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Abstract 

In this thesis, signal sampling and processing techniques are developed for magnetic 

resonance applications, to improve the estimation of magnetic resonance parameters and 

to reduce experimental acquisition times. 

Two processing techniques are developed for Nuclear Magnetic Resonance (NMR) 

relaxation and diffusion experiments. L1 regularization is recommended for extracting 

parameter distributions which are a priori known to be composed of sparse features. L1 

regularization is shown to be stable at signal-to-noise ratios < 20 and capable of resolving 

relaxation time constants and diffusion coefficients which differ by as little as 10%, such 

as in relaxation and diffusion studies of hexane/dodecane in porous media. Modified Total 

Generalized Variation (MTGV) regularization is recommended for extracting parameter 

distributions for which there is no prior knowledge of whether they are composed of sparse 

or smooth features. MTGV regularization is shown to perform better than conventional 

processing techniques and L1 regularization over a range of simulated distributions. 

A method for optimising sampling patterns for relaxation and diffusion experiments, based 

on the Cramér-Rao Lower Bound theory, is presented. The method is validated against 

pulsed field gradient NMR diffusion data of two experimental systems. In the first 

experimental system, the sampling pattern is optimised for the most accurate estimation 

of the lognormal distribution parameters of an emulsion droplet size distribution of toluene 

in water. In the second experimental system, the sampling pattern is optimised for the most 

accurate estimation of the bi-exponential model parameters of a binary mixture of 

methane/ethane adsorbed in a zeolite. The proposed method predicts an uncertainty in 

estimating the model parameters which is < 10% different from the uncertainty estimated 

from the experimental data sampled using the same sampling pattern. 

Signal sampling and processing techniques are subsequently combined to reduce 

experimental acquisition times, which opens opportunities for studying unsteady systems 

over a long acquisition time and investigating fast-changing phenomena. A 32-fold 

decrease in the experimental acquisition time is achieved in extracting 3D spatially 

resolved spin-spin relaxation maps. This is expected to be useful in investigating porous 

media systems. Three-component velocity maps on a 2D image, acquired every 4 ms, are 

used to capture, for the first time, the hydrodynamics of a bubble burst event. The 

experimental data are used to validate the predictions of numerical works.  
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Chapter 1 

Introduction 

In science and engineering applications, experimental observations need to be related to 

physical parameters through a mathematical model; an illustration of the relationship is 

given in Fig. 1.1. If the physical parameters and the mathematical model are known, 

computing the expected experimental observations is known as a forward problem. If the 

physical parameters and the experimental observations are known, finding the underlying 

mathematical model is known as a model identification problem. If the mathematical 

model and the experimental observations are known, estimating the physical parameters 

is known as an inverse problem. Inverse problems occur in areas as diverse as 

geophysics [1], astronomy [2], combinatorial chemistry [3], systems biology [4], various 

branches of physics [5] and tomographic techniques [6]. In chemical engineering 

applications, inverse problems occur in chemical reaction kinetics [7], heat transfer [8], 

mass transfer [9] and adsorption [10] among other areas.  

 

Fig 1.1. Schematic of the relationship between the experimental observations, the 

mathematical model and the physical parameters in most science and engineering 

problems. The unknown factor out of the three defines the type of problem: forward, model 

identification or inverse. 

Inverse problems are challenging for several reasons [11]. For some inverse problems, no 

value of the physical parameters exactly fit the experimental observations; this is most 

commonly caused by measurement noise. The main design decision for this type of inverse 

problem is the choice of the appropriate regression technique. For some other inverse 

problems, there are infinite values of the physical parameters that exactly fit the 

experimental observations; this is common in applications where many parameters are 

estimated from very few experimental observations. The main design decision for this type 

of inverse problems is the choice of the prior physical information needed to discriminate 
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between the different solutions. For some other inverse problems, the estimation of the 

physical parameters may be unstable to small changes in the experimental observations ; 

this is commonly caused by the mathematical model that relates the physical parameters 

to the experimental observations or the sampling scheme used for the acquired 

observations. The main design decision for this type of inverse problem is the choice of 

the appropriate stabilization technique. Inverse problems with an infinite number of 

solutions or unstable solutions are often classified as ill-conditioned inverse problems. 

 

Fig. 1.2. Illustration of different cases of a straight line fit between variables x and y. (a) 

A case when no exact fit line exists. (b) A case when an infinite number of exact fit lines 

exist. (c) A case when a single exact fit line exists, but the fit is unstable; ‘□’ marker 

observations correspond to slightly different observations to ‘○’ marker observations. 

The challenges discussed are now illustrated with respect to an example. One of the 

simplest and most common inverse problems is the estimation of the gradient and the 

intercept of a straight line fit to a series of experimental observations. When a lot of 

experimental observations exist (Fig. 1.2(a)), there is no gradient and intercept that fits 

exactly all observations. Therefore, a decision must be made on whether to minimize the 

sum of the absolute residuals, squared residuals or some other objective function. When 

only a single experimental observation exists (Fig. 1.2(b)), there are an infinite number of 

gradients and intercepts that fit exactly this observation. The range of solutions can be 

narrowed down by having some prior physical insight of the problem; for example, there 

might be some physical reason to believe that the line should pass through the origin. 

When exactly two data points are acquired (Fig. 1.2(c)), there is a single pair of gradient 

and intercept which fit the observations exactly. However, the gradient and the intercept 

can vary widely for small changes in the acquired observations. A method to stabilize this 

problem could be, for example, to sample the two points further away from each other . 
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This work focusses on ill-conditioned inverse problems in Nuclear Magnetic Resonance 

(NMR) and Magnetic Resonance Imaging (MRI). Although the main application of NMR 

and MRI remains in the medical field, this work focuses on the application of these 

techniques in engineering areas, particularly in chemical process and reaction engineering, 

where they have found increasing use; the reader is referred to the reviews of 

Gladden et al. [12-16] for a comprehensive literature survey.  

1.1. Ill-conditioned inverse problems in NMR 

In NMR applications, ill-conditioned inverse problems occur in the estimation of 

spin-lattice relaxation time constant, T1, distributions, spin-spin relaxation time constant, 

T2, distributions and diffusion coefficient, D, distributions. T1 and T2 are two fundamental 

chemically specific NMR parameters that relate to the rate of transfer of energy between 

magnetic spins and the lattice and between neighbouring magnetic spins, respectively. The 

diffusion coefficient is a molecular property that describes the variance in the 

displacement of a molecule per unit time during Brownian motion. T1 and T2 distributions 

are routinely used in investigating the permeability, pore size distribution and pore 

structure of rocks [17-24] and elucidating the composition of crude oils [25-27] in the oil 

and gas industry; extracting soil water content in soil engineering [28-30]; and the study 

of cement microporous structure in cement science [31, 32]. D distributions are widely 

used in extracting size distributions of polymer chain lengths, reverse micelle systems, 

emulsion droplet systems, biomass components and hydrocarbon chain lengths [33-39].  

T1, T2 and D distributions can also be obtained jointly through 2D NMR correlation 

experiments, such as T1-T2 [40-42] and D-T2 [43-45] experiments. 2D joint distributions 

give better chemical resolution and convey information more compactly, e.  g. the T1/T2 

ratio obtained from a T1-T2 map is commonly used as a measure of adsorbate-adsorbent 

strength in catalysis. Other types of 2D NMR correlation experiments, such as T2-T2 

[46-48] and D-D [49-51] experiments are commonly used in studying exchange processes 

between different environments. 

The extraction of the 1D and 2D distributions of T1, T2 and D is an ill-conditioned inverse 

problem mainly because the NMR signal is related to the distributions through a Laplace 

transform; the numerical inversion of the Laplace transform is unstable. The instability 
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can be improved by choosing appropriately the sampling scheme and the prior knowledge 

input to the reconstruction process. 

1.2. Ill-conditioned inverse problems in MRI 

The magnitude of an MRI image details the spatial distribution of, most commonly, the 

1H nuclear density. The acquired signal is related to the MRI image through a Fourier 

transform. The extraction of the MRI image from a signal sampled at an appropriate 

frequency is not an ill-conditioned inverse problem; an exact, robust and fast numerical 

inversion of the Fourier transform exists [52]. However, to make the acquisition time 

shorter, under sampling of the signal is often needed. The reconstruction of the MRI image 

from an under sampled signal is an ill-conditioned inverse problem because there are 

infinite solutions to the problem. Reconstructions of the magnitude of the MRI image from 

under sampled signals have been used in studying absorption processes within 

cereal-based wafer materials [53], core flooding and displacement processes in 

rocks [54-56], rising bubbles in fluidised beds [57] and extracting chemical composition 

maps [58].  

The phase of an MRI image can be encoded with the velocity of the fluid being studied, a 

technique known as MR velocimetry [59-62]. The reconstruction of the phase of the MRI 

image from an under sampled signal is also an ill-conditioned inverse problem. In science 

and engineering applications, reconstructions of the phase of the MRI image from under 

sampled signals have been used in studying multiphase flow [63-66] and flow in 

microfluidics systems [67, 68]. 

The stability of the reconstruction of the magnitude or the phase of the MRI images from 

under sampled signals can be improved by the appropriate choice of the prior knowledge 

input to the reconstruction process. 

1.3. Ill-conditioned inverse problems in joint NMR-MRI 

applications 

An area of research which is attracting increasing interest, and which leads to 

ill-conditioned inverse problems, is obtaining spatially resolved distributions of NMR 
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parameters. These experiments encode in each pixel of the MRI image the local NMR 

parameter distribution. For example, spatially resolved T1 and T2 distributions are used in 

determining the local pore size distribution, permeability and displacement processes in 

rocks [69-72]. Spatially resolved D distributions have found application in studying the 

local structure of polymers and local emulsion droplet size distributions [73-75]. Spatially 

resolved propagators, which measure local displacement distributions, have been used in 

monitoring dissolution processes in rocks [76]. The spatial resolution of 2D joint NMR 

parameter distributions is less common because of the prohibitively long acquisition time. 

However, spatially resolved T1-T2 and D-T2 distributions of porous media have been 

reported [77-79]. 

The spatially resolved distribution of NMR parameters is typically related to the acquired 

signal through a combination of a Laplace and a Fourier transform. The presence of the 

Laplace transform and the fact that the acquired signal is typically highly under sampled 

in the frequency domain (to reduce the acquisition time) makes the extraction of the 

spatially resolved distribution of NMR parameters an ill-conditioned inverse problem.  

1.4. Scope of work 

The objective of this work is the development of experimental acquisition sampling 

patterns and reconstruction techniques for particular ill-conditioned inverse problems in 

NMR and MRI, to make the estimation of parameter distributions more accurate or the 

experimental acquisition time shorter. The thesis is structured as follows. 

Chapter 2 introduces the basic NMR and MRI concepts used throughout the work, while 

Chapter 3 outlines the mathematical methods on which the developed techniques in this 

work are based. 

Novel reconstruction techniques for the extraction of relaxation time constant and 

diffusion coefficient distributions, developed in this work, are presented in Chapters 4 and 

5. Chapter 4 describes a method for reconstructing distributions which are a priori known 

to be sparse, while Chapter 5 describes a reconstruction method for retaining both discrete 

and smooth features in the distributions. 

An approach to designing optimal sampling patterns for NMR relaxation and diffusion 

experiments is described in Chapters 6 and 7. Chapter 6 illustrates this approach with 
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respect to the extraction of the lognormal distribution parameters of an emulsion droplet 

size distribution, while Chapter 7 illustrates the approach with respect to the resolution of  

the components of a binary gaseous mixture. 

Chapter 8 illustrates how the appropriate combination of an acquisition sampling pattern 

and a reconstruction technique can lead to quantitative 3D spatially resolved T2 

distributions from highly under sampled signals. 

In Chapter 9, highly under sampled MR velocimetry signals and a recently proposed 

reconstruction technique are used to report the first experimental measurement of the 

hydrodynamics of a bubble burst event. 

Chapter 10 is somewhat unrelated to the main theme of this work. MR velocimetry is used 

to shed light on a discrepancy between the predictions of numerical and analytical methods 

about the development of the velocity profile at the entrance of a pipe during laminar flow. 

The conclusions and the proposed future work are presented in Chapter 11.  
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Chapter 2 

NMR and MRI theory 

The idea that certain atomic nuclei absorb and emit radiation in the radio frequency range 

of the electromagnetic spectrum when placed in a magnetic field originates in the early 

work of Purcell [1] and Bloch [2]. The phenomenon, known as Nuclear Magnetic 

Resonance (NMR), has since found applications as an analytical tool in countless areas. 

Of the many different NMR techniques, the ability to obtain spatially resolved nuclear 

information from a sample, known as Magnetic Resonance Imaging (MRI) [3, 4], has been 

particularly beneficial to mankind, through its use in medical applications. Perhaps less 

known are the applications of NMR an MRI to science and engineering problems, where 

the scope of the present work lies. 

A comprehensive treatment of NMR and MRI fundamentals and methods can be found in 

the classic texts of Callaghan [5,6], Levitt [7] and Keeler [8]. This chapter gives only a 

brief introduction to the techniques used in the present work.  

2.1. Zeeman interaction 

Sub-atomic particles of the nucleus of an atom (protons, neutrons) have a property known 

as spin, which is a form of angular momentum, but which does not arise from the rotational 

motion of these particles. Some nuclei, most notably 1H and 13C, have a net overall spin 

number, I, which results in a net magnetic moment or dipole and 2I + 1 energy levels being 

available to the nucleus. These energy levels are degenerate when no external magnetic 

field is applied, but their energies split when an external magnetic field is applied, due to 

the Zeeman interaction. For a 1H nucleus, which is the nucleus used in the present work, 

I = ½ and the energy split between the two energy levels formed when an external magnetic 

field of magnetic field, B0, is applied is given by: 

∆𝐸 =
ℎ

2𝜋
𝛾𝐵0 .     (2.1) 
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In Eq. (2.1), h is the Planck’s constant, γ = 4257 Hz G-1 is the gyromagnetic ratio of 1H, 

and B0 is the magnetic field strength. The population of these energy levels follows a 

Boltzmann distribution with temperature at thermal equilibrium; the population of the 

lower energy level is slightly higher than the population of the higher energy level. 

Although the magnetic dipole of any nucleus can be in any direction, nuclei in the lower 

energy level have on average a net magnetic dipole along the direction of B0; nuclei in the 

higher energy level have on average a net magnetic dipole in the direction opposite to B0. 

The slight difference in the population between the energy levels leads to a net 

macroscopic magnetization vector, M, along the direction of B0. An illustration of these 

ideas is shown in Fig. 2.1. 

 

Fig. 2.1. (a) Illustration of the splitting of energy levels available to a nucleus with I = ½ 

when an external magnetic field, B0, is applied. (b) Illustration of the formation of a net 

magnetization vector, M, when the magnetic dipoles of nuclei (the randomly oriented 

arrows in the figure) are placed under an external magnetic field, B0.   

The external magnetic field, B0, exerts a torque on the individual magnetic dipoles, which 

results in a precession of the magnetic dipoles about B0. Macroscopically, this leads to a 

precession of the magnetization vector, M, about B0 with a Larmor frequency w0 which 

turns out to be in the radio frequency (r.f.) range of the electromagnetic spectrum:  

𝑤0 = 𝛾𝐵0 .     (2.2) 

Even for B0 ~ 10 T, which is at the higher end of the magnetic field strengths used, the 

difference in populations between the energy levels is so small that the magnetization 

vector magnitude is orders of magnitude smaller than B0, which means that the 

magnetization vector is not detectable in practice. To make the magnetization vector 

detectable, an oscillating magnetic field, B1, is applied perpendicular to B0, with a 

magnitude such that B1 << B0 and a frequency w0; this is referred to as applying an r.f. 

pulse. The r.f. pulse perturbs the system from thermal equilibrium through a resonant 
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interaction with the magnetic dipole of the nuclei; it is this interaction which makes M 

detectable, as described in the following sections. 

2.2. Vector model 

The interaction of the overall external magnetic field, B = B0 + B1, with the magnetization 

vector is ultimately described by quantum mechanics. The Bloch vector model will instead 

be used in this work as it offers an intuitive understanding. However, it is noted that the 

vector model breaks down when spins interact, at which point a quantum mechanical 

treatment is needed. 

 

Fig. 2.2. (a) Illustration of the rotation of the magnetization vector, M, during the 

application of the r.f. pulse, in the rotating frame of reference. (b) An illustration of the 

rotation of M about B0 in the lab frame of reference, after the r.f. pulse is applied with a 

flip angle of 90°. 

Under the influence of B, M evolves with time according to the Bloch equation: 

𝑑𝑴

𝑑𝑡
= 𝛾𝑴 × 𝑩.     (2.3a) 

This leads to M rotating simultaneously about B0 and B1 with a frequency w0. This rotation 

is difficult to visualize, but a helpful aid is to work in a rotating frame of reference (as 

opposed to the lab frame of reference), which rotates about B0 with a frequency of w0; in 

this rotating frame of reference, M rotates about B1 with a frequency w0. For example, 

assume that the r.f. pulse applied is given by B1 = B1 cos(2πw0t) j, where j is a unit vector 

in the y-axis and that B0 is applied in the z-direction. In the rotating frame of reference, 

the solution to Eq. (2.3a) becomes:  
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𝑀𝑧 = 𝑀cos(2π𝑤0𝑡) ,     (2.3b) 

𝑀𝑥 = 𝑀sin(2π𝑤0𝑡) ,     (2.3c) 

𝑀𝑦 = 0 ,     (2.3d) 

where Mx, My and Mz are the time-varying components of M. When the r.f. pulse is applied 

for a time of tp, M is rotated through a flip angle α = 2πw0tp about B1. This is illustrated in 

Fig. 2.2(a). The most common flip angles used are 90° and 180°. If a flip angle of 90° is 

used, Eq. (2.3a) can be subsequently solved using B1 = 0 in the lab frame of reference to 

get: 

𝑀𝑧 = 0 ,     (2.3e) 

𝑀𝑥 = 𝑀sin(2π𝑤0𝑡 + 𝜑1) ,     (2.3f) 

𝑀𝑦 = 𝑀cos(2π𝑤0𝑡 + 𝜑1) ,     (2.3g) 

for some phase angle φ1. Therefore, M rotates in the lab frame of reference with a 

frequency w0 about B0. The magnetization vector now has components in the perpendicular 

directions to B0, which makes it detectable. An illustration is given in Fig. 2.2(b). 

2.3. Relaxation 

When the r.f. pulse is applied, the thermal equilibrium is disturbed. Once the r.f. pulse is 

removed, the system moves towards thermal equilibrium, which is for the magnetization 

vector M to be aligned with B0. The return to equilibrium is described by two relaxation 

processes: spin-lattice and spin-spin relaxation. By convention, it is assumed that B0 is 

aligned with the z-direction. 

Spin-lattice relaxation 

Spin-lattice relaxation describes how the component of M in the direction of B0 (also 

known as longitudinal magnetization), Mz, recovers from a magnitude of Mzα when the r.f. 

pulse has just been applied (which depends on the flip angle, α) to the maximum value, M, 

at equilibrium. This process is driven by the random thermal motion of molecules, which 

causes local fields to oscillate. When the oscillation frequency equals the Larmor 

frequency, magnetic poles of individual spins are rotated, with the net effect being a 
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gradual alignment of the magnetic dipoles with B0. The process is typically described by 

a first order rate model, such that: 

𝑀𝑧(𝑡) = 𝑀𝑧𝛼 + (𝑀 − 𝑀𝑧𝛼)(1 − 𝑒
−𝑡

𝑇1
⁄ ) ,     (2.4) 

where T1 is commonly referred to as the longitudinal relaxation time constant. 

Spin-spin relaxation 

The process by which the components of M in the direction perpendicular to B0 (also 

known as the transverse magnetization vector), for instance Mx, decrease from a magnitude 

of Mxα when the r.f. pulse has just been applied to zero at equilibrium is governed by two 

mechanisms. The first mechanism is spin-lattice relaxation, as described above. The 

second mechanism comes from neighbouring spins precessing at slightly different Larmor 

frequencies, corresponding to the local field strength, which causes dephasing of the spins 

(spin-spin relaxation). This mechanism is irreversible. The net effect of these two 

mechanisms is for Mx to decrease exponentially with a transverse relaxation time constant 

T2 < T1: 

𝑀𝑥(𝑡) = 𝑀𝑥𝛼𝑒
−

𝑡

𝑇2 .     (2.5) 

The homogeneity of the externally applied magnetic field, B0, is rarely ideal. This results 

in additional dephasing of the spins, leading to an effective relaxation time constant 

T2
* < T2. However, this additional dephasing is reversible through the application of an 

appropriate r.f. pulse sequence, as is discussed in Section 2.7.  

2.4. Magnetic field gradients 

Commercial magnets have the capability to apply a magnetic field gradient, G, in the 

direction of the external magnetic field B0. The local magnetic field then depends on the 

position, r, from the centre of the magnetic field gradients. As a result, the local Larmor 

frequency is given by: 

𝑤(𝒓) = 𝛾(𝐵0 + 𝒓 ∙ 𝑮) .     (2.6) 

Magnetic field gradients, together with r.f. pulses, form the basic building blocks of an 

NMR experiment, which is known as a pulse sequence. Magnetic field gradients are used 
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in encoding spatial information and are therefore the main tool behind diffusion, imaging 

and velocimetry experiments. 

2.5. Signal detection 

Typically, two receiver coils are placed with their axis perpendicular to the direction of B0 

and to each other. As M rotates about B0 and simultaneously relaxes back to equilibrium, 

voltages are induced in these coils due to Faraday’s Law, which are translated into a NMR 

signal. The NMR signal is complex, where the real and imaginary parts hold information 

from the two receiver coils, separately.  

The simplest NMR pulse sequence consists of a 90° r.f. pulse followed by signal 

acquisition, as illustrated in Fig. 2.3. The noise-free NMR signal acquired, known as the 

Free Induction Decay (FID), is given by: 

�̂�(𝑡) = 𝑒−𝑡/𝑇2 ∫ 𝜌(𝑤)𝑒−2𝜋𝑤𝑡𝑖d𝑤
+∞

−∞
,     (2.7) 

where ρ(w)dw is proportional to the number of nuclei with a Larmor frequency in the range 

w to w + dw (spin density). It is assumed that a single T2 characterizes the whole system. 

If T2 is very large (no relaxation effects), ŷ(t) and ρ(w) are a Fourier pair. Therefore, ρ(w) 

can be obtained through a Fourier transform of ŷ(t); peaks in ρ(w) reveal the Larmor 

frequencies present in the sample and the relative population of the nuclei having that 

Larmor frequency. If T2 is relatively small, this is manifested in peak broadening of ρ(w), 

giving each peak a Lorentzian shape. This is illustrated in Fig.  2.3. 

 

Fig. 2.3. Illustration of the simplest pulse sequence composed of a 90° r.f. pulse, followed 

by signal acquisition. Through Fourier transformation of the signal, the spectrum of 

Larmor frequencies is obtained (in this case illustrated by a single Lorentzian peak).  
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2.6. Chemical shift 

Not all the nuclei are in the same chemical environment; The most common example is 

nuclei in different functional groups. The local magnetic field experienced by nuclei in 

different chemical environments is different. This causes the nuclei to have different 

Larmor frequencies and it is manifested as multiple peaks in the Fourier transform of the 

NMR signal (also referred to as the NMR spectrum). NMR spectra are dependent on B0. 

As a result, they are typically normalized to give a chemical shift, δ (ppm): 

𝛿 = 106 (
𝑤−𝑤ref

𝑤ref
) ,     (2.8) 

where wref is the Larmor frequency of a reference chemical (most commonly 

tetramethylsilane for 1H). Further peak splitting occurs from the magnetic interaction of 

nuclei in close proximity or connected through covalent bonds, known as J-coupling. The 

detailed peak splitting leads to complex NMR spectra which are chemical fingerprints. 

This is the most commonly used NMR method to elucidate chemical structure and 

composition. The present work is not focused on NMR spectral analysis. However, 

chemical shift information will be given where necessary.  

2.7. Spin echo 

The homogeneity of the external magnetic field, B0, is rarely perfect. Corrections can be 

made through the application of shimming magnetic field gradients, but some 

inhomogeneity remains. This is particularly marked when materials with different 

magnetic susceptibilities are present in the sample, such as air and water, or when traces 

of paramagnetic material exist, such as in porous media applications. Therefore, the NMR 

signal decays with a transverse relaxation time T2
* < T2. This can be problematic for 

several reasons: it leads to a lower signal-to-noise ratio; only short pulse sequences are 

viable as the signal decays very fast; the T2
* decay is more difficult to interpret than the 

T2 decay, which is more meaningful because of its chemical and environmental specificity.  

The spin echo [9] is one of the basic building blocks of NMR pulse sequences as it retrieves 

the T2 decay from the T2
* decay by refocusing the dephasing that occurs due to B0

 

inhomogeneity. The spin echo pulse sequence is composed of a 90° r.f. pulse followed by 
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a 180° r.f. pulse after an echo time τ. During the echo time, the spins precessing at different 

Larmor frequencies due to B0
 inhomogeneity diphase, leading to a drop in the NMR signal. 

After the application of the 180° r.f. pulse, the spins’ direction is inverted and they start 

rephasing. After an equivalent time of τ, the spins are completely in phase (before starting 

to dephase again), and this is known as a spin echo. The magnitude of the signal at the 

spin echo is then related to the magnitude of the signal just after the application of the 90° 

r.f. pulse through a T2 decay. An illustration of the formation of the spin echo is given in 

Fig. 2.4. 

 

Fig. 2.4. (a) The spin echo pulse sequence. (b) Just after the application of the 90° r.f. 

pulse, all spins are in phase and they start precessing at slightly different Larmor 

frequencies. Three representative spins with w1 ≠ w2 ≠ w3 ≠ w1 are followed. (c) After an 

echo time τ, spins have dephased. When the 180° r.f. pulse is applied, spins are inverted, 

a process illustrated by the dotted lines. (d) Position of spins just after the application of 

the 180° r.f. pulse. (e) Spins refocus after an equivalent time of τ; a spin echo is formed. 

Spins start dephasing again after this point. 
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2.8. Stimulated echo 

In certain applications, such as when a chemical species interacts strongly with a surface, 

T2 << T1, which causes a fast decaying of the signal. A common technique to overcome 

this limitation is to store the transverse magnetization in the B0 direction for a time tstore 

by the application of a 90° r.f. pulse at a time τ after an initial 90° r.f. pulse, as shown in 

the pulse sequence in Fig. 2.5. During tstore, the stored magnetization decays with a time 

constant T1, which is a slower decay. In order to recall the magnetization back into the 

transverse direction, another 90° r.f. pulse is applied and an echo is formed after a time τ. 

This is known as a stimulated echo sequence and is used in some of the diffusion 

experiments in the present work. It is noted that other echoes may also form because the 

second 90° r.f. pulse is, in practice, imperfect and some remnant transverse magnetization 

persists. These echoes are undesirable and are formed whenever a train of imperfect r.f. 

pulses is applied [10]. The undesirable echoes are suppressed using spoiler magnetic field 

gradients, as shown in Fig. 2.5, or phase cycling techniques. These are very important 

areas in NMR experimental design, but they will not be the focus of the present work.  

 

Fig. 2.5. Schematic of the stimulated echo pulse sequence.  

2.9. T1 estimation 

The most commonly used pulse sequence to measure the relaxation time constant, T1, is 

the Inversion Recovery (IR) pulse sequence, shown in Fig.  2.6. An initial 180° r.f. pulse 

flips the magnetization vector in the opposite direction. The magnetization vector has no 

component in the transverse direction and, therefore, decays with a relaxation time 

constant, T1. To make the magnetization vector measurable, the magnetization vector is 

rotated into the transverse plane after a time t1 using a 90° r.f. pulse, after which the NMR 

signal is acquired. The process is repeated for several values of t1, which gives a number 
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of NMR signals. These are individually Fourier transformed and the area under the NMR 

spectrum, which will confusingly be known as the NMR signal, is plotted as function of 

t1.  

 

Fig. 2.6. Schematic of the Inversion Recovery (IR) pulse sequence. TR refers to the 

recovery time which is needed for the longitudinal magnetization vector to return to its 

equilibrium condition before starting the next loop of the experiment.  

For a system characterised by a single T1, the noise-free NMR signal, is given by: 

�̂�(𝑡1,𝑖) = 𝐴 (1 − 2𝑒
−

𝑡1,𝑖
𝑇1

⁄
) , (2.9) 

where A = ŷ(t1→∞) is a scaling factor. From the expression in Eq. (2.9), T1 can be retrieved 

through a simple fitting from any computational package. If the system is characterised by 

a distribution of T1, u(T1), where u(T1)dT1 is the contribution to the signal from species 

with a relaxation time constant in the range T1 to T1+dT1, the noise-free NMR signal is 

given by: 

�̂�(𝑡1,𝑖) = ∫ 𝑢(𝑇1) (1 − 2𝑒−
𝑡1,𝑖

𝑇1
⁄

) d𝑇1 
∞

0
 .     (2.10) 

The distribution u(T1) needs to be obtained numerically. As a result, Eq. (2.10) is 

discretized by seeking a solution only for several relaxation times spaced in some pattern 

between a minimum and maximum value, where the relaxation times are believed to lie 

within: 

�̂�(𝑡1,𝑖) = ∑ 𝑢(𝑇1,𝑗) (1 − 2𝑒
−

𝑡1,𝑖
𝑇1,𝑗

⁄
)𝑗  .   (2.11) 

Eq. (2.11) can be written more compactly in matrix form as: 

�̂� = 𝑲 𝒖 ,   (2.12) 

where ŷ is the signal column vector such that ŷi = ŷ(t1,i), K is a kernel matrix such that 

Kij = 1 – 2 exp(-t1,i / T1,j), and u is the distribution column vector such that uj = u(T1,j). So 
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far, it has been assumed that the NMR signal is not corrupted by noise. However, noise is 

unavoidable and, therefore, the noisy acquired signal is given by:  

𝒚 = 𝑲 𝒖 + 𝒆 ,   (2.13) 

where e is an unknown noise column vector, such that ei is the noise related to yi. u needs 

to be estimated from a knowledge of y and K, which is much of the scope of the present 

work. 

2.10. T2 estimation 

The most commonly used pulse sequence in measuring the transverse relaxation time 

constant, T2, is the Carr-Purcell Meiboom-Gill (CPMG) [11, 12] pulse sequence, 

illustrated in Fig. 2.7(a). The CPMG pulse sequence is composed of a train of equidistant 

180° r.f. pulses following an initial 90° r.f. pulse. After each 180° r.f. pulse, a spin echo 

forms, but only the middle point of the echo is acquired. For a system characterised by a 

single T2, the noise-free acquired signal follows an exponential decay: 

�̂�(𝑡2,𝑖) = 𝐴𝑒
−𝑡2,𝑖

𝑇2
⁄

 , (2.14) 

where t2,i = 2iτ, i is the echo number; A = ŷ(t2→0) is a scaling factor, and τ is the echo time. 

For a system characterised by a distribution of T2, u(T2), a similar argument to the 

discussion in Section 2.9 gives the noise-free NMR signal in a discrete setting as: 

�̂�(𝑡2,𝑖) = ∑ 𝑢(𝑇2,𝑗)𝑒
−

𝑡2,𝑖
𝑇2,𝑗

⁄

𝑗  .   (2.15) 

In the presence of noise, the acquired signal is given in a compact matrix form as: 

𝒚 = 𝑲 𝒖 + 𝒆 ,   (2.16) 

where y is the signal column vector such that yi = y(t2,i), K is a kernel matrix such that 

Kij = exp(-t2,i / T2,j), u is the distribution column vector such that uj = u(T2,j) and e is an 

unknown noise column vector, such that ei is the noise related to yi. It is noted that 

Eq. (2.16) is the same as Eq. (2.13), which means that the same numerical methods can be 

used to obtain u from a knowledge of y and K for both T1 and T2 experiments. 

In some of the experiments in the present work, a variation of the CPMG sequence, known 

as Periodic Refocusing of J Evolution by Coherence Transfer (PROJECT) [13] is used. 

This consists in the addition of a 90° r.f. pulse between every other 180° r.f. pulse 
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(illustrated in Fig. 2.7(b)). The PROJECT pulse sequence offers an improvement over the 

CPMG pulse sequence in cases where the frequency difference between spins coupled 

through J-coupling is of the order of 1/τ which would lead to signal modulation if the 

CPMG sequence was used. 

 

Fig. 2.7. (a) Schematic of the CPMG pulse sequence. Only the middle point of each echo 

is acquired. (b) Schematic of the PROJECT pulse sequence. Similarly, only the middle 

point of each echo is acquired. 

2.11. Diffusion coefficient estimation 

Apart from the chemical shift and the relaxation time constants, another property which 

can be measured using NMR is the self-diffusion coefficient, D, the foundations to which 

go back to the work of Carr and Purcell [11]. The most common pulse sequence used to 

estimate D is based on a spin echo and the application of two pulses of magnetic field 

gradients, known as pulsed field gradients (PFG), either side of the 180° r.f. pulse, as 

shown in Fig. 2.8(a). The first gradient pulse imparts on the spins located at different 

spatial locations a different Larmor frequency. Spins precess at this imposed frequency 

and dephase over the time in which the pulsed gradient is applied, δ. The spin direction is 

reversed after the application of the 180° r.f. pulse. At the end of the application of the 

second pulsed field gradient, spins would completely rephase if the spins did not change 

location during the time, Δ, between the application of the two pulsed field gradients, as 

illustrated in Fig. 2.8(b). The spin echo formed would then be similar to the spin echo that 

would form without the PFG application. However, spins are in continuous random 

thermal motion. As they follow a Brownian motion in the time Δ, the spins experience a 



26 

 

different Larmor frequency when the second pulsed field gradient is applied. As a result, 

the spins do not completely rephase at the spin echo, leading to a loss in the NMR signal, 

as illustrated in Fig. 2.8(c). The signal loss is related to the root mean square distance 

travelled by the spins, which is in turn related to the diffusion coefficient, D. The 

experiment is repeated for several gradient magnitude values, gi. 

 

Fig. 2.8. (a) Schematic of the PFG NMR diffusion pulse sequence based on a spin echo. 

The magnitude of the pulsed field gradients, g, is changed during repeats of the pulse 

sequence. (b) Illustration of the behaviour of spins in different spatial locations during 

different stages of the pulse sequence, under the assumption of no spin motion: (1) Just 

after the application of the 90° r.f. pulse; (2) Some time during the application of the first 

pulsed gradient; (3) After the first pulsed gradient is switched off; (4) Just after the 

application of the 180° r.f. pulse; (5) Some time during the application of the second pulsed 

gradient; (6) After the second pulsed gradient is switched off. (c) Same as (b) but for the 

case when spins are allowed to diffuse randomly. 

For a system characterised by a single D, the noise-free signal attenuation is given by the 

Stejskal-Tanner equation [14]: 

�̂�(𝑔𝑖) = 𝐴𝑒−𝛾2𝑔𝑖
2𝛿2𝐷(𝛥−𝛿

3⁄ ) 
 . (2.17) 

For a system characterised by a distribution of D, u(D), a similar argument to the 

discussion in section 2.9 gives the noise-free NMR signal in a discrete setting as: 
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�̂�(𝑔𝑖) = ∑ 𝑢(𝐷𝑗)𝑒−𝛾2𝑔𝑖
2𝛿2𝐷𝑗(𝛥−𝛿

3⁄ )
𝑗  .   (2.18) 

In the presence of noise, the acquired signal is given in a compact matrix form as:  

𝒚 = 𝑲 𝒖 + 𝒆 ,   (2.19) 

where y is the signal column vector such that yi = y(gi), K is a kernel matrix such that 

Kij = exp(-γ2 gi
2 δ2 Dj (Δ - δ / 3)), u is the distribution column vector such that uj = u(Dj), 

and e is an unknown noise column vector, such that ei is the noise related to yi. It is noted 

that Eq. (2.19) is the same as Eqs. (2.13) and (2.16), which means that the same numerical 

methods can be used to obtain u from a knowledge of y and K for T1, T2 and D experiments. 

In some of the experiments of the present work, a PFG NMR diffusion pulse sequence 

based on the stimulated echo [15] is used, instead of the spin echo. Eqs.  (2.17-2.19) still 

hold for this type of experiment. 

2.12. Joint parameter estimation 

The pulse sequences described so far are used in obtaining the distribution of single 

parameters, either T1, T2 or D. Acquiring joint distributions of any two of these parameters 

could be beneficial for a number of reasons: a better chemical resolution can be achieved 

for species which are very similar in terms of one of the parameters, exchange processes 

between chemical environments can be studied, and correlations between different 

parameters are presented more compactly. The pulse sequences which acquire joint 

distribution functions of these parameters are known as 2D NMR correlation experiments.  

The pulse sequences for 2D NMR correlation experiments are constructed by simply 

stacking in series the pulse sequences used in estimating the individual parameters. Only 

an example will be given in this section; other pulse sequences are constructed and 

analysed similarly. Fig. 2.9 illustrates the pulse sequence for a T1-T2 experiment. The IR 

pulse sequence is combined with the CPMG pulse sequence and the noise-free NMR signal 

acquired is given by: 

�̂�(𝑡1,𝑖, 𝑡2,𝑗) = ∑ ∑ 𝑈(𝑇1,𝑘, 𝑇2,𝑙)𝑒
−

𝑡2,𝑗
𝑇2,𝑙

⁄
(1 − 2𝑒

−
𝑡1,𝑖

𝑇1,𝑘
⁄

)𝑙𝑘  ,   (2.20) 

where U(T1,T2) is the joint distribution function and t2,j = 2jτ. In the presence of noise, the 

NMR signal can be written compactly in a matrix form as: 
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𝒀 = 𝑲1 𝑼 𝑲2
T + 𝑬 ,   (2.21) 

where Y is the signal matrix such that Yij = Y(t1,i, t2,j), K1 is a kernel matrix such that 

K1,ik = 1 – 2 exp(-t1,i / T1,k), K2 is a kernel matrix such that K2,jl = exp(-t2,j / T2,l), U is the 

distribution matrix such that Ukl = U(T1,k, T2,l) ,and E is an unknown noise matrix, such 

that Eij is the noise related to Yij. Eq. (2.21) can be rewritten in terms of vectorised matrices 

Yv, Uv and Ev, formed by stacking the columns of Y, U and E, respectively, as: 

𝒀v = 𝑲 𝑼v + 𝑬v ,   (2.22) 

where K = K2 ⊗ K1 (⊗ stands for the Kronecker product). It is noted that Eq. (2.22) is the 

same as Eqs. (2.13), (2.16) and (2.19), which means that the same numerical methods can 

be used to obtain U from a knowledge of Y and K for both single and joint parameter 

estimation problems. 

 

Fig. 2.9. The pulse sequence used to estimate the joint T1-T2 distribution. An IR and a 

CPMG pulse sequence are stacked in series. Only the middle point in each echo is 

acquired. 

2.13. Principles of MRI 

The main aim in MRI is to obtain a spatially resolved nuclear spin density, ρ(r), referred 

to simply as the image. This is achieved through the use of time-varying magnetic field 

gradients, G(t), which cause the local Larmor frequency, w(r), to change according to 

Eq. (2.6). Under the influence of such a gradient, the noise-free complex NMR signal 

acquired is given by: 

�̂�(𝑡) = ∭ 𝜌(𝒓)𝑒𝑖𝜙(𝒓,𝑡) d𝒓 ,     (2.23) 

where ϕ(r,t) is the spatial and time-varying phase which evolves according to: 

𝜙(𝒓, 𝑡) = ∫ 𝑤(𝒓, 𝑡)𝑑𝑡 = 𝛾 𝒓 ∙ ∫ 𝑮(𝑡)d𝑡
𝑡

0

𝑡

0
 .     (2.24) 
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It is assumed that the signal has been heterodyned, a process by which the reference 

oscillation frequency of γB0 is filtered out, and that relaxation effects are negligible. With 

the definition of an inverse space variable, k: 

𝒌 = (2𝜋)−1𝛾 ∫ 𝑮(𝑡)d𝑡
𝑡

0
 ,     (2.25) 

the noise-free NMR signal acquired is given by: 

�̂�(𝒌) = ∭ 𝜌(𝒓)𝑒𝑖2𝜋𝒓∙𝒌 d𝒓 .     (2.26) 

Eq. (2.26) shows that ŷ(k) (known as k-space) and ρ(r) are a Fourier pair. Therefore, the 

image is obtained through Fourier transformation of the k-space. 

The NMR signal is acquired digitally and therefore the k-space is stored as a matrix, with 

the sizes of each dimension being typically a power of 2; this is done to exploit the fast 

computation of the image through the Fast Fourier Transform (FFT) method [16]. In the 

discrete setting and under the presence of noise, the k-space matrix Y, vectorised as Yv, is 

given by: 

𝒀v = 𝓕 𝑼v + 𝑬v ,   (2.27) 

where ℱ is the discrete Fourier transform operator, Uv is the vectorised image and Ev is a 

vector of noise elements. It is noted that Eq. (2.27) is similar to Eq. (2.13), (2.16), (2.19) 

and (2.22), which means that NMR and MRI signals can be cast in the same matrix 

equation format. 

2.14. k-space manipulation 

To reconstruct the MRI image, the k-space matrix data needs to be acquired. The way this 

is done is often referred to as k-space traversal, a geometric interpretation of which was 

first introduced by Ljunggren [17]. Although different k-space traversal techniques lead to 

the same matrix being completed, each has its own advantages and disadvantages in terms 

of, among other reasons, speed of acquisition, artefacts introduced,  signal-to-noise 

considerations and hardware requirements. For illustration purposes, only 2D imaging is 

considered in the following sections. 

One of the simplest traversal techniques is the spin-warp method [18], illustrated in 

Fig. 2.10(a). Initially, a constant magnetic field gradient is applied in a spatial direction, 
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referred to as the phase direction and, by the end of its application, spins in that direction 

will have different phases. This is interpreted as moving along the kphase direction in 

k-space. A constant magnetic field gradient is then applied in the perpendicular direction, 

known as the read direction and the signal is acquired during this period. This is interpreted 

as moving along the kread direction in k-space and acquiring only regular points on a 

Cartesian grid. The process is then repeated for different strengths of the magnetic field in 

the phase direction until the whole k-space is acquired. 

 

Fig. 2.10. (a) Illustration of a spin-warp imaging pulse sequence (left) and the 

corresponding k-space traversal (right). (b) Illustration of a spin echo imaging pulse 

sequence (left) and the corresponding k-space traversal (right).  (c) Illustration of a radial 

imaging pulse sequence (left) and the corresponding k-space traversal (right).  

A different traversal technique, which leads to a better signal-to-noise ratio and which 

leads to less artefacts, uses spin echoes and is illustrated in Fig. 2.10(b). The application 

of a 180° r.f. pulse is interpreted as moving in the opposite direction with respect to the 

centre of k-space. It is noted that the phase and read gradients can be switched on at the 

same time, leading to a diagonal movement in k-space.  

The k-space data can also be acquired in a non-Cartesian way. Fig. 2.10(c) shows an 

example where the NMR data is acquired while k-space is traversed radially, by keeping 
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the magnetic field gradients in both perpendicular directions switched on during 

acquisition (both directions are read directions). While non-Cartesian sampling generally 

leads to a more efficient k-space coverage, the data needs to be regridded in a regular 

Cartesian plane before Fourier transformation; this process leads to artefacts being 

introduced in the MRI image. 

If the k-space data is acquired in a regular Cartesian way, the geometric dimensions of 

k-space, illustrated in Fig. 2.10(a), are related to the geometric dimensions of the MRI 

image through the inverse relationships: 

𝛥𝑘 =
1

𝐹𝑂𝑉
 ,   (2.28a) 

𝑘max =
1

𝛥𝑥
 ,   (2.28b) 

where FOV refers to the field-of-view and Δx is the resolution of the MRI image. 

2.15. Slice selection 

The r.f. pulses that have been used so far are known as hard pulses; the shape of the pulse 

is typically rectangular and the duration is short (~10 µs). As a result, the bandwidth of 

frequencies that are excited, Δw, which is inversely proportional to the pulse duration, is 

so large such that all spins in the sample are excited and the NMR signal has a contribution 

from all of them. In 2D imaging, it is useful to selectively excite and acquire NMR signal 

only from a slice of thickness Δz in the sample; this is done using soft pulses.  

 

Fig. 2.11. (a) Illustration of soft 90° Gaussian r.f. pulse. The reversal of the slice selective 

gradient is done to refocus spins within the excited slice which have dephased during the 

application of the pulse. (b) Illustration of soft 180° Gaussian r.f. pulse. There is no need 

to reverse the slice selective gradient because the 180° pulse self-refocuses the dephased 

spins. 
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A plethora of different soft pulses exist and the choice is primarily made based on the 

shape of the excited slice required. If the shape of the excited slice is relatively 

unimportant, Gaussian pulses in the presence of a slice selective magnetic field gradient 

are commonly used, as they are simple to implement. In this work, Gaussian pulses are 

used for both soft 90° and 180° r.f. pulses, as illustrated in Fig. 2.11. The slice thickness 

excited by the soft r.f. pulse is given by: 

𝛥𝑧 = 1
𝛾𝑡d𝑔⁄  ,   (2.29) 

where td (s) represents the Full-Width-Half-Maximum value of the Gaussian pulse. 

2.16. Ultrafast imaging techniques 

One of the limitations of the imaging techniques described in Fig.  2.10 is the long 

acquisition time. For each 90° r.f. pulse application, a single line in k-space is acquired, 

after which a recovery time ~5T1 is allowed before the next r.f. pulse application, to 

recover the magnetization vector. Ultrafast imaging techniques aim to sample the k-space 

more efficiently, reducing the total acquisition time. Different ultrafast imaging techniques 

exist [19, 20], but the discussion will be limited to the Rapid Acquisition with Relaxation 

Enhancement (RARE) method [21] and spiral imaging [22], which are used in this work. 

The RARE pulse sequence and the corresponding k-space traversal route are illustrated in 

Fig. 2.12(a). The basic idea is that for each 90° r.f. pulse application, several lines of 

k-space are acquired (RARE factor). The RARE factor is chosen such that the time needed 

for the acquisition of the k-space lines during an application of a 90° r.f. pulse is << T2. 

RARE imaging has found most application in medical T2 contrast imaging where the 

RARE factor is chosen such that spatial features with different T2 values can be 

differentiated. The main disadvantage of RARE imaging is the use of a train of 

slice-selective 180° r.f. pulses, which, if not perfect, can lead to complex stimulated echo 

patterns [23, 24]. 

The spiral imaging pulse sequence and the corresponding k-space traversal route are 

illustrated in Fig. 2.12(b). The whole k-space is sampled with a single application of a 90° 

r.f. excitation pulse, which leads to a very short acquisition time. The centre of k-space is 

acquired at the start of the sequence which gives a high signal-to-noise ratio. One of the 

disadvantages of spiral imaging is that the data is acquired in a non-Cartesian way. 
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Therefore, a Non-Uniform Fast Fourier Transform (NUFFT) technique is needed to 

reconstruct the MRI image. Since no 180° r.f. pulses are used, the signal decay with time 

is controlled by T2
*, rather than T2. As a result, the magnetic field needs to be relatively 

homogeneous in order for T2
* to be much larger than the acquisition time. Spiral imaging 

has found application in Magnetic Resonance velocimetry (Section 2.18) because of its 

stability to flow artefacts [25] and the relatively low phase accrual related to the points of 

k-space close to the centre [26], where most of the energy of k-space is concentrated. 

 

Fig. 2.12. (a) Illustration of the RARE pulse sequence and the corresponding k-space 

traversal. (b) Illustration of the spiral imaging pulse sequence and the corresponding 

k-space traversal.  

2.17. Gradient mapping 

The use of large gradient strengths and fast gradient switching in ultrafast imaging 

techniques, such as spiral imaging, can lead to strong eddy currents being generated, which 

in turn lead to gradient waveform non-ideality. The actual gradient experienced by the 

sample may be significantly different from the design gradient, which leads to poor MRI 

image reconstructions. MRI image reconstructions can be improved by measuring the 

actual gradient waveform and using this waveform, rather than the design gradient 
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waveform, in the reconstruction process. Although different methods exist [27, 28], the 

discussion will be limited to the method of Duyn et al. [29], as modified by Tayler [26]. 

The gradient mapping pulse sequence is illustrated in Fig. 2.13. To measure a gradient 

waveform in the read direction, Gread(t), a small volume element positioned at a distance 

dread in the read direction from the centre of the magnet is selected (this is done by using 

an offset for the frequency of the 90° r.f. pulse). The gradient waveform to be measured is 

then applied and an NMR signal is acquired at the same time. The experiment is repeated 

with no gradient waveform applied, to account for off-resonance effects. The difference 

in the phase of the two NMR signals, Δϕ(t), is then given by: 

𝛥𝜙(𝑡) = ∫ 𝛾𝐺read(𝑡)𝑑readd𝑡 = 𝛾𝑑read𝑘read(𝑡) 
𝑡

0
,   (2.30) 

where kread(t) is the component of the inverse space variable in the read direction. The 

actual gradient waveform is then obtained by numerically differentiating kread(t). 

 

Fig. 2.13. Illustration of the pulse sequence used in this work to map the gradient 

waveform. The two perpendicular directions to the read direction are referred to as ‘dir2’ 

and ‘dir3’. The gradient being mapped in the figure is the one corresponding to spiral 

imaging, but it could be any other gradient waveform. 

2.18. Magnetic Resonance velocimetry 

Magnetic Resonance (MR) velocimetry is a technique to measure coherent motion. The 

technique works by encoding the velocity of the fluid in either the magnitude (Time-of-

Flight method [30]) or the phase (phase encoding method) of the MR image. The 

discussion will be limited to the velocity phase encoding method as it is by far the more 

robust and it is the method used in this work. Unlike conventional velocity measuring 

techniques of Laser Doppler Velocimetry or Anemometry, Hot Wire Anemometry and 

Pitot tubes, MR velocimetry is able to measure velocities at different spatial locations 



35 

 

simultaneously and is routinely used to measure all three components of the flow field in 

2D slice images, which can be acquired in any direction, as well as 3D volume images. 

MR velocimetry is non-invasive in the sense that no measuring devices or tracer particles 

are inserted in the flow, as is the case with the most prominent technique of Particle Image 

Velocimetry or with Doppler Ultrasound Velocimetry. MR velocimetry can be used to 

study optically opaque systems and gives chemically-selective information. The main 

disadvantages of MR velocimetry include the need to apply strong magnetic fields and the 

inability to study ferromagnetic systems. The measurable velocities are limited on the 

lower end by diffusion and noise (typically ~ 10 µm s-1) and on the higher end by liquid 

leaving the imaging region. 

The principle behind velocity phase encoding is to apply a time varying magnetic field 

gradient, Gvel(t), in the direction of the velocity to be measured before the imaging part of 

the pulse sequence. The imaging part of the pulse sequence can be any of the imaging 

pulses sequences discussed in Sections 2.14 and 2.16. The accrued phase before the 

imaging starts is then given by: 

𝜙(𝑡) = ∫ 𝛾𝑮vel(𝑡) · 𝒓(𝑡)d𝑡
𝑡

0
= 𝛾 (𝒓0 · ∫ 𝑮vel(𝑡)d𝑡

𝑡

0
+

d𝒓

d𝑡
· ∫ 𝑡𝑮vel(𝑡)d𝑡 + ⋯

𝑡

0
),   (2.31) 

where a Taylor expansion about t = 0 was performed and r0 is the position of spins at t = 0. 

The first term (zeroth moment of Gvel(t)) corresponds to the phase accrual due to the initial 

position of spins. The second term (first moment of Gvel(t)) corresponds to the phase 

accrual due to the velocity of spins. The higher order terms contain the second and higher 

moments of Gvel(t). The time varying velocity encoding gradient is typically composed of 

a pair of bipolar gradient pulses of magnitude g, duration δ and distance Δ, as illustrated 

in Fig. 2.14(a). This velocity encoding gradient has a zeroth moment equal to zero and 

negligible second and higher moments [31]. The first moment is easily calculated and the 

phase accrual at the end of the application of Gvel(t) is given by: 

𝜙 = 𝛾𝑔𝛿𝛥𝑣,   (2.32) 

where v is the velocity in the direction of the velocity encoding gradient. Some phase 

accrual may occur during slice selection, the imaging part of the pulse sequence or due to 

generated eddy currents; a reference image with no velocity encoding gradients is typically 

acquired to take into account these effects. A reference image with the flow switched off 
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is also typically acquired to account for flow effects on the imaging part of the pulse 

sequence. 

 

Fig. 2.14. Illustration of the velocity encoding magnetic field gradient (a) with no 180° 

r.f. pulse and, (b) with a 180° r.f. pulse. 

An alternative choice for the velocity encoding gradient is to have the two gradient pulses 

with the same polarity, but with a 180° r.f. pulse applied in between, as illustrated in 

Fig. 2.14(b); the effect of the 180° r.f. pulse is to invert the phase accrued due to the first 

gradient pulse. 

2.19. Flow compensation 

For temporally changing flow conditions, acquiring a reference image with no velocity 

encoding gradient may not be appropriate as it would be acquired at different flow 

conditions to the velocity image acquired with the velocity encoding gradient on. This can 

be improved by designing magnetic field gradients which have a zeroth moment and first 

moment equal to zero; these are called flow compensated magnetic field gradients. An 

example of a flow compensated slice selective gradient for a 90° r.f. pulse, which is used 

in this work, is shown in Fig. 2.15. For other flow compensated slice selective or non-slice 

selective magnetic field gradients, the reader is referred to the work of Pope and Yao [32].  

 

Fig. 2.15. Illustration of a flow compensated slice selective magnetic field gradient for a 

90° r.f. pulse. 
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Chapter 3 

Mathematical techniques 

This chapter introduces the mathematical techniques used throughout the thesis. 

Conventional Inverse Laplace Transform (ILT) methods, which are used in the extraction 

of 1D and 2D distributions of relaxation time constants and diffusion coefficients, are 

presented in Section 3.1. These techniques are used as benchmarks for the new ILT 

methods developed in Chapters 4 and 5. The idea of Compressed Sensing for MRI 

acquisitions and a reconstruction method, the Primal-Dual Hybrid Gradient Method 

(PDHGM), are then introduced in Sections 3.2 and 3.3, respectively. The PDHGM 

algorithm is used to solve some of the Compressed Sensing related problems posed in 

Chapters 4, 5, 8 and 9.  The Cramér-Rao Lower Bound (CRLB) theory, which is a 

statistical method for estimating the uncertainty in the extraction of parameters from noisy 

experimental data, is discussed in Section 3.4. The CRLB theory forms the basis of the 

sampling pattern optimisation method developed in Chapters 6 and 7, and is also used in 

Chapter 4. 

3.1. Inverse Laplace Transform methods 

It was shown in Sections 2.9-2.12 that the vectorised NMR signal, Yv, from either a 1D T1, 

T2, D experiment, or a 2D NMR correlation experiment encoded with the joint distribution 

of any two of these parameters, can be written in the form: 

𝒀v = 𝑲 𝑼v + 𝑬v ,   (3.1) 

where K is a kernel function which depends on the type of experiment, Uv is the vectorised 

distribution that needs to be extracted, and Ev represents the noise vector that corrupts the 

signal. Methods for extracting Uv from a knowledge of Yv and K are known collectively 

as Inverse Laplace Transform (ILT) methods; the reason for the name is related to the 

kernel function being composed of exponentially decaying functions.  

The naïve solution: 
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𝑼v = 𝑲−𝟏 𝒀v ,   (3.2) 

is not suitable for three major reasons. The inverse of the kernel function may not exist as 

K is not necessarily a square matrix; it typically has more columns than rows which means 

that there are an infinite number of solutions for Uv. Even if K is designed to be a square 

matrix, its condition number, κ(K), defined as the ratio of its largest to the smallest singular 

value [1], is so large that small changes in the acquired signal Yv (due to the random nature 

of noise) can lead to very large changes in the reconstructed Uv. The large condition 

number is caused by the constituent exponentially decaying functions of K being very 

similar to each other. The fact that K may not be a square matrix or that it has a large 

condition number makes the extraction of Uv an ill-conditioned inverse problem. 

Physically, Uv should not have any negative entries because it represents amounts of 

material. However, there is nothing constraining Uv not to have negative entries in the 

solution according to Eq. (3.2). 

3.1.1. Non-Negative Least Squares method 

The non-negativity constraint was first addressed with the Non-Negative Least Squares 

(NNLS) method developed by Lawson and Hanson [2], who used an active set method to 

estimate Uv from the following minimization problem: 

𝑼v = arg min
𝑼v≥𝟎

1

2
‖𝑲 𝑼v − 𝒀v‖2

2 ,   (3.3) 

where the inequality is element-wise. The Lp-norm of a vector a, ||a||p, is defined as: 

‖𝒂‖𝑝 = (∑ |𝑎𝑖|
𝑝𝑛

𝑖=1 )1/𝑝 .   (3.4) 

Faster algorithms for imposing the non-negativity constraint have been developed [3], but 

they are all based in solving the minimization problem in Eq. (3.3). In this work, the 

routine lsqnonneg in MATLAB [4] was used to implement the NNLS method.  

Although the NNLS method has been very successful, its main disadvantage is that it does 

not address the ill-conditioning of the inverse problem. As a result, solutions are unstable 

to noise and the instability increases with the noise level.  

3.1.2. Tikhonov regularization 

Tikhonov regularization [5] is the most commonly used method to address the 

ill-conditioning issue of the inverse problem, although other methods exist [6]. In 
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Tikhonov regularization, the distribution Uv is estimated from the following minimization 

problem: 

𝑼v = arg min
𝑼≥𝟎

(
1

2
‖𝑲 𝑼v − 𝒀v‖2

2 + 𝛼‖𝑹 𝑼v‖2
2) ,   (3.5) 

where α is a regularization parameter and R is a regularization matrix. The first term is 

referred to as the fidelity term, while the second term is referred to as the penalty term. 

There are different explanations as to why Tikhonov regularization improves the 

reconstructions. The simplest explanation is that it narrows down the range of potential 

solutions of Uv, by searching for solutions that have a minimal penalty term. Another 

explanation comes from the solution to Eq. (3.5), neglecting the non-negativity constraint: 

𝑼v = (𝑲T𝑲 + 𝛼𝑹T𝑹)−1𝑲T𝒀v .  (3.6) 

The matrix being inverted in Eq. (3.6) is generally of a much lower condition number than 

the matrix that needs to be inverted for the solution of Eq. (3.3) which, when neglecting 

the non-negativity constraint, is: 

𝑼v = (𝑲T𝑲)−1𝑲T𝒀v .  (3.7) 

This renders Tikhonov regularization reconstructions more stable to noise than NNLS 

reconstructions. Other explanations can be given in terms of a singular value 

decomposition [7] or overfitting argument [8]. 

For 1D NMR experiments, the regularization matrix, R, is either taken to be the identity 

matrix or the second order derivative matrix; the second order derivative matrix is a 

tridiagonal matrix with entries 1, -2, 1 on diagonals of number -1, 0, 1. The choice of the 

second order derivative matrix, also known as the Phillips-Twomey method [9, 10], 

constrains Uv to be smooth. For 2D NMR correlation experiments, R is almost exclusively 

chosen to be the identity matrix, because of the difficulty of defining the second order 

derivative in two dimensions. 

The regularization parameter, α, controls the amount of regularization imposed on the 

reconstructed distribution. A larger value of α leads to smaller values of the penalty term 

in Eq. (3.5) (hence, smoother distribution) and larger values of the fidelity term (hence, 

worse fit to the experimental data). This is known as the bias-variance trade-off. There is, 

therefore, a need to rationalize the choice of α. The Generalized Cross Validation (GCV) 

technique [11] is used in this work to choose α, although other techniques such as the 
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L-curve [12] and the Morozov Discrepancy Principle [13] exist. The choice was made 

mainly on the statistical basis of GCV. GCV is a leave-one-out cross-validation technique: 

one data point is used as a validation set while the other data points are used as the training 

set. The process is repeated for all possible choices of the validation set. The average test  

error over all possible validation sets is then referred to as the GCV score. A GCV score 

for a range of values of α, GCV(α), is calculated and the best regularization parameter is 

chosen to be the one that minimizes the GCV(α). An analytical solution exists for 

GCV(α) [11]: 

GCV(𝛼) =
‖𝑲 𝑼v(𝛼)−𝒀v‖2

2

(𝑛−𝑑𝑓(𝛼))2  , (3.8) 

where Uv(α) is the reconstructed distribution for the choice of α, n is the size of Uv and 

df(α) is referred to as the number of fitted parameters, or degrees of freedom, given by: 

df(𝛼) = 𝑲(𝑲T𝑲 + 𝛼 𝑹T𝑹)−1𝑲T . (3.9) 

GCV is a model selection method, similar to the Akaike Information Criterion [14], 

Bayesian Information Criterion [15] or Cp method [16], in the sense that it invokes a 

parsimony argument; as the regularization parameter α changes, the number fitted 

parameters df(α) varies, and model selection methods decide on the optimal α based on a 

trade-off between fidelity to the data and df(α). Although GCV has been the most 

commonly used model selection method, the other methods have also been used in the 

inversion of NMR data [17]. Practically, all these methods give very similar results, but 

GCV is easier to calculate as it does not require a knowledge of the noise level in the data.  

Several algorithms have been developed over the years to numerically solve Eq. (3.5) 

[18-23]. In this work, Eq. (5) is cast as a quadratic programming problem [24] and the 

routine quadprog in MATLAB [4] is subsequently applied. 

3.1.3. Data compression 

For 2D NMR correlation experiments, the data size can be very large, particularly when 

one of the distributions being extracted is the T2 relaxation time constant. As a result, the 

numerical computation of Eqs. (3.3) and (3.5) can be time and memory consuming. It is, 

therefore, common to perform a pre-compression of the NMR data before feeding it to the 

appropriate ILT algorithm. The compression technique used in this work is the one 

developed by Venkataramanan et al. [21]. As discussed in Section 2.12, the acquired NMR 

data for a 2D NMR correlation experiment can be written in a matrix form: 
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𝒀 = 𝑲1 𝑼 𝑲2
T + 𝑬 .   (3.10) 

Let the singular value decomposition of K1 and K2 be U1Σ1V1
T and U2Σ2V2

T, where U1, 

U2, V1 and V2 are orthogonal matrices of respective sizes p × s1, q × s2, n × s1 and m × s2, 

while Σ1 and Σ2 are diagonal square matrices of respective sizes s1 × s1 and s2 × s2 with 

sorted values on the diagonals (known as singular values). Because of the large condition 

number of K1 and K2, the singular values span orders of magnitude and there are only a 

few important singular values. The compression is based on the truncation of the singular 

values such that only the most important ones are kept; the choice of how many are kept 

is typically made based on the noise level of the NMR signal. Let the truncated diagonal 

matrices be Σ1t and Σ2t, of respective sizes s1t × s1t and s2t × s2t. The corresponding 

truncated orthogonal matrices U1t, U2t, V1t and V2t are of respective sizes p × s1t, q × s2t, 

n × s1t and m × s2t. Pre-multiplying by U1t
T and post-multiplying by U2t both sides of 

Eq. (3.10), the following expression is obtained: 

𝒀t = 𝑲1𝑡 𝑼 𝑲2𝑡
T + 𝑬t ,   (3.11) 

where Yt = U1t
TY U2t, K1t = Σ1t V1t

T, K2t = Σ2t V2t
T and Et = U1t

TE U2t. Eq. (3.11) is of the 

same form as Eq. (3.10) but the size of matrices involved is much smaller. Therefore, by 

applying the above compression method to the NMR signal and the kernel matrices, the 

reconstruction of distributions becomes less time and memory demanding. 

Apart from making the reconstruction of distributions less time and memory demanding, 

the data compression technique described has also the ‘side-effect’ of making the inverse 

problem less ill-conditioned; the condition number of K1t and K2t is smaller than the 

condition number of K1 and K2. 

3.2. Reconstructions from incomplete data 

Classical sampling theory [25, 26] states that if a signal is bandlimited in the frequency 

domain, it can be completely recovered from frequency samples only if the sampling 

frequency is above a certain limit. This sets a lower limit of samples that need to be 

acquired in the frequency domain to fully reconstruct a signal in the time domain. This 

barrier has been broken by developments in Compressed Sensing [27, 28]. Compressed 

Sensing states that, to a high probability, it is possible to reconstruct the signal from far 

fewer frequency samples than the classical sampling theory requires, as long as sampling 
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is performed randomly and the signal being reconstructed is sparse in some domain. 

Although reconstruction techniques from very few samples have been around for a long 

time [29, 30], Compressed Sensing has created a mathematical framework for assigning 

probabilities for the success of such reconstruction techniques. Since its formulation, 

Compressed Sensing has found applications in areas as diverse as astronomy [31], 

single-pixel cameras [32] and tomography [33]. 

In MRI applications, an under sampled dataset Y, vectorised as Yv, corresponds to a 

partially acquired k-space, which can be written as: 

𝒀v = 𝑺 𝓕 𝑼v + 𝑬v ,   (3.12) 

where S is the subsampling matrix, ℱ is the Fourier operator, Uv is the vectorised MRI image 

and Ev represents the noise vector that corrupts the signal. Two major considerations need to 

be taken when applying Compressed Sensing to MRI applications: incoherence (therefore, the 

subsampling scheme) and the sparsifying domain (therefore, the reconstruction technique). 

3.2.1. Incoherence and the subsampling scheme 

The subsampling of k-space needs to be performed randomly to reduce coherent artefacts 

in the reconstructed MRI image. For measurements not corrupted by noise, this can be 

achieved by having a subsampling matrix, S, which is incoherent [34]. An incoherent 

matrix is constructed by having the absolute inner product of any of its columns as low as 

possible. In the presence of measurement noise, this is generalised to S having a Restricted 

Isometry Property [27], which for most practical applications is relaxed to S being 

incoherent. 

In MRI applications, the most important information is concentrated close to the centre of 

k-space. This prior knowledge forces researches to sample the centre of k-space more 

densely. However, this is in contradiction to the incoherence principle and it embodies the 

trade-off that exists between the sampling scheme being random and being biased towards 

the centre of k-space.  

In practice, the most commonly used method is to draw random samples with higher 

probability of selection close to the centre of k-space, according to a specified probability 

density function [35, 36]. Other methods, such as Poisson disc sampling [37] and Diffusion 

Limited Aggregation [38] are based on analogies with natural systems and have the 

advantage of not needing to specify a probability density function. Recently, sampling 
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schemes which make use of some prior knowledge about the sample being imaged [39, 40] 

(typically obtained through some other imaging method) are drawing a lot of interest. All 

the mentioned sampling techniques tend not to sample the centre of k-space densely 

enough. Fully sampling a central region of k-space and then applying any of the mentioned 

techniques for the remaining part of k-space has been shown to give better results [41]. 

To ensure to a high probability the exact reconstruction of an MRI image of size n, which 

has only s non-zero entries in some domain, the number of k-space points that need to be 

acquired goes as s ln(n / s) ≪ n. As a result, a sparser MRI image in some domain can be 

reconstructed from a higher level of under sampling of k-space. 

3.2.2. Sparsifying domain and the reconstruction techniques 

The reconstruction of the MRI image, Uv, from under sampled k-space data, Yv, is an 

ill-conditioned inverse problem; there are an infinite solutions of Uv that fit the under 

sampled Yv exactly. A naïve method for reconstructing the MRI image is:  

𝑼v = 𝓕−1𝑺T𝒀v .   (3.13) 

This is known as a Zero-Filled reconstruction; it is equivalent to filling the missing points 

in k-space by zeros and performing an inverse Fourier transform. Zero-Filled 

reconstructions are suboptimal; they suffer from under sampling and noise artefacts. Better 

reconstructions are obtained by including in the reconstruction process the prior 

information that the MRI image is sparse in some domain, ψ. One way to do this is to 

solve a constrained optimisation problem: 

𝑼v = arg min
𝑼v

‖𝑺 𝓕 𝑼v − 𝒀v‖2
2     s.t.    ‖𝝍 𝑼v‖0 ≤  𝜖, (3.14) 

where the L0-norm is a limiting case of the Lp-norm defined in Eq. (3.4); it is equal to the 

cardinality, or the number of non-zero elements, of the vector it is applied to.  is a 

parameter to be set, which determines the amount of sparsity to be enforced on the 

transform of Uv. More commonly, Eq. (3.14) is written as an unconstrained regularization 

problem: 

𝑼v = arg min
𝑼v

(
1

2
‖𝑺 𝓕 𝑼v − 𝒀v‖2

2 + 𝛼‖𝝍 𝑼v‖0) ,   (3.15) 

which is its Lagrangian form. The regularization parameter, , depends on the  parameter. 

Unfortunately, the numerical solution of the minimization problem in Eq.  (3.15) is an NP 
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hard problem which is computationally intractable. Therefore, a convex optimization 

approximation is more commonly used: 

𝑼v = arg min
𝑼v

(
1

2
‖𝑺 𝓕 𝑼v − 𝒀v‖2

2 + 𝛼‖𝝍 𝑼v‖1) .   (3.16) 

The most commonly used sparsifying domain, ψ, is Total Variation (TV) [42], although 

Wavelet [43] and Total Generalized Variation [44] have also been used. TV regularization 

is based on the observation that MRI images typically contain large areas of constant 

intensity, followed by sharp drops in intensity at the edges. As a result, pixel -wise 

differences of the MRI image in both directions (discretized version of the first order 

derivative) contain very few non-zero elements. 

3.3. Primal-Dual Hybrid Gradient Method 

As discussed in Sections 3.1 and 3.2, many NMR and MRI reconstruction problems are 

regularization problems. These are convex optimization problems, for the solution of 

which there exist a plethora of different algorithms [45]. One family of algorithms that 

tackles these problems is proximal algorithms [46,47]. In these algorithms, a large convex 

optimization problem is split into small convex optimization problems and a proximal 

operator function is applied to all these small problems. A proximal operator function, 

which is described in more detail in Section 3.3.2, effectively moves a search point towards 

a domain and minimum of a function in a similar way that Newton’s gradient descent 

method does. 

In recent years, a class of the family of proximal algorithms, primal-dual algorithms, has 

gained much interest [48-51]. The main advantage of the primal-dual algorithms is the 

efficient splitting of the large problem, and consequently the lower computational cot 

involved. In this work, the Primal-Dual Hybrid Gradient Method (PDHGM) developed by 

Chambolle and Pock [50], which has been very successful in imaging applications, is used. 

The PDHGM method is an efficient algorithm for solving problems of the form:  

(𝒖, 𝒗) = min
𝒖

max
𝒗

𝑓(𝒖) − 𝑔(𝒗) + 𝒗T𝑹 𝒖 ,   (3.17) 

where u and v are vectors referred to as the primal and the dual variable, respectively, R 

is a matrix, and f and g are convex functions. The PDHGM is also applicable to the case 

when the primal and dual variables are matrices, rather than vectors; this case is not 
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discussed in the following sections. Practically, the only difference is that the third term 

in Eq. (3.17) would be substituted by the inner product of v and R u, 〈𝒗, 𝑹 𝒖〉. 

A rigorous mathematical treatment, including a convergence proof is found in the work of 

Chambolle and Pock [50]. The derivation of the algorithm given in Section 3.3.1 is much 

simplified and is based on the treatment of Benning [52]. Section 3.3.2 introduces the 

proximal operator which is the main building block of algorithm. Three examples of the 

application of the proximal operator are given in Section 3.3.3. Some practicalities 

regarding the implementation of the PDHGM are given in Section 3.3.4. 

3.3.1. Iteration scheme 

Let the derivative of f(u) with respect to u be p(u) and the derivative of g(v) with respect 

to v be q(v). Then, the optimum of the problem in Eq. (3.17) is achieved when: 

𝑝(𝒖) + 𝑹T𝒗 = 𝟎 ,   (3.18a) 

𝑞(𝒗) − 𝑹 𝒖 = 𝟎 .   (3.18b) 

A potential iteration scheme for solving Eqs. 3.18(a) and 3.18(b) is as follows: 

[
𝑝(𝒖(𝑘+1)) + 𝑹T𝒗(𝑘+1)

𝑞(𝒗(𝑘+1)) − 𝑹 𝒖(𝑘+1)
] + 𝑻 [𝒖(𝑘+1) − 𝒖(𝑘)

𝒗(𝑘+1) − 𝒗(𝑘)
] = [

𝟎
𝟎

] ,   (3.19) 

where k refers to the iteration step and T is a matrix to be chosen. It is seen that as the 

iterations converge, i.e. u(k+1)→u(k) and v(k+1)→v(k), Eqs. (3.18a) and (3.18b) are obeyed 

and, therefore, an optimum to Eq. (3.17) is obtained. Chambolle and Pock [50] made the 

following choice for T: 

𝑻 = [
1 𝜏⁄ 𝑰 −𝑹T

𝑹 1 𝜎⁄ 𝑰
] ,   (3.20) 

where τ and σ are algorithmic parameters and I is the identity matrix. This choice of T 

makes the system of equations in Eq. (3.19) explicit in terms of  u(k+1) and v(k+1): 

𝒖(𝑘+1) + 𝜏 𝑝(𝒖(𝑘+1)) = 𝒖(𝑘) − 𝜏 𝑹T𝒗(𝑘),   (3.21a) 

𝒗(𝑘+1) + 𝜎 𝑞(𝒗(𝑘+1)) = 𝒗(𝑘) + 𝜎 𝑹(2𝒖(𝑘+1) − 𝒖(𝑘)) .   (3.21b) 

3.3.2. Proximal operator 

It is common to write Eq. (3.21) in operator format: 

(𝑰 + 𝜏 𝜕𝑓T)(𝒖(𝑘+1)) = 𝒖(𝑘) − 𝜏 𝑹T𝒗(𝑘),   (3.22a) 
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(𝑰 + 𝜎 𝜕𝑔T)(𝒗(𝑘+1)) = 𝒗(𝑘) + 𝜎 𝑹(2𝒖(𝑘+1) − 𝒖(𝑘)) .   (3.22b) 

Solving for u(k+1) and v(k+1): 

𝒖(𝑘+1) = (𝑰 + 𝜏 𝜕𝑓T)−𝟏(𝒖(𝑘) − 𝜏 𝑹T𝒗(𝑘)) ,   (3.23a) 

𝒗(𝑘+1) = (𝑰 + 𝜎 𝜕𝑔T)−𝟏 (𝒗(𝑘) + 𝜎 𝑹(2𝒖(𝑘+1) − 𝒖(𝑘))) .   (3.23b) 

The operator (I + ∂fT)-1 is known as a proximal operator. Therefore, each iteration step in 

the PDHGM algorithm consists in the application of two proximal operators for the 

updating of the primal and dual variables. The proximal operator is computed with the 

help of the following observation: 

(𝑰 + 𝜏 𝜕𝑓T)−𝟏(𝒂) = arg min
𝒖

(
1

2
‖𝒖 − 𝒂‖2

2 + 𝜏 𝑓(𝒖)) .   (3.24) 

To prove Eq. (3.24), it is noted that the minimum of the r.h.s. expression is achieved when 

its derivative with respect to u is equal to zero, which gives: 

𝒂 = 𝒖 +
𝜕𝑓T(𝒖)

𝜕𝒖
 .   (3.25) 

When Eq. (3.25) is written in an operator format, it gives the l.h.s. in Eq. (3.24).  

As is seen in Eq. (3.24), the proximal operator applied to a vector a, returns a vector that 

is a compromise between being as close as possible to a while minimizing a cost function, 

f, with the relative weight determined by τ. 

3.3.3. Examples 

Three examples of the proximal operator for common cost functions that are encountered 

in NMR and MRI applications are now presented. 

Example 1 

The simplest cost function is a set function: 

𝑓(𝒖) = 𝐼𝐶(𝒖) = {
0         𝒖 ∈ 𝐶
+∞    𝒖 ∉ 𝐶

 ,  (3.26) 

where C is a set. Since the cost is infinite if 𝒖 is not in the set, the solution to the proximal 

operator in Eq. (3.24) is the projection of a into the set C. 

Example 2 

Another simple cost function encountered in MRI applications is: 



50 

 

𝑓(𝒖) = 𝜒𝛼(𝒖) = {
0         ‖𝒖‖∞ ≤ 𝛼

+∞    ‖𝒖‖∞ > 𝛼
 ,  (3.27) 

where the L∞-norm is defined in Eq. (3.4); it represents the largest absolute value entry of 

u. The function χα(u) is known as the indicator function. The proximal operator of χα(u): 

(𝑰 + 𝜏 𝜕𝑓T)−𝟏(𝒂) = arg min
𝒖

(
1

2
‖𝒖 − 𝒂‖2

2 + 𝜏 𝜒𝛼(𝒖)) ,   (3.28) 

is best computed by considering each element of a independently, because the 

minimization problem in Eq. (3.28) is separable. If an element of a is ≤ α, then the 

corresponding element in u must be equal to that entry of a, because in this way the 

proximal function equals 0 and this is the smallest value it can reach. If an element of a 

is > α, the corresponding element in u cannot be greater than α, because the indicator 

function blows up. The best value the element in u can get is α, because this minimizes 

the first term while keeping the indicator function at 0. Therefore, the proximal operator 

is given by: 

(𝑰 + 𝜏 𝜕𝑓T)−𝟏(𝒂) =
𝒂

max(1,𝒂/𝛼)
 ,  (3.29) 

where all operations are element-wise. 

Example 3 

A common function encountered in under sampled MRI data acquisitions, as discussed in 

Section 3.2, is: 

𝑓(𝒖) =
1

2
‖𝑺 𝓕 𝒖 − 𝒚‖2

2 ,   (3.30) 

where S is a subsampling matrix and ℱ is the Fourier operator. By definition, the proximal 

operator of such a function is given by: 

(𝑰 + 𝜏 𝜕𝑓T)−𝟏(𝒂) = arg min
𝒖

(
1

2
‖𝒖 − 𝒂‖2

2 +
𝜏

2
‖𝑺 𝓕 𝒖 − 𝒚‖2

2) .   (3.31) 

Differentiating the r.h.s. with respect to u and setting it to zero: 

𝒖 − 𝒂 + 𝜏 𝓕−1𝑺T𝑺 𝓕 𝒚 − 𝓕−1𝑺T𝒚 = 𝟎 .   (3.32) 

Set u = ℱ u. After some rearrangement, Eq. (3.32) becomes: 

(𝓕−1 + 𝜏 𝓕−1𝑺T𝑺)𝒖 = 𝒂 + 𝓕−1𝑺T𝒚 .   (3.33) 
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Taking the Fourier transform of both sides and rearranging, the proximal operator 

becomes: 

(𝑰 + 𝜏 𝜕𝑓T)−𝟏(𝒂) = 𝓕−1𝒖 = 𝓕−1 (
𝓕 𝐚+𝑺T𝒚

diag(𝑰+𝜏𝑺T𝑺)
) ,  (3.34) 

where diag(I + τ STS) extracts the main diagonal of the matrix in brackets and the division 

in Eq. (3.34) is element-wise. 

3.3.4. Implementation 

The PDHGM algorithm has two parameters, τ and σ, which control the convergence, speed 

and stability of the algorithm. It was proven by Chambolle and Pock [50] that convergence 

is guaranteed if: 

𝜏 𝜎 ‖𝑹‖2,2
2 ≤ 1 .   (3.35) 

The Lp,q norm of the matrix R, ||R||p,q, is defined as: 

‖𝑹‖𝑝,𝑞 = (∑ (∑ |𝑅𝑖𝑗|
𝑝

𝑖 )
𝑞/𝑝

𝑗 )
1/𝑞

 .   (3.36) 

There is freedom to choose τ and σ, if Eq. (3.35) is obeyed, and the choice depends on the 

problem being studied.  

Different stopping criteria could be used for the PDHGM algorithm; the criterion used in 

this work was: 

‖𝒖(𝑘+1)−𝒖(𝑘)‖
2

‖𝒖(𝑘)‖
2

< TOL , (3.37) 

where the tolerance level, TOL, is set heuristically. 

3.4. Cramér-Rao Lower Bound theory 

The Cramér-Rao Lower Bound (CRLB) theory [53] is a statistical method which 

determines the lower limit for the uncertainty related to the estimate of the parameters of 

a model extracted from noisy experimental data. It is widely used as a metric for comparing 

the performance of different parameter estimation techniques in areas as diverse as optical 

tomography [54], radar measurements [55] and X-ray imaging [56].  

Let y be a series of noisy experimental data points and ŷ be its noise-free model. Let y be 

described by a probability density function f that depends on parameters θ. If θ is an 
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unbiased estimator of θ, the uncertainty related to the estimator of each individual 

parameter has a lower limit: 

var(𝜃𝑙) ≥ (𝑭−1)𝑙𝑙 , (3.38) 

where F is the Fisher Information Matrix [57], defined as: 

𝐹𝑙1𝑙2
= E (𝑆𝑙1

(𝒚) 𝑆𝑙2
(𝒚)) ,  (3.40) 

where E refers to the expected value and Sl(y) is a score statistic defined as: 

𝑆𝑙(𝒚) =
𝜕

𝜕𝜃𝑙
ln 𝑓(𝒚|𝜽),  (3.41) 

where ln f(y|θ) is known as the likelihood function. A proof is given below for the case 

when f depends on only one parameter θ; the proof for the multi-parameter case follows a 

similar path. 

Proof  

From the definition of an unbiased estimator: 

E(𝜃) = 𝜃,  (3.42) 

which is alternatively written as: 

∫ 𝜃𝑓(𝒚|𝜃)𝑑𝒚 = 𝜃.  (3.43) 

Differentiating both sides of Eq. (3.43) with respect to θ and applying the chain rule, the 

following expression is obtained: 

∫ 𝜃𝑓(𝒚|𝜃) (
𝜕

𝜕𝜃
log 𝑓(𝒚|𝜃)) 𝑑𝒚 = 1.  (3.44) 

From the definition of the score statistics in Eq. (3.41) and the definition of expectation of 

a random variable, the following expression is obtained: 

E (𝜃𝑆(𝒚)) = 1.  (3.45) 

On the other hand: 

E(𝑆(𝒚)) = ∫ (
𝜕

𝜕𝜃
log 𝑓(𝒚|𝜃)) 𝑓(𝒚|𝜃)𝑑𝒚 = ∫ (

𝜕

𝜕𝜃
𝑓(𝒚|𝜃)) 𝑑𝒚 = 0 ,  (3.46) 

from which it follows that the covariance between θ and S(y) is: 

cov (𝜃, 𝑆(𝒚)) = E (𝜃𝑆(𝒚)) − E(𝜃)E(𝑆(𝒚)) = 1 .  (3.47) 
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Since the correlation coefficient between any two random variables is less than 1:  

var(𝜃)var(𝑆(𝒚)) ≥ cov2 (𝜃, 𝑆(𝒚)) ,  (3.48) 

from which it follows that: 

var(𝜃) ≥ 1 var(𝑆(𝒚))⁄ = 1 E(𝑆2(𝒚))⁄ ,  (3.49) 

which proves the CRLB theory for the one parameter case. 

The calculation of the Fisher Information Matrix, F, as described by Eqs. (3.40) and 

(3.41), is not straightforward. However, its calculation can be simplified for the case when 

the noise associated with the measured data points are independently and normally 

distributed with a constant standard deviation, σ. Let the noise related to the data points 

be e and, therefore, ŷ = y – e. The likelihood function is then given by: 

ln 𝑓(𝒚|𝜽) = 𝑛 ln (
1

√2𝜋𝜎
) −

1

2𝜎2
(𝒚 − �̂�)T(𝒚 − �̂�).  (3.50) 

The score statistic in Eq. (3.41) becomes: 

𝑆𝑙(𝒚) =
1

𝜎2
(�̂� − 𝒚)T 𝜕�̂�

𝜕𝜃𝑙
= −

1

𝜎2 𝒆T 𝜕�̂�

𝜕𝜃𝑙
 .  (3.51) 

Using the fact that the noise on different data points are independently distributed, the 

Fisher Information Matrix in Eq. (3.40) becomes: 

𝐹𝑙1𝑙2
=

1

𝜎4 (∑
𝜕�̂�𝑖

𝜕𝜃𝑙1
𝑖

𝜕�̂�𝑖

𝜕𝜃𝑙2

E(𝑒𝑖
2)) =

1

𝜎2 (∑
𝜕�̂�𝑖

𝜕𝜃𝑙1
𝑖

𝜕�̂�𝑖

𝜕𝜃𝑙2

) , (3.52) 

The calculation of the Fisher information matrix through Eq. (3.52) is trivial if the model 

relating ŷ to θ is known. 
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Chapter 4 

Obtaining sparse distributions in 2D 

NMR correlation experiments 

4.1. Introduction 

2D NMR correlation experiments are used in estimating joint distribution functions of 

relaxation time constants, T1, T2 and the diffusion coefficient, D. It was discussed in 

Section 2.12 that for 2D NMR correlation experiments, the acquired NMR signal is related 

to the joint distribution function through a Laplace transform. The conventional ILT 

methods of NNLS and Tikhonov regularization, which are commonly used in 

reconstructing the joint distribution function, were discussed in Section 3.1. The NNLS 

method suffers from instability to noise at high noise levels; slight variations in the signal 

(caused by the random nature of noise) can lead to vastly different distributions being 

reconstructed. Tikhonov regularization improves the stability to noise, but its 

reconstructions are often plagued by over smoothing [1-3]. The inherent assumption of 

Tikhonov regularization, imposed through the penalty term in the reconstruction process, 

is that the distribution is smooth. This is generally a good assumption in applications where 

the system under investigation is highly heterogeneous, such as in the study of rocks [4] 

or complex chemical systems [5]. However, in applications where the dataset under 

investigation is composed of sparse features, such as when studying the relaxation times 

or diffusion coefficients characterising simple liquid mixtures, Tikhonov regularization 

can lead to over smoothing. Over smoothing becomes an issue when the sparse features 

are very close to each other, in which case Tikhonov regularization may not be able to 

distinguish between the different features; Tikhonov regularization is typically unable to 

resolve relaxation time constants or diffusion coefficients which are a factor of <  3 

apart [1]. Hence, Tikhonov regularization suffers from a poor spectral resolution. 

The development of Compressed Sensing, outlined in Section 3.2, has introduced a new 

form of regularization which is based on an L1 minimization problem. The principle aim 
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of Compressed Sensing is the reduction in the number of samples needed to reconstruct a 

distribution which is sparse in some domain. However, the form of regularization that it 

uses, which from now on will be referred to as L1 regularization, also promotes the sparsity 

of the distribution in a particular domain [6]. For distributions which are expected to be 

sparse, the enforcement of sparsity is synonymous with an increase in the spectral 

resolution of the reconstructed distribution. In addition to the potential for higher spectral 

resolution, an L1 regularized problem is also expected to be more stable to noise than the 

non-regularized version. Indeed, L1 regularization has been used in denoising sparse 

signals [7]. The potential of L1 regularization to increase spectral resolution, while being 

stable to high levels of noise, has only recently begun to be realised in NMR applications 

[8-11]. Indeed, in the recent work of Benjamini and Basser [10, 11], L1 regularization was 

used as a tool to reduce the required amount of data required for 2D NMR 

relaxation-diffusion reconstructions but did not specifically focus on the capability of L1 

regularization in reconstructing sparse distributions and its stability to noise.  

In this chapter, L1 regularization is introduced for processing 2D NMR correlation 

experiments for distributions which are a priori known to be sparse, with the aim of 

improving the spectral resolution, as compared to Tikhonov regularization, while still 

being more stable to noise compared to the NNLS method. The PDHGM algorithm 

described in Section 3.3 is used to numerically solve the L1 regularized problem. A guide 

to the implementation of the algorithm is given, including the choice of the regularization 

parameter and the assignment of error estimates. The proposed regularization method and 

algorithm are demonstrated by applying it to T1-T2 and D-T2 experimental data and the 

results are compared against NNLS and Tikhonov regularization results. Samples, in 

which the separation of components is of increasing difficulty, are investigated; the most 

difficult being mixtures of hexane and dodecane imbibed within porous silica beads which 

remain immersed within the bulk liquid mixture, thereby forming a system in which the 

discrimination of both chemical species existing in the bulk liquid state and within the 

porous medium is required. In this system, hexane and dodecane cannot be resolved 

spectroscopically neither in the bulk phase nor imbibed within the porous silica beads. 

Further, the similarity of the relaxation time constants and the diffusion coefficients of 

hexane and dodecane make it impossible to resolve these two components using the NNLS 

or Tikhonov regularization methods. Resolving the individual diffusion coefficients and 

relaxation time constants in both the bulk liquid phase and within the porous medium, as 
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well as quantifying the relative amount of each component in both phases, is invaluable in 

understanding the behaviour of multiple chemical components inside catalysts  [12] and 

rocks [13] in situ. 

This chapter is structured as follows. The L1 regularization method and the proposed 

algorithm are outlined in Section 4.2. In Section 4.3 the materials and methods used are 

described, and a practical guide to implementing the proposed algorithm is suggested. The 

experimental results and discussion are presented in Section 4.4.  

4.2. Mathematical treatment 

As discussed in Section 2.12, the vectorised NMR signal acquired from a 2D NMR 

correlation experiment, Yv, can be written in terms of a kernel matrix, K, the vectorised 

joint distribution, Uv, and the vectorised noise matrix, Ev, as: 

𝒀v = 𝑲 𝑼v + 𝑬v .   (4.1) 

The motivation for this chapter is to develop a reconstruction technique which can 

distinguish close features in sparse distributions, while being stable to high levels of noise. 

To obtain a sparse distribution Uv, it is proposed to solve the following minimization 

problem: 

𝑼v = arg min
 𝑼v≥𝟎

(
1

2
‖𝑲 𝑼v − 𝒀v‖2

2 + 𝛼‖𝑼v‖1) , (4.2) 

where the L1-norm in the penalty term is defined in Section 3.1.1. The problem in Eq. (4.2) 

will be known as an L1 regularization problem. The fact that Eq. (4.2) is regularized will 

give more stability to noise, as compared to the NNLS algorithm; the use of the L1 penalty 

term is also expected to give a sparser solution than the use of the L2 penalty term in 

Tikhonov regularization.  

The minimization problem in Eq. (4.2) is numerically challenging because of the non-

differentiability of the L1-norm. To solve Eq. (4.2), it is first noted that: 

𝛼‖𝑼v‖1 = max
𝒗

(𝒗T 𝑼v)      s.t. max
𝑖

𝑣𝑖 ≤ 𝛼 , (4.3) 

where v is a dual variable. With the aid of Eq. (4.3), the minimization problem in Eq. (4.2) 

is written as: 
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(𝑼v, 𝒗) = arg min
 𝑼v≥𝟎

 max
𝒗

 (
1

2
‖𝑲 𝑼v − 𝒀v‖2

2 + 𝒗T𝑼v − 𝜒𝛼(𝒗)) , (4.4) 

where χα(v) is an indicator function defined as: 

𝜒𝛼(𝒗) =  {
0      ‖𝒗‖∞ ≤ 𝛼 

+∞    ‖𝒗‖∞ > 𝛼    
 . (4.5) 

Eq. (4.4) is in the form of the primal-dual problem discussed in Section 3.3: 

(𝑼v, 𝒗) = min
𝑼v

max
𝒗

𝑓(𝑼v) − 𝑔(𝒗) + 𝑽T𝑼v ,   (4.6) 

where f(Uv) = ½||K Uv – Yv||
2
2 and g(v) = χα(v). The PDHGM iteration scheme, outlined in 

Section 3.3, is then used to numerically solve the primal-dual problem in Eq. (4.4): 

𝑼v
(𝑘+1) = (𝑰 + 𝜏 𝜕𝑓T)−𝟏(𝑼v

(𝑘) − 𝜏𝒗(𝑘)) ,   (4.7a) 

𝒗(𝑘+1) = (𝑰 + 𝜎 𝜕𝑔T)−𝟏 (𝒗(𝑘) + 𝜎 (2𝑼v
(𝑘+1) − 𝑼v

(𝑘))) ,   (4.7b) 

where (I + τ ∂fT)-1 and (I + σ ∂gT)-1 are known as proximal operators; the proximal operator 

was defined in Section 3.3.2. The algorithm parameters τ and σ control the convergence 

speed and stability of the algorithm. The proximal operator for the function g(v) was 

computed in Section 3.3.3. The computation of the proximal operator for f(u) follows the 

same method as in Section 3.3.3; it is easily shown that the proximal operator of f(u), when 

applied to a vector a, is given by: 

(𝑰 + 𝜏 𝜕𝑓T)−𝟏(𝒂) = (𝑰 + 𝜏 𝑲T𝑲)−𝟏(𝒂 + 𝜏 𝑲T𝒀v) .   (4.8) 

A pseudocode for the numerical solution of Eq. (4.2) is given in Table 4.1. 

Table 4.1. Pseudocode to numerically solve Eq. (4.2), based on the PDHGM method.  

Step 1. Choose algorithm parameters τ, σ and the regularization parameter, α. 

Step 2. Set the convergence tolerance, TOL. 

Step 3. Calculate C = (I + τ KTK)-1. 

Step 4. Initialize v(0) = v(0) = 0, Uv
(0) = Uv

(0) ≠ 0.  

Step 5. Initialize count number, k = 0 and convergence tracker, ε(0) = 1. 

Step 6. while ε(k) > TOL do 

a. Uv
(k+1) ← Uv

(k) – τ v(k) 

b. Uv
(k+1) ← C (Uv

(k+1) + τ KTYv) 

c. Uv
(k+1) ← max(0, Uv

(k+1)) 
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             All operations in this line are element-wise. 

d. v(k+1) ← v(k) + σ (2Uv
(k+1) – Uv

(k)) 

e. v(k+1) ← v(k+1)/max(1, v(k+1)/ α)    

All operations in this line are element-wise. 

f. ε(k+1) ← ||Uv
(k+1) - Uv

(k)||2 / ||Uv
(k)||2 

g. k ← k + 1 

                        end while 

 

4.3. Materials and methods 

4.3.1. Materials 

NMR measurements are conducted on several liquid samples in bulk and imbibed within 

a porous medium. The liquids used are: water deionised using PURELAB®, n-hexane 

(Sigma Aldrich, ≥ 99.7% purity) and n-dodecane (Sigma Aldrich, ≥ 99.8% purity). The 

porous medium used is meso-porous silica beads of approximately spherical shape, of 

diameter 3-4 mm and with an approximately unimodal pore size of 10 nm, provided by 

Johnson Matthey plc. Gadolinium (III) chloride hexahydrate (GdCl3.6H2O) (Alfa Aesar, 

≥ 99.8% REO purity) is used to reduce the relaxation time constant of water. An electronic 

scale (Precisa 205 A), with a precision of 0.1 mg, is used for gravimetric measurements. 

NMR concentration measurements are validated against Gas Chromatography (GC) 

measurements (Agilent Technologies 7890A). The calibration standard error on the GC 

concentration measurements is 20 ng μl-1 on a 1 μl sample. The GC measurements were 

performed with the help of the PhD student Tian Li of the Magnetic Resonance Research 

Centre, University of Cambridge. 

Four pairs of samples are prepared for testing the different reconstruction techniques. 

These correspond to samples in which resolution of the chemicals is of increasing 

difficulty. 

(i) Two solutions of GdCl3.6H2O in water and of concentrations of 0.25 mM and 

0.36 mM are prepared. From these solutions, two samples were prepared: sample 

A1 is simply the 0.25 mM solution; sample A2 is composed of the two solutions, 

physically separated, and with a volume ratio 1:1. 
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(ii) Two samples composed of bulk binary liquid mixtures of hexane and dodecane are 

prepared, with respective mass fractions of dodecane of 0.267 ± 0.003 (sample B1) 

and 0.532 ± 0.003 (sample B2).  

(iii) Two samples composed of binary mixtures of hexane and dodecane imbibed within 

silica beads are prepared as follows. A binary bulk mixture of known mass fraction 

is initially prepared, and the silica beads are immersed in the mixture. After 24 h, 

the beads are taken out and the draining liquid removed. The composition of the 

liquid imbibed within the beads is calculated by measuring the composition of the 

remaining bulk liquid using GC and performing a mass balance. The dodecane mass 

fractions of the liquid imbibed within the beads is calculated to be 0.20 ± 0.02 

(sample C1) and 0.45 ± 0.05 (sample C2), respectively. 

(iv) Two samples composed of mixtures of hexane and dodecane residing both inside 

the silica beads (intra particle) and between the silica beads (inter particle) are 

prepared by immersing the silica beads into each of two bulk binary mixtures of 

hexane and dodecane; the two bulk liquid mixtures being characterised by dodecane 

mass fractions of 0.246 ± 0.003 (sample E1) and 0.516 ± 0.003 (sample E2), 

respectively. The NMR measurements are then performed on the immersed beads.  

4.3.2. NMR acquisitions 

All experiments are conducted on a Bruker DMX300 magnet, operating at a resonant 

frequency of 300.13 MHz for 1H observation. The maximum magnetic field gradient 

amplitude available on this magnet is 1176 G cm-1 and the r.f. coil is of 5 mm diameter. 

The experiments are performed at a temperature of 20 ± 1 °C. 

1D NMR relaxation and diffusion experiments are performed on the individual chemicals 

used and on pure single-component hexane and dodecane imbibed within the silica beads, 

as follows.  The CPMG and PROJECT pulse sequences, outlined in Section 2.10, are used 

to measure T2; the IR pulse sequence, outlined in Section 2.9, is used to measure T1; the 

Pulsed Gradient Stimulated Echo (PGSTE) pulse sequence, described in Sect ions 2.8 and 

2.11, is used to measure D. The echo time in the CPMG and PROJECT sequences is 1 ms 

and the maximum number of echoes is such that the maximum time observed in the T2 

decay is ~ 5T2. For the IR pulse sequence, the maximum time observed in the T1 decay is 

~ 5T1. The diffusion time in the PGSTE sequence is Δ = 5 ms, the gradient pulse duration 

is δ = 1 ms and the maximum gradient strength is such that an attenuation of the signal to 
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~ 0.5% of the maximum value is achieved in the Stejskal-Tanner decay. The results from 

these 1D experiments are summarized in Table 4.2. The implementation of the PROJECT 

pulse sequence was done with the help of the PhD student Chris Robertson of the Magnetic 

Resonance Research Centre, University of Cambridge. The data from the 1D experiments 

are used as benchmarks for the 2D NMR correlation experiments, which are described 

below. 

Table 4.2. The relaxation time constants, T1, T2 and diffusion coefficient, D, of the 

chemicals used in the experiments, obtained using 1D NMR relaxation and diffusion 

experiments. The quoted uncertainty is the 95% confidence interval of the fitting 

procedure. 

Material T1 / s T2 / s D (× 10-9) / m2 s-1 

0.25 mM GdCl3.6H2O solution 0.150±0.005a 0.120±0.004b 2.00±0.03d 

0.36 mM GdCl3.6H2O solution 0.080±0.004a 0.080±0.003b 2.00±0.04d 

pure bulk hexane 1.90±0.01a 1.60±0.01c 3.80±0.05d 

pure bulk dodecane 1.00±0.02a 0.88±0.03c 0.76±0.02d 

pure hexane imbibed in silica beads 1.30±0.06a 0.60±0.05c 2.50±0.06d 

pure dodecane imbibed in silica beads 0.74±0.03a 0.48±0.02c 0.43±0.02d 

aobtained from an IR pulse sequence. 

bobtained from a CPMG pulse sequence. 

cobtained from a PROJECT pulse sequence. 

dobtained from a PGSTE pulse sequence. 

 

T1-T2 and D-T2 correlation experiments are performed on the samples described in Section 

4.3.1. The pulse sequence used for the T1-T2 experiments of the water solutions is the 

IR-CPMG pulse sequence, outlined in Section 2.12. The pulse sequence used for the D-T2 

experiments of the water solutions is a PGSTE-CPMG sequence, described in Section 

2.12. For the mixtures of hexane and dodecane, the CPMG sequence is substituted with 

the PROJECT sequence. The NMR acquisition parameters for the 2D NMR correlation 

experiments are kept the same as the acquisition parameters used for the 1D NMR 

experiments. 

The number of data points used for the IR and PGSTE sequences embedded in the 2D 

NMR correlation experiments of T1-T2 and D-T2 is 16, apart from the experiment to 

characterise liquid mixtures present in both the inter and intra particle space, i.e. samples 

E1 and E2, in which case 32 data points are used. The data points for the IR, PGSTE, 
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CPMG and PROJECT sequences are spaced equidistantly for all experiments, apart from 

the experiments on samples E1 and E2. In the case of samples E1 and E2, four components 

are expected in the distribution maps. In these systems, it is expected that the two intra 

particle relaxation time constants and diffusion coefficients are similar to each other, but 

relatively different to the two inter particle values. In turn, it is expected that the two inter 

particle measurements of the relaxation time constants and diffusion coefficients to be 

similar. For this case, the equidistant sampling scheme did not offer enough resolution. In 

particular, in the case in which 4 diffusion coefficients need to be identified, where 

D1 > D2 ≫ D3 > D4, the equidistant sampling scheme was capable of resolving the two 

pairs (D1, D2) and (D3, D4) but was not capable of resolving within the pairs, i.e. D1 from 

D2, and D3 from D4. To get a better resolution of all four diffusion coefficients, the 

following sampling density of points, ρ(b), is used: 

𝜌(𝑏) ∝ (𝑒−𝑏𝐷4 − 𝑒−𝑏𝐷3) + (𝑒−𝑏𝐷2 − 𝑒−𝑏𝐷1) , (4.9) 

where b = γ2g2δ2(Δ - δ/3). This sampling scheme effectively allows denser sampling in the 

regions where there is a larger difference between the signals acquired from components 

of similar diffusion coefficients. A more systematic approach to optimising sampling 

schemes is outlined in Chapters 6 and 7. 

4.3.3. Implementation of the L1 regularization algorithm 

Before any of the NNLS, Tikhonov regularization and L1 regularization methods are 

applied, the data are compressed according to the method outlined in Section 3.1.3. All 

distributions are reconstructed on a 32 × 32 grid, with equidistantly spaced points. This 

makes the quantification of the amounts of each component straightforward. Simulations 

showed that the relative performance of the NNLS method, Tikhonov and L1 regularization 

with equidistantly spaced points in the distribution is the same as in the case when 

logarithmically spaced points are used, which is more common in the literature. 

As discussed in Section 3.3.4, the convergence of the algorithm in Table 4.1 is guaranteed 

if the following condition is met: 

𝜏𝜎 ≤ 1 . (4.10) 

However, the particular choice of τ and σ is heuristic. A smaller τ increases the stability 

while reducing the convergence speed of the algorithm. A good compromise between 

stability and convergence speed is found when τ = 0.1 and σ = 10. The best values of τ and 
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σ depend slightly on the scaling of the signal. To avoid this, it is best to scale the NMR 

signal to a maximum of 1, a technique which is followed in this study. A typical number 

of iterations needed for the algorithm to converge is ~10,000. The time in which this 

convergence is achieved for a 32 × 32 distribution map, for example a T1-T2 map, depends 

on the processing speed of the computer; with a 2.0 GHz CPU and 16 GB RAM, 10,000 

iterations take ~17 s. The initialization of the algorithm has no impact on the reconstructed 

distribution because the function being minimized is convex. Practically, it is also 

observed that the convergence speed is unaffected. 

4.3.4. Choice of the regularization parameter 

The regularization parameter, α, in the L1 regularization problem is chosen using a variant 

of GCV, which for the case of Tikhonov regularization was described in Section 3.1.2. An 

analytical expression for the GCV score does not exist in the case of L1 regularization, in 

contrast to Tikhonov regularization. However, by writing Eq. (4.2) as:  

𝑼v = arg min
 𝑼v≥𝟎

(
1

2
‖𝑲 𝑼v − 𝒀v‖2

2 + 𝛼 ∑
𝑈v,𝑖

2

|𝑈v,𝑖|𝑖 ) , (4.11) 

which looks similar to Tikhonov regularization in Section 3.1.2, it is possible to 

approximate the degrees of freedom of an L1 regularization problem by [14, 15]: 

df(𝛼) = tr(𝑲(𝑲T𝑲 + 𝛼 𝒁−)−1𝑲T) , (4.12) 

where Z– is the generalized inverse of Z, with Z defined as diag(|Uv,i|). This value of the 

degrees of freedom is used to calculate the GCV score, defined in Section 3.1.2. The best 

value of α is again found at the minimum of the GCV score. More accurate estimations of 

the degrees of freedom in the L1 regularization problem have been recently devised 

[16-18]. However, they are more difficult to estimate because of the requirement for some 

prior knowledge of the distribution being estimated. 

Other methods of choosing the regularization parameter for the L1 regularization problem 

were considered; in particular, the adaptation of the L-curve method [19] in Tikhonov 

regularization to the L1 regularization problem, known as the Pareto curve [20], and the 

Morozov Discrepancy Principle [21]. However, simulations showed that the Pareto curve 

is unsuitable for T1-T2 and D-T2 experiments because there was no clear maximum in the 

curvature of the curve, while the Morozov discrepancy principle was very sensitive to the 

estimate of the noise level in the acquired signal. Therefore, these two methods are not 

used in this chapter in choosing the regularization parameter.  
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4.3.5. Estimate of uncertainties 

The uncertainty in the magnitude of each peak in the distribution is estimated using an 

adaptation of the CRLB theory, which was outlined in Section 3.4. In overview, the CRLB 

theory states that the uncertainty in the estimation of each element in the distribution, Uv,i, 

has a lower bound, related to the Fisher Information Matrix, F, by the expression: 

var(𝑈v,𝑖) ≥ (𝑭−1)𝑖𝑖 . (4.13) 

Given the model in Eq. (4.1) and assuming Gaussian noise of variance σ2, it can be shown 

that the Fisher Information Matrix simplifies to F = 1/σ2 KTK. However, since K is 

typically characterised by a large condition number, estimating the inverse of F in 

Eq. (4.13) is unstable. Therefore, it is impractical to assign uncertainty estimates for all 

the elements of Uv. However, it is possible to assign uncertainty estimates for the non-zero 

elements of Uv (the peaks of the distribution) using the following method. If it is assumed 

that the distribution has k discrete peaks whose indices are a priori known to be in a set Ω 

(such that if i  Ω, Uv,i > 0 and if i  Ω, Uv,i = 0), then F = 1/σ2 KΩ
TKΩ, where KΩ is the 

kernel matrix K with only the columns whose indices are in Ω. If the distribution has only 

a few peaks, the inverse of F is well-posed. The estimated uncertainties using this 

approach, termed the oracle estimates [22], are low because of the assumption of having 

prior knowledge of the position of the peaks. To correct for this assumption, it has been 

proved [23-25] that the true estimate of the uncertainty of any of the parameters is related 

to the oracle estimate, with a high probability, by only a constant factor:  

var(𝑈v,𝑖) ≈ 𝑐 𝑘 ln(𝑛) 𝜎2 ((𝑲Ω
T𝑲Ω)

−1
)

𝑖𝑖
 ,  (4.14) 

where c is a constant which depends on the application and the scaling of the signal and, 

n is the size of the distribution. For T1-T2 and D-T2 experiments, with the NMR signal 

being scaled to a maximum of 1, simulations over a range of distributions, distribution 

sizes and sparsity levels show that c = 0.25 gives reliable estimates for the uncertainties.  

4.4. Results and discussion 

Initially, experimental results on a single component sample are used to investigate the 

stability to noise of the L1 regularization method, as compared to the NNLS method and 

Tikhonov regularization. Then, experimental results of bulk binary liquid mixtures and 
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binary liquid mixtures imbibed within the porous beads system are used to compare the 

spectral resolution of L1 regularization with the NNLS method and Tikhonov 

regularization. Finally, the L1 regularization method is used to process 2D NMR 

correlation experiments of mixtures of hexane and dodecane in different physical 

environments (i.e., inter and intra particle space) where the NNLS and Tikhonov 

regularization methods fail to distinguish between the different components.  

4.4.1. Stability to noise 

To test the stability of the different reconstruction techniques to noise, experiments are 

performed on a single component sample and increasing levels of Gaussian noise are 

added. T1-T2 and D-T2 experiments are performed on sample A1, the 0.25 mM GdCl3.6H2O 

solution. From Table 4.2, the distributions are expected to have one peak at 

T1 = 0.150 ± 0.005 s, T2 = 0.120 ± 0.004 s and D = (2.00 ± 0.03) × 10-9 m2 s-1. Random 

Gaussian noise of increasing standard deviation is added to the 2D NMR signal, such that 

a range of signal-to-noise ratios (SNR) from 5000 to 5 is studied. The 2D distributions are 

then reconstructed by applying the NNLS method, Tikhonov regularization and L1 

regularization.  

For SNR > 20, no difference is seen between the reconstructions from the different 

methods. For this reason, they are not shown here. For SNR < 20, the NNLS method fails 

to reconstruct the distribution accurately, incorrectly predicting more than one peak in the 

distribution. In contrast, Tikhonov regularization and L1 regularization correctly predict 

the distributions at all SNR studied. Fig. 4.1 shows the reconstructed T1-T2 and D-T2 

distributions from the NNLS method, Tikhonov regularization and L1 regularization at 

SNR = 20. The NNLS method incorrectly predicts two peaks in both T1-T2 and D-T2 

distributions, while Tikhonov regularization and L1 regularization correctly predict the 

position of the single peak. Although Tikhonov regularization is observed to give broader 

distributions than L1 regularization, the reconstructed distributions from Tikhonov and L1 

regularization are very similar. 

It is concluded that L1 regularization is more stable to noise than the NNLS method and 

comparable in stability to Tikhonov regularization. The stability to noise offered by the L1 

regularization method can be used to reduce the extent of signal averaging that is needed 

to achieve sufficient SNR for subsequent analysis. Since SNR ∝ B0
7/4 [26], where B0 is the 
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permanent magnetic field strength, this method could be useful in extending measurement 

capabilities at low magnetic fields. 

 

Fig. 4.1. (a, b, c) T1-T2 and (d, e, f) D-T2 distributions of sample A1, a 0.25 mM 

GdCl3.6H2O deionised water solution, reconstructed for SNR = 20 using (a, d) the NNLS 

method, (b, e) Tikhonov regularization, and (c, f) L1 regularization.  

4.4.2. Spectral resolution 

To compare the spectral resolution of the different reconstruction techniques, experiments 

are performed on a two-component sample, in which the resolution of the signal from the 

individual components is expected to be challenging using Tikhonov regularization. T1-T2 

and D-T2 experiments are performed on sample A2, composed of two physically separate 

GdCl3.6H2O solutions of concentrations 0.25 and 0.36 mM and volume ratio 1:1. From 

Table 4.2, it is expected that the distribution maps will show two peaks: one at 

T1 = 0.150 ± 0.005 s, T2 = 0.120 ± 0.004 s and D = (2.00 ± 0.03) × 10-9 m2 s-1 and the 

other at T1 = 0.080 ± 0.004 s, T2 = 0.080 ± 0.003 s and D = (2.00 ± 0.04) × 10-9 m2 s-1. 

Fig. 4.2 shows the reconstructed T1-T2 and D-T2 distributions obtained using the NNLS 

method, Tikhonov regularization and L1 regularization. It is observed that Tikhonov 

regularization cannot distinguish between the two solutions; the peaks associated with 

each of the two solutions are included in a single broad peak. This is to be expected since 
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the resolution of Tikhonov regularization is typically limited to a factor of 3 in the 

relaxation time constants or the diffusion coefficients [1]. In contrast, L1 regularization 

and the NNLS method correctly predict two peaks. The position of these peaks is in 

excellent agreement with those given in Table 4.2 for each of the component liquids. In 

addition, the ratio of the amounts of each solution present, measured by the ratio of the 

areas of each peak in the distributions is 1.0 (to 2 s. f.), for both T1-T2 and D-T2 

distributions reconstructed from L1 regularization and the NNLS method. This is 

consistent with the 1:1 volume ratio that the sample is prepared at. The SNR in the acquired 

T1-T2 and D-T2 signals is ~3000 and 1900, respectively, which explains the good 

reconstruction from the NNLS method. 

These results show that L1 regularization has the potential to be used to resolve features in 

distributions which were previously unable to be resolved by conventional methods, such 

as Tikhonov regularization. 

 

Fig. 4.2.  (a, b, c) T1-T2 and (d, e, f) D-T2 distributions of sample A2, composed of 

physically separate 0.25 mM and 0.36 mM GdCl3.6H2O deionised water solutions, 

reconstructed using (a, d) the NNLS method, (b, e) Tikhonov regularization, and (c, f) L1 

regularization. The SNR in the NMR signal is ~3000 for the T1-T2 experiment and ~1900 

for the D-T2 experiment. The component with the larger T2 is the 0.25 mM solution.  
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4.4.3. Resolving individual components of mixtures: hexane and dodecane in bulk 

liquid mixtures and within porous media 

In this section, the different reconstruction techniques are applied to samples for which 

both the NNLS and Tikhonov regularization fail to predict the distributions, while L1 

regularization succeeds. T1-T2 and D-T2 experiments are performed on bulk liquid mixtures 

of hexane and dodecane (samples B1 and B2) and mixtures of hexane and dodecane 

imbibed within silica beads (samples C1 and C2). Samples at different mass fractions of 

dodecane are included to demonstrate the quantitative nature of the method at d ifferent 

concentrations. It is well known that the relaxation time constants and diffusion 

coefficients of alkanes in a mixture become more similar relative to the pure single 

component values [27, 28]; the relaxation time constants and diffusion coefficient of an 

alkane in a mixture depend not only on the chain length of the alkane, but also on the mean 

chain length of the mixture. Therefore, it is expected that the peaks in the T1-T2 and D-T2 

distributions corresponding to hexane and dodecane are closer to one another than the 

values in Table 4.2, making it more difficult to resolve these chemicals.  

Fig. 4.3 shows the T1-T2 distributions of the bulk mixtures of hexane and dodecane and of 

the mixtures of hexane and dodecane imbibed within silica beads, reconstructed using L1 

regularization. Figs. 4.3(a) and 4.3(b) show the T1-T2 distributions of two different bulk 

mixtures, with corresponding dodecane mass fraction of 0.267 ± 0.003 (sample B1) and 

0.532 ± 0.003 (sample B2). Two peaks are clearly observed in both distributions: hexane 

at T1 = 1.5 ± 0.1 s, T2 = 1.4 ± 0.1 s and dodecane at T1 = 1.4 ± 0.1 s, T2 = 1.2 ± 0.1 s. 

Figures 4.3(c) and 4.3(d) show the T1-T2 distributions of two different mixtures of hexane 

and dodecane imbibed within silica beads, with corresponding dodecane mass fractions of 

0.20 ± 0.02 (sample C1) and 0.45 ± 0.05 (sample C2). Two peaks are clearly identified in 

these distributions: intra particle hexane at T1 = 1.0 ± 0.1 s, T2 = 0.4 ± 0.04 s and intra 

particle dodecane at T2 = 0.10 ± 0.02 s. The relaxation time constant T1 of intra particle 

dodecane is T1 = 0.94 ± 0.04 s for sample C1 and T1 = 0.78 ± 0.04 s for sample C2. The 

relaxation time constants T2 of the intra particle liquids are significantly shorter than the 

corresponding values in the bulk liquid mixture due to the additional dephasing of nuclear 

spins caused by the magnetic heterogeneity in the porous medium and the interaction with 

the pore surface [29].  
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Fig. 4.3. T1-T2 distributions of mixtures of hexane and dodecane (a, b) in bulk and (c, d) 

imbibed within silica beads, reconstructed using the L1 regularization method. The samples 

shown are (a) sample B1, (b) sample B2, (c) sample C1 and (d) sample C2. The component 

with the larger T2 is hexane. The SNR in the NMR signal is ~2500 in all the experiments.  

Fig. 4.4 shows the corresponding D-T2 distributions for the same samples discussed in 

Fig. 4.3, reconstructed using L1 regularization. Figs. 4.4(a) and 4.4(b) show the D-T2 

distributions of samples B1 and B2, while Figs. 4.4(c) and 4.4(d) show the D-T2 

distributions of samples C1 and C2. Hexane and dodecane are clearly identified in all these 

distributions. The relaxation time constants T2 obtained using the D-T2 maps differ by 

< 10% from the corresponding relaxation time constants obtained using the T1-T2 maps.  

The results in Figs. 4.3 and 4.4 show that the L1 regularization method can resolve 

components in T1-T2 and D-T2 distribution maps even if their difference in relaxation 

constants is as low as 10%. 
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Fig. 4.4. D-T2 distributions of mixtures of hexane and dodecane (a, b) in bulk and (c, d) 

imbibed within silica beads, reconstructed using the L1 regularization method. The samples 

shown are (a) sample B1, (b) sample B2, (c) sample C1 and (d) sample C2. The component 

with the larger T2 is hexane. The SNR in the NMR signal is ~2000 in all the experiments. 

Both the NNLS method and Tikhonov regularization failed to reconstruct the T1-T2 and 

D-T2 distributions correctly. One example of this is shown for sample C2 in Fig. 4.5. 

Sample C2 is chosen as it represents one of the cases in which, relative to the other 

samples, it should be easier for the NNLS and Tikhonov regularization methods to predict  

the correct distributions because the components have a difference in the expected T2 of a 

factor of 4. Fig. 4.5(a) shows the D-T2 distribution of sample C2, reconstructed using the 

NNLS method. Three peaks are predicted from the method, when only two are expected. 

The prediction of extra peaks is a typical artefact of the NNLS method. Fig. 4.5(b) shows 

the D-T2 distribution of sample C2, reconstructed using the Tikhonov regularization 

method. The method predicts a single broad peak (extending over the range of the two 

expected peaks). This is a typical artefact of the Tikhonov regularization method.  
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Fig. 4.5. D-T2 distribution maps of sample C2, a mixture of hexane and dodecane imbibed 

within silica beads, reconstructed using (a) the NNLS and (b) Tikhonov regularization 

methods. The SNR in the NMR signal is ~2000. 

 

Fig. 4.6. Comparison of the dodecane mass fraction measured using L1 regularization in 

the reconstruction of joint parameter distributions with the mass fraction measured using 

the gravimetric and GC methods described in Section 4.3.1. 

A quantitative comparison of the mass fraction of dodecane measured from the T1-T2 and 

D-T2 distributions in Figs. 4.3 and 4.4 against the mass fraction of dodecane measured 

using gravimetric and GC methods is shown in Fig. 4.6. The first observation is that the 

mass fractions of dodecane measured using the T1-T2 distributions has an average 

difference of 0.02 from the corresponding mass fractions of dodecane measured using the 

D-T2 distributions. The second observation is that each of these measures has an average 

difference of 0.01 from GC and gravimetric measurements. The results presented in 

Fig. 4.6 show that, in addition to being able to resolve very close features, L1 regularization 
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can be used quantitatively to obtain information on the amounts of each component 

present. 

4.4.4. Resolving inter and intra particle hexane and dodecane compositions 

In this section, L1 regularization is applied to determine the diffusion coefficients, D, the 

relaxation time constants, T2, and the chemical composition of hexane and dodecane 

mixtures imbibed within porous silica beads which remain immersed in the bulk liquid 

mixture.  D-T2 experiments are performed on samples E1 and E2.  Four peaks are expected 

in the D-T2 distributions, corresponding to intra particle dodecane, intra particle hexane, 

inter particle dodecane and inter particle hexane.  

Fig. 4.7 shows the D-T2 distributions of samples E1 and E2 reconstructed using L1 

regularization. Four components are clearly observed in each of the distributions. The 

values of the relaxation time constant, T2, and the diffusion coefficient, D, extracted from 

these distributions for each of the components are given in Table 4.3. Although there is 

less than 10% difference between the relaxation time constants and diffusion coefficients 

of the inter particle or the intra particle components, L1 regularization is capable of 

resolving the different components. 

 

Fig. 4.7. D-T2 distribution of (a) sample E1 and (b) sample E2, which are liquid mixtures 

of hexane and dodecane in silica beads with inter and intra particle liquid present. The 

maps are reconstructed using L1 regularization. In an order of increasing T2, the peaks 

correspond to intra particle dodecane, intra particle hexane, inter particle dodecane and 

inter particle hexane. The SNR in the NMR signal is ~1500 in both experiments. 

The D-T2 distributions are now used to estimate the total mass fraction of dodecane in each 

of the samples.  For sample E1, the total dodecane mass fraction is estimated to be 

0.22 ± 0.04; for sample E2, it is estimated to be 0.53 ± 0.02. These mass fractions differ 



77 

 

by less than 0.03 from the measurements using the gravimetric technique, demonstrating 

that L1 regularization can be used quantitatively. 

Table 4.3. The relaxation time constants, T2, and the diffusion coefficients, D, of the 

components in samples E1 and E2, extracted from a D-T2 correlation experiment processed 

with L1 regularization. The D-T2 distributions are shown in Fig. 4.7. 

component 
sample E1 sample E2 

T2 / s D (× 10-9) / m2 s-1 T2 / s D (× 10-9) / m2 s-1 

inter particle hexane 1.4±0.1 1.7±0.2 1.5±0.1 1.8±0.1 

inter particle dodecane 1.2±0.1 1.5±0.1 1.3±0.1 1.5±0.1 

intra particle hexane 0.6±0.1 1.3±0.1 0.6±0.1 1.4±0.1 

intra particle dodecane 0.2±0.1 1.1±0.1 0.2±0.1 1.2±0.1 

 

More importantly, the maps in Fig. 4.7 can be used to obtain the inter and intra particle 

composition of the liquid. The dodecane mass fraction for the inter particle liquid in 

samples E1 and E2 is 0.30 ± 0.02 and 0.59 ± 0.02, respectively. The dodecane mass 

fraction for the intra particle liquid in samples E1 and E2 is 0.19 ± 0.03 and 0.43 ± 0.02, 

respectively. The ability to obtain the difference in the concentration between the inter and 

intra particle liquid is invaluable in, for example, identifying mass transfer limitations in 

heterogeneous catalysts. 

4.4.5. Potential and limitations 

It was shown in Sections 4.4.1-4.4.4 that the proposed L1 regularization method is able to 

reconstruct sparse T1-T2 and D-T2 distribution, even if the components of the maps differ 

in relaxation time constants or diffusion coefficients by less than 10% or if SNR < 20. 

These are considerable improvements over the capabilities of the NNLS and Tikhonov 

regularization methods. Although L1 regularization was applied to T1-T2 and D-T2 

experiments, it can be applied in a similar way to other 2D NMR correlation experiments, 

such as T2-T2 or D-D experiments. The only modification needed is the kernel function, 

K, which is specific to a given application. Of particular interest could be the application 

to D-, or Diffusion Ordered Spectroscopy (DOSY) [30] experiments, where δ stands for 

the chemical shift. 

L1 regularization is recommended only for cases in which there is a prior knowledge that 

the distribution is sparse. If the true distribution is smooth, the algorithm can give 
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inaccurate reconstructions. When applying the L1 regularization method, the typical 

indication that the true distribution might be smooth is if the reconstructed distribution 

shows a cluster of peaks within a narrow region.  

L1 regularization application is directly applicable to 1D relaxation and diffusion 

experimental data; the only modification needed is the kernel function, K. However, the 

capability of L1 regularization to resolve close sparse features is expected to be better when 

applied to 2D rather than 1D experimental data because higher dimensional data are 

sparser. In Chapter 5, L1 regularization is compared to Tikhonov regularization and a new 

proposed regularization technique over a range of discrete and smooth, 1D and 2D 

simulated distributions. 

4.5. Conclusions 

L1 regularization was proposed for the reconstruction of sparse distributions from 2D NMR 

correlation experiments. A robust algorithm was introduced to numerically solve the L1 

regularized problem and methods were described for objectively choosing the amount of 

regularization needed and assigning error estimates to the reconstructed distributions. L1 

regularization was applied to T1-T2 and D-T2 correlation experiments. It was shown that 

L1 regularization reconstructions are stable even at SNR < 20, while the conventional 

NNLS method fails at these high values of noise. In addition, it was shown that using L1 

regularization, components with relaxation time constants and diffusion coefficients 

differing by as little as 10% can be resolved; the conventional Tikhonov regularization 

method fails to resolve relaxation time constants and diffusion coefficients differing by a 

factor < 3. The increased resolution capability obtained from L1 regularization was used 

to extract inter and intra particle liquid compositions of a binary mixture of hexane and 

dodecane. This measurement capability will be valuable in extending our ability to 

characterise the composition and surface interaction properties of multi-component 

mixtures in porous media. 
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Chapter 5 

Retaining both sparse and smooth 

features in 1D and 2D NMR relaxation 

and diffusion experiments 

5.1. Introduction 

In Chapter 4, a reconstruction method, L1 regularization, was introduced for obtaining 2D 

joint distributions of relaxation time constants and diffusion coefficients from 2D NMR 

correlation experiments. The method is also directly applicable to obtaining 1D 

distribution functions of relaxation time constants and diffusion coefficients from 1D 

NMR experiments. L1 regularization assumes that the distribution is sparse and is, 

therefore, appropriate to use only when there is prior knowledge that the distribution is 

sparse. If there is prior knowledge that the distribution is smooth, the conventional 

Tikhonov regularization technique, outlined in Section 3.1.2, is more appropriate to use. 

Both methods of regularization, Tikhonov and L1, depend on the availability of some prior 

knowledge of what the true distribution is. Therefore, choosing the most appropriate 

method to use depends on the prior knowledge. However, in many practical cases, such 

knowledge may not be available, or it is exactly what one is trying to find out. Therefore, 

imposing an incorrect prior knowledge can lead to choosing the incorrect method which 

gives an inaccurate reconstruction. 

In this chapter, a new form of regularization is proposed, based on an adaptation of Total 

Generalized Variation (TGV) regularization [1], which will be termed Modified Total 

Generalized Variation (MTGV) regularization. TGV regularization has been successfully 

used in image denoising and deblurring, as well as MRI image reconstruction [2-5]. TGV 

regularization sits in a family of reconstruction techniques that aim to exploit sparsity of 

the reconstructed distribution in more than one domain, such as the elastic net 

regularization [6] or sparsity averaging regularization [7]. The regularization method 
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proposed offers a compromise in distinguishing between smooth and sparse features in the 

distribution. Therefore, it is no longer required to know a priori whether the distribution 

is expected to be smooth or sparse, since MTGV regularization retains both features. 

MTGV regularization is introduced for obtaining 1D distribution functions of relaxation 

time constants and diffusion coefficients from 1D NMR experiments and for obtaining 2D 

joint distributions of relaxation time constants and diffusion coefficients from 2D NMR 

correlation experiments. Algorithms are developed for numerically solving the 1D and 2D 

MTGV regularized problems and a practical guidance to implementing them is given.  

The work in this chapter focuses on simulated 1D and 2D NMR signals used to obtain T1 

and T2 distributions. These distributions can be obtained either by performing dedicated 

1D experiments or by performing a T1-T2 experiment and projecting the 2D distribution 

map in each dimension. The T1 and T2 distributions reconstructed from MTGV 

regularization are compared to the results obtained from Tikhonov and L1 regularization. 

Simulations are performed on a range of different input T1 and T2 distributions, differing 

with respect to the variance of the peaks in the distributions, and at three different SNR 

values of 2000, 200 and 20. A new metric is proposed to compare the reconstructed 

distributions from each method with the input distributions, which allows a quantitative 

comparison to be made between Tikhonov, L1 and MTGV regularizations. The comparison 

of the different regularization techniques is performed with regards to simulated rather 

than experimental data because in experimental data the true distribution is not known; 

this renders the objective comparison between the different regularization techniques from 

experimental data impossible. 

The chapter is structured as follows. In Section 5.2, MTGV regularization is introduced 

and an outline of the algorithms proposed to solve the 1D and 2D MTGV regularized 

problems is given. Section 5.3 describes the simulations performed. The results and 

discussion are presented in Section 5.4. 

5.2. Mathematical treatment 

The motivation for this chapter is to develop a reconstruction technique which is capable 

of retaining both sparse and smooth features in the distributions and is, therefore, less 

reliant than Tikhonov regularization and L1 regularization on prior knowledge about the 

distribution. To obtain such distributions, it is proposed to perform MTGV regularization, 
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which is defined slightly differently, depending on whether it is applied to 1D NMR data 

sets (called 1D MTGV regularization) or to 2D NMR datasets (called 2D MTGV 

regularization). 

5.2.1. 1D MTGV regularization 

As discussed in Sections 2.9-2.11, the NMR signal acquired from a 1D NMR experiment, 

y, can be written in terms of a kernel matrix, K, the distribution, u, and the noise vector, 

e, as: 

𝒚 = 𝑲 𝒖 + 𝒆 .   (5.1) 

1D MTGV regularization consists of extracting the distribution u from the following 

minimization problem: 

(𝒖, 𝒘) = arg min
 𝒖≥𝟎,𝒘

(
1

2
‖𝑲 𝒖 − 𝒚‖2

2 + 𝛼‖𝒖 − 𝒘‖1 + 𝛽‖𝑸 𝒘‖1) ,  (5.2) 

where w is an auxiliary vector and Q performs the second order derivative of the vector it 

is applied to; Q is a tri-diagonal matrix with elements -1, 2 and -1 in diagonals -1, 0 and 

1. It is seen that the penalty term in MTGV regularization is composed of two parts: the 

first one enforces sparse features in the reconstructed distribution, while the second term 

enforces smooth features, with the weight of these terms controlled by the regularization 

parameters α and β, respectively. Therefore, MTGV regularization offers a compromise in 

retaining sparse and smooth features in the reconstructed distribution.  

The minimization problem in Eq. (5.2) is challenging because of the non-differentiability 

of the L1-norm. Similar to the approach used in Chapter 4, Eq. (5.2) is rewritten as: 

(𝒖, 𝒘, 𝒗, 𝒛) = arg min
 𝒖≥𝟎,𝒘

max
𝒗,𝒛

(
1

2
‖𝑲 𝒖 − 𝒚‖2

2 + 𝒗T(𝒖 − 𝒘) − 𝜒𝛼(𝒗) + 𝒛T𝑸 𝒘 − 𝜒𝛽(𝒛)) , 

 (5.3) 

where v and z are dual variables, and χα(v) is an indicator function defined as: 

𝜒𝛼(𝒗) =  {
0      ‖𝒗‖∞ ≤ 𝛼 

+∞    ‖𝒗‖∞ > 𝛼    
. (5.4) 

The approach of Chambolle and Pock [8] is then followed to define new variables: u′, v′ 

and R as: 

𝒖′ = [
𝒖
𝒘

]        𝒗′ = [
𝒗
𝒛

]        𝑹 = [
𝑰 −𝑰
𝟎 𝑸

] . (5.5) 
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Using the new definitions, Eq. (5.3) is written in the form of the primal-dual problem 

defined in Section 3.3: 

(𝒖′, 𝒗′) = min
𝒖′

max
𝒗′

𝑓(𝒖′) − 𝑔(𝒗′) + 𝒗′T
𝑹 𝒖′ ,   (5.6) 

where f(u′) = ½||K u – y||2
2 and g(v′) = χα(v) + χβ(z). The PDHGM iteration scheme, 

outlined in Section 3.3, is then used to numerically solve the minimization problem. The 

proximal operator for f(u′) was derived in Section 4.1, while the proximal operator of g(v′) 

is obtained from the sum of the proximal operators of its constituent functions, each of 

which was derived in Section 3.3.1.  

A pseudocode for the numerical solution of Eq. (5.2) is given in Table 5.1. 

Table 5.1. Pseudocode to numerically solve Eq. (5.2), based on the PDHGM method.  

Step 1. Choose algorithm parameters τ, σ and the regularization parameters, α, β. 

Step 2. Set the convergence tolerance, TOL. 

Step 3. Calculate C = (I + τ KTK)-1. 

Step 4. Initialize v(0) = v(0) = 0, z(0) = z(0) = 0, u(0) = u(0) ≠ 0,  w(0) ≠ 0. 

Step 5. Initialize count number, k = 0 and convergence tracker, ε(0) = 1. 

Step 6. while ε(k) > TOL do 

a. u(k+1) ← u(k) – τ v(k) 

b. u(k+1) ← C (u(k+1) + τ KTy) 

c. u(k+1) ← max(0, u(k+1))   

All operations in this line are element-wise. 

d. w(k+1)← w(k) + τ (v(k) – QTz(k)) 

e. v(k+1) ← v(k) + σ (2u(k+1) – u(k) – 2w(k+1) + w(k)) 

f. v(k+1) ← v(k+1)/max(1, v(k+1)/α) 

All operations in this line are element-wise. 

g. z(k+1) ← z(k) + σ Q (2w(k+1) – w(k))    

h. z(k+1) ← z(k+1)/max(1, z(k+1)/β) 

All operations in this line are element-wise 

i. ε(k+1) ← ||u(k+1) -  u(k)||2 / ||u(k)||2 

j. k ← k + 1 

                        end while 

 



86 

 

5.2.2. 2D MTGV regularization 

As discussed in Section 2.12, the vectorised NMR signal acquired from a 2D NMR 

correlation experiment, Yv, can be written in terms of a kernel matrix, K, the vectorised 

joint distribution, Uv, and the vectorised noise matrix, Ev, as: 

𝒀v = 𝑲 𝑼v + 𝑬v .   (5.7) 

2D MTGV regularization consists of obtaining the reconstructed distribution from the 

following minimization problem: 

(𝑼v, 𝒘) = arg min
 𝑼v≥𝟎,𝒘

(
1

2
‖𝑲 𝑼v − 𝒀v‖2

2 + 𝛼‖𝑼v − 𝒘‖1 + 𝛽‖[𝑸 𝒘]3‖2,1) ,  (5.8) 

where w is an auxiliary variable and Q performs a symmetrical second order derivative on 

the vectorised matrix it is applied to; the construction of Q is outlined below. The L2,1-norm 

of a matrix was defined in Section 3.3.4, while the operation [Q w]3 reshapes the vector 

Q w into a matrix with three columns. The interpretation of the two penalty terms is similar 

to the case of 1D MTGV regularization. 

Q is constructed according to the work of Ono and Yamada [5]. Define D to be a 

bi-diagonal matrix with elements -1 and 1 in diagonals 0 and 1 (with Neumann boundary 

conditions) and of the same size as U. Dx = I ⊗ D, where I is the identity matrix of the 

same size as D, performs the first order derivative of a matrix in the vertical direction 

(when applied to its vectorised version); Dy = D ⊗ I performs the first derivative of a 

matrix in the horizontal direction (when applied to its vectorised version). As a result, 

Dxy = [Dx
 T Dy

 T]T performs the first derivative of a matrix in both directions (when applied 

to its vectorised version). As a result, the matrix Q = H Dxy, where: 

𝑯 = [

𝑫𝑥
T 𝟎

𝑫𝑦
T 𝑫𝑥

T

𝟎 𝑫𝑦
T

] ,  (5.9) 

performs the symmetrical second order derivative of a matrix (when applied to its 

vectorised version). 

The minimization problem in Eq. (5.8) is written as: 

(𝑼v, 𝒘, 𝒗, 𝒛) = arg min
 𝑼v≥𝟎,𝒘

max
𝒗,𝒛

(
1

2
‖𝑲 𝑼v − 𝒀v‖2

2 + 𝒗T(𝑼v − 𝒘) − 𝜒𝛼(𝒗) + 𝒛T𝑸 𝒘 −

𝜒′𝛽(𝒛)),  (5.10) 
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where χα(v) is defined as in Eq. (5.4), while χ′β(z) is defined as: 

𝜒′𝛽(𝒛) =  {
0      ‖[𝒛]𝟑‖2,∞ ≤ 𝛽 

+∞    ‖[𝒛]𝟑‖2,∞ > 𝛽    
. (5.11) 

Eq. (5.10) is then written in terms of combined variables, defined in Eq.  (5.5), as was done 

in Section 5.2.1. With the definition of the combined variables, Eq. (5.10) becomes a 

primal-dual problem, defined in Section 3.3, where f(Uv′) = ½||K Uv – Yv||
2
2 and 

g(v′) = χα(v) + χ′β(z). The PDHGM iteration scheme, outlined in Section 3.3, is then used 

to numerically solve the minimization problem. The proximal operator for f(Uv′) was 

derived in Section 4.2, while the proximal operator of g(v′) is obtained from the sum of 

the proximal operators of its constituent functions. The proximal operator of χα(v) was 

derived in Section 3.3.1. The proximal operator of χ′β(z) is derived in a similar way to the 

proximal operator of χα(v), and the result can be found in the work of Chambolle and 

Pock [8].  

A pseudocode for the numerical solution of Eq. (5.8) is given in Table 5.2.  

Table 5.2. Pseudocode to numerically solve Eq. (5.8), based on the PDHGM method. In 

the pseudocode, sum(A, i) sums the column or row vectors of matrix A along the i-th 

dimension and, repmat(A, k, i) stacks k copies of A in the i-th dimension. 

Step 1. Choose algorithm parameters τ, σ and the regularization parameters, α, β. 

Step 2. Set the convergence tolerance, TOL. 

Step 3. Calculate C = (I + τ KTK)-1. 

Step 4. Initialize v(0) = v(0) = 0, z(0) = z(0) = 0, Uv
(0) = Uv

(0) ≠ 0,  w(0) ≠ 0. 

Step 5. Initialize count number, k = 0 and convergence tracker, ε(0) = 1. 

Step 6. while ε(k) > TOL do 

a. Uv
(k+1) ← Uv

(k) – τ v(k) 

b. Uv
(k+1) ← C (Uv

(k+1) + τ KTYv) 

c. Uv
(k+1) ← max(0, Uv

(k+1) )   

All operations in this line are element-wise. 

d. w(k+1)← w(k) + τ (v(k) – QTz(k)) 

e. v(k+1) ← v(k) + σ (2Uv
(k+1) – Uv

(k) – 2w(k+1) + w(k)) 

f. v(k+1) ← v(k+1)/max(1, v(k+1)/α) 

All operations in this line are element-wise. 

g. z(k+1) ← z(k) + σ Q (2w(k+1) – w(k))    
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h. x ← √sum([z(k+1)]3
2, 2) 

All operations in this line are element-wise. 

i. z(k+1) ← z(k+1)/max(1, repmat(x, 3, 1)/β) 

All operations in this line are element-wise. 

j. ε(k+1) ← ||Uv
(k+1) -  Uv

(k)||2 / ||Uv
(k)||2 

k. k ← k + 1 

                        end while 

 

5.2.3. Implementation of the algorithm 

The condition for the convergence of the MTGV algorithm is similar to the condition for 

the TGV algorithm to converge, as has been discussed by Valkonen et al. [9]. The 

condition depends primarily on the choice of the two algorithmic parameters, τ and σ, 

which are described in the pseudocode. Although there is a relationship that they must 

obey, the particular choice of τ and σ is largely heuristic. The choice of τ = σ = 0.1 is found 

to offer a good compromise between convergence speed and stability in our particular 

application. The values of τ and σ will depend slightly on how the NMR signal is scaled, 

determined by the largest data point in the acquired signal. To avoid this, it is best to scale 

the signal to a maximum of 1. In the present work, the number of iterations required to 

arrive at a reasonable convergence is ~10,000. The time in which this convergence is 

achieved for a 1D 32 × 1 distribution with a 2.0 GHz Intel® Core™ i5-4590T CPU and 

16.4 GB RAM, is ~6 s, while the speed required to achieve this convergence for a 2D 

32 × 32 distribution is ~23 s. 

5.3. Simulation settings 

The performance of Tikhonov, L1 and MTGV regularizations in the reconstruction of 

individual T1 and T2 distributions are compared to each other by performing the following 

numerical experiments:  

(i) Tikhonov regularization applied to 1D NMR T1 and T2 data, referred to as 1D 

Tikhonov regularization. 

(ii) L1 regularization applied to 1D NMR T1 and T2 data, referred to as 1D L1 

regularization. 
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(iii) MTGV regularization applied to 1D NMR T1 and T2 data, referred to as 1D MTGV 

regularization. 

(iv) Tikhonov regularization applied to 2D T1-T2 data, with the reconstructed map 

projected in each dimension, referred to as 2D Tikhonov regularization.  

(v) L1 regularization applied to 2D T1-T2 data, with the reconstructed map projected 

in each dimension, referred to as 2D L1 regularization. 

(vi) MTGV regularization applied to 2D T1-T2 data, with the reconstructed map 

projected in each dimension, referred to as 2D MTGV regularization. 

 

Fig. 5.1. T1-T2 input distributions used in simulations. The distributions in figures (a)-(g) 

are labelled accordingly A-G. All peaks are lognormally distributed, and the details are 

described in Table 5.3. 

To investigate the performance of the different regularization methods, 7 simulated 2D 

T1-T2 distributions and their corresponding T1 and T2 projections are used. All these 

distributions are 32 × 32 logarithmically spaced maps that have two lognormally 

distributed peaks of the same magnitude and centred at T1 = T2 = 0.05 s and 

T1 = T2 = 0.15 s. The distributions, labelled A-G, are illustrated in Fig. 5.1. For 

distributions A-F, both peaks are of similar smoothness, with the level of smoothness 

increasing from distributions A to F. Distribution G is an example of a distribution where 

one of the peaks is discrete and the other is smooth. The lognormal distribution details for 

all the peaks are given in Table 5.3. 
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Noise-free NMR signals are simulated with 32 logarithmically spaced t1 values and 256 

linearly spaced t2 steps from 0.001 s to 0.75 s, as outlined in Sections 2.9 and 2.10. 

Random Gaussian noise is then added to the signals such that 2D NMR experiments at 

SNR values of 2000, 200 and 20 are studied. For the respective 1D signals, the standard 

deviation of the noise is chosen according to the method described by Celik et al. [10]. 

Before processing, the 2D NMR data are compressed according to the method outlined in 

Section 3.1.3. The distribution maps are then reconstructed from the noisy simulated 

signals using the different regularization methods. 

Table 5.3: Details of the peaks of distributions A-G shown in Fig. 5.1. Each distribution 

is composed of two peaks; the peak at the lower relaxation times is referred to as peak 1 

while the peak at the higher relaxation times is referred to as peak 2. The distribution in 

each dimension, T1 or T2, is described by lognpdf(Ti,μ1,σ1) + λ lognpdf(Ti,μ2,σ2), for 

i = 1, 2, where μ, σ refer to the mean and standard deviation of each peak. Distributions 

A-F are designed to have the same area under each peak in a logarithmic scale. Distribution 

G is designed such that both peaks have the same maximum amplitude when projected in 

each dimension. 

distribution μ1 (s) σ1 (s) μ2 (s) σ2 (s) λ 

A 0.050 0.003 0.150 0.010 10 

B 0.050 0.005 0.150 0.016 10 

C 0.050 0.008 0.150 0.025 10 

D 0.050 0.013 0.150 0.040 10 

E 0.050 0.020 0.150 0.063 10 

F 0.050 0.032 0.150 0.100 10 

G 0.050 0.032 0.150 0.010 2 

 

To compare the reconstructed distributions with the true distributions, the following metric 

is proposed: If Uv,true,i is the true distribution’s i-th element and Uv,rec,i the reconstructed 

distribution’s i-th element, then a metric of how close the reconstructed distribution is to 

the true distribution is: 

𝜂 = ∑
(𝑈v,rec,𝑖−𝑈v,true,𝑖)

2

max(10−4, 𝑈v,true,𝑖)𝑖  . (5.12) 

One reason for choosing such a metric instead of the more commonly used mean square 

error or peak-signal-to-noise ratio (PSNR) is that the latter do not give any structural 

information. In particular, any extra peaks in the reconstructed distribution, as compared 

to the true distribution are not heavily penalized. This issue is addressed in the proposed 
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metric by the division operation. A threshold of 10-4 was used for the division process, to 

account for distribution entries with Uv,true,i ≈ 0. Simulations showed that reducing the 

threshold further made no difference to the calculation of 𝜂. The proposed metric is similar 

to the goodness of fit measure which is used in hypothesis testing in statistics  [11]. The 

smaller the value of 𝜂, the closer the reconstructed map is to the true distribution. The 

perfect reconstruction has 𝜂 = 0. 

For Tikhonov and L1 regularization, 𝜂 is estimated for a range of the regularization 

parameter α (10-4 – 104) and the smallest value (corresponding to the best reconstruction) 

is recorded. For MTGV regularization, 𝜂 is estimated for a range of the regularization 

parameters α (10-3 – 107 for 1D MTGV, 101 – 109 for 2D MTGV) and β (10-10 – 100 for 

1D MTGV, 10-4 – 104 for 2D MTGV) and the smallest value is recorded. A comparison of 

the lowest 𝜂 from the different regularization methods is then a comparison of their 

performance, with the best method being the one with the smallest 𝜂. 

5.4. Results and discussion 

The reconstructed T1 and T2 distributions from the different regularization methods, 

Tikhonov, L1 and MTGV are compared to each other using the metric 𝜂. Initially, the 

comparison is performed on distributions A-F, which contain two peaks that are of similar 

smoothness, with smoothness increasing from distribution A to F. Three values of SNR:  

2000, 200 and 20 are investigated. The results are shown in Figs. 5.2-5.4, respectively. In 

each case, the smaller the value of 𝜂, the better the reconstruction of the distribution by 

that particular regularization method. 

Comparing the performance of Tikhonov and L1 regularization with MTGV regularization 

in processing the 1D NMR T1 or T2 data at SNR = 2000 in Fig. 5.2, it is clearly seen that 

MTGV regularization is always superior, apart from the case when the true distribution is 

very discrete (distribution A), in which case L1 regularization is slightly more accurate. 

This is valid for both T1 and T2 distributions. Further, applying MTGV regularization to 

2D NMR T1-T2 data is always superior to applying Tikhonov or L1 regularization to 2D 

NMR T1-T2 data, apart from the case when the distribution is very discrete (distribution 

A), in which case L1 regularization is again slightly more accurate. 
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Fig. 5.2. Comparison of the performance of the different regularization techniques in 

reconstructing (a) the T1 and (b) T2 distributions for a range of smooth and discrete true 

distributions at SNR = 2000. Distributions A-F are shown in Fig. 5.1 and the metric η is 

defined in Eq. (5.12). 

The same conclusions can be drawn for the reconstructions obtained at lower signal -to-

noise ratios shown in Fig. 5.3 (SNR = 200) and Fig. 5.4 (SNR = 20). At all levels of noise, 

MTGV outperforms Tikhonov and L1 regularization when processing 1D or 2D NMR data, 

apart from when the distribution is very discrete, in which case L1 regularization is slightly 

more accurate. 

The results in Figs. 5.2-5.4 also confirm the known strengths of Tikhonov and L1 

regularization; it is seen that when the true distribution is discrete (distributions A and B), 

L1 regularization (whether performed on 1D or 2D data) performs better than Tikhonov 

regularization. When the true distribution is smooth (distributions C to F), Tikhonov 

regularization performs better than L1 regularization. It is also seen that when Tikhonov 

regularization is applied to the T1-T2 discrete distributions A and B and the reconstructed 

maps are projected in each dimension, this gives better results than applying Tikhonov 

regularization to the individual 1D data. Therefore, 2D experiments give a better spectral 

resolution than 1D experiments, when processed with Tikhonov regularization. This is in 

agreement with the observations made by Celik et al. [10]. However, it is observed that 

when the true distribution is smooth (distributions C to F), this conclusion is no longer 

valid, and 1D experiments processed with Tikhonov regularization are better reconstructed 
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than 2D experiments processed with Tikhonov regularization and then projected in each 

dimension. 

Considering the implementation of the MTGV regularizer in more detail, it was discussed 

in Section 5.2.1 that the regularization parameter 𝛽 controls the amount of smoothness 

imposed in the reconstruction. A heuristic method for choosing the regularization 

parameter β is now introduced. In Figs. 5.2-5.4, the value of the metric η quoted for the 

MTGV regularization was that obtained by varying α and β independently and finding the 

minimum η obtained in this process. In addition to recording this minimum η, the values 

of α and β at which this minimum is obtained were also recorded. Fig. 5.5 shows these 

values of 𝛼 and β for all the 1D and 2D MTGV regularization data displayed in 

Figs. 5.2-5.4.  It is observed that the variation in the optimal α is much larger than the 

variation in the optimal β. As a result, to some approximation, β may be taken to be a 

constant, c. The value of c is expected to depend mainly on the type of distribution 

(discrete or smooth) and the noise level in the data. Fig. 5 shows that c = 2×10-5 for 1D 

MTGV regularization and c = 0.3 for 2D MTGV regularization are a good estimate for a 

range of distributions and noise levels. Similar values of c are expected when MTGV 

regularization is applied to other 1D and 2D NMR relaxation and diffusion data. The 

choice of the only remaining free regularization parameter, α, can be done in similar ways 

to the methods that exist for choosing the regularization parameter in Tikhonov 

regularization [12].  

To investigate the effect that constraining β has on the performance of MTGV 

regularization, similar simulations to the ones described in Section 5.3 are performed on 

distributions A-F by constraining the regularization parameter β to β = 2×10-5 in 1D 

MTGV regularization and β = 0.3 in 2D MTGV regularization. An example of the 

comparison between the performance of Tikhonov, L1 and MTGV regularization (with 

constrained β) at SNR = 20 is shown in Fig. 5.6 for both T1 and T2 distributions. A 

negligible difference is observed between the results in Fig. 5.6 and the results in Fig. 5.4, 

which compared the performance of Tikhonov, L1 and MTGV regularization for an 

unconstrained β at SNR = 20. These results indicate that rendering MTGV regularization 

as a one-parameter regularization method by constraining β does not change any of the 

conclusions made in this chapter when β is considered a free parameter. 
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Fig. 5.3. Comparison of the performance of the different regularization techniques in 

reconstructing (a) the T1 and (b) T2 distributions for a range of smooth and discrete true 

distributions at SNR = 200. Distributions A-F are shown in Fig. 5.1 and the metric η is 

defined in Eq. (5.12). 

 

Fig. 5.4. Comparison of the performance of the different regularization techniques in 

reconstructing (a) the T1 and (b) T2 distributions for a range of smooth and discrete true 

distributions at SNR = 20. Distributions A-F are shown in Fig. 5.1 and the metric η is 

defined in Eq. (5.12). 
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Fig. 5.5. Variation of the best α and β for (a) 1D MTGV regularization and (b) 2D MTGV 

regularization in the experiments described in Figs. 5.2-5.4. The line of best fits (a) 

β = 2×10-5 and (b) β = 0.3 are estimated by the best fitting of log10β to a constant value. 

108 points are plotted in both maps but some of them are not distinguishable because they 

overlap with other points. 

 

Fig. 5.6. Comparison of the performance of the different regularization techniques in 

reconstructing (a) the T1 and (b) T2 distributions for a range of smooth and discrete true 

distributions at SNR = 20. Distributions A-F are shown in Fig. 5.1 and the metric η is 

defined in Eq. (5.12). The value of β for MTGV regularization is constrained to (a) 

β = 2×10-5 for 1D MTGV and (b) β = 0.3 for 2D MTGV regularization. 
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Fig. 5.7. Comparison of the performance of the different regularization techniques in 

reconstructing (a) the T1 and (b) T2 distributions for the true distribution G shown in 

Fig. 5.1 at three SNR: 20, 200 and 2000. The metric η is defined in Eq. (5.12). The value 

of β for MTGV regularization is constrained to (a) β = 2×10-5 for 1D MTGV and (b) 

β = 0.3 for 2D MTGV regularization. 

The comparison between the different regularization techniques has so far been made on 

distributions A-F, which contain two peaks of similar smoothness, with the degree of 

smoothness increasing from A to F. An example of the comparison between Tikhonov, L1 

and MTGV regularization for a distribution which contains a mixture of discrete and 

smooth features is shown in Fig. 5.7. Fig. 5.7 compares the reconstructions of the T1 and 

T2 distributions of the true distribution G, illustrated in Fig. 5.1, at three different SNR: 

20, 200 and 2000. MTGV regularization reconstructions are performed with a constrained 

regularization parameter β. It is clearly seen that 1D MTGV regularization always 

outperforms 1D Tikhonov and 1D L1 regularizations and 2D MTGV regularization always 

outperforms 2D Tikhonov and 2D L1 regularizations. 

The results presented in this chapter suggest that MTGV regularization gives the best 

reconstructions of 1D and 2D NMR relaxation data, regardless of the type of distribution 

and the SNR in the NMR data. The only exception is the case when the true distribution 
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is known to only comprise of discrete peaks, in which case L1 regularization gives slightly 

more accurate reconstructions. 

Although the capabilities of MTGV regularization have been shown with respect to 1D 

and 2D NMR relaxation data, the methods can be easily adapted to 1D NMR diffusion 

data and 2D NMR correlation experiments which are diffusion encoded.  

5.5. Conclusions 

A new method of regularization of 1D and 2D NMR relaxation and diffusion data has been 

implemented, termed Modified Total Generalized Variation (MTGV) regularization. 

Unlike other methods of regularization of Tikhonov and L1, MTGV regularization offers 

a compromise between preserving smooth and discrete features in the reconstructed 

distributions. This eliminates the requirement of knowing a priori what the distribution 

should look like before selecting the appropriate regularization technique to process the 

data. The improvements offered by MTGV regularization were demonstrated by applying 

it to simulated 1D T1, 1D T2 and 2D T1-T2 NMR data. MTGV regularization always 

outperforms Tikhonov and L1 regularization, apart from the case when the true distribution 

is known to only comprise of discrete peaks, in which case L1 regularization performs 

slightly better. 
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Chapter 6 

Optimising magnetic resonance 

sampling patterns for parametric 

characterisation 

Chapters 4 and 5 showed how a good choice of the reconstruction technique improves the 

estimation of parameters from ill-conditioned inverse problems in NMR applications. In 

this chapter and Chapter 7, the focus shifts to the design of sampling patterns for 

ill-conditioned inverse problems in NMR applications. 

6.1. Introduction 

Sampling patterns have long been a central topic in experimental design [1]. A good design 

of sampling patterns leads to a more accurate estimation of the extracted properties, lower 

experimental acquisition time and better conditioning of the inverse problem. The design 

of sampling patterns is particularly critical in the application of techniques such as 

Compressed Sensing, discussed in Section 3.2, which rely in the extraction of parameters 

from few sampled data points. The design of optimal sampling strategies depends on the 

application and it has been approached differently for example in MRI [2], NMR 

spectroscopy [3], NMR relaxation time analysis [4, 5], electronic spectroscopy [6], X-ray 

ptychography [7] and Helium Atom Scattering [8]. 

In this chapter, a systematic, statistical method, based on the CRLB theory, outlined in 

Section 3.4, is introduced for the optimisation of sampling patterns for NMR diffusion and 

relaxation experiments. The method is illustrated with respect to the design of optimal 

sampling patterns for the most accurate estimate of parameters characterising a lognormal 

distribution. Lognormal distributions are ubiquitous in science and engineering, ranging 

from the description of the population distribution of organisms [9] to the size distribution 

of materials produced from particle processing techniques [10, 11]. In NMR applications, 
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lognormal distributions have been assumed to be a good approximation for polymer size 

distributions [12], molecular aggregate length distributions [13] and reverse micelle size 

distributions [14] obtained from diffusion experiments; T1 distributions of heavy oils 

obtained from fast-field cycling [15] and inversion recovery experiments [16]; and T2 

distributions of heavy oils obtained from CPMG experiments [16, 17]. 

The proposed method is validated against NMR diffusion experiments of an emulsion of 

toluene in water. The accurate measurement of the emulsion droplet size distribution is 

important in the food, pharmaceutical and oil recovery industry, among other areas  [18]. 

Since its development [19], the measurement of the emulsion droplet size distribution 

using NMR diffusion experiments has become an established characterisation 

technique [20-22]. The emulsion droplet size distribution obtained from NMR diffusion 

experiments is commonly approximated to a lognormal distribution [19,  23-25]; this is 

supported by population balance statistics between droplet breakage and coalescence 

during emulsification [26] and by experimental results from other characterisation 

techniques such as dynamic light scattering [27] and confocal scanning laser 

microscopy [28]. 

The complete optimisation of an NMR experiment would also require the optimisation of 

specific NMR acquisition parameters and reconstruction techniques, which are separate 

from the optimisation of the sampling pattern considered in this chapter. The optimisation 

of specific NMR acquisition parameters and reconstruction techniques for NMR diffusion 

experiments have been covered in detail elsewhere [22, 29, 30] and will not be addressed 

here. 

The chapter is structured as follows. Section 6.2 introduces the theory behind obtaining 

the emulsion droplet size distribution from NMR diffusion experiments and the application 

of the CRLB theory to these experiments. The experimental setup and sampling patterns 

investigated are described in Section 6.3. The comparison between the predictions of the 

CRLB theory and NMR diffusion experimental results is presented in Section 6.4. The 

limitations, sensitivity and potential of the CRLB theory are also discussed in Section 6.4.  
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6.2. Mathematical treatment 

Section 6.2.1 briefly reviews the theory behind the extraction of the emulsion droplet size 

distribution from NMR diffusion experiments. Section 6.2.2 outlines the application of the 

CRLB theory to the problem of optimising sampling patterns for the most accurate 

estimation of the lognormal distribution parameters of an emulsion droplet size 

distribution. 

6.2.1. NMR diffusion of emulsion systems 

The ideal NMR signal attenuation acquired from a diffusion experiment of an 

unconstrained chemical component, is described by the Stejskal-Tanner exponential 

decay, as discussed in Section 2.11. If the component is constrained to be in the dispersed 

phase of an emulsion and the diffusion time is such that the root mean square distance 

travelled due to Brownian motion is larger than the characteristic size of the droplet, the 

apparent diffusion coefficient of the component is smaller than the unconstrained diffusion 

coefficient, with the apparent value depending on the droplet size. Since the emulsion is 

characterized by a distribution of droplet sizes, the NMR signal attenuation is a 

multi-exponential decay, from which the droplet size distribution can be extracted. The 

noise-free NMR signal attenuation acquired from the dispersed phase of an emulsion with 

droplet number size distribution f0(aj), has been calculated by Murday and Cotts [31]: 

�̂�𝑖 = 𝐴 ∑ 𝑎𝑗
3𝑓0(𝑎𝑗) 𝑅(𝑔𝑖, 𝑎𝑗)𝑗 ,  (6.1) 

where aj is the discretized list of droplet radii and A is a scaling factor. The standard 

notation for the number size distribution [32], f0(aj), has been used. The factor aj
3 could 

be combined with f0(aj) to give the volume size distribution, f3(aj), but we choose to focus 

on the number size distribution, for ease of interpretation. In Eq. (6.1): 

𝑅(𝑔𝑖, 𝑎𝑗) = exp (−2𝛾2𝑔𝑖
2 ∑

1

𝛼𝑘
2(𝛼𝑘

2𝑎𝑗
2−2)

∞
𝑘=1 𝑟(𝛼𝑘)) ,  (6.2) 

where: 

𝑟(𝛼𝑘) =
2𝛿

𝛼𝑘
2𝐷

+
−2−exp(−𝛼𝑘

2𝐷(∆−𝛿))+2 exp(−𝛼𝑘
2𝐷∆)+2 exp(−𝛼𝑘

2𝐷𝛿)−exp(−𝛼𝑘
2𝐷(∆+𝛿))

(𝛼𝑘
2𝐷)

2  .  (6.3) 

In Eqs. 6.2 and 6.3, δ are Δ are the specific NMR diffusion acquisition parameters, defined 

in Section 2.11, D is the unconstrained diffusion coefficient of the dispersed phasel, gi is 
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the list of magnetic field gradient values used, which also refer to the sampling pattern, 

and αk are the solutions to the equation: 

𝐽3/2(𝛼𝑘𝑎𝑗) = 𝛼𝑘𝑎𝑗  𝐽5/2(𝛼𝑘𝑎𝑗) .  (6.4) 

Jk is the Bessel function of the first kind and of order k. As discussed in Section 6.1, the 

droplet number size distribution, f0(aj), is typically well approximated to a lognormal 

distribution: 

𝑓0(𝑎𝑗) =
1

𝑎𝑗𝑠g√2𝜋
exp (−

(ln 𝑎𝑗−𝑎0,0)
2

2𝑠g
2 ),  (6.5) 

where ā0,0 is the geometric mean of the droplet size distribution and sg is the geometric 

standard deviation of the droplet size distribution, following standard notation (the 

arithmetic mean of the droplet size distribution is ā1,0 and the standard deviation of the 

droplet size distribution is s). If the droplet number size distribution is lognormal, the 

volume size distribution is also lognormal [33]. As a result, a similar analysis of what 

follows in the next sections can also be applied to the volume size distribution, f3(aj). 

6.2.2. Application of CRLB theory to emulsion systems 

Combining Eqs. (6.1) and (6.5), the noise-free NMR diffusion signal, ŷi, is given by: 

�̂�𝑖 = 𝐴 ∑
𝑎𝑗

2

𝑠g√2𝜋
exp (−

(ln 𝑎𝑗−𝑎0,0)
2

2𝑠g
2 )  𝑅(𝑔𝑖, 𝑎𝑗)𝑗 ,  (6.6) 

and, therefore, depends on the lognormal distribution parameters ā0,0 and sg and the scaling 

factor, A. The accurate estimation of these parameters is the objective of the NMR 

experiment. In the presence of noise, the estimate of each of the parameters is uncertain. 

The uncertainty associated with the estimate of each of the parameters can be calculated 

from the CRLB theory, which was outlined in Section 3.4. The standard deviation 

associated with the estimation of any of the parameters, θl, has a lower limit: 

std(𝜃𝑙) ≥ √(𝑭−1)𝑙𝑙 , (6.7) 

where F is the Fisher Information Matrix. If the noise elements related to each acquired 

data point are independently normally distributed, with a constant variance, σ2, it was 

shown in Section 3.4 that the Fisher Information can be constructed from: 

𝐹𝑙1𝑙2
=

1

𝜎2 (∑
𝜕�̂�𝑖

𝜕𝜃𝑙1
𝑖

𝜕�̂�𝑖

𝜕𝜃𝑙2

) . (6.8) 
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Therefore, to construct F, the partial derivatives of ŷi with respect to A, ā0,0 and sg are 

needed, which are calculated from Eq. (6.6): 

𝜕�̂�𝑖

𝜕𝐴
= ∑

𝑎𝑗
2

𝑠g√2𝜋
exp (−

(ln 𝑎𝑗−𝑎0,0)
2

2𝑠g
2 ) 𝑅(𝑔𝑖, 𝑎𝑗)𝑗  ,  (6.9a)  

𝜕�̂�𝑖

𝜕𝑎0,0
= 𝐴 ∑

𝑎𝑗
2(ln 𝑎𝑗−𝑎0,0)

𝑠g
3√2𝜋

exp (−
(ln 𝑎𝑗−𝑎0,0)

2

2𝑠g
2 ) 𝑅(𝑔𝑖, 𝑎𝑗)𝑗  ,  (6.9b)  

𝜕�̂�𝑖

𝜕𝑠g
= 𝐴 ∑

𝑎𝑗
2[(ln 𝑎𝑗−𝑎0,0)

2
−𝑠g

2] 

𝑠g
4√2𝜋

exp (−
(ln 𝑎𝑗−𝑎0,0)

2

2𝑠g
2

) 𝑅(𝑔𝑖, 𝑎𝑗)𝑗  . (6.9c) 

The important result is that the uncertainty associated with the estimate of each parameter 

depends on A, ā0,0, sg, σ and most importantly on the sampling pattern, gi. As a result, 

given the noise level and an experimental system (characterised by A, ā0,0 and sg), the error 

associated with the estimate of each parameter depends solely on the sampling pattern, gi. 

Therefore, by optimizing the sampling pattern, it is possible to decrease to a minimum the 

uncertainty associated with the estimate of a given parameter, hence, making the estimate 

of that parameter as accurate as possible. 

The optimal sampling pattern for the most accurate estimation of one of the parameters is 

not necessarily the optimal sampling pattern for the most accurate estimation of another 

parameter. Therefore, it is necessary to know what the most useful information for the 

particular application is, and to express it in terms of an objective function. This objective 

function could simply be the minimization of std(A), std(ā0,0) or std(sg), or more 

complicated expressions such as different moments of the lognormal distribution [34]. The 

present method can cope with different objective functions. In this chapter, the choice is 

made to minimize the maximum error bar associated with each individual point in the 

droplet size number distribution, given by:  

𝜂 = max
𝑗

[std (𝑓0(𝑎𝑗))] ≈ max
𝑗

[|
𝜕𝑓0(𝑎𝑗)

𝜕𝑎0,0
std(𝑎0,0)| + |

𝜕𝑓0(𝑎𝑗)

𝜕𝑠g
std(𝑠g)|] .  (6.10) 

The derivation of Eq. (6.10) is outlined in the Appendix of this chapter. Using this 

definition, the best sampling pattern has the minimum objective function, η. The choice of 

the objective function is made purely to demonstrate the capabilities of the method, but 

other objective functions can be defined. It can be shown that std(ā0,0) ∝ σ A
-1, 

std(sg) ∝ σ A
-1 and therefore η ∝ σ A

-1. The ratio A/σ determines the signal-to-noise ratio 

(SNR). As a result, for a given SNR, the objective function, η, depends solely on the 
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lognormal distribution parameters ā0,0 and sg and the sampling pattern, gi. In the following 

discussion, when stating σ, the work is referring to the noise level for a signal normalized 

to a maximum of 1. 

6.3. Materials and methods 

6.3.1. Experimental 

An emulsion of toluene dispersed in water is prepared as follows. A non-ionic surfactant, 

TritonTM X-100 (Sigma-Aldrich, laboratory grade), is first dissolved in deionised water. 

Toluene (Sigma-Aldrich, ≥ 99 % purity) is then mixed into the solution using a Janke & 

Kunkel RW-20 stirrer, equipped with a 2 cm radius stainless steel blade, driven at 150 rpm 

for 10 min. The emulsion formed is composed of 48.5 wt% water, 48.5 wt% toluene and 

3 wt% surfactant. A small volume from the batch is transferred into a 5 mm NMR tube 

and a PFG NMR diffusion experiment is performed on this sample. The measurement time 

was 2.5 h. A second acquisition immediately after the first produced the same emulsion 

droplet size distribution, thereby confirming that the emulsion is stable during the course 

of the experiment.   

Experiments are performed at 20 ± 0.5 °C on a Bruker DMX 300 spectrometer, operating 

at a resonant frequency of 300.13 MHz for 1H nucleus observation. The maximum gradient 

amplitude available is 1176 G cm-1 and the r.f. coil has a diameter of 5 mm. 

The unconstrained diffusion coefficient of toluene, D, is measured to be 

(2.06 ± 0.02) × 10-9 m2 s-1 using a stimulated echo PFG NMR pulse sequence outlined in 

Sections 2.8 and 2.11, with pulsed field gradient duration δ = 1.5 ms, diffusion time 

Δ = 200 ms and the magnetic field gradient amplitude, gi, in the range 0.1 – 40 G cm-1 (16 

equidistant points). This agrees with reported values at this temperature [35]. The same 

pulse sequence is then applied to the emulsion system, with the following acquisition 

parameters: δ = 5 ms, Δ = 400 ms, gi = 4.8 – 300 G cm-1. 252 gradient strength values, gi, 

are used for two reasons: to provide an accurate estimate of the lognormal distribution 

parameters of the emulsion droplet size distribution, and to be used for the selection of 

different sampling patterns, as described in Section 6.3.2.  

The attenuation of the aromatic peak intensity only is followed to estimate the droplet size 

distribution. The contribution to the aromatic peak intensity from the surfactant, as 
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compared to toluene, is small (calculated to be 0.9%) and is taken into account by 

subtracting it from the overall aromatic peak intensity at all the gradient values used.  The 

signal attenuation from the aromatic peak of toluene in the PFG NMR diffusion experiment 

of the emulsion of toluene in water is shown in Fig. 6.1(a). A curvature is observed in the 

plot of the signal against the sampling pattern, gi
2. This confirms that toluene experiences 

restricted diffusion resulting from being confined within droplets. The signal attenuation 

is fitted to a lognormal distribution for the droplet size distribution; the best fit lognormal 

distribution with ā0,0 = 1.09, sg = 0.38 (ā1,0 = 3.2 μm, s = 1.2 μm) is shown in Fig. 6.1(b). 

The error associated with each individual point in the discretized lognormal distribution 

is negligible because of the relatively small σ (estimated to be 5.6 × 10-4) and the large 

number of points in the decay (252). 

 

Fig. 6.1. (a) Experimental data for the attenuation of the aromatic peak of toluene 

(chemical shift δ ~ 7.1 ppm with respect to tetramethylsilane, shown in the embedded 

figure) from the PFG NMR diffusion experiment of an emulsion of toluene in water. The 

numerical fit is estimated from the best fit lognormal distribution for the emulsion droplet 

size distribution.  The estimated noise level from the fit is σ = 5.6 × 10-4. (b) Best fit 

lognormal distribution for the emulsion droplet size distribution with ā0,0 = 1.09, sg = 0.38 

(ā1,0 = 3.2 μm, s = 1.2 μm). 

The emulsion droplet size distribution is reconstructed for a discrete list of droplet radii, 

a, composed of 32 points equidistantly spaced between 0.1-15 μm, as was used in the work 

of Hollingsworth and Johns [22]. Only the first 6 terms are kept from the solutions of the 

Bessel equation in Eq. (6.4); it was observed that keeping more terms made no difference 

to the droplet size distribution predicted. 
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6.3.2. Sampling patterns 

A sampling pattern for the acquisition of the PFG NMR data consists of the choice of gi, 

the list of pulsed field gradients at which the attenuation of the NMR signal is acquired. 

This involves choosing the number of pulsed field gradients used, n, and their respective 

values. n is typically a user-defined variable and larger values of n give more accurate 

estimate of parameters.  In this chapter, n is kept fixed at 32 except when combining n and 

σ in a way which keeps either the experimental acquisition time or the parameter 

estimation accuracy fixed; these results are reported in Sections 6.4.3 and 6.4.4, 

respectively. 

For a given number of points, n, the optimal choice of gi would require setting the partial 

derivatives of the expression in Eq. (6.10) with respect to each individual gi to zero and 

solving the set of resulting n simultaneous non-linear equations; this is computationally 

intractable. As a result, this chapter focuses on finding the optimal sampling pattern among 

classes of practical sampling patterns. Two classes of sampling patterns are considered: 

power law spacing of the linear version of sampled points and power law spacing of the 

logarithmic version of sampled points. 

The power law spacing of the linear version of sampled points, which for simplicity will 

be referred to as a linear sampling pattern, takes the form: 

𝑔𝑖 = 𝑔1 + (𝑔𝑛 − 𝑔1) (
𝑖−1

𝑛−1
)

𝑟

.  (6.11) 

g1 and gn are the first and the last pulsed field gradients used and r determines the density 

distribution of the data points; r > 1 gives a higher density of points at the start of the 

decay, r < 1 gives a higher density of points at the end of the decay and r = 1 refers to 

equidistant pulsed field gradient values. Acquiring the point that has the largest amplitude 

is always beneficial because it contains the most information about the attenuation of the 

signal [36-38]. Therefore, g1 was kept at the minimum pulsed field gradient used 

experimentally of 4.8 G cm-1. As a result, the optimisation of the linear sampling pattern 

effectively consists of optimizing gn and r. 

The power law spacing of the logarithmic version of sampled points, which for simplicity 

will be referred to as a logarithmic sampling pattern, takes the form: 

log10 𝑔𝑖 = log10 𝑔1 + (log10 𝑔𝑛 − log10 𝑔1) (
𝑖−1

𝑛−1
)

𝑟

,  (6.12) 
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where the parameters are defined similarly to the linear sampling pattern. Using the same 

assumptions as for the linear sampling scheme, optimisation of the logarithmic sampling 

pattern consists of optimizing gn and r. 

The comparison between the predictions of the CRLB theory and experimental results is 

performed as follows. Using a range of gn from 20 to 300 G cm-1 and a range of r from 0.1 

to 10, 104 linear sampling patterns and 104 logarithmic sampling patterns with n = 32 

points are simulated using Eq. (6.11) and Eq. (6.12), respectively. For each of these 

sampling patterns, the CRLB theory is used to predict the objective function, η, defined in 

Eq. (6.10). This is compared to the objective function obtained from the experimental data 

which is calculated as follows. For each of the simulated sampling patterns, the closest 

experimental 32 gi points (out of the total 252 gi points acquired) are selected. The 

experimental attenuation data corresponding to these 32 points are then fitted to a 

lognormal distribution for the droplet size distribution and confidence intervals for ā0,0 

and sg are extracted. std(ā0,0) and std(sg) are then calculated from the confidence intervals 

using a z-test and these values are used to calculate the experimental objective function, 

η.  

The difference between the simulated and the experimental sampling patterns is negligible. 

This ensures that the comparison between the predictions of the CRLB theory (which is 

performed using the simulated sampling pattern) and the experimental results (which uses 

the selected experimental points) is unaffected by mismatches in the corresponding 

sampling patterns used. 

6.4. Results and discussion 

In Section 6.4.1, the predictions of the CRLB theory are validated against the experimental 

data using the procedure outlined in Section 6.3.2. The limitations and sensitivity of the 

CRLB theory are subsequently discussed in Section 6.4.2. The CRLB theory is then used 

to optimise the sampling pattern for a fixed acquisition time experiment (Section 6.4.3) 

and to determine the potential for reduction in the acquisition time, while keeping the 

parameter estimation accuracy fixed (Section 6.4.4). 
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6.4.1. Validation of CRLB theory against experimental data 

The comparison of the objective function, 𝜂, as predicted by the CRLB theory and as 

calculated from the experimental data is shown in Fig. 6.2. Small values of 𝜂 indicate a 

good sampling pattern. 

 

Fig. 6.2. (a) Contour map of the variation of the objective function, η, with respect to the 

parameters of the class of linear sampling patterns defined in Eq. (6.11) with n = 32, as 

predicted by the CRLB theory. (b) Contour map of the variation of the objective function, 

η, with respect to the parameters of the class of linear sampling patterns defined in 

Eq. (6.11) with n = 32, obtained from the experimental data shown in Fig. 6.1(a). The best 

linear sampling pattern in (a) is obtained for r = 0.67, gn = 159 G cm-1, and is identified as 

‘+’, at which point η = 1.03 × 10-3. 

Fig. 6.2(a) shows the contour map of η as a function of linear sampling pattern parameters 

gn and r, as predicted by the CRLB theory. Fig. 6.2(b) shows a similar contour map 

obtained from the experimental data. There is very good agreement between the CRLB 

and experimental contour maps; on average there is < 5% difference between the 

corresponding η values of the two maps, thereby validating the application of the CRLB 

theory to the optimization of sampling patterns. For a given value of r, for example r = 1 

(corresponding to equidistant points), the value of the objective function is large at small 

gn because late decay points are not sampled and, therefore, the uncertainty related to 

estimating the small droplet sizes (corresponding to small apparent diffusion coefficients) 

is large. The value of the objective function is also large at very large gn because early 

decay points are not sampled properly and, therefore, the uncertainty related to estimating 

the large droplet sizes (corresponding to large apparent diffusion coefficients) is large. As 
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a result, for any given r, there is an optimum gn which minimises the objective function. 

For a given gn, for example gn = 150 G cm-1, the value of the objective function is large at 

small r because early decay points are sampled sparsely and, therefore, the uncertainty 

related to estimating the large droplet sizes is large. The value of the objective function is 

also large at very large r because late decay points are sampled sparsely and, therefore, 

the uncertainty related to estimating the small droplet sizes is large. As a result, for any 

given gn, there is an optimum r which minimises the objective function. In summary, there 

is an optimum combination (gn,r) at which the objective function obtains a minimum, 

which corresponds to the best linear sampling pattern. The best linear sampling pattern for 

32 sampled points is predicted by the CRLB theory at r = 0.67 and gn = 159 G cm-1, at 

which point η = 1.03 × 10-3. 

 

Fig. 6.3. (a) Contour map of the variation of the objective function, η, with respect to the 

parameters of the class of logarithmic sampling patterns defined in Eq. (6.12) with n = 32, 

as predicted by the CRLB theory. (b) Contour map of the variation of the object ive 

function, η, with respect to the parameters of the class of logarithmic sampling patterns 

defined in Eq. (6.12) with n = 32, obtained from the experimental data shown in 

Fig. 6.1(a). The best logarithmic sampling pattern in (a) is obtained for r = 0.23, 

gn = 161 G cm-1, and is identified as +, at which point η = 1.03 × 10-3. 

A similar comparison is made between the predictions of the CRLB theory and the 

experimental data for logarithmic sampling patterns of 32 points selected according to 

Eq. (6.12). The results are shown in Fig. 6.3. Again, very good agreement is observed 

between the contour maps; on average there is < 5% difference between the corresponding 

η values of the two maps, which further validates the application of the CRLB theory to 
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the optimization of sampling patterns. The best logarithmic sampling pattern for 32 

sampled points is predicted by the CRLB theory at r = 0.23 and gn = 161 G cm-1, at which 

point η = 1.03 × 10-3.  

It is noted that the minimum objective function value for linear sampling patterns is equal 

to the minimum objective function value for logarithmic sampling patterns 

(η = 1.03 × 10-3), although the two classes of sampling patterns are very different. This is 

an indication that this minimum objective function is a global minimum (with respect to 

all possible classes of sampling patterns). Given this observation, in the following 

sections, the discussion will be limited to linear sampling patterns. For completeness it is 

noted that, as discussed in Section 6.3.2, the proof that this minimum objective function 

is a global minimum for all sampling patterns would require the solution of an intractable 

computational problem. 

6.4.2. Limitations and sensitivity 

Discrepancies between the CRLB theory predictions and experimental data have been 

previously reported at large σ (low SNR) [36]. Considering the increasing interest in 

low-field measurements, where the signal-to-noise ratio may limit the extraction of 

parameters from the NMR signal, it is important to find the limit of applicabi lity of the 

CRLB theory with respect to the SNR. The following discussion aims to find the limit of 

applicability of the CRLB theory to the present problem of estimating the lognormal 

distribution parameters of the emulsion droplet size distribution.  

Monte Carlo type simulations [39] are performed as follows. The 32 experimental data 

points acquired at the optimal linear sampling pattern, reported in Section 6.4.1, are 

extracted. Random Gaussian noise is added to these acquired points, such that noise levels, 

σ, in the range 10-3-5×10-1 are studied. For each noise level, 100 signals are simulated, 

differing only in the randomness of noise. Each of these signals is fitted to a lognormal 

distribution for the emulsion droplet size distribution. The values of ā0,0 and sg from each 

of these fittings are used to estimate std(ā0,0) and std(sg). These standard deviations are 

used to calculate the objective function, η, according to Eq. (6.10). This is then compared 

to the CRLB predictions. The results are shown in Fig. 6.4(a). It is observed that there is 

very good agreement between the Monte Carlo simulations and the CRLB theory 

predictions up to σ ~ 0.1 (SNR ~ 10). This limit will be slightly different for systems 
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characterised by different ā0,0 and sg. However, a general conclusion can be made that the 

method is stable even at highly noisy data (i.e. SNR ~ 10). 

 

Fig. 6.4. (a) Variation of the objective function, η, with the noise level, σ, as calculated by 

Monte Carlo type simulations and as predicted by the CRLB theory. The sampling pattern 

used is the best linear sampling pattern for n = 32 with r = 0.67, gn = 159 G cm-1. (b) 

Contour map showing the percentage increase in the objective function, Δη, caused by the 

mis-design of the linear sampling pattern defined in Eq. (6.11) because of a percentage 

error in guessing the arithmetic mean, Δā1,0 (μm), and standard deviation, Δs (μm), of the 

emulsion droplet size distribution. The mis-designed sampling pattern used is the best 

linear obtained in Fig. 6.2(a) for n = 32 with r = 0.67, gn = 159 G cm-1 and the noise level 

used in the CRLB predictions is σ = 5.6 × 10-4. 

As discussed in Section 6.2.2, the application of the CRLB theory requires an initial guess 

of the lognormal distribution parameters, ā0,0 and sg. A valid question is: How accurate 

does this guess need to be? Since it is easier to work in terms of the arithmetic mean, ā1,0 

(μm), and standard deviation, s (μm), it is more sensible to ask about the accuracy with 

which ā1,0 and s need to be a priori known. To answer this question, a sensitivity analysis 

is performed as follows. Assume that the optimal linear sampling pattern of 32 points 

found in Section 6.4.1 is designed on the basis that ā1,0 = 3.2 μm, s = 1.2 μm. Now, assume 

that this estimate for ā1,0 and s is wrong, and the true value for the arithmetic mean and 

standard deviation of the lognormal distribution is actually ā1,0t and st. For these true 

values of ā1,0t and st, the CRLB theory can be used to find the minimum objective function, 

ηt, corresponding to the ideal linear sampling pattern, and the actual value of η evaluated 

for the actual sampling pattern used. The percentage difference of η from ηt is an indication 

of how sensitive the CRLB theory is to wrong initial guesses of the lognormal distribution 
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parameters. A contour map of the percentage difference of η from ηt, as a function of the 

percentage difference of ā1,0 from ā1,0t and s from st is shown in Fig. 6.4(b). The key 

observation is that the CRLB theory is relatively insensitive to the guess of the standard 

deviation, s, as compared to the sensitivity to the arithmetic mean, ā1,0. This is important 

as in general it is more difficult to guess s than ā1,0. With regards to the sensitivity to the 

guess of ā1,0, the CRLB theory is relatively insensitive around the true value, ā1,0t, but 

becomes increasingly more sensitive the further away from the true value the guess is.  

In this chapter, the prior knowledge about the lognormal distribution parameters was 

obtained by sampling a large number of points (252) at a low noise standard deviation, 

σ = 5.6 × 10-4. In practice, the acquisition of such a large number of points defeats the 

purpose of optimising the sampling pattern. It is therefore advised to sample a small 

number of points at a high noise standard deviation (through less signal averaging). A fit 

to these experimental data would provide a crude prior knowledge about the diffusion 

coefficients and the populations, which could then be used to optimise the sampling pattern 

using the proposed method. 

The versatility of the CRLB theory to be adapted to different objectives is now considered 

with respect to two cases studies. In Section 6.4.3 the sampling scheme is optimised while 

keeping the acquisition time fixed, while in Section 6.4.4 the potential for reduction in the 

acquisition time is investigated while keeping the parameter estimation accuracy fixed.  

6.4.3. Optimising the sampling scheme for a fixed acquisition time 

The optimization of sampling patterns has so far been made for a fixed number of points, 

n = 32. As discussed in section 6.3.2, for a fixed noise level σ, acquiring more points will 

lead to a more accurate estimate for the lognormal distribution parameters. However, this 

comes at the cost of a longer acquisition time. If the acquisition time is limited by, for 

example, the stability of the emulsion under investigation, is it better to acquire fewer 

points with low σ (high SNR), or more points with higher σ (low SNR)?  

The CRLB theory can be used to answer this question as follows. In a PFG NMR diffusion 

experiment, the acquisition time, t, is related to the number of points acquired, n, and the 

noise level, σ, by t ∝ n σ-2 [40]. Therefore, for a fixed acquisition time, σ ∝ n1/2. For a 

given n and the corresponding σ (for a fixed acquisition time), the CRLB theory can be 

used to determine the minimum objective function, η, for linear sampling patterns, as was 

done to produce Fig. 6.2(a). This is repeated for n in the range 3-32, and the plot of the 
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minimum η, as a function of n is shown in Fig. 6.5(a). At large n, the acquired data are 

noisy and therefore the best sampling pattern for that n has a relatively large minimum η. 

At small n, although the data are of a high signal-to-noise ratio, there are not many points 

to fit the lognormal distribution parameters to. As a result, the minimum η is again 

relatively large. The optimum linear sampling pattern is to acquire 7 points with linear 

sampling pattern parameters r = 0.98 (close to being equidistant points) and 

gn = 147 G cm-1, which is illustrated in Fig. 6.5(b). 

 

Fig. 6.5. (a) Variation of the minimum objective function, η, with the number of data 

points in a linear sampling pattern, n, calculated by the CRLB theory for the case of a 

fixed acquisition time experiment (◊). Variation of the reduction in acquisition time, t / tdef, 

with n calculated by the CRLB theory for the case of a fixed η experiment (×). The default 

acquisition time, tdef, was calculated for a default sampling pattern of 16 equidistant points 

and gn = 300 G cm-1. The lines are included to guide the eye. (b) Best linear sampling 

pattern for n = 7 with r = 0.98, gn = 147 G cm-1, which according to (a) is the optimal 

sampling pattern for both a fixed acquisition time experiment and a fixed η experiment. 

The line is included to guide the eye. 

6.4.4. Reducing the acquisition time for a fixed parameter estimation accuracy 

While the parameter estimation accuracy achieved using a default sampling pattern may 

be acceptable in an experiment, it is important to know whether the same accuracy can be 

achieved for a shorter acquisition time. This problem is investigated with respect to a 

hypothetical experiment, but the idea extends easily to other experiments. It is assumed 

that the system under the investigation is the emulsion used in this chapter, and that the 

default sampling pattern that was initially being used to study the emulsion by a PFG NMR 
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diffusion experiment was composed of 16 points equidistant from each other (linear 

sampling pattern with r = 1), with the largest gradient value being gn = 300 G cm-1. Using 

the CRLB theory, the objective function, ηdef, that characterizes the parameter estimation 

accuracy of this default sampling pattern can be calculated after a reference noise level, 

σref, is defined. As discussed in Section 6.4.3, the acquisition time for this sampling pattern 

is given by tdef ∝ 16 σref
-2. 

The reduction ratio in acquisition time, t / tdef, which can be achieved by better sampling, 

while keeping η = ηdef is calculated as follows. For a given n, the CRLB theory can be 

used to determine the minimum objective function, η, as a function of the noise level, σ, 

for linear sampling patterns, as was done to produce Fig. 6.2(a). The noise level is then 

tuned such that η = ηdef. Using the tuned noise level, the acquisition time for the chosen 

sampling pattern is calculated as t ∝ n σ-2. The process is repeated for n in the range 3-32 

and the variation of t / tdef with n is shown in Fig. 6.5(a). It is observed that the minimum 

acquisition time is achieved for a linear sampling pattern of n = 7 points with linear 

sampling pattern parameters r = 0.98 (close to being equidistant points) and 

gn = 147 G cm-1, which is illustrated in Fig. 6.5(b). The reduction ratio in acquisition time 

achieved is t / tdef = 0.35, corresponding to an acceleration factor of ~3.  

The fact that the same optimal sampling pattern is achieved for both the process of keeping 

t fixed and minimizing η (discussed in Section 6.4.3) and the process of keeping η fixed 

and minimizing t is no coincidence. Indeed, it is shown in the appendix that tfixed η ∝ η2
fixed t, 

which guarantees the same optimum n value where the minimum of either of these two 

functions is achieved. 

6.5. Conclusions 

A method was presented, based on the Cramér-Rao Lower Bound theory, for designing 

optimal sampling patterns for NMR experiments, illustrated with respect to the most 

accurate estimation of lognormal distribution parameters. The method was validated 

against experimental data of an NMR diffusion experiment of an emulsion of toluene in 

water, used to obtain the emulsion droplet size distribution. The difference between the 

predictions of the CRLB theory and experimental data was < 5% and it was shown that the 

CRLB theory is stable even at SNR ~ 10. Using the CRLB theory, it was demonstrated 
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that for a PFG NMR experiment which usually uses constant spacing between gradient 

increments, the acquisition time can be reduced by a typical factor of 3 while keeping the 

parameter estimation accuracy unchanged, through optimization of the sampling pattern. 

The presented approach can guide experimental design in wide range of experiments.  

Appendix A: Derivation of Eq. (6.10) 

Let x, z be two random variables, which may be correlated, and h(x, z) be a function of 

these two random variables. Then, from the truncated Taylor series expansion [41]: 
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Since the correlation coefficient between two random variables is always ≤ 1, then: 

cov(𝑥, 𝑧) ≤ std(𝑥) std(𝑧).  (A6.2) 

From the relationship between the variance and standard deviation, Eq. (A6.1) can then be 

written as: 
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It follows that a reasonable approximation for the lower limit of std(h) is: 

std(ℎ) ≈ |
𝜕ℎ

𝜕𝑥
| std(𝑥) + |

𝜕ℎ

𝜕𝑧
| std(𝑧).  (A6.4) 

Appendix B: Proof that tfixed η ∝ η2
fixed t 

It is easily shown from Section 6.2.2 that for a given experimental system, the objective 

function, η, can be expressed as: 

𝜂 ∝ 𝜎 𝜂s,  (B6.1) 

where ηs is a function that depends only on the sampling pattern (number of points and 

their spacing). Eq. (B6.1), together with the fact that t ∝ n σ-2 leads to the following 

observations: 

𝑡fixed η ∝ 𝑛 𝜂s
2,  (B6.2a) 
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𝜂2
fixed t

∝ 𝑛 𝜂s
2,  (B6.2b) 

from which it follows that tfixed η ∝ η2
fixed t. 
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Chapter 7 

Optimising sampling patterns for bi-

exponentially decaying signals 

In Chapter 6, a systematic, statistical approach based on the CRLB theory was described 

for optimising sampling patterns for a wide range of NMR experiments; the findings of 

the CRLB theory were validated against PFG NMR diffusion experimental data of an 

emulsion system, characterised by a lognormal distribution of droplet sizes. In this chapter, 

the same method is applied to the problem of optimising the sampling pattern for the most 

accurate estimation of the parameters of a bi-exponential model.  

7.1. Introduction 

Bi-exponentially decaying signals are common in many areas of science and engineering, 

such as in photoluminescence [1, 2] and reaction kinetics [3, 4]. In NMR applications, 

bi-exponential models have been assumed to be a good approximation for T2 and T1ρ 

decays, and diffusion attenuations [5-9]. The fitting of bi-exponential decays is a 

long-standing challenge and remains a subject of debate [10-14] because of the relatively 

large uncertainty related to the estimated parameters of the model.  

The findings of the CRLB theory are initially validated against PFG NMR diffusion 

experimental data of a binary methane/ethane gaseous mixture adsorbed in a zeolite; 

zeolites are increasingly being used to separate gaseous hydrocarbon mixtures in the gas 

processing industry [15, 16]. The CRLB theory is subsequently used to determine the limit 

of resolution of the parameters in a bi-exponential model. 

The chapter is structured as follows. Section 7.2 outlines the application of the CRLB 

theory to a bi-exponentially decaying signal. The experimental settings are described in 

Section 7.3. Section 7.4 presents the results and discussion.  
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7.2. Mathematical treatment 

A noise-free, bi-exponentially decaying signal, ŷi, is described as: 

�̂�𝑖 = 𝑤1 exp(−𝑏𝑖𝐷1) + 𝑤2 exp(−𝑏𝑖𝐷2) ,  (7.1) 

where bi represent the sampling pattern, w1 and w2 are the populations of the two 

components and, D1 and D2 represent the decay rate constants, where for convenience D1 

< D2. The noise-free signal, ŷi, depends on 4 parameters, θl (l = 1, 2, 3, 4): w1, w2, D1 and 

D2. As in Chapter 6, it will be assumed that each signal data point is corrupted by noise 

elements which are random and independently normally distributed with zero mean and 

variance σ2 (Gaussian noise). The noise variance depends on the scaling of the signal. In 

this chapter, the stated value of σ corresponds to a scaled signal of maximum 1, which 

corresponds to w1 + w2 = 1. In the presence of noise, the estimate of the bi-exponential 

model parameters becomes uncertain and there is an uncertainty associated with the 

estimate of each parameter. A common characteristic of this uncertainty is the standard 

deviation of any of the estimators, std(θl). A lower limit for std(θl) is given by the 

Cramér-Rao Lower Bound (CRLB) theory, which was outlined in Section 3.4:  

std(𝜃𝑙) ≥ √(𝑭−1)𝑙𝑙 ,  (7.2) 

where F is the Fisher Information Matrix. The Fisher Information Matrix can be computed 

from: 

𝐹𝑙1𝑙2
=

1

𝜎2 (∑
𝜕�̂�𝑖

𝜕𝜃𝑙1
𝑖

𝜕�̂�𝑖

𝜕𝜃𝑙2

) . (7.3) 

Therefore, to construct F, the partial derivatives of ŷi with respect to w1, w2, D1 and D2 are 

needed, which can be calculated from Eq. (7.1): 

𝜕�̂�𝑖

𝜕𝑤1
= exp(−𝑏𝑖𝐷1) ,  (7.4a)  

𝜕�̂�𝑖

𝜕𝑤2
= exp(−𝑏𝑖𝐷2) ,  (7.4b)  

𝜕�̂�𝑖

𝜕𝐷1
= −𝑤1𝑏𝑖exp(−𝑏𝑖𝐷1) , (7.4c) 

𝜕�̂�𝑖

𝜕𝐷2
= −𝑤2𝑏𝑖exp(−𝑏𝑖𝐷2) . (7.4d) 

The important result is that the uncertainty associated with the estimate of each parameter 
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depends on σ, w1, w2, D1, D2 and most importantly on the sampling pattern, bi. As a result, 

given the noise level and an experimental system (characterised by w1, w2, D1 and D2), the 

error associated with the estimate of each parameter depends solely on the sampling 

pattern, bi. Therefore, by optimizing the sampling pattern, it is possible to decrease to a 

minimum the uncertainty associated with the estimate of a given parameter, hence, making 

the estimate of that parameter as accurate as possible. 

The sampling pattern that minimises the uncertainty related to one of the parameters does 

not necessarily minimise the uncertainty related to the other parameters. Therefore, an 

objective function to be minimised needs to be defined. The presented method can be 

easily adapted to different objective functions. In this chapter, it is chosen to minimise:  

𝜂 = max
𝑙

[std(𝜃𝑙)/𝜃𝑙] × 100% , (7.5) 

which practically means minimising the maximum percentage error of any of the estimated 

parameters. 

7.3. Materials and methods 

7.3.1. Experimental 

A PFG NMR diffusion experiment is conducted on a binary gaseous mixture adsorbed on 

a porous material. The gases used are methane (BOC, >99% purity) and ethane (Air 

Liquide, >99.99%)). The porous material used is a microporous -zeolite (BEA), supplied 

by Tosoh Corporation. The zeolite bed is of cylindrical shape, with a height of 10 mm and 

diameter of 5 mm. The zeolite has a mean crystallite size of 15 μm and Si:Al ratio of 124. 

The adsorption of the gases in the zeolite was carried out on a Schlenk vacuum line; further 

details are found elsewhere [17]. 

The PFG NMR experiment is performed on a Bruker DMX300 spectrometer, operating at 

a resonant frequency of 300.13 MHz for 1H observation, at a temperature of 20 ± 0.5 °C. 

The maximum gradient amplitude available is 1176 G cm-1 and the r.f. coil has a diameter 

of 5 mm. The 13-interval bipolar gradient stimulated echo PFG NMR pulse sequence [18], 

illustrated in Fig. 7.1(a), is used for diffusion measurements. This pulse sequence was 

chosen because it reduces the effects of internal magnetic field gradients generated by 

porous media. The relevant NMR acquisition parameters used, annotated in Fig.  1(a), are 



124 

 

T = 100 ms, δ = 0.25 ms and τ = 0.46 ms. The echo time, τ, is minimised to increase the 

signal-to-noise ratio and to reduce relaxation weighting. The small remaining relaxation 

weighting does not affect the following analysis. 248 gradient strength values, gi, spaced 

equidistantly in the range 1.5-50 G cm-1, are used for two reasons: to provide an estimate 

for the diffusion coefficients and the populations of methane and ethane, and to be used 

for the selection of different sampling patterns, as described in Section 7.3.2.  

 

Fig. 7.1. (a) PFG pulse sequence used for diffusion measurements. (b) Experimental  PFG 

NMR diffusion data of a binary gaseous mixture methane/ethane and the corresponding 

bi-exponential fit.  The sampling points, bi, have been non-dimensionalised by the 

diffusion coefficient of slowest diffusing component, ethane, D1 = 9.24 × 10-9 m2 s-1. 

The adsorbed methane and ethane require deconvolution to be resolved spectroscopically 

[17], which is not ideal. In this chapter, the attenuation of the convolved spectral peak, 

shown in Fig. 7.1(b), is investigated. The attenuation is well described by the 

bi-exponential model described in Eq. (7.1), with bi = γ2 gi
2 δ2 (4T + 6τ - 2/3δ) [18], where 

γ is the gyromagnetic ratio of 1H nuclei. The estimated model parameters, which are used 

as ground truth for the following analysis, are: w1 = 0.199 ± 0.001 (ethane population), 

D1 = (9.24 ± 0.07) × 10-9 m2 s-1 (ethane diffusion coefficient), w2 = 0.801 ± 0.001 

(methane population) and, D2 = (1.42 ± 0.01) × 10-7 m2 s-1 (methane diffusion coefficient). 

The quoted uncertainty corresponds to the standard deviation of the bi-exponential fit.  The 

uncertainty related to each of the parameters is small because of the low σ (estimated to 

be 0.0032) and the large number of points in the decay. 
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The preparation of the samples and implementation of the pulse sequence were done with 

the help of the PhD student Mohammed Ainte of the Magnetic Resonance Research Centre, 

University of Cambridge. 

7.3.2. Sampling patterns 

A sampling pattern for the acquisition of the PFG NMR data consists of the choice of 

sampling points, bi, at which the attenuation of the NMR signal is acquired. This involves 

choosing the number of data points, n, and their respective values. As discussed in Section 

6.3.2, for a given number of points, n, the optimal choice of bi would require setting the 

partial derivatives of the expression in Eq. (7.5) with respect to each individual bi to zero 

and solving the set of resulting n simultaneous non-linear equations; this is 

computationally intractable. As a result, this chapter focuses on finding the optimal 

sampling pattern for the class of linear sampling patterns, defined as:  

𝑏𝑖 = 𝑏1 + (𝑏𝑛 − 𝑏1) (
𝑖−1

𝑛−1
)

𝑟

.  (7.6) 

b1 and bn are the first and last sampling points and r determines the density distribution of 

sampling points. The class of logarithmic sampling patterns, which was discussed in 

Chapter 6, was also investigated, but the optimised logarithmic sampling pattern had the 

same objective function value as the optimised linear sampling pattern studied. This is 

consistent with the results in Chapter 6 and it is the reason for focusing only on the class 

of linear sampling patterns.   

As discussed in Section 6.3.2, sampling a larger number of points, n, leads to a more 

accurate estimate of the model parameters. Therefore, the comparison between the 

predictions of the CRLB theory and experimental results is performed with respect to 

sampling patterns of a particular number of sampling points, n = 32. Other values of n 

could have been chosen, but n = 32 is a commonly used experimental value. Using the 

smallest possible value for b1 is supported by the results of other works, as discussed in 

Section 6.3.2. Therefore, the smallest experimentally used value, b1 = 4.9 × 105 m-2 s, is 

used when validating the predictions of the CRLB theory against experimental data. 

Having fixed n and b1, optimising the linear sampling pattern consists of optimising bn and 

r.  

The comparison between the predictions of the CRLB theory and experimental results is 

performed as follows. Using a range of bn from 5.4 × 107 to 4.8 × 108 m-2 s and a range of 
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r from 0.6 to 10, 104 linear sampling patterns are constructed using Eq. (7.6). For each of 

these constructed sampling patterns, the CRLB theory is used to predict the objective 

function, 𝜂, defined in Eq. (7.5). This is compared to the objective function obtained from 

the experimental data which is calculated as follows. The closest experimental 32 bi points 

to the constructed sampling patterns (out of the total 248 experimental sampling points 

acquired) are selected. The experimental attenuation data corresponding to these 32 points 

is fitted to a bi-exponential decay. The standard deviations in the estimation of each 

parameter, std(θl), are then extracted and these values are used to calculate the 

experimental objective function, 𝜂.  

7.4. Results and discussion 

In Section 7.4.1, the predictions of the CRLB theory are validated against  the experimental 

data using the procedure outlined in Section 7.3.2. The CRLB theory is then used in 

Section 7.4.2 to advise on which bi-exponential systems (characterised by w1 and D2/D1) 

can be resolved and under which conditions they can be resolved (in terms of the noise 

standard deviation, σ, and the number of sampled points, n). 

7.4.1. Validation of CRLB theory from experimental data 

The comparison of the objective function, 𝜂, as predicted by the CRLB theory and as 

calculated from the experimental data is shown in Fig. 7.2. Small values of 𝜂 indicate a 

good sampling pattern. Fig. 7.2(a) shows the contour map of 𝜂 as a function of the linear 

sampling pattern parameters bnD1 and r, as predicted by the CRLB theory. Fig. 7.2(b) 

shows a similar contour map obtained from the experimental data. There is very good 

agreement between the CRLB and experimental contour maps; on average there is < 10% 

difference between the corresponding 𝜂 values of the two maps, thereby validating the 

application of the CRLB theory to the optimization of sampling patterns for bi-

exponentially decaying signals. 

For a given value of r, for example r = 1 (corresponding to equidistant points), the value 

of the objective function is large at small bnD1 because late decay points are not sampled 

and, therefore, the uncertainty related to estimating the slower diffusing component 

(ethane) is large. The value of the objective function is also large at very large bnD1 

because early decay points are not sampled properly and, therefore, the uncertainty related 
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to estimating the faster diffusing component (methane) is large. As a result, for any given 

r, there is an optimum bnD1 which minimises the objective function. For a given bnD1, for 

example bnD1 = 2.5, the value of the objective function is large at small r because early 

decay points are sampled sparsely and, therefore, the uncertainty related to estimating the 

faster diffusing component (methane) is large. The value of the objective function is also 

large at very large r because late decay points are sampled sparsely and, therefore, the 

uncertainty related to estimating the slower diffusing component (ethane) is large. As a 

result, for any given bnD1, there is an optimum r which minimises the objective function. 

In summary, there is an optimum combination (bnD1,r) at which the objective function 

obtains a minimum, which corresponds to the best linear sampling pattern. The best linear 

sampling pattern for 32 sampled points is predicted by the CRLB theory at r = 1.07 and 

bnD1 = 2.34, at which point 𝜂 = 1.9%. Therefore, using the best linear sampling pattern, 

the maximum percentage error for any of the estimated parameters is 1.9%.  

 

Fig. 7.2. (a) Contour map of the variation of the objective function, 𝜂, with respect to the 

parameters of the family of linear sampling patterns, defined in Eq. (7.6), with n = 32, as 

predicted by the CRLB theory. (b) Contour map of the variation of the objective function, 

𝜂, with respect to the parameters of the class of linear sampling patterns obtained from the 

experimental data shown in Fig. 7.1(b). The best linear sampling pattern in (a) is obtained 

for r = 1.07, bnD1 = 2.34, and is identified as ‘+’, at which point 𝜂 = 1.9%. 

For completeness, the objective function of a commonly used sampling pattern with 32 

equidistantly sampled points (r = 1), with the largest sampled point being bnD1 = 5 (typical 

rule of thumb), is 𝜂 = 3.1%. This value of 𝜂 is >50% larger than the value achieved using 
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the optimised linear sampling pattern (𝜂 = 1.9%). The calculation was performed using the 

CRLB theory for the two-component system under investigation and assuming σ = 0.0032. 

7.4.2. Resolution limit of bi-exponential decays 

In Section 7.4.1, the CRLB theory predictions were validated against  an experimental 

bi-exponential system characterised by D2/D1 = 15 (ratio of the largest to the smallest 

diffusion coefficients) and w1 = 0.20 (population of slowest diffusing component). The 

aim of this section is to use the CRLB theory to investigate which bi-exponential systems 

(characterised by w1 and D2/D1) can be resolved and under which conditions they can be 

resolved (in terms of the noise standard deviation, σ, and the number of sampled points, 

n). 

This question is investigated as follows. For a given experimental system, characterized 

by w1 and D2/D1, and a noise standard deviation, σ, a linear sampling pattern with a given 

number of points, n, and b1D1 = 0 is optimised in terms of r and bnD1. This is performed 

using a similar method to the method used to produce Fig. 7.2(a). For the optimised linear 

sampling pattern, the value of 𝜂 is recorded. This is repeated for 100 values of w1 in the 

range 0.0-1.0 (non-inclusive) and 100 values of D2/D1 in the range 1-1000 (non-inclusive 

at the lower limit). A contour map of the optimal 𝜂 as a function of w1 and D2/D1, for the 

chosen noise standard deviation, σ, and sampling number of points, n, is then constructed. 

At this point, the resolution limit needs to be defined; in this chapter the resolution limit 

is taken to be 𝜂 < 30%; i.e., if the percentage error in the estimate of all the parameters is 

< 30 %, the bi-exponential decay is defined as being resolvable. It is noted that a different 

resolution limit definition is easily implemented. With the definition of the resolution 

limit, the contour map is divided into two regions: resolvable and non-resolvable, for the 

chosen values of σ and n. The whole procedure is performed for σ = 0.001, 0.005, 0.02, 

0.05 and n = 16, 32, 64. The results are presented in Fig. 7.3. 

The first observation from Fig. 7.3 is that the contour maps are not symmetric about 

w1 = 0.5. The asymmetry suggests that it is easier to resolve bi-exponential decays when 

the slowest diffusing component has the largest population than when the slowest diffusing 

component has the smallest population. This is explained by the fact that the most 

information about the slow diffusing component is contained at the high bi points. 

However, at high bi points, the signal becomes comparable to the noise. Therefore, a high 

population of the slow diffusing component is needed if it is to be resolved. Another 
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qualitative observation from Fig. 7.3 is that to resolve components of similar diffusion 

coefficients, D2/D1 ~ 1, many points at a high signal-to-noise ratio need to be acquired. 

The maps shown in Fig. 7.3 can be used quantitatively in many ways. For example, the 

methane/ethane gaseous mixture investigated in this chapter (D2/D1 = 15, w1 = 0.20) was 

easily resolved (𝜂 = 1.9%) using n = 32 points because the noise standard deviation was 

relatively low (σ = 0.0032). According to Fig. 7.3(b), the limit of resolution of these 

components for n = 32 points is at σ ~ 0.05. Therefore, the PFG NMR experimental 

acquisition time could be accelerated by a factor of ~ 4 through less signal averaging, 

while keeping the components still resolvable (assuming acquisition time ∝ √(1/σ) [19]). 

Accelerating the PFG NMR experimental acquisition time could be important if 

temporally changing phenomena are being investigated. 

 

Fig. 7.3. Resolution limit of bi-exponential decays, defined as 𝜂 < 30%, for a range of 

experimental systems characterised by a range of w1, D2/D1 and σ for (a) n = 16, (b) n = 32, 

and (c) n = 64 sampling points. The arrows in the map point towards the resolvable region.  

7.5. Conclusions 

The method proposed in Chapter 6 for optimising sampling patterns was applied to the 

problem of optimising sampling patterns for the most accurate estimation of the parameters 

of a bi-exponential model. The findings of the method were validated against PFG NMR 

diffusion data of a binary gaseous mixture of methane/ethane; < 10% difference was 

observed. The method was subsequently used to investigate which experimental systems 

that are modelled as bi-exponential decays can be resolved and under what conditions they 

can be resolved. 
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Chapter 8 

Accelerating the estimation of 3D 

spatially resolved T2 distributions 

In Chapters 4, 5 and 6, 7 the benefits of optimising the reconstruction technique or the 

sampling pattern, independently, for the most accurate estimation of parameters in 

particular ill-conditioned inverse problems in NMR applications, were investigated. In 

practice, the optimisation of the sampling pattern and the reconstruction technique are not 

entirely separate processes. In this chapter, it is shown that the most accurate parameter 

estimation is obtained through an appropriate combination of a good sampling pattern and 

reconstruction technique. This is illustrated with respect to the extraction of spatially 

resolved T2 distributions, referred to as T2 maps. 

8.1. Introduction 

The principle of obtaining a T2 map of dimension d (d = 1, 2 or 3 for a 1D, 2D or 3D T2 

map) is similar across the plethora of different experimental techniques. A series of p T2 

weighted images of dimension d is acquired and the T2 distribution is extracted pixel-wise 

using an Inverse Laplace Transform algorithm, as discussed in Section 3.1 and Chapters 4 

and 5, or some other single or multi-exponential fitting method. The experimental 

techniques differ in the way the T2 weighted images are acquired, and can be categorized 

into experimental techniques which use either a variable echo time or keep the echo time 

fixed and vary the length of the train of echoes. The most widely used technique with a 

variable echo time is the Single Echo Spin Echo (SESE) pulse sequence [1,  2]. Although 

the SESE sequence is very robust, the acquisition time is prohibitively long. A single line 

of k-space is sampled at each echo and a single echo is formed for each excitation. 

Therefore, the acquisition time scales approximately linearly with nd-1p, with n being the 

length of each image dimension. The leading experimental technique with a fixed echo 

time is the Multi Echo Spin Echo (MESE) pulse sequence [3-6]. A single line of k-space 
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is sampled at each echo, but multiple echoes (an echo train) are formed for each excitation. 

Therefore, the acquisition time scales approximately linearly with nd-1, which is a 

significant improvement over the acquisition time of the SESE method. The MESE pulse 

sequence is often referred to by different names depending on the application. For 

example, when used for the purpose of obtaining T2 contrast images, it is referred to as a 

Rapid Acquisition with Relaxation Enhancement (RARE) pulse sequence, as discussed in 

Section 2.16. The main disadvantage of the MESE technique is the use of a train of 

slice-selective refocusing pulses, which, if not perfect, can lead to complex s timulated 

echo patterns [7, 8]. Another technique with a fixed echo time is the Spin Echo - Single 

Point Imaging (SE-SPI) pulse sequence [9-13]. The SE-SPI pulse sequence forms a train 

of p spin echoes for each excitation and at each echo a single point in k-space is sampled. 

As a result, the acquisition time scales approximately linearly with nd which is 

significantly longer than the acquisition time of an MESE pulse sequence. However, its 

main advantage is the capability to use much shorter echo times; this has enhanced the 

capability to study fluids characterized by sub-millisecond T2 relaxation time constants in 

porous media applications. 

This chapter is concerned with obtaining 3D T2 maps, which in application to porous 

media, would open up opportunities for characterising local pore structure, pore saturation 

and wettability. The major problem associated with obtaining 3D T2 maps is the long 

acquisition time; the acquisition time for a fully sampled dataset sampled with an SE-SPI 

technique is in the order of days [12]. The system under investigation may not be stable 

during a long acquisition time, or one might be investigating phenomena which are 

changing with time. As a result, reducing the acquisition time is important in reducing the 

instability effects (i. e., temporal blurring) or capturing the time-dependent phenomena. 

Without under sampling, the MESE technique offers the shortest acquisition time 

compared to the SESE and SE-SPI techniques, as discussed above. However, in most 

cases, this is still prohibitively long; for the system under consideration in this chapter, 

acquiring a fully sampled data set with an MESE technique takes ~ 16 h. The focus of this 

chapter is on exploring under sampling patterns for MESE experiments and investigating 

different reconstruction techniques, based on the Compressed Sensing ideas discussed in 

Section 3.2, for obtaining 3D T2 maps from the under sampled data. 

In this chapter, an experimental implementation of an MESE pulse sequence to acquire a 

3D T2 map from under sampled MRI data is demonstrated. A conventional sampling 
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pattern where, for each line sampled in k-space, all echoes down the echo train are acquired 

(coherent sampling pattern) is compared to a proposed sampling pattern where the k-space 

line sampled at each echo in the echo train is independent of the k-space line sampled in 

the previous echo (incoherent sampling pattern). Further, the performance of the 

conventional reconstruction technique of Total Variation (TV) regularization, outlined in 

Section 3.2.2 is compared with the performance of the more recent reconstruction 

techniques of Nuclear Norm (NN) regularization [14] and Nuclear Total Generalized 

Variation (NTGV) regularization [15, 16]. It is shown that using an incoherent sampling 

pattern and NTGV regularization as the reconstruction technique, quantitative 3D T2 maps 

are obtained even at sampling percentages of 3.1% of k-space, corresponding to a 32-fold 

decrease in acquisition time. 

The chapter is structured as follows. Section 8.2 introduces the different reconstruction 

methods; pseudocodes and practical guidance in implementing the different reconstruction 

methods are also given. The experimental settings and acquisitions are described in 

Section 8.3. The results and discussion are presented in Section 8.4. 

8.2. Mathematical treatment 

Obtaining 3D spatially resolved T2 maps from under sampled k-space data consists of two 

steps. The first step is the reconstruction of T2-weighted images from the under sampled 

k-space data. In the second step, the T2-weighted images serve as an input to an Inverse 

Laplace Transform algorithm, or a single or multi-exponential fitting procedure in order 

to obtain the T2 distribution of each individual pixel. This chapter focuses on the first step. 

It is noted that reconstruction techniques that try to collapse these two steps into one step 

have started to be developed [17, 18], particularly in application to Magnetic Resonance 

Fingerprinting. However, these techniques typically suffer from partial volume effects; 

they assume that each voxel is characterized by one or more T2 components. This may not 

be the case in rock imaging applications, where a continuous distribution of T2 values is 

expected in each pixel. However, this area of research will be important in the future. 

As discussed in Section 3.2, the acquired under sampled k-space data Y, vectorised as Yv, 

is related to the vectorised T2-weighted images, Uv, the Fourier operator ℱ, the under 

sampling matrix, S, and the vectorised noise matrix, Ev, by: 
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𝒀v = 𝑺 𝓕 𝑼v + 𝑬v .   (8.1)  

As discussed in Section 3.2.2, the simplest reconstruction technique for the T2-weighted 

images is to fill the missing data points in the k-space with zeros and to perform the inverse 

Fourier transform, a process known as Zero-Filling (ZF): 

𝑼v = 𝓕−1𝑺T𝒀v .   (8.2) 

Zero-Filled reconstructions are typically sub-optimal because they are dominated by noise 

and under sampling artefacts. Better reconstructions can be obtained by incorporating prior 

information about Uv in the reconstruction process in the form of regularization. Three 

types of regularization are considered: Total Variation (TV), Nuclear Norm (NN) and 

Nuclear Total Generalized Variation (NTGV) regularization.  

8.2.1. TV regularization 

The application of TV regularization is based on the prior knowledge that each individual 

T2-weighted image, Uv, is sparse in the domain of pixel-wise differences in all 

three-dimensions of the image; the transformation into such a domain will be represented 

by the matrix R whose detailed construction is described in the work of 

Benning et al. [19]. TV reconstructions are then obtained from the following minimization 

problem: 

𝑼v = arg min
𝑼v

(
1

2
‖𝑺 𝓕 𝑼v − 𝒀v‖2

2 + 𝛼‖[𝑹 𝑼v]𝟑‖2,1) .   (8.3) 

α is a regularization parameter controlling the amount of regularization imposed on the 

reconstruction. The operation [R Uv]3, reshapes the vector R Uv into a matrix with three 

columns; each column contains the pixel-wise differences of the T2-weighted images in a 

particular direction. 

The minimization problem in Eq. (8.3) is tackled numerically by first rewriting it as:  

(𝑼v, 𝒗) = arg min
𝑼v

 max
𝒗

 (
1

2
‖𝑺 𝓕 𝑼v − 𝒀v‖2

2 + 𝒗T𝑹 𝑼v − 𝜒′𝛼(𝒗)) . (8.4) 

v is known as a dual variable and χ′α(v) is the indicator function defined as: 

𝜒′𝛼(𝒗) =  {
0      ‖[𝒗]𝟑‖2,∞ ≤ 𝛼 

+∞    ‖[𝒗]𝟑‖2,∞ > 𝛼    
 . (8.5) 

Eq. (8.5) is in the form of the primal-dual problem discussed in Section 3.3: 
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(𝑼v, 𝒗) = min
𝑼v

max
𝒗

𝑓(𝑼v) − 𝑔(𝒗) + 𝒗T𝑹 𝑼v ,   (8.6) 

where f(Uv) = ½||S ℱ Uv – Yv||
2
2 and g(v) = χ′α(v). The iteration scheme of the Primal-Dual 

Hybrid Gradient Method (PDGHM), outlined in Section 3.3, is then used to numerically 

solve the primal dual problem in Eq. (8.6). The proximal operator for f(Uv) was calculated 

Section 3.3.3 while the proximal operator for g(v) was discussed in Section 5.2.2. A 

pseudocode for the numerical solution of the TV regularization problem is given in 

Table 8.1. 

Table 8.1. Pseudocode to numerically solve Eq. (8.3), based on the PDHGM method. In 

the pseudocode, sum(A, i) sums the column or row vectors of matrix A along the i-th 

dimension and, repmat(A, k, i) stacks k copies of A in the i-th dimension. 

Step 1. Choose algorithm parameters τ, σ and the regularization parameter, α. 

Step 2. Set the convergence tolerance, TOL. 

Step 3. Initialize v(0) = v(0) = 0, Uv
(0) = Uv

(0) ≠ 0.  

Step 4. Initialize count number, k = 0 and convergence tracker, ε(0) = 0. 

Step 5. while ε(k) > TOL do 

a. Uv
(k+1) ← Uv

(k) – τ RTv(k) 

b. Uv
(k+1) ← ℱ-1 ((ℱ Uv

(k+1)+ τ STYv)/(1 + τ diag(STS))) 

The division operation is performed element-wise. 

c. v(k+1) ← v(k) + σ (2Uv
(k+1) – Uv

(k)) 

d. x ← √sum([v(k+1)]3
2, 2) 

All operations in this line are element-wise. 

e. v(k+1) ← v(k+1)/max(1, repmat(x, 3, 1)/α)    

All operations in this line are element-wise. 

f. ε(k+1) ← ||Uv
(k+1) - Uv

(k)||2 / ||Uv
(k)||2 

g. k ← k + 1 

                        end while 

 

The condition for the algorithm to converge is √τσ ≤ 1/||R||2,2. The choice of 

τ = σ = 1/||R||2,2 was made in this work, where ||R||2,2 ≈ 2.8. The number of iterations 

required to arrive at a reasonable convergence is ~ 300. The time in which this convergence 
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is achieved for a 64 × 64 × 64 × 64 data set (3 spatial dimensions and 1 echo train 

dimension) with a 2.0 GHz Intel® Core™ i5-4590T CPU and 16.4 GB RAM, is ~ 6 min. 

8.2.2. NN regularization 

Other prior information that can be used in improving reconstructions is the fact that the 

pixel-wise magnitude decays between different T2-weighted images are highly correlated 

[20-24]. This is mathematically translated into the matrix [Uv]p having a low rank, where 

p is the echo train length; the operation [Uv]p, reshapes the vector Uv into a matrix with p 

columns. It is a well-known result in linear algebra that the number of non-zero singular 

values of [Uv]p is equal to the rank of [Uv]p. Therefore, it is in theory possible to improve 

the reconstructions by constraining [Uv]p to have a minimal number of non-zero singular 

values. In practice, this is computationally intractable, and the problem is relaxed by 

constraining [Uv]p to have a minimal sum of singular values. The sum of singular values 

is referred to as the nuclear norm, ||[Uv]p||*, or the Schatten-1-norm, ||[Uv]p||S1. For a matrix 

A with singular values σi(A), the Schatten-p-norm is defined as: 

‖𝑨‖𝑆𝑝
= (∑ 𝜎𝑖(𝑨)𝑝

𝑖 )1/𝑝 .   (8.7) 

Nuclear Norm (NN) regularization reconstructions are therefore obtained from the 

following minimization problem: 

𝑼v = arg min
𝑼v

(
1

2
‖𝑺 𝓕 𝑼v − 𝒀v‖2

2 + 𝛼‖[𝑼v]𝒑‖
𝑆1

) .   (8.8) 

To numerically solve Eq. (8.8), it is first noted that [25]: 

𝛼‖[𝑼v]𝒑‖
𝑆1

= max
𝑽

tr([𝑽T𝑼v]𝒑) = max
𝑽

〈𝑽, [𝑼v]𝒑〉      s.t. max
𝑖

𝜎𝑖(𝑽) ≤ 𝛼, (8.9) 

where 〈∙,∙〉 refers to the inner product of matrices and V is known as a dual matrix. As a 

result, Eq. (8.8) is rewritten as: 

𝑼v = arg min
𝑼v

max
𝑽

(
1

2
‖𝑺 𝓕 𝑼v − 𝒀v‖2

2 + 〈𝑽, [𝑼v]𝒑〉 − 𝜒′′𝛼(𝑽)) ,   (8.10) 

where χ″α(V) is an indicator function defined as: 

𝜒′′𝛼(𝑽) =  {
0      ‖𝑽‖𝑆∞ ≤ 𝛼 

+∞    ‖𝑽‖𝑆∞ > 𝛼    
 . (8.11) 

Eq. (8.10) is in the form of the primal-dual problem discussed in Section 3.3: 

([𝑼v]𝒑, 𝑽) = min
[𝑼v]𝒑

max
𝑽

𝑓([𝑼v]𝒑) − 𝑔(𝑽) + 〈𝑽, [𝑼v]𝒑〉 ,   (8.12) 
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where f([Uv]p) = ½||S ℱ Uv – Yv||
2
2 and g(V) = χ″α(V). The iteration scheme of the PDGHM 

algorithm, outlined in Section 3.3, is then used to numerically solve the primal-dual problem 

in Eq. (8.12). The proximal operator for f([Uv]p) was calculated Section 3.3.3. The proximal 

operator for g(V) was calculated in the work Cai et al. [25]; it is equal to V reconstructed from 

its Singular Value Decomposition, with singular values > α set to be equal to α. A pseudocode 

for the numerical solution of the NN regularization problem is given in Table 8.2. 

The condition for the algorithm to converge is τ σ ≤ 1. The choice of τ = σ = 1 is made in 

this work. The number of iterations required to arrive at a reasonable convergence is ~ 200. 

The time in which this convergence is achieved for a 64 × 64 × 64 × 64 dataset with a 2.0 

GHz Intel® Core™ i5-4590T CPU and 16.4 GB RAM, is ~ 4 min. 

Table 8.2. Pseudocode to numerically solve Eq. (8.8), based on the PDHGM method. In 

the pseudocode, svd(A) calculates the Singular Value Decomposition of A as A1 A2 A3
T. 

Step 1. Choose algorithm parameters τ, σ and the regularization parameter, α. 

Step 2. Set the convergence tolerance, TOL. 

Step 3. Initialize V(0) = V(0) = 0, Uv
(0) = Uv

(0) ≠ 0.  

Step 4. Initialize count number, k = 0 and convergence tracker, ε(0) = 0. 

Step 5. while ε(k) > TOL do 

a. [Uv]p
(k+1) ← [Uv]p

(k) – τ V(k) 

b. Uv
(k+1) ← ℱ-1 ((ℱ Uv

(k+1)+ τ STYv)/(1 + τ diag(STS))) 

The division operation is performed element-wise. 

c. V(k+1) ← V(k) + σ (2[Uv]p
(k+1) – [Uv]p

(k)) 

h. [A1, A2, A3] ← svd(V(k+1)) 

d. A2 ← min(α, A2) 

The operation in this line is element-wise 

e. V(k+1) ← A1 A2 A3
T 

f. ε(k+1) ← ||Uv
(k+1) - Uv

(k)||2 / ||Uv
(k)||2 

g. k ← k + 1 

                        end while 
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8.2.3. NTGV regularization 

TV regularization uses prior information about the individual T2-weighted images to 

improve the reconstructions, while NN regularization uses the relationship between the 

different T2-weighted images to improve the reconstructions. The natural extension is to 

combine these regularization techniques such that the reconstructions inherit the best 

features from TV and NN regularization. One such technique is Nuclear Total Generalized 

Variation (NTGV) which consists in estimating the T2-weighted images from the following 

minimization problem: 

(𝑼v, 𝑾) = arg min
𝑼v,𝑾

(
1

2
‖𝑺 𝓕 𝑼v − 𝒀v‖2

2 + 𝛼‖[𝑼v]𝒑 − [𝑾v]𝒑‖
𝑆1

+ 𝛽‖[𝑹 𝑾v]𝟑‖2,1),  

 (8.13) 

where W is an auxiliary matrix. The second term enforces the reconstruction to inherit 

good features from NN regularization while the third term enforces the reconstruction to 

inherit good features from TV regularization. The regularization parameters α and β 

control the amount of regularization imposed. The idea behind NTGV regularization is 

similar to the idea behind MTGV regularization, which was discussed in Chapter 5.  

To numerically solve Eq. (8.13), the ideas introduced in Chapter 5 and in Sections 8.2.1 

and 8.2.2 are used to rewrite NTGV regularization as: 

(𝑼v, 𝑾, 𝑽, 𝒛) = arg min
𝑼v,𝑾

(
1

2
‖𝑺 𝓕 𝑼v − 𝒀v‖2

2 + 〈𝑽, [𝑼v]𝒑 − [𝑾v]𝒑〉 − 𝜒′′
𝛼

(𝑽) + 𝒛T𝑹 𝑾v −

𝜒′𝛽(𝒛)) ,   (8.14) 

where χ″α(V) and χ′β(z) were defined in Sections 8.2.1 and 8.2.2. The approach in Chapter 

5 is then followed to write Eq. (8.14) in a primal-dual problem format: 

([𝑼′v]𝒑, 𝑽′) = min
[𝑼′v]𝒑

max
𝑽′

𝑓([𝑼′v]𝒑) − 𝑔(𝑽′) + 〈𝑽′, 𝑸 𝑼′v〉 ,   (8.15) 

where f([U′v]p) = ½||S ℱ Uv – Yv||
2
2 and g(V′) = χ″α(V)+ χ′β(z). Q is constructed as in Section 

5.2.1. The iteration scheme of the PDHGM algorithm, outlined in Section 3.3, is then used to 

numerically solve the minimization problem. The proximal operator for f([U′v]p)  was derived 

in Section 3.3.3. The proximal operator of g(V′) is obtained from the sum of the proximal 

operators of its constituent functions, each of which were discussed in Sections 5.2.1 and 8.2.2. 

A pseudocode for the numerical solution of the NTGV regularization problem is given in 

Table 8.3. 
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Table 8.3. Pseudocode to numerically solve Eq. (8.13), based on the PDHGM method. In 

the pseudocode, sum(A, i) sums the column or row vectors of matrix A along the i-th 

dimension, repmat(A, k, i) stacks k copies of A in the i-th dimension and, svd(A) calculates 

the Singular Value Decomposition of A as A1 A2 A3
T. 

Step 1. Choose algorithm parameters τ, σ and the regularization parameters, α, β. 

Step 2. Set the convergence tolerance, TOL. 

Step 3. Initialize V(0) = V(0) = 0, z(0) = z(0) = 0, Uv
(0) = Uv

(0) ≠ 0, Wv
(0) ≠ 0.  

Step 4. Initialize count number, k = 0 and convergence tracker, ε(0) = 0. 

Step 5. while ε(k) > TOL do 

a. [Uv]p
(k+1) ← [Uv]p

(k) – τ V(k) 

b. Uv
(k+1) ← ℱ-1 ((ℱ Uv

(k+1)+ τ STYv)/(1 + τ diag(STS))) 

The division operation is performed element-wise. 

c. [Wv]p
(k+1)← [Wv]p

(k) + τ (V(k) – QTz(k)) 

d. V(k+1) ← V(k) + σ (2Uv
(k+1) – [Uv]p

(k) – 2[Wv]p
(k+1) + [Wv]p

(k)) 

e. [A1, A2, A3] ← svd(V(k+1)) 

f. A2 ← min(α, A2) 

The operation in this line is element-wise 

g. V(k+1) ← A1 A2 A3
T 

h. z(k+1) ← z(k) + σ Q (2Wv
(k+1) – Wv

(k))    

i. x ← √sum([z(k+1)]3
2, 2) 

All operations in this line are element-wise. 

j. v(k+1) ← z(k+1)/max(1, repmat(x, 3, 1)/β)    

All operations in this line are element-wise. 

k. ε(k+1) ← ||Uv
(k+1) - Uv

(k)||2 / ||Uv
(k)||2 

l. k ← k + 1 

                        end while 

 

The condition for the algorithm to converge is τ σ ≤ 1/12. The choice of τ = σ ≈ 0.28 is 

made in this work. The number of iterations required to arrive at a reasonable convergence 

is ~ 1000. The time in which this convergence was achieved for a 64 × 64 × 64 × 64 

dataset with a 2.0 GHz Intel® Core™ i5-4590T CPU and 16.4 GB RAM, is ~ 1 h. 
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8.2.4. Reconstruction quality measure 

The reconstructed T2-weighted images obtained from the different reconstruction 

techniques are compared using the peak-signal-to-noise ratio (PSNR) metric: 

PSNR = 20 log10 (
length(𝑼v) max(𝑼v,FS)

‖𝑼v−𝑼v,FS‖
2

2 )  . (8.16) 

Uv refers to the T2-weighted images obtained from under sampled k-space data processed 

either using Zero-Filling, TV regularization, NN regularization or NTGV regularization, 

while Uv,FS refers to the T2-weighted images obtained from fully sampled k-space data. 

The reconstruction with the larger PSNR is the better reconstruction. The perfect 

reconstruction has PSNR = ∞. The accuracy of reconstruction from TV regularization and 

NN regularization depends on the value of the regularization parameter α, while the 

accuracy of reconstruction from NTGV regularization depends on the regularization 

parameters α and β. For all methods, a range of regularization parameters was considered, 

and the regularization parameter which gave the largest PSNR was chosen. The results 

reported in this chapter correspond to the reconstructions obtained using these parameter 

values. 

For completeness, NTGV regularization could be turned into a one-parameter 

regularization technique by heuristically constraining α and β to be functions of each other, 

as was done with MTGV regularization in Chapter 5. For systems in which no ground truth 

is known, the remaining independent regularization parameter could then be chosen using 

any of the techniques described in the work of Mitchell et al. [26]. These extensions are 

not investigated in this chapter but could be the focus of future investigations. 

The T2 maps which result from the reconstructed T2-weighted images are not compared 

quantitatively, because the step of obtaining the T2 map commonly involves a 

regularization technique, which introduces some uncertainty because of the need to choose 

the regularization parameter. However, an illustration of the T2 map obtained using L1 

regularization, described in Chapter 4, is given in Section 8.4.  

8.3. Materials and methods 

The experimental acquisitions were performed with the help of Dr.  Daan de Kort of the 

Magnetic Resonance Research Centre, University of Cambridge.  
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The acquisition of a 3D spatially resolved T2 map is performed on the sample illustrated 

in Fig. 8.1(a). The sample is composed of 7 tubes of 10 mm diameter, bound in a circular 

arrangement. Each tube is filled up to a height of 40 mm; in the bottom 20 mm by a 

gadolinium chloride (GdCl3.6H2O) solution and in the top 20 mm by 

polydimethylsiloxane, trimethylsiloxy terminated (Alfa Aesar), which will be referred to 

as PDMS oil. Gadolinium chloride solutions of three different concentrations are used:  

0.82 mM (fluid A), 0.55 mM (fluid B) and 0.22 mM (fluid C), and the particular tube 

allocation is shown in Fig. 1(a). PDMS oils of three different molecular weights are used: 

28 kDa (fluid D), 9 kDa (fluid E) and 2 kDa (fluid F). Again, the particular tube allocation 

for the PDMS oils is given in Fig. 8.1(a). 

All experiments are conducted on a Bruker SWB superconducting magnet, operating at a 

resonant frequency of 300.88 MHz for 1H observation, using a radio frequency (r.f.) coil 

of diameter 66 mm. The maximum magnetic field gradient strength available is 77 G cm-1.  

 

Fig. 8.1. (a) Schematic arrangement of the tubes used in the experiment (not to scale). 

Each tube is filled in the bottom half with a doped water solution (A, B or C) and on the 

top half with PDMS oil (D, E or F). (b) Bulk T2 distributions of each fluid used in the 

experiment, A-F, obtained individually from single shot CPMG experiments.  

The bulk T2 distributions for each individual fluid used, obtained using a single shot 

CPMG experiment, as described in Section 2.10, with echo time 15 ms and processed 

using L1 regularization, as described in Chapter 4, are shown in Fig. 8.1(b). L1 

regularization was selected based on the fact that the PDMS oils D and E did not show 

mono-exponential behaviour in the T2 decay and the conventional Tikhonov regularization 

method was unable to distinguish the two peaks of fluid D in the T2 distribution. The T2 

distribution for each individual fluid was unchanged before and after the experiment, 
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indicating that the gadolinium chloride remains largely dissolved only in the water solution 

and does not affect the T2 distribution of the PDMS oils. 

The MESE imaging technique used is similar to the RARE pulse sequence described in 

Section 2.16, adapted for 3D imaging by adding another phase magnetic field gradient to 

substitute for the slice selective magnetic field gradient. Hard pulses of duration 82.5  μs 

and 165 μs for 90° and 180° r.f. excitations, respectively, are used. The pulse sequence is 

designed for a field-of-view of 35 mm × 35 mm × 45 mm, and respective spatial resolution 

of 547 μm × 547 μm × 703 μm, with the first two dimensions being phase directions (kp1 

and kp2) and the third dimension being a read direction, kr (which is parallel to the axis of 

the tubes). A dwell time of 5 μs, echo time of 15 ms and repetition time of 3.5 s are used. 

Each echo train is composed of 64 echoes (RARE factor of 64).  

 

Fig. 8.2. The sampling pattern used for the first two echoes and for the two dimensions of 

k-space which can be randomly under sampled; the patterns are shown for 3.1% sampling 

of k-space. Patterns are shown for (a) a coherent sampling pattern and (b) an incoherent 

sampling pattern. 

Under sampling is performed on the two phase directions of k-space and sampling 

percentages of 100% (fully sampled), 50%, 25%, 12.5%, 6.3% and 3.1% of k-space are 

investigated. The corresponding acquisition times are 16 h, 8 h, 4 h, 2 h, 1 h and 30 min. 

For the two under sampled dimensions, the 2D sampling pattern follows a bi-level 

approach [27]. The central 3 × 3 out of the 64 × 64 pixels of k-space are fully sampled 

while the subsequent points acquired are random, with the density of points following a 

Gaussian distribution from the centre k-space with a standard deviation of 15% of the 

largest k-space value. With these two under sampled dimensions (kp1 and kp2) and a fully 

sampled third dimension (kr), the sidelobe-to-peak ratio (SPR) [28] of the 3D sampling 
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pattern is 0, 0.029, 0.059, 0.091, 0.141 and 0.246 for the corresponding sampling 

percentages of 100%, 50%, 25%, 12.5%, 6.3% and 3.1% of k-space. Two sampling 

patterns, illustrated in Fig. 8.2, are investigated: a conventional coherent sampling pattern 

which, in practice, means that for each k-space line sampled in the read direction, all 

echoes down the echo train are acquired and; an incoherent sampling pattern which means 

that the k-space line sampled in the read direction at each echo in the echo train is 

independent of the k-space line sampled in the previous echo. Once the sampling pattern 

is selected, the choice of the specific k-space lines to be acquired during an echo train is 

random. This is done to distribute the gradient dissipation homogenously and, therefore, 

to reduce the effect of the diffusive attenuation of the signal.  

8.4. Results and discussion 

The results of the reconstructions of the T2-weighted images from the under sampled MRI 

data using different techniques are now presented. For illustration, only the results 

corresponding to the experimental data acquired at the lowest sampling percentage, 3.1% 

of k-space, are shown. 

 

Fig. 8.3. Comparison of the T2-weighted images obtained from a fully sampled dataset 

with the reconstructed T2-weighted images obtained using ZF, TV regularization, NN 

regularization and NTGV regularization for a coherent sampling pattern. The data are 

shown for a sampling percentage of 3.1% of k-space. (a) An example of a transverse 

T2-weighted image through the tubes at a position shown in (b) and echo  number 10. (b) 

An example of a longitudinal T2-weighted image through the tubes at a position shown in 

(a) and echo number 10. 
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Fig. 8.3 shows the reconstructions of the T2-weighted images using Zero-Filling, TV 

regularization, NN regularization and NTGV regularization for a coherent sampling 

pattern. An example is given for two selected slices (one transverse and one longitudinal) 

through the 3D sample; data are shown for the 10 th echo. These images are also compared 

with the corresponding images obtained from the fully sampled MRI data. It is observed 

that the Zero-Filled reconstructions are poor and dominated by under sampling artefacts; 

it is not possible to distinguish between the different tubes present in the sample.  The 

application of TV regularization gives a significant improvement, but the reconstructions 

have artificial stair-casing features, a well-known feature of over-regularization in TV 

regularization [19]. The boundary between some of the tubes is not very clear, particularly 

in the transverse slice image. The reconstructions obtained from NN regularization seem 

slightly worse than the reconstructions obtained from TV regularization; more noise is 

observed both within and outside the tubes, although the tubes are more clearly 

distinguished. NTGV regularization gives improved reconstructions over TV and NN 

regularization, although not noticeably. The NTGV regularization reconstructions inherit 

good features from TV and NN regularization: the noise level is reduced (a TV 

regularization property) and the tubes are clearly distinguished (a NN regularization 

property). 

Fig. 8.4 shows the reconstructions of the T2-weighted images using Zero-Filling, TV 

regularization, NN regularization and NTGV regularization for an incoherent sampling 

pattern. Again, Zero-Filled reconstructions are poor and dominated by under sampling 

artefacts. The reconstructions obtained from TV regularization are similar to the results 

from TV regularization in Fig. 8.3, where the sampling pattern was coherent. This is 

explained by the fact that TV regularization is imposed on each individual 3D T2-weighted 

image independently of the other 3D T2-weighted images. Therefore, whether the sampling 

pattern for the corresponding k-space of the different T2-weighted images is the same or 

different does not make a noticeable difference. The reconstructions obtained from NN 

regularization show significant improvement both over TV and NN reconstructions 

obtained using a coherent sampling pattern. This significant improvement in the NN 

regularization performance is explained by the fact that NN regularization relies on the 

correlation between the different T2-weighted images. Therefore, having different 

sampling patterns for the corresponding k-space of the different T2-weighted images 

reduces the coherent artefacts that are introduced using a coherent sampling pattern. 
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NTGV regularization gives further improvement in performance over TV and NN 

regularization. NTGV reconstructions inherit good features from TV and NN 

regularization, similar to the case of a coherent sampling pattern. 

 

Fig. 8.4. Comparison of the T2-weighted images obtained from a fully sampled dataset 

with the reconstructed T2-weighted images obtained using ZF, TV regularization, NN 

regularization and NTGV regularization for an incoherent sampling pattern. The data are 

shown for a sampling percentage of 3.1% of k-space. (a) An example of a transverse 

T2-weighted image through the tubes at a position shown in (b) and echo number 10. (b) 

An example of a longitudinal T2-weighted image through the tubes at a position shown in 

(a) and echo number 10. The ‘+’ marker in the fully sampled image of (a) denotes the 

projection of the line over which the T2 mapping shown in Fig. 8.6 is taken. The distance 

‘z’ in (b) corresponds to the distance ‘z’ used in Fig. 8.6. 

A quantitative comparison using the PSNR metric between the reconstructions obtained 

using Zero-Filling, TV regularization, NN regularization and NTGV regularization is 

presented in Fig. 8.5. The comparison is made over the different sampling percentages 

studied: 50%, 25%, 12.5%, 6.3% and 3.1% of k-space. Fig. 8.5(a) shows the results for a 

coherent sampling pattern. At all sampling percentages, NTGV regularization outperforms 

TV regularization, which in turn outperforms NN regularization. All the regularization 

techniques perform better than Zero-Filling. These agree with the qualitative observations 

in Fig. 8.3. The performance gap between NTGV regularization and TV regularization is 

negligible, suggesting that when a coherent sampling pattern is used, there is only a small 

benefit in using NTGV regularization over the conventional TV regularization. Fig.  8.5(b) 

shows the results for an incoherent sampling pattern. The first observation is that NTGV 

regularization still remains the most accurate reconstruction method. The performance gap 

between NTGV regularization and the other regularization techniques has increased. In 
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addition, the performance of NTGV regularization for an incoherent sampling pattern is 

significantly better than for a coherent sampling pattern. These two observations suggest 

that the full potential of NTGV regularization is only utilized when an incoherent sampling 

pattern is used. This is consistent with the earlier discussion. It is also observed that the 

performance of NN regularization is significantly improved from the case of a coherent 

sampling pattern and its performance is better than TV regularization, unlike for the case 

of a coherent sampling pattern. Further, the performance of TV regularization and 

Zero-Filling is observed to be similar to when using a coherent sampling pattern, as 

expected. 

 

Fig. 8.5. Comparison of the different techniques: ZF, TV regularization, NN regularization 

and NTGV regularization in reconstructing the T2-weighted images from under sampled 

MRI data at different sampling percentages. Data are shown for (a) a coherent and (b) an 

incoherent sampling pattern. The PSNR metric is defined in Eq. (8.16). The lines are 

included to guide the eye. 

The results presented suggest that using an incoherent sampling pattern and NTGV 

regularization as the reconstruction technique gives the best reconstructions at all sampling 

percentages studied, according to the PSNR metric. In practice, there are other factors that 

one might want to consider when choosing the best reconstruction technique. An important 

factor is that NTGV regularization is a two-parameter regularization technique, as opposed 

to TV regularization and NN regularization which are one-parameter regularization 

techniques. Further, the convergence speed for the numerical solution of the NTGV 

regularization problem is slower than the convergence speed for the numerical solution of 

the TV regularization and NN regularization methods; typically 3-5 times more iterations 

are needed and the time per iteration is approximately double for NTGV regularization, as 

compared to TV and NN regularization. Both these factors make the processing time for 
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NTGV regularization method longer than the processing time for TV regularization and 

NN regularization. This observation is particularly important when the sampling 

percentage is large. For example, at sampling percentages of 25% and 50% of k-space, no 

visible difference between the reconstructions obtained from the different techniques was 

observed, although the PSNR metric reveals some differences. Therefore, at the high 

sampling percentages of 25% and 50% of k-space, the small gain in image quality from 

NTGV regularization over TV and NN regularization may be outweighed by the larger 

processing time of NTGV regularization. 

 

Fig. 8.6. 1D T2 maps over the line denoted in Fig. 8.4(a). The 1D T2 maps were obtained 

from (a) the fully sampled dataset and, (b) the data acquired at 3.1% sampling of k-space 

data using an incoherent sampling pattern and processed using NTGV regularization. The 

line over which the mapping is performed runs through fluids D and A. The distance z is 

defined in Fig. 8.4(b). 

For completeness, the 3D T2 maps obtained from the T2-weighted images are now 

considered. Each pixel in the 3D image is assigned a T2 distribution by using L1 

regularization, outlined in Chapter 4, to convert the decay of the pixel intensity into a T2 

distribution. As this step is not the focus of this chapter, only an example is presented; the 

optimisation of the L1 regularization technique is not considered. Fig. 8.6 shows the 

spatially resolved T2 distribution over a line through the 3D image (1D T2 map), whose 

location is annotated in Fig. 8.4(a). The line over which the T2 mapping is performed runs 

through the tube filled with fluids D and A, whose bulk T2 distributions are given in 

Fig. 8.1(b). Fig. 8.6(a) shows the results obtained from the T2-weighted images of the fully 

sampled data. Fig. 8.6(b) shows the results obtained from the T2-weighted images 

reconstructed from the MRI data acquired at 3.1% sampling of k-space and an incoherent 

sampling pattern, processed using NTGV regularization. The position of the peaks in the 

T2 distributions of fluids A (peak 1) and D (peaks 2 and 3), and the relative intensities of 
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peaks 2 and 3 are summarised in Table 8.4. It is observed that the 1D T2 maps obtained 

from both the fully sampled and under sampled data are in good agreement with the bulk 

liquid measurements in Fig. 8.1(b). The positions of peaks 1 and 2, as obtained from 

Fig. 8.6(a) and 8.6(b) are < 15% different from the results in Fig. 8.1(b). The position of 

peak 3 is less well predicted from the 3D T2 maps of both fully sampled and under sampled 

data; this is mainly due to the low intensity of this peak as compared to peak 2. For fluid 

D, the fraction of the total intensity represented by peak 2, obtained from Figs. 8.1(b), 

8.6(a) and 8.6(b) are in good agreement; respectively 0.67, 0.82 ± 0.07 and 0.73 ± 0.05. 

The fact that the two peaks in the T2 distribution of fluid D can be distinguished and 

quantified to a good degree even from highly under sampled data is an achievement of the 

proposed sampling scheme and processing method. Indeed, it was shown in Chapter 7 that 

bi-exponential decays where the population of one of the components is small are 

challenging to resolve even from 1D NMR experiments. 

Table 8.4: Estimation of the position of the peaks in the T2 distribution of fluids A (peak 

1) and D (peaks 2 and 3), and the fraction of total intensity of fluid D represented by peak 

2, determined using three different techniques. The bulk measurement is taken from 

Fig. 8.1(b). The measurement from the fully sampled dataset is taken from Fig. 8.6(a). The 

measurement from the under sampled dataset is taken from Fig. 8.6(b). The peaks are 

annotated in Fig. 8.6(a). The uncertainty shown corresponds to the spatial variation of the 

properties, as observed from Fig. 8.6. 

 T2 / ms intensity fraction 

peak 2 / (peak 2+peak 3)  peak 1 peak 2 peak 3 

bulk measurement 87 140 380 0.67 

fully sampled dataset 88 ± 3 160 ± 10 600 ± 160 0.82 ± 0.07 

under sampled dataset 90 ± 8 130 ± 10 540 ± 90 0.73 ± 0.05 

8.5. Conclusions 

This chapter described an experimental implementation of an MESE pulse sequence for 

the acquisition of under sampled MRI data, with the aim of obtaining a 3D T2 map. Two 

classes of sampling patterns were compared: a conventional coherent sampling pattern 

where for each line sampled in k-space, all echoes down the echo train are acquired, and 

an incoherent sampling pattern where the k-space line sampled for each echo in the echo 

train is independent of the k-space line sampled in the previous echo. The conventional 
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reconstruction technique of TV regularization was compared to the more recent techniques 

of NN and NTGV regularization. It was observed that an incoherent sampling pattern is 

superior to a coherent sampling pattern and that NTGV regularization outperformed TV 

regularization and NN regularization at all sampling percentages studied. The full potential 

of NTGV regularization is particularly utilized when an incoherent sampling pattern is 

used. Using an incoherent sampling scheme and NTGV regularization as the 

reconstruction technique, quantitative results were obtained even at a sampling percentage 

of 3.1% of k-space, corresponding to a 32-fold decrease in the acquisition time. 
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Chapter 9 

Bubble burst hydrodynamics captured 

with MR velocimetry 

It was shown in Chapter 8 how the appropriate combination of a sampling pattern and 

processing technique can be used to reduce the experimental acquisition time; this opens 

opportunities in studying systems which are unstable over a long acquisition time or in 

investigating fast-changing phenomena. In this chapter, under sampling of k-space data, a 

recently proposed processing method [1] and a carefully designed experimental system are 

used to highly accelerate the acquisition of MR velocimetry data, which allows the first 

experimental observation of the spatially resolved hydrodynamics of a bubble burst event. 

9.1. Introduction 

The burst of a bubble is an important event in many areas of science and engineering. A 

major transport mechanism of microorganisms [2, 3], salt [4-6] and charged aerosols [7] 

from the ocean to the atmosphere is through bubbles bursting at the water-air interface. In 

sparged bioreactors, the largest rate of cell death has been experimentally observed to 

occur at the free surface of the reactor [8-10]. This has been attributed to the entrapment 

of cells in the liquid film formed between bubbles and the free air surface, and their 

subsequent high acceleration during the film rupture and bubble burst  [11-14]. Bubbles 

bursting at an oil-water interface lead to the formation sub-micrometer emulsions of oil in 

water [15], which is being used to produce nanomaterials with tunable rheological 

properties [16, 17]. The release and reach of flavours and aroma from carbonated drinks, 

such as champagne, are closely related to the burst of bubbles [18, 19]. 

When a bubble reaches a liquid-air interface, after an initial potential bouncing [20-23], 

the bubble rests on the surface, separated by a liquid film from the free air. The liquid film 

subsequently drains, a process which is explained by thinning film theories [24-26]. When 

the film reaches a critical thickness, a hole is punched in the film. If the hole is of a size 
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above approximately twice the thickness of the sheet, it expands [27]. Most of the 

retracting film is subsequently concentrated in a toroidal rim of l iquid which bounds the 

unbroken film [28]. The rim motion follows to a good approximation the path defined by 

the original shape of the bubble [29], moving at a large retracting velocity of the order of 

10 m s-1 [30, 31]. The process is characterised by film drop shedding [32-35], although 

this may not always be present [36]. The cavity collapses under the influence of 

converging capillary waves. The wave ripples formed in the cavity surface have been 

observed experimentally [37, 38] and captured by numerical methods [39-41]. At the 

convergence point of the capillary waves, a high capillary pressure point is formed which 

leads to the formation of an upward and downward jet. The upward jet moves in the empty 

space left by the bubble cavity and may lead to jet drops being ejected [42-47]. The angle 

of the downward jet to a vertical axis depends on the position in which the bubble gets 

punctured, which for millimetre sized bubbles is largely random [48]. Once the upward jet 

achieves the maximum height, it falls back into the liquid pool and, after some oscillations, 

liquid motion dies out. 

The main experimental observation technique used to validate the predictions of numerical 

methods about the shape of the cavity, evolution of the upward jet and the phenomenon of 

jet drop shedding during bubble burst has been fast photography [5, 34, 37, 38, 40, 43-45, 

49], although X-ray imaging [50] has also been used. Fast photography has also been used 

to validate the predictions of numerical methods about the ejection speed of the upward 

jet, by tracking the change of the shape of the upward jet between subsequent frames. 

However, apart from Dopplermeter measurements on a small volume element from 

MacIntyre [38], observations of the spatially resolved velocity field in the vicinity of the 

bursting bubble have been limited to flow visualization using a dye [37, 38] or seeded 

particles [40]. Measurement of the spatially resolved velocity field is critical in 

applications such as bioreactor design because it allows the calculation of the Energy 

Dissipation Rate (EDR) distribution in the liquid after the bubble burst [51]. EDR values 

above a certain threshold value have been linked to cell death [40, 52, 53]. The EDR 

distribution, together with information about the local concentration of cells in the vicinity 

of a bursting bubble can be used to quantify the rate of cell death. Further, measurement 

of the spatially resolved velocity field is important in validating the predictions of 

numerical methods, particularly in cases when different numerical methods disagree. 
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In this chapter, MR velocimetry is used to provide the first experimental spatially resolved 

velocity field of a bubble burst event. The velocity field map is then used to investigate a 

discrepancy between the predictions of two different numerical methods: the boundary 

integral numerical method used by Boulton-Stone and Blake [54] and the numerical 

solution to the full Navier-Stokes equations by Duchemin et al. [39]. The simulations of 

Boulton-Stoke and Blake [54] predicted a downward jet created by the detachment of a 

single vortex from the bubble base, while the simulations of Duchemin et al. [39] 

predicted a downward jet created by the detachment of two counter-rotating vortices. 

The chapter is structured as follows. Section 9.2 describes the experimental system and 

the signal acquisition scheme. Section 9.3 describes a recently proposed processing 

technique for MR velocimetry data; the processing technique is validated against pipe 

laminar flow data. The experimental results of the bubble burst study and the discussion 

are presented in Section 9.4. 

9.2. Materials and methods 

A PTFE cylindrical pipe of inner diameter D = 15.4 mm is mounted vertically and filled 

up to a certain level with water, in which 17 mM DyCl3.6H2O is added (T1 ≈ T2 = 55 ms). 

This concentration of dopant agent ensures fast relaxation of the NMR signal, magnetic 

susceptibility matching of the solution and air and negligible effect on the surface tension 

of water [55]. The contact angle of water with the PTFE surface is > 90°, resulting in an 

upward curving meniscus being formed between water and air, as illustrated in Fig.  9.1(a). 

Air is slowly injected into the pipe using a Harvard Apparatus Model ‘22’ syringe pump. 

Air passes through a nozzle of 1 mm inner diameter, pinching off to consistently form 

bubbles of radius 2.4 mm. The bubble rises through water and rests on the free surface for 

some time, before bursting. The upward curving meniscus forces the bubble to stay in the 

centre of the pipe, being the point of highest liquid level [56]. The consistent size of the 

bubbles and their position at the centre of the pipe allows reproducible bubble burst 

experiments, which is critical in accelerating the acquisition of the experimental data, as 

discussed in the later parts of this section. The subsequent bubble burst hydrodynamics is 

studied using MR velocimetry. 

All experiments are conducted on an AV-400 Bruker magnet, operating at a resonant 

frequency of 400.25 MHz for 1H observation with a r.f. coil of 25 mm diameter. The 
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maximum magnetic field gradient amplitude available in each spatial direction is 

146 G cm-1.   

The 2D MR spiral imaging technique developed by Tayler et al. [55], shown in Fig. 9.1(b), 

is employed for acquiring velocity images. The spiral is designed according to the method 

of Hargreaves et al. [57] for an image comprising of 64 × 64 pixels and of resolution 

265 μm × 265 μm. The 2D images are acquired over a slice thickness of 150 μm. 1024 

complex points spaced at 2 μs are acquired along the spiral, corresponding to 25% 

sampling percentage and imaging time of 2.05 ms. The spiral density and coverage of 

k-space is optimised according the method outlined in Section 9.3.1; the optimal spiral 

density is close to being constant and the spiral stretches to ~ 40% of kmax, as illustrated 

in Fig, 9.1(b). The velocity-encoding gradients are designed with δ = 0.26 ms, Δ = 0.49 ms 

and g = 29 G cm-1. The r.f. excitation pulse duration is 200 μs and is designed for a flip 

angle of 11°, to allow for a fast return to equilibrium of the magnetization vector. The 

timings of the r.f. pulse, velocity-encoding gradients and imaging gradients allow for a 

repeat of the pulse sequence every 4.0 ms. 

 

Fig. 9.1. (a) Schematic of experimental setup. (b) Pulse sequence used for MR velocimetry 

acquisitions and the corresponding k-space traversal. 

Three component velocity maps on a 2D image are obtained for a transverse slice 

(perpendicular to the axis of the pipe) and a longitudinal slice (parallel to the axis of the 

pipe). Both slices cut through approximately the centre of the bubble. For a given slice 

direction (transverse or longitudinal) and a given direction of the velocity to be measured 

(x, y or z), the one component velocity map (vx, vy or vz) is acquired by applying repeatedly 

every 4 ms the pulse sequence in Fig. 9.1(b) with the velocity-encoding gradient in the 

respective direction (x, y or z) and with alternating polarity between consecutive pulse 
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sequences (from ±g to ∓g). By taking the difference between the phase of the MRI images 

reconstructed from the acquired k-space data of consecutive pulse sequences, and with 

reference to a zero flow experiment, the one component velocity map at 4 ms temporal 

resolution is reconstructed, as discussed in Section 2.18. The maps of the other 

components of velocity are obtained in a similar way at temporal resolutions of 4  ms but 

with the pulse sequences applied to different bursting bubbles. The size, position and the 

hydrodynamics of different bursting bubbles at the free surface is consistent, as will be 

shown in Section 9.4. As a result, the one component velocity maps in different directions, 

vx, vy or vz, are superimposed, by aligning the point in time at which the bubble burst starts, 

to effectively give three component velocity maps at a temporal resolution of 4  ms. 

9.3. Reconstruction technique 

The acquired k-space data using the spiral imaging technique is not sampled on a regular 

Cartesian grid. As a result, a Non-Uniform Fast Fourier Transform (NUFFT) operator [58], 

ℱ, constructed with the aid of the spiral path measurement technique of Duyn et al. [59], 

outlined in Section 2.17, and Voronoi compensation diagrams [60] is used to relate the 

k-space data, Yv, to the complex image, Uv and the noise, Ev, according to: 

𝒀v = 𝓕 𝑼v + 𝑬v .   (9.1) 

For MR velocimetry data, the complex image, Uv, is composed of the magnitude, Pv and 

the phase, Φv such that Uv
 = Pv·exp(iΦv), where the dot notation refers to element-wise 

multiplication. The magnitude of the image is encoded with the 1H density map, while the 

phase of the image is encoded with the velocity of the fluid. In this chapter, the focus is on the 

reconstruction of Φv. 

A naïve reconstruction technique for Φv is to first obtain Uv from Zero-Filling: 

𝑼v = 𝓕−1 𝒀v ,   (9.2) 

and then extract Φv from the phase of Uv. This is typically sub-optimal for under sampled 

k-space data because the reconstructed Φv suffers from under sampling artefacts which, for 

spiral imaging, consist of spiral ripples throughout the image. 

More commonly, Φv is obtained by first reconstructing the real and the imaginary part of Uv 

separately through common regularization techniques, such as Total Variation (TV) 
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regularization, discussed in Section 8.2.1, and subsequently combining them to give Φv 

[61-63]. However, it is not clear why the reconstructed phase should be accurate when the real 

and imaginary parts are reconstructed separately.  

Reconstruction methods which regularise the phase of the image, based on some prior 

knowledge of the phase, have recently been developed [1, 64-68]. A complication arises 

from the fact that the velocity images are generally acquired from the phase difference of 

different MR images, as discussed in Section 9.2. While there might be some prior 

knowledge about the velocity from fluid mechanics, there is generally no prior knowledge 

about the phase of individual MR images, since they are corrupted by, for example, field 

inhomogeneity artefacts. As a result, the regularisation needs to be imposed on the phase 

difference of different MR images, rather than separately on the phase of each MR image. 

The reconstruction method of Benning et al. [1], outlined below and used in this chapter, 

was found to be the most suitable in addressing this complication.  

As discussed in Section 9.2, to acquire a one component velocity image, four MR images 

are needed, corresponding to: flow and ±g polarity for the velocity-encoding gradient 

(Pv,1·exp(i Φv,1)); flow and ∓g polarity the velocity-encoding gradient (Pv,2·exp(i Φv,2)); 

no flow and ±g polarity for the velocity-encoding gradient and (Pv,3·exp(i Φv,3)); and no 

flow and ∓g polarity the velocity-encoding gradient (Pv,4·exp(i Φv,4)).  

The individual magnitudes, Pv,j, are obtained through TV regularization, using the 

PDHGM method, as outlined in Section 8.2.1: 

𝑷v,𝑗 = arg min
 𝑷v,𝑗

(
1

2
‖𝓕 𝑷v,𝑗 − 𝒀v.𝑗‖

2

2
+ 𝛼 ‖[𝑹  𝑷v,𝑗]

𝟐
‖

2,1
) ,   (9.3) 

where R represents the TV transform operator. 

Once the magnitude images are computed, the individual phase images, Φv,j, and the phase 

image corresponding to the velocity, Φv = ½ [(Φv,1 - Φv,2) – (Φv,3 - Φv,4)], are 

reconstructed using the prior knowledge that the velocity field has smooth spatial features. 

This is numerically achieved using the linearised Bregman iteration reconstruction 

technique developed by Benning et al. [1]. The iteration steps are as follows: 

{
𝜱v

(𝑘+1) = arg min
𝜱v

{𝜏〈𝜱v − 𝜱v
(𝑘), ∇𝐻(𝜱v

(𝑘))〉 + 𝐷𝐽
𝒑(𝑘)

(𝜱v, 𝜱v
(𝑘))}

𝒑(𝑘+1) = 𝒑(𝑘) − 𝜏∇𝐻(𝜱v
(𝑘))                                                                      

  ,  (9.4a) 

where: 



160 

 

𝐻(𝜱v
(𝑘)) =

1

2
∑ ‖𝓕(𝑷v,𝑗 ∙ exp(i 𝜱v,𝑗

(𝑘)) − 𝒀v.𝑗‖
2

2

𝑗 ,  (9.4b) 

𝐽(𝜱v
(𝑘)) =

1

2
‖𝜱v

(𝑘)‖
2

2
+ 𝛼 ‖[𝑸  𝜱v

(𝑘)]
𝟐

‖
2,2

. (9.4c) 

The Bregman distance for a function J is defined as: 

𝐷𝐽
𝒑(𝒙1, 𝒙2) = 𝐽(𝒙1) − 𝐽(𝒙2) − 〈𝒑, 𝒙1 − 𝒙2〉 ,  (9.4d) 

with p ϵ ∂J(x2), and ∂J(x2) being the so-called sub-differential, which is a generalisation of the 

classical differential for convex functions. The second order derivative matrix, Q, in Eq. (9.4c) 

enforces smoothness in the phase image corresponding to the velocity, Φv. The algorithmic 

parameter, τ, controls the convergence of the numerical solution. A convergence criteria for τ 

is found in the work of Benning et al. [1]; in this work, τ = 1.9 gave a good compromise 

between stability and convergence speed. The regularization parameter, α, is chosen to be equal 

to the regularization parameter for the same sampling percentage of k-space (25%) in Section 

9.3.1, where the proposed processing technique is validated against experimental data. 

The code used for processing the data was provided by Dr Martin Benning of the Department 

of Applied Mathematics and Theoretical Physics, University of Cambridge. Two changes are 

made to the code. The original code was designed for the case when the phase image 

corresponding to the velocity is obtained from the difference of only two phase images; the 

code is adapted to deal with the case when the phase image corresponding to the velocity is 

obtained from the difference of four phase images. The second change is the design of the 

regularization matrix, Q; Q is designed similarly to the first order differences in the work of 

Benning et al. [69], but with the first order differences substituted by second order differences. 

9.3.1. Validation of the reconstruction technique 

It is difficult to validate the reconstruction technique outlined in Section 9.3 against the 

MR velocimetry data of the bursting bubble because the ground truth of the velocity map 

is not known. Instead, the reconstruction technique is validated against experimental data 

of fully developed Hagen-Poiseuille flow in a cylindrical pipe, for which the ground truth 

for the axial velocity, vz, is well known: 

𝑣𝑧 = {
2𝑣z,mean (1 −

4(𝑥2+𝑦2)

𝐷2
)      for  𝑥2 + 𝑦2 ≤ 𝐷2/4

0                                               for  𝑥2 + 𝑦2 > 𝐷2/4
 .  (9.5) 
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vz,mean is the mean axial velocity, x and y are the Cartesian coordinates from the centre of 

the pipe, and D is the diameter of the pipe. 

The experimental system used to validate the results of the proposed reconstruction 

technique, outlined below, is separate from the system described in Section 9.2. 

Experiments are performed on a flow loop comprising of a pipe of inner diameter D = 16 mm. 

A 27 mM GdCl3.6H2O solution (T1 ≈ T2 = 100 ms) is used as the flowing fluid. The flow is 

driven by a Watson Marlow 505s peristaltic pump and is stabilised by a dampener to give a 

Reynolds number of Re = 250. The same magnet system as described in Section 9.2 is used. 

The spiral imaging pulse sequence illustrated in Fig. 9.1(b) is used to acquire 2D axial velocity 

maps on a transverse slice of 1 mm thickness. The spiral is designed according to the method 

of Hargreaves et al. [57] for an image comprising of 64 × 64 pixels and of resolution 

280 μm × 280 μm. The velocity-encoding gradients are designed with δ = 0.67 ms, 

Δ = 1.7 ms and g = 29 G cm-1. The r.f. excitation pulse duration is 256 μs and is designed 

for a flip angle of 90°. The capability of the processing technique proposed in Section 9.3 

to reconstruct the axial velocity map is investigated for 16 different sampling percentages 

from 100% to 6.3%, corresponding to imagibg times from 8.1 ms to 0.5 ms. For each 

sampling percentage, variable density spirals [70] of the form: 

𝜌(|𝑘|) = {
𝑐1 (1 −

|𝑘|

𝑐4
)

𝑐2

+ 𝑐3     for  |𝑘| ≤ 𝑐4

0                                     for  |𝑘| > 𝑐4

,  (9.6) 

are optimised with respect to the constants ci, such that they most closely reproduce the zero 

phase variation that characterises the phase associated with water under zero flow conditions. 

In Eq. (9.6), ρ refers to the density of sampled points and |k| refers to the magnitude of the 

inverse space variable. 

For the case of fully developed Hagen-Poiseuille flow, it is possible to use a very specific 

regularization matrix, Q, in the reconstruction technique outlined in Section 9.3, rather 

than a general regularization matrix that enforces smoothness in the velocity map. Such a 

regularization matrix is the third derivative matrix, which is used in this work. This choice 

of the regularization matrix is appropriate for the case of Hagen-Poiseuille flow because: 

𝜕3𝑣𝑧
𝜕𝑥3⁄ =

𝜕3𝑣𝑧
𝜕𝑦3⁄ = 0 .  (9.7) 

As a result, the velocity map, and therefore the phase of the image corresponding to the 

velocity map, is sparse in the third derivative domain. It is noted that such a choice of 
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regularization matrix is not appropriate for the case of the bubble burst, because the 

velocity map is more complicated; the best that can be done in that case is to have a 

regularization matrix that enforces smoothness. 

The quality of the velocity images reconstructed from the under sampled k-space data 

using the proposed processing method is quantified using the PSNR metric, defined in 

Section 8.2.4, with the ground truth being the velocity profile in Eq.  (9.5).  The quality of 

the velocity images depends on the regularization parameter, α; a range of α is scanned 

and the reported results refer to the value of α which gave the largest PSNR value. 

 

Fig. 9.2. (a) The PSNR metric of the reconstructed velocity maps of the fully developed 

Hagen-Poiseuille flow using Zero-Filling (ZF) and the proposed reconstruction technique 

at different sampling percentages. The lines are included to guide the eye. (b) Example of 

the reconstructed velocity map using the proposed processing technique at 6.3% sampling. 

The image is composed of 64 × 64 pixels and is of resolution 280 μm × 280 μm. (c) 

Comparison of the radially average velocity profile from the reconstructed velocity maps 

using Zero-Filling (ZF) and the proposed processing technique, at 6.3% sampling, with 

the theoretical Hagen-Poiseuille (HP) flow, as described by Eq. (9.5). 

The results of the reconstructed velocity maps using the proposed processing methods, 

compared to Zero-Filling reconstructions, are summarised in Fig. 9.2(a). It is observed 

that at all sampling percentages investigated, reconstructions using the proposed 

processing technique are better than Zero-Filling reconstructions. It is noted that 

PSNR ≠ ∞ even at a sampling percentage of 100% because the edges of k-space are never 

sampled during spiral imaging, and because of artefacts introduced by the NUFFT 

operator. An example of the reconstructed velocity map using the proposed reconstruction 

technique at a sampling percentage of 6.3% is shown in Figs. 9.2(b) and 9.2(c). The 

reconstructed velocity map agrees very well with the theoretical result of the 

Hagen-Poiseuille flow, thereby validating the results of the proposed processing method. 
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It is noted that such low sampling percentages (6.3%) give good reconstruction results 

only because, as discussed, it is possible to define a very specific regularization matrix 

based on the fluid dynamics of the system. For the case of the bubble burst hydrodynamics, 

where the regularization matrix is a general regularization matrix that enforces 

smoothness, such low sampling percentages are not possible. This is the reason for 

choosing a higher sampling percentage of 25%, as discussed in Section 9.2.  

9.4. Results and discussion 

Initially, the velocity maps of the bubble burst event are presented in Section 9.4.1. The 

velocity maps are subsequently used in Section 9.4.2 to shed light into a discrepancy 

between the predictions of different numerical methods about the vorticity map associated 

with the bubble burst event. 

9.4.1. Bubble burst velocity maps 

The evolution of the map of the velocity in the x-direction, vx, for a transverse plane that 

cuts through the middle of the bubble is shown in Fig. 9.3. The evolution is given at times 

t = 0, 4, 8, 12, 16, 20, 48 and 60 ms, where t = 4 ms corresponds to the time when the 

bubble burst event starts. A strong inward flow towards the bursting bubble is observed, 

which is consistent with the boundary-layer surface flow theory of MacIntyre [37, 38]. 

The inward flow weakens with time and gets further away from the centre of the bubble 

burst, eventually reaching the pipe surface. The subsequent periodic reversal between 

inward and outward flow observed at t = 48 and 60 ms is caused by the periodic fall back 

into the liquid pool of the upward jet; the upward jet is not observed in the vx map, but it 

is unambiguously distinguished in Figs. 9.5-9.7, which include the vz map. 

At a particular spatial location indicated in Fig. 9.3, vx is recorded every 4 ms for a time 

interval 0-280 ms and the process is repeated for three other bubbles. The results are shown 

in Fig. 9.4. It is observed that the velocity evolutions for the different bubble burst events 

are very similar. The implication of this observation is that the bubble burst 

hydrodynamics is highly reproducible. As a result, if the map of the velocities in the 

x-direction, vx, y-direction, vy, and z-direction, vz, are measured individually for three 

different bubbles, then, to a good approximation, these three components of the velocity 
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can be combined to construct a three-component velocity map. This is the method 

employed for constructing the three component velocity maps reported in this chapter. 

 

Fig. 9.3. The evolution of the map of velocity in the x-direction, vx, for a transverse plane 

cutting through the middle of the bubble at times t = 0, 4, 8, 12, 16, 20, 48 and 60 ms; 

t = 4 ms corresponds to the start of the bubble burst event. The empty circles at t = 4 ms 

and 8 ms denote the bursting bubble. The spatial resolution in both dimensions is 265 µm 

and the pipe diameter is 15.4 mm. The pixel-wise uncertainty in the reported velocity is 

2 mm s-1, estimated from the pixel-wise standard deviation of vx at t = 0 ms. The ‘×’ mark 

on the velocity image at t = 0 ms denotes the spatial location at which the measurements 

reported in Fig. 9.4 are made. 

 

Fig. 9.4. The evolution of the velocity in the x-direction, vx, at the spatial location marked 

by ‘×’ in Fig. 9.3 for a time interval 0-280 ms; t = 4 ms corresponds to the start of the 

bubble burst event. The uncertainty in the reported velocity is 2 mm s-1, estimated using 

the method described in Fig. 9.3. 
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The evolution of the three component velocity map at times t = 0, 4, 8, 12, 16, 20, 48 and 

60 ms for a transverse plane that cuts through the middle of the bubble is shown in Fig.  9.5. 

Apart from the inward flow that was observed in Fig. 9.3, Fig. 9.5 shows a central region 

with an initial large velocity in the z-direction, which corresponds to an upward jet being 

ejected; the maximum ejection speed detected is 0.15 m s-1. Once the jet achieves the 

maximum height at t = 12 ms (which is more clearly seen in Figs. 9.6 and 9.7), the jet falls 

back; this is most evident at t = 48 ms. Subsequently, the jet moves upwards again 

(t = 60 ms) and the process repeats periodically; this is also evident from the data in 

Fig. 9.4. The time between the start of the bubble burst and the reach of the maximum 

upward jet height, ≈ 8 ms, agrees with the time predicted by numerical works performed 

for bubbles of similar size [53]. The measured maximum ejection speed is a factor of 4-5 

slower than the predictions of numerical methods [41] and photographic measurements 

[36]. This is attributed to the 4 ms time averaging and the 265 μm spatial averaging of the 

MR measurements. The numerical and photographic measurements do not report the time 

evolution of the ejection speed and it is, therefore, difficult to verify the hypothesis of the 

time and spatial averaging of the MR measurements. 

 

Fig. 9.5. The map of the out-of plane velocity, vz, (colour coded) and the in-plane 

velocities, vx and vy (arrow coded) for a transverse plane cutting through the middle of the 

bubble at times t = 0, 4, 8, 12, 16, 20, 48 and 60 ms; t = 4 ms corresponds to the start of 

the bubble burst event. The empty circles at t = 4 ms and 8 ms denote the bursting bubble. 

The positive z-direction is the out-of-plane direction. The largest arrow corresponds to a 

velocity of 0.15 m s-1. The largest reported ejection speed is vz = 0.15 m s-1. The spatial 

resolution in both dimensions is 265 µm and the pipe diameter is 15.4 mm. The uncertainty 

in the estimate of the vx, vy and vz are 2, 2 and 1 mm s-1, respectively, estimated from the 

pixel-wise standard deviation of vx, vy and vz at t = 0 ms. 
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The evolution of the map of the velocity in the z-direction, vz, for a longitudinal plane that 

cuts through the middle of the bubble is shown in Fig. 9.6. The evolution is given at times 

t = 0, 4, 8, 12, 16, 20, 48 and 60 ms. Apart from the features of bubble burst already 

observed in Fig. 9.5, the longitudinal velocity image clearly shows a downward jet which 

is created in conjunction with the upward jet (t = 12 ms). This agrees with all numerical 

works on bubble burst. The downward jet continues to exist as the upward jet starts to fall 

(t = 16 ms) and eventually joins the falling upward jet (t = 20 ms). The longitudinal 

velocity images also give information about the change in the cavity shape during the 

bubble collapse, although highly spatially averaged as compared to what fast photography 

can achieve, which can be in the order of a few microns. 

 

Fig. 9.6. The evolution of the map of velocity in the z-direction, vz, for a longitudinal plane 

cutting through the middle of the bubble at times t = 0, 4, 8, 12, 16, 20, 48 and 60 ms; 

t = 4 ms corresponds to the start of the bubble burst event. The spatial resolution in both 

dimensions is 265 µm and the pipe diameter is 15.4 mm. The pixel-wise uncertainty in the 

stated velocity is 3 mm s-1, estimated from the pixel-wise standard deviation of vz at 

t = 0 ms. The highlighted feature at t = 12 ms corresponds to the downward jet. 

As the upward jet achieves the maximum height (t = 12 ms), the formation of a jet drop 

was observed only occasionally. This is to be expected because the Bond number, 

Bo = ρl g a2 / γ, and the Laplace number, La = ρl γ a / μl
2, of the bubble are approximately 

1.0 and 1.7 × 105 which correspond to an intermediate regime of jet drop formation / no 

jet drop formation [44]. In the definition of the Bond and Laplace number, ρl, μl, and γ are 

the density, viscosity and surface tension of the liquid, respectively, a is the radius of the 

bubble and g stands for the acceleration due to gravity. Although bubble burst events that 

are associated with jet drop formation are an area of ongoing scientific interest [44-47], 

the experimental work presented in this chapter corresponds only to bubble burst events 



167 

 

that are not associated with jet drop formation. The reason for this choice is that the scope 

of the chapter is to study the dynamics of the liquid during the bubble burst; this dynamics 

can be complicated and difficult to interpret if jet drops are also present. 

Applying the same method as for the transverse velocity images, the three-component 

velocity map on a longitudinal plane is reconstructed and its evolution at times t = 0, 4, 8, 

12, 16, 20, 48 and 60 ms is shown in Fig. 9.7. The main features of the three-component 

velocity maps were already observed in Figs. 9.3, 9.5 and 9.6. An important observation 

is that the out-of-plane velocity, vx, is small compared to the other components of velocity. 

This is to be expected because of the symmetry of the flow. Therefore, the observed non-

zero values of vx arise from the imperfect experimental symmetry. 

 

Fig. 9.7. The map of the out-of-plane velocity, vx, (colour coded) and the in-plane 

velocities, vy and vz (arrow coded) for a longitudinal plane cutting through the middle of 

the bubble at times t = 0, 4, 8, 12, 16, 20, 48 and 60 ms; t = 4 ms corresponds to the start 

of the bubble burst event. The positive x-direction is the out-of- plane direction. The 

largest arrow corresponds to a velocity of 0.13 m s-1. The largest reported ejection speed 

is vz = 0.13 m s-1. The spatial resolution in both dimensions is 265 µm and the pipe 

diameter is 15.4 mm. The uncertainty in the estimate of the vx, vy and vz are 2, 2 and 3 mm 

s-1, respectively, estimated from the pixel-wise standard deviation of vx, vy and vz at 

t = 0 ms. 

9.4.2. Bubble burst vorticity maps 

The in-plane components of the velocity in the longitudinal plane, vy and vz, are now used 

to investigate a discrepancy between the predictions of the numerical works of 

Boulton-Stone and Blake [54] and Duchemin et al. [39], about the vortical structure 

generated by the bubble burst event for bubbles of similar size. Fig.  9.8 shows the 

evolution of the vorticity in the out-of-plane direction, ωx, at times t = 4, 12, 20 and 60 ms, 

as calculated from the MR velocimetry data. The main observation is that at the point in 
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time in which the downward jet is observed to arise (t = 12 ms in Fig. 9.6), two 

counter-rotating vortices are observed at the location of the downward jet. This agrees 

with the work of Duchemin et al. [39] but disagrees with the work of Boulton-Stone and 

Blake [54]; the numerical work of Boulton-Stone and Blake [54] predicts a downward jet 

associated with the detachment of a single vortex from the base of the bubble. The main 

difference between the implementation of the two numerical works comes from the 

assumptions imposed: Boulton-Stoke and Blake [54] used an integral boundary method 

with the assumption of negligible viscosity effects; Duchemin et al. [39] relaxed the 

viscosity assumption and solved the full Navier-Stokes equations using finite differences. 

 

Fig. 9.8. Contour map of the vorticity in the out-of-plane direction, ωx, for a longitudinal 

plane cutting through the middle of the bubble at times t = 4, 12, 20 and 60 ms; t = 4 ms 

corresponds to the start of the bubble burst event. The highlighted feature at t = 12 ms 

shows two counter-rotating vortices associated with the downward jet which is observed 

for the corresponding time frame in Fig. 9.6. 

The results suggest that viscous effects make a significant contribution to the stresses in 

the downward jet. This is important for Computational Fluid Dynamics (CFD) simulations 

of the bubble burst event, which are critical in the design of bioreactors.  

9.5. Conclusions 

The first experimental measurement of spatially resolved velocity field generated in the 

liquid when a bubble bursts at a liquid/air interface was reported. Three-component 

velocity maps on 2D images obtained at 4 ms temporal resolution have revealed features 

which were up to now only predicted by numerical methods. The velocity maps were then 

used to establish that the downward jet ejected during the bubble burst event is created by 
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the detachment of two counter-rotating vortices; this agrees with solutions of the full 

Navier-Stokes equations using finite differences but disagrees with the numerical solutions 

of velocity maps using integral boundary methods which assume no viscosity effects. 
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Chapter 10 

Experimental evidence of velocity 

profile inversion in developing laminar 

flow at the entrance of pipes 

The research presented in this chapter is somewhat unrelated to the main focus of the 

thesis; there is no development or application of novel signal sampling or processing 

techniques. Indeed, the magnetic resonance sampling and processing techniques used are 

well-established techniques. However, this chapter follows the theme of Chapter 9; MR 

velocimetry is used to gain new insights into a long-standing fluid mechanics problem 

which is relevant to many engineering systems.  

10.1. Introduction 

The subject of entrance laminar flow in pipes for Newtonian fluids has been extensively 

studied over the years. The main focus of experimental research in this area to-date has 

been to establish the entrance length required for fully developed Hagen-Poiseuille flow 

and the excess pressure drop incurred due to momentum change at the entrance [1-8]. The 

experimental data have shown that the entrance length required for fully developed 

Hagen-Poiseuille flow, zent, is well approximated by zent = 0.06 D Rep, and that the excess 

pressure drop incurred at the entrance, Δpexc, is well approximated by Δpexc = 0.62 ρ vmean
2, 

where D is the diameter of the pipe, Rep is the Reynolds number based on the pipe 

diameter, ρ is the density of the fluid and vmean is the mean velocity. These experimental 

results are in good agreement with the results of analytical [9-13] and numerical methods 

[14-21]. 

Given the aforementioned focus, experimental measurements have generally been made at 

relatively large distances from the entrance to the pipe and a discrepancy between the 

predictions of analytical and numerical methods about the development of the velocity 
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profile very close to the entrance to the pipe has not been investigated experimentally. 

Early approaches considering the development of the velocity profile very close to the 

entrance of the pipe were based on analytical solutions of approximate Navier-Stokes 

equations obtained by performing linearization of the inertial terms [9, 12, 22, 23] or using 

Prandtl's boundary layer assumptions and solving these approximate equations using 

integral methods [11, 13, 24], series expansions [10, 25-27] or numerical finite-difference 

methods [14, 15, 28]. These approximations were relaxed with the advent of digital 

computation, which enhanced the capability to solve the full Navier-Stokes equations by 

numerical methods. Using this approach, various workers reported numerical finite-

difference solutions of the development of the velocity profile for laminar flows in a 

cylindrical pipe [29-33]. A salient feature has been captured by the numerical finite-

difference solutions of the full Navier-Stokes equations which was not evident in the 

analytical solutions of approximate Navier-Stokes equations: Starting from a uniform 

velocity profile, the axial velocity attains a maximum at a position other than the centre of 

the pipe for a short distance downstream of the flow, with a local minimum at the cent re 

of the pipe. The position of the maximum has been reported to move from the wall towards 

the centre of the pipe, staying at the centre thereafter. An illustration of the difference 

between the velocity profile development predicted from analytical solut ions of 

approximate Navier-Stokes equations and numerical finite-difference solutions of the full 

Navier-Stokes equations is given in Fig. 10.1. 

The phenomenon predicted from the numerical finite-difference solutions of the full 

Navier-Stokes equations is not constrained to the case of a uniform velocity profile at the 

entrance to the pipe, as was shown in the work dos Santos and Figueiredo [20], who studied 

numerically the entrance flow in a pipe through a contraction. However, the inlet boundary 

condition has a large influence on the exact development of the velocity profile [29,  30]. 

The developing axial velocity profile is accompanied by a non-zero radial velocity 

component, but this is expected to be negligible at Rep > 10 for a starting uniform velocity 

profile [29, 30, 32]. The physical explanation that has been given for the maximum in the 

axial velocity profile not being at the centre of the pipe [34] is that the rate of flow 

development spreads inwards from the wall towards the centre of the pipe, due to larger 

shear stresses at the wall. Therefore, the acceleration needed to compensate for the 

deceleration at the wall is first felt close to the wall, causing a maximum in the axial 

velocity profile which moves towards the centre of the pipe. Since the phenomenon is 
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constrained to a short distance after the entrance to the pipe, questions have been raised 

whether this is a truncation artefact of the numerical finite-difference methods [29, 35] 

and whether it is possible to obtain sufficiently accurate experimental data to validate this 

behaviour [17]. 

This chapter presents the first experimental study of the axial velocity profile development 

for laminar flow of a Newtonian fluid very close to the entrance to a cylindrical pipe, with 

the aim of investigating whether the behaviour of the axial velocity profile is closer to the 

predictions of analytical solutions of approximate Navier-Stokes equations or to the 

predictions of numerical finite-difference solutions of the full Navier-Stokes equations. 

The velocity profile at the entrance to a pipe also determines the local pressure distribution 

and heat and mass transfer coefficients. Therefore, the experimentally measured velocity 

profiles can be used to validate or refute Computational Fluid Dynamics (CFD) results 

which are commonly used in the design of engineering systems where entrance flow is 

important, such as capillary rheometers [36], microfluidic channels [37], filtration 

equipment [38], injection moulding [39] and impinging jet systems [40]. The close 

relationship between the velocity profile and pressure distribution during developing 

laminar flow has also been proposed to aid the diagnosis and treatment of blood flow 

related diseases [41, 42]. 

The chapter is structured as follows. Section 10.2 describes the experimental setup and the 

materials used. The results, discussion and comparison with literature data are presented 

in Section 10.3. 

 

Fig 10.1. Schematic of the development of the axial velocity profile at the entrance to a 

cylindrical pipe for laminar flow, as predicted by (a) analytical solutions of approximate 

Navier-Stokes equations and by (b) numerical finite-difference solutions of the full 

Navier-Stokes equations. 
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10.2. Materials and methods 

Experiments are performed on a flow loop comprising of a vertical cylindrical pipe of 

inner diameter D = 16 mm. The flow loop is designed such that a uniform velocity profile 

at the entrance to the pipe is produced by flowing the fluid through a regular square-

channel monolith. Water with 0.36 mM GdCl3.6H2O added T1 ≈ T2 = 80 ms is used as the 

flowing fluid. Flow is driven upwards by a Watson-Marlow 505s peristaltic pump, with a 

dampener used to mitigate flow fluctuations. A 100 mm long cylindrical cordierite 

monolith with 0.4 mm2 square channels running throughout its length is inserted in the 

pipe to obtain a uniform velocity profile.  

All experiments are conducted on an AV-400 Bruker spectrometer, operating at a resonant 

frequency of 400.25 MHz for 1H observation, with a r.f. coil of 25 mm diameter. The 

maximum magnetic field gradient amplitude available in each spatial direction is 

146 G cm-1. 

 

Fig. 10.2. (a) Schematic of the positions inside the monolith (position A) and at the exit 

of the monolith, or equivalently the entrance to the pipe, (z / D = 0.25, 0.5, 1, 2, 4, 6) where 

MR velocimetry acquisitions of the axial velocity in a transverse plane are obtained. (b) 

MR velocimetry pulse sequence used in this work, with the important acquisition 

parameters identified.  

MR velocimetry acquisitions of the axial velocity in a transverse slice are performed at a 

distance of 10 mm before the exit of the monolith in order to establish whether the velocity 

profile at the exit of the monolith is uniform and at distances z from the exit of the 

monolith, z / D = 0.25, 0.5, 1, 2, 4, 6, to investigate the development of the velocity 
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profile beyond the monolith. The position z / D = 0 which identifies the exit of the 

monolith, also identifies the entrance to the pipe. These are illustrated in Fig. 10.2(a). Four 

Reynolds numbers, Rep, are investigated in this study: 120 ± 10, 250 ± 10, 500 ± 20 and 

1100 ± 50. The quoted uncertainty is the calculated standard deviation of the Reynolds 

numbers measured at the different z / D positions chosen and arises from the experimental 

variation in the flow rate with the axial position in the pipe. The corresponding mean 

velocities to the Reynolds numbers studied are 0.8, 1.6, 3.1 and 6.9 cm s-1. The Reynolds 

number Rep relates to the flow at the exit of the monolith and uses the diameter of the pipe 

as the characteristic length. 

The MR velocimetry technique used is a combination of a conventional spin-echo based 

imaging technique with velocity-encoding magnetic field gradients, as illustrated in 

Fig. 10.2(b). For velocity imaging inside the monolith, the transverse slice thickness is 

5 mm, images comprise of 512 × 512 pixels and are of resolution 0.039 mm × 0.039 mm, 

δ = 0.25 ms, Δ = 0.5 ms, τ = 0.51 ms; g is optimised to achieve a high signal-to-noise ratio, 

and the time between complex data points acquired in the read (y) direction is 1 μs. The 

uncertainty in the pixel-wise velocity measurement inside the monolith is 1.4 mm s-1, as 

calculated from the standard deviation of the velocity image acquired under zero flow 

conditions. The spatial resolution of the velocity images inside the monolith is high in 

order to resolve velocities inside individual channels. For all velocity images beyond the 

exit of the monolith (i.e., within the pipe), the transverse slice thickness is 1 mm, images 

comprise of 64 × 64 pixels and are of resolution 0.313 mm × 0.313 mm, δ = 0.5 ms, 

Δ = 1 ms, τ = 1.28 ms; g is optimised to achieve a high signal-to-noise ratio, and the time 

between complex data points acquired in the read (y) direction is 20 μs. The uncertainty 

in the pixel-wise velocity measurement at the exit of the monolith is 0.3 mm s-1, as 

calculated from the standard deviation of the velocity image acquired under zero flow 

conditions. The phase image used to calculate the velocity is obtained from the phase 

difference between two images with positive and negative velocity-encoding gradients (+g 

and -g) and with correction from a zero velocity image, as discussed in Section 2.18. 

10.3. Results and discussion 

First, the results of velocity measurements inside the monolith are presented in Section 

10.3.1, which show that the velocity profile immediately after the exit of the monolith is 
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well approximated by a uniform velocity profile. Then, the results of the velocity profile 

development at the entrance to the pipe are given in Section 10.3.2, which show clearly a 

maximum in the velocity profile whose position moves from the wall to the centre of the 

pipe with distance along the pipe. These data are then compared to available results from 

numerical finite-difference solutions of the full Navier-Stokes equations in the literature 

and the differences are critically discussed. 

10.3.1. Velocity profile inside the monolith 

In this section, results of the axial velocity measurements on a transverse slice positioned 

at a distance of 10 mm before the exit of the monolith are presented. Fig.  10.3(a) reports 

the magnitude image of the fluid in the monolith, which shows that the square channels 

are of similar size and they are distributed evenly throughout the cross-section of the pipe. 

Each channel comprises of ~ 16 × 16 pixels, which should give sufficient information 

about the velocity profile inside an individual channel. The velocity profile distribution 

for an expanded region corresponding to a single representative channel at Rep = 500 is 

given in Fig. 10.3(b). The Reynolds number in each individual channel, Rec, is estimated 

to be ~ 6, 10, 21 and 46 when the corresponding Reynolds number at the exit of the 

monolith, Rep, is 120, 250, 500 and 1100, respectively. Rec is calculated based on the 

hydraulic diameter of the channel.  

 

Fig. 10.3. (a) Cross-section magnitude image of the fluid in the monolith, composed of 

parallel square channels, at a distance of 10 mm before the exit of the monolith (position 

A in Fig. 10.2(a)). The fluid is MR-active while the monolith is MR-inactive and does not 

contribute to the MR signal. The image comprises of 512 × 512 pixels and is of resolution 

0.039 mm × 0.039 mm. The thickness of the wall separating the channels is approximately 

0.15 mm. (b) Axial velocity image of a single representative channel highlighted in (a) at 

Rep = 500, Rec =21. The image comprises of 16 × 16 pixels and is of resolution 

0.039 mm × 0.039 mm. The maximum uncertainty in the pixel-wise reported velocity is 

1.4 mm s-1. The axial velocity in the monolith is denoted by vmon to distinguish it from the 

axial velocity at the exit of the monolith, denoted by v.  
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At these low Reynolds numbers, the entrance length required for fully developed flow in 

an individual square channel is < 5 mm [43]. Therefore, at the imaging section positioned 

10 mm before the exit of the monolith (position A in Fig. 10.2(a)), fully developed laminar 

flow is expected in each channel, even at the highest Reynolds number studied. At this 

distance before the exit of the monolith, the mean velocities in each channel are then 

radially averaged to give the velocity profile across the whole cross-section of the 

monolith. 

 

Fig. 10.4. Radially averaged axial velocity profile at a position of 10 mm before the exit 

of the monolith (position A in Fig. 10.2(a)) at the four Reynolds numbers studied. r refers 

to the radial distance, a refers to the radius of the pipe, and vmean refers to the mean 

velocity. The lines are included to guide the eye. The graphs are constructed by radial 

averaging the mean velocities of the fluid within each channel. The uncertainty related to 

each data point is dominated by the circular asymmetry of the velocity profile, rather than 

the uncertainty related to pixel-wise velocity measurements. The maximum uncertainty of 

the reported v / vmean values is 0.05. For reasons of clarity, error bars are not shown.  

The radially averaged velocity profiles obtained at each of the Reynolds numbers 

investigated are shown in Fig. 10.4. It is observed that the velocity profile across the 

cross-section of the monolith is well approximated by a uniform velocity profile at all 

Reynolds numbers investigated. The slight deviation from the uniform velocity profile 

close to the wall of the pipe is caused by the non-ideality of the channels close to the wall 

of the pipe. The non-ideality of the channels extends for approximately one channel side 

length from the wall of the pipe. This region corresponds to r / a in the range 0.9-1.0, 

where r is the radial distance from the centre of the pipe and a is the radius of the pipe. It 

is in this region that the slight deviation from the uniform velocity profile is observed in 

Fig. 10.4. The effect that the deviation from the uniform velocity profile close to the wall 
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of the pipe has in the development of the velocity profile at the exit of the monolith is 

discussed in Section 10.3.2. Since the velocity profile at each individual channel is fully 

developed at 10 mm before the exit of the monolith, it is expected that the velocity profile 

across the cross-section of the monolith shown in Fig. 10.4 remains the same until the exit 

of the monolith. Therefore, the velocity profile immediately after the exit of the monolith 

and entrance to the pipe is well approximated by a uniform velocity profile.  

10.3.2. Velocity profile development at the entrance to the pipe 

The development of the axial velocity profile at the entrance to the pipe from the initial 

profile shown in Fig. 10.4 is now reported, with a particular focus on the location and 

magnitude of the maximum velocity in the profile. 

The experimental results for the axial velocity profile at distances of z / D = 0.25, 0.5, 1, 

2, 4 and 6 from the entrance to the pipe and Reynolds numbers, Rep, of 120, 250, 500 and 

1100 are presented in Fig. 10.5. The key observation from these results is that for a short 

distance from the entrance to the pipe (the extent of which depends on the Reynolds 

number), a maximum in the velocity profile which is not positioned at the centre of the 

pipe is clearly distinguished at all Reynolds numbers investigated. These experimental 

data therefore strongly support the predictions of the numerical finite-difference solutions 

of the full Navier-Stokes equations and do not agree with the predictions of analytical 

solutions of approximated Navier-Stokes equations. 

Considering the distance from the entrance to the pipe, z / D, over which the phenomenon 

is visible, it is seen that the phenomenon extends to greater distances down the pipe as Rep 

increases; the phenomenon is visible until z / D ~ 0.5 for Rep = 120, z / D ~ 2 for 

Rep = 250, z / D ~ 4 for Rep = 500 and z / D ~ 6 for Rep = 1100. This observation is in 

qualitative agreement with the observations of all the works reported which use numerical 

finite-difference methods to solve the full Navier-Stokes equations and can be explained 

in terms of the boundary-layer theory [25]; the boundary layer develops faster for low 

Reynolds number, which, as is well known, is why the entrance length for fully developed 

laminar flow is smaller for low Reynolds numbers.    

Sufficient literature data for the quantitative comparison of the present experimental 

results are only available at Rep = 500. Fig. 10.6 shows (a) the variation of the position of 

the maximum on the velocity profile, rc / a, (b) the variation of the maximum velocity, 

vmax / vmean, and (c) the variation of the velocity at the centre of the pipe, vcentre / vmean, with 
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the distance from the entrance to the pipe, z / D, at Rep = 500 for both the experimental 

data presented in this study and the results from the numerical finite-difference solutions 

of the full Navier-Stokes equations of Friedmann et al. [29], Wagner [30] and 

Dombrowski et al. [32]. 

 

Fig. 10.5. Radially averaged axial velocity profiles at positions z / D = 0.25, 0.5, 1, 2, 4 

and 6 from the entrance to the pipe and Reynolds numbers, Rep, of (a) 120, (b) 250, (c) 

500 and, (d) 1100. The lines are included to guide the eye. For each Reynolds number, the 

entrance length required for fully developed laminar flow, zent / D, is included in the figure. 

The uncertainty related to each data point is dominated by the circular asymmetry of the 

velocity profile, rather than the uncertainty related to pixel-wise velocity measurements. 

The maximum uncertainty of the reported v / vmean values is 0.03. For reasons of clarity, 

error bars are not shown.  

Considering the results from the numerical finite-difference solutions of the full 

Navier-Stokes equations, a major difference is observed between the results of 

Friedmann et al. [29] and Dombrowski et al. [32], as compared to the results of Wagner 

[30]. This is attributed to the use of different inlet boundary conditions; 

Friedmann et al. [29] and Dombrowski et al. [32] used a uniform velocity profile while 
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Wagner [30] used inlet boundary conditions corresponding to a piston moving at constant 

speed and solved the problem in a frame of reference in which the piston is stationary. The 

observation that the use of different inlet boundary conditions leads to significant 

quantitative differences in the measured rc / a, vmax / vmean and vcentre / vmean is the main 

reason for not including in Fig. 10.6 the data from the numerical work of dos Santos and 

Figueiredo [20]. A minor difference is observed even between the results of 

Friedmann et al. [29] and Dombrowski et al. [32], showing that even with the use of the 

same inlet boundary conditions, different implementations of numerical methods can lead 

to different results, in terms of the predicted values of rc / a, vmax / vmean and vcentre / vmean. 

 

Fig. 10.6. Comparison of the present experimental results at Rep = 500 with the results 

from finite-difference numerical methods solution of full Navier-Stokes equations from 

Friedmann et al. [29] and Dombrowski et al. [32] at Rep = 500 and Wagner [30] at 

Rep = 400. The graphs show the variation of (a) the critical radius rc / a at which the 

maximum of the velocity occurs, (b) the maximum of the velocity vmax / vmean and (c) the 

velocity at the centre of the pipe vcentre / vmean with the distance from the entrance to the 

pipe z / D. The results are only shown for values of z / D at which the maximum in the 

velocity profile is not at the centre of the pipe. The uncertainty associated with the 

estimation of rc / a is dominated by the spatial resolution of the MR image; the uncertainty 

associated with vmax / vmean and vcentre / vmean is dominated by the circular asymmetry of the 

velocity profile, rather than the uncertainty related to pixel-wise velocity measurements.      

The inlet boundary condition in the present experimental work is closer to the inlet 

boundary conditions used by Friedmann et al. [29] and Dombrowski et al. [32], and it is 

observed from Fig. 10.6 that there is good agreement between the present experimental 

data and the results of those workers. However, the experimentally observed rc / a is 

consistently lower, while vmax / vmean and vcentre / vmean are consistently higher than the 

values predicted by Friedmann et al. [29] and Dombrowski et al. [32]. These 
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discrepancies can be explained by the fact that the inlet boundary condition in the 

experiment is not a perfect uniform velocity profile (as it is assumed in the work of 

Friedmann et al. [29] and Dombrowski et al. [32]) but is as shown in Fig. 10.4. The 

consistently lower rc / a observed experimentally is consistent with the flow already 

spreading inwards from the wall towards the centre of the pipe before the flow exits the 

monolith and enters the pipe; this is supported by the data shown in Fig.  10.4. The 

consistently higher vmax / vmean and vcentre / vmean follow from continuity. 

10.4. Conclusions 

The first experimental evidence of a maximum in the velocity profile positioned not at the 

centre of the pipe during laminar flow development of a Newtonian fluid at the entrance 

to a cylindrical pipe was presented. This phenomenon has been previously reported from 

numerical finite-difference solutions of the full Navier-Stokes equations, but has not been 

captured by previous analytical solutions of approximated Navier-Stokes equations or any 

other experimental study. The experimentally observed behaviour of the phenomenon as 

a function of the Reynolds number and distance downstream from the entrance to the pipe 

is in good agreement with numerical finite-difference solutions of the full Navier-Stokes 

equations. The minor differences can be explained in terms of the use of slightly different 

inlet boundary conditions. 
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Chapter 11 

Conclusions and future work 

In this thesis, novel signal sampling and processing techniques were introduced in 

application to NMR and MRI problems. The proposed techniques are summarised in the 

following sections. It was shown that either through the separate or joint optimization of 

the processing techniques and the sampling patterns, the estimation of magnetic resonance 

parameters can be improved, or the experimental acquisition time can be reduced while 

keeping the accuracy of the estimated parameters unchanged. The presented methods were 

used to study experimental systems at higher temporal resolutions and in extracting 

features more accurately than was previously possible. The presented methods and the 

investigated experimental systems have suggested potential extensions and applications, 

which are also outlined in the following sections. 

11.1. Optimising processing techniques 

To obtain distributions of relaxation time constants and diffusion coefficients which are a 

priori known to be sparse, from 1D and 2D NMR experiments, it was proposed in Chapter 

4 to use L1 regularization as the processing technique. Using L1 regularization, relaxation 

time constants and diffusion coefficients differing by as little as ~10% were resolved; the 

conventional processing technique of Tikhonov regularization can typically only resolve 

features differing by a factor of ~3. L1 regularization reconstructions were shown to be 

stable at SNR < 20, while conventional reconstructions from the NNLS method are 

unstable at these noise levels. L1 regularization was used to resolve inter and intra particle 

components of a hexane/dodecane mixture in porous silica beads. This capability is 

expected to be valuable in studying multi-component chemical mixtures in catalytic and 

rock systems. 

When no prior information is available about the distributions of relaxation time constants 

and diffusion coefficients being extracted, it was proposed in Chapter 5 to process the 1D 

and 2D NMR data using Modified Total Generalized Variation (MTGV) regularization. 
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MTGV regularization retains both sparse and smooth features in the extracted distributions 

because it inherits good properties from both Tikhonov and L1 regularizations. Over a 

range of simulated distributions and a range of SNR, MTGV regularization was shown to 

outperform Tikhonov and L1 regularizations, apart from when the distributions were very 

discrete, in which case L1 regularization performed slightly better. 

It was shown in Chapter 8 that the recently proposed Nuclear Total Generalized Variation 

(NTGV) regularization is the best processing technique for obtaining 3D spatially resolved 

T2 distributions from highly under sampled k-space data. NTGV regularization exploits 

simultaneously the sparsity of the individual T2-weighted images in the Total Variation 

(TV) domain and the correlation of the pixel-wise T2 decays. NTGV regularization was 

shown to outperform the conventional processing technique of TV regularization and the 

more recent Nuclear Norm (NN) regularization. NTGV regularization was used to 

experimentally obtain quantitative 3D spatially resolved T2 maps with a 32-fold decrease 

in the acquisition time. The improved temporal resolution in the acquisition of spatially 

resolved parameter distributions opens opportunities in studying unstable systems over a 

long acquisition time and in investigating fast-changing phenomena. 

To reconstruct MR velocity images from under sampled k-space data, it was proposed in 

Chapter 9 to perform regularization on the phase of the images, rather than on the 

magnitude of the images, which is the conventional processing technique. Using a recently 

proposed phase regularization method, it was possible to capture, for the first time, the 

hydrodynamics of a bubble burst event by acquiring three-component velocity maps on 

2D images at a temporal resolution of 4 ms. The reconstructions showed a downward jet 

associated with the creation of two counter-rotating vortices. The observation was used to 

validate numerical method predictions. The work in Chapter 9 has opened opportunities 

to study fluid mechanics problems which remain a long-standing challenge, such as the 

hydrodynamics of bubble coalescence [1-4]. 

From the aforementioned results, it is concluded that the choice of the processing 

technique depends on the prior information available about the experimental system. In 

the following paragraphs, future research questions are suggested, and advice is given on 

the choice of the processing techniques. 

Monitoring of reaction kinetics or other dynamic systems by a series of measurements in 

time of diffusion coefficients or relaxation time constant distributions [5-8] is an 
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alternative to spectroscopic monitoring when no spectroscopic resolution is available. One 

problem with processing these data sets is that the distributions at each time step are 

commonly reconstructed individually. The distributions reconstructed in this way may 

vary unrealistically between different time steps because of the automatic selection of the 

regularization parameter and the variation in the SNR. It is hypothesised that the 

reconstructed distributions may be improved by performing NN regularization in the time 

domain, similarly to method described in Section 8.2.2. The application of NN 

regularization is based on the knowledge that the distributions at different time steps are 

highly correlated. It would be interesting to compare NN regularization reconstructions 

with conventional reconstructions of experimental data.  

In spatially resolved wettability study of rocks using NMR relaxation time constant 

distributions [9, 10], small changes in wettability can affect the extraction efficiency of 

hydrocarbons. The detection of these small changes using common conventional 

processing techniques for NMR relaxation data can be difficult because the small changes 

are typically superimposed on a very broad background distribution. A new rank-sparse 

regularization technique [11, 12] has been proposed to reconstruct a series of distributions 

which are composed of highly correlated backgrounds and sparse features appearing in 

some of the distributions. It is hypothesised that this regularization technique may be able 

to detect the small changes in wettability. 

The regularization of the phase of the image for the reconstruction of MR velocity images 

from under sampled k-space data was done with a generic smoothing regularization matrix 

in Chapter 9. However, as discussed in Section 9.3.1, using a regularization matrix based 

on the knowledge of the fluid dynamics of the system may allow under sampling at 

unprecedented levels. Such a regularization matrix was easy to construct for the simple 

laminar flow case in Section 9.3.1. However, when the fluid dynamics is complex, the 

choice of the regularization matrix is challenging. Divergence-free regularization, which 

enforces continuity, has been previously proposed as a potential regularization matrix 

[13, 14]. It would be interesting to investigate whether a more elaborate regularization 

matrix can be constructed from the discretisation of the full Navier-Stokes equations.  

In most MR velocimetry applications, the high under sampling in the k-space data is done 

to acquire velocity images at a high temporal resolution. Conventionally, the acquired 

velocity images are reconstructed individually. However, the high correlation between 
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subsequent velocity images [15, 16] can be used in the form of regularization to improve 

the reconstructions. Further, mass conservation between subsequent frames be cast as a 

regularization matrix and help in further improving the reconstructions.  

MRI has been successfully used to characterize bubble size distributions [17, 18] and the 

liquid velocity field of bubbly flows [19, 20]. To study fast flowing systems, under 

sampling of the k-space data is needed. It is, therefore, critical to develop processing 

techniques for highly under sampled k-space data for the accurate reconstruction of the 

MRI magnitude images which would be subsequently used in calculating the bubble size 

distribution or studying the hydrodynamics of the system. An important reconstruction 

quality metric for the MRI magnitude images is the correct segmentation of the 

bubble-liquid interface. We are collaborating with the Cambridge Image Analysis group 

at the Department of Applied Mathematics and Theoretical Physics, University of 

Cambridge for the development of a joint segmentation-reconstruction regularization 

technique for this application [21]. 

11.2. Optimising sampling patterns 

A novel method for optimising sampling patterns for 1D relaxation and diffusion NMR 

experiments, based on the Cramér-Rao Lower Bound (CRLB) theory, was outlined in 

Chapter 6. In Chapter 6, the findings of the CRLB theory were validated against NMR 

diffusion experimental data of an emulsion of toluene in water, with the aim of the most 

accurate estimation of the lognormal distribution parameters that characterise the emulsion 

droplet size distribution. In Chapter 7, the findings of the CRLB theory were validated 

against NMR diffusion experimental data of a gaseous mixture of methane/ethane 

adsorbed in a zeolite, with the aim of the most accurate estimation of the bi -exponential 

model parameters that characterise this system. Sampling patterns were optimised by 

minimizing an objective function that depends on the accuracy of estimation of the model 

parameters. In both examples, the predictions of the CRLB theory about the variation of 

the objective function with the sampling pattern were within 10% difference from the 

objective function calculated from the uncertainties of the model parameters obtained from 

the same experimental sampled points. It was shown that CRLB theory is applicable at 

SNR values of as low as ~10. The application of the presented method requires some prior 

knowledge of the parameters being estimated; a sensitivity analysis on the prior knowledge 
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was performed. The optimisation of the sampling patterns can be done with the objective 

of a more accurate estimation of the parameters of a model or with the objective of 

reducing the acquisition time while keeping the accuracy of the estimated parameters 

fixed. A case study of how the acquisition time can be reduced while keeping the accuracy 

of the estimated parameters fixed using the CRLB theory was given in Sections 6.4.4 and 

7.4.2. 

The CRLB-based method for optimising sampling patterns outlined in this thesis is 

currently being extended in application to 2D NMR correlation experiments. In 

collaboration with the Christodoulou Group, Department of Structural and Molecular 

Biology, University College London, the optimised sampling patterns for D-T2 correlation 

experiments will be used to accelerate the experimental acquisition time, such that the 

evolution of protein aggregation can be observed. 

The CRLB theory has limitations, which if overcome, could widen the applicability of the 

method in application to NMR and MRI problems. Future research questions are proposed 

in the following paragraphs. 

The CRLB theory, as presented in Section 3.4, is only applicable when the parameters are 

estimated through an unbiased estimation technique. This means that the CRLB theory is 

not directly applicable to the problem of optimising sampling patterns for experiments 

whose data are processed using regularization. Since one of the most common techniques 

of reconstructing relaxation time constants and diffusion coefficient distributions from 

NMR data is through regularization, it would be valuable to extend the CRLB theory to 

the case of regularization. Fortunately, theoretical developments for biased CRLB 

estimations have been made [22-24]. It would be very interesting to see the biased CRLB 

theory used in optimising sampling patterns for improving the reconstruction of relaxation 

time constants and diffusion coefficient distributions from NMR data. An envisaged 

difficulty is the effect that the choice of the regularization parameter has on the 

optimisation of the sampling patterns. 

The CRLB theory, as presented in Section 3.4, is only applicable when the signal is real -

valued. As a result, the CRLB theory is not directly applicable to the problem of optimising 

sampling patterns for complex-valued signals, such as in under sampled MRI applications. 

Fortunately, theoretical developments for the application of the CRLB theory to 

complex-valued signal have been made [25, 26] and it would be interesting to see whether 
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the CRLB theory can bring a systematic approach in an area which is dominated by trial 

and error. Another approach to using CRLB theory for optimising sampling patterns in 

under sampled MRI applications, is to deal with the magnitude of k-space rather than the 

complex-valued k-space. We are currently developing this method for optimising sampling 

patterns for obtaining high resolution MRI images of rocks. 

The optimised sampling pattern using the CRLB theory is fixed before the experimental 

acquisition is started and, therefore, assumes a reasonable prior knowledge of the system. 

In a fully automated experimental acquisition protocol, it would be ideal if a program 

could learn from the sampled points acquired and adjust the future sampled points 

accordingly. This is the idea behind the recent work of Song et al. [27] and it is expected 

to be an active research area in the future. 

11.3. Joint optimisation of processing techniques and 

sampling patterns 

The processing technique and the sampling pattern for a given NMR or MRI experiment 

can be optimised separately. However, the joint optimisation of the processing technique 

and the sampling pattern can lead to better reconstructions than the separate optimisations, 

as was observed in Chapter 8. It was shown in Chapter 8 that the full potential of NTGV 

regularization is realised when it is used in processing data sampled according to an 

incoherent sampling pattern rather than a coherent sampling pattern.  

A systematic approach to the joint optimisation of the processing technique and the 

sampling pattern is, therefore, needed. This could be the focus of future investigations. 
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Matrix notation 

Symbol Denotes Comment 

a column vector, i.e. 1D matrix bold, italic, lowercase 

letter 

A matrix, i.e.  two or higher dimensional matrix bold, italic, uppercase 

letter 

tr(A) trace of matrix A  

diag(A) diagonal of matrix A  

AT transpose superscript ‘T’ 

A-1 inverse of A  

A- generalized inverse of A  

κ(A) condition number of A  

σi(A) singular values of A  

Av vectorised matrix, formed by stacking the 

columns of A into a large vector 

subscript ‘v’ 

[a]n reshape of vector a into a matrix with n 

columns 

square bracketed vector, 

subscript ‘n’ 

ai i-th element of vector a  

Aij element of matrix A, positioned at (i, j)  

sum(A, i) sums the column or row vectors of matrix A 

along the i-th dimension 

 

svd(A) Singular Value Decomposition of A  

repmat(A, k, i) stacks k copies of A in the i-th dimension  

||a||p Lp-norm of vector a, defined in Section 3.1.1  

||A||p,q Lp,q-norm of matrix A, defined in Section 

3.3.4 

 

||A||Sp Schatten-p-norm, defined in Section 8.2.2  

⊗ Kronecker product  

〈A,B〉 inner product between matrices A and B  

A·B element-wise product of matrices A and B central dot 

 


