016; Krishnan et al., 

2015). 

The increase in TAGs in metE7 during B12 deprivation, at roughly 10-fold, is slightly higher 

than the change in starch, and similar to what has been observed during sulphur and nitrogen 

deprivation in C. reinhardtii (Cakmak, Angun, Ozkan, et al., 2012). What proportion of this increase 

is from lipid remodelling vs de novo fatty acid synthesis is not clear in this case, or indeed during 

other nutrient starvation conditions. The level of free fatty acids and polar lipids in metE7 decrease by 

a roughly similar amount to the increase in TAG suggesting that perhaps there is little to no de novo 

fatty acid synthesis. During nitrogen and iron starvation in C. reinhardtii membrane lipids decrease 

drastically concomitant with the increase in TAGs (Siaut et al., 2011; Urzica et al., 2013). In addition, 

B12 deprivation causes similar shifts in fatty acid composition to N and Fe deprivation, notably the 

most substantial increase is in palmitic acid (16:0) and decrease is in the polyunsaturated 16:4 fatty 

acid (Msanne et al., 2012; Urzica et al., 2013). However, B12 deprivation did not cause a decrease in 

alpha-linolenic acid, as has been observed for the other two nutrients. In organisms as diverged as 

humans, S. cerevisiae and A. thaliana, disruption of one carbon metabolism causes an increase in 

triacylglycerides (da Silva et al., 2014; Meï et al., 2016; Visram et al., 2018). More specifically, the 

reduction of the methylation potential, a phenomenon also observed in this work, results in a lower 

phosphatidylcholine: phosphatidylethanolamine ratio, which may cause a shift in FA metabolism 

away from membrane lipids and towards TAGs (Malanovic et al., 2008; Visram et al., 2018). It would 

appear therefore that more could be learnt about the TAG accumulation effect of B12 deprivation on 

metE7 from one carbon metabolism studies in other organisms than other nutrient deprivation studies 

in C. reinhardtii. Nevertheless, B12 deprivation could provide a complementary approach to 

understanding lipid metabolism in C. reinhardtii.  

 Abundances of the six previously studied transcripts (METE, METH, METM, MTHFR, SAH1, 

SHMT2) were in good agreement between both experiments that compared metE7 under B12 replete 

and deprived conditions (Figure 3.2c and 3.5c). In addition to these transcripts, four further genes 

involved in one carbon metabolism were investigated, of which three showed no change, while FTL1 

was decreased by B12 deprivation. FTL1 is related to A. thaliana Formate-tetrahydrofolate ligase 

(THFS), an enzyme that catalyses the reversible conversion of THF to 10-formyl THF (Hanson & 

Roje, 2001). A. thaliana and C. reinhardtii also encode a 10-formyl-THF deformylase which likely 
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catalyses the irreversible conversion of 10-formyl-THF to THF (Collakova et al., 2008; Hanson & 

Roje, 2001). Hence there is some reason to hypothesise that downregulation of FTL1 in metE7 would 

reduce the drawdown of THF and, in parallel with the substantial increase in SHMT2 and MTHFR 

transcript abundance, cause greater flux towards 5-CH3-THF, the methyl donor in the production of 

methionine, and subsequently SAM. MTHFR is considered vital to balancing the folate pools used for 

DNA synthesis vs methylation, but it catalyses irreversible and reversible reactions in humans and 

plants respectively, and its nature in C. reinhardtii is unknown (Friso et al., 2005; Roje et al., 1999). 

Therefore, without further knowledge of enzyme kinetics, let alone enzyme abundances, it is very 

difficult to make any firm conclusions on what effect these changes in transcript abundance during 

B12 deprivation will have on folate pools.     

3.3.6  B12 addition reverses the effects of B12 deprivation on the C1 cycle 
 

 A higher time resolution study of one carbon metabolism transcripts and metabolites was also 

generally in agreement with previous findings. Over the first 24 hours of B12 deprivation, SAH levels 

rose 100-fold, but a 3-fold increase in SAM over the same period caused a decrease in the methylation 

index by 34-fold (Figure 3.6a). In two A. thaliana mutants of one carbon metabolism (MTHFD1 and 

MAT4)  SAH levels were also found to rise, with a smaller change in SAM, resulting in an increase in 

methylation index of up to 20-fold (Groth et al., 2016; Meng et al., 2018). Methionine concentrations 

were much more variable in this work, and although the initial trend towards a decrease over the first 

12 hours could be expected due to the disruption of methionine synthesis, after 24 hours methionine 

had substantially increased, in agreement with the measurements taken after 30 hours (Figure 3.2b). 

From 24 to 72 hours of B12 deprivation, all three metabolites decreased in abundance, the most 

unexpected of which was SAH. There is no evidence that plants or C. reinhardtii are able to 

metabolise homocysteine to cysteine via the reverse transulfuration pathway (Hanson & Roje, 2001), 

so the major route for homocysteine metabolism is via methyl transfer from 5-CH3-THF, which in 

metE7 under B12 deprivation is disrupted. An alternative pathway so far found only in plants is the S-

methylmethionine cycle, a futile cycle composed of two reactions catalysed by methionine S-methyl 

transferase (MMT) and homocysteine S-methyltransferase (HMT) (Hanson & Roje, 2001). HMT 

converts homocysteine to methionine using SMM, or perhaps rarely SAM, as the methyl donor. C. 

reinhardtii encodes a homolog of A. thaliana HMT which could lower SAM and Hcy levels while 

replenishing methionine. A reduction in Hcy would also shift the SAH1-catalysed reaction in the 

direction of further Hcy synthesis causing a reduction in SAH. Addition of B12 after 72 hours 

decreased SAH, and to a lesser extent, SAM concentration. Increased flux through activated METH 

would consume Hcy, and indirectly SAH. Reduced competitive inhibition of methyl transfer reactions 

might also be the cause of declining SAM levels. Methionine, however, showed no sign of 

replenishment after B12 addition. Although flux through C1 metabolism in plants is high, indicative of 
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its importance to physiology, elucidation of its properties has been hindered by the difficulty in 

quantifying metabolites, and the relative lack of mutants (Hanson & Roje, 2001). Almost nothing is 

known about C1 metabolism in C. reinhardtii, but metE7 could provide a useful tool for its further 

study. 

 The profiles of METE, METH, METM, MTHFR, SAH1 and SHMT2 were very similar to one 

another over the B12 deprivation and replenishment period, with all of the increase in transcript 

abundance occurring within 6 hours of resuspension in B12–free media (Figure 3.6b). This dramatic 

initial rise occurs more quickly than the accumulation of SAH, adding to the evidence that B12 itself, 

rather than one carbon metabolites has the major control over the abundance of these transcripts. 

MTHFD and TYMS exhibit a similar profile to one another, but different to the previously mentioned 

six genes (Figure 3.6c). As both enzymes are bifunctional, and MTHFD catalyses reversible reactions 

it is difficult to conclude what change to metabolic flux would occur if the transcript abundance 

changes were reflected at the protein level. Furthermore, the overall changes over the 3-day period 

were minimal. The profile for FTL1 transcript abundance was negatively correlated with the enzymes 

adjacent to the methionine synthesis reaction and to the concentration of SAH, lending further weight 

to the hypothesis that it plays a different role with respect to the methionine cycle than other enzymes 

of C1 metabolism. 

3.3.7 L. rostrata survives B12 deprivation better than metE7 
 

Considering that the EC50 for B12 was found to be lower for L. rostrata than metE7, it was 

unsurprising after culturing both strains with 100 ng·l-1
 B12 and transferring them to B12-free media 

that L. rostrata grew better than metE7. Nonetheless, by day 6 the viability of both strains was similar, 

showing that even an established B12 auxotroph is unable to survive for long in the absence of B12 

(Figure 3.7c). Another widely reported indicator of stress in algae is derived from chlorophyll 

fluorescence measurements: Fv/Fm decreases under a number of nutrient stress conditions (Parkhill et 

al., 2001; White et al., 2011). The more gradual reduction in Fv/Fm for L. rostrata is reflective of the 

delayed decline in viability (Figure 3.7d). Nevertheless, it is important to note that Fv/Fm is not 

proportional to the percentage of viable cells: Dead cells retain some minimal fluorescence (F0) when 

dark adapted, but do not exhibit an increase in fluorescence when exposed to light (Franklin et al., 

2009). Hence, the measured Fv/Fm value is reasonably insensitive to the proportion of dead cells and, 

at least at low proportions, is more reflective of the Fv/Fm value of the live cells. With that in mind, it 

might be the case that during B12 deprivation a subpopulation of better acclimated metE7 cells arise, 

which can maintain photosynthetic capacity and viability for a slightly longer period. Decrease in the 

value of non-photochemical quenching (NPQ) during nutrient deprivation is a commonly observed 

phenomenon in C. reinhardtii: measurements by chlorophyll fluorescence under nitrogen and sulphur 
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deprivation showed a gradual decline (Antal et al., 2006; Bonente et al., 2012). As NPQ dissipates 

excess absorbed light energy as heat it reduces the generation of singlet oxygen by excited chlorophyll 

and resultant oxidative damage (Müller et al., 2001). Transition to high light levels, but also to low 

nutrient conditions should result in light absorption in excess of utilisation and hence increased NPQ, 

but only under certain nutrient limiting conditions does this occur in C. reinhardtii, and it is more 

common under photoautotrophic than photoheterotrophic conditions (Saroussi et al., 2016; Terauchi 

et al., 2010). Perhaps therefore, NPQ would increase in metE7 and L. rostrata under B12 deprivation 

had they been grown photoautotrophically. As it was, the higher starting NPQ for L. rostrata may 

have protected against the accumulation of oxidative damage, as appeared to be the case from the 

lower DCFDA fluorescence measurements per L. rostrata cell. Nonetheless, DCFDA is not 

considered to be the most accurate measure of ROS or oxidative damage (Kalyanaraman et al., 2012), 

and there are likely many other routes for ROS production and detoxification that could be altered by 

B12 deprivation.  

3.3.8  metE7 survives nitrogen deprivation better than B12 deprivation 
 

 Starting with the core treatment of interest, B12 deprivation of metE7, the other two treatments 

in Figure 3.8 substitute the alga and limiting nutrient for L. rostrata and nitrogen respectively. 

Furthermore, the connection between B12 deprivation of L. rostrata and nitrogen deprivation of metE7 

is that both are conditions that the species is likely to have encountered multiple times in its 

evolutionary history, and so may have developed a survival-enhancing response to. The difference in 

the growth profile between B12 and nitrogen deprivation in metE7 suggests that under B12 deprivation 

there is no signal to reduce growth rate, and this results in unsustainable growth (Figure 3.8a). The 

45% increase in mean cell diameter of B12-deprived metE7 cells over the first day, and hence 200% 

increase in cell volume, was substantially greater than the 45% increase in cell volume under nitrogen 

deprivation (Figure 3.8b). It would appear from comparison to other studies that in this way B12 

deprivation is more similar to sulphur deprivation (Cakmak, Angun, Demiray, et al., 2012), and it is 

tempting to hypothesise that this may result from their shared impact on the methionine cycle 

(González-Ballester et al., 2010). The decrease in L. rostrata mean cell diameter on day one is 

puzzling but may be a result of the preculture conditions: as L. rostrata grows more slowly than 

metE7 the decrease could be in response to the final resuspension in sufficient (200 ng·l-1) B12 (re-

addition of B12 allows cells to resume division) prior to washing and resuspending in B12-free media. 

Perhaps the most striking result of this experiment was the change in viability (Figure 3.8c). Nitrogen 

starved C. reinhardtii cells are known to survive for extended periods (Martin & Goodenough, 1975), 

yet the viability after just one day had declined by over 50%. Subsequent recovery of viability must 

therefore be due to the surviving cells continuing to divide to produce more viable cells despite a 

lower nitrogen quota, suggesting that it is the ability to acclimate to a change in nitrogen rather than 
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the absolute amount of nitrogen that determines survival. B12-deprivation elicits no early decrease in 

viability, but this might be at the expense of the later and more severe decrease. Decrease in Fv/Fm 

during nitrogen deprivation may cause a decrease in the ratio of linear vs cyclic electron flow, as has 

been observed for sulphur and phosphorus-starved C. reinhardtii(Wykoff et al., 1998), or a total 

downregulation of photosynthesis(Schmollinger et al., 2014). B12 deprivation caused a delayed and 

less substantial decrease in Fv/Fm suggesting that photosynthesis continued for longer in spite of 

increased cell death (Figure 3.8d).  

3.3.9  Nitrogen deprivation protects against B12 deprivation 
 

 Fv/Fm, which gives an indication of photosynthetic apparatus integrity (Schmollinger et al., 

2014), and cell viability showed quite disparate responses under B12 and nitrogen deprivation 

indicating perhaps that Fv/Fm in these circumstances was less an indicator or stress itself than 

response to stress (Figure 3.8d). To investigate whether the photosynthetic and other responses to 

nitrogen deprivation would be sufficient to protect against B12 deprivation, metE7 was cultured in 

media lacking both nitrogen and B12, as well as media lacking each nutrient individually. The degree 

of growth limitation, as measured by culture optical density, was the same in all three nutrient limited 

conditions (Figure 3.9a). However, the lower number of viable cells in the B12-limited treatment 

(Figure 3.9b) suggested that it was the more stressful condition. Nitrogen deprivation is a well-known 

prerequisite for gamete formation in C. reinhardtii (Beck & Acker, 1992), and cells are able to 

survive for many weeks under this condition (Martin & Goodenough, 1975). So, in comparison to 

other nutrient deprivation conditions such as sulphur or phosphorus, the loss of viability under B12 

deprivation may not seem as drastic. The decline in viable cells in nutrient replete culture was 

unexpected however, and was not observed to the same extent in repeats of the experiment, but it has 

been found that nitrogen limitation improves survival of various phytoplankton exposed to high light 

(Kulk et al., 2013). That the combination of nitrogen and B12 deprivation improved survival relative to 

B12 deprivation alone, illustrates that nitrogen deprivation induces general survival responses that 

cross-protect against B12 deprivation. One potential and previously mentioned mechanism for 

protection against stress is induction of NPQ. A transient increase was observed in both nitrogen-

limited conditions, however, the largest increase in NPQ was in the nutrient replete treatment 

following a decline in viability (Figure 3.9c). A reduction in PSII efficiency occurs in parallel with 

growth stagnation in C. reinhardtii (Grossman, 2000; Nedelcu, 2009), and an increase in the 

photoprotective protein LHCSR has also been observed, although this did not result in increased NPQ 

(Humby et al., 2013). Other mechanisms to increase light energy dissipation or reduce its initial 

absorption may start to dominate later in nitrogen deprivation, which could explain the transience of 

the NPQ rise. Indeed, under all conditions except B12 deprivation, total chlorophyll content per cell 

decreased in the first 24 hours (Figure 3.9e). The increase under B12 deprivation to a large extent 
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results from the increase in cell size, but even relative to optical density of the culture chlorophyll 

content was higher in this treatment. In addition to their role in NPQ, some carotenoids, including 

zeaxanthin and lutein, can act as antioxidants and protect against lipid peroxidation in thylakoid 

membranes (Müller et al., 2001; Sujak et al., 1999). After an initial decline, both nitrogen limited 

conditions showed an increase in carotenoids that was most clearly absent from the B12-limited 

cultures (Figure 3.9f). B12 deprivation-induced loss of viability might therefore be linked to the lack of 

carotenoids, with their antioxidant activity as well as their effect on reducing membrane fluidity and 

hence penetration of thylakoid membranes by ROS (Tardy & Havaux, 1997). ROS damage was 

initially only measured to be highest under B12 deprivation at one timepoint, 48 hours (Figure 3.9d). 

However, subsequent measurements confirmed that 48 hours represented the midpoint and peak of a 

period of higher ROS damage (Figure 3.10a). This peak also coincided with the start of a decline in 

cell viability (Figure 3.10b). High levels of reactive oxygen species and lipid peroxidation are often 

found to precede cell death in plants and algae (Baroli et al., 2004; Pérez-Pérez et al., 2012; 

Triantaphylidès et al., 2008), and so seems likely to be cause of cell death in B12 deprivation. Overall, 

deprivation of B12 in metE7 does not appear to elicit the same responses as other nutrients, which act 

to increase survival under suboptimal conditions.  

3.3.10  Artificial evolution improves growth and survival under limiting B12 

 

 The conditions chosen for experimental evolution of metE7 were quite distinct and should 

have resulted in very different selection pressures. One hypothesised outcome was a difference in 

growth responses to a range of B12 concentrations, with those lines evolved under limiting B12 and in 

coculture with M. loti (condition B and C) having a lower requirement for B12 than the lines evolved 

under replete B12 conditions. Although the EC50 values for line B and C were lower than for line A, 

only the difference with line C was statistically significant, and all three evolved lines also had a 

significantly lower EC50 value than the line stored on Tris min agar during the experimental evolution 

period (Figure 3.12c). The predicted carrying capacity under replete B12 showed similar results, but 

there was no significant difference between any of the evolved metE7 lines. L. rostrata still had the 

lowest EC50 value and carrying capacity of the strains, which was unsurprising given the relative 

brevity of the experimental evolution period. The differences in calculated carrying capacity and 

particularly in EC50 values may be exaggerated by the short time period over which growth was 

measured (within which growth at higher B12 concentrations had not fully saturated), and the fact that 

optical density declined in some strains at lower B12 levels.  

The results of B12 deprivation on the evolved lines was slightly more significant in a statistical 

sense. L. rostrata had the highest optical density, viability, and PSII maximum efficiency at the end of 

the 6-day period, as predicted. The second highest mean value for all of these three metrics was from 
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either lines B or C. Line B was exposed to conditions where B12 was only added to a low 

concentration (25 ng·l-1) once per week, and so would rapidly have been taken up and become 

limiting again. Survival until the next addition of B12 may therefore have been the greatest selection 

pressure, and therefore caused those lines to maintain higher viability during B12 deprivation than 

those which were constantly replete (line A). Of the evolved lines, line C showed the lowest EC50 for 

B12 (figure 3.12c), so the fact that it reached the highest optical density and maintained the highest 

photosynthetic capacity during B12 deprivation (Figure 3.12a,c) seems to contribute to the idea that it 

developed the highest B12 use efficiency. Slow but continuous growth in the low levels of B12 

produced by M. loti may have provided this selection pressure. Non-photochemical quenching does 

not appear to play an obvious role in maintaining viability, as L. rostrata and line B had some of the 

highest and lowest NPQ values throughout the deprivation period respectively while also both 

sustaining some of the highest levels of viability. Repeats of these experiments would certainly be 

necessary before it could be claimed with any reasonable degree of confidence that this period of 

experimental evolution was sufficient to make metE7 better suited to growing in B12 limiting 

conditions. The fact that metE7 survived the 7-month period without artificial addition of B12, instead 

relying completely on M. loti, does suggest however that even a newly evolved and poorly adapted 

B12 auxotroph would have ample opportunity to adapt further. 

3.4 Concluding remarks 
 

 An artificially evolved B12-dependent mutant of C. reinhardtii (metE7), shows a classic dose-

response to B12 that is not seen in the wild type. In comparison with a related B12 auxotroph, L. 

rostrata, metE7 has a higher requirement for B12 with a more rapid loss of viability on B12 removal but 

similar uptake kinetics. B12 deprivation increases the expression of C1-cycle genes at the transcript 

level in both the wild type and metE7 strain, but only causes a decrease in the methylation index 

(SAM:SAH ratio) in metE7. B12 deprivation of metE7 also causes a decrease in chlorophyll, protein 

and amino acids, and an increase in starch, lipids and saturated fatty acids. The rapid loss of viability 

seen under B12 deprivation can be averted if the metE7 cells are also limited for nitrogen, suggesting 

that it is not the lack of B12 per se that causes cell death, but an inability to alter metabolism. metE7 

can be supported for at least several months by a B12-producing bacterium, and under these and other 

B12-limited conditions appears to adapt by improving B12 use efficiency and survival under B12 

deprivation.  
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Chapter 4: Coping with B12 auxotrophy in the long term through 

symbiosis 
 

4.1  Introduction 
 

 Relationships between multicellular organisms in a community are often portrayed by food-

webs, where producers and consumers are linked by the trophic flow of organic material and energy. 

In microbial communities, interactions based on nutrient transfer abound and bidirectional transfer or 

mutualism is more common (Zelezniak et al., 2015). The success of many mutualisms derives from 

the concept of comparative advantage: a difference in the ratio of the costs of producing two products 

between a pair of organisms. Often it is the case that mutualists transfer nutrients that are not just 

costlier for their partner to produce, but which they are incapable of producing. An example of this is 

the interaction between two marine microbes, the alga Ostreococcus tauri and bacteria 

Dinoroseobacter shibae. O. tauri requires vitamin B1 and B12 (Palenik et al., 2007), D. shibae requires 

B3, B7, and Bx (Biebl et al., 2005), and each partner can produce the vitamins that the other requires, 

so supporting one another when grown in coculture with no added vitamins (Cooper et al., 2019).  

  The concentration of dissolved vitamin B12 varies considerably in marine and fresh waters, 

depending on depth, season, abundance of phytoplankton, and proximity to the coast from values as 

high as 83 ng·l-1 in bay areas to 0.3 ng·l-1 in the open ocean (Cowey, 1956; Daisley, 1969; Daisley & 

Fisher, 1958; Ohwada, 1973; Ohwada & Taga, 1972; Panzeca et al., 2009). It has been known for 

some time that a large number of algae require B12 for growth (Carlucci & Silbernagel, 1969; Croft et 

al., 2005; Droop, 1974), and heterotrophic bacteria have been shown to stimulate algal growth by B12 

provision (Croft et al., 2005; Haines & Guillard, 1974; Kazamia et al., 2012; Xie et al., 2013), 

although there is debate as to whether this interaction is better termed symbiosis or scavenging (Croft 

et al., 2005; Droop, 2007). In this chapter I shall use the terms symbiosis and mutualism rather than 

scavenging and direct reciprocity, but only in the loosest sense to mean some interaction between 

organisms. 

Bacteria from the Oceanospirillaceae were found to be dominant B12-producers in the 

Southern Ocean near the sea ice edge, and to express organic-matter-acquisition and cell-surface-

attachment genes, suggestive of mutualistic interactions with phytoplankton (Bertrand et al., 2015). A 

marine phytoplankton, Prorocentrum minimum, auxotrophic for vitamin B1 and B12, was supported by 

the addition of the B12-producer D. shibae (Wagner-Döbler et al., 2010), and the growth of several B12 

auxotrophic diatoms was rescued by inoculating cultures with B12-producing bacteria (Haines & 

Guillard, 1974). There are several other examples using these approaches of environmental sampling 

or pairing of species in the laboratory which together suggest that interactions involving the transfer 
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of B12 are widespread. However, the dynamics of these interactions are less clear, for example, 

Thalassiosira pseudonana and an unknown B12-producing bacterium supported one another with 

growth occurring in parallel initially, but in later growth stages the abundance of both species showed 

roughly antiphase oscillations (Haines & Guillard, 1974). The authors suggested this indicated that 

algal cell death nourished the growth of the bacteria, which then produced more B12 and reversed the 

algal decline. On the other hand, in a symbiosis between the freshwater alga Lobomonas rostrata and 

the rhizobial bacterium Mesorhizobium loti, mathematical modelling of the transfer of nutrients 

suggested that B12 was made available to the alga not by bacterial lysis but by some mechanism of 

regulated release (Grant et al., 2014). In both the marine and freshwater example mentioned above 

addition of B12 to the coculture increased algal cell density indicating that B12 supply by the bacteria 

limited algal growth. Addition of a carbon source to the M. loti-L. rostrata coculture increased 

bacterial growth without concomitant increases in algal density, suggesting decreased B12 synthesis 

per bacterium (Grant et al., 2014). In contrast, cultures of Halomonas sp., which formed a symbiotic 

interaction with Porphyridium purpureum via provision of B12, increased production of B12 per cell 

when the algal carbon source fucoidan was added (Croft et al., 2005). These examples suggest there is 

considerable variety among interactions involving B12 transfer that makes them worth investigating 

individually.  

C. reinhardtii can use B12 as a cofactor in the synthesis of methionine, but under normal 

conditions grows equally well without it. At high temperatures however, in the absence of B12 reduced 

activity of the B12-independent methionine synthase (METE) leads to chlorosis and cell death (Xie et 

al., 2013). Addition of B12 and hence activation of the alternative methionine synthase (METH), 

which is more robust to high temperatures, reduces chlorosis, as does coculturing C. reinhardtii with 

the B12-producer S. meliloti (Xie et al., 2013). In our laboratory, experimental evolution of C. 

reinhardtii in the presence of high levels of vitamin B12 gave rise to a B12 auxotrophic mutant that 

outcompeted the ancestral strain (Helliwell et al., 2015). A stable B12-dependent variant (metE7) of 

this evolved strain could be supported in coculture separately with three rhizobia species, including S. 

meliloti, but at a lower growth rate than when B12 was added to the medium. Although these 

mutualistic partnerships were established in the laboratory, they provide insight into a possible 

mechanism for long term survival in the natural environment that is available to a newly evolved B12 

auxotroph.  

In this chapter I will firstly compare how metE7 and the ancestral C. reinhardtii strain grow 

with M. loti in coculture, effectively a mutualistic and commensal interaction respectively. Two 

mutualisms with M. loti will then be compared: one involving the newly evolved B12 auxotroph 

metE7, and the other a related but more established auxotroph L. rostrata. I will discuss the direct and 

indirect impacts of nutrient addition on cocultures of M. loti and metE7, and whether it indicates any 

regulation of nutrient release. By correlating M. loti density and B12 concentration in axenic culture 
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and cocultures, as well as by adding metE7 cells to M. loti cultures I investigate whether bacterial B12 

production is induced by the presence of algae. Using an E. coli mutant that releases a larger 

proportion of its synthesised B12 into the media, the importance of ‘leakiness’ for symbiosis is 

examined. Finally, I test whether M. loti can support the evolution of B12 auxotrophy by competing a 

B12-dependent and a B12-independent strain of C. reinhardtii against one another in the bacteria’s 

presence.  

 

4.2  Results  
 

4.2.1  Comparing a mutualistic and commensal interaction 
 

Many B12-producers are heterotrophic and so ultimately rely on photoautotrophs for their 

fixed carbon (Heal et al., 2017). These B12-producers may not have provided any benefit to the B12-

independent ancestors of algae, but to co-occur over long periods of time one might hypothesise that 

they did not have a negative impact either, i.e. were commensal. Here I have tested what the effect of 

M. loti is on the B12-independent ancestral line of C. reinhardtii and vice versa when they are grown 

in media which lacks a carbon source and B12. C. reinhardtii and M. loti were precultured separately 

by inoculating individual colonies into 50 ml nunc flasks containing 20 ml of Tris minimal medium 

with either 100 ng·l-1 B12 or 0.01% glycerol respectively. These cultures were incubated on a shaking 

platform at 120 rpm, 25°C, 100 µE·m-2·s-1, with a light:dark period of 16:8 hours.  C. reinhardtii and 

M. loti were then inoculated at roughly 10,000 and 200,000 cells·ml-1 respectively in Tris minimal 

medium (with neither B12 nor a carbon source) to produce two sets of axenic cultures and one of 

cocultures. Measurements of the density of C. reinhardtii and M. loti, as well as the concentration of 

B12 were taken every 2-3 days over a 24-day period.  

Figure 4.1a illustrates that the growth of the ancestral line of C. reinhardtii is not affected by 

the presence of M. loti. Figure 4.1b however, shows that there is a significant improvement in the 

growth of M. loti in the presence of C. reinhardtii. After 2 days of similar growth rates in axenic or 

coculture conditions, M. loti growth stops abruptly under axenic conditions, presumably as the carbon 

source (glycerol) from the preculture conditions is exhausted. In the coculture, M. loti appears to 

transition to the metabolism of organic compounds produced by C. reinhardtii, which might be 

secreted or be part of the algal cell itself. It is likely that any algal biomass would only be available for 

metabolism by M. loti after cell death as M. loti has no negative impact on C. reinhardtii growth. 

Figure 4.2a compares the growth of the ancestral and revertant strains of C. reinhardtii (both 

B12-independent) and that of metE7 in coculture with M. loti. The growth of the latter is reduced 
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slightly compared to the B12-independent strains, as is the carrying capacity reached after 20 days. 

This is presumably because of B12 limitation. Despite this, M. loti growth is similar whichever C. 

reinhardtii strain it is cocultured with (Figure 4.2b). Since at any one time point there are fewer metE7 

cells, this suggests that metE7 cells provide a larger quantity of organic compounds that can be 

metabolised by M. loti. Alternatively, the differences in the ratio of bacteria to algae (Figure 4.2c) 

could be explained by the fact that M. loti growth is limited by something other than organic 

compound concentration. By the end of the growth period, B12 concentration and M. loti density are 

similar across the cultures (Figure 4.2d and 4.2b), while metE7 density still lags behind that of the 

other C. reinhardtii strains, indicating that the B12 available per algal cell is likely greatest for metE7.  
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xix Figure 4.1 Growth of ancestral strain of C. reinhardtii and M. loti in axenic culture or coculture 

(a) (b) 

Figure 4.1 Growth of ancestral strain of C. reinhardtii and M. loti in axenic culture or coculture. 
Cultures were grown over a 20-day period in Tris minimal medium with illumination in a 16:8 hour 

period at 100 µE·m
-2

·s
-1

 at 25°C with circular shaking at 120 rpm. (a) Algal cell density measured 
by particle counter for particles > 3 µm in diameter. (b) M. loti cell density measured as colony 
forming units (CFU) when serial dilutions were plated on TY agar. Black = axenic culture (either 
Ancestral C. reinhardtii or M. loti cultured separately), grey=coculture of ancestral C. reinhardtii + 
M. loti. Error bars = sd, n=4.  
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xx Figure 4.2 Growth of C. reinhardtii strains in coculture with M. loti 

Figure 4.2 Growth of C. reinhardtii strains in coculture with M. loti over a 25-day period. Cultures 
were grown over a 25-day period in Tris minimal medium with illumination in a 16:8 hour period 

at 100 µE·m
-2

·s
-1

 at 25°C with circular shaking at 120 rpm. (a) Algal cell density measured by 
particle counter for particles > 3µm in diameter. (b) M. loti cell density measured as colony 
forming units (CFU) when serial dilutions were plated on TY agar. (c) The calculated ratio of M. loti 
CFU to algal cells. (d) Total B

12
 concentration in the culture measured by bioassay from day 8 

onwards. Orange = Ancestral strain, green = metE7 strain, purple = Revertant. Error bars = sd, 
n=4.  

(a) (b) 

(c) (d) 
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4.2.2  Comparing a natural and newly-evolved B12 auxotroph 
 

As with the previous chapter, it is useful to not only compare metE7 with the wild type of the 

same species, but also with another related alga that lacks METE, such as L. rostrata. Any phenotypic 

differences between these species might just reflect the random mutations that have accumulated since 

their divergence, however they might also reflect the different selection pressures that are imposed on 

a B12-dependent and B12-independent alga. Cocultures of both metE7 and L. rostrata were initially 

prepared as described above, however, they were allowed to equilibrate for several days prior to 

resuspending them at an algal cell density of roughly 10,000 cells·ml-1
 to start algal, bacterial, and B12 

measurements. L. rostrata has a slower maximal growth rate under optimal conditions than metE7 (as 

shown previously in Figure 3.3b), but in coculture with M. loti, L. rostrata grows more quickly 

(Figure 4.3a). M. loti density remains higher throughout the growth period in coculture with metE7 

(Figure 4.3b), resulting in a significantly higher ratio of bacteria to algae for metE7 than L. rostrata 

(Figure 4.3c). This appears similar to the comparison with wild type C. reinhardtii, and although L. 

rostrata clearly requires B12, the concentration needed to support its growth is lower than that of 

metE7 (Figure 3.3a). The concentration of B12 in the media is higher towards the end of the growth 

period of the L. rostrata coculture despite a similar or lower density of M. loti (Figure 4.3d). This 

might be due to a reduced uptake of B12 by L. rostrata or could be due to L. rostrata causing M. loti to 

produce more B12, as has been previously suggested by Kazamia et al. (2012). Indeed, Figure 3.3e 

shows that for the same density of M. loti cells, cocultures containing L. rostrata have a higher 

concentration of B12 than those with metE7 (p<0.001). Relative to algal cells however, to some extent 

the opposite appears to be true: there is more B12 per algal cell, particularly at higher cell densities, in 

cocultures containing metE7 than L. rostrata (Figure 3.3f). Overall, there are minor but consistent 

differences between cocultures of L. rostrata and metE7 that seem in part to be explained by their 

differences in B12 requirement, but perhaps are also due to their interactions with M. loti.   
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xxi Figure 4.3 Growth of metE7 and L. rostrata in coculture with M. loti 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 4.3 Growth of metE7 and L. rostrata in coculture with M. loti over a 16-day period. Cultures 
were grown over a 16-day period in Tris minimal medium with illumination in a 16:8 hour period 

at 100 µE·m
-2

·s
-1

 at 25°C with circular shaking at 120 rpm (a) Algal cell density measured by 
particle counter for particles > 3 µm in diameter. (b) M. loti cell density measured as colony 
forming units (CFU) when serial dilutions were plated on TY agar. (c) The calculated ratio of M. loti 
CFU to algal cells. (d) B

12
 concentration in supernatant of centrifuged culture measured by 

bioassay. (e) Correlation between total B
12 

concentration and M. loti CFU density. (f) Correlation 

between total B
12

 concentration and algal cell density. Green = metE7 strain, grey = L. rostrata. 

Error bars = sd, n=4.  
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4.2.3  Growth limitations of metE7 and M. loti in coculture  
 

The mutualistic, or at least syntrophic, interaction between metE7 and M. loti cocultured in 

minimal medium is highly unlikely to recreate conditions that would be optimal for the growth of 

each species individually. Still, the success of mutualisms more generally is because environmental 

conditions tend to be far from optimal from the perspective of any one species. I will describe two 

similar experiments that were performed to investigate the impact of adding either a carbon source or 

B12 to cocultures, both directly on the species that requires the nutrient, and indirectly on the other 

species. As before, cocultures were incubated in photoautotrophic conditions in Tris minimal medium 

on a shaking platform at 120 rpm, 25°C, 100 µE·m-2·s-1, with a period of 16:8 hours of light and dark. 

M. loti and metE7 densities were monitored, and after the cocultures had been maintained for several 

days they were split into three treatments: a control where no changes were made; addition of B12 to a 

concentration of 200 ng·l-1; addition of glycerol to a concentration of 0.02 % (v/v). In the batch 

experiment no media was replaced after sampling, but in the semi-continuous experiment 10% of the 

total volume was removed for sampling and replaced with fresh media daily (containing B12 or 

glycerol where appropriate).  

In Figure 4.4 day 0 denotes the day that nutrients were added, and shortly afterwards there is 

a divergence in the densities of metE7 or M. loti. In both batch and semi-continuous conditions 

cobalamin addition causes an increase in metE7 density after 1 day (Figure 4.4a). There appears to be 

no effect on M. loti density however, which remains similar to the control throughout the 6-day 

growth period (Figure 4.4b). Glycerol addition causes an increase in the M. loti density in batch and 

semi-continuous conditions within 1 day, but in the batch conditions the M. loti density peaks on day 

2, after which cell death returns the cell density to the same level as the other two conditions by day 6 

(Figure 4.4b). Glycerol addition also induces an increase in metE7 density, although this occurs with a 

delay of roughly 1 day relative to cobalamin addition (Figure 4.4a). Combining metE7 and M. loti cell 

density data to produce a ratio between the two exemplifies the significant change in the cocultures, 

and in opposite directions, elicited by nutrient addition (Figure 4.4c). For 2 days after cobalamin or 

glycerol addition the ratios of M. loti:metE7 diverge to almost 1000-fold, but following this they 

converge again to differing extents. In the batch culture the convergence is completed by a substantial 

decline in the M. loti:metE7 ratio two days after glycerol addition. In both batch and semi-continuous 

culture, glycerol addition eventually results in the ratio of M. loti:metE7 being no different or lower 

than the ratio in the control conditions, even though temporarily the ratio was considerably higher.  

In the semi-continuous cultures, which were performed after the batch experiment, B12 was 

also measured in the whole culture and the supernatant after centrifuging to pellet cells (Figure 4.5a-

b). Algal cells with diameters from 3-9 µm and those above 9 µm were also quantified, with the 
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seemingly arbitrary 3-9 µm range being relevant because almost 100% of C. reinhardtii cells are 

within this range when growing in nutrient replete conditions, while cell diameters increase 

significantly on B12 deprivation (Figure 3.4a-b). The total amount of B12 increased by a roughly 

similar amount 1 day after addition of B12 itself or glycerol, but after that the increase in B12 

concentration following glycerol addition was much more substantial (Figure 4.5a). Although on day 

1 the B12 concentration was lower in the control coculture than the one to which B12 was added, as 

was to be expected, this difference had disappeared by 5-6 days, presumably due to a higher level of 

B12 synthesis in the control coculture. B12 was added to cultures immediately after sampling them on 

day 0, and yet B12 measured in the media 24 hours later was not any higher than the control cultures, 

indicating that all the added B12 had been taken up (Figure 4.5b). The level in the cultures with 

glycerol addition was, however, higher from 2 days onward. Within the first day after B12 addition 

metE7 cell density increased, with a concomitant increase in the number of cells with diameters from 

3-9 µm and decrease in those >9 µm. In the glycerol-added cultures the proportion of cells with 

diameters from 3-9 µm increased only after a 2-day delay. As M. loti density was the first factor to 

respond to glycerol addition, followed by an increase in B12 concentration, and then metE7 cell 

density, it seems likely that B12 rather than organic carbon was limiting metE7 growth. Together the 

data suggests that both M. loti and metE7 are limited in coculture, for fixed carbon and B12 

respectively, and that although glycerol addition can indirectly benefit metE7, B12 addition does not 

indirectly lead to increased growth of M. loti. 
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xxii Figure 4.4 Growth of metE7 with M. loti and added nutrients 

Figure 4.4 Growth of metE7 in coculture with M. loti with added nutrients. Cultures were grown 

over a 6-day period in Tris minimal media with illumination in a 16:8 hour period at 100 µE·m
-2

·s
-1

 
at 25°C with circular shaking at 120 rpm. Glycerol or cobalamin were added to established 
cocultures on day 0. Semi-continuous cultures were diluted with a volumetric replacement of 10% 
per day. (a) Algal cell density measured by particle counter for particles > 3 µm in diameter. (b) M. 
loti cell density measured as colony forming units (CFU) when serial dilutions were plated on TY 
agar. (c) The calculated ratio of M. loti CFU to algal cells. Green =  control coculture with no 

nutrients added, yellow = glycerol added to 0.02% (v/v), blue = B
12

 added to 200 ng·l
-1

. Error 

bars=sd, n>=4. 
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xxiii Figure 4.5 Growth of metE7 with M. loti and added nutrients 2 

Figure 4.5 Growth of metE7 in coculture with M. loti with added nutrients. Cultures were grown 

over a 6-day period in Tris minimal media with illumination in a 16:8 hour period at 100 µE·m
-2

·s
-1

 
at 25°C with circular shaking at 120 rpm. Glycerol or cobalamin were added to established 
cocultures on day 0.  Semi-continuous cultures were diluted with a volumetric replacement of 10 
% per day. (a) B

12
 concentration in total culture measured by bioassay (b) B

12
 concentration in 

supernatant of centrifuged culture measured by bioassay. (c) Proportion of particles >3µm that 
were also <9µm, i.e. [3-9µm]/[>3µm]. When C. reinhardtii cells are in exponential phase in 
optimal growth conditions almost 100% are 3-9µm in diameter. Green =  control coculture with 

no nutrients added, yellow = glycerol added to 0.02% (v/v), blue = B
12

 added to 200 ng·l
-1

. Error 

bars=sd, n=4. 
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4.2.4 M. loti B12 production when grown axenically and in coculture with metE7 
 

Grant et al. (2014) observed that the amount of B12 normalised to M. loti cell density was 

higher when M. loti was grown in coculture with L. rostrata than when grown axenically (Grant et al., 

2014). Several experiments similar in form to those presented in Figures 3.1-3.3 were performed 

primarily to provide data to aid parameter estimation for a mathematical model describing the 

interaction between a B12-dependent alga and a B12-producing bacterium (Peaudecerf et al., 2018). 

Here, some of the data from those experiments is used to determine whether M. loti also produces 

more B12 in the presence of metE7. The requirements for inclusion in this analysis were: the cultures 

were either composed of M. loti alone or M. loti in coculture with metE7; The cultures were incubated 

in Tris minimal medium with no additional amendments on a shaking platform at 120 rpm, 25°C, 100 

µE·m-2·s-1, with a light:dark period of 16:8 hours; M. loti CFU·ml-1, and B12 concentration (ng·l-1) in 

the media and cell fraction were all quantified. To separate the cells and media, the culture was 

centrifuged at 16,000g for 2 minutes, and the supernatant removed as the media fraction, whilst the 

cell pellet was resuspended in the same volume of B12-free media. The total fraction was an 

uncentrifuged sample, or the sum of the cell and media fractions. The values in the different fractions 

are shown in Figure 4.6a-c. A strong (R2=0.78) and highly significant (p<2*10-16) correlation was 

found between log-transformed M. loti density and log-transformed total B12 concentration. In 

addition, a significant effect of culture type was found (p=2.3*10-11), where axenic cultures had an 

80% higher total B12 concentration for a given M. loti density than cocultures. The gradient of the 

relationship between log(M. loti density) and log([B12]) was substantially lower than 1, meaning that 

B12 per M. loti cell decreased as M. loti density increased. For B12 in the media fraction the interaction 

between M. loti density and culture type was highly significant (p=1.8*10-11), indicating that in 

cocultures B12 in the media increased at a slower rate as M. loti density increased than in axenic 

cultures (Figure 4.6b). This could be explained by the fact that B12 is taken up by metE7 in cocultures, 

but at low M. loti densities the concentration of B12 in the media may be at the limit of the affinity of 

the algal B12 uptake system. The strongest correlation was observed between B12 in the cell pellet and 

M. loti density, with an R2=0.85, and a small (30%) but significantly (p=0.00064) higher 

concentration of B12 per M. loti cell in cocultures (Figure 4.6c). This result is not particularly 

surprising given that B12 in the cells in coculture is from both metE7 and M. loti cells, however, it is in 

spite of a much higher total amount of B12 per M. loti cell in axenic cultures. Overall, it appears that 

metE7 cells can take up B12 produced by M. loti and hence move B12 from the media fraction to the 

cell fraction but cannot increase the total B12 production by M. loti.  
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xxiv Figure 4.6 Correlation between M. loti density and B12 concentration in various fractions 

(a) 

(b) 

(c) 

Figure 4.6 Correlation between B
12 

in various fractions of the culture and M. loti density. 

Combination of data from various experiments on axenic M. loti cultures, or cocultures of metE7 
and M. loti where both bacterial densities and B

12
 concentrations were measured. (a) Total B

12 
in 

the culture, (b) B
12

 in the supernatant after centrifuging an aliquot of the sample, (c) B
12

 in the 

pellet after centrifuging an aliquot of the sample. Points indicate individual measurements, lines 
indicate least squares best fit linear models, and shaded areas indicate 95% confidence intervals 
for those linear models. Pink = Axenic M. loti cultures, Blue = Cocultures of M. loti and metE7.  
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4.2.5 Does metE7 increase B12 synthesis in M. loti by acting as a sink for the vitamin?  
 

The correlations discussed above showed that B12 concentration per M. loti cell was higher in 

axenic culture than coculture, which is contrary to the findings by Grant et al. (2014) for M. loti 

coculture with L. rostrata (Grant et al., 2014). Nonetheless, the differences in the growth profile of M. 

loti varied substantially from batch axenic culture, where the carbon source is provided in its entirety 

at the beginning, to coculture where organic carbon production is continuous and dependent upon 

metE7 photosynthesis. A hypothetical mechanism by which metE7 might increase M. loti B12 

production could be by reducing the concentration of B12 in the media, which might reduce bacterial 

intracellular levels of B12 and hence relieve suppression on B12 riboswitch-controlled B12 biosynthesis 

operons (Nahvi et al., 2004). Therefore, I decided to test the effect of removing B12 from the media of 

M. loti cultures either by replacing the media entirely or using metE7 to take up dissolved B12.  

The setup of this experiment is illustrated in Figure 4.7a. Firstly, metE7 cells were cultured in 

Tris minimal medium as before with 100 ng·l-1 B12 and then washed and transferred to fresh media 

containing either no B12 or 10,000 ng·l-1 B12 for a 24-hour incubation. Both sets of metE7 cells were 

then washed and transferred at equal cell densities to axenic cultures of M. loti which had reached 

carrying capacity in Tris min with 0.01% glycerol. Two sets of axenic M. loti cultures and the two sets 

of cocultures with B12-saturated and B12-deprived metE7 cells were then incubated for 4 hours before 

each culture was passed through a 5 µm filter and collected. The 5 µm pore size had previously been 

shown to allow M. loti cells to pass through freely, while preventing the passage of any intact metE7 

cells. All the cultures therefore once again only contained M. loti. All four sets of cultures were 

centrifuged at 16,000g for 2 minutes, and in one set of cultures that had never been exposed to metE7 

cells, the supernatant was removed, and fresh Tris min added. All four sets of M. loti cultures 

(Control, exposed to B12-limited metE7, exposed to B12-saturated metE7, and fresh media 

replacement) were then incubated under the previously described conditions for 3 days with 

measurements of M. loti CFU·ml-1 and B12 concentration in the media and cell pellet made daily. The 

data are shown in Figure 4.7b-e. 
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xxv Figure 4.7 Effect of B12 removal on M. loti B12 production 

Figure 4.7 Testing whether M. loti alters its growth or B
12 

production if B
12 

is removed from the 

media. (a) Experimental setup: Two sets of axenic M. loti cultures (grey) were inoculated with 
metE7 cells that were either saturated with or starved of B

12
. All 4 cultures were then passed 

through a 5 µm filter, removing all metE7 cells but not M. loti. These M. loti cultures were 
centrifuged, and the supernatant replaced with fresh Tris-min media in treatment ‘Tris min’, or 
otherwise resuspended without replacing the supernatant. The resuspended, newly axenic M. loti 

cultures were grown for 3 days with illumination in a 16:8 hour period at 100 µE·m
-2

·s
-1

 and 25°C 
with rotational shaking at 120 rpm. (b) B

12
 in the supernatant after centrifuging an aliquot of the 

sample, (c) B
12

 in the cell pellet (d) Total B
12 

in the culture (e) Bacterial density measured as colony 

forming units (CFU) plated on TY agar. Grey solid = Control M. loti axenic culture, Green dashed = 
M. loti exposed to B

12
-starved metE7, Green solid = M. loti exposed to B

12
-saturated metE7, Grey 

dashed = M. loti culture from which the media was replaced with Tris min. Error bars = sd, n=4.  

(b) (c) 

(d) (e) 

(a) 
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The B12 concentration in the media of the M. loti culture that had been incubated with B12-

deplete metE7 cells was significantly reduced, suggesting adsorption or absorption by metE7 (Figure 

4.7b). This did not occur in the B12-replete metE7 cells, presumably because no further B12 uptake was 

possible. A slight increase in B12 concentration in the media from day 0 to day 3 for all lines might be 

accounted for by part of the decrease in cellular B12 (Figure 4.7c), perhaps due to cell lysis. The 

control axenic cultures and those where the media had been replaced by fresh Tris min showed a 

decrease in total B12 concentration and M. loti density (Figure 4.7c and 4.7d). On the other hand, both 

cultures which had metE7 added experienced a slight increase in M. loti density and a maintenance of 

total B12 concentration (Figure 4.7d and 4.7c). Concerning the original hypothesis, it appears that 

removing B12 from the media, whether by using metE7 as a sponge or replacing the media entirely, 

does not result in M. loti increasing B12 synthesis.  

4.2.6 Do bacterial mutants impaired in B12 uptake release a larger amount of B12? 
 

The total B12 production by a bacterium may be a relevant factor in the consideration of 

whether it could effectively support a B12-dependent alga, but the fraction of B12 that is released is 

equally as important. If B12 is released from cells, whether by cell lysis, passive loss from viable cells, 

or active secretion, and can be reabsorbed by bacteria, the proportion of B12 in the media is likely to 

be low. Therefore, the hypothesis was that in cultures of bacterial B12 uptake mutants the proportion 

of B12 in the media would be higher. BtuF is a periplasmic protein of Gram-negative bacteria thought 

to be involved in the transport of B12 across the double membrane and BluB is involved in B12 

biosynthesis (Cadieux et al., 2002; Campbell et al., 2006). Three strains of M. loti, the wild type 

sequenced strain MAFF303099 and two mutants, ΔbtuF and ΔbluB were used to investigate the effect 

of B12 uptake and production on the amount of B12 occurring in the cellular and media fractions of 

cultures. The cells were grown in Tris min media as before, but with various concentrations of 

glycerol ranging from 0.0002 % to 0.2 % and allowed to reach carrying capacity before measurements 

of optical density and B12 concentration in the media and cell fraction were made. The optical density 

of ΔbluB was lower than ΔbtuF and WT, which were very similar to one another (Figure 4.8a), 

indicating reduced growth. As expected, B12 concentration was lower in the culture of ΔbluB than 

either ΔbtuF or WT, even when adjusted for the lower optical density (Figure 4.8b). Both total B12 and 

the proportion of B12 that was in the media were very similar in ΔbtuF and WT (Figure 4.8b-c) 

suggesting that BtuF does not have a large effect on B12 release or uptake in M. loti.  

E. coli does not naturally synthesise B12, nor does it have an absolute requirement for it, but 

E. coli will take up and use B12 as a cofactor when it is available (Baker et al., 1960; Beck, 1982; 

Kisliuk & Woods, 1960). Deery et al., (2012) reconstituted the B12 biosynthesis pathway in E. coli by 

cloning in cob genes from various B12-producing bacteria (Deery et al., 2012). By knocking out btuF 
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they found that a larger proportion of the synthesised B12 ended up being released (personal 

communication). Here, the btuF::Kan strain (ED662) and its background strain (ED656) were 

cultured in M9 and Tris minimal medium to determine whether the observation of the difference in 

B12 release between strains could be replicated. ED656 and ED662 were inoculated at 107 cells·ml-1 

into M9 media with 0.1% glycerol and cultured for 12 hours at 37°C with rotational shaking at 120 

rpm. To test whether these E. coli strains would also grow and produce B12 in conditions in which C. 

reinhardtii could grow, they were also inoculated at 107 cells·ml-1 into Tris minimal medium with 

0.1% glycerol and cultured for 96 hours at 25°C with rotational shaking at 120 rpm. As the B12 

biosynthetic enzymes were arranged in an operon under the control of the lac promoter, IPTG was 

added to half of the samples in both conditions to a concentration of 400 µM. At the end of the growth 

period, E. coli density and B12 concentration in the cells and media fractions were determined (Figure 

4.9).  

Growth of ED656 and ED662 were not significantly different from one another in both 

growth conditions, whether in the presence or absence of IPTG (Figure 4.9a). Figure 4.9b show the 

amount of B12 measured in the cell pellet, which also was not significantly different between strains, 

except for in Tris min media + IPTG where ED662 cultures had a slightly higher value (15%, 

p<0.05). IPTG addition only caused a significant increase in B12 production in Tris minimal medium 

(90% increase in both strains, p<0.001). Figure 4.9c shows that the B12 measured in the media fraction 

of the culture was higher for ED662 than ED656 in all four conditions, but particularly in Tris 

minimal medium where B12 concentration was 2.9 and 2.5-fold higher with or without IPTG 

respectively (p<0.001). As with the cell fraction, IPTG only seemed to increase B12 in the media when 

added to Tris min (45-60% increase, p<0.001). 

To determine whether there was any difference in the growth rates of ED656 and ED662, a 

more robust and sensitive method was required. As ED662 contains a kanamycin resistance cassette, a 

mixed culture of ED662 and ED656 could be distinguished by the formation of colonies on LB agar 

(both strains) and LB agar + 50 µg·ml-1 kanamycin (ED662 only). The axenic cultures were mixed in 

five ratios: 24:1, 4:1, 1:1, 1:4 and 1:24, i.e. 4%, 20%, 50%, 80%, and 96%, and cultured in Tris min 

media with 0.1% glycerol, and were diluted 10,000-fold after 3, 6, and 9 days of growth. After 0, 3, 6, 

9, and 15 days the numbers of colonies were determined (Figure 4.10). It was clear that the proportion 

of ED662 declined substantially in all cultures, indicating that ED656 had a higher growth rate under 

these conditions.  Thus it can be concluded that ED662 (btuf::Kan) released more B12 into the media 

and grew more slowly than its parental strain (ED656) when cultured in Tris min media.   
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xxvi Figure 4.8 B12 production and release by M. loti mutants 

(a) 

(b) 

(c) 

Figure 4.8 Carrying capacity and B
12

 production of M. loti WT and 2 mutants with different 

concentrations of glycerol. BluB is involved in B
12

 biosynthesis, and BtuF is involved in B
12

 

transport across the plasma membranes.  (a) Optical density of cultures at carrying capacity 
measured by spectrophotometer at 600nm, (b) Total B

12 
in the cultures measured by bioassay, (c) 

Proportion of the B
12 

found in the media, calculated by dividing the amount in the media by the 

total amount. Yellow = M. loti ΔbluB mutant, Purple = M. loti ΔbtuF mutant, Brown = M. loti WT. 
error bars = sd, n=4. 
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xxvii Figure 4.9 Growth, B12 production and release by two engineered E. coli strains 

Figure 4.9 Cell density and B
12 

production of two E. coli strains engineered to synthesise vitamin 

B
12.

 ED656 expresses BtuF, a protein involved in B
12 

uptake, while ED662 is a BtuF knockout.  E. coli 

cells were inoculated at 10
7
 cells·ml

-1
 and grown in one of two conditions: 1) 12 hours in M9 

media with 0.1% glycerol (w/w), at 25°C, and no illumination; 2) 4 days in Tris min media with 

0.1% glycerol (w/w), at 25°C, and with illumination for a 16:8 hour light:dark period at 100 µE·m
-

2
·s

-1
. (a) E. coli cell density measured as colony forming units on LB agar. (b) B

12 
measured in the 

pelleted fraction of the culture after centrifugation. (c) B
12

 measured in the supernatant fraction 

of the culture after centrifugation. Blue = ED656, Red = ED662. Error bars = sd, n=5, asterisks 
denote differences between ED656 and ED662, *=p<0.05,**=p<0.01, ***=p<0.001 (Welch’s t 
test).  

(a) 

(b) 

(c) 
       **                     **                             ***                   ***     

                                                                                                * 
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xxviii Figure 4.10 Growth competition between E. coli strains ED656 and ED662 

Figure 4.10 Growth of cultures consisting of a mixture of ED656 and ED662 E. coli at different 
starting ratios from 24:1 to 1:24 i.e. 4% to 96% ED662.  Cultures were grown for 15 days in Tris 

min media at 25°C with constant illumination at 100 µE·m
-2

·s
-1

 
and were diluted 10,000 fold on 

day 3, 6, and 9 after measuring cell density. Colony forming units were measured by plating serial 

dilutions on LB and LB + kanamycin (50 µg·ml
-1

) plates. (a) ED656 density
 
calculated by subtracting 

CFU·ml
-1

 on LB + kanamycin plates from CFU·ml
-1 

on LB plates
 
(b) ED662 density measured by 

CFU·ml
-1

 on LB + kanamycin plates (ED662 is resistant to kanamycin). (c) Calculated percentage of 

ED662 CFU·ml
-1

 to total E. coli CFU·ml
-1

 (ED656 + ED662). Error bars = sd, n=2.  

(a) 

(c) 

(b) 
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4.2.7 Does increased release of B12 by producers lead to improved growth of metE7? 
 

Although ED662 had a slight reduction in fitness relative to ED656 it seemed likely that its 

higher release of B12 into the media would allow it to better support the growth of metE7. Firstly, a 

range of different mixtures of M9 and Tris min media were made to test the growth response of 

metE7, ED656, and ED662, axenically, and in coculture (metE7+ED656 and metE7+ED662). ED656 

and ED662 were inoculated at 106 cells·ml-1, and metE7 at 104 cells·ml-1. 1000 ng·l-1 B12 was added to 

axenic metE7 cultures, and 0.1% glycerol to axenic E. coli cultures, with no addition to cocultures. All 

cultures were then incubated at 25°C with continuous illumination at 100 µE·m-2·s-1 and rotational 

shaking at 120 rpm, and after 72 hours algal and bacterial density was quantified (Figure 4.11a-b). 

Figure 4.11a shows that ED656 and ED662, which both grew to a similar extent, displayed improved 

growth at higher percentages of M9 media when cultured axenically with glycerol as a carbon source. 

In coculture with metE7, both E. coli strains grew poorly in all media formulations, although ED662 

grew slightly better. Figure 4.11b illustrates that axenic cultures of metE7 grew considerably worse as 

the percentage of M9 media increased. metE7 grew poorly in coculture with ED656 in all media 

formulations, but its growth was substantially higher in cocultures with ED662 at the low M9 (high 

Tris min) percentages.  

To further test whether metE7 was better supported by ED662 than ED665, tricultures were 

made containing all three strains, but with different starting percentages of ED656 and ED662. Like 

the experiment displayed in Figure 4.10, ED656 and ED662 were mixed such that ED656 made up 4, 

20, 50, 80, or 96% of the bacteria, and so that the total bacterial density was 106 cells·ml-1. metE7 was 

then inoculated to 103 cells·ml-1 and the cultures were incubated as described above, with algal and 

bacterial densities measured after 72 hours. In Figure 4.11c the density of ED656 is negatively 

correlated with metE7 cell density, while in Figure 4.11d ED662 and metE7 cell density are positively 

correlated. These result in an even stronger correlation between metE7 density and the percentage of 

bacteria that are ED662 (Figure 4.11e). Note that the negative correlation between ED662 and metE7 

does not necessarily imply a negative physiological impact, because under these circumstances 

ED656 and ED662 cell densities were negatively correlated from the start, and so a high ED656 

density likely implies a low ED662 density. 
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xxix Figure 4.11 Growth of E. coli strains ED656 and ED662 and metE7 in coculture 

(a) 

(b) 

(c) (d) (e) 

Figure 4.11 Growth of cocultures composed of metE7 and either ED656 or ED662, or tricultures of 
all three.  All cultures were grown for 3 days at 25°C with shaking at 120 rpm and constant 

illumination at 100 µE·m
-2

·s
-1

. Experiments in panel (a) and (b) tested the effect of media 
composition on the growth of axenic cultures and cocultures of metE7 and either ED656 or ED662. 
M9 media and Tris minimal media were mixed at 0, 10, 30, 70, 90, and 100% M9, and therefore 

vice versa for Tris min. Axenic metE7 was provided with 1000 ng·l
-1

 B
12

, and axenic E. coli cultures 

with 0.1% glycerol (w/w). (a) E. coli density in CFU·ml
-1 

measured by plating on LB agar. (b) metE7 

CFU·ml
-1 

measured by plating on TAP agar with ampicillin (50 µg·ml
-1

) and kasugamycin (75µg·ml
-1

). 
In panels (c),(d),(e) E. coli ED656 and ED662 were inoculated at various starting percentages from 

4% to 96%, similar to Figure 4.10. metE7 was inoculated at 10
4
 cells·ml

-1
, and after 3 days of growth 

metE7, ED656, and ED662 densities were measured. Correlations are displayed between (c) metE7 
and ED656, (d) metE7 and ED662, (e) metE7 and % of bacteria that are ED662.  
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4.2.8 Could bacteria provide sufficient B12 to cause the evolution and dominance of 

an algal B12 auxotroph?  
 

ED662 could successfully support metE7, but preliminary data suggested that this did not 

persist for long after initiating cocultures, perhaps because the organic compounds produced by metE7 

were not easily metabolised by E. coli. Helliwell et al. (2015), showed that high levels of B12, when 

supplied artificially, led to the evolution and dominance of the B12-dependent strain S-type from a 

culture of the B12-independent wild type C. reinhardtii (Helliwell et al., 2015). With the ultimate 

source of B12 being prokaryotes, I decided to investigate what the relative fitness of a B12-dependent 

and B12 independent (revertant) C. reinhardtii would be in various conditions, including coculture 

with M. loti. S-type was used instead of metE7 because the presence of the 246 nucleotide Gulliver-

related transposable element (GRTE) allowed it to be distinguished from the revertant strain using 

PCR with one primer pair and gel electrophoresis. Some of the results discussed above suggested that 

metE7 is limited considerably in its growth by the low supply of B12 released by M. loti. However, 

addition of glycerol to cocultures caused a large increase in B12 concentration, an increase in growth 

of metE7, and from Kazamia et al. (2012), a reduction in the expression of METE (performed on wild 

type C. reinhardtii) (Kazamia et al., 2012). Although glycerol addition itself is not reflective of 

environmental conditions, it might be considered a substitute for the fixed carbon production by other, 

and perhaps B12-independent, phototrophs.  

Mixed cultures of S-type and the revertant strain were grown for 4 days in Tris min media at 

25°C under constant illumination at 100 µE·m-2·s-1 and were diluted 10-fold daily. Samples were 

taken each day and serial dilutions made before plating on B12-free TAP agar + Ampicillin (50 µg·ml-

1) and Kasugamycin (75 µg·ml-1). After 8 days of growth on the agar the colonies of S-type and 

revertant were clearly distinguishable as S-type colonies were both smaller and lighter in colour. On 

day 4 PCR was performed on an aliquot of the cultures and PCR products were separated by gel 

electrophoresis before quantification of the two bands (larger band for S-type) using ImageJ. As 

shown in Figure 4.12a, in all conditions except for with added B12 there was a marked decrease in the 

proportion of S-type over time (measured by CFU). Nonetheless, the addition of M. loti, particularly 

in the presence of glycerol, did slightly slow the decline of S-type. PCR analysis over the region of 

transposon insertion (which disrupted METE in S-type), was generally in agreement with the 

phenotypic screen, and also indicated that glycerol addition slowed the dominance of the revertant 

strain further than M. loti addition alone (Figure 4.12b). The measurements of S-type and revertant 

cell density by phenotypic and genotypic screening were generally in agreement, even though there 

are several reasons why they might not be. Firstly, the phenotypic screen will only detect viable cells, 

while PCR would likely detect cells that had recently died, but before DNA was degraded. The PCR 

results were also reported simply as band intensity, which would be affected by DNA size, and PCR 
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amplification efficiency. Thirdly, it is possible that imprecise excision of the GRTE would leave 

behind a short nucleotide sequence (as in the case of metE7) that could not be distinguished from a 

‘true’ revertant even though the METE gene might still be disrupted, resulting in a B12-dependent 

phenotype. This limited data therefore does not provide an example of bacteria favouring the 

evolution of B12 auxotrophy in algae, nevertheless it does not preclude it, and several modifications 

could be made to the set up to improve B12 production, and hence the relative fitness of this B12-

dependent alga.  
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Figure 4.12 Growth of cultures consisting of a mixture of the unstable, B
12

-dependent line of C. 

reinhardtii, and a B
12

-independent revertant line.  Cultures were grown for 4 days in Tris min 

media at 30°C with constant illumination at 100
 
µE·m

2
·s

-1

 
and were diluted 10-fold on day 1, 2, 

and 3. (a) Proportion of the algae that belong to the unstable (S-type) line. This was measured by 

serial dilution of the culture and plating on TAP agar + Ampicillin (50 µg·ml
-1

) and Kasugamycin (75 

µg·ml
-1

) and differentiating between stunted B
12

-dependent and healthy or B
12

 independent 

colonies. (b) Proportion of the algae that belong to the unstable (S-type) line quantified on day 4 
by PCR over the GRTE insert region and comparing fluorescence intensity of the two PCR product 
bands (larger band=S-type, smaller band = revertant). Red = algae cultured in Tris min, Blue = Tris 

min + 1000ngl
-1

 B
12

, Green = Tris min + M. loti, Yellow = Tris min + M. loti + 0.1% glycerol. Error 

bars = sd, n=4.  

(a) 

(b) 

xxx Figure 4.12 Competition between B12-dependent and independent lines of C. reinhardtii 
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4.3 Discussion 
 

4.3.1 The interaction between wild type C. reinhardtii and M. loti is commensal 
 

 Helliwell et al. (2015) showed that the B12-dependent C. reinhardtii strain metE7 could be 

supported in coculture with three different B12-producing rhizobia (Helliwell et al., 2015). Coculturing 

one of those bacteria, M. loti, with the ancestral C. reinhardtii strain was carried out to determine if 

M. loti had any growth-promoting effects in addition to B12 provision, or conversely, whether it had 

any inhibitory effects. The non-significant difference in ancestral line growth rates suggested that B12 

production is the only benefit provided by M. loti to metE7. Previous studies have shown a growth 

promoting effect of rhizobia on C. reinhardtii. Xie et al. (2013) found that S. meliloti, which can also 

produce B12, promoted the growth of C. reinhardtii, but only at temperatures well above the optimum 

for growth. They concluded that this was essentially due to the reduced thermal tolerance of METE 

relative to the B12-dependent METH, hence causing C. reinhardtii to become increasingly reliant on 

B12 at high temperatures (Xie et al., 2013). However, Kim et al. (2014) found a growth promoting 

effect of various rhizobia on C. reinhardtii cultured at 30°C (Kim et al., 2014), which is only slightly 

above the optimal temperature and hence unlikely to significantly increase the reliance of C. 

reinhardtii on B12 (Vítová et al., 2011). Under less optimal growth conditions, such as in municipal or 

agricultural wastewater, it is also clear that bacteria, including rhizobia, can improve the growth of C. 

reinhardtii, and vice versa (Toyama et al., 2018). The best-known growth-promoting effect of 

rhizobia is on plants via supplying fixed nitrogen in root nodules (Long, 1989). Nitrogen fixation 

genes are only induced in M. loti under microaerobic conditions (Uchiumi et al., 2004), which are 

unlikely to occur in a photosynthesising culture of C. reinhardtii, but if they did, nitrogen fixation 

would have little effect on a nitrogen replete culture. The fact that no growth promotion of C. 

reinhardtii was observed in this work, might suggest that B12 production, or other services provided 

by rhizobia, only have an impact when conditions are suboptimal.  

M. loti was shown here to derive benefit from the presence of C. reinhardtii, without 

impacting the growth of the alga, therefore the relationship might be considered commensal (Newton 

et al., 2010). These results disagree with those previously reported by Kazamia et al. (2012) which 

showed that C. reinhardtii was unable to support M. loti (Kazamia et al., 2012). The organic carbon 

compounds that M. loti utilises are not known, but research in this area could help to determine 

whether the relationship is commensal in the stricter sense, or saprophytic. Commensal relationships 

have traditionally been thought of as more stable than parasitic ones, and also provide a platform for 

the development of mutualisms (Ewald, 1987). Nonetheless, the positive feedback loop intrinsic to 

mutualisms could make them less robust to environmental shocks than commensalisms, and artificial 
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mutualisms have been found to evolve higher productivity and stability in parallel with reduced 

cooperation (Hansen et al., 2007; Hillesland & Stahl, 2010; Rozen et al., 2009). If M. loti were able to 

provide sufficient B12 for complete suppression of METE in C. reinhardtii, it seems reasonable that 

both species could coexist for long enough to allow the evolution of B12 dependence and hence the 

transition from commensalism to mutualism.  

4.3.2 A mutualistic interaction has lower fecundity than a commensal one 
 

 metE7 grew less well in coculture with M. loti than the revertant and ancestral lines, 

indicating that B12 availability was the limiting factor (Figure 4.2a). In comparison, the growth of M. 

loti was much more similar in coculture with the three C. reinhardtii strains (Figure 4.2b). The ratio 

of M. loti to C. reinhardtii cells was therefore significantly higher for metE7 (Figure 4.2c). This could 

be because metE7 cells were able to support a greater number of M. loti cells. On the other hand, 

while metE7 was dependent on and so limited by M. loti, the revertant and ancestral strains were not, 

and so M. loti growth would lag behind algal growth in the B12-independent lines. As B12 deprivation 

causes an increase in cell size (Figure 3.4a-b), it might be that the biomass of metE7 was more similar 

to the other strains than the cell density would suggest. Alternatively, a larger proportion of the 

photosynthate produced by metE7 might be available to M. loti. It could be that due to B12 deprivation 

there is a metabolic shift towards more triacylglycerol and starch production (Figure 3.4c), which 

when released, is more readily metabolised by M. loti. Cell death is also increased by B12 deprivation 

(Figure 3.10a), and dead cells could provide a better nutrient source to M. loti. Seyedsayamdost et al. 

(2011) showed that Phaeobacter gallaeciencis interacts with Emiliania huxleyi in a growth-phase-

dependent manner by initially secreting the growth-stimulant auxin before switching to algaecides on 

detecting compounds associated with algal senescence (Seyedsayamdost et al., 2011). Cocultures of 

C. reinhardtii and M. loti were not maintained for long periods, so it is unclear how M. loti would 

respond to algal senescence. However, if M. loti does not specifically reduce B12 production and 

release during metE7 cell death, then the increase in B12 concentration resulting from increased 

bacterial growth, would only serve to rescue metE7. Oscillations in the cell densities of T. pseudonana 

and a B12 producing bacterium, when grown in coculture, were hypothesised to be the result of this 

process (Haines & Guillard, 1974). So, these negative feedback loops may be widespread and add a 

degree of stability to an interaction that is otherwise dominated by a mutualistic positive feedback 

loop. However, if the only way that M. loti can acquire carbon in these cocultures is from dead metE7 

cells then this interaction could not strictly be considered a symbiosis.  
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4.3.3  L. rostrata grows better than metE7 when cocultured with M. loti 
 

 In axenic culture L. rostrata was found to have a slower growth rate than metE7 at almost all 

B12 concentrations (Figure 3.12a), yet in coculture L. rostrata has the faster growth rate (Figure 4.3a). 

The dynamics of algal growth in axenic culture and in coculture are quite different because of the 

differences in B12 supply. In batch axenic culture the total B12 is present at the beginning of the growth 

period and is depleted from the media as it is taken up. In coculture the uptake of B12 is limited, at 

least initially, by B12 synthesis, which ensures that B12 levels in the media are kept low. At these low 

levels of B12 L. rostrata may be able to absorb a greater proportion from the media than metE7 

(Figure 3.3c-d), and due to its lower EC50 use the B12 to facilitate a higher growth rate. Towards the 

latter stages of the growth period, the concentration of B12 in the media increased in the L. rostrata 

and, to a lesser extent, metE7 coculture. This could suggest that algal growth is starting to be limited 

by factors other than B12, and that B12 is therefore able to accumulate in the media. In support of this, 

the ratio of bacteria to algae increases, particularly for the L. rostrata coculture from day 8, which is 

when B12 accumulates more rapidly in the media. That the ratio of bacteria to algae in the L. rostrata 

coculture is lower, yet the B12 in the media higher seems to agree with the finding that L. rostrata has 

a lower requirement for, and saturable uptake of B12. Grant et al. (2014) showed that the B12 

concentration per M. loti cell was higher in coculture with L. rostrata than when M. loti was cultured 

axenically (Grant et al., 2014), and here (Figure 4.3e) it was found that B12 per M. loti cell was higher 

in coculture with L. rostrata than with metE7. Therefore, L. rostrata may be able to induce higher B12 

production from M. loti, perhaps by the type or proportion of photosynthate that it releases.   

4.3.4  metE7 growth in coculture is improved by increasing B12 addition or synthesis  
 

 Addition of nutrients to cocultures of metE7 and M. loti revealed that both species were 

clearly limited by their partner’s ability to supply the nutrients for which they are auxotrophic. This is 

not at all surprising considering the energetic requirements of photosynthesis and B12 biosynthesis, 

and hence the fitness costs that would be incurred by producing these compounds in excess of the 

cell’s own needs and releasing them into the media. Plants, for comparison, are thought to release 

around 5-20% of their photosynthate into the rhizosphere to support mutualists (Turner et al., 2013). 

The proportion of metE7 photosynthate that is available to M. loti is not known, but the only carbon 

source available to M. loti in this setup is derived from metE7 photosynthesis. With an average 

volume around 100 µm3 (calculated from cell diameter measurements), a C. reinhardtii cell has 

roughly 150 times the volume of an M. loti cell, but a ratio anywhere from around 20 to 1000 M. loti 

to metE7 cells would mean that a large proportion of the organic carbon in coculture is in the bacterial 

fraction.  
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 A major difference between the addition of glycerol and cobalamin to the coculture was the 

effect on the non-requirer. After a delay, glycerol addition caused an increase in the density of metE7 

cells, but cobalamin addition did not significantly improve M. loti growth. This could suggest that 

when metE7 cells are B12-replete a smaller proportion of photosynthate becomes available to M. loti. 

Indeed, it was suggested by Kazamia et al. (2012) that a facultative and regulated interaction between 

L. rostrata and M. loti was likely to exist where L. rostrata releases less fixed carbon when it is B12-

replete (Kazamia et al., 2012). As for the increase in metE7 cell density on glycerol addition, it would 

seem that M. loti does not substantially reduce its B12 production and release when supplied with 

glycerol in the presence of C. reinhardtii, a result that differs from those found by Kazamia et al. 

(2012) in the presence of L. rostrata.  

In semi-continuous culture the first change to occur after glycerol addition was the increase in 

M. loti cell density, then B12 concentration, and finally metE7 cell density, which forms a highly 

probable causal chain of events. The increase in B12 concentration after glycerol addition was much 

greater than on addition of 200 ng·l-1 of B12 itself, but the growth of metE7 was similar in both 

instances. As the B12 in the media was no higher 24 hours after B12 addition than in the control culture, 

metE7 cells had probably taken up all the added B12. The concentration of B12 in the media of the 

glycerol-added culture did increase however, which as was mentioned before, might indicate that the 

metE7 cells were B12 replete and could not take up any more B12. On the other hand, the size range of 

metE7 cells, which under these conditions is a reasonable indicator of B12 status (Figure 3.4a), did not 

suggest that B12-added cultures were more B12-limited than the glycerol-added cultures. Within 2 days 

of B12 addition, over 95% of cells were between 3 and 9 µm in diameter, a size range that >98% of C. 

reinhardtii cells are within when grown continuously in nutrient replete conditions. The proportion of 

metE7 cells in that same size range after glycerol addition was always slightly lower, at roughly 80-

90%. To reconcile these observations, it could be that not all the B12 in the media (or supernatant) 

fraction is available to metE7. Perhaps a large proportion of B12 measured in the media, particularly in 

the glycerol-added cocultures, remains bound by proteins released into suspension on lysis of 

bacterial or algal cells. Only after boiling the samples prior to use in the B12 bioassay might the B12 be 

released into solution by protein denaturation and hence be available for uptake (Schjonsby, 1989).  

4.3.5  metE7 does not increase M. loti B12 biosynthesis 
 

 B12 concentration per M. loti cell was higher in axenic culture than coculture with metE7 at all 

M. loti densities (Figure 4.6a). This incongruity with the results described by Grant et al. (2014) for 

M. loti and L. rostrata, where B12 per bacterial cell was higher in coculture, might simply be due to 

the difference in the species of algae. In this work, M. loti cocultures with L. rostrata had higher B12 

contents per bacteria than those with metE7, and so it seems plausible that L. rostrata, but not metE7 
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can increase B12 production by M. loti. On the other hand, this work also showed that B12 

concentration per M. loti cell decreases with increasing cell density, as had been previously shown for 

R. leguminosarum (Kazamia 2012). Axenic M. loti provided with 0.1% glycerol grows to a higher 

density than in coculture with L. rostrata, and so the lower B12 per M. loti cell in axenic culture 

reported by Grant et al. (2014) may simply be a result of its higher cell density.  

It is important to note that the gradient of a linear model connecting the natural logarithms of 

two variables which theoretically show direct proportionality is often less than one. This is due to a 

statistical phenomenon known as ‘regression to the mean’. Regression to the mean however, would 

also make it likely that the gradient of the linear model of the inverse relationship was also less than 

one. As this is not the case here it seems that B12 concentration per M. loti cell really does decrease 

with cell density. Feedback inhibition of B12 biosynthesis via B12 binding to riboswitches upstream of 

biosynthetic gene operons has long been known in bacteria, and overcoming this has led to higher 

yields of B12  in industrial settings (Fang et al., 2017; Moore et al., 2014). In M. loti the two larger 

cobalamin biosynthesis operons, for which the proximal genes are cobW and cobL, have a vitamin 

B12 riboswitch upstream of the start codon, and B12 addition suppresses the expression of some of 

these genes (Bhardwaj 2016). It is possible therefore that an accumulation of B12 in the media as cell 

density increases would cause a decrease in B12 biosynthesis.  

 The correlation coefficient between M. loti density and B12 content of the cellular fraction was 

greater than for total B12. This might be explained by the fact that M. loti density was measured as 

CFU·ml-1 of culture. When cell lysis occurs, the number of CFU·ml-1 would decline, while B12, 

because of its stability, would persist and be measured in the media fraction, causing the total B12 per 

bacterial cell to increase. The per cell B12 concentration in the cellular fraction on the other hand, 

would be unaltered. As for the B12 in the media, it is clear that metE7 can take up B12 (Figure 3.3c-d), 

and so should decrease the amount remaining in the media of cocultures. At lower M. loti densities 

though, the amount of B12 in the media is similar for axenic and cocultures. Perhaps the affinity of C. 

reinhardtii B12 uptake is sufficiently low so that only at higher B12 concentrations can it have a 

significant impact. Alternatively, the higher M. loti densities are also likely to be correlated with later 

time points when a greater proportion of the B12 measured in the media fraction might be free in 

solution and so available for uptake.  

  Results regarding B12 concentration and M. loti density did not lend themselves well to 

making clear and meaningful conclusions, but the idea that algae might be able to induce greater B12 

production from bacteria, suggested by Grant et al. (2014), was intriguing enough for me to embark 

upon another, methodologically more convoluted experiment. Another PhD student in the laboratory 

obtained results that suggested B12 biosynthesis genes in M. loti were suppressed by B12 addition 

(Bhardwaj 2016). It seemed plausible therefore that removal of B12 from the media could induce B12 
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synthesis, and hence by extension B12 uptake by metE7 could do the same. Addition of B12-deprived 

metE7 cells to an M. loti culture did remove roughly 80% of the B12 from the media (Figure 4.7b). 

Following this though, the increase in media B12 was reflected by a reduction in the cellular fraction, 

so that total B12 did not change (Figure 4.7d). In many ways the responses of the four samples 

illustrated in Figure 4.7 could more easily be summarised by grouping them according whether metE7 

cells were added or not, rather than whether B12 had been removed from the media. By the final 

timepoint, the cultures to which metE7 had been temporarily added saw an increase in M. loti density 

relative to the other two cultures, suggesting that algal photosynthate had prevented bacterial 

starvation and cell death. However, metE7 addition did not increase total B12, and so in the culture to 

which B12-saturated metE7 cells had been added the B12 per M. loti cell actually decreased. Overall 

therefore, these results agree with those previously discussed: although metE7 can absorb B12 

produced by M. loti, it is not capable of inducing M. loti to synthesise more B12.  

 Considering the results discussed so far in this chapter, there is no good reason to believe that 

the interaction between metE7 and M. loti is any more than syntrophy, where one species utilises 

compounds that are released passively by the other.  

4.3.6 A btuF mutant of E. coli, but not M. loti, releases more B12 and better supports 

metE7 
 

 B12 production alone is insufficient for supporting a B12 auxotroph: the B12 must also be 

released from the producer so that it is available to the auxotroph. The mechanism by which B12 is 

released from M. loti is not known, and it may well be as simple as cell lysis. However, if M. loti 

could take up B12 from the media it would compete with metE7. BtuF is a periplasmic B12-binding 

protein found in Gram-negative bacteria which acts concertedly with outer and inner membrane B12 

binding proteins to transport B12 from the environment into the cell (Cadieux et al., 2002; Schauer et 

al., 2008). btuF mutants show reduced B12 uptake relative to the wild type but greater uptake than 

btuB mutants in both E. coli and S. typhimurium (Cadieux et al., 2002; Van Bibber et al., 1999). M. 

loti btuF mutants on the other hand, produced the same amount of B12 and released the same 

proportion of it into the media as the wild type strain (Figure 4.8b-c). An M. loti bluB mutant, which 

should be unable to produce B12 (Campbell et al., 2006), was also tested, and found to grow less well 

than the other two strains and produced significantly less B12. The fact that some B12 was measured by 

the bioassay could be the result of the bacteria used in the bioassay (S. typhimurium) being able to 

take up the corrinoids produced by M. loti and complete the synthesis of B12 by providing the lower 

ligand, dimethylbenzimidazole (Raux et al., 1996). Although the amount of B12 or B12 precursors 

released into the media by M. loti bluB was lower than the other two strains, as a proportion of the 

total B12 it was greater. It is possible that intermediates of B12 biosynthesis would be more easily 

released or less easily reabsorbed than B12 itself, particularly if they accumulated as a consequence of 
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a lack of feedback inhibition by B12. Alternatively, decreased fitness due to the reliance on B12-

independent isoforms such as metE may have increased cell death, lysis, and hence release of 

corrinoids.  

 As the M. loti btuF mutant released an equal amount of B12 as the wild type, a btuF mutant of 

E. coli was investigated instead. This btuF knockout strain (ED662) did release more B12 into the 

media than its parental strain (ED656), particularly when cultured in Tris min media (Figure 4.9c). 

The amount of B12 in the cell fraction was very similar for both strains, and so the total amount of B12 

per E. coli cell was higher for ED662. It is possible that this is because only the B12 within the cell can 

cause repression of B12 biosynthesis, and so release of B12 into the media could reduce this repression. 

The proportion of B12 released into the media by both strains was significantly higher when they were 

cultured in Tris min media at 25°C for 96 hours than in M9 at 37°C for 12 hours. Because so many 

variables were changed between these two treatments it is difficult to determine which might have 

caused or contributed most significantly to this. Nevertheless, the higher release of B12 in conditions 

favourable to C. reinhardtii growth suggested that these strains might support metE7.  

The growth rate of both E. coli strains was very similar, and so to more accurately distinguish 

any small difference they were competed against one another in mixed cultures. The decline of the 

btuF mutant showed that it had the lower fitness, but whether this was caused by disruption to BtuF or 

the cost associated with expressing the kanamycin resistance gene is unclear. Furthermore, it is 

possible that ED662 might have lost kanamycin resistance and so been counted as ED656 cells 

instead, however, axenic cultures of ED662 were never found to have lost kanamycin resistance.  

 Although much work has been done to optimise the composition of growth media for 

individual species such as C. reinhardtii and E. coli, there has understandably been only limited 

interest in optimising growth media for cocultures (Hom & Murray, 2014; Kropat et al., 2011; Lee, 

1996; Yee & Blanch, 1993). Here, a range of mixtures of M9 and Tris min media were tested for their 

ability to support the growth of E. coli and metE7 axenically and in coculture (Figure 4.11a-b). Both 

E. coli strains grew less well in coculture with metE7 in all media mixtures than they did in every 

axenic condition. This suggested that E. coli was either not able to easily metabolise the carbon 

sources provided by metE7 or was negatively impacted by the alga. On the other hand, metE7 was 

supported in coculture at high Tris min percentages by ED662, but not by ED656. ED662 presumably 

still produced B12 at the higher M9 percentages but judging by the axenic cultures of metE7 it would 

seem that the factor limiting metE7 growth in coculture with ED662 switched from B12 at high Tris 

min percentages, to other components of the media as the percentage of M9 was increased.   

Mixed cultures containing different ratios of ED656 and ED662 had substantially different 

effects on the growth of metE7: the higher the proportion of ED662 cells the better the growth of the 

alga. The most likely explanation for this result follows on from the finding that ED662 cells release 
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more B12. Although ED656 cells also release B12, the amount seemed to be insufficient to fully 

support metE7 growth, and instead cell death due to B12 deprivation is likely to have dominated 

leading to a decline in viable cells. That a relatively small change in the amount of B12 released to the 

media can have such a significant change in the viability of a B12 auxotroph has interesting 

implications for microbial syntrophy and the evolution of auxotrophy. Bacteria that release more B12 

would presumably incur some fitness cost relative to those that do not because of the metabolic costs 

of B12 synthesis. However, in an environment containing photosynthetic B12 auxotrophs, B12 release 

could ensure greater provision of photosynthate. In this example E. coli strains were not cultured with 

metE7 for a long enough period to determine whether they were able to metabolise the photosynthate, 

but if they had been then a coculture of ED662 and metE7 would likely be much more productive than 

one with ED656.   

4.3.7  M. loti does not provide sufficient B12 to favour the evolution of B12 

dependence in C. reinhardtii 
 

The precise nature of the competitive advantage that C. reinhardtii metE mutants have over 

the wild type strain when B12 replete is unclear. It is unlikely that the metE7 strain expresses a 

functional METE protein under any circumstances (Helliwell et al., 2015), and in replete B12 

conditions the transcript abundance of METE is so low anyway that the fitness cost of METE protein 

synthesis would be minimal. The competitive advantage was confirmed nonetheless in this work, and 

under phototrophic conditions, as opposed to the mixotrophic conditions used previously (Helliwell et 

al., 2015). In the axenic treatments, within 4 days the culture was dominated by the S-type in the B12-

replete conditions, and revertant in the B12-free cultures, albeit from a culture starting with a higher 

proportion of S-type cells (Figure 4.12a). The decline of S-type cells in the coculture with M. loti was 

expected as the coculture perturbation by nutrient addition experiments had shown that metE7 was 

B12-limited in coculture (Figure 4.4a).  Even the addition of glycerol did not prevent the revertant 

strain from starting to outcompete S-type. Glycerol addition to cocultures increased the B12 content of 

the media to roughly 200 ng·l-1 (Figure 4.5a), which should be high enough to impose no growth 

limitation on metE7 (Figure 3.1 and 3.3a), and which was shown to be sufficient to favour S-type over 

a B12-independent line grown in TAP media (Helliwell et al., 2015). However, B12 was not measured 

in this experiment (Figure 4.11) and may have been considerably lower than in the coculture 

perturbation by nutrient addition experiment (Figure 4.4), as the culture dilution rate was substantially 

higher: 10-fold per day rather than 10% (1.11 fold). To improve the likelihood of providing an 

example where bacteria could support the evolution of B12 auxotrophy in C. reinhardtii, bacteria with 

higher B12 production rates than M. loti could be selected and cultivated continuously in turbidostats 

to maintain a higher density of bacteria and hence B12 concentration. 
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4.4  Concluding remarks 
 

 M. loti, a B12-producing rhizobium, forms a commensal relationship with wild type C. 

reinhardtii and a mutualistic one with the B12-dependent strain metE7. Addition of B12 or a carbon 

source to the M. loti-metE7 coculture results in increased growth of the alga and bacterium 

respectively, indicating that both are limited by the cross-fed nutrient(s). B12-limited metE7 cells 

support a greater number of M. loti than wild type C. reinhardtii or L. rostrata, and addition of B12 

decreases this number suggesting that B12 limitation of metE7 improves the quality or quantity of 

organic compounds available to M. loti. There is no evidence that M. loti increases B12 production in 

the presence of metE7, but it does decrease production as its own cell density increases. An E. coli 

btuF mutant releases more B12 into the media and better supports metE7, despite a growth 

disadvantage relative to its parental strain. Even in the presence of an artificial carbon source, M. loti 

cannot provide enough B12 to favour the growth of metE7 over a B12-independent C. reinhardtii strain. 

Other bacterial species that produce higher levels of B12 could be tested for their ability to be 

cocultured with metE7 and by extension provide an environment with a stable and high level of B12 

which could favour the evolution of B12 auxotrophy.  
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Chapter 5: Discussion and Future work 

 

Throughout this thesis the potential value of studying the metE7 mutant of C. reinhardtii was 

considered from two main angles. Firstly, METE has a crucial role in connecting the folate and 

methionine cycles, and secondly, B12 auxotrophy among algae – a trait found in over 50% of all 

microalgal species surveyed, and without phylogenetic relationships - is highly correlated with the 

lack of METE. I shall discuss how my findings relate to these two viewpoints and suggest what 

further work would most effectively build upon what has already been achieved.  

   

5.1 A model for studying One-carbon metabolism 

 

From one perspective, this work has essentially been a study into the function of the METE 

gene through the physiology of the metE7 mutant under B12 deprivation. The upregulation of C1-cycle 

enzyme transcripts was considerably greater under B12 deprivation in metE7 than in the ancestral line 

(Figure 3.3), suggesting that perhaps the concentrations of both B12 and the C1-cycle metabolites 

regulated gene expression. In many bacteria the expression of several C1-cycle enzymes is regulated 

by riboswitches responsive to SAM and SAH, and in humans allosteric regulation and 

posttranslational modifications mediated by SAM play a significant role in regulating the flux through 

the C1-cycle (Banerjee et al., 2003; Wang et al., 2008; Yamada et al., 2005). Therefore, as in all 

systems, and especially eukaryotes, transcript abundances alone do not paint a full picture, and hence 

it was important to measure metabolites to determine what happened to SAH/SAM levels when the 

C1-cycle was limited by B12 deprivation.  

Whilst SAM levels were essentially unaltered, SAH levels were 10-fold higher in B12 deprived 

relative to B12 replete conditions (Figure 3.3). Furthermore, the metabolite data suggests that the 

upregulation of enzyme expression under B12 deprivation did not increase flux, but rather was a 

response to decreased flux. Homocysteine was not quantified in this study, however, Croft et al. 

(2005) found that it increased 3-fold in L. rostrata under B12 deprivation, and studies of A. thaliana 

mutants of the C1-cycle found that levels were elevated in line with but to a greater extent than SAH 

(Croft et al., 2005; Groth et al., 2016). In humans there is also a high correlation between SAH and 

Hcy levels measured in the blood due to the reversibility of the conversion of SAH to Hcy by S-

adenosylhomocysteine hydrolase (SAHH) (Yi et al., 2000). These results from other organisms might 

imply that Hcy levels would also be raised under B12 deprivation of metE7, but because of significant 

differences in the C1-cycle enzymes of different organisms it would be prudent to measure 
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homocysteine.  

As methionine synthase links the methionine and folate cycles, B12 deprivation of metE7 is 

likely to impact the concentration of folates. More countries have mandatory fortification of cereals, 

such as wheat, rice and maize, with folate than any other vitamin, yet there is still a high prevalence of 

diseases caused by folate deficiency (Arth et al., 2016). In parallel with fortification at the point of 

food processing, there is also considerable interest in biofortification of food crops with folate 

(Bekaert et al., 2008; Strobbe & Van Der Straeten, 2017). Exposure of C. reinhardtii metE7 mutants 

to different concentrations of B12, and determination of levels of folates would improve our 

understanding of the role that methionine synthase plays in algal and perhaps plant folate metabolism.  

Folates are also essential for the production of nucleotides: thymidylate from 5,10-CH2-THF 

and purines from 10-formyl-THF (Hanson & Roje, 2001). One of the symptoms of folate and vitamin 

B12 deficiency in humans is macrocytic anaemia, which is characterised by an enlargement of red 

blood cells caused by a defect in DNA synthesis (Aslinia et al., 2006). B12 deprivation of E. gracilis 

also causes an increase in mean cell size, which is paralleled by an almost complete disappearance of 

deoxynucleotide triphosphates (dNTPs) (Carell & Goetz, 1976). Application of the antifolate drug 

methotrexate to A. thaliana caused changes in gene expression suggestive of perturbed nucleotide 

homeostasis, but which also indicated a prioritisation of purine and thymidylate synthesis at the 

expense of SAM synthesis (Loizeau et al., 2008). Therefore, DNA synthesis in B12-deprived metE7 

cells should be investigated as it will provide information on how the C1 cycle responds to reduced 

methionine synthase activity, and also the stage in the cell cycle at which growth is arrested.    

B12 deprivation of metE7 resulted in a 30-fold decrease in the methylation index (SAM:SAH 

ratio) within 24 hours (Figure 3.6a). Such a substantial change is likely to inhibit the action of 

methyltransferases, which methylate a variety of compounds from lipids to histones and DNA 

(Mentch & Locasale, 2016; Stead et al., 2006). H3K9 (histone) and DNA cytosine methylation were 

found to decrease considerably in C1-cycle enzyme mutants of Arabidopsis (Groth et al., 2016; Meng 

et al., 2018). Studies concerning the effect of B12 or folate status on genome methylation in humans 

however, have been less conclusive: although there is some consensus that folate is positively 

correlated with genome methylation, the results for B12 have been mixed (Anderson et al., 2012; Ba et 

al., 2011; Christensen et al., 2010; Fang et al., 2017; Kok et al., 2015; McKay et al., 2012; Pufulete et 

al., 2005; Rampersaud et al., 2000; Vineis et al., 2011). Therefore, it is unclear what effect a reduced 

methylation index would have on C. reinhardtii DNA methylation, but because C. reinhardtii has 

relatively low DNA methylation levels, it might be more productive to analyse previously identified 

hypermethylated loci (Lopez et al., 2015). On the other hand, C. reinhardtii has quite high levels of 

histone methylation (Waterborg et al., 1995), so it is possible that these marks would be more 

responsive to changes in the methylation index. Differential methylation of both histones and DNA 
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will likely impact gene expression, and perhaps expression of transposons in particular, which may 

lead to increased rate of genomic change under B12 deprivation. 

In humans, the membrane phospholipid phosphatidylethanolamine (PE) is a major acceptor of 

methyl groups from S-adenosylmethionine during the formation of phosphatidylcholine (PC) (Noga et 

al., 2003). It is thought that hypomethylation of PE, which is associated with hyperhomocysteinemia 

causes changes in lipid metabolism that increase triglycerides (Obeid & Herrmann, 2009), and indeed 

epidemiological data suggests a strong positive correlation between homocysteine and triglycerides 

(Momin et al., 2017). In S. cerevisiae, homocysteine supplementation caused a decrease in PC and an 

increase in triglycerides, and further study found that homocysteine mediated this effect through 

increasing SAH (Visram et al., 2018). In this work it was found that SAH levels increased by 100-fold 

in the first 24 hours of B12 deprivation of metE7 (Figure 3.6), and that triglyceride levels rose by 9.5-

fold after 48 hours (Figure 3.4). C. reinhardtii lacks PC, but contains another abundant trimethylated 

membrane lipid, DGTS, which is thought to functionally substitute for PC (Sakurai et al., 2014). 

Methylation, or lack thereof, of diacylglyceride (DAG) to DGTS may therefore be the missing link 

between SAH and triglycerides. Although excessive production and storage of triglycerides is clearly 

a problem in humans, it is one of the major aims of the algal biodiesel industry (Griffiths & Harrison, 

2009). It is possible therefore, that an improved understanding of the C1 cycle in C. reinhardtii will 

allow engineering of higher TAG-accumulating algal strains.  

The generation of metE7 by experimental evolution (Helliwell et al, 2015) was somewhat 

serendipitous, however, our lab has recently achieved targeted genome editing using CRISPR/Cpf1 

technology, and a possible knockout target to further our understanding of methionine synthesis and 

one carbon metabolism would be METH.  A metH mutant is unlikely to grow in the presence of 

replete B12, because in these conditions the remaining methionine synthase (METE) would be 

repressed, resulting in an inability to synthesise methionine. A metH mutant would be a useful 

counterbalance to metE7 to disentangle the effects of B12 and a disrupted methionine cycle on the 

physiology of C. reinhardtii. Responses to a disruption in the C1 cycle should be observed in the 

absence of B12 for metE7 and the presence of B12 for metH but be absent from the other two 

permutations. These two mutants should facilitate robust investigation of the C1-cycle, and C. 

reinhardtii may become a useful model for the study of methylation, including its involvement in 

modifying the epigenome.  

5.2  Coping with a novel nutrient limitation 

 

C. reinhardtii exhibits a range of nutrient deprivation responses which aid survival, from 

inducing high affinity uptake systems for improved nutrient acquisition to downregulating 
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photosynthesis and increasing starch synthesis to control redox status (Saroussi et al., 2017). 

Compared with nitrogen deprivation, B12 deprivation caused a much greater decline in metE7 viability 

(Figure 3.9b). Prior to and during this decline there was a marked increase in the fluorescence of the 

ROS-sensitive dye H2DCFDA (Figure 3.9a). The type of ROS released was not determined here, and 

would require the use of more specific probes to distinguish H2O2, 1O2, or O2
- (Gomes et al., 2005). 

Other measures, such as the level of lipid peroxidation, or the activity of antioxidant enzymes, have 

been found to be a better indicator of stress in C. reinhardtii than the levels of ROS themselves 

(Drummen et al., 2002; Elbaz et al., 2010; Pillai et al., 2014; Urzica, Adler, et al., 2012). Taking 

measurements of these indicators in metE7 under B12 deprivation, but also in coculture with M. loti, 

should indicate the extent and possibly the management of physiological stress. 

In addition to large cells becoming more prevalent during B12 deprivation of metE7, which is 

also frequently observed during sulphur deprivation (Cakmak, Angun, Ozkan, et al., 2012), it was 

noted that palmelloids (clusters of cells that did not separate after cytokinesis), appeared to become 

more common. This was not quantified statistically in this work, but it would be a relatively simple 

phenomenon to investigate by microscopy. The formation of palmelloids has been observed in 

response to a range of stressors, including high concentrations of NaCl where they are thought to 

protect naïve daughter cells from the saline environment by producing a thick exopolysaccharide 

matrix (Khona et al., 2016). B12 deprivation would seem to pose the opposite challenge, but perhaps 

cells in palmelloids grow more slowly than single cells and so are less likely to lose viability (Olsen et 

al., 1983). 

 The fact that nitrogen deprivation was found to protect metE7 against B12 deprivation begs the 

question of whether deprivation of other nutrients also provoke a general protective response. 

Carotenoids, which are involved in non-photochemical quenching, decreased more than chlorophyll 

during B12 deprivation, but under most other nutrient deprivation conditions, such as for sulphur, there 

is a relative increase in carotenoids, and this may be sufficient to provide mild protection (Cakmak, 

Angun, Ozkan, et al., 2012). It may be possible and revealing to induce these nutrient starvation 

responses while the nutrient is still replete by placing for example a global regulator of sulphur 

starvation, SNRK2.1 (Gonzalez-Ballester et al., 2008), under the control of the METE promoter. 

Sulphur starvation responses might then be elicited by a lack of B12 and may provide protection 

against B12 deprivation-induced cell death. Indeed, in L. rostrata one of the most upregulated 

transcripts during coculture with M. loti relative to B12-replete axenic conditions was SNRK2.1, 

suggesting it may play a role in the response to B12 deprivation (Kudahl 2017). As sulphur deprivation 

also leads to a decrease in methionine cycle metabolites (González-Ballester et al., 2010), it is 

tempting to hypothesise that exaptation of SNRK2.1 to act as a B12 starvation response regulator 

would be a relatively quick fix following the evolution of B12 auxotrophy.  
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Deprivation of B12 was found to cause accumulation of TAGs (Figure 3.4), a phenomenon that 

is frequently observed under nitrogen deprivation. However, these similar outcomes may well be 

mediated by different mechanisms. In A. thaliana treated with methotrexate, total lipid levels were 

found to increase, due mainly to TAG accumulation, while nitrogen deprivation did not cause an 

overall increase in lipids, but there was a shift from membrane lipids to TAGs (Meï et al., 2016). It 

would therefore be worth testing if the combination of B12 and nitrogen deprivation has an additive 

effect on TAG accumulation in metE7. As B12 deprivation was also found to increase cell size, the 

sedimentation of these cells ought to be greater, reducing the energy required for dewatering, which is 

an important factor in the economic procurement of low value compounds such as TAGs for biodiesel 

production (Uduman et al., 2010).  

 Investigating the responses of C. reinhardtii to nutrient deprivation is increasingly reliant on 

‘omics’ approaches such as RNA-seq technology (Blaby et al., 2015; González-Ballester et al., 2010; 

Juergens et al., 2015; Schmollinger et al., 2014). Nonetheless, its relatively high cost prohibits the 

testing of multiple different conditions, and hence it is advisable to conduct preliminary research to 

decide on the degree of nutrient deprivation or timepoint during deprivation that is most relevant to 

your research questions. This work has shown that during B12 deprivation the transcripts for many C1-

cycle enzymes increase within 6 hours, while SAH accumulates over 24 hours, starch content 

increases before 48 hours, and most chlorophyll bleaching and cell death occurs after 48 hours. RNA-

seq of metE7 and wild-type C. reinhardtii cells cultured in B12-free and B12-replete media for 24 hours 

might therefore provide the best insight into the effects of disrupted one-carbon metabolism while 

avoiding differential expression of genes associated with autophagy and cell death. Using wild-type 

C. reinhardtii would ensure that the genes regulated directly in response to B12 were distinguishable 

from those impacted by disrupted one-carbon metabolism. If that group of genes is found to be 

particularly small, it suggests that using B12 to regulate transgene expression in C. reinhardtii would 

have little effect on the transcriptome.  

5.3  Investigating other algae and bacteria  

 

 L. rostrata was used as an example of a related natural B12 auxotroph to compare with the 

artificially evolved metE7 strain. L. rostrata had lower growth and B12 uptake in replete B12 conditions 

than metE7, but higher growth and uptake under limiting levels (Figure 3.2). L. rostrata also grew 

faster than metE7 in coculture with M. loti, which might be explained by the higher B12 production by 

M. loti in the presence of L. rostrata than metE7 (Figure 4.3). However, results from L. rostrata 

cannot be assumed to be representative of all algal B12 auxotrophs. There are several B12 auxotrophs 

in the Volvocales, such as G. pectorale, V. carteri, as well as the unrelated E. gracilis or the marine 

species O. tauri, Amphidinium carterae, and T. pseudonana. It would be of interest to measure EC50 
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and uptake rate of B12, or survival time without B12 in order to make comparisons to metE7 and 

determine to what extent this newly evolved mutant differs from species that have adapted to the trait. 

Similarly, measuring the algal, bacterial, and B12 concentrations of cocultures containing M. loti and 

some of the freshwater algae mentioned above should provide insight into whether natural B12 

auxotrophs are any better than metE7 at growing in coculture with bacteria. 

E. gracilis, has been used widely as a B12 bioassay organism (Ross, 1952), but in this work a 

metE,cysG mutant of S. typhimurium was used, and several B12 dose-response curves for metE7 were 

also generated (Figure 3.1). It may be beneficial to compare a B12 bioassay using metE7 to these other 

two organisms because metE7 has a higher growth rate than E. gracilis (Marian Cramer & Myers, 

1952), can reach a higher optical density than was observed for S. typhimurium, and may have a 

greater specificity for B12 than either species. Furthermore, if a metH mutant (which should show 

decreasing growth as B12 is increased) was used in parallel with metE7, then B12 measurements are 

likely to be more statistically accurate and robust to any inhibitory compounds in the sample. 

M. loti was unable to provide sufficient B12 to S-type (unstable metE mutant) for it to 

outcompete the ancestral C. reinhardtii strain, even when provided with an exogenous carbon source 

(Figure 4.12). However, there may be other bacteria that would be able to. S. meliloti is probably a 

good candidate as it is a relative of M. loti, supports L. rostrata (Bhardwaj 2016), enhances the 

thermal tolerance of C. reinhardtii by provision of B12 (Xie et al., 2013), and some strains produce as 

much as 150 mg·l-1 of B12 (Cai et al., 2018). If S. meliloti, or another environmentally relevant 

bacterium, can be shown to provide sufficient B12 to favour the growth of a B12-dependent C. 

reinhardtii strain over an independent one, this would provide some evidence to support the idea that 

B12-producing bacteria drove the evolution of algal B12 auxotrophy.   

In a completely artificial co-culture, metE7 was grown with two E. coli lines engineered to 

synthesise adenosylcobalamin. Release of B12 into the media was found to be an important indicator 

of how well E. coli would support metE7, but it was unclear how well E. coli was supported in return 

(Figure 4.11a). The parental strain ED656 outcompeted the btuf::Kan mutant ED662 when they were 

cocultured together (Figure 4.10c), but when each bacterial strain was separately cocultured with 

metE7, ED662 performed slightly better (Figure 4.11a), suggesting perhaps that it improved the 

growth of metE7, and benefited in return. If E. coli and metE7 are found not to mutually support one 

another particularly well, an alternative bacterium to test might be Pseudomonas putida. P. putida was 

found to provide additional support to L. rostrata when added to a coculture with M. loti (Ridley 

2016), yet did not enhance the thermal tolerance of C. reinhardtii by B12 supply (Xie et al., 2013). 

This might be explained by the small proportion of B12 released into the media (Bhardwaj 2016). 

Unlike M. loti, P. putida encodes btuB, the outer membrane protein which when mutated abolishes 

B12 uptake in E. coli (Cadieux et al., 2002). Therefore, a btuB knockout of P. putida may release 
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substantially more B12 into the media as a result of not taking up the B12 that does get out of the cell, 

and hence support metE7 to a greater extent.  

5.4  Investigating nutrient transfer between metE7 and bacteria 

 

 The growth of M. loti was not improved after B12 addition to the coculture with metE7 despite 

a substantial increase in algal cell density (Figure 4.4b), suggesting that when algal cells become B12 

replete they provide a lower quantity of organic compounds or a profile that is less easily metabolized 

by M. loti. The observation that the ratio of M. loti to algae in coculture was lower for B12-

independent strains than metE7 appears to agree with this hypothesis (Figure 4.2). As B12-deprived 

metE7 cells are larger than replete cells, it would be important to measure the impact that a certain dry 

weight of metE7 cells has on M. loti growth and also whether the viability of the metE7 cells has an 

impact. Attachment of M. loti and metE7 is unnecessary for mutual support, nonetheless it does occur 

(Bhardwaj 2016), and it is reasonable to assume that it would improve the efficiency of nutrient 

transfer. One method of testing whether B12 status affects bacterial attachment would be to prepare 

cocultures with various concentrations of B12 and chemically fix the samples prior to preparation for 

scanning electron microscopy.  

Transfer of organic compounds from metE7 to M. loti has recently been demonstrated using 

Nanoscale Secondary Ion Mass Spectrometry (Nano-SIMS) (H. Laeverenz Schlogelhofer, personal 

communication). The same technique was also used to show transfer of carbon and nitrogen in 

another synthetic mutualism from the plant-growth promoting bacterium Azospirillum brasilense to 

the green alga Chlorella sorokiniana (de-Bashan et al., 2016). However, this technique does not 

determine the chemical identity of the transferred compounds. HPLC/MS should provide a method for 

determining the abundance of specific metabolites in mixed cultures. Those metabolites in the media 

that decrease most after M. loti is added to an axenic culture of metE7 are likely to be taken up by M. 

loti.  

 I briefly investigated mathematical models based on Lotka-Volterra equations as a way of 

rapidly running experiments in silico to generate testable hypotheses and guide the design of more 

laborious in vivo coculture experiments. A similar but more complex model was applied to the 

mutualism between L. rostrata and M. loti  where each species was grown in separate flasks 

connected by a tube filled with polyacrylamide which only allowed the diffusion of B12 and small 

organic molecules, but not entire cells (Peaudecerf et al., 2018). In the case of well mixed cocultures 

of metE7 and M. loti most of this added complexity would not be needed. Instead additional 

parameters that might improve the model include terms for the regulation of B12 or organic carbon 

release by the bacteria and alga respectively according to their growth or death rate. 
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 Total B12 concentration was found to be higher in cocultures of M. loti with L. rostrata than 

M. loti with metE7, for all densities of M. loti (Figure 4.3f). This suggests that L. rostrata might be 

capable of inducing M. loti to produce more B12. However, B12 per M. loti cell was even higher in 

axenic M. loti cultures (Figure 4.6a), indicating that the carbon source provided to M. loti may be the 

main determinant of B12 production, rather than the presence or absence of algae. Therefore, 

increasing the amount and altering the type of photosynthate released might be the best option 

available to algae to increase the number of bacteria in their surroundings. Dinoflagellates for 

example, are known to produce dimethylsulphoniopropionate (DMSP), a compound which is mainly 

utilised by certain clades of bacteria, such as the Roseobacter, a large proportion of which are found in 

the phycosphere and produce B12 (Kudahl 2017) (Bullock et al., 2017). 

5.5  Evolution of mutualism 

  

The Black Queen hypothesis (BQH) provides some insight into the evolution of B12 

dependence in algae in so far as it offers a mechanism for the ‘evolution of dependencies through 

adaptive gene loss’ (Morris et al., 2012). However, Morris et al. (2012) specifically state that it is the 

extended phenotype of one organism that drives the loss of the gene/s responsible for that same 

phenotype in another organism. Uptake of methionine from the environment is unlikely to drive the 

loss of METE because in the absence of B12 it would not ameliorate the problem of homocysteine 

accumulation or the trapping of folates. Therefore, the BQH does not strictly apply because we 

hypothesise that it is B12 (which is clearly not a product of METE) that is responsible for driving the 

loss of METE in algae. On the other hand, the BQH can apply to the situation in the eubacterial 

lineages, where whole genome analysis identified bacteria that are dependent on B12 (by virtue of 

having only METH not METE, or only the RNRII isoform) yet do not have the full pathway to 

synthesise it, and therefore presumably lost elements of the pathway in the past (Kudahl 2017) (Zhang 

et al., 2009).  

Another hypothesis, called the ‘Foraging to Farming hypothesis’ (FFH) was developed in our 

group to explain the specific example of microalgae such as C. reinhardtii becoming dependent on 

B12 producers. The most succinct definition is that ‘mutualism can evolve as an accidental 

consequence of metabolic exchange’(Kazamia et al., 2016).  This may not seem to be very different 

from the BQH, however, the BQH seeks to explain the evolution of dependencies by adaptive gene 

loss, while the FFH goes a step further in seeking to explain the evolution of mutualisms. The FFH 

posits that once the alga is dependent on the B12 producer it may change its behaviour to farm the 

bacterium, by providing photosynthate for example. In a follow-up paper to the BQH, Morris et al. 

(2015) propose that after Black Queen evolution causes the loss of a gene and therefore dependence 

of one organism on another, the coexistence of both species might provide time for the reciprocal 
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Black Queen evolution to occur i.e. the ‘helper’ to become a ‘beneficiary’ of a different nutrient 

(Morris, 2015). This is therefore a route to mutualism via two loss of function mutations in a pair of 

organisms that can complement one another. The FFH suggests that the ‘beneficiary’, such as the alga 

that requires B12, would gain a selective advantage were it to provide something in return to its helper, 

such as photosynthate, because this would ensure a source of B12.  

 When Helliwell et al. (2015) initially cocultured metE7 with three different rhizobia they 

were all found to support its growth, and in this work, it was shown that the wild type C. reinhardtii 

and metE7 both supported M. loti (Helliwell et al., 2015). ‘Ecological fitting’ (EF) includes the 

process whereby organisms can form novel associations by relying on traits they already possessed at 

the time of encounter (Agosta & Klemens, 2008). Therefore, EF provides an explanation for how 

synthetic mutualisms are able to function, such as between C. reinhardtii and S. cerevisiae (Hom & 

Murray, 2014), C. vulgaris and A. brasilense (de-Bashan et al., 2016), or indeed between metE7 and 

M. loti. From this rather simplistic or primitive mutualism would something more sophisticated and 

mutually beneficial develop, such as ‘farming’ of one organism by the other? In this work metE7 was 

cocultured with M. loti for a period of 6 months (condition C), at the end of which it was found to 

have a lower B12 requirement than the progenitor metE7 strain (Figure 3.12c). This line provides the 

opportunity to test the FFH because the selection pressure in coculture was simply for increased 

growth, and the FFH predicts that this might occur by the alga releasing more photosynthate. 

Therefore, it would be interesting to test whether those lines in condition C do in fact release more 

photosynthate than lines kept under different conditions or the progenitor metE7.  

Both the FFH and BQH offer useful insights into the evolution of symbioses and package 

them within memorable analogies. However, neither really tackles the problem posed by the 

prisoner’s dilemma, which states that if it is beneficial to defect (not cooperate), then evolution will 

cause mutualisms to breakdown rather than strengthen, even if that leads to a worse outcome for both 

individuals. Is it possible both to acknowledge the existence of the prisoner’s dilemma in a situation 

and to overcome it? A well-known hypothesis supporting the evolution of cooperation is called group 

selection. Traulsen and Nowak (2006) suggest that within individuals of the same species, for group-

level selection to be favoured over individual-level selection, the benefits from cooperation must be 

much greater than the cost of cooperating, and the size of the group must be small while the number 

of interacting groups must be large (Traulsen & Nowak, 2006).  

To test group selection, it is useful to have a clear distinction between the individuals that 

cooperate and those that defect, and unfortunately this work did not identify B12-dependent C. 

reinhardtii strains that released large (cooperate) or small (defect) amounts of photosynthate. Note 

that the cooperation that might result here is not with other C. reinhardtii cells but with B12-producing 

heterotrophic bacteria. On the other hand, it was found that E. coli ED662 released more B12 than 
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ED656, and that ED662 was better able to support the growth of metE7, while also exhibiting a lower 

growth rate than ED656. Therefore, in a triculture of ED656, ED662, and metE7 one might expect 

ED656 to outcompete ED662, and this would then lead to the collapse of the coculture. However, if 

the groups are both small enough and numerous enough then it might be the case that during one 

subculture no ED656 cells are transferred, but some ED662 cells are. Then the coculture of ED662 

and metE7 should grow better than the other mixed tricultures. It is also likely that the less productive 

cultures that have higher proportions of ED656 will go extinct first. Therefore, if there is a process of 

replacing lines that have gone extinct with those that are still growing it is likely that cultures with 

high proportions of ED656 (prior to extinction) will be replaced by those with high proportions of 

ED662. ED656 will always outcompete ED662 at an individual level, but groups of ED662 will 

outcompete those dominated by ED656.  

In nature there are no nicely separated flasks or wells on a microwell plate to represent 

groups, but nor is the ocean or any other aquatic environment for that matter just one big 

homogeneous mix of metabolites and organisms. Microscale patches of algae and bacteria can also be 

considered a ‘group’, just one that has porous boundaries. At an even smaller scale, if bacteria were 

able to attach to the surface of algal cells and increase their chances of being transferred to algal 

daughter cells, then the bacteria associated with the phycosphere, along with the algal cell, should be 

considered as one group. The alga and its associated bacteria will now metaphorically sink or swim 

depending on the extent to which the bacteria and alga cooperate with one another. When that 

association becomes so tight that one organism actually resides inside the other and is vertically 

transmitted during host division, such as a cyanobacterium within a protist, we no longer consider it a 

group, and a transition in individuality has occurred. Although physical attachment provides a nice 

way of defining a group with clear boundaries, groups can be collections of individuals that are not 

physically associated, but the more porous the boundaries of the group the less likely group level 

selection is to occur. Overall therefore, group-level selection more precisely specifies the conditions 

required to achieve the same outcome that the FFH predicts may occur between mutually dependent 

algae and bacteria.  

 

5.6  Concluding remarks 

 

The responses of metE7 to B12 deprivation has provided several insights into one-carbon 

metabolism in C. reinhardtii, and the combination of metE and metH mutants may offer a more robust 

platform for its further elucidation. Considering metE7 is evolutionarily naïve to B12 dependence it 

was unsurprising that B12 deprivation caused substantial loss of viability, but the fact that nitrogen 

deprivation responses improved survival during B12 deprivation indicates there is the potential for the 
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transition to B12 auxotrophy to be facilitated by exaptation. One life strategy for improving growth in 

the environment over the long term might be for the B12 auxotroph to form an association with a B12 

producer, and algae like C. reinhardtii may already have a commensal relationship with bacteria like 

M. loti in place prior to the loss of METE. From a mutualism formed by ecological fitting, increasing 

the transfer of fixed carbon and B12 should lead to improved growth of both partners, but to achieve 

this requires a method to reduce the relative fitness of cheaters, and group selection may offer the 

simplest solution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

122 
 

6.  Bibliography 
 

Agosta, S. J., & Klemens, J. A. (2008). Ecological fitting by phenotypically flexible genotypes: 
implications for species associations, community assembly and evolution. Ecology Letters, 
11(11), 1123–1134. https://doi.org/10.1111/j.1461-0248.2008.01237.x 

Aksoy, M., Pootakham, W., & Grossman, A. R. (2014). Critical function of a Chlamydomonas 
reinhardtii putative polyphosphate polymerase subunit during nutrient deprivation. The Plant 
Cell, 26(10), 4214–4229. https://doi.org/10.1105/tpc.114.129270 

Aksoy, M., Pootakham, W., Pollock, S. V, Moseley, J. L., Gonzalez-Ballester, D., & Grossman, A. R. 
(2013). Tiered Regulation of Sulfur Deprivation Responses in Chlamydomonas reinhardtii and 
Identification of an Associated Regulatory Factor. Plant Physiology, 162(1), 195–211. 
https://doi.org/10.1104/pp.113.214593 

Amin, S. A., Green, D. H., Hart, M. C., Kupper, F. C., Sunda, W. G., & Carrano, C. J. (2009). Photolysis 
of iron-siderophore chelates promotes bacterial-algal mutualism. Proceedings of the National 
Academy of Sciences, 106(40), 17071–17076. https://doi.org/10.1073/pnas.0905512106 

Amin, S. a, Parker, M. S., & Armbrust, E. V. (2012). Interactions between diatoms and bacteria. 
Microbiology and Molecular Biology Reviews, 76(3), 667–684. 
https://doi.org/10.1128/MMBR.00007-12 

Ananyev, G., Gates, C., Kaplan, A., & Dismukes, G. C. (2017). Photosystem II-cyclic electron flow 
powers exceptional photoprotection and record growth in the microalga Chlorella ohadii. 
Biochimica et Biophysica Acta - Bioenergetics, 1858(11), 873–883. 
https://doi.org/10.1016/j.bbabio.2017.07.001 

Anderson, O. S., Sant, K. E., & Dolinoy, D. C. (2012). Nutrition and epigenetics: an interplay of dietary 
methyl donors, one-carbon metabolism and DNA methylation. Journal of Nutritional 
Biochemistry, 23, 853–859. https://doi.org/10.1016/j.jnutbio.2012.03.003 

Antal, T. K., Volgusheva, A. A., Kukarskih, G. P., Bulychev, A. A., Krendeleva, T. E., & Rubin, A. B. 
(2006). Effects of sulfur limitation on photosystem II functioning in Chlamydomonas reinhardtii 
as probed by chlorophyll a fluorescence. Physiologia Plantarum, 128(2), 360–367. 
https://doi.org/10.1111/j.1399-3054.2006.00734.x 

Arth, A., Kancherla, V., Pachn, H., Zimmerman, S., Johnson, Q., & Oakley, G. P. (2016). A 2015 global 
update on folic acid-preventable spina bifida and anencephaly. Birth Defects Research Part A: 
Clinical and Molecular Teratology, 106(7), 520–529. https://doi.org/10.1002/bdra.23529 

Aslinia, F., Mazza, J. J., & Yale, S. H. (2006). Megaloblastic anemia and other causes of macrocytosis. 
Clinical Medicine & Research, 4(3), 236–241. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/16988104 

Atta, C. A. M., Fiest, K. M., Frolkis, A. D., Jette, N., Pringsheim, T., St Germaine-Smith, C., … Metcalfe, 
A. (2016). Global Birth Prevalence of Spina Bifida by Folic Acid Fortification Status: A Systematic 
Review and Meta-Analysis. American Journal of Public Health, 106(1), e24-34. 
https://doi.org/10.2105/AJPH.2015.302902 

Axelrod, R., & Hamilton, W. D. (1981). The evolution of cooperation. Science, 211(4489), 1390–1396. 
https://doi.org/10.1126/SCIENCE.7466396 

Ba, Y., Yu, H., Liu, F., Geng, X., Zhu, C., Zhu, Q., … Zhang, Y. (2011). Relationship of folate, vitamin B12 
and methylation of insulin-like growth factor-II in maternal and cord blood. European Journal of 



 

123 
 

Clinical Nutrition, 65(4), 480–485. https://doi.org/10.1038/ejcn.2010.294 

Badger, M. R., John Andrews, T., Whitney, S., Ludwig, M., Yellowlees, D. C., Leggat, W., … Yellowlees, 
D. (1998). The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based 
CO 2-concentrating mechanisms in algae. Canadian Journal of Botany, 76, 1052–1071. 
https://doi.org/https://doi.org/10.1139/b98-074 

Baggott, J. E., & Tamura, T. (2015). Folate-Dependent Purine Nucleotide Biosynthesis in Humans. 
Advances in Nutrition (Bethesda, Md.), 6(5), 564–571. https://doi.org/10.3945/an.115.008300 

Bajhaiya, A. K., Dean, A. P., Zeef, L. A. H., Webster, R. E., & Pittman, J. K. (2016). PSR1 Is a Global 
Transcriptional Regulator of Phosphorus Deficiency Responses and Carbon Storage Metabolism 
in Chlamydomonas reinhardtii. Plant Physiology, 170(3), 1216–1234. 
https://doi.org/10.1104/pp.15.01907 

Baker, H., Frank, O., Pasher, I., Sobotka, H., Nathan, H. A., Hutner, S. H., & Aaronson, S. (1960). 
Elaboration of vitamin B12 by Escherichia coli. Experientia, 16(5), 187. 
https://doi.org/10.1007/BF02178977 

Ball, S. G., Subtil, A., Bhattacharya, D., Moustafa, A., Weber, A. P. M., Gehre, L., … Dauvillée, D. 
(2013). Metabolic Effectors Secreted by Bacterial Pathogens: Essential Facilitators of Plastid 
Endosymbiosis? W OA. The Plant Cell, 25, 7–21. https://doi.org/10.1105/tpc.112.101329 

Banerjee, R., Evande, R., Mer Kabil, O. ¨, Ojha, S., & Taoka, S. (2003). Reaction mechanism and 
regulation of cystathionine beta-synthase. Biochimica et Biophysica Acta, 1647, 30–35. 
https://doi.org/10.1016/S1570-9639(03)00044-X 

Banerjee, R., & Ragsdale, S. W. (2003). The Many Faces of Vitamin B 12 : Catalysis by Cobalamin-
Dependent Enzymes. Annual Review of Biochemistry, 72(1), 209–247. 
https://doi.org/10.1146/annurev.biochem.72.121801.161828 

Banerjee, R. V, & Matthews, R. G. (1990). Cobalamin-dependent methionine synthase. FASEB, 4, 
1450–1459. https://doi.org/https://doi.org/10.1096/fasebj.4.5.2407589 

Barbara, G. M., & Mitchell, J. G. (2003). Bacterial tracking of motile algae. FEMS Microbiology 
Ecology, 44(1), 79–87. https://doi.org/10.1111/j.1574-6941.2003.tb01092.x 

Barbier, G. (2005). Comparative Genomics of Two Closely Related Unicellular Thermo-Acidophilic 
Red Algae, Galdieria sulphuraria and Cyanidioschyzon merolae, Reveals the Molecular Basis of 
the Metabolic Flexibility of Galdieria sulphuraria and Significant Differences in Carbo. Plant 
Physiology, 137(2), 460–474. https://doi.org/10.1104/pp.104.051169 

Barker, J. L., Bronstein, J. L., Friesen, M. L., Jones, E. I., Reeve, H. K., Zink, A. G., & Frederickson, M. E. 
(2017). Synthesizing perspectives on the evolution of cooperation within and between species. 
Evolution, 71(4), 814–825. https://doi.org/10.1111/evo.13174 

Baroli, I., Gutman, B. L., Ledford, H. K., Shin, J. W., Chin, B. L., Havaux, M., & Niyogi, K. K. (2004). 
Photo-oxidative stress in a xanthophyll-deficient mutant of Chlamydomonas. The Journal of 
Biological Chemistry, 279(8), 6337–6344. https://doi.org/10.1074/jbc.M312919200 

Baumeister, S., Winterberg, M., Przyborski, J. M., & Lingelbach, K. (2010). The malaria parasite 
Plasmodium falciparum: cell biological peculiarities and nutritional consequences. 
Protoplasma, 240, 3–12. https://doi.org/10.1007/s00709-009-0090-3 

Bayer-Giraldi, M., Uhlig, C., John, U., Mock, T., & Valentin, K. (2010). Antifreeze proteins in polar sea 
ice diatoms: diversity and gene expression in the genus Fragilariopsis. Environmental 
Microbiology, 12(4), 1041–1052. https://doi.org/10.1111/j.1462-2920.2009.02149.x 



 

124 
 

Bayer-Giraldi, M., Weikusat, I., Besir, H., & Dieckmann, G. (2011). Characterization of an antifreeze 
protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice. Cryobiology, 
63(3), 210–219. https://doi.org/10.1016/J.CRYOBIOL.2011.08.006 

Bazzano, L. A., Reynolds, K., Holder, K. N., & He, J. (2006). Effect of Folic Acid Supplementation on 
Risk of Cardiovascular Diseases. JAMA, 296(22), 2720. 
https://doi.org/10.1001/jama.296.22.2720 

Beck, C. F., & Acker, A. (1992). Gametic Differentiation of Chlamydomonas reinhardtii: Control by 
Nitrogen and Light. Plant Physiology, 98(3), 822–826. https://doi.org/10.1104/PP.98.3.822 

Beck, W. S. (1982). Biological and medical aspects of vitamin B 12. D. Dolphin (ed.) (Vol. 1). Retrieved 
from http://www.daviddolphin.com/books/book13-contents.pdf 

Behringer, G., Ochsenkühn, M. A., Fei, C., Fanning, J., Koester, J. A., & Amin, S. A. (2018). Bacterial 
Communities of Diatoms Display Strong Conservation Across Strains and Time. Frontiers in 
Microbiology, 9, 659. https://doi.org/10.3389/fmicb.2018.00659 

Bekaert, S., Storozhenko, S., Mehrshahi, P., Bennett, M. J., Lambert, W., Gregory, J. F., … Hanson, A. 
D. (2008). Folate biofortification in food plants. Trends in Plant Science, 13(1), 28–35. 
https://doi.org/10.1016/j.tplants.2007.11.001 

Belcher, J. H., & Swale, E. M. F. (1961). Some new and uncommon British volvocales. British 
Phycological Bulletin, 2(2), 56–62. 
https://doi.org/10.1080/00071616100650031org/10.1080/00071616100650031 

Bertrand, E. M., Allen, A. E., Dupont, C. L., Norden-Krichmar, T. M., Bai, J., Valas, R. E., & Saito, M. a. 
(2012). Influence of cobalamin scarcity on diatom molecular physiology and identification of a 
cobalamin acquisition protein. Proceedings of the National Academy of Sciences, 109(26), 
E1762-71. https://doi.org/10.1073/pnas.1201731109 

Bertrand, E. M., McCrow, J. P., Moustafa, A., Zheng, H., McQuaid, J. B., Delmont, T. O., … Allen, A. E. 
(2015). Phytoplankton-bacterial interactions mediate micronutrient colimitation at the coastal 
Antarctic sea ice edge. Proceedings of the National Academy of Sciences, 112(32), 9938–9943. 
https://doi.org/10.1073/pnas.1501615112 

Bertrand, E. M., Moran, D. M., Mcilvin, M. R., Hoffman, J. M., Allen, A. E., & Saito, M. A. (2013). 
Methionine synthase interreplacement in diatom cultures and communities : Implications for 
the persistence of B 12 use by eukaryotic phytoplankton, 58(4), 1431–1450. 
https://doi.org/10.4319/lo.2013.58.4.1431 

Bertrand, E. M., Saito, M. A., Rose, J. M., Riesselman, C. R., Lohan, M. C., Noble, A. E., … DiTullio, G. R. 
(2007). Vitamin B12 and iron colimitation of phytoplankton growth in the Ross Sea. Limnology 
and Oceanography, 52(3), 1079–1093. https://doi.org/10.4319/lo.2007.52.3.1079 

Besson, V., Neuburger, M., Rebeille, F., & Douce, R. (1995). Evidence for three serine 
hydroxymethyltransferases in green leaf cells. Purification and characterization of the 
mitochondrial and chloroplastic isoforms. Plant Physiology and Biochemistry, 33(6), 665–673. 
Retrieved from http://agris.fao.org/agris-search/search.do?recordID=FR9600081 

Besson, V., Rebeille, F., Neuburger, M., Douce, R., & Cossins, E. A. (1993). Effects of tetrahydrofolate 
polyglutamates on the kinetic parameters of serine hydroxymethyltransferase and glycine 
decarboxylase from pea leaf mitochondria. The Biochemical Journal, 292(Pt 2), 425–430. 
https://doi.org/10.1042/bj2920425 

Biebl, H., Allgaier, M., Tindall, B. J., Koblizek, M., Lünsdorf, H., Pukall, R., & Wagner-Döbler, I. (2005). 
Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated 



 

125 
 

from dinoflagellates. International Journal of Systematic and Evolutionary Microbiology, 55(3), 
1089–1096. https://doi.org/10.1099/ijs.0.63511-0 

Birch, C. S., Brasch, N. E., McCaddon, A., & Williams, J. H. H. (2009). A novel role for vitamin B12: 
Cobalamins are intracellular antioxidants in vitro. Free Radical Biology and Medicine, 47(2), 
184–188. https://doi.org/10.1016/j.freeradbiomed.2009.04.023 

Blaby, I. K., Blaby-Haas, C. E., Pérez-Pérez, M. E., Schmollinger, S., Fitz-Gibbon, S., Lemaire, S. D., & 
Merchant, S. S. (2015). Genome-wide analysis on Chlamydomonas reinhardtii reveals the 
impact of hydrogen peroxide on protein stress responses and overlap with other stress 
transcriptomes. The Plant Journal : For Cell and Molecular Biology, 84(5), 974–988. 
https://doi.org/10.1111/tpj.13053 

Blackburn, N., Fenchel, T., & Mitchell, J. (1998). Microscale Nutrient Patches in Planktonic Habitats 
Shown by Chemotactic Bacteria. Science, 282(5397), 2254–2256. 
https://doi.org/10.1126/science.282.5397.2254 

Blackman, F. F. (1903). Optima and Limiting Factors. Annals of Botany, 19(2), 281–296. 
https://doi.org/https://doi.org/10.1093/oxfordjournals.aob.a089000 

Bligh, E., & Dyer, W. (1959). A rapid method of total lipid extraction and purification. Can. J. 
Biochem. Physiol., 37(8), 911–917. https://doi.org/https://doi.org/10.1139/o59-099 

Bonente, G., Pippa, S., Castellano, S., Bassi, R., & Ballottari, M. (2012). Acclimation of 
Chlamydomonas reinhardtii to different growth irradiances. The Journal of Biological 
Chemistry, 287(8), 5833–5847. https://doi.org/10.1074/jbc.M111.304279 

Boyd, P. W., Watson, A. J., Law, C. S., Abraham, E. R., Trull, T., Murdoch, R., … Zeldis, J. (2000). A 
mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. 
Nature, 407(6805), 695–702. https://doi.org/10.1038/35037500 

Brodie, J., Ball, S. G., Bouget, F. Y., Chan, C. X., De Clerck, O., Cock, J. M., … Bhattacharya, D. (2017). 
Biotic interactions as drivers of algal origin and evolution. The New Phytologist, 216(3), 670–
681. https://doi.org/10.1111/nph.14760 

Brodie, J., Chan, C. X., De Clerck, O., Cock, J. M., Coelho, S. M., Gachon, C., … Bhattacharya, D. (2017). 
The Algal Revolution. Trends in Plant Science, 22(8), 726–738. 
https://doi.org/10.1016/j.tplants.2017.05.005 

Browning, T. J., Achterberg, E. P., Rapp, I., Engel, A., Bertrand, E. M., Tagliabue, A., & Moore, C. M. 
(2017). Nutrient co-limitation at the boundary of an oceanic gyre. Nature, 551(7679), 242. 
https://doi.org/10.1038/nature24063 

Bullock, H. A., Luo, H., & Whitman, W. B. (2017). Evolution of dimethylsulfoniopropionate 
metabolism in marine phytoplankton and bacteria. Frontiers in Microbiology, 8(APR), 637. 
https://doi.org/10.3389/fmicb.2017.00637 

Burmølle, M., Webb, J. S., Rao, D., Hansen, L. H., Sørensen, S. J., & Kjelleberg, S. (2006). Enhanced 
biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are 
caused by synergistic interactions in multispecies biofilms. Applied and Environmental 
Microbiology, 72(6), 3916–3923. https://doi.org/10.1128/AEM.03022-05 

Cadieux, N., Bradbeer, C., Reeger-Schneider, E., Köster, W., Mohanty, A. K., Wiener, M. C., & Kadner, 
R. J. (2002). Identification of the periplasmic cobalamin-binding protein BtuF of Escherichia coli. 
Journal of Bacteriology, 184(3), 706–717. https://doi.org/10.1128/JB.184.3.706-717.2002 

Cai, Y., Xia, M., Dong, H., Qian, Y., Zhang, T., Zhu, B., … Zhang, D. (2018). Engineering a vitamin B12 



 

126 
 

high-throughput screening system by riboswitch sensor in Sinorhizobium meliloti. BMC 
Biotechnology, 18(1), 18–27. https://doi.org/10.1186/s12896-018-0441-2 

Cakmak, T., Angun, P., Demiray, Y. E., Ozkan, A. D., Elibol, Z., & Tekinay, T. (2012). Differential effects 
of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of 
Chlamydomonas reinhardtii. Biotechnology and Bioengineering, 109(8), 1947–1957. 
https://doi.org/10.1002/bit.24474 

Cakmak, T., Angun, P., Ozkan, A. D., Cakmak, Z., Olmez, T. T., & Tekinay, T. (2012). Nitrogen and 
sulfur deprivation differentiate lipid accumulation targets of Chlamydomonas reinhardtii. 
Bioengineered, 3(6), 343–346. https://doi.org/10.4161/bioe.21427 

Campbell, G. R. O., Taga, M. E., Mistry, K., Lloret, J., Anderson, P. J., Roth, J. R., & Walker, G. C. 
(2006). Sinorhizobium meliloti bluB is necessary for production of 5,6-dimethylbenzimidazole, 
the lower ligand of B12. Proceedings of the National Academy of Sciences, 103(12), 4634–4639. 
https://doi.org/10.1103/PhysRevA.64.022504 

Carell, E. F., & Goetz, G. H. (1976). Deoxyribonucleoside triphosphate pools in Vitamin B12 deficient 
Euglena gracilis. Biochem. J, 156(2), 473–475. Retrieved from 
https://www.jacobinmag.com/2015/05/social-movements-fight-for-15-occupy-civil-rights/ 

Carlucci, A. F., & Silbernagel, S. B. (1969). Effect of vitamin concentrations on growth and 
development of vitamin-requiring algae. Journal of Phycology, 5(1), 64–67. 
https://doi.org/10.1111/j.1529-8817.1969.tb02578.x 

Carney, L. T., & Lane, T. W. (2014). Parasites in algae mass culture. Frontiers in Microbiology, 5, 278. 
https://doi.org/10.3389/fmicb.2014.00278 

Carroll, S. B. (2001). Chance and necessity: The evolution of morphological complexity and diversity. 
Nature, 409(6823), 1102–1109. https://doi.org/10.1038/35059227 

Carter, G. G., & Wilkinson, G. S. (2013). Food sharing in vampire bats: reciprocal help predicts 
donations more than relatedness or harassment. Proceedings of the Royal Society B, 280, 1–6. 
https://doi.org/10.1098/rspb.2012.2573 

Castillo-Lancellotti, C., Tur, J. A., & Uauy, R. (2012). Impact of folic acid fortification of flour on neural 
tube defects: a systematic review. Public Health Nutrition, 16(5), 901–911. 
https://doi.org/10.1017/S1368980012003576 

Ceh, J., Kilburn, M. R., Cliff, J. B., Raina, J.-B., van Keulen, M., & Bourne, D. G. (2013). Nutrient cycling 
in early coral life stages: Pocillopora damicornis larvae provide their algal symbiont ( 
Symbiodinium ) with nitrogen acquired from bacterial associates. Ecology and Evolution, 3(8), 
2393–2400. https://doi.org/10.1002/ece3.642 

Chen, N. C., Yang, F., Capecci, L. M., Gu, Z., Schafer, A. I., Durante, W., … Wang, H. (2010). Regulation 
of homocysteine metabolism and methylation in human and mouse tissues. FASEB Journal : 
Official Publication of the Federation of American Societies for Experimental Biology, 24(8), 
2804–2817. https://doi.org/10.1096/fj.09-143651 

Chiang, P. K., Gordon, R. K., Tal, J., Zeng, G. C., Doctor, B. P., Pardhasaradhi, K., & Mccann, P. P. 
(1996). S-Adenosylmethionine and methylation. FASEB, 10, 471–480. 
https://doi.org/https://doi.org/10.1096/fasebj.10.4.8647346 

Christensen, B. C., Kelsey, K. T., Zheng, S., Houseman, E. A., Marsit, C. J., Wrensch, M. R., … Wiencke, 
J. K. (2010). Breast Cancer DNA Methylation Profiles Are Associated with Tumor Size and 
Alcohol and Folate Intake. PLoS Genetics, 6(7), e1001043. 
https://doi.org/10.1371/journal.pgen.1001043 



 

127 
 

Clarke, R., Halsey, J., Lewington, S., Lonn, E., Armitage, J., Manson, J. A. E., … Collins, R. (2010). 
Effects of lowering homocysteine levels with B vitamins on cardiovascular disease, cancer, and 
cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals. 
Archives of Internal Medicine, 170(18), 1622–1631. 
https://doi.org/10.1001/archinternmed.2010.348 

Cohen, N. R., A. Ellis, K., Burns, W. G., Lampe, R. H., Schuback, N., Johnson, Z., … Marchetti, A. (2017). 
Iron and vitamin interactions in marine diatom isolates and natural assemblages of the 
Northeast Pacific Ocean. Limnology and Oceanography, 62(5), 2076–2096. 
https://doi.org/10.1002/lno.10552 

Collakova, E., Goyer, A., Naponelli, V., Krassovskaya, I., Gregory, J. F., Hanson, A. D., … Shachar-Hill, Y. 
(2008). Arabidopsis 10-formyl tetrahydrofolate deformylases are essential for photorespiration. 
The Plant Cell, 20(7), 1818–1832. https://doi.org/10.1105/tpc.108.058701 

Consortium, T. H. M. P., Huttenhower, C., Gevers, D., Knight, R., Abubucker, S., Badger, J. H., … 
White, O. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 
486(7402), 207–214. https://doi.org/10.1038/nature11234 

Cooper, M. B., Kazamia, E., Helliwell, K. E., Kudahl, U. J., Sayer, A., Wheeler, G. L., & Smith, A. G. 
(2019). Cross-exchange of B-vitamins underpins a mutualistic interaction between 
Ostreococcus tauri and Dinoroseobacter shibae. The ISME Journal, 13(2), 334–345. 
https://doi.org/10.1038/s41396-018-0274-y 

Corbino, K. A. K., Barrick, J. E., Lim, J., Welz, R., Tucker, B. B. J., Puskarz, I., … Breaker, R. R. (2005). 
Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA 
motifs in alpha-proteobacteria. Genome Biology, 6(8), R70. https://doi.org/10.1186/gb-2005-6-
8-r70 

Cordero, O. X., & Polz, M. F. (2014). Explaining microbial genomic diversity in light of evolutionary 
ecology. Nature Reviews Microbiology, 12(4), 263–273. https://doi.org/10.1038/nrmicro3218 

Cowey, C. B. (1956). A preliminary investigation of the variation of vitamin B12 in oceanic and coastal 
waters. Journal of the Marine Biological Association of the United Kingdom, 35(3), 609–620. 
https://doi.org/10.1017/S0025315400010456 

Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J., & Smith, A. G. (2005). Algae acquire 
vitamin B12 through a symbiotic relationship with bacteria. Nature, 438(7064), 90–93. 
https://doi.org/10.1038/nature04056 

Croft, M. T., Warren, M. J., & Smith, A. G. (2006). Algae need their vitamins. Eukaryotic Cell, 5(8), 
1175–1183. https://doi.org/10.1128/EC.00097-06 

Cross, F. R., & Umen, J. G. (2015). The Chlamydomonas cell cycle. The Plant Journal, 82(3), 370–392. 
https://doi.org/10.1111/tpj.12795 

Cuypers, T. D., & Hogeweg, P. (2012). Virtual Genomes in Flux: An Interplay of Neutrality and 
Adaptability Explains Genome Expansion and Streamlining. Genome Biology and Evolution, 4(3), 
212–229. https://doi.org/10.1093/gbe/evr141 

D’Onofrio, A., Crawford, J. M., Stewart, E. J., Witt, K., Gavrish, E., Epstein, S., … Lewis, K. (2010). 
Siderophores from neighboring organisms promote the growth of uncultured bacteria. 
Chemistry & Biology, 17(3), 254–264. https://doi.org/10.1016/j.chembiol.2010.02.010 

da Silva, R. P., Kelly, K. B., Al Rajabi, A., & Jacobs, R. L. (2014). Novel insights on interactions between 
folate and lipid metabolism. BioFactors, 40(3), 277–283. https://doi.org/10.1002/biof.1154 



 

128 
 

Dagnelie, P. C., van Staveren, W. A., & van den Berg, H. (1991). Vitamin B-12 from algae appears not 
to be bioavailable. The American Journal of Clinical Nutrition, 53(3), 695–697. 
https://doi.org/10.1093/ajcn/53.3.695 

Daisley, K. W. (1969). Monthly Survey of Vitamin B12 Concentrations in some waters of the English 
Lake District. Association for the Sciences of Limnology and Oceanography, 14(2), 224–228. 

Daisley, K. W., & Fisher, L. R. (1958). Vertical distribution of vitamin B12in the sea. Journal of the 
Marine Biological Association of the United Kingdom, 37(3), 683–686. 
https://doi.org/10.1111/j.1471-6402.1981.tb00583.x 

Datko, A. H., & Mudd, S. H. (1984). Responses of Sulfur-Containing Compounds in Lemna 
paucicostata Hegelm. 6746 to Changes in Availability of Sulfur Sources. Plant Physiology, 75(2), 
474–479. Retrieved from 
https://www.jstor.org/stable/pdf/4268701.pdf?refreqid=excelsior%3A6716c1dd295eaa237d0b
6ded21677962 

Davies, J. P., Yildiz, F. H., & Grossman, A. (1996). Sac1, a putative regulator that is critical for survival 
of Chlamydomonas reinhardtii during sulfur deprivation. The EMBO Journal, 15(9), 2150–2159. 
https://doi.org/https://doi.org/10.1002/j.1460-2075.1996.tb00568.x 

de-Bashan, L. E., Mayali, X., Bebout, B. M., Weber, P. K., Detweiler, A. M., Hernandez, J. P., … Bashan, 
Y. (2016). Establishment of stable synthetic mutualism without co-evolution between 
microalgae and bacteria demonstrated by mutual transfer of metabolites (NanoSIMS isotopic 
imaging) and persistent physical association (Fluorescent in situ hybridization). Algal Research, 
15, 179–186. https://doi.org/10.1016/j.algal.2016.02.019 

Deery, E., Schroeder, S., Lawrence, A. D., Taylor, S. L., Seyedarabi, A., Waterman, J., … Warren, M. J. 
(2012). An enzyme-trap approach allows isolation of intermediates in cobalamin biosynthesis. 
Nature Chemical Biology, 8(11), 933–940. https://doi.org/10.1038/nchembio.1086 

Degnan, P. H., Barry, N. A., Mok, K. C., Taga, M. E., & Goodman, A. L. (2014). Human Gut Microbes 
Use Multiple Transporters to Distinguish Vitamin B12 Analogs and Compete in the Gut. Cell 
Host & Microbe, 15(1), 47–57. https://doi.org/10.1016/J.CHOM.2013.12.007 

Delaye, L., Valadez-cano, C., & Pérez-zamorano, B. (2016). How really ancient is Paulinella 
Chromatophora? PLoS Currents, 1–12. 
https://doi.org/10.1371/currents.tol.e68a099364bb1a1e129a17b4e06b0c6b 

Doebeli, M., & Knowlton, N. (1998). The evolution of interspecific mutualisms. Proceedings of the 
National Academy of Sciences, 95(15), 8676–8680. https://doi.org/10.1073/pnas.95.15.8676 

Doolittle, W. F. (2000). Evolution, Uprooting the Tree of Life. Scientific American, 282(2), 90–95. 
https://doi.org/https://www.jstor.org/stable/26058605 

Dorrell, R. G., & Smith, A. G. (2011). Do red and green make brown?: perspectives on plastid 
acquisitions within chromalveolates. Eukaryotic Cell, 10(7), 856–868. 
https://doi.org/10.1128/EC.00326-10 

Droop, M. R. (1974). The nutrient status of algal cells in continuous culture. Journal of the Marine 
Biological Association of the United Kingdom, 54(4), 825–855. 
https://doi.org/10.1017/S002531540005760X 

Droop, M. R. (2007). Vitamins, phytoplankton and bacteria: symbiosis or scavenging? Journal of 
Plankton Research, 29(2), 107–113. https://doi.org/10.1093/plankt/fbm009 

Droop, M. R., & Elson, K. G. R. (1966). Are Pelagic Diatoms Free from Bacteria? Nature, 211(5053), 



 

129 
 

1096–1097. https://doi.org/10.1038/2111096a0 

Drummen, G. P. ., van Liebergen, L. C. ., Op den Kamp, J. A. ., & Post, J. A. (2002). C11-
BODIPY581/591, an oxidation-sensitive fluorescent lipid peroxidation probe: 
(micro)spectroscopic characterization and validation of methodology. Free Radical Biology and 
Medicine, 33(4), 473–490. https://doi.org/10.1016/S0891-5849(02)00848-1 

Dubini, A., Mus, F., Seibert, M., Grossman, A. R., & Posewitz, M. C. (2009). Flexibility in anaerobic 
metabolism as revealed in a mutant of chlamydomonas reinhardtii lacking hydrogenase 
activity. Journal of Biological Chemistry, 284(11), 7201–7213. 
https://doi.org/10.1074/jbc.M803917200 

Duncan, T. M., Reed, M. C., & Nijhout, H. F. (2013). The relationship between intracellular and 
plasma levels of folate and metabolites in the methionine cycle: a model. Molecular Nutrition & 
Food Research, 57(4), 628–636. https://doi.org/10.1002/mnfr.201200125 

Edwards, A. L., Reyes, F. E., Héroux, A., & Batey, R. T. (2010). Structural basis for recognition of S-
adenosylhomocysteine by riboswitches. RNA, 16(11), 2144–2155. 
https://doi.org/10.1261/rna.2341610 

Elbaz, A., Wei, Y. Y., Meng, Q., Zheng, Q., & Yang, Z. M. (2010). Mercury-induced oxidative stress and 
impact on antioxidant enzymes in Chlamydomonas reinhardtii. Ecotoxicology, 19(7), 1285–
1293. https://doi.org/10.1007/s10646-010-0514-z 

Elders, C. (1926). Treatment of pernicious anemia by a special diet. Journal of the American Medical 
Association, 87(20), 1666. https://doi.org/10.1001/jama.1926.02680200066028 

Elias, S., & Banin, E. (2012). Multi-species biofilms: living with friendly neighbors. FEMS Microbiology 
Reviews, 36(5), 990–1004. https://doi.org/10.1111/j.1574-6976.2012.00325.x 

Elledge, S. J., Zhou, Z., Allen, J. B., & Navas, T. A. (1993). DNA damage and cell cycle regulation of 
ribonucleotide reductase. BioEssays, 15(5), 333–339. https://doi.org/10.1002/bies.950150507 

Engbersen, A. M. T., Franken, D. G., Boers, G. H. J., Stevens, E. M. B., Trijbels, F. J. M., & Blom, H. J. 
(1995). Thermolabile 5,10-Methylenetetrahydrofolate reductase as a cause of mild 
hyperhomocysteinemia. American Journal of Human Genetics, 56(1981), 142–150. Retrieved 
from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1801334/pdf/ajhg00027-0150.pdf 

Eriksson, M., Moseley, J. L., Tottey, S., Del Campo, J. A., Quinn, J., Kim, Y., & Merchant, S. (2004). 
Genetic dissection of nutritional copper signaling in chlamydomonas distinguishes regulatory 
and target genes. Genetics, 168(2), 795–807. https://doi.org/10.1534/genetics.104.030460 

Escobar Galvis, M. L., Marttila, S., Håkansson, G., Forsberg, J., & Knorpp, C. (2001). Heat stress 
response in pea involves interaction of mitochondrial nucleoside diphosphate kinase with a 
novel 86-kilodalton protein. Plant Physiology, 126(1), 69–77. 
https://doi.org/10.1104/pp.126.1.69 

Ewald, P. W. (1987). Transmission Modes and Evolution of the Parasitism-Mutualism Continuum. 
Annals of the New York Academy of Sciences, 503(1), 295–306. https://doi.org/10.1111/j.1749-
6632.1987.tb40616.x 

Falkowski, P. G., Dubinsky, Z., Muscatine, L., & McCloskey, L. (1993). Population Control in Symbiotic 
Corals. BioScience, 43(9), 606–611. https://doi.org/10.2307/1312147 

Fang, H., Kang, J., & Zhang, D. (2017). Microbial production of vitamin B12: A review and future 
perspectives. Microbial Cell Factories, 16(1), 57–67. https://doi.org/10.1186/s12934-017-0631-
y 



 

130 
 

Feix, A., Fritsche-Polanz, R., Kletzmayr, J., Vychytil, A., Hö rl, W. H., Sunder-Plassmann, G., & Fö 
dinger, M. (2001). Increased Prevalence of Combined MTR and MTHFR Genotypes Among 
Individuals With Severely Elevated Total Homocysteine Plasma Levels. American Journal of 
Kidney Diseases, 38, 956–964. https://doi.org/10.1053/ajkd.2001.28581 

Fenton, W. A., & Rosenberg, L. E. (1978). Mitochondrial metabolism of hydroxocobalamin: Synthesis 
of adenosylcobalamin by intact rat liver mitochondria. Archives of Biochemistry and Biophysics, 
189(2), 441–447. https://doi.org/10.1016/0003-9861(78)90232-1 

Fernandez, E., & Galvan, A. (2007). Inorganic nitrogen assimilation in Chlamydomonas. Journal of 
Experimental Botany, 58(9), 2279–2287. https://doi.org/10.1093/jxb/erm106 

Fichera, M. E., & Roos, D. S. (1997). A plastid organelle as a drug target in apicomplexan parasites. 
Nature, 407–409. https://doi.org/10.1038/37132 

Fierer, N. (2017). Embracing the unknown: disentangling the complexities of the soil microbiome. 
Nature Reviews Microbiology, 15(10), 579–590. https://doi.org/10.1038/nrmicro.2017.87 

Finkelstein, J. D. (1998). The metabolism of homocysteine: pathways and regulation. European 
Journal of Pediatrics, 157(S2), S40–S44. https://doi.org/10.1007/PL00014300 

Fiore, C. L., Jarett, J. K., Olson, N. D., & Lesser, M. P. (2010). Nitrogen fixation and nitrogen 
transformations in marine symbioses. Trends in Microbiology, 18, 455–463. 
https://doi.org/10.1016/j.tim.2010.07.001 

Fischer, W. W., Hemp, J., & Johnson, J. E. (2016). Evolution of Oxygenic Photosynthesis. Annual 
Review of Earth and Planetary Sciences, 44(1), 647–683. https://doi.org/10.1146/annurev-
earth-060313-054810 

Forterre, P. (2015). The universal tree of life: An update. Frontiers in Microbiology, 6(JUN), 717. 
https://doi.org/10.3389/fmicb.2015.00717 

Foster, K. R., & Bell, T. (2012). Competition, Not Cooperation, Dominates Interactions among 
Culturable Microbial Species. Current Biology, 22(19), 1845–1850. 
https://doi.org/10.1016/J.CUB.2012.08.005 

Foster, R. A., Kuypers, M. M. M., Vagner, T., Paerl, R. W., Musat, N., & Zehr, J. P. (2011). Nitrogen 
fixation and transfer in open ocean diatom–cyanobacterial symbioses. The ISME Journal, 5(9), 
1484–1493. https://doi.org/10.1038/ismej.2011.26 

Foster, R. A., & Zehr, J. P. (2006). Characterization of diatom–cyanobacteria symbioses on the basis 
of nifH, hetR and 16S rRNA sequences. Environmental Microbiology, 8(11), 1913–1925. 
https://doi.org/10.1111/j.1462-2920.2006.01068.x 

Franklin, D. J., Choi, C. J., Hughes, C., Malin, G., & Berges, J. A. (2009). Effect of dead phytoplankton 
cells on the apparent efficiency of photosystem II. Marine Ecology Progress Series, 382, 35–40. 
https://doi.org/10.3354/meps07967 

Friso, S., Girelli, D., Trabetti, E., Olivieri, O., Guarini, P., Pignatti, P. F., … Choi, S. W. (2005). The 
MTHFR 1298A>C polymorphism and genomic DNA methylation in human lymphocytes. Cancer 
Epidemiology Biomarkers and Prevention, 14(4), 938–943. https://doi.org/10.1158/1055-
9965.EPI-04-0601 

Gärdes, A., Iversen, M. H., Grossart, H.-P., Passow, U., & Ullrich, M. S. (2011). Diatom-associated 
bacteria are required for aggregation of Thalassiosira weissflogii. The ISME Journal, 5(3), 436–
445. https://doi.org/10.1038/ismej.2010.145 

Gargouri, M., Bates, P. D., Park, J.-J., Kirchhoff, H., & Gang, D. R. (2014). Functional photosystem I 



 

131 
 

maintains proper energy balance during nitrogen depletion in Chlamydomonas reinhardtii, 
promoting triacylglycerol accumulation. The Plant Journal, 77(3), 404–417. 
https://doi.org/10.1111/tpj.12392 

Gates, R. D., Hoegh-Guldberg, O., McFall-Ngai, M. J., Bil, K. Y., & Muscatine, L. (1995). Free amino 
acids exhibit anthozoan “host factor” activity: they induce the release of photosynthate from 
symbiotic dinoflagellates in vitro. Proceedings of the National Academy of Sciences, 92(16), 
7430–7434. https://doi.org/10.1073/pnas.92.16.7430 

Gilbert, P. W. (1942). Observations on the Eggs of Ambystoma Maculatum with Especial Reference 
to the Green Algae Found Within the Egg Envelopes. Ecology, 23(2), 215–227. 
https://doi.org/10.2307/1931088 

Giordano, M., Beardall, J., & Raven, J. A. (2005). CO 2 Concentrating Mechanisms in Algae: 
Mechanisms, Environmental Modulation, and Evolution. Annu. Rev. Plant Biol, 56, 99–131. 
https://doi.org/10.1146/ 

Glaesener, A. G., Merchant, S. S., & Blaby-Haas, C. E. (2013). Iron economy in Chlamydomonas 
reinhardtii. Frontiers in Plant Science, 4, 1–12. https://doi.org/10.3389/fpls.2013.00337 

Gomes, A., Fernandes, E., & Lima, J. L. F. C. (2005). Fluorescence probes used for detection of 
reactive oxygen species. Journal of Biochemical and Biophysical Methods, 65(2–3), 45–80. 
https://doi.org/10.1016/J.JBBM.2005.10.003 

González-Ballester, D., Casero, D., Cokus, S., Pellegrini, M., Merchant, S. S., & Grossman, A. R. (2010). 
RNA-Seq Analysis of Sulfur-Deprived Chlamydomonas Cells Reveals Aspects of Acclimation 
Critical for Cell Survival. The Plant Cell, 22(6), 2058–2084. 
https://doi.org/10.1105/tpc.109.071167 

Gonzalez-Ballester, D., Pollock, S. V, Pootakham, W., & Grossman, A. R. (2008). The central role of a 
SNRK2 kinase in sulfur deprivation responses. Plant Physiology, 147(1), 216–227. 
https://doi.org/10.1104/pp.108.116137 

Gonzalez, J. C., Banerjee, R. V, Huang, S., Sumner, J. S., & Matthews, R. G. (1992). Comparison of 
Cobalamin-Independent and Cobalamin-Dependent Methionine Synthases from Escherichia 
coli. Biochemistry, (31), 6045–6056. 

Graham, E. R., McKie-Krisberg, Z. M., & Sanders, R. W. (2014). Photosynthetic carbon from algal 
symbionts peaks during the latter stages of embryonic development in the salamander 
Ambystoma maculatum. BMC Research Notes, 7(1), 764. https://doi.org/10.1186/1756-0500-7-
764 

Grant, M., Kazamia, E., Cicuta, P., & Smith, A. G. (2014). Direct exchange of vitamin B12 is 
demonstrated by modelling the growth dynamics of algal-bacterial cocultures. The ISME 
Journal, 8(7), 1418–1427. https://doi.org/10.1038/ismej.2014.9 

Griffiths, M. J., & Harrison, S. T. L. (2009). Lipid productivity as a key characteristic for choosing algal 
species for biodiesel production. Journal of Applied Phycology, 21, 493–507. 
https://doi.org/10.1007/s10811-008-9392-7 

Grossman, A. (2000). Acclimation of Chamydomonas reinhardtii to its Nutrient environment. Protist, 
151(3), 201–224. Retrieved from https://ac.els-cdn.com/S1434461004700206/1-s2.0-
S1434461004700206-main.pdf?_tid=ba9aac7c-26a6-4c4b-a290-
f0179ab4cb65&acdnat=1526920017_5ed235567a5bd3d0ed9483ec6a8ba2b1 

Groth, M., Moissiard, G., Wirtz, M., Wang, H., Garcia-Salinas, C., Ramos-Parra, P. A., … Jacobsen, S. E. 
(2016). MTHFD1 controls DNA methylation in Arabidopsis. Nature Communications, 7, 11640. 



 

132 
 

https://doi.org/10.1038/ncomms11640 

Guranowski, A., & Pawelkiewicz, J. (1977). Adenosylhomocysteinase from Yellow Lupin Seeds. 
Purification and Properties. European Journal of Biochemistry, 80(2), 517–523. 
https://doi.org/10.1111/j.1432-1033.1977.tb11907.x 

Haba, G. D. la, & Cantoni, G. L. (1958). The Enzymatic Synthesis of S-adenosyl-L-homocysteine from 
Adenosine and Homocysteine. J. Biol. Chem., 234(3), 603–608. Retrieved from 
http://www.jbc.org/ 

Hadariová, L., Vesteg, M., Birčák, E., Schwartzbach, S. D., & Krajčovič, J. (2017). An intact plastid 
genome is essential for the survival of colorless Euglena longa but not Euglena gracilis. Current 
Genetics, 63(2), 331–341. https://doi.org/10.1007/s00294-016-0641-z 

Haines, K. C., & Guillard, R. R. L. (1974). Growth of vitamin B12-requiring marine diatoms in mixed 
laboratory cultures with vitamin B12 producing marine bacteria. Journal of Phycology, 10(3), 
245–252. https://doi.org/10.1111/j.1529-8817.1974.tb02709.x 

Hall, A. H., Dart, R., & Bogdan, G. (2007). Sodium Thiosulfate or Hydroxocobalamin for the Empiric 
Treatment of Cyanide Poisoning? Ann Emerg Med, 49, 806–813. 
https://doi.org/10.1016/j.annemergmed.2006.09.021 

Hamilton, W. D. (1980). Sex versus Non-Sex versus Parasite. Oikos, 35(2), 282. 
https://doi.org/10.2307/3544435 

Hamilton, W. D., Axelrod, R., & Tanese, R. (1989). Sexual reproduction as an adaptation to resist 
parasites. Proceedings of the National Academy of Sciences, 87(5), 3566–3573. 
https://doi.org/10.4014/jmb.1601.01032 

Hansen, S. K., Rainey, P. B., Haagensen, J. A. J., & Molin, S. (2007). Evolution of species interactions in 
a biofilm community. Nature, 445(7127), 533–536. https://doi.org/10.1038/nature05514 

Hanson, A. D., & Jesse, F. G. (2011). Folate Biosynthesis, Turnover, and Transport in Plants. Annual 
Review of Plant Biology, 62, 105–125. https://doi.org/10.1146/annurev-arplant-042110-103819 

Hanson, A. D., & Roje, S. (2001). one-carbon metabolism in higher plants. Annual Review of Plant 
Physiology and Plant Molecular Biology, 52, 119–137. 
https://doi.org/10.1146/annurev.arplant.52.1.119 

Harcombe, W. (2010). Novel cooperation experimentally evolved between species. Evolution, 64(7), 
2166–2172. https://doi.org/10.1111/j.1558-5646.2010.00959.x 

Hardin, G. (1960). The Competitive Exclusion Principle. Science, 131(3409), 1292–1297. 
https://doi.org/10.1126/science.130.3374.477 

Haurani, F. I. (1973). Vitamin B12 and the megaloblastic development. Science, 182(4107), 78–79. 
https://doi.org/10.1126/science.182.4107.78 

Heal, K. R., Qin, W., Ribalet, F., Bertagnolli, A. D., Coyote-Maestas, W., Hmelo, L. R., … Ingalls, A. E. 
(2017). Two distinct pools of B 12 analogs reveal community interdependencies in the ocean. 
Proceedings of the National Academy of Sciences, 114(2), 364–369. 
https://doi.org/10.1073/pnas.1608462114 

Hecky, R. E., & Kilham, P. (1988). Nutrient limitation of phytoplankton in freshwater and marine 
environments: A review of recent evidence on the effects of enrichment. Limnology and 
Oceanography, 33(4part2), 796–822. https://doi.org/10.4319/lo.1988.33.4part2.0796 

Hehenberger, E., Burki, F., Kolisko, M., & Keeling, P. J. (2016). Functional Relationship between a 



 

133 
 

Dinoflagellate Host and Its Diatom Endosymbiont. Molecular Biology and Evolution, 33(9), 
2376–2390. https://doi.org/10.1093/molbev/msw109 

Heldt, D., Lawrence, A. D., Lindenmeyer, M., Deery, E., Heathcote, P., Rigby, S. E., & Warren, M. J. 
(2005). Aerobic synthesis of vitamin B12: ring contraction and cobalt chelation. Biochemical 
Society Transactions, 33(Pt 4), 815–819. https://doi.org/10.1042/BST0330815 

Helliwell, K. E. (2017). The roles of B vitamins in phytoplankton nutrition: new perspectives and 
prospects. New Phytologist, 216(1), 62–68. https://doi.org/10.1111/nph.14669 

Helliwell, K. E., Collins, S., Kazamia, E., Purton, S., Wheeler, G. L., & Smith, A. G. (2015). Fundamental 
shift in vitamin B12 eco-physiology of a model alga demonstrated by experimental evolution. 
The ISME Journal, 12, 1–10. https://doi.org/10.1038/ismej.2014.230 

Helliwell, K. E., Lawrence, A. D., Holzer, A., Scanlan, D. J., Warren, M. J., & Smith, A. G. (2016). 
Cyanobacteria and Eukaryotic Algae Use Different Chemical Variants of Vitamin B 12. Current 
Biology, 26, 1–10. https://doi.org/10.1016/j.cub.2016.02.041 

Helliwell, K. E., Pandhal, J., Cooper, M. B., Longworth, J., Kudahl, U. J., Russo, D. A., … Smith, A. G. 
(2018). Quantitative proteomics of a B12-dependent alga grown in coculture with bacteria 
reveals metabolic tradeoffs required for mutualism. New Phytologist, 217(2), 599–612. 
https://doi.org/10.1111/nph.14832 

Helliwell, K. E., Scaife, M. a., Sasso, S., Araujo,  a. P. U., Purton, S., & Smith,  a. G. (2014). Unraveling 
Vitamin B12-Responsive Gene Regulation in Algae. Plant Physiology, 165(1), 388–397. 
https://doi.org/10.1104/pp.113.234369 

Helliwell, K. E., Wheeler, G. L., Leptos, K. C., Goldstein, R. E., & Smith, A. G. (2011). Insights into the 
evolution of vitamin B12 auxotrophy from sequenced algal genomes. Molecular Biology and 
Evolution, 28(10), 2921–2933. https://doi.org/10.1093/molbev/msr124 

Hernandez, J. P., De-Bashan, L. E., Rodriguez, D. J., Rodriguez, Y., & Bashan, Y. (2009). Growth 
promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-
promoting bacterium Bacillus pumilus from arid zone soils. European Journal of Soil Biology, 
45(1), 88–93. https://doi.org/10.1016/j.ejsobi.2008.08.004 

Herron, M. D., Hackett, J. D., Aylward, F. O., & Michod, R. E. (2009). Triassic origin and early radiation 
of multicellular volvocine algae. Proceedings of the National Academy of Sciences, 106(9), 
3254–3258. https://doi.org/10.1073/pnas.0811205106 

Herron, M. D., & Michod, R. E. (2008). Evolution of complexity in the volvocine algae: Transitions in 
individuality through Darwin’s eye. Evolution, 62(2), 436–451. https://doi.org/10.1111/j.1558-
5646.2007.00304.x 

Hibbing, M. E., Fuqua, C., Parsek, M. R., & Peterson, S. B. (2010). Bacterial competition: surviving and 
thriving in the microbial jungle. Nature Reviews. Microbiology, 8(1), 15–25. 
https://doi.org/10.1038/nrmicro2259 

Hill, K. L., Hassett, R., Kosman, D., & Merchant, S. (1996). Regulated copper uptake in 
Chlamydomonas reinhardtii in response to copper availability. Plant Physiology, 112(2), 697–
704. https://doi.org/10.1104/pp.112.2.697 

Hillesland, K. L., & Stahl, D. A. (2010). Rapid evolution of stability and productivity at the origin of a 
microbial mutualism. Proceedings of the National Academy of Sciences, 107(5), 2124–2129. 
https://doi.org/10.1073/pnas.0908456107 

Ho, T. Y., Quigg, A., Finkel, Z. V., Milligan, A. J., Wyman, K., Falkowski, P. G., & Morel, F. M. M. (2003). 



 

134 
 

The elemental composition of some marine phytoplankton. Journal of Phycology, 39(6), 1145–
1159. https://doi.org/10.1111/j.0022-3646.2003.03-090.x 

Hodgkin, D. C., Kamper, J., Mackay, M., Pickworth, J., Trueblood, K. N., & White, J. G. (1956). 
Structure of Vitamin B12. Nature, 178(4524), 64–66. https://doi.org/10.1038/178064a0 

Hoeksema, J. D., & Schwartz, M. W. (2003). Expanding comparative-advantage biological market 
models: Contingency of mutualism on partners’ resource requirements and acquisition trade-
offs. Proceedings of the Royal Society B: Biological Sciences, 270(1518), 913–919. 
https://doi.org/10.1098/rspb.2002.2312 

Hoffbrand, A. V., & Jackson, B. F. A. (1993). Correction of the DNA synthesis defect in vitamin B12 
deficiency by tetrahydrofolate: evidence in favour of the methyl-folate trap hypothesis as the 
cause of megaloblastic anaemia in vitamin B 12 deficiency. British Journal of Haematology, 
83(4), 643–647. https://doi.org/10.1111/j.1365-2141.1993.tb04704.x 

Hoffman, D. R., Marion, D. W., Cornatzer, W. E., & Duerre, J. A. (1980). S-Adenosylmethionine and S-
Adenosylhomocysteine Metabolism in Isolated Rat Liver. The Journal of Biological Chemistry, 
255(22), 10822–10827. Retrieved from http://www.jbc.org/content/255/22/10822.full.pdf 

Hoglund, S., Dehshiri, K., Reizenstein -, P., Boddy, K., Will, G., Holmes -, B. M., … E Matthews, C. M. 
(1966). Vitamin B 12 Kinetics in Man. Physics in Medicine & Biology (Vol. 11). Retrieved from 
http://iopscience.iop.org/article/10.1088/0031-9155/11/2/309/pdf 

Holm-Hansen, O. (1985). Nutrient Cycles in Antarctic Marine Ecosystems. In Antarctic Nutrient Cycles 
and Food Webs (pp. 6–10). Berlin, Heidelberg: Springer Berlin Heidelberg. 
https://doi.org/10.1007/978-3-642-82275-9_2 

Hom, E. F. Y., & Murray, A. W. (2014). Niche engineering demonstrates latent capacity for fungal-
algal mutualism. Science, 345(6192), 94–98. https://doi.org/10.1126/science.1251487 

Hondorp, E. R., & Matthews, R. G. (2004). Oxidative stress inactivates cobalamin-independent 
methionine synthase (MetE) in Escherichia coli. PLoS Biology, 2(11), e336. 
https://doi.org/10.1371/journal.pbio.0020336 

Hong, E. J., & Wilson, R. I. (2013). Olfactory neuroscience: Normalization is the norm. Current 
Biology, 23(24), R1093–R1096. https://doi.org/10.1016/j.cub.2013.10.056 

Horst, I., Parker, B. M., Dennis, J. S., Howe, C. J., Scott, S. A., & Smith, A. G. (2012). Treatment of 
Phaeodactylum tricornutum cells with papain facilitates lipid extraction. Journal of 
Biotechnology, 162, 40–49. https://doi.org/10.1016/j.jbiotec.2012.06.033 

Howarth, R. W. (1988). Nutrient Limitation of Net Primary Production in Marine Ecosystems. Annual 
Review of Ecology and Systematics, 19(1), 89–110. 
https://doi.org/10.1146/annurev.es.19.110188.000513 

Humby, P. L., Snyder, E. C. R., & Durnford, D. G. (2013). Conditional senescence in Chlamydomonas 
reinhardtii (Chlorophyceae). Journal of Phycology, 49(2), 389–400. 
https://doi.org/10.1111/jpy.12049 

Hünken, M., Harder, J., & Kirst, G. O. (2008). Epiphytic bacteria on the Antarctic ice diatom 
Amphiprora kufferathii Manguin cleave hydrogen peroxide produced during algal 
photosynthesis. Plant Biology, 10(4), 519–526. https://doi.org/10.1111/j.1438-
8677.2008.00040.x 

Hutchinson, G. E. (1961). The Paradox of the Plankton. The American Naturalist, 95(882), 137–145. 
Retrieved from 



 

135 
 

https://www.jstor.org/stable/pdf/2458386.pdf?refreqid=excelsior%3A5751416b5982b0e7eef3
67ffe67d0d09 

Imanian, B., & Keeling, P. J. (2007). The dinoflagellates Durinskia baltica and Kryptoperidinium 
foliaceum retain functionally overlapping mitochondria from two evolutionarily distinct 
lineages. BMC Evolutionary Biology, 7(1), 172. https://doi.org/10.1186/1471-2148-7-172 

Inskeep, W. P., & Bloom, P. R. (1985). Extinction Coefficients of Chlorophyll a and b in N,N-
Dimethylformamide and 80% Acetone. Plant Physiology, 77(2), 483–485. 
https://doi.org/10.1104/pp.77.2.483 

Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference 
Intakes and its Panel on Folate, O. B. V. and C. (1998). Vitamin B12. Retrieved from 
https://www.ncbi.nlm.nih.gov/books/NBK114302/#ch9.s64 

Jacobs, J., Pudollek, S., Hemschemeier, A., & Happe, T. (2009). A novel, anaerobically induced 
ferredoxin in Chlamydomonas reinhardtii. FEBS Letters, 583(2), 325–329. 
https://doi.org/10.1016/j.febslet.2008.12.018 

Jacobsen, D. W. (1998). Homocysteine and vitamins in cardiovascular disease. Clinical Chemistry, 
44(8(B)), 1833–1843. Retrieved from 
http://clinchem.aaccjnls.org/content/clinchem/44/8/1833.full.pdf 

Jaenike, & J. (1978). A hypothesis to account for the maintenance of sex within populations. Evol. 
Theory, 3, 191–194. Retrieved from https://ci.nii.ac.jp/naid/10003762411/ 

James, S. J., Melnyk, S., Pogribna, M., Pogribny, I. P., & Caudill, M. A. (2002). Elevation in S-
Adenosylhomocysteine and DNA Hypomethylation: Potential Epigenetic Mechanism for 
Homocysteine-Related Pathology. The Journal of Nutrition, 132(8), 2361S–2366S. 
https://doi.org/10.1093/jn/132.8.2361S 

Janouskovec, J., Horák, A., Oborník, M., Lukes, J., & Keeling, P. J. (2010). A common red algal origin of 
the apicomplexan, dinoflagellate, and heterokont plastids. Proceedings of the National 
Academy of Sciences, 107(24), 10949–10954. https://doi.org/10.1073/pnas.1003335107 

Janson, Wouters, Bergman, & Carpenter. (1999). Host specificity in the Richelia-diatom symbiosis 
revealed by hetR gene sequence analysis. Environmental Microbiology, 1(5), 431–438. 
https://doi.org/10.1046/j.1462-2920.1999.00053.x 

Johnson, L. M., Cao, X., & Jacobsen, S. E. (2002). Interplay Between Two Epigenetic Marks: DNA 
methylationan and Histone H3 Lysine 9 Methylation. Current Biology, 12(16), 1360–1367. 
https://doi.org/10.1016/S0960-9822(02)00976-4 

Jones, P. A. (2012). Functions of DNA methylation: islands, start sites, gene bodies and beyond. 
Nature Reviews Genetics, 13(7), 484–492. https://doi.org/10.1038/nrg3230 

Joubert, J. J., & Rijkenberg, F. H. J. (1971). Parasitic Green Algae. Annual Review of Phytopathology, 
9(1), 45–64. https://doi.org/10.1146/annurev.py.09.090171.000401 

Juergens, M. T., Deshpande, R. R., Lucker, B. F., Park, J.-J., Wang, H., Gargouri, M., … Shachar-Hill, Y. 
(2015). The regulation of photosynthetic structure and function during nitrogen deprivation in 
Chlamydomonas reinhardtii. Plant Physiology, 167(2), 558–573. 
https://doi.org/10.1104/pp.114.250530 

Juergens, M. T., Disbrow, B., & Shachar-Hill, Y. (2016). The Relationship of Triacylglycerol and Starch 
Accumulation to Carbon and Energy Flows during Nutrient Deprivation in Chlamydomonas 
reinhardtii. Plant Physiology, 171(4), 2445–2457. https://doi.org/10.1104/pp.16.00761 



 

136 
 

Juzeniene, A., & Nizauskaite, Z. (2013). Photodegradation of cobalamins in aqueous solutions and in 
human blood. Journal of Photochemistry & Photobiology, B: Biology, 122, 7–14. 
https://doi.org/10.1016/j.jphotobiol.2013.03.001 

Kaczmarska, I., Ehrman, J. M., Bates, S. S., Green, D. H., Léger, C., & Harris, J. (2005). Diversity and 
distribution of epibiotic bacteria on Pseudo-nitzschia multiseries (Bacillariophyceae) in culture, 
and comparison with those on diatoms in native seawater. Harmful Algae, 4, 725–741. 
https://doi.org/10.1016/j.hal.2004.10.001 

Kalyanaraman, B., Darley-Usmar, V., Davies, K. J. A., Dennery, P. A., Forman, H. J., Grisham, M. B., … 
Ischiropoulos, H. (2012). Measuring reactive oxygen and nitrogen species with fluorescent 
probes: challenges and limitations. Free Radical Biology & Medicine, 52(1), 1–6. 
https://doi.org/10.1016/j.freeradbiomed.2011.09.030 

Kamalanathan, M., Pierangelini, M., Shearman, L. A., Gleadow, R., & Beardall, J. (2016). Impacts of 
nitrogen and phosphorus starvation on the physiology of Chlamydomonas reinhardtii. Journal 
of Applied Phycology, 28(3), 1509–1520. https://doi.org/10.1007/s10811-015-0726-y 

Katju, V., & Bergthorsson, U. (2013). Copy-number changes in evolution: rates, fitness effects and 
adaptive significance. Frontiers in Genetics, 4, 273. https://doi.org/10.3389/fgene.2013.00273 

Kawecki, T. J., Lenski, R. E., Ebert, D., Hollis, B., Olivieri, I., & Whitlock, M. C. (2012). Experimental 
evolution. Trends in Ecology & Evolution, 27(10), 547–560. 
https://doi.org/10.1016/j.tree.2012.06.001 

Kazamia, E., Czesnick, H., Nguyen, T. T. Van, Croft, M. T., Sherwood, E., Sasso, S., … Smith, A. G. 
(2012). Mutualistic interactions between vitamin B12 -dependent algae and heterotrophic 
bacteria exhibit regulation. Environmental Microbiology, 14(6), 1466–1476. 
https://doi.org/10.1111/j.1462-2920.2012.02733.x 

Kazamia, E., Helliwell, K. E., Purton, S., & Smith, A. G. (2016). How mutualisms arise in phytoplankton 
communities: building eco-evolutionary principles for aquatic microbes. Ecology Letters, 19(7), 
810–822. https://doi.org/10.1111/ele.12615 

Keck, B., Munder, M., & Renz, P. (1998). Biosynthesis of cobalamin in Salmonella typhimurium: 
transformation of riboflavin into the 5,6-dimethylbenzimidazole moiety. Retrieved from 
https://link.springer.com/content/pdf/10.1007%2Fs002030050679.pdf 

Kennedy, D., Cannavan, A., Molloy, A., Taylor, S. M., & D W J Blanchflower, A. N. (1990). 
Methylmalonyl-CoA mutase (EC 5.4.99.2) and methionine synthetase (EC 2.1.1.13) in the 
tissues of cobalt-vitamin B12 deficient sheep. British Journal of Nutrition, 64, 721–732. 
https://doi.org/10.1079/BJN19900074 

Kerney, R., Kim, E., Hangarter, R. P., Heiss, A. A., Bishop, C. D., & Hall, B. K. (2011). Intracellular 
invasion of green algae in a salamander host. Proceedings of the National Academy of Sciences, 
108(16), 6497–6502. https://doi.org/10.1073/pnas.1018259108 

Khona, D. K., Shirolikar, S. M., Gawde, K. K., Hom, E., Deodhar, M. A., & D’Souza, J. S. (2016). 
Characterization of salt stress-induced palmelloids in the green alga, Chlamydomonas 
reinhardtii. Algal Research, 16, 434–448. https://doi.org/10.1016/j.algal.2016.03.035 

Kim, B.-H., Ramanan, R., Cho, D.-H., Oh, H.-M., & Kim, H.-S. (2014). Role of Rhizobium, a plant 
growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. 
Biomass and Bioenergy, 69, 95–105. https://doi.org/10.1016/j.biombioe.2014.07.015 

Kim, P. B., Nelson, J. W., & Breaker, R. R. (2015). An Ancient Riboswitch Class in Bacteria Regulates 
Purine Biosynthesis and One-Carbon Metabolism. Molecular Cell, 57(2), 317–328. 



 

137 
 

https://doi.org/10.1016/j.molcel.2015.01.001 

Kirk, D. L. (1999). Evolution of multicellularity in the volvocine algae. Current Opinion in Plant 
Biology, 2(6), 496–501. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10607653 

Kisliuk, R. ., & Woods, D. . (1960). Interrelationships between Folic Acid and Cobalamin in the 
Synthesis of Methionine by Extracts of Escherichia coli. Biochem. J, 75, 467. Retrieved from 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1204495/pdf/biochemj01012-0054.pdf 

Klausmeier, C. A., Litchman, E., Daufresne, T., & Levin, S. A. (2004). Optimal nitrogen-to-phosphorus 
stoichiometry of phytoplankton. Nature, 429(6988), 171–174. 
https://doi.org/10.1038/nature02454 

Kobayashi, Y., Harada, N., Nishimura, Y., Saito, T., Nakamura, M., Fujiwara, T., … Misumi, O. (2014). 
Algae Sense Exact Temperatures: Small Heat Shock Proteins Are Expressed at the Survival 
Threshold Temperature in Cyanidioschyzon merolae and Chlamydomonas reinhardtii. Genome 
Biology and Evolution, 6(10), 2731–2740. https://doi.org/10.1093/gbe/evu216 

Kok, D. E. G., Dhonukshe-Rutten, R. A. M., Lute, C., Heil, S. G., Uitterlinden, A. G., van der Velde, N., … 
Steegenga, W. T. (2015). The effects of long-term daily folic acid and vitamin B12 
supplementation on genome-wide DNA methylation in elderly subjects. Clinical Epigenetics, 7, 
121. https://doi.org/10.1186/s13148-015-0154-5 

Kolberg, M., Strand, K. R., Graff, P., & Andersson, K. K. (2004). Structure, function, and mechanism of 
ribonucleotide reductases. Biochimica et Biophysica Acta, 1699(1–2), 1–34. 
https://doi.org/10.1016/S1570-9639(04)00054-8 

Krishnan, A., Kumaraswamy, G. K., Vinyard, D. J., Gu, H., Ananyev, G., Posewitz, M. C., & Dismukes, 
G. C. (2015). Metabolic and photosynthetic consequences of blocking starch biosynthesis in the 
green alga Chlamydomonas reinhardtii sta6 mutant. The Plant Journal, 81(6), 947–960. 
https://doi.org/10.1111/tpj.12783 

Kropat, J., Hong-Hermesdorf, A., Casero, D., Ent, P., Castruita, M., Pellegrini, M., … Malasarn, D. 
(2011). A revised mineral nutrient supplement increases biomass and growth rate in 
Chlamydomonas reinhardtii. Plant J, 66(5), 770–780. https://doi.org/10.1111/j.1365-
313X.2011.04537.x 

Kropat, J., Tottey, S., Birkenbihl, R. P., Depege, N., Huijser, P., & Merchant, S. (2005). A regulator of 
nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the 
GTAC core of copper response element. Proceedings of the National Academy of Sciences, 
102(51), 18730–18735. https://doi.org/10.1073/pnas.0507693102 

Kulk, G., Van De Poll, W. H., Visser, R. J. W., & Buma, A. G. J. (2013). Low nutrient availability reduces 
high-irradiance-induced viability loss in oceanic phytoplankton. Limnology and Oceanography, 
58(5), 1747–1760. https://doi.org/10.4319/lo.2013.58.5.1747 

Kumar, K., Mella-Herrera, R. A., & Golden, J. W. (2010). Cyanobacterial heterocysts. Cold Spring 
Harbor Perspectives in Biology, 2(4), a000315. https://doi.org/10.1101/cshperspect.a000315 

Larsson, K. M., Logan, D. T., & Nordlund, P. (2010). Structural basis for adenosylcobalamin activation 
in adocbl-dependent ribonucleotide reductases. ACS Chemical Biology, 5(10), 933–942. 
https://doi.org/10.1021/cb1000845 

Lawrence, D., Fiegna, F., Behrends, V., Bundy, J. G., Phillimore, A. B., Bell, T., & Barraclough, T. G. 
(2012). Species interactions alter evolutionary responses to a novel environment. PLoS Biology, 
10(5), e1001330. https://doi.org/10.1371/journal.pbio.1001330 



 

138 
 

Lee, S. Y. (1996). High cell-density culture of Escherichia coli. Trends in Biotechnology, 14(3), 98–105. 
https://doi.org/10.1016/0167-7799(96)80930-9 

Lema, K. A., Willis, B. L., & Bourne, D. G. (2012). Corals form characteristic associations with 
symbiotic nitrogen-fixing bacteria. Applied and Environmental Microbiology, 78(9), 3136–3144. 
https://doi.org/10.1128/AEM.07800-11 

Letcher, P. M., Lopez, S., Schmieder, R., Lee, P. A., Behnke, C., Powell, M. J., & McBride, R. C. (2013). 
Characterization of Amoeboaphelidium protococcarum, an Algal Parasite New to the 
Cryptomycota Isolated from an Outdoor Algal Pond Used for the Production of Biofuel. PLoS 
ONE, 8(2), e56232. https://doi.org/10.1371/journal.pone.0056232 

Leung, K.-Y., Pai, Y. J., Chen, Q., Santos, C., Calvani, E., Sudiwala, S., … Greene, N. D. E. (2017). 
Partitioning of One-Carbon Units in Folate and Methionine Metabolism Is Essential for Neural 
Tube Closure. Cell Reports, 21(7), 1795–1808. https://doi.org/10.1016/j.celrep.2017.10.072 

Li, X., Moellering, E. R., Liu, B., Johnny, C., Fedewa, M., Sears, B. B., … Benning, C. (2012). A 
Galactoglycerolipid Lipase Is Required for Triacylglycerol Accumulation and Survival Following 
Nitrogen Deprivation in Chlamydomonas reinhardtii. Plant Cell, 24(11), 4670–4686. 
https://doi.org/10.1105/tpc.112.105106 

Lieber, C. S., & Packer, L. (2002). S-Adenosylmethionine: molecular, biological, and clinical aspects—
an introduction. The American Journal of Clinical Nutrition, 76(5), 1148S–1150S. 
https://doi.org/10.1093/ajcn/76.5.1148S 

Lievers, K. J. A., Kluijtmans, L. A. J., Van Der Put, · N M J, Trijbels, F. J. M., Blom, · H J, Boers, G. H. J., … 
Blom, J. (2001). A second common variant in the methylenetetrahydrofolate reductase 
(MTHFR) gene and its relationship to MTHFR enzyme activity, homocysteine, and 
cardiovascular disease risk. J Mol Med, 79, 522–528. https://doi.org/10.1007/s001090100253 

Lively, C. M., Craddock, C., & Vrijenhoek, R. C. (1990). Red Queen hypothesis supported by 
parasitism in sexual and clonal fish. Nature, 344(6269), 864–866. 
https://doi.org/10.1038/344864a0 

Loizeau, K., De Brouwer, V., Gambonnet, B., Yu, A., Renou, J.-P., Van Der Straeten, D., … Ravanel, S. 
(2008). A genome-wide and metabolic analysis determined the adaptive response of 
Arabidopsis cells to folate depletion induced by methotrexate. Plant Physiology, 148(4), 2083–
2095. https://doi.org/10.1104/pp.108.130336 

Loizeau, K., Gambonnet, B., Zhang, G.-F., Curien, G., Jabrin, S., Van Der Straeten, D., … Ravanel, S. 
(2007). Regulation of one-carbon metabolism in Arabidopsis: the N-terminal regulatory domain 
of cystathionine gamma-synthase is cleaved in response to folate starvation. Plant Physiology, 
145(2), 491–503. https://doi.org/10.1104/pp.107.105379 

Long, J. C., & Merchant, S. S. (2008). Photo-oxidative Stress Impacts the Expression of Genes 
Encoding Iron Metabolism Components in Chlamydomonas †. Photochemistry and 
Photobiology, 84(6), 1395–1403. https://doi.org/10.1111/j.1751-1097.2008.00451.x 

Long, S. R. (1989). Rhizobium-legume nodulation: Life together in the underground. Cell, 56(2), 203–
214. https://doi.org/10.1016/0092-8674(89)90893-3 

Lopez, D., Hamaji, T., Kropat, J., De Hoff, P., Morselli, M., Rubbi, L., … Pellegrini, M. (2015). Dynamic 
Changes in the Transcriptome and Methylome of Chlamydomonas reinhardtii throughout Its 
Life Cycle. Plant Physiology, 169(4), 2730–2743. https://doi.org/10.1104/pp.15.00861 

Lucock, M. (2004). Is folic acid the ultimate functional food component for disease prevention? BMJ 
(Clinical Research Ed.), 328(7433), 211–214. https://doi.org/10.1136/bmj.328.7433.211 



 

139 
 

Lutz, S., Anesio, A. M., Raiswell, R., Edwards, A., Newton, R. J., Gill, F., & Benning, L. G. (2016). The 
biogeography of red snow microbiomes and their role in melting arctic glaciers. Nature 
Communications, 7, 11968. https://doi.org/10.1038/ncomms11968 

Malanovic, N., Streith, I., Wolinski, H., Rechberger, G., Kohlwein, S. D., & Tehlivets, O. (2008). S-
adenosyl-L-homocysteine hydrolase, key enzyme of methylation metabolism, regulates 
phosphatidylcholine synthesis and triacylglycerol homeostasis in yeast: Implications for 
homocysteine as a risk factor of atherosclerosis. Journal of Biological Chemistry, 283(35), 
23989–23999. https://doi.org/10.1074/jbc.M800830200 

Maranger, R., Bird, D. F., & Price, N. M. (1998). Iron acquisition by photosynthetic marine 
phytoplankton from ingested bacteria. Nature, 396(6708), 248–251. 
https://doi.org/10.1038/24352 

Marian Cramer, B., & Myers, J. (1952). Growth and Photosynthetic Characteristics of Euglena gracilis. 
Archiv fur Mikrobiologie (Vol. 17). Retrieved from 
https://link.springer.com/content/pdf/10.1007/BF00410835.pdf 

Marin, B., & Birger. (2014). Reduction to essentials: Ostreococcus, the smallest free-living eukaryote. 
Perspectives in Phycology, 1(1), 7–10. https://doi.org/10.1127/2198-011X/2014/0011 

Maroti, G., & Kondorosi, E. (2014). Nitrogen-fixing Rhizobium-legume symbiosis: are polyploidy and 
host peptide-governed symbiont differentiation general principles of endosymbiosis? Frontiers 
in Microbiology, 5, 326. https://doi.org/10.3389/fmicb.2014.00326 

Marsh, E. N., & Marsh, G. (1999). Coenzyme B12 (cobalamin)-dependent enzymes. Essays in 
Biochemistry, 34, 139–154. https://doi.org/10.1042/BSE0340139 

Martin, J. H., & Fitzwater, S. E. (1988). Iron deficiency limits phytoplankton growth in the north-east 
Pacific subarctic. Nature, 331(6154), 341–343. https://doi.org/10.1038/331341a0 

Martin, J. H., Fitzwater, S. E., & Gordon, R. M. (1990). Iron deficiency limits phytoplankton growth in 
Antarctic waters. Global Biogeochemical Cycles, 4(1), 5–12. 
https://doi.org/10.1029/GB004i001p00005 

Martin, N. C., & Goodenough, U. W. (1975). Gametic differentiation in Chlamydomonas reinhardtii. I. 
Production of gametes and their fine structure. The Journal of Cell Biology, 67(3), 587–605. 
https://doi.org/10.1083/JCB.67.3.587 

Martin, W., Stoebe, B., Goremykin, V., Hansmann, S., Hasegawa, M., & Kowallik, K. V. (1998). Gene 
transfer to the nucleus and the evolution of chloroplasts. Nature, 393(6681), 162–165. 
https://doi.org/10.1038/30234 

Mayali, X., Franks, P. J. S., & Burton, R. S. (2011). Temporal attachment dynamics by distinct bacterial 
taxa during a dinoflagellate bloom. Aquatic Microbial Ecology, 63(2), 111–122. 
https://doi.org/10.3354/ame01483 

McFadden, G. I. (2001). Primary and secondary endosymbiosis and the origin of plastids. Journal of 
Phycology, 37(6), 951–959. https://doi.org/10.1046/j.1529-8817.2001.01126.x 

McKay, J. A., Groom, A., Potter, C., Coneyworth, L. J., Ford, D., Mathers, J. C., & Relton, C. L. (2012). 
Genetic and non-genetic influences during pregnancy on infant global and site specific DNA 
methylation: Role for folate gene variants and vitamin B 12. PLoS ONE, 7(3), 33290. 
https://doi.org/10.1371/journal.pone.0033290 

Mcmullin, M. F., Young, P. B., Bailie, K. E. M., Savage, G. A., Lappin, T. R. J., & White, R. (2001). 
Homocysteine and methylmalonic acid as indicators of folate and vitamin B12 deficiency in 



 

140 
 

pregnancy. Clinical and Laboratory Haematology, 23(3), 161–165. 
https://doi.org/10.1046/j.1365-2257.2001.00370.x 

Meï, C. E., Cussac, M., Haslam, R. P., Beaudoin, F., Wong, Y.-S., Maréchal, E., & Rébeillé, F. (2016). C1 
Metabolism Inhibition and Nitrogen Deprivation Trigger Triacylglycerol Accumulation in 
Arabidopsis thaliana Cell Cultures and Highlight a Role of NPC in Phosphatidylcholine-to-
Triacylglycerol Pathway. Frontiers in Plant Science, 7, 1–16. 
https://doi.org/10.3389/fpls.2016.02014 

Melnyk, S., Pogribna, M., Pogribny, I. P., Yi, P., & James, S. J. (2000). Measurement of plasma and 
intracellular S-adenosylmethionine and S-adenosylhomocysteine utilizing coulometric 
electrochemical detection: alterations with plasma homocysteine and pyridoxal 5’-phosphate 
concentrations. Clinical Chemistry, 46(2), 265–272. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/10657384 

Meng, J., Wang, L., Wang, J., Zhao, X., Cheng, J., Yu, W., … Gong, Z. (2018). METHIONINE 
ADENOSYLTRANSFERASE 4 mediates DNA and histone methylation. Plant Physiology, 177(2), 
652–670. https://doi.org/10.1104/pp.18.00183 

Mentch, S. J., & Locasale, J. W. (2016). One-carbon metabolism and epigenetics: understanding the 
specificity. Annals of the New York Academy of Sciences, 1363(1), 91–98. 
https://doi.org/10.1111/nyas.12956 

Merchant, S., & Bogorad, L. (1986). Regulation by copper of the expression of plastocyanin and 
cytochrome c552 in Chlamydomonas reinhardi. Molecular and Cellular Biology, 6(2), 462–469. 
https://doi.org/10.1128/MCB.6.2.462.Updated 

Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz, S. J., Witman, G. B., … Zhou, K. 
(2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. 
Science, 318(5848), 245–251. https://doi.org/10.1126/science.1143609 

Michaelis, L., & Menten, M. L. (1913). The kinetics of invertase action. Biochemische Zeitschrift. 
https://doi.org/10.1021/bi201284u 

Michod, R. E. (2006). The group covariance effect and fitness trade-offs during evolutionary 
transitions in individuality. Proceedings of the National Academy of Sciences, 103(24), 9113–
9117. https://doi.org/10.1073/pnas.0601080103 

Michod, R. E. (2007). Evolution of individuality during the transition from unicellular to multicellular 
life. Proceedings of the National Academy of Sciences, 104(Supplement 1), 8613–8618. 
https://doi.org/10.1073/pnas.0701489104 

Miller, T. R., & Belas, R. (2006). Motility is involved in Silicibacter sp. TM1040 interaction with 
dinoflagellates. Environmental Microbiology, 8(9), 1648–1659. https://doi.org/10.1111/j.1462-
2920.2006.01071.x 

Mills, M. M., Ridame, C., Davey, M., La Roche, J., & Geider, R. J. (2004). Iron and phosphorus co-limit 
nitrogen fixation in the eastern tropical North Atlantic. Nature, 429(6989), 292–294. 
https://doi.org/10.1038/nature02550 

Mitchell, J. G., Pearson, L., & Dillon, S. (1996). Clustering of marine bacteria in seawater enrichments. 
Applied and Environmental Microbiology, 62(10), 3716–3721. Retrieved from 
http://aem.asm.org/ 

Mogk, A., Tomoyasu, T., Goloubinoff, P., Rüdiger, S., Röder, D., Langen, H., & Bukau, B. (1999). 
Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation 
by DnaK and ClpB. The EMBO Journal, 18(24), 6934–6949. 



 

141 
 

https://doi.org/10.1093/emboj/18.24.6934 

Moldovan, M. A., Petrova, S. A., & Gelfand, M. S. (2018). Comparative genomic analysis of fungal 
TPP-riboswitches. Fungal Genetics and Biology, 114, 34–41. 
https://doi.org/10.1016/J.FGB.2018.03.004 

Moll, R., & Davis, B. (2017). Iron, vitamin B12 and folate. Medicine, 45(4), 198–203. 
https://doi.org/10.1016/j.mpmed.2017.01.007 

Momin, M., Jia, J., Fan, F., Li, J., Dou, J., Chen, D., … Zhang, Y. (2017). Relationship between plasma 
homocysteine level and lipid profiles in a community-based Chinese population. Lipids in 
Health and Disease, 16(54), 1–7. https://doi.org/10.1186/s12944-017-0441-6 

Monod, J. (1949). The Growth of Bacterial Cultures. Annual Review of Microbiology, 3(1), 371–394. 
https://doi.org/10.1146/annurev.mi.03.100149.002103 

Moon, M., Kim, C. W., Park, W.-K., Yoo, G., Choi, Y.-E., & Yang, J.-W. (2013). Mixotrophic growth with 
acetate or volatile fatty acids maximizes growth and lipid production in Chlamydomonas 
reinhardtii. Algal Research, 2(4), 352–357. https://doi.org/10.1016/J.ALGAL.2013.09.003 

Moore, S. J., Mayer, M. J., Biedendieck, R., Deery, E., & Warren, M. J. (2014). Towards a cell factory 
for vitamin B12 production in Bacillus megaterium: bypassing of the cobalamin riboswitch 
control elements. New Biotechnology, 31(6), 553–561. 
https://doi.org/10.1016/J.NBT.2014.03.003 

Moritz, C., Mccallum, H., Donnellan, S., & Roberts, J. D. (1991). Parasite loads in parthenogenetic and 
sexual lizards (Heteronotia binoei): Support for the Red Queen hypothesis. Proceedings of the 
Royal Society B: Biological Sciences, 244(1310), 145–149. 
https://doi.org/10.1098/rspb.1991.0063 

Morran, L. T., Schmidt, O. G., Gelarden, I. A., Parrish, R. C., & Lively, C. M. (2011). Running with the 
Red Queen: Host-parasite coevolution selects for biparental sex. Science, 333(6039), 216–218. 
https://doi.org/10.1126/science.1206360 

Morris, J. J. (2015). Black Queen evolution: The role of leakiness in structuring microbial 
communities. Trends in Genetics, 31(8), 475–482. https://doi.org/10.1016/j.tig.2015.05.004 

Morris, J. J., Lenski, R. E., & Zinser, E. R. (2012). The Black Queen Hypothesis : Evolution of 
Dependencies through adaptive gene loss. American Society for Microbiology, 3(2), 1–7. 
https://doi.org/10.1128/mBio.00036-12.Copyright 

Morris, J. J., Papoulis, S. E., & Lenski, R. E. (2014). Coexistence of evolving bacteria stabilized by a 
shared Black Queen function. Evolution, 68(10), 2960–2971. 
https://doi.org/10.1111/evo.12485 

Morse, D., Salois, P., Markovic, P., & Hastings, J. W. (1995). A nuclear-encoded form II RuBisCO in 
dinoflagellates. Science, 268(5217), 1622–1624. https://doi.org/10.1126/science.7777861 

Moseley, J. L., Allinger, T., Herzog, S., Hoerth, P., Wehinger, E., Merchant, S., & Hippler, M. (2002). 
Adaptation to Fe-deficiency requires remodeling of the photosynthetic apparatus. The EMBO 
Journal, 21(24), 6709–6720. https://doi.org/10.1093/EMBOJ/CDF666 

Moseley, J. L., Chang, C.-W., & Grossman, A. R. (2006). Genome-based approaches to understanding 
phosphorus deprivation responses and PSR1 control in Chlamydomonas reinhardtii. Eukaryotic 
Cell, 5(1), 26–44. https://doi.org/10.1128/EC.5.1.26-44.2006 

Msanne, J., Xu, D., Konda, A. R., Casas-Mollano, J. A., Awada, T., Cahoon, E. B., & Cerutti, H. (2012). 
Metabolic and gene expression changes triggered by nitrogen deprivation in the 



 

142 
 

photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. 
Phytochemistry, 75, 50–59. https://doi.org/10.1016/j.phytochem.2011.12.007 

Muggia, L., Vancurova, L., Škaloud, P., Peksa, O., Wedin, M., & Grube, M. (2013). The symbiotic 
playground of lichen thalli - a highly flexible photobiont association in rock-inhabiting lichens. 
FEMS Microbiology Ecology, 85(2), 313–323. https://doi.org/10.1111/1574-6941.12120 

Müller, P., Li, X. P., & Niyogi, K. K. (2001). Non-photochemical quenching. A response to excess light 
energy. Plant Physiology, 125(4), 1558–1566. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/11299337 

Nahvi, A., Barrick, J. E., & Breaker, R. R. (2004). Coenzyme B12 riboswitches are widespread genetic 
control elements in prokaryotes. Nucleic Acids Research, 32(1), 143–150. 
https://doi.org/10.1093/nar/gkh167 

Nakayama, T., Ikegami, Y., Nakayama, T., Ishida, K., Inagaki, Y., & Inouye, I. (2011). Spheroid bodies 
in rhopalodiacean diatoms were derived from a single endosymbiotic cyanobacterium. Journal 
of Plant Research, 124(1), 93–97. https://doi.org/10.1007/s10265-010-0355-0 

Nakayama, T., Kamikawa, R., Tanifuji, G., Kashiyama, Y., Ohkouchi, N., Archibald, J. M., & Inagaki, Y. 
(2014). Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent 
adaptations to an intracellular lifestyle. Proceedings of the National Academy of Sciences, 
111(31), 11407–11412. https://doi.org/10.1073/pnas.1405222111 

Nash, J. (1950). Equilibrium Points in n-Person Games. Proceedings of the National Academy of 
Sciences, 36(1), 48–49. https://doi.org/https://doi.org/10.1073/pnas.36.1.48 

Naumann, B., Busch, A., Allmer, J., Ostendorf, E., Zeller, M., Kirchhoff, H., & Hippler, M. (2007). 
Comparative quantitative proteomics to investigate the remodeling of bioenergetic pathways 
under iron deficiency in Chlamydomonas reinhardtii. Proteomics, 7(21), 3964–3979. 
https://doi.org/10.1002/pmic.200700407 

Nedelcu, A. M. (2009). Environmentally induced responses co-opted for reproductive altruism. 
Biology Letters, 5(6), 805–808. https://doi.org/10.1098/rsbl.2009.0334 

Neuburger, M., Rébeillé, F., Jourdain, A., Nakamura, S., & Douce, R. (1996). Mitochondria are a major 
site for folate and thymidylate synthesis in plants. Journal of Biological Chemistry, 271(16), 
9466–9472. https://doi.org/10.1074/jbc.271.16.9466 

Newton, A. C., Fitt, B. D. L., Atkins, S. D., Walters, D. R., & Daniell, T. J. (2010). Pathogenesis, 
parasitism and mutualism in the trophic space of microbe-plant interactions. Trends in 
Microbiology, 18(8), 365–373. https://doi.org/10.1016/j.tim.2010.06.002 

Nguyen, A. V., Thomas-Hall, S. R., Malnoë, A., Timmins, M., Mussgnug, J. H., Rupprecht, J., … Schenk, 
P. M. (2008). Transcriptome for photobiological hydrogen production induced by sulfur 
deprivation in the green alga Chlamydomonas reinhardtii. Eukaryotic Cell, 7(11), 1965–1979. 
https://doi.org/10.1128/EC.00418-07 

Nichols, D., Lewis, K., Orjala, J., Mo, S., Ortenberg, R., O’Connor, P., … Epstein, S. S. (2008). Short 
peptide induces an “uncultivable” microorganism to grow in vitro. Applied and Environmental 
Microbiology, 74(15), 4889–4897. https://doi.org/10.1128/AEM.00393-08 

Nielsen, M. J., Rasmussen, M. R., Andersen, C. B. F., Nexø, E., & Moestrup, S. K. (2012). Vitamin B12 
transport from food to the body’s cells—a sophisticated, multistep pathway. Nature Reviews 
Gastroenterology & Hepatology, 9(6), 345–354. https://doi.org/10.1038/nrgastro.2012.76 

Niklas, K. J. (2014). The evolutionary-developmental origins of multicellularity. American Journal of 



 

143 
 

Botany, 101(1), 6–25. https://doi.org/10.3732/ajb.1300314 

Noga, A. A., Stead, L. M., Zhao, Y., Brosnan, M. E., Brosnan, J. T., & Vance, D. E. (2003). Plasma 
homocysteine is regulated by phospholipid methylation. The Journal of Biological Chemistry, 
278(8), 5952–5955. https://doi.org/10.1074/jbc.M212194200 

Nowack, E. C. M., Melkonian, M., & Glöckner, G. (2008). Chromatophore Genome Sequence of 
Paulinella Sheds Light on Acquisition of Photosynthesis by Eukaryotes. Current Biology, 18(6), 
410–418. https://doi.org/10.1016/j.cub.2008.02.051 

Nowack, E. C. M., Price, D. C., Bhattacharya, D., Singer, A., Melkonian, M., & Grossman, A. R. (2016). 
Gene transfers from diverse bacteria compensate for reductive genome evolution in the 
chromatophore of Paulinella chromatophora. Proceedings of the National Academy of Sciences, 
113(43), 12214–12219. https://doi.org/10.1073/pnas.1608016113 

Nowack, E. C. M., Vogel, H., Groth, M., Grossman, A. R., Melkonian, M., & Glockner, G. (2011). 
Endosymbiotic Gene Transfer and Transcriptional Regulation of Transferred Genes in Paulinella 
chromatophora. Molecular Biology and Evolution, 28(1), 407–422. 
https://doi.org/10.1093/molbev/msq209 

Obeid, R., & Herrmann, W. (2009). Homocysteine and lipids: S-Adenosyl methionine as a key 
intermediate. FEBS Letters, 583(8), 1215–1225. https://doi.org/10.1016/j.febslet.2009.03.038 

Ohno, M., Okano, I., Watsuji, T., Kakinuma, T., Ueda, K., & Beppu, T. (1999). Establishing the 
Independent Culture of a Strictly Symbiotic Bacterium Symbiobacterium thermophilum from Its 
Supporting Bacillus Strain. Bioscience, Biotechnology, and Biochemistry, 63(6), 1083–1090. 
https://doi.org/10.1271/bbb.63.1083 

Ohwada, K. (1973). Seasonal Cycles of Vitamin B12, Thiamine and Biotin in Lake Sagami. Patterns of 
Their Distribution and Ecological Significance. Internationale Revue Der Gesamten 
Hydrobiologie Und Hydrographie, 58(6), 851–871. https://doi.org/10.1002/iroh.19730580607 

Ohwada, K., & Taga, N. (1972). Distribution and seasonal variation of vitamin B12, thiamine and 
biotin in the sea. Marine Chemistry, 1(1), 61–73. https://doi.org/10.1016/0304-4203(72)90007-
2 

Oliveira, N. M., Niehus, R., & Foster, K. R. (2014). Evolutionary limits to cooperation in microbial 
communities. Proceedings of the National Academy of Sciences, 111(50), 17941–17946. 
https://doi.org/10.1073/pnas.1412673111 

Olsen, Y., Knutsen, G., & Lien, T. (1983). Characteristics of phosphorus limitation in Chlamydomonas 
reinhardtii (Chlorophyceae) and its palmelloids. Journal of Phycology, 19(3), 313–319. 
https://doi.org/10.1111/j.0022-3646.1983.00313.x 

Ottenhof, H. H., Ashurst, J. L., Whitney, H. M., Saldanha, S. A., Schmitzberger, F., Gweon, H. S., … 
Smith, A. G. (2004). Organisation of the pantothenate (vitamin B5) biosynthesis pathway in 
higher plants. The Plant Journal : For Cell and Molecular Biology, 37(1), 61–72. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/14675432 

Oulhen, N., Schulz, B. J., & Carrier, T. J. (2016). English translation of Heinrich Anton de Bary’s 1878 
speech, “Die Erscheinung der Symbiose” ('De la symbiose’). Symbiosis, 69, 131–139. 
https://doi.org/10.1007/s13199-016-0409-8 

Page, M. D., Allen, M. D., Kropat, J., Urzica, E. I., Karpowicz, S. J., Hsieh, S. I., … Merchant, S. S. (2012). 
Fe sparing and Fe recycling contribute to increased superoxide dismutase capacity in iron-
starved Chlamydomonas reinhardtii. The Plant Cell, 24(6), 2649–2665. 
https://doi.org/10.1105/tpc.112.098962 



 

144 
 

Page, M. D., Kropat, J., Hamel, P. P., & Merchant, S. S. (2009). Two Chlamydomonas CTR copper 
transporters with a novel cys-met motif are localized to the plasma membrane and function in 
copper assimilation. The Plant Cell, 21(3), 928–943. https://doi.org/10.1105/tpc.108.064907 

Palacios, O. A., Bashan, Y., & de-Bashan, L. E. (2014). Proven and potential involvement of vitamins in 
interactions of plants with plant growth-promoting bacteria—an overview. Biology and Fertility 
of Soils, 50(3), 415–432. https://doi.org/10.1007/s00374-013-0894-3 

Palenik, B., Grimwood, J., Aerts, A., & Pierre, R. (2007). The tiny eukaryote Ostreococcus provides 
genomic insights into the paradox of plankton speciation. Proceedings of the National Academy 
of Sciences, 104(18), 7705–7710. https://doi.org/10.1080/03605302.2014.892128 

Palmer, J. L., & Abeles, R. H. (1979). The mechanism of action of S-adenosylhomocysteinase. The 
Journal of Biological Chemistry, 254(4), 1217–1226. Retrieved from http://www.jbc.org/ 

Panzeca, C., Beck, A. J., Tovar-Sanchez, A., Segovia-Zavala, J., Taylor, G. T., Gobler, C. J., & Sañudo-
Wilhelmy, S. a. (2009). Distributions of dissolved vitamin B12 and Co in coastal and open-ocean 
environments. Estuarine, Coastal and Shelf Science, 85(2), 223–230. 
https://doi.org/10.1016/j.ecss.2009.08.016 

Panzeca, C., Tovar-Sanchez, A., Agustí, S., Reche, I., Duarte, C. M., Taylor, G. T., & Sañudo-Wilhelmy, 
S. A. (2006). B vitamins as regulators of phytoplankton dynamics. Eos, Transactions American 
Geophysical Union, 87(52), 593. https://doi.org/10.1029/2006EO520001 

Park, J.-J., Wang, H., Gargouri, M., Deshpande, R. R., Skepper, J. N., Holguin, F. O., … Gang, D. R. 
(2015). The response of Chlamydomonas reinhardtii to nitrogen deprivation: a systems biology 
analysis. The Plant Journal, 81(4), 611–624. https://doi.org/10.1111/tpj.12747 

Parkhill, J.-P., Maillet, G., & Cullen, J. J. (2001). Fluorescence-based maximal quantum yield for PSII as 
a diagnostic of nutrient stress. Journal of Phycology, 37(4), 517–529. 
https://doi.org/10.1046/j.1529-8817.2001.037004517.x 

Peaudecerf, F. J., Bunbury, F., Bhardwaj, V., Bees, M. A., Smith, A. G., Goldstein, R. E., & Croze, O. A. 
(2018). Microbial mutualism at a distance: The role of geometry in diffusive exchanges. Physical 
Review E, 97(2), 22411. https://doi.org/10.1103/PhysRevE.97.022411 

Pedersen, M. F., & Borum, J. (1996). Nutrient control of algal growth in estuarine waters. Nutrient 
limitation and the importance of nitrogen requirements... Oceanographic Literature Review, 
142, 261–272. https://doi.org/10.3354/meps142261 

Pedersen, S., Bloch, P. L., Reeh, S., & Neidhardt, F. C. (1978). Patterns of protein synthesis in E. coli: a 
catalog of the amount of 140 individual proteins at different growth rates. Cell, 14(1), 179–190. 
https://doi.org/10.1016/0092-8674(78)90312-4 

Pérez-Pérez, M. E., Lemaire, S. D., & Crespo, J. L. (2012). Reactive oxygen species and autophagy in 
plants and algae. Plant Physiology, 160(1), 156–164. https://doi.org/10.1104/pp.112.199992 

Perlman, D., & Barrett, J. M. (1959). Biosynthesis of Cobalamins by cell suspensions of 
Propionibacteria and Streptomycetes. Journal of Bacteriology, 78, 171–174. Retrieved from 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC290508/pdf/jbacter00493-0037.pdf 

Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. 
Nucleic Acids Research, 29(9), 2002–2007. https://doi.org/10.1093/nar/29.9.e45 

Philipps, G., Happe, T., & Hemschemeier, A. (2012). Nitrogen deprivation results in photosynthetic 
hydrogen production in Chlamydomonas reinhardtii. Planta, 235(4), 729–745. 
https://doi.org/10.1007/s00425-011-1537-2 



 

145 
 

Pillai, S., Behra, R., Nestler, H., Suter, M. J.-F., Sigg, L., & Schirmer, K. (2014). Linking toxicity and 
adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas 
reinhardtii exposed to silver. Proceedings of the National Academy of Sciences, 111(9), 3490–
3495. https://doi.org/10.1073/pnas.1319388111 

Pootakham, W., Gonzalez-Ballester, D., & Grossman, A. R. (2010). Identification and regulation of 
plasma membrane sulfate transporters in Chlamydomonas. Plant Physiology, 153(4), 1653–
1668. https://doi.org/10.1104/pp.110.157875 

Prechtl, J., Kneip, C., Lockhart, P., Wenderoth, K., & Maier, U.-G. (2004). Intracellular Spheroid Bodies 
of Rhopalodia gibba Have Nitrogen-Fixing Apparatus of Cyanobacterial Origin. Molecular 
Biology and Evolution, 21(8), 1477–1481. https://doi.org/10.1093/molbev/msh086 

Pufulete, M., Al-Ghnaniem, R., Khushal, A., Appleby, P., Harris, N., Gout, S., … Sanders, T. A. B. 
(2005). Effect of folic acid supplementation on genomic DNA methylation in patients with 
colorectal adenoma. Gut, 54(5), 648–653. https://doi.org/10.1136/gut.2004.054718 

Qin, X., Li, J., Cui, Y., Liu, Z., Zhao, Z., Ge, J., … Huo, Y. (2012). MTHFR C677T and MTR A2756G 
polymorphisms and the homocysteine lowering efficacy of different doses of folic acid in 
hypertensive Chinese adults. Nutrition Journal, 11(2), 1–7. https://doi.org/10.1186/1475-2891-
11-2 

Queller, D. C. (1997). Cooperators since life began. Book review of: The Major Transitions in 
Evolution, by J. Maynard Smith & E. Szathmáry. Quarterly Review of Biology, 72(2), 184–188. 
https://doi.org/10.1086/419766 

Queller, D. C., & Strassmann, J. E. (2016). Problems of multi-species organisms: endosymbionts to 
holobionts. Biology and Philosophy, 31(6), 855–873. Retrieved from 
http://openscholarship.wustl.edu/bio_facpubshttp://openscholarship.wustl.edu/bio_facpubs/
126 

Quisel, J. D., Wykoff, D. D., & Grossman, A. R. (1996). Biochemical characterization of the 
extracellular phosphatases produced by phosphorus-deprived Chlamydomonas reinhardtii. 
Plant Physiology, 111(3), 839–848. https://doi.org/10.1104/pp.111.3.839 

Rampersaud, G. C., Kauwell, G. P., Hutson, A. D., Cerda, J. J., & Bailey, L. B. (2000). Genomic DNA 
methylation decreases in response to moderate folate depletion in elderly women. The 
American Journal of Clinical Nutrition, 72(4), 998–1003. https://doi.org/10.1093/ajcn/72.4.998 

Randaccio, L., Geremia, S., Demitri, N., Wuerges, J., Randaccio, L., Geremia, S., … Wuerges, J. (2010). 
Vitamin B12: Unique Metalorganic Compounds and the Most Complex Vitamins. Molecules, 
15(5), 3228–3259. https://doi.org/10.3390/molecules15053228 

Ranocha, P., McNeil, S. D., Ziemak, M. J., Li, C., Tarczynski, M. C., & Hanson, A. D. (2001). The S-
methylmethionine cycle in angiosperms: ubiquity, antiquity and activity. The Plant Journal, 
25(5), 575–584. https://doi.org/10.1046/j.1365-313x.2001.00988.x 

Rao, D., Webb, J. S., Holmström, C., Case, R., Low, A., Steinberg, P., & Kjelleberg, S. (2007). Low 
densities of epiphytic bacteria from the marine alga Ulva australis inhibit settlement of fouling 
organisms. Applied and Environmental Microbiology, 73(24), 7844–7852. 
https://doi.org/10.1128/AEM.01543-07 

Rapoport, A., & Chammah, A. (1965). Prisoner’s dilemma: a study in conflict and cooperation. 
Prisoners dilemma a study in conflict and cooperation (Vol. Second pri). University of Michigan 
Press. https://doi.org/10.3998/mpub.20269 

Raux, E., Lanois, A., Levillayer, F., Warren, M. J., Brody, E., Rambach, A., & Thermes, C. (1996). 



 

146 
 

Salmonella typhimurium cobalamin (vitamin B12) biosynthetic genes: Functional studies in S. 
typhimurium and Escherichia coli. Journal of Bacteriology, 178(3), 753–767. 
https://doi.org/10.1128/jb.178.3.753-767.1996 

Raven, J. A. (2010). Inorganic carbon acquisition by eukaryotic algae: four current questions. 
Photosynthesis Research, 106, 123–134. https://doi.org/10.1007/s11120-010-9563-7 

Reed, M. C., Nijhout, H. F., Neuhouser, M. L., Gregory, J. F., Shane, B., James, S. J., … Ulrich, C. M. 
(2006). A Mathematical Model Gives Insights into Nutritional and Genetic Aspects of Folate-
Mediated One-Carbon Metabolism. The Journal of Nutrition, 136(10), 2653–2661. 
https://doi.org/10.1093/jn/136.10.2653 

Reisner, A., Höller, B. M., Molin, S., & Zechner, E. L. (2006). Synergistic effects in mixed Escherichia 
coli biofilms: conjugative plasmid transfer drives biofilm expansion. Journal of Bacteriology, 
188(10), 3582–3588. https://doi.org/10.1128/JB.188.10.3582-3588.2006 

Remias, D., Karsten, U., Lütz, C., & Leya, T. (2010). Physiological and morphological processes in the 
Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma, 
243(1–4), 73–86. https://doi.org/10.1007/s00709-010-0123-y 

Remias, D., Lütz-Meindl, U., & Lütz, C. (2005). Photosynthesis, pigments and ultrastructure of the 
alpine snow alga Chlamydomonas nivalis. European Journal of Phycology, 40(3), 259–268. 
https://doi.org/10.1080/09670260500202148 

Remias, D., Wastian, H., Lütz, C., & Leya, T. (2013). Insights into the biology and phylogeny of 
Chloromonas polyptera (Chlorophyta), an alga causing orange snow in Maritime Antarctica. 
Antarctic Science, 25(05), 648–656. https://doi.org/10.1017/S0954102013000060 

Richardson, D. H. S. (1999). War in the world of lichens: Parasitism and symbiosis as exemplified by 
lichens and lichenicolous fungi. Mycological Research, 103(6), 641–650. 
https://doi.org/10.1017/S0953756298008259 

Rickes, E. L., Brink, N. G., Koniuszy, F. R., Wood, T. R., & Folkers, K. (1948). Crystalline Vitamin B12. 
Science, 107(2781), 396–397. https://doi.org/10.1126/science.107.2781.396 

Riekhof, W. R., Sears, B. B., & Benning, C. (2005). Annotation of genes involved in glycerolipid 
biosynthesis in Chlamydomonas reinhardtii: discovery of the betaine lipid synthase BTA1Cr. 
Eukaryotic Cell, 4(2), 242–252. https://doi.org/10.1128/EC.4.2.242-252.2005 

Rinta-Kanto, J. M., Sun, S., Sharma, S., Kiene, R. P., & Moran, M. A. (2012). Bacterial community 
transcription patterns during a marine phytoplankton bloom. Environmental Microbiology, 
14(1), 228–239. https://doi.org/10.1111/j.1462-2920.2011.02602.x 

Road, G., Station, C., Iturriaga, R., & Sciences, E. (1986). Evidence for a protective function for 
secondary carotenoids of snow algae. Journal of Phycology, 29(1979), 427–434. Retrieved from 
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1529-8817.1993.tb00143.x 

Rochaix, J.-D. (1995). Chlamydomonas reinhardtii as the Photosynthetic Yeast. Annual Review of 
Genetics, 29(1), 209–230. https://doi.org/10.1146/annurev.genet.29.1.209 

Rodionov, D. A., Vitreschak, A. G., Mironov, A. A., & Gelfand, M. S. (2003). Comparative genomics of 
the vitamin B12 metabolism and regulation in prokaryotes. The Journal of Biological Chemistry, 
278(42), 41148–41159. https://doi.org/10.1074/jbc.M305837200 

Roessner, C. A., & Scott, A. I. (2006). Fine-tuning our knowledge of the anaerobic route to cobalamin 
(vitamin B12). Journal of Bacteriology, 188(21), 7331–7334. https://doi.org/10.1128/JB.00918-
06 



 

147 
 

Roje, S., Wang, H., McNeil, S. D., Raymond, R. K., Appling, D. R., Shachar-Hill, Y., … Hanson, A. D. 
(1999). Isolation, Characterization, and Functional Expression of cDNAs Encoding NADH-
dependent Methylenetetrahydrofolate Reductase from Higher Plants. Journal of Biological 
Chemistry, 274(51), 36089–36096. https://doi.org/10.1074/jbc.274.51.36089 

Rose, N. R., & Klose, R. J. (2014). Understanding the relationship between DNA methylation and 
histone lysine methylation. Biochimica et Biophysica Acta, 1839(12), 1362–1372. 
https://doi.org/10.1016/j.bbagrm.2014.02.007 

Ross, M. (1952). VITAMIN B12 assay in body fluids using Euglena gracilis. Journal of clinical pathology 
(Vol. 5). Retrieved from 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1023596/pdf/jclinpath00020-0026.pdf 

Rozen, D. E., Philippe, N., Arjan de Visser, J., Lenski, R. E., & Schneider, D. (2009). Death and 
cannibalism in a seasonal environment facilitate bacterial coexistence. Ecology Letters, 12(1), 
34–44. https://doi.org/10.1111/j.1461-0248.2008.01257.x 

Ruiz, F. A., Marchesini, N., Seufferheld, M., Govindjee, & Docampo, R. (2001). The polyphosphate 
bodies of Chlamydomonas reinhardtii possess a proton-pumping pyrophosphatase and are 
similar to acidocalcisomes. The Journal of Biological Chemistry, 276(49), 46196–46203. 
https://doi.org/10.1074/jbc.M105268200 

Ryther, J. H., & Dunstan, W. M. (1971). Nitrogen, phosphorus, and eutrophication in the coastal 
marine environment. Science, 171(3975), 1008–1013. 
https://doi.org/10.1126/science.171.3975.1008 

Sachs, J. L., & Simms, E. L. (2006). Pathways to mutualism breakdown. Trends in Ecology & Evolution, 
21(10), 585–592. https://doi.org/10.1016/j.tree.2006.06.018 

Sachs, J. L., Skophammer, R. G., & Regus, J. U. (2011). Evolutionary transitions in bacterial symbiosis. 
Proceedings of the National Academy of Sciences, 108(2), 10800–10807. 
https://doi.org/10.1073/pnas.1100304108 

Sakurai, K., Mori, N., & Sato, N. (2014). Detection and characterization of phosphatidylcholine in 
various strains of the genus Chlamydomonas (Volvocales, Chlorophyceae). Journal of Plant 
Research, 127(5), 641–650. https://doi.org/10.1007/s10265-014-0644-0 

Sanudo-Wilhelmy, S. A., Cutter, L. S., Durazo, R., Smail, E. A., Gomez-Consarnau, L., Webb, E. A., … 
Karl, D. M. (2012). Multiple B-vitamin depletion in large areas of the coastal ocean. Proceedings 
of the National Academy of Sciences, 109(35), 14041–14045. 
https://doi.org/10.1073/pnas.1208755109 

Sañudo-Wilhelmy, S. A., Gobler, C. J., Okbamichael, M., & Taylor, G. T. (2006). Regulation of 
phytoplankton dynamics by vitamin B 12. Geophysical Research Letters, 33(4), L04604. 
https://doi.org/10.1029/2005GL025046 

Sañudo-Wilhelmy, S. a, Gómez-Consarnau, L., Suffridge, C., & Webb, E. a. (2014). The role of B 
vitamins in marine biogeochemistry. Annual Review of Marine Science, 6, 339–367. 
https://doi.org/10.1146/annurev-marine-120710-100912 

Sarhan, F., Houde, M., & Cheneval, J. P. (1980). The Role of Vitamin B12 Binding In the Uptake of the 
Vitamin By Euglena Gracilis. The Journal of Protozoology, 27(2), 235–238. 
https://doi.org/10.1111/j.1550-7408.1980.tb04688.x 

Saroussi, S. I., Wittkopp, T. M., & Grossman, A. R. (2016). The Type II NADPH Dehydrogenase 
Facilitates Cyclic Electron Flow, Energy-Dependent Quenching, and Chlororespiratory 
Metabolism during Acclimation of Chlamydomonas reinhardtii to Nitrogen Deprivation. Plant 



 

148 
 

Physiology, 170(4), 1975–1988. https://doi.org/10.1104/pp.15.02014 

Saroussi, S., Sanz-Luque, E., Kim, R. G., & Grossman, A. R. (2017). Nutrient scavenging and energy 
management: acclimation responses in nitrogen and sulfur deprived Chlamydomonas. Current 
Opinion in Plant Biology, 39, 114–122. https://doi.org/10.1016/j.pbi.2017.06.002 

Schauer, K., Rodionov, D. A., & de Reuse, H. (2008). New substrates for TonB-dependent transport: 
do we only see the ‘tip of the iceberg’? Trends in Biochemical Sciences, 33(7), 330–338. 
https://doi.org/10.1016/J.TIBS.2008.04.012 

Scheidegger, C. (2016). As thick as three in a bed. Molecular Ecology, 25(14), 3261–3263. 
https://doi.org/10.1111/mec.13710 

Schink, B. (2002). Synergistic interactions in the microbial world. Antonie van Leeuwenhoek, 
International Journal of General and Molecular Microbiology, 81(1–4), 257–261. 
https://doi.org/10.1023/A:1020579004534 

Schjonsby, H. (1989). Vitamin B12 absorption and malabsorption. Gut, 30, 1686–1691. 
https://doi.org/10.1136/gut.30.12.1686 

Schmollinger, S., Mühlhaus, T., Boyle, N. R., Blaby, I. K., Casero, D., Mettler, T., … Merchant, S. S. 
(2014). Nitrogen-Sparing Mechanisms in Chlamydomonas Affect the Transcriptome, the 
Proteome, and Photosynthetic Metabolism. The Plant Cell, 26(4), 1410–1435. 
https://doi.org/10.1105/tpc.113.122523 

Schroeder, D. C., Oke, J., Hall, M., Malin, G., & Wilson, W. H. (2003). Virus succession observed 
during an Emiliania huxleyi bloom. Applied and Environmental Microbiology, 69(5), 2484–2490. 
https://doi.org/10.1128/AEM.69.5.2484-2490.2003 

Schroeder, D. C., Oke, J., Malin, G., & Wilson, W. H. (2002). Coccolithovirus (Phycodnaviridae): 
Characterisation of a new large dsDNA algal virus that infects Emiliania huxleyi. Arch Virol, 147, 
1685–1698. https://doi.org/10.1007/s00705-002-0841-3 

Scott, J. M., & Weir, D. G. (1981). The methyl folate trap. The Lancet, 318(8242), 337–340. 
https://doi.org/https://doi.org/10.1016/S0140-6736(81)90650-4 

Selhub, J., Jacques, P. F., Rush, D., Rosenberg, I. H., & Wilson, P. W. F. (1993). Vitamin Status and 
Intake as Primary Determinants of Homocysteinemia in an Elderly Population. JAMA, 270(22), 
2693–2698. https://doi.org/10.1001/jama.1993.03510220049033 

Serganov, A., & Nudler, E. (2013). A decade of riboswitches. Cell, 152(1–2), 17–24. 
https://doi.org/10.1016/j.cell.2012.12.024 

Seyedsayamdost, M. R., Case, R. J., Kolter, R., & Clardy, J. (2011). The Jekyll-and-Hyde chemistry of 
Phaeobacter gallaeciensis. Nature Chemistry, 3(4), 331–335. 
https://doi.org/10.1038/nchem.1002 

Shehata.E., & Kempner, E. S. (1978). Sequential changes in cell volume distribution during Vitamin 
B12 starvation of Euglena gracilis. Journal of Bac, 133, 396–398. 

Shih, P. M., & Matzke, N. J. (2013). Primary endosymbiosis events date to the later Proterozoic with 
cross-calibrated phylogenetic dating of duplicated ATPase proteins. Proceedings of the National 
Academy of Sciences, 110(30), 12355–12360. https://doi.org/10.1073/pnas.1305813110 

Shultis, D. D., Purdy, M. D., Banchs, C. N., & Wiener, M. C. (2006). Outer membrane active transport: 
Structure of the BtuB:TonB complex. Science, 312(5778), 1396–1399. 
https://doi.org/10.1126/science.1127694 



 

149 
 

Siaut, M., Cuiné, S., Cagnon, C., Fessler, B., Nguyen, M., Carrier, P., … Peltier, G. (2011). Oil 
accumulation in the model green alga Chlamydomonas reinhardtii: Characterization, variability 
between common laboratory strains and relationship with starch reserves. BMC Biotechnology, 
11(1), 7. https://doi.org/10.1186/1472-6750-11-7 

Smith, A. G., Croft, M. T., Moulin, M., & Webb, M. E. (2007). Plants need their vitamins too. Current 
Opinion in Plant Biology, 10(3), 266–275. https://doi.org/10.1016/j.pbi.2007.04.009 

Smith, V. H. (1983). Low Nitrogen to Phosphorus Ratios Favor Dominance by Blue-Green Algae in 
Lake Phytoplankton. Science, 221, 669–671. https://doi.org/10.1126/science.221.4611.669 

Soucy, S. M., Huang, J., & Gogarten, J. P. (2015). Horizontal gene transfer: building the web of life. 
Nature Reviews Genetics, 16(8), 472–482. https://doi.org/10.1038/nrg3962 

Stead, L. M., Brosnan, J. T., Brosnan, M. E., Vance, D. E., & Jacobs, R. L. (2006). Is it time to reevaluate 
methyl balance in humans? The American Journal of Clinical Nutrition, 83(1), 5–10. 
https://doi.org/10.1093/ajcn/83.1.5 

Steneck, R. S., Graham, M. H., Bourque, B. J., Corbett, D., Erlandson, J. M., Estes, J. A., & Tegner, M. J. 
(2002). Kelp forest ecosystems: biodiversity, stability, resilience and future. Environmental 
Conservation, 29(04), 436–459. https://doi.org/10.1017/S0376892902000322 

Stephenson, A. L., Dennis, J. S., Howe, C. J., Scott, S. A., & Smith, A. G. (2010). Influence of nitrogen-
limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. 
Biofuels, 1(1), 47–58. https://doi.org/10.4155/bfs.09.1 

Stibal, M., Elster, J., Å AbackÃ¡, M., & KaÅ¡tovskÃ¡, K. (2007). Seasonal and diel changes in 
photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from 
Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiology Ecology, 
59(2), 265–273. https://doi.org/10.1111/j.1574-6941.2006.00264.x 

Stocker, R., Seymour, J. R., Samadani, A., Hunt, D. E., & Polz, M. F. (2008). Rapid chemotactic 
response enables marine bacteria to exploit ephemeral microscale nutrient patches. 
Proceedings of the National Academy of Sciences, 105(11), 4209–4214. 
https://doi.org/10.1073/pnas.0709765105 

Strobbe, S., & Van Der Straeten, D. (2017). Folate biofortification in food crops. Current Opinion in 
Biotechnology, 44, 202–211. https://doi.org/10.1016/j.copbio.2016.12.003 

Sujak, A., Gabrielska, J., Grudziński, W., Borc, R., Mazurek, P., & Gruszecki, W. I. (1999). Lutein and 
Zeaxanthin as Protectors of Lipid Membranes against Oxidative Damage: The Structural 
Aspects. Archives of Biochemistry and Biophysics, 371(2), 301–307. 
https://doi.org/10.1006/ABBI.1999.1437 

Sundström, B. G. (1984). Observations on Rhizosolenia clevei Ostenfeld (Bacillariophyceae) and 
Richelia intracellularis Schmidt (Cyanophyceae). Botanica Marina, 27(8), 345–356. 
https://doi.org/10.1515/botm.1984.27.8.345 

Sutak, R., Botebol, H., Blaiseau, P.-L., Léger, T., Bouget, F.-Y., Camadro, J.-M., & Lesuisse, E. (2012). A 
comparative study of iron uptake mechanisms in marine microalgae: iron binding at the cell 
surface is a critical step. Plant Physiology, 160(4), 2271–2284. 
https://doi.org/10.1104/pp.112.204156 

Suto, R. K., Brasch, N. E., Anderson, O. P., & Finke, R. G. (2001). Synthesis, characterization, solution 
stability, and x-ray crystal structure of the thiolatocobalamin γ-glutamylcysteinylcobalamin, a 
dipeptide analogue of glutathionylcobalamin: Insights into the enhanced Co-S bond stability of 
the natural product glutat. Inorganic Chemistry, 40(12), 2686–2692. 



 

150 
 

https://doi.org/10.1021/ic001365n 

Szathmáry, E., & Smith, J. M. (1995). The major evolutionary transitions. Nature, 374(6519), 227–
232. https://doi.org/10.1038/374227a0 

Taga, M. E., & Walker, G. C. (2008). Pseudo-B12 joins the cofactor family. Journal of Bacteriology, 
190(4), 1157–1159. https://doi.org/10.1128/JB.01892-07 

Taga, M. E., & Walker, G. C. (2010). Sinorhizobium meliloti requires a cobalamin-dependent 
ribonucleotide reductase for symbiosis with its plant host. Molecular Plant-Microbe 
Interactions : MPMI, 23(12), 1643–1654. https://doi.org/10.1094/MPMI-07-10-0151 

Taheri-Araghi, S., Bradde, S., Sauls, J. T., Hill, N. S., Levin, P. A., Paulsson, J., … Jun, S. (2015). Cell-Size 
Control and Homeostasis in Bacteria. Current Biology, 25(3), 385–391. 
https://doi.org/10.1016/J.CUB.2014.12.009 

Takahashi-Iñiguez, T., García-Hernandez, E., Arreguín-Espinosa, R., & Flores, M. E. (2012). Role of 
vitamin B12 on methylmalonyl-CoA mutase activity. Journal of Zhejiang University. Science. B, 
13(6), 423–437. https://doi.org/10.1631/jzus.B1100329 

Takahashi, F., Okabe, Y., Nakada, T., Sekimoto, H., Ito, M., Kataoka, H., & Nozaki, H. (2007). Origins of 
the secondary plastids of Euglenophyta and Chlorarachniophyta as revealed by an analysis of 
the plastid-targeting, nuclear-encoded gene psbO 1. Journal of Phycology, 43(6), 1302–1309. 
https://doi.org/10.1111/j.1529-8817.2007.00411.x 

Takahashi, H., Braby, C. E., & Grossman, A. R. (2001). Sulfur economy and cell wall biosynthesis 
during sulfur limitation of Chlamydomonas reinhardtii. Plant Physiology, 127(2), 665–673. 
Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11598240 

Takishita, K., Kawachi, M., Noël, M.-H., Matsumoto, T., Kakizoe, N., Watanabe, M. M., … Inagaki, Y. 
(2008). Origins of plastids and glyceraldehyde-3-phosphate dehydrogenase genes in the green-
colored dinoflagellate Lepidodinium chlorophorum. Gene, 410(1), 26–36. 
https://doi.org/10.1016/J.GENE.2007.11.008 

Tambasco-Studart, M., Titiz, O., Raschle, T., Forster, G., Amrhein, N., & Fitzpatrick, T. B. (2005). 
Vitamin B6 biosynthesis in higher plants. Proceedings of the National Academy of Sciences, 
102(38), 13687–13692. https://doi.org/10.1073/pnas.0506228102 

Tamura, M., Shimada, S., & Horiguchi, T. (2005). Galeidiniium rugatum gen. et sp. nov. 
(Dinophyceae), a new coccoid dinoflagellate with a diatom endosymbiont. Journal of 
Phycology, 41(3), 658–671. https://doi.org/10.1111/j.1529-8817.2005.00085.x 

Tang, Y. Z., Koch, F., & Gobler, C. J. (2010). Most harmful algal bloom species are vitamin B1 and B12 
auxotrophs. Proceedings of the National Academy of Sciences, 107(48), 20756–20761. 
https://doi.org/10.1073/pnas.1009566107 

Tardy, F., & Havaux, M. (1997). Thylakoid membrane fluidity and thermostability during the 
operation of the xanthophyll cycle in higher-plant chloroplasts. Biochimica et Biophysica Acta 
(BBA) - Biomembranes, 1330(2), 179–193. https://doi.org/10.1016/S0005-2736(97)00168-5 

Terauchi, A. M., Peers, G., Kobayashi, M. C., Niyogi, K. K., & Merchant, S. S. (2010). Trophic status of 
Chlamydomonas reinhardtii influences the impact of iron deficiency on photosynthesis. 
Photosynthesis Research, 105(1), 39–49. https://doi.org/10.1007/s11120-010-9562-8 

Timm, S., Florian, A., Arrivault, S., Stitt, M., Fernie, A. R., & Bauwe, H. (2012). Glycine decarboxylase 
controls photosynthesis and plant growth. FEBS Letters, 586, 3692–3697. 
https://doi.org/10.1016/j.febslet.2012.08.027 



 

151 
 

Titlyanov, E. A., Titlyanova, T. V, Leletkin, V. A., Tsukahara, J., Van Woesik, R., & Yamazato4, K. 
(1996). Degradation of zooxanthellae and regulation of their density in hermatypic corals. 
Marine Ecology Progress Series, 139, 167–178. https://doi.org/10.3354/meps139167 

Torrents, E., Trevisiol, C., Rotte, C., Hellman, U., Martin, W., & Reichard, P. (2006). Euglena gracilis 
ribonucleotide reductase: the eukaryote class II enzyme and the possible antiquity of eukaryote 
B12 dependence. The Journal of Biological Chemistry, 281(9), 5604–5611. 
https://doi.org/10.1074/jbc.M512962200 

Toyama, T., Kasuya, M., Hanaoka, T., Kobayashi, N., Tanaka, Y., Inoue, D., … Mori, K. (2018). Growth 
promotion of three microalgae, Chlamydomonas reinhardtii, Chlorella vulgaris and Euglena 
gracilis, by in situ indigenous bacteria in wastewater effluent. Biotechnology for Biofuels, 11(1), 
176. https://doi.org/10.1186/s13068-018-1174-0 

Traulsen, A., & Nowak, M. A. (2006). Evolution of cooperation by multilevel selection. Proceedings of 
the National Academy of Sciences, 103(29), 10952–10955. 
https://doi.org/10.1073/pnas.0602530103 

Treves, H., Raanan, H., Finkel, O. M., Berkowicz, S. M., Keren, N., Shotland, Y., & Kaplan, A. (2013). A 
newly isolated Chlorella sp. from desert sand crusts exhibits a unique resistance to excess light 
intensity. FEMS Microbiology Ecology, 86(3), 373–380. https://doi.org/10.1111/1574-
6941.12162 

Treves, H., Raanan, H., Kedem, I., Murik, O., Keren, N., Zer, H., … Kaplan, A. (2016). The mechanisms 
whereby the green alga Chlorella ohadii , isolated from desert soil crust, exhibits unparalleled 
photodamage resistance. New Phytologist, 210(4), 1229–1243. 
https://doi.org/10.1111/nph.13870 

Triantaphylidès, C., Krischke, M., Hoeberichts, F. A., Ksas, B., Gresser, G., Havaux, M., … Mueller, M. 
J. (2008). Singlet oxygen is the major reactive oxygen species involved in photooxidative 
damage to plants. Plant Physiology, 148(2), 960–968. https://doi.org/10.1104/pp.108.125690 

Trinh, N. B., & Laird, P. W. (2002). Thymidylate synthase: a novel genetic determinant of plasma 
homocysteine and folate levels. Human Genetics, 211, 299–302. 
https://doi.org/10.1007/s00439-002-0779-2 

Tsai, C.-H., Uygun, S., Roston, R., Shiu, S.-H., & Benning, C. (2017). Recovery from N Deprivation Is a 
Transcriptionally and Functionally Distinct State in Chlamydomonas. Plant Physiology, 176, 
2007–2023. https://doi.org/10.1104/pp.17.01546 

Turk-Kubo, K. A., Farnelid, H. M., Shilova, I. N., Henke, B., & Zehr, J. P. (2017). Distinct ecological 
niches of marine symbiotic N 2 -fixing cyanobacterium Candidatus Atelocyanobacterium 
thalassa sublineages. Journal of Phycology, 53(2), 451–461. https://doi.org/10.1111/jpy.12505 

Turner, M. A., Yang, X., Yin, D., Kuczera, K., Borchardt, R. T., & Howell, P. L. (2000). Structure and 
function of S-adenosylhomocysteine hydrolase. Cell Biochemistry and Biophysics, 33(2), 101–
125. https://doi.org/10.1385/CBB:33:2:101 

Turner, T. R., James, E. K., & Poole, P. S. (2013). The plant microbiome. Genome Biology, 14, 209–
219. https://doi.org/10.1186/gb-2013-14-6-209 

Tyrrell, T. (1999). The relative influences of nitrogen and phosphorus on oceanic primary production. 
Nature, 400(6744), 525–531. https://doi.org/10.1038/22941 

Tyrrell, T., & Law, C. S. (1997). Low nitrate:phosphate ratios in the global ocean. Nature, 387(6635), 
793–796. https://doi.org/10.1038/42915 



 

152 
 

Uchiumi, T., Ohwada, T., Itakura, M., Mitsui, H., Nukui, N., Dawadi, P., … Minamisawa, K. (2004). 
Expression islands clustered on the symbiosis island of the Mesorhizobium loti genome. Journal 
of Bacteriology, 186(8), 2439–2448. https://doi.org/10.1128/JB.186.8.2439-2448.2004 

Uduman, N., Qi, Y., Danquah, M. K., Forde, G. M., & Hoadley, A. (2010). Dewatering of microalgal 
cultures: A major bottleneck to algae-based fuels. Journal of Renewable and Sustainable 
Energy, 2(1), 012701. https://doi.org/10.1063/1.3294480 

Ueland, P. M. (1982). Pharmacological and Biochemical Aspects of S-Adenosylhomocysteine and S-
Adenosylhomocysteine Hydrolase. Pharmacol. Rev., 34(3), 223–253. Retrieved from 
http://pharmrev.aspetjournals.org/content/pharmrev/34/3/223.full.pdf 

Urzica, E. I., Adler, L. N., Page, M. D., Linster, C. L., Arbing, M. A., Casero, D., … Clarke, S. G. (2012). 
Impact of oxidative stress on ascorbate biosynthesis in Chlamydomonas via regulation of the 
VTC2 gene encoding a GDP-L-galactose phosphorylase. The Journal of Biological Chemistry, 
287(17), 14234–14245. https://doi.org/10.1074/jbc.M112.341982 

Urzica, E. I., Casero, D., Yamasaki, H., Hsieh, S. I., Adler, L. N., Karpowicz, S. J., … Merchant, S. S. 
(2012). Systems and trans-system level analysis identifies conserved iron deficiency responses 
in the plant lineage. The Plant Cell, 24(10), 3921–3948. 
https://doi.org/10.1105/tpc.112.102491 

Urzica, E. I., Vieler, A., Hong-Hermesdorf, A., Page, M. D., Casero, D., Gallaher, S. D., … Merchant, S. 
S. (2013). Remodeling of membrane lipids in iron-starved chlamydomonas. Journal of Biological 
Chemistry, 288(42), 30246–30258. https://doi.org/10.1074/jbc.M113.490425 

Van Bibber, M., Bradbeer, C., Clark, N., & Roth, J. R. (1999). A new class of cobalamin transport 
mutants (btuF) provides genetic evidence for a periplasmic binding protein in Salmonella 
typhimurium. Journal of Bacteriology, 181(17), 5539–5541. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/10464235 

Van Der Meer, S. B., Poggi, Q. F., Spada, M., Bonnefont, J. P., Ogier, H., Hubert, P., … Saudubray, J. M. 
(1994). Clinical outcome of long-term management of patients with vitamin B 12-unresponsive 
methylmalonic acidemia. The Journal of Pediatrics, 125(6), 902–908. Retrieved from 
https://ac.els-cdn.com/S0022347605820050/1-s2.0-S0022347605820050-
main.pdf?_tid=b494b448-025c-4d3a-b4e8-
3ed13c117196&acdnat=1535998367_2d16f663be2d550383e33c90ed646520 

van Kapel, J., Spijkers, L. J. M., Lindemans, J., & Abels, J. (1983). Improved distribution analysis of 
cobalamins and cobalamin analogues in human plasma in which the use of thiol-blocking 
agents is a prerequisite. Clinica Chimica Acta, 131(3), 211–224. https://doi.org/10.1016/0009-
8981(83)90090-6 

Van Valen, L. (1973). A new Evolutionary Law. Evolutionary Theory, 1, 1–30. 
https://doi.org/10.1038/344864a0 

Vasconcelos, C. V., Pereira, F. T., Duarte, E. A. A., de Oliveira, T. A. S., Peixoto, N., & Carvalho, D. D. C. 
(2018). Physiological and Molecular Characterization of Cephaleuros virescens Occurring in 
Mango Trees. The Plant Pathology Journal, 34(3), 157–162. 
https://doi.org/10.5423/PPJ.OA.09.2017.0194 

Villareal, T. A. (1990). Laboratory Culture and Preliminary Characterization of the Nitrogen-Fixing 
Rhizosolenia-Richelia Symbiosis. Marine Ecology, 11(2), 117–132. 
https://doi.org/10.1111/j.1439-0485.1990.tb00233.x 

Vineis, P., Chuang, S.-C., Vaissière, T., Cuenin, C., Ricceri, F., Genair-EPIC Collaborators, … Herceg, Z. 



 

153 
 

(2011). DNA methylation changes associated with cancer risk factors and blood levels of 
vitamin metabolites in a prospective study. Epigenetics, 6(2), 195–201. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/20978370 

Visram, M., Radulovic, M., Steiner, S., Malanovic, N., Eichmann, T. O., Wolinski, H., … Tehlivets, O. 
(2018). Homocysteine regulates fatty acid and lipid metabolism in yeast. The Journal of 
Biological Chemistry, 293(15), 5544–5555. https://doi.org/10.1074/jbc.M117.809236 

Vítová, M., Bišová, K., Hlavová, M., Kawano, S., Zachleder, V., & Čížková, M. (2011). Chlamydomonas 
reinhardtii: duration of its cell cycle and phases at growth rates affected by temperature. 
Planta, 234(3), 599–608. https://doi.org/10.1007/s00425-011-1427-7 

Wagner-Döbler, I., Ballhausen, B., Berger, M., Brinkhoff, T., Buchholz, I., Bunk, B., … Simon, M. 
(2010). The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a 
hitchhiker’s guide to life in the sea. The ISME Journal, 4(1), 61–77. 
https://doi.org/10.1038/ismej.2009.94 

Wald, D. S., Law, M., & Morris, J. K. (2002). Homocysteine and cardiovascular disease: evidence on 
causality from a meta-analysis. BMJ (Clinical Research Ed.), 325(7374), 1202. 
https://doi.org/10.1136/BMJ.325.7374.1202 

Wang, H., Tomasch, J., Michael, V., Bhuju, S., Jarek, M., Petersen, J., & Wagner-Döbler, I. (2015). 
Identification of Genetic Modules Mediating the Jekyll and Hyde Interaction of 
Dinoroseobacter shibae with the Dinoflagellate Prorocentrum minimum. Frontiers in 
Microbiology, 6, 1262. https://doi.org/10.3389/fmicb.2015.01262 

Wang, J. X., Lee, E. R., Morales, D. R., Lim, J., & Breaker, R. R. (2008). Riboswitches that Sense S-
adenosylhomocysteine and Activate Genes Involved in Coenzyme Recycling. Molecular Cell, 
29(6), 691–702. https://doi.org/10.1016/j.molcel.2008.01.012 

Warren, M. J., Raux, E., Schubert, H. L., & Escalante-Semerena, J. C. (2002). The biosynthesis of 
adenosylcobalamin (vitamin B12). Natural Product Reports, 19(4), 390–412. 
https://doi.org/10.1039/b108967f 

Wase, N., Black, P. N., Stanley, B. A., & Dirusso, C. C. (2014). Integrated Quantitative Analysis of 
Nitrogen Stress Response in Chlamydomonas reinhardtii Using Metabolite and Protein 
Profiling. Journal of Proteome Research, 13, 1373–1396. https://doi.org/10.1021/pr400952z 

Watanabe, F., Takenaka, S., Kittaka-Katsura, H., Ebara, S., & Miyamoto, E. (2002). Characterization 
and Bioavailability of Vitamin B12-Compounds from Edible Algae. J Nutr Sci Vitaminoi, 48, 325–
331. 

Waterborg, J. H., Robertson, A. J., Tatar, D. L., Borza, C. M., & Davie, J. R. (1995). Histones of 
Chlamydomonas reinhardtii (Synthesis, Acetylation, and Methylation). Plant Physiology, 109(2), 
393–407. https://doi.org/10.1104/pp.109.2.393 

Waterland, R. A. (2006). Assessing the Effects of High Methionine Intake on DNA Methylation. The 
Journal of Nutrition, 136(6), 1706S–1710S. https://doi.org/10.1093/jn/136.6.1706S 

Watkin, D., & Rosenblatt, D. S. (1989). Functional methionine synthase deficiency (cblE and cblG): 
Clinical and biochemical heterogeneity. American Journal of Medical Genetics, 34(3), 427–434. 
https://doi.org/10.1002/ajmg.1320340320 

Wellburn, A. R. (1994). The Spectral Determination of Chlorophylls a and b, as well as Total 
Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. Journal 
of Plant Physiology, 144(3), 307–313. https://doi.org/10.1016/S0176-1617(11)81192-2 



 

154 
 

West, S. A., Fisher, R. M., Gardner, A., & Kiers, E. T. (2015). Major evolutionary transitions in 
individuality. Proceedings of the National Academy of Sciences, 112(33), 10112–10119. 
https://doi.org/10.1073/pnas.1421402112 

Westhoek, A., Field, E., Rehling, F., Mulley, G., Webb, I., Poole, P. S., & Turnbull, L. A. (2017). Policing 
the legume-Rhizobium symbiosis: a critical test of partner choice. Scientific Reports, 7(1), 1419. 
https://doi.org/10.1038/s41598-017-01634-2 

Wheatley, C. (2007). The return of the Scarlet Pimpernel: cobalamin in inflammation II - cobalamins 
can both selectively promote all three nitric oxide synthases (NOS), particularly iNOS and eNOS, 
and, as needed, selectively inhibit iNOS and nNOS. Journal of Nutritional & Environmental 
Medicine, 16(3–4), 181–211. https://doi.org/10.1080/10520290701791839 

White, S., Anandraj, A., & Bux, F. (2011). PAM fluorometry as a tool to assess microalgal nutrient 
stress and monitor cellular neutral lipids. Bioresource Technology, 102(2), 1675–1682. 
https://doi.org/10.1016/j.biortech.2010.09.097 

Whitehead, L. F. (2003). Metabolite comparisons and the identity of nutrients translocated from 
symbiotic algae to an animal host. Journal of Experimental Biology, 206(18), 3149–3157. 
https://doi.org/10.1242/jeb.00539 

Whitman, W. B., Coleman, D. C., & Wiebe, W. J. (1998). Prokaryotes: The unseen majority. 
Proceedings of the National Academy of Sciences, 95(12), 6578–6583. 
https://doi.org/10.1073/pnas.95.12.6578 

Whitney, S. M., Shaw, D. C., & Yellowlees, D. (1995). Evidence that some dinoflagellates contain a 
ribulose-1,5-bisphosphate carboxylase/oxygenase related to that of the alpha-proteobacteria. 
Proceedings. Biological Sciences, 259(1356), 271–275. https://doi.org/10.1098/rspb.1995.0040 

Wolf, Y. I., & Koonin, E. V. (2013). Genome reduction as the dominant mode of evolution. BioEssays : 
News and Reviews in Molecular, Cellular and Developmental Biology, 35(9), 829–837. 
https://doi.org/10.1002/bies.201300037 

Wong, P. P., & Burris, R. H. (1972). Nature of oxygen inhibition of nitrogenase from Azotobacter 
vinelandii. Proceedings of the National Academy of Sciences, 69(3), 672–675. 
https://doi.org/10.1073/pnas.69.3.672 

Woodward, R. B. (1973). The total synthesis of vitamin B12. Pure and Applied Chemistry, 33(1), 145–
177. https://doi.org/10.1351/pac197333010145 

Wright, S. (1945). Tempo and Mode in Evolution: A Critical Review. Ecology, 26(4), 415–419. 
https://doi.org/10.2307/1931666 

Wu, K., Atkinson, I. J., Cossins, E. A., & King, J. (1993). Methotrexate Resistance in Datura innoxia 
(Uptake and Metabolism of Methotrexate in Wild-Type and Resistant Cell Lines). Plant 
Physiology, 101(2), 477–483. https://doi.org/10.1104/pp.101.2.477 

Wykoff, D. D., Davies, J. P., Melis, A., & Grossman, A. R. (1998). The Regulation of Photosynthetic 
Electron Transport during Nutrient Deprivation in Chlamydomonas reinhardtii. Plant 
Physiology, 117(1), 129–139. https://doi.org/10.1104/pp.117.1.129 

Wykoff, D. D., Grossman, A. R., Weeks, D. P., Usuda, H., & Shimogawara, K. (1999). Psr1, a nuclear 
localized protein that regulates phosphorus metabolism in Chlamydomonas. Proceedings of the 
National Academy of Sciences, 96(26), 15336–15341. 
https://doi.org/10.1073/pnas.96.26.15336 

Xia, L., Cregan, A. G., Berben, L. A., & Brasch, N. E. (2004). Studies on the formation of 



 

155 
 

glutathionylcobalamin: Any free intracellular aquacobalamin is likely to be rapidly and 
irreversibly converted to glutathionylcobalamin. Inorganic Chemistry, 43(21), 6848–6857. 
https://doi.org/10.1021/ic040022c 

Xie, B., Bishop, S., Stessman, D., Wright, D., Spalding, M. H., & Halverson, L. J. (2013). 
Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic 
interaction with vitamin B12-producing bacteria. The ISME Journal, 7(8), 1544–1555. 
https://doi.org/10.1038/ismej.2013.43 

Yallop, M. L., Anesio, A. M., Perkins, R. G., Cook, J., Telling, J., Fagan, D., … Roberts, N. W. (2012). 
Photophysiology and albedo-changing potential of the ice algal community on the surface of 
the Greenland ice sheet. The ISME Journal, 6(12), 2302–2313. 
https://doi.org/10.1038/ismej.2012.107 

Yamada, K., Strahler, J. R., Andrews, P. C., & Matthews, R. G. (2005). Regulation of human 
methylenetetrahydrofolate reductase by phosphorylation. Proceedings of the National 
Academy of Sciences, 102(30), 10454–10459. 
https://doi.org/https://doi.org/10.1073/pnas.0504786102 

Yamamura, N. (1993). Verical transmission and evolution of mutualism from parasitism. Theoretical 
Population Biology, 44, 95–109. https://doi.org/10.1006/tpbi.1993.1020 

Yee, L., & Blanch, H. W. (1993). Defined media optimization for growth of recombinant Escherichia 
coli X90. Biotechnology and Bioengineering, 41(2), 221–230. 
https://doi.org/10.1002/bit.260410208 

Yi, P., Melnyk, S., Pogribna, M., Pogribny, I. P., Hine, R. J., & James, S. J. (2000). Increase in plasma 
homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and 
lymphocyte DNA hypomethylation. Journal of Biological Chemistry, 275(38), 29318–29323. 
https://doi.org/10.1074/jbc.M002725200 

Yildiz, F. H., Davies, J. P., & Grossman, A. R. (1994). Characterization of Sulfate Transport in 
Chlamydomonas reinhardtii during Sulfur-Limited and Sulfur-Sufficient Growth. Plant 
Physiology, 104(3), 981–987. https://doi.org/10.1104/pp.104.3.981 

Yoon, H. S., Hackett, J. D., Ciniglia, C., Pinto, G., & Bhattacharya, D. (2004). A Molecular Timeline for 
the Origin of Photosynthetic Eukaryotes. Molecular Biology and Evolution, 21(5), 809–818. 
https://doi.org/10.1093/molbev/msh075 

Záhonová, K., Füssy, Z., Oborník, M., Eliáš, M., & Yurchenko, V. (2016). RuBisCO in Non-
Photosynthetic Alga Euglena longa: Divergent Features, Transcriptomic Analysis and Regulation 
of Complex Formation. PLOS ONE, 11(7), e0158790. 
https://doi.org/10.1371/journal.pone.0158790 

Zelezniak, A., Andrejev, S., Ponomarova, O., Mende, D. R., Bork, P., & Patil, K. R. (2015). Metabolic 
dependencies drive species co-occurrence in diverse microbial communities. Proceedings of the 
National Academy of Sciences, 112(20), 6449–6454. https://doi.org/10.1073/pnas.1421834112 

Zhang, Y., Rodionov, D. A., Gelfand, M. S., & Gladyshev, V. N. (2009). Comparative genomic analyses 
of nickel, cobalt and vitamin B12 utilization. BMC Genomics, 10(78), 1–26. 
https://doi.org/10.1186/1471-2164-10-78 

Zhang, Z., Shrager, J., Jain, M., Chang, C.-W., Vallon, O., & Grossman, A. R. (2004). Insights into the 
survival of Chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of 
gene expression. Eukaryotic Cell, 3(5), 1331–1348. https://doi.org/10.1128/EC.3.5.1331-
1348.2004 



 

156 
 

Zhou, H.-R., Zhang, F.-F., Ma, Z.-Y., Huang, H.-W., Jiang, L., Cai, T., … He, X.-J. (2013). Folate 
Polyglutamylation Is Involved in Chromatin Silencing by Maintaining Global DNA Methylation 
and Histone H3K9 Dimethylation in Arabidopsis C W. The Plant Cell, 25, 2545–2559. 
https://doi.org/10.1105/tpc.113.114678 

Zuelzer, W. W., & Ogden, F. N. (1946). Megaloblastic anemia in infancy. American Journal of Diseases 
of Children, 71(3), 211. https://doi.org/10.1001/archpedi.1946.02020260002001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

157 
 

7.  Appendices 
 

7.1  Media 
 

Media Volume/Mass 

TAP media 1000ml (autoclaved) 

Beijernick salts 25ml 

Tris-acetic acid 10ml 

Phosphate solution 1ml 

CoCl2 (1mgml-1) 1ml 

EDTA-Na2(25mM) 1ml 

(NH4)6Mo7O24 (28.5uM) 1ml 

Zn.EDTA  1ml 

Mn.EDTA  1ml 

Fe.EDTA 1ml 

Cu.EDTA 1ml 

HCl (glacial) To pH 7.0 

  

LB media 1000ml (autoclaved) 

diH2O 1000ml 

Tryptone 10g 

Yeast extract 5g 

NaCl 5g 

  

TY media 1000ml (autoclaved) 

diH2O 1000ml 

Tryptone 5g 

Yeast extract 3g 

CaCl2.2H2O 0.875g 

 

Tris minimal medium 

 

1000ml (autoclaved) 

Beijernick salts 25ml 

Tris.Cl 20ml 

Phosphate solution 1ml 

CoCl2 (1mgml-1) 1ml 

EDTA-Na2(25mM) 1ml 

(NH4)6Mo7O24 (28.5uM) 1ml 

Zn.EDTA  1ml 

Mn.EDTA  1ml 
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Fe.EDTA 1ml 

Cu.EDTA 1ml 

HCl (glacial) To pH 7.0 

  

2*M9 media 250ml (Filter-sterilised) 

10*M9 salts 50ml 

20% glucose 10ml 

1M MgSO4 1ml 

L-cysteine (5mg/ml) 5ml 

0.1M CaCl2 0.5ml 

H2O  183.5ml 

  

M9 agar 250ml 

10 x M9 salts  25ml 

20% glucose 5ml 

1 M MgSO4 0.5ml 

0.1 M CaCl2 0.25ml 

L-cysteine (5 mg/ml)  2.5 ml (prepare fresh) 

L-methionine (5 mg/ml)  2.5 ml 

2% bacto-agar 214.25ml (autoclaved) 

  

Beijernick salts 1000ml (Autoclaved) 

diH2O 1000ml 

NH4Cl 15g 

MgSO4.7H2O 4g 

CaCl2.2H2O 2g 

  

Tris.Cl 1000ml (Autoclaved) 

diH2O 900ml 

Tris 121g 

HCl (1M) To pH 7.2 

diH2O To 1000ml 

  

Tris-acetic acid 500ml (Autoclaved) 

diH2O 450ml 

Acetic acid (glacial) 50ml 

Tris 121g 

  

Phosphate solution 100ml (Autoclaved) 

diH2O 100ml 
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K2HPO4 28.8g 

KH2PO4 14.4g 

  

10*M9 salts 500ml (Autoclaved) 

Na2HPO4-7H2O 64g 

KH2PO4 15g 

NH4Cl 5g 

NaCl 2.5g 

diH2O 500ml 

  

EDTA-NA2 (125mM) 250ml (Autoclaved) 

EDTA-NA2 13.959g 

diH2O 200ml, then titrate to pH 8.0 with KOH and bring volume to 250ml.  

  

EDTA-NA2 (25mM) 250ml (Autoclaved) 

EDTA-NA2 (125mM) 50ml 

diH2O 200ml 

  

(NH4)6Mo7O24 (28.5uM) 250ml (Autoclaved) 

(NH4)6Mo7O24 8.8mg 

diH2O 250ml 

  

Na2SeO3 (0.1mM) 250ml (Autoclaved) 

Na2SeO3 4.3mg 

diH2O 250ml 

  

Zn.EDTA  250ml (Autoclaved) 

ZnSO47H2O 0.18g 

EDTA-NA2 (125mM) 5.5ml  

diH2O 244.5ml 

  

Mn.EDTA  250ml (Autoclaved) 

MnCl24H2O 0.297g 

EDTA-NA2 (125mM) 12ml 

diH2O 238ml 

  

Fe.EDTA 250ml (Autoclaved) 

FeCl36H2O 1.35g (Add after fully dissolving EDTA-Na2 and Na2CO3 in water) 

EDTA-Na2 2.05g 

Na2CO3 0.58g 



 

160 
 

diH2O 250ml 

  

Cu.EDTA 250ml (Autoclaved) 

CuCl22H2O 85mg 

EDTA-NA2 (125mM) 4ml 

diH2O 244ml 

 

 

7.2 qPCR primers 
 

Gene name Primer Sequence Product 
size/bp  

Forward primer Reverse primer 
 

ACTIN AGAAGGACTCGTACGTTGGC TGAAGAAGGTGTGGTGCCAG 129 

APX1 GCTGCAACCCCATTTCTGTG CCAGAGCAATAGCCAGACCC 156 

BTA1 GGCTGGAAGAATGTCCAGGT TTGGGACAGGTACGAGCAAG 150 

CBA1 ATCCTCAACGTGCTGGACC GCTGAAGCCCACGAACTTG 144 

CYCA1 CCAGCCTTCCATTCCGCTT CGAGTCCACGTCAATCCAGG 109 

DMC1 ATAGTGTTCCGTTGCTGGCTG AGCTCTGCCTCGTACTTAGC 101 

DMT1 GCCTGCACTATAAGACGGGT CTTCTCCGCGTCCACATACA 116 

EEF1 GGGTGTCAGTTCCTTTTGCG GACGATGGACAGATGCTCCT 122 

FAP24 AATCCTCAACGTGCTGGAC CGCTGAAGCCCACGAAC 146 

FTL1 GGCTTCGTGGTGACAGAGG CACGTTCTCGGTGGTGTAGT 198 

GPX5 TGGCGAACCCCGAGTTTTAC TTGCTAGCCACGTTCACGAT 109 

GSTS1 TCATTCTCCCTACCGGCTGA GGTTGGAGAGCGACACGTAA 184 

H2B TAAATGCGCTCAGAGGCTGG ATCTACACTGGTTCCTCGCC 151 

IFT25 CAGGACAAGCCAGACCAGTT ACCGACACGCGGTTGAC 164 

LHCA1 GCTACGGCAACTGGTACGAT CATGGCAACGAACTCGAAGG 119 

LHCA2 TACAAGAAGACCGGCGAGAC GAGAGCAGAAGCCCAGGAAC 136 

LHCBM1 TCCATGTTCGGCTTCTTCGT AAACCGCTCAGACCTGCATC 184 

METC GGCTACTACGTGGACCTCATC CAGCCCAAACCAGGCGTA 192 

METE CCGCTACAGCCAGACTTCA GTGACAGCGACACGAACGT 118 

METH GGCGACGACTACAGCTACATC CCCTGGTACTTGACCTTGAGC 158 

METM TCAAAGGTTGCCTGCGAGAC GAAGCCAATCTCCTTGCACAC 123 

MSD3 GGCTTACCACTGGCTTACGA GACAATCTCCGACAGCGACA 156 

MTHFD GCGTGCGTATGCATCTTGAG GCCCTTTCGTTTCCATGTCC 108 

MTHFR GTACATCAGGAAGCAGCACGG TCCACGTCGTAAAACAGCTGC 189 

PGK1 ACCTGAACGTGCCTCTTGAC GTCAGGCGGTACTTGTCCTC 166 

PRMT1 CTGGGACAATGTGTACGGCT TGGTGCTGATGTCCACTGAC 134 

RACK1 CGTCTGTGGGACCTGAACAC GCTCGCCAATGGTGTACTTG 172 

RLS1 GAAAGGCTCTTGGTCAAGCC CGCTACATCATTGGCAACACC 196 

RPL10A GTGATGTGAAGCACTGCGAG TTGATGACGGAGTCCGAAGC 148 

SAH1 CGCACCATTGTGTCGGAGAT ATGATGTCCTTGTTGCCGGT 134 
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SEBP1 TGGATGCACGTCAAGGAGAC ATGATCTGGAACACGTCGGG 173 

SET3 AGGTGTTCATGACGGAGAGC GTGTGCGAAGAAGTCGAGGT 164 

SHMT1 AGAACTTCGTGTCTGCCTCG TCCAGGTGGAATGCCTTCAG 160 

SHMT2 AGTACTCGGAGCAGGTTGTG ACAGGATGAGGTGGTTGTCG 105 

SHMT3 GTCGACCCGGAGATTAGTGC CGACCCTCGGAGTACTTGTT 146 

THIC AAGGCGCGGTTTGAGTTCC CACATGGAGCAGAAGTGGGC 128 

TOC1 CGCACCCTTGCTTTTGGGTA GCCGTCTATAATCCACAACGC 105 

TUB1 CAAGGGCCACTACACCGAG CAGAGAGTGGCAAACCTGGA 112 

TYMS ATGCACACCGACTACACAGG GAACTGGCAGAACATGTGGC 159 

UBQ GAAACGGCCACAAGTTGGAC CGCATATTTGCTGGGAACCG 136 

VTC2 ACTGCTGTCTCTGCTGCTAAAG ACTGAGACACGTCGTACCTGAA 139 

 


