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ABSTRACT
A new method is presented for modelling the physical properties of galaxy clusters. Our tech-
nique moves away from the traditional approach of assuming specific parameterized functional
forms for the variation of physical quantities within the cluster, and instead allows for a ‘free-
form’ reconstruction, but one for which the level of complexity is determined automatically by
the observational data and may depend on position within the cluster. This is achieved by rep-
resenting each independent cluster property as some interpolating or approximating function
that is specified by a set of control points, or ‘nodes’, for which the number of nodes, together
with their positions and amplitudes, are allowed to vary and are inferred in a Bayesian manner
from the data. We illustrate our nodal approach in the case of a spherical cluster by mod-
elling the electron pressure profile Pe(r) in analyses both of simulated Sunyaev–Zel’dovich
(SZ) data from the Arcminute MicroKelvin Imager (AMI) and of real AMI observations of
the cluster MACS J0744+3927 in the CLASH sample. We demonstrate that one may indeed
determine the complexity supported by the data in the reconstructed Pe(r), and that one may
constrain two very important quantities in such an analysis: the cluster total volume integrated
Comptonization parameter (Ytot) and the extent of the gas distribution in the cluster (rmax). The
approach is also well-suited to detecting clusters in blind SZ surveys, in the case where the
population of radio sources is known in advance.
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1 IN T RO D U C T I O N

Determining the properties of clusters of galaxies, such as their total
and baryonic mass, has the potential to provide an independent
tool for constraining the parameters of the �CDM model, since
cluster population properties are sensitive to several cosmological
parameters, most notably σ 8 (see, e.g. Sievers et al. 2013, Planck
Collaboration et al. 2016, and de Haan et al. 2016). The challenge
lies, however, in obtaining a robust estimate of the cluster masses,
as these are not directly observable. The mass distribution within a
cluster is usually measured with a variety of observational methods,
including X-ray (see, e.g. Vikhlinin et al. 2009, Ettori 2013, Mantz
et al. 2014, and Olamaie et al. 2015), the Sunyaev–Zel’dovich (SZ)
effect (see, e.g. Hasselfield et al. 2013; Planck Collaboration et al.
2013, Schammel et al. 2013, Perrott et al. 2015, Rumsey et al.
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2016, and Rodrı́guez-Gonzálvez et al. 2017), measurement of line-
of-sight velocity dispersions of the galaxies in a cluster (see, e.g.
Rines et al. 2010, Munari et al. 2013, Saro et al. 2013, and Sifón
et al. 2013), and gravitational lensing (see, e.g. Rozo et al. 2010,
Hoekstra et al. 2013, Rozo et al. 2014 and Battaglia et al. 2016).

Each of these approaches relies on developing some method
for determining the cluster’s mass (distribution) from its observ-
able properties, namely its distributions of X-ray surface bright-
ness, SZ Comptonization parameter, line of sight velocity disper-
sions, and weak-lensing shear distribution. This is usually achieved
by modelling the physical properties through the cluster in terms
of some specific parameterized functional forms. Typical exam-
ples include assuming an NFW profile (Navarro, Frenk & White
1996, 1997) for the dark matter density distribution, a β-model
(Cavaliere & Fusco-Femiano 1976, 1978) for the gas density,
or a generalised NFW (GNFW) profile (Nagai et al. 2007) for
the gas pressure. The cluster mass (distribution) is then usually
calculated under the standard assumption of a spherical cluster
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model obeying hydrostatic equilibrium (HSE) and/or some scaling
relationships.

Even for physically based cluster models (see, e.g. Olamaie,
Hobson & Grainge 2012, 2013), there still remains considerable
uncertainty regarding the appropriate form one should assume for
the radial variation of cluster properties, and this can lead to differ-
ent cluster mass estimates (see, e.g. Olamaie et al. 2012, Giodini
et al. 2013, and Köhlinger, Hoekstra & Eriksen 2015, and De Mar-
tino & Atrio-Barandela 2016). This may result from either adopting
inappropriate functional forms, often by extrapolating their use to
cluster masses and/or redshifts that are not well sampled by observa-
tions or simulations, or by fitting models that depend on parameters
to which the data are insensitive.

In this paper, we therefore move away from the traditional ap-
proach of assuming specific parameterized forms for the variation of
cluster properties, such as the pressure, density, and/or temperature
distribution, and instead allow for a ‘free-form’ reconstruction, but
one for which the level of complexity is determined automatically
by the observational data and may depend on position within the
cluster. This is achieved by representing each independent cluster
property as some interpolating or approximating function (for ex-
ample, a piecewise linear interpolation or a spline) that is specified
by a set of control points, or ‘nodes’. The positions and amplitudes
of these nodes and, most importantly, the number of nodes used are
allowed to vary and constitute the set of parameters to be inferred
from the data in a Bayesian manner.

We note that we have already successfully applied such a
Bayesian nodal modelling approach to a number of cosmological
analysis problems, including the reconstruction of the primordial
anisotropy power spectrum and the variation of the dark energy
equation-of-state parameter with redshift (see, e.g. Vázquez et al.
2012 a,b and Hee et al. 2016, 2017).

The structure of this paper is as follows. In Section 2, we briefly
summarize Bayesian inference, in particular parameter estimation
and model selection. Our nodal approach to modelling galaxy clus-
ters is presented in Section 3, and in Section 4 we apply it to the
particular case of modelling the pressure profile Pe(r) in a spherical
cluster observed via its SZ effect. Section 5 outlines our Bayesian
methodology for inferring the cluster parameters from interfero-
metric SZ observations, and summarizes our simulated cluster ob-
servations and real observations of the cluster MACS J0744+3927
using AMI. In Section 6, we present the results of our Bayesian
nodal analysis of these simulations and real observations, and we
conclude in Section 7.

2 BAY ESIAN IN FERENCE

For the analysis of some data D in the context of a model (or
hypothesis) M that depends on some set of parameters �, Bayes’
theorem states that

Pr(�|D,M) = Pr(D|�,M) Pr(�|M)

Pr(D|M)
≡ L(�)π (�)

Z , (1)

which is usually interpreted as the prior probability distribution
Pr(�|M) ≡ π (�) of the parameters being updated by the likeli-
hood Pr(D|�,M) ≡ L(�) of obtaining the observed data given
some set of parameter values to yield the posterior probability dis-
tribution Pr(�|D,M) of the parameters, which is normalized by
the Bayesian evidence Pr(D|M) ≡ Z (which does not depend on
the parameters �). The joint (unnormalizsed) posterior provides the
complete inference in Bayesian parameter estimation, and can be

Table 1. Jeffreys’ scale for interpreting PORs (or Bayes factors). As
lnPij = − lnPji , negative values imply reversed model favouring.

lnPij Favouring of Mj over Mi

0.0 ≤ lnPij < 1.0 None
1.0 ≤ lnPij < 3.0 Slight
3.0 ≤ lnPij < 5.0 Significant
5.0 ≤ lnPij Decisive

subsequently marginalized over each parameter to obtain individual
parameter constraints.

Similarly, in Bayesian model selection, one can calculate the
probability of a model given the data as

Pr(M|D) = Pr(D|M) Pr(M)

Pr(D)
≡ ZπM

Pr(D)
. (2)

Taking the ratio of the probabilities of two models signifies our
degree of belief in one model over another, and is given by the
posterior odds ratio (POR)

Pij ≡ Pr(Mj |D)

Pr(Mi |D)
= ZjπMj

ZiπMi

= Bij

πMj

πMi

, (3)

where Bij ≡ Zj /Zi is the Bayes factor (Jeffreys 1961). Clearly, if
πMj

= πMi
, so that the two models are considered a priori equally

probable, then Pij = Bij . Table 1 lists a modern version of Jef-
freys’ criteria, which are used to give meaning to this quantification
(Kass & Raftery 1995; Feroz 2013).

Thus, for Bayesian model selection, in contrast to parameter esti-
mation, the evidence takes a central role. Typically, the evidence for
each model is calculated separately and their ratios evaluated. From
(1), the evidence is the normalization constant for the posterior,
which is given by

Z =
∫

L(�)π (�) dD� , (4)

where D is the dimensionality of the parameter space. As the average
of the likelihood over the prior, the evidence embodies the notion
of Occam’s razor (see, e.g, Jaynes 1986 and Sivia 2005): a simple
theory with a compact parameter space will have a larger evidence
than a more complicated one, unless the latter is significantly better
at explaining the data.

The evaluation of the multidimensional integral (4) over the
whole parameter space is a challenging numerical task. We perform
this calculation here using the nested sampling algorithm MULTI-
NEST (Feroz & Hobson 2008; Feroz, Hobson & Bridges 2009;
Feroz et al. 2013). This Monte-Carlo method is targeted at the effi-
cient calculation of the evidence, but as a by-product also produces
posterior inferences for parameter estimation; it is also very ef-
ficient at exploring posteriors that contain multiple modes and/or
large (curving) degeneracies.

We note that elsewhere (Hee et al. 2016, 2017), we have presented
an alternative method for performing Bayesian model selection,
without explicitly computing evidences, which uses a combined
likelihood and introduces an integer model selection parameter n.
If the maximum number of models under consideration is specified
a priori, the full joint parameter space of the models is of fixed
dimensionality and can be explored using standard sampling meth-
ods, without the need for trans-dimensional techniques, although
the posterior is usually highly multimodal and hence nested sam-
pling is again an obvious choice. Bayes factors, or more generally
posterior odds ratios, may then be read off directly from the poste-
rior on n, which is obtained by straightforward marginalization. To
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Figure 1. Linearly-interpolated nodal representation for N = 4 nodes of the
gas pressure profile Pe(r) in a galaxy cluster described in units of MeVm−3

(1MeVm−3 = 1.602 × 10−13Nm−2).

keep our discussion simple, however, we will not use this method
here, but plan to apply it to nodal modelling of galaxy clusters in a
forthcoming publication.

In closing this section, it should be mentioned that, in general,
a gain in information via a Bayesian analysis may be achieved
in several ways: it can occur because of a tightening of the pa-
rameter constraints, a shift in position of the peak(s) of the dis-
tribution from prior to posterior, or an increase in the evidence
(see, e.g. Trotta et al. 2008, Seehars et al. 2014, and Seehars
et al. 2016).

3 N O DA L M O D E L FO R A G A L A X Y C L U S T E R

As described briefly earlier, in our nodal approach to free-form
modelling of a galaxy cluster, each independent physical property
of the cluster is represented by some interpolating or approximating
function that is determined by a set of control points, or nodes. In
principle, these functions can be fully three-dimensional, such that
fi = fi(r, θ , φ, . . . ) for some set of functions, to allow modelling
of arbitrary structure in each property of interest in the cluster. To
illustrate the method simply, however, we will consider here the
special case of a spherical cluster, such that each property is a
function only of radius r from the cluster centre. Moreover, we will
specialize still further to the case where one constructs a nodal model
of just a single property of interest, described by some function f(r).
It is a straightforward matter to extend the following analysis to
multiple properties of interest.

The basic idea is to represent f(r) not with some standard pa-
rameterized functional form, as in most current cluster analyses,
but in terms of a number N of nodes in (r, f)-space, separated by
their corresponding positions rn and amplitudes fn(n = 0, 1, 2, . . . ,
N − 1) (thus each node can ‘move’ both horizontally and vertically
– see Fig. 1), where N is itself determined in the analysis (or, in
principle, marginalized over). The N nodes act as control points for
the continuous function f(r). In this way, one obtains a continuous
free-form reconstruction of the profile f(r), for which the complexity
is regularized by the data under analysis.

One is free to choose from a wide range of possible interpolation
or approximation methods, such as a constant function between the
nodes, polynomials, rational functions, splines, Bézier curves, or
even Gaussian processes. It should be noted, however, that some
forms of smooth interpolating or approximating functions, such as
cubic splines, have continuity requirements on the function and its
derivatives which can significantly reduce the ability of the result-
ing f(r) to reproduce abrupt features in the cluster profile (Vázquez
et al. 2012). We also note that assuming a function that is constant
between the nodes breaks the continuity requirement of the pressure

profile. In principle, the nature of the interpolating or approximat-
ing function could be determined by performing a straightforward
Bayesian model selection between the various options, although
we will not consider that further here. Instead, for illustration, we
choose here the simplest approach of linearly interpolating between
the nodes; since we are performing an interpolation, rather than an
approximation, one has fn = f(rn).

As mentioned above, given the nature of the one-dimensional
function f(r) that we wish to model in the case of a galaxy cluster,
we typically restrict the movement of the first and last nodes (or
end nodes) as follows. The first node has a fixed position, at the
origin, such that r0 = 0. Consequently, its corresponding ampli-
tude parameter f0 represents the central value f(0), which is often
of interest in galaxy cluster analyses. To determine the impact of
this restriction, however, which assumes knowledge of the position
of the cluster centre, we also study the case where the position of
the first node is not fixed. In contrast, the last node has a fixed
amplitude of zero, such that fN − 1 = 0. Thus, its corresponding
position parameter rN − 1 can sometimes be interpreted as an ex-
tent of the cluster rmax, which is again often of interest (although
this interpretation does depend on the nature of the quantity f(r)
being modelled). In our demonstration of the method presented in
Section 4, f(r) represents the electron pressure profile Pe(r) of the
cluster and so rN − 1 represents the extent of the cluster gas. Fig. 1
illustrates our linearly interpolated nodal model of Pe(r) for N = 4
nodes.

In the context of Bayesian inference, we denote the model con-
sisting of N nodes by MN , which has the parameters � = {rn, fn}
for n = 0, 1, 2, . . . , N − 1, plus any further ‘global’ parameters,
such as the cluster position on the sky or parameters describing
any contaminating signals or noise in the data. The priors on the
parameters may be chosen to accommodate whatever information
is available a priori. In general, however, we typically also impose a
‘sorting condition’ on the node positions, such that rn < rn + 1. This
can be done straightforwardly, without the need to reject any sam-
ples. Indeed, if each node position is considered to be drawn from a
uniform distribution in some given range, as is usually the case, the
corresponding (non-separable) joint prior π (r0, r1, r2, . . . , rN − 1)
on the node positions, which incorporates the sorting condition rn

< rn + 1, has an analytic form in terms of the beta distribution (Han-
dley, Hobson & Lasenby 2015). It is also worth mentioning that,
although we will assume here that each model MN is equally likely
a priori, such that πMi

= πMj
(and hence PORs are equivalent to

Bayes factors), this is not necessary. One may view this assumption
as imposing a uniform prior (within some range) on the number N
of nodes, but one could equally well impose, for example, a Poisson
prior on N with some given mean, from which one can read off the
corresponding values of πMN

.
In the straightforward model selection approach used here, one

begins by analysing the N = 2 model, using MULTINEST to
calculate the evidence Z2 and obtain samples from the posterior
Pr(�|D,M2). This process is then repeated separately for N = 3, 4,
. . . until the evidenceZN has decreased well below that of the most-
favoured model. One may then proceed either by conditioning on
the most-favoured model MN̂ and simply infer parameters and the
corresponding constraints on f(r) from the posterior Pr(�|D,MN̂ )
or perform a ‘multi-model’ inference (see e.g. Parkinson & Lid-
dle 2013, Hee et al. 2016, 2017, and Planck Collaboration et al.
2016) in which the constraints on f(r) are determined by averag-
ing over all the models MN considered, weighted by their PORs.
In the interests of simplicity we will adopt the former approach
here.
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4 A PP LIC ATION TO SZ O BSERVATIONS

Although our nodal approach may be used to model observations of
galaxy clusters in any waveband, we illustrate the method here by
applying it to SZ observations (see e.g. Sunyaev & Zeldovich 1970,
Birkinshaw 1999, and Carlstrom, Holder & Reese 2002). Since the
SZ surface brightness is proportional to the line-of-sight integral
of the electron pressure, as we show below, it is natural to use the
nodal approach to model the radial electron pressure profile Pe(r)
of the ionized gas within the cluster.

The observed SZ surface brightness δIν in the direction of an
electron reservoir is given by

δIν = TCMByf (ν)
∂Bν

∂T

∣∣∣
T =TCMB

. (5)

Here, Bν is the blackbody spectrum, TCMB = 2.73 K (Fixsen
et al. 1996) is the temperature of the CMB radiation, f (ν) =
(x coth(x/2) − 4) (1 + δ(x, Te)) is the frequency dependence of
thermal SZ signal, x = hpν

kBTCMB
, hp is Planck’s constant, ν is the fre-

quency, and kB is Boltzmann’s constant. The function δ(x, Te) takes
into account the relativistic corrections in the study of the thermal
SZ effect which is due to the presence of thermal weakly relativistic
electrons in the ICM and is derived by solving the Kompaneets equa-
tion up to the higher orders (Rephaeli 1995, Challinor & Lasenby
1998, Itoh, Kohyama & Nozawa 1998, Nozawa, Itoh & Kohyama
1998, Pointecouteau, Giard & Barret 1998). It should be noted that
at 15 GHz (AMI observing frequency) x = 0.3 and therefore the
relativistic correction, as shown by Rephaeli (1995), is negligible
for kBTe ≤ 15 keV. The dimensionless parameter y, known as the
Comptonization parameter, is the integral of the number of colli-
sions multiplied by the mean fractional energy change of photons
per collision, along the line of sight

y = σT

mec2

∫ +∞

−∞
Pe(r) dl , (6)

where Pe(r) is the electron pressure at radius r, respectively, σ T is
Thomson scattering cross-section, me is the electron rest mass, c is
the speed of light, and dl is the line element along the line of sight.
It should be noted that (6) assumes an ideal gas equation of state.

The integral (YSZ) of the Comptonization y parameter over the
solid angle 
 subtended by the cluster is proportional to the volume
integral of the gas pressure. It is thus a good estimate for the total
thermal energy content of the cluster and hence its mass (see e.g.
Bartlett & Silk 1994). The YSZ parameter in cylindrical and spherical
geometries, respectively, may be described as

Ycyl(R) = σT

mec2

∫ +∞

−∞
dl

∫ R

0
Pe(r)2πs ds ,

Ysph(r) = σT

mec2

∫ r

0
Pe(r ′)4πr ′2dr ′, (7)

where R is the projected radius of the cluster on the sky. Thus,
by using our nodal approach to model Pe(r), one may constrain
YSZ in either geometry. In this paper, we calculate the marginalized
posterior distribution of the cluster total volume integrated Comp-
tonization parameter, Ytot = Ysph(rmax), where rmax is the extent of
the cluster.

5 A NA LY SIS O F INTERFERO METRIC SZ DATA

In order to verify that our proposed model, with its correspond-
ing assumptions, can describe profiles of cluster physical properties
accurately, we carry out a Bayesian analysis of simulated SZ obser-
vations using AMI (AMI Consortium: Zwart et al. 2008) of a set of

three clusters, as well as real AMI SZ observations of the cluster
MACS J0744+3927 (Rumsey et al. 2016).

5.1 Bayesian methodology

An interferometer like AMI operating at a frequency ν measures
samples from the complex visibility plane Ĩν(u). These are given
by a weighted Fourier transform of the surface brightness Iν(x),
namely

Ĩν(u) =
∫

Aν(x)Iν(x) exp(2πiu · x) dx , (8)

where x is the position on the sky relative to the phase centre, Aν(x)
is the (power) primary beam of the antennas at observing frequency
ν (normalized to unity at its peak), and u is the baseline vector in
units of wavelength.

Details of our Bayesian methodology for modelling interfero-
metric SZ data, primordial CMB anisotropies, and resolved and
unresolved radio point-source are given in Hobson & Maisinger
(2002), Feroz & Hobson (2008), Feroz et al. (2009), AMI Consor-
tium: Davies et al. (2011) and AMI Consortium: Olamaie M. et al.
(2012).

In short, the measured interferometer visibilities in our model are
assumed to have the form

Vν(u) = Ĩν(u) + Nν(u) , (9)

where the signal part, Ĩν(u), contains the contributions from the SZ
cluster and identified radio point sources, whereas the generalized
noise part, Nν(u), contains contributions from the background of
unsubtracted radio point sources, primary CMB anisotropies, and
instrumental noise. The last two contributions to the generalized
noise are well described by Gaussian processes, whereas the back-
ground of unsubtracted radio sources is strictly a Poisson process.
Nonetheless, in the limit of a large number of faint unsubtracted
sources, this contribution can also be well approximated as Gaus-
sian (Feroz et al. 2009). Thus, the generalized noise is assumed
to be Gaussian-distributed, so that the likelihood function has the
form

L(�) ∝ exp
(− 1

2 χ2
)

, (10)

where χ2 is the standard statistic quantifying the misfit between the
observed data D and the predicted data Dp(�):

χ2 =
∑
ν,ν′

(Dν − Dp
ν)T (Cν,ν′ )−1(Dν′ − Dp

ν′ ) , (11)

in which Cν,ν′ is the generalized noise matrix relating the frequency
channels ν and ν

′
. Under the assumption that the three contribu-

tions to the generalized noise discussed above are independent, this
matrix is simply the sum of the covariance matrices for each com-
ponent. These matrices are described in Feroz et al. (2009) and are
assumed to be independent of the parameters to be fitted in the
analysis. In particular, the primary CMB anisotropies are assumed
to be consistent with the concordance cosmology.

In the Bayesian analysis, the point sources are modelled using
delta-function priors on position and Gaussian priors on flux and
spectral index, usually determined from higher-resolution observa-
tions from the AMI Large Array, as discussed in Feroz et al. (2009).
We focus here, however, on the inference of the cluster parame-
ters. For the model MN , having N nodes, the cluster parameters
are

�c ≡ (x, y, r0, P0, . . . , rN−1, PN−1) , (12)
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where x and y are the cluster projected position on the sky. We carry
out the analysis for N = 2, 3, 4, . . . , 8. We assume that the priors on
these sampling parameters are separable, apart from imposing the
‘sorting condition’ on the nodes positions, as discussed in Section 3,
so that

π (�c) = π (x) π (y) π (r0, r1, . . . , rN−1)
N−1∏
n=0

π (Pn) . (13)

The position of the first node is either fixed to r0 = 0, or has
a uniform prior in the range 0.0 ≤ r0/Mpc ≤ 0.1, whereas the
position of the last node always has a uniform prior in the range 0.5
≤ rN − 1/Mpc ≤ 2.5. The positions of the intervening nodes have
uniform priors in the range 0 ≤ rn/Mpc ≤ 1. The prior on the pressure
P0 of the first node is a truncated exponential distribution with
mean λ = 100 MeVm−3 in the range 10 ≤ P0/MeVm−3 ≤ 5 × 103,
whereas the pressure PN − 1 of the last node is fixed to zero. The
pressures Pn of the intervening nodes have uniform priors in the
range 0 ≤ Pn/MeVm−3 ≤ 500. Finally, we assume Gaussian priors
on the cluster position parameters x and y, centred on the origin with
a standard deviation of 1 arcmin. It is also worth mentioning that
we assume here that each model MN is equally likely a priori,
such that πMi

= πMj
(and hence PORs are equivalent to Bayes

factors), which is equivalent to imposing a uniform prior on N in
the range 2 ≤ N ≤ 8. We note that the above priors are chosen to be
consistent with the results of N-body simulations and real cluster
observations of galaxy clusters (see, e.g. Olamaie et al. 2012, 2013
and references therein). In all analyses, the redshift of the cluster is
assumed known.

5.2 Simulated AMI observations

To generate simulated SZ skies and observe them with a model AMI
instrument, we use the methods outlined in Hobson & Maisinger
(2002), Grainge et al. (2002), Feroz et al. (2009), and AMI Consor-
tium: Olamaie M. et al. (2012). In particular, we generate simulated
observations of three different model clusters, which we call SIM1,
SIM2 and SIM3. These differ in the input pressure profile used to
generate them, and all include primordial CMB anisotropies, re-
ceiver thermal noise, and simulated residual points sources typical
of AMI-pointed observations of clusters.

For SIM1 and SIM2, we assume an input pressure profile that
matches our nodal model precisely, in order to investigate the
ability of our approach to recover the true parameter values in
the simplest case. In particular, the pressure profiles for SIM1

and SIM2 are generated by linear interpolation between N = 3
and N = 4 nodes, respectively, and are plotted in Fig. 2. For
both simulations, we assume the cluster lies at a redshift of
z = 0.5.

For SIM3, we use a more realistic cluster model to test the abil-
ity of our nodal approach to recover a pressure profile that is
not of the form assumed in the analysis. In this case, the cluster
is simulated using the model described in Olamaie et al. (2012,
2013), which assumes that the dark matter density follows an NFW
profile and the ICM plasma pressure is described by the gener-
alized NFW (GNFW) profile. The model also assumes that hy-
drostatic equilibrium is satisfied and that the local gas fraction
is small throughout the cluster. This cluster model is fully spec-
ified by just three parameters, for which we assume the values
Mtot(r200) = 5 × 1014 M�, z = 0.54 and fgas(r200) = 0.13. The re-
sulting pressure profile is shown in Fig. 2, and is formally singular at

Figure 2. The input pressure profiles for the simulated clusters SIM1, SIM2,
and SIM3. The profiles for SIM1 and SIM2 were generated by linear inter-
polation between N = 3 and N = 4 nodes, respectively. The profile for SIM3

was generated using the model described in Olamaie et al. (2012, 2013),
with Mtot(r200) = 5 × 1014 M�, z = 0.54 and fgas(r200) = 0.13.

the origin, decreasing sharply with radius in the central regions of the
cluster.

5.3 AMI observations of MACS J0744+3927

We also analyze real AMI observations of MACS J0744+3927, one
of the clusters in the CLASH (Cluster Lensing And Supernova sur-
vey with Hubble) sample (Postman et al. 2012). MACS J0744+3927
is a rich cluster at redshift z = 0.689 and has been studied through
its X-ray emission, strong lensing, weak lensing, and SZ effect
(Schmidt & Allen 2007; Ettori & Balestra 2009; Rumsey et al.
2016; Umetsu et al. 2016). The SZ signal (decrement) on the AMI
map appears circular, (Fig. 7 in Rumsey et al. 2016), in agreement
with the X-ray surface brightness from the Chandra archive data
(fig. 6 in Postman et al. 2012). Details of AMI-pointed observations
towards the cluster, modelling of foreground and background radio
point sources and noise, the data reduction pipeline and mapping
are described in Rumsey et al. (2016). In particular, we note that
the Bayesian analysis includes fitting 23 radio point sources in the
AMI field. We focus here, however, on the determination of the
parameters defining our nodal model of the cluster.

6 R ESULTS AND D I SCUSSI ON

We now present the results of our Bayesian nodal analysis applied
to the three simulated data sets SIM1, SIM2, and SIM3, and real
AMI observations of the cluster MACS J0744+3927.

6.1 Simulation SIM1

The results of our evidence-based Bayesian model selection analysis
to determine the number N of nodes in the Pe(r) reconstruction
for SIM1 are given in Fig. 3. This shows the histogram of Bayes
factors B2j , i.e. relative to the N = 2 ‘straight line’ model, as a
function of the number of nodes N in the reconstruction of the
pressure profile Pe(r) for simulation SIM1. Given our prior choice
πMi

= πMj
on the models, the Bayes factors are equal to the PORs

P2j , and so the plotted histogram is equivalent to the marginalized
posterior on N. Recalling that the input pressure profile for SIM1

is constructed by linear interpolation between N = 3 nodes, one
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Figure 3. Histogram of Bayes factors B2j (i.e. relative to the N = 2 model)
as a function of the number of nodes N in the reconstruction of the pressure
profile Pe(r) for simulation SIM1; this is equivalent to the marginalized
posterior on N. The estimated errors on the Bayes factors are also shown.
The vertical dotted line indicates the most-favoured value of N.

sees that our analysis has recovered the true value of N as the most-
favoured. In particular, it is worth noting that the log Bayes factor
lnB23 = 4.0 ± 0.12, indicating strong evidence for the N = 3 model
over the N = 2 (straight line) model, according to Table 1. The Bayes
factors then gradually decline for N > 3, ultimately reaching the
value logB28 = 0.0 ± 0.12, which indicates no preference for N =
8 over the N = 2 model, demonstrating that the ability of the N =
8 model to (over)fit the data is offset by the penalty of its increased
complexity.

As mentioned earlier, we will adopt here the straightforward
approach of determining the constraints on parameters by condi-
tioning on the most-favoured model N̂ = 3, rather than performing
model averaging according to their Bayes factors. Since it is of
interest to understand any biases or constraints on the parameters

imposed by our choice of priors, we first consider the ‘posterior’
Pr(�c|D = 0,M3) on the cluster parameters obtained in the ab-
sence of any data. This is calculated simply by setting the likeli-
hood to a constant value, so that the sampler explores just the prior
π (�c). The resulting 1D and 2D marginalized distributions for the
sampling parameters �c are shown in Fig. 4 (left-hand panel); in
addition we plot the derived parameter Ytot defined in equation (7).
These plots show that we correctly recover the assumed prior distri-
butions, and also reveal the constraints that our choice of priors has
placed on the derived parameter Ytot. The plots are produced using
the open source Python library corner.py (Foreman–Mackey
2016).

The corresponding plot obtained after analysing the simulation
SIM1 is shown in Fig. 4 (right-hand panel), and shows the effect
that the data have in updating the prior, via the likelihood func-
tion, to produce the posterior, in the spirit of Bayes’ theorem. In
particular, one sees that the cluster position (x and y) on the sky
is firmly constrained and the true values lie within few arcseconds
of the means of the posterior probability distributions for x and y.
From the range of posterior distributions in Fig. 4, it is clear that
the model given the data leads to constraints tighter by a factor
of 10. Probability distributions of x and y for the no data analysis
cover the range −200 and 200, where as the range of x and y in
the analysis including the data is between −20 and 20. Turning to
the parameters defining the nodal model of the pressure profile, one
sees that the amplitude P0 of the first node is not well constrained,
and we are essentially recovering just the prior distribution. This is
to be expected, since an interferometric SZ observation is insensi-
tive to length scales on the sky that correspond to Fourier modes
in the visibility plane lying well below the shortest baseline (in
units of wavelengths) of the interferometer. Consequently, for this

Figure 4. 1D and 2D marginal posterior distributions of the cluster sampling parameters �c and the derived parameter Ytot, conditioned on N = 3 nodes and
obtained in the absence of any data (left) and from analysis of simulation SIM1 (right). The horizontal (left to right) and vertical (top to bottom) panels are x
and y in units of arcseconds, r1 and r2 in Mpc, P0 and P1 in MeVm−3 × 10−1, and Ytot in Mpc2 × 10−4, respectively. The contours on the 2D distributions
represent 68 per cent and 95 per cent Bayesian confidence intervals. The vertical dashed blue lines show the mean values of the 1D distributions. The brown
squares in the 2-D distributions and the vertical dashed brown lines in the 1D distributions indicate the true values of the parameters used in the simulation.
Note that the regions of the parameter space depicted in the right-hand plot are typically much smaller than those in the left-hand one.

MNRAS 481, 3853–3864 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/481/3/3853/5096025 by U
niversity of C

am
bridge user on 09 April 2019



Free-form modelling of galaxy clusters 3859

Figure 5. The reconstructed pressure profile Pe(r) conditioned on N = 3
nodes, obtained from analysis of simulation SIM1. Yellow squares show
the positions and amplitudes of the input pressure profile used to generate
the simulation. The colour scale shows the relative probability for a recon-
structed pressure profile Pe(r) to pass through any given pixel in the (r, Pe)
– plane.

simulation, the observations cannot probe the cluster inner core and
thus provide no information on the pressure P0 at the centre. By
contrast, the position and amplitude of the second node, (r1, P1),
are both constrained relative to their prior distributions, although
their 2D marginal reveals a clear degeneracy between them. The
position r2 of the third (and final) node is very well constrained.
Since this node corresponds to the point at which the gas pressure
drops to zero, it is a valuable quantity for defining the extent of the
gas distribution in the cluster. Indeed, obtaining a robust constraint
on this quantity can provide insight to the dynamical state of the
cluster. Finally, we note that the important derived parameter Ytot is
also very well constrained. From their 2-D marginal, however, one
sees that there is some degeneracy between the parameters r2 and
Ytot.

Rather than viewing the posterior constraints on the individual
parameters r1, r2, P0, and P1, as in Fig. 4, it can be more intuitive
and instructive to plot the corresponding inference on the recon-
structed pressure profile Pe(r) directly. This may be performed in
a number of ways. For example, one may plot the posterior proba-
bility Pr(P |r, D,M3), in normalized slices at constant r (Hee et al.
2016). Here, as shown in Fig. 5, we plot simply the relative proba-
bility, as determined from the posterior samples, for a reconstructed
pressure profile Pe(r) to pass through any given pixel in (r, Pe) –
plane. The input pressure profile used to generate the simulation
is also plotted (yellow squares). As one might expect from Fig. 4
(right-hand panel) and Fig. 5, the reconstructed pressure profile is
consistent with the input profile, with the true node locations in (r,
Pe)-space all lying within the 68 per cent Bayesian credible inter-
vals of the corresponding inferred node locations. It is again clear,
however, that the central pressure P0 is poorly constrained, as dis-
cussed above, but that the remaining node parameters are reasonably
well determined.

Conditioning on N = 3 nodes, we also analyse the SIM1 simulated
data assuming a uniform prior on r0 between 0 and 0.1 Mpc and plot
the corresponding posterior distributions in Fig. 6, which shows r0

is indeed constrained. It should be noted that the constraints on the
other parameters remain unchanged.

Figure 6. 1D and 2D posterior distributions of x, y, and r0, when a uniform
prior between 0 and 0.1 Mpc is placed on the position of first node for SIM1.
x and y are in units of arcseconds, and r0 is in Mpc.

Figure 7. As for Fig. 3, but for the analysis of simulation SIM2.

In the remainder of the paper, we will plot the reconstructed Pe(r),
as in Fig. 5, together with the posterior distributions on the position
(x and y) of the cluster and the important physical parameters rN − 1

≡ rmax and Ytot.

6.2 Simulation SIM2

The histogram of Bayes factors B2j as a function of N obtained in
the analysis of simulation SIM2 is shown in Fig. 7. Recalling that the
input pressure profile for SIM2 is constructed by linear interpolation
between N = 4 nodes, one sees that our analysis has again recovered
the true value of N as the most-favoured. In this case, one sees the
N = 2 (straight-line) model is again strongly disfavoured. In partic-
ular, one finds lnB24 = 4.0 ± 0.12, indicating strong evidence for
the most-favoured N = 4 model over the N = 2 model, according
to Table 1. The Bayes factors then gradually decline for N > 4 in
a similar way to that found for SIM1, ultimately reaching the value
logB28 = 0.0 ± 0.12; this again indicates no preference for N = 8
over the N = 2 model, for the reasons discussed above.

Conditioning on N = 4 nodes, Fig. 8 shows the reconstructed
pressure profile Pe(r) (top panel), and the 1D and 2D marginal
posterior distributions on the cluster position parameters x and y
(middle panel) and on the gas extent r3 and total Comptonization
parameter Ytot (bottom panel). One again sees that the reconstructed
pressure profile is consistent with the input profile used to generate
the simulation, but that cluster gas pressure P0 is poorly constrained,
for the reasons we discussed above in the context of SIM1. The
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Figure 8. Constraints on cluster parameters, conditioned on N = 4 nodes,
obtained from analysis of simulation SIM2. Top: the reconstructed pressure
profile Pe(r), displayed as in Fig. 5, together with the input profile used in
the simulation (yellow squares). Middle: the cluster position parameters x
and y. Bottom: the gas extent r3 and total Comptonization parameter Ytot. x
and y are in units of arcseconds, rs are in Mpc, Ps are in MeVm−3, and Ytot is
in Mpc2 × 10−4. The contours on the 2D distributions represent 68 per cent
and 95 per cent Bayesian confidence intervals. The vertical dotted lines show
the mean values of the 1D distributions; these values and their 68 per cent
Bayesian credible intervals are also quoted. The squares and solid vertical
lines indicate the true values of the parameters used in the simulation.

Figure 9. As for Fig. 3, but for the analysis of simulation SIM3.

remaining node parameters are again reasonably well-constrained,
especially the first internal node parameters (r1, P1). Moreover, one
again obtains tight constraints on the cluster position, consistent
with the input values. The cluster extent r3 and total Comptonization
parameter are also both well-constrained and in agreement with the
input values. As in SIM1, however, the 2D marginal distribution of
r2 and Ytot reveals a mild degeneracy.

Further, we analyse the SIM2 simulated data conditioning on N =
4 nodes assuming a uniform prior on r0. The results of the analysis
are similar to those found for SIM1 and show r0 is constrained.

6.3 Simulation SIM3

The histogram of Bayes factors B2j as a function of N obtained in
the analysis of simulation SIM3 is shown in Fig. 9. The input pres-
sure profile for SIM3 is not constructed from a linear interpolation
between nodes, but instead from the cluster model of Olamaie et al.
(2012, 2013), which assumes that the pressure is described by the
generalized NFW (GNFW) profile (Nagai et al. 2007). Hence, in
this case, there is no ‘correct’ number of nodes to recover. Instead,
the most-favoured value of N̂ = 3 nodes gives an indication of the
level of complexity in the pressure profile reconstruction that is sup-
ported by the data. Thus, for interferometric SZ observations of the
type simulated, the data support only a very simple reconstruction
of the pressure profile, favouring a representation consisting of just
two straight-line segments. Indeed, the variation of the Bayes factor
with N is very similar to that shown in Fig. 3 for SIM1, for which
the input pressure profile had precisely this simple form.

Conditioning on N = 3 nodes, Fig. 1 shows the reconstructed
pressure profile Pe(r) (top panel), and the 1D and 2D marginal
posterior distributions on the cluster position parameters x and y
(middle), and the gas extent r3 and total Comptonization parameter
Ytot (bottom). Although in this simulation there are no ‘correct’ lo-
cations for the nodes in (r, Pe)-space, one sees the reconstructed Pe

pressure profiles are consistent with the input one. Once again, our
analysis serves to highlight the rather coarse level of detail in the re-
constructed pressure profile that is achievable with SZ observations
of the type simulated. Nonetheless, one still obtains tight constraints
on the cluster position, which are consistent with the input values,
and also on the cluster extent r3 and total Comptonization parame-
ter. We again see, however, that there is a slight degeneracy in the
2D marginal distribution of r2 and Ytot.

We also analyse SIM3-simulated data conditioning on N = 3
nodes assuming uniform prior on r0. Once again, we find the results
of the analysis to be similar to those found for SIM1 and show r0 is
constrained.
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Figure 10. As for Fig. 8, but conditioned on N = 3 nodes, and obtained
from the analysis of simulation SIM3.

6.4 Cluster MACS J0744+3927

The histogram of Bayes factorsB2j as a function of N obtained in the
analysis of real AMI observations of the cluster MACS J0744+3927
is shown in Fig. 11. For this real cluster, one sees that the varia-
tion of the Bayes factor B2j is broadly similar to that shown in
Fig. 9, obtained from the analysis of simulation SIM3, for which
an input GNFW pressure profile was assumed. In particular, the
most-favoured model again has N = 3 nodes, after which the Bayes
factors gradually decline with increasing N. This indicates that the

Figure 11. As for Fig. 3, but for the analysis of real AMI observations of
the cluster MACS J0744+3927.

data support a model for the pressure profile that is no more com-
plex than two straight-line segments. It is worth noting, however,
that in comparing the favoured N = 3 model with the base N = 2
(straight-line) model, one obtains lnB23 = 6.0 ± 0.2, which corre-
sponds to a decisive favouring of the former model, according to
Table 1. Thus, one may deduce at high confidence from our analy-
sis, in a model-independent manner, that the pressure profile is not
simply a linear function of r.

Conditioned on N = 3 nodes, Fig. 10 shows the reconstructed
pressure profile Pe(r) (top panel), and the 1D and 2D marginal
posterior distributions on the cluster position parameters x and y
(middle), and the gas extent r2 and total Comptonization param-
eter Ytot (bottom). Once again, the central pressure P0 is poorly
constrained, but the remaining node locations in (r, Pe)-space are
better determined. It is worth recalling from our analysis of simu-
lated data how SZ observations of this type allow for only a very
coarse reconstruction of the cluster pressure profile, owing to the
SZ effect being proportional to the line-of-sight integral of the
pressure. Indeed, from Fig. 10, we recall that in the analysis of
simulation SIM3 the reconstructed pressure profile was somewhat
flatter than the input GNFW profile, although still consistent with
it to within the error-bars, and a similar effect could be occurring in
Fig. 12.

Nonetheless, as we found in our analysis of simulated data, the
cluster position (x and y) is well-constrained, and the corresponding
2-D marginal posterior distribution shows no sign of degeneracy.
The gas extent r3 and total Comptonization parameter Ytot are also
both very well-determined, although their 2-D marginal posterior
distribution shows that same slight degeneracy as seen in the anal-
yses of the simulation observations.

In the interest of completeness, for this analysis of real AMI
observations, we also plot in Fig. 13, the full set of 1D and 2D
marginalized posterior distributions for the sampling parameters
�c, and the derived parameter Ytot.

Since the Bayes factor, plotted in Fig. 11 suggests that the model,
with N = 4, 5, and 6 nodes jointly account for similar total probabil-
ity as for N = 3 model alone, it would be of interest to consider the
multi-model inference approach discussed in Section 3, in which the
constraints on Pe(r) are determined by averaging over all the models
MN , weighted by the POR. We postpone this analysis, however, to
a future publication.

Finally, we compare our reconstructed Pe(r) profile in Fig. 12
(top panel) with that obtained using a more mundane approach
in which we fix the number and positions of the nodes, which is
equivalent to simple radial binning. In particular, we use five equally
spaced nodes between r = 0 and r = 1 Mpc (inclusive), where the
amplitude of the final node is also fixed. The resulting reconstructed
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Figure 12. As for Fig. 10, but conditioned on N = 3 nodes, and
obtained from the analysis of real AMI observations of the cluster
MACS J0744+3927. Note that the axes are scaled for plotting purposes:
x and y are in units of arcseconds, rs are in Mpc, Ps are in MeVm−3, and
Ytot is in Mpc2 × 10−4.

Pe(r) profile is shown in Fig. 14, in which it should be noted that the
scales on the r and Pe axes are somewhat different to those in Fig. 12
(top panel). From fig. 14, one sees that the amplitudes of the nodes
(each with fixed nodal position) are reasonably well-constrained for
r ≥ 0.4Mpc with almost the same uncertainty for each node in the
region. As might be expected, the amplitudes of nodes in the region
r ≤ 0.4Mpc are less well-constrained, with the uncertainty growing
significantly as one approaches r = 0.

Figure 13. The full set of 1D and 2D marginalized posteriors for the analysis
of real AMI observations of the cluster MACS J0744+3927. Note that the
axes are scaled for plotting purposes. x and y are in units of arcseconds, rs
are in Mpc, Ps are in MeVm−3 and Ytot is in Mpc2 × 10−4.

Figure 14. The reconstructed pressure profile Pe(r) (conditioned on N = 5
nodes and fixed radial bins) obtained from analysis of real AMI observations
of the cluster MACS J0744+3927.

Comparing the pressure profile reconstruction with that in Fig. 12
(top panel), one sees some interesting differences. In particular, the
constraints on the pressure in fig. 12 are much tighter than in Fig. 14.
Moreover, Fig. 12 demonstrates far more clearly the r values over
which the data place the strongest constraints on the pressure namely
around r = 0.5 Mpc. Overall, we consider Fig. 12 to convey the
constraints in the pressure profile more usefully, which illustrates
the advantages of our nodal approach.
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7 C O N C L U S I O N S

Almost all current approaches to modelling observations of galaxy
clusters rely on assuming some parameterized functional form for
the properties of the cluster, such as gas density, dark matter density,
or temperature. A generic weakness of this approach is that these
functional forms have usually been arrived at through empirical
means, via the analysis of N-body simulations or observations, and
are often chosen to have simple analytic expressions, rather than
being fundamental or physically well motivated.

In this paper, we have moved away from this approach and pre-
sented a free-form model for the physical properties of galaxy clus-
ters. Previous attempts to model clusters in this way have typically
relied simply on dividing the cluster into a predefined number of
cells, or concentric shells for spherical clusters, and determining the
value of each physical quantity of interest within these subregions
(Tchernin et al. 2015). Such approaches typically lead to under-
determined inverse problems that therefore need to be regularized
in some way. There is considerable freedom in how to choose the
level or nature of the regularization to apply, and the results can
vary significantly depending on how this choice is made. We have
therefore presented an alternative approach to free-form reconstruc-
tion in which the complexity of the model is determined directly
from the data. This is achieved by representing each independent
cluster property as some interpolating or approximating function
that is specified by a set of control points, or ‘nodes’, for which the
number of nodes, together with their positions and amplitudes, are
allowed to vary and are inferred from the data in a Bayesian manner,
employing both model selection and parameter estimation.

To demonstrate our approach in a simple setting, we have applied
it to the particular case of modelling interferometric SZ observa-
tions of spherical galaxy clusters. In this context, the free-form part
of the cluster model is simply a nodal representation of the elec-
tron pressure profile Pe(r). We have performed Bayesian analyses
of simulated observations with the Arcminute Microkelvin Imager
(AMI) of three separate model clusters.

In the first two simulations, the input pressure profile has the same
form as that assumed in the analysis, namely a linear interpolation
between a set of N nodes (with N = 3 and N = 4, respectively). We
showed that, in both cases, our Bayesian model selection analysis
returned the true value of N as the most-favoured. Moreover the
resulting reconstructed pressure profiles were consistent with those
used as input. In our third simulation, in which the input pressure
was assumed to follow a GNFW, the most-favoured model again
had N = 3 nodes, and the resulting reconstructed pressure profile
was consistent with the input one. In all cases, we found that the
central pressure of the cluster is not well-determined, since inter-
ferometric observations of the type simulated do not probe length
scales corresponding to the inner core. In the analysis of our third
simulation, we also noted that the reconstructed pressure profile
was somewhat shallower that the singular GNFW profile used to
generate the simulation (although still consistent with it), which
results from the SZ effect being proportional only to the line-of-
sight integral of the pressure in the cluster. A general feature of
our results is that SZ interferometric observations of this type allow
for only a very coarse reconstruction of the cluster pressure profile.
Nonetheless, we also find that in all cases one obtains tight con-
straints on the cluster position, and that the cluster extent and total
Comptonization parameter are also both well-determined.

We also applied our approach to real AMI observations of the
cluster MACS J0744+3927. We found that the most-favoured model
has N = 3 nodes. As we found in the analysis of simulations,

the central pressure is poorly determined but the remaining node
parameters are reasonably well-constrained. Once again, we found
that cluster position, cluster gas extent, and total Comptonization
parameter are all very well-constrained.

In closing, some further general points and avenues for future
research are worth discussing. First, the tight constraints obtained
on the cluster position and on the two very important cluster pa-
rameters rmax and Ytot demonstrate the robustness of our approach.
Moreover, with only minor modification, the method may prove
very useful in cluster detection. Although, for the sake of illustra-
tion, we assumed the cluster redshift in our analyses presented here,
this is not necessary. One can easily re-perform the analysis by
instead constructing a nodal model for the pressure profile Pe(θ ),
where θ is the projected angle on the sky from the centre of the
cluster. In this way, the approach does not depend on the redshift,
but will still produce the tight constraints on the cluster position,
angular extent, and Ytot. It should be pointed out that the detection
algorithm may only be applied in the case where the population of
radio point sources is known in advance.

Finally, since our Bayesian approach to the inference produces
posterior weighted samples in the parameter space, further direc-
tions for future development include defining other derived parame-
ters that capture particular features of interest in the pressure profile.
One example would be a statistic that embodies the concavity or
convexity of the pressure profile. Others might include a parameter
that quantifies the cuspy versus core nature of the central region of
the cluster. In any case, one may easily use the posterior samples
to determine the full (joint) posterior distribution of such derived
parameters.
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