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Abstract. This article models the elastodynamic transient contact between two elastically similar half
planes under antiplane loading and in the presence of friction. Contact is maintained along the positive

real line under the presence of a certain remote contact pressure. An antiplane shear load is applied, which

entails interfacial shear traction that opposes the frictional force entailed by the contact pressure. In order to
balance the surface tractions, the surface must be allowed to slip. We derive the closed form solution of the

interfacial traction due to a general antiplanar displacement distribution using a variant of the Wiener-Hopf

technique. We also find closed-form expressions for the interfacial shear traction due to this remote antiplane
load. In combination with the frictional force, this leads to an integral equation the solution to which is the

distribution of relative slip. We quantify both this and the magnitude of the interfacial shear tractions under
diverse loading, showing that transient loading leads to partial reverse slip of the contact surfaces. We show

that the reverse slip tends to vanish over time, and that it is ameliorated if the friction coefficient is reduced.

1. Introduction

This article discusses the elementary solutions governing the antiplane, elastodynamic contact between
two elastically similar bodies in the presence of friction and slip. Elastodynamic contact is of particular
relevance at high strain rates[1], under shock[2, 3] or ramp loading[4], and generally in the description of
contact problems where the representative time and lengthscales are comparable to the relevant speeds of
sound of the material, such as those that may for instance be encountered in turbine shaft bearings[5, 6, 7],
where the loading rates quickly approach the material’s speed of sound; in joints in flexible structures, where
the speed of sound at the joint is much slower than that at the structure itself[8, 9]; or in brakes, where
dynamic contact is involved in frictional induced vibrations[10, 11] which are also of relevance in structural
mechanics [12, 13, 14]. In such situations, the conventional contact equations ought to account for the inertial
forces of the material, and the problem, formerly parabolic, becomes time dependent and hyperbolic. This
entails a number of theoretical complications which means that dynamic contact has in the past received less
attention than its static counterpart.

A considerable number of the dynamic contact problems that have been studied in the past involve moving
contact problems in the absence of friction[15]. These problems can be greatly simplified under the assumption
that the contact surfaces slide at constant speed, because in those cases the fundamental solutions become
self-similar[16] (or, equivalently, homogeneous to degree zero in space and time [17]), so that the problem
may be studied in the steady-state as a simple function of the sliding velocity. This approach has proven
particularly useful in studying the role inertial forces may play in kinetic sliding contacts in plane strain,
as done for instance by Galin [18, 16], Craggs and Roberts [19], Georgiadis and Barber [20], or Brock[21],
amongst many others. This class of problems quickly stumbles upon some complications when exploring
sliding motions above the Rayleigh wave speed and in the transonic regime, since the contact surface in those
cases appears to be non-unique, and entails the presence of moving singularities[15]. Such problems were
recently clarified by Slepyan and Brun[22], who offered a complete account of that nature of these singularities
and how to regularise them in steady state contact problems of this kind.

A different class of problems concerns the transient contact between bodies. These problems pertain to
studying the temporal evolution of the contact response. Unlike the steady state solutions, these problems
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require a fully elastodynamic treatment of both the contact loads, which may vary arbitrarily in time. Kostrov
[23] and Thompson and Robinson [24] for instance studied the transient contact between a rigid indenter and
an elastic half space exploiting self-similar loading conditions, which were also briefly discussed by Slepyan
and Brun[22]. Kalker [25] offered a classical account of ‘transient’ contact between rolling cylinders, but
neglected inertial forces.

Further work on the transient response has focused on identifying local resonances and instabilities af-
fecting the contact between two bodies under time-dependent conditions, usually studying the ill-posedness
of the problem using stability analysis or linearised models[26, 27, 28, 29]. Such approach was employed by
Achenbach and Epstein[30], who used a linear elastodynamic model to study the interfacial resonance modes
in planar, frictionless contacts excited by free time-harmonic waves. Similarly, Comninou and Dundurs [31]
used harmonic analysis to study the possibility of interfacial separation (loss of contact) along bimaterial in-
terfaces. Renardy [32] and Martins et al. [33] extended these studies to the stability of the dynamic contact
problem under the presence of friction, concluding that large frictional coefficients favoured instabilities. In
turn, using linear stability analysis, Adams [34] found a family of instabilities in the steady state solutions
of the normal contact between two dissimilar materials, which could lead to separation or waves of stick and
slip.

As is the case in statics, the study of transient contact problems involves similar approaches to those used
in dynamic fracture mechanics[35]–where cracks are typically considered to propagate along an elastodynamic
continuum under varied, time-dependent loading–, and in seismology[36]—where the far field and the dynamic
propagation of geological faults are of great interest, often in the presence of frictional forces that govern
the energetics and limit the propagation speed of the said faults [37, 38]. Because of its role in determining
the propagation speed of geological faults, the study of the frictional laws affecting them has drawn a lot of
attention [39, 40], usually in the context of Burridge-Knopoff like models[41] that attempt to study the role of
frictional laws employing unidimensional models[42, 43, 44], or in numerical models of increasing complexity
[45, 37, 46] where the frictional law is required to be rate dependent or proportional to the sliding between
surfaces[47, 40].

Further studies of the transient response of contacting interfaces under time-dependent loading conditions
include the work of Fineberg and coworkers[48, 49, 50], who in the context of seismic fault propagation
performed a number of detailed experiments studied the onset of frictional slip under dynamic loading,
uncovering a number of instabilities that suggest that, locally, the interfacial contact loads can be much
larger before precipitating slip than would be possible under static loading[51]. Such instabilities have lead
to questioning the local validity of Amonton’s laws under certain dynamic conditions[51, 52, 53] and the
general validity of linear frictional models[54, 55].

The aim of this article is to add to the existing corpus of analytical dynamic contact solutions by presenting
the governing equations of the antiplane dynamic contact problem between two elastically similar half spaces
in the presence of friction and slip. The elastostatic solution to this problem is generally achievable as
the antiplanar version of the classical Cattaneo-Mindlin problem[56, 57], which generally concerns in-plane
normal and tangential loads (cf.[15, 58, 59, 60, 61]). In the antiplanar case, the contact is established by
a remote normal load, but the shearing load acts out-of-plane. Under the action of some frictional force
a slipping region is necessary to balance both the frictional and interfacial tractions about the edge of the
contact area[62, 15].

In this article, we posit that the same loading considerations used on the elastostatic problem ought
to hold true for a fully transient situation, and we aim at computing the form of the slipped region under
transient loading. We shall consider the more general case possible, where the driving loads are not necessarily
self-similar, and reach a governing equation describing the force balance at the contact interface. Contrary
to elastostatics, some of the descriptions of the relevant dynamic interfacial tractions are not immediately
available, and will be derived in the following.

Thus, this article is structured as follows. Section 2 describes the general characteristics of the elastody-
namic antiplane contact problem under consideration here, highlighting the need to describe the interfacial
shear tractions due to a remote load and due to an unknown slip distribution. The interfacial shear traction
problem due to a remote load has a well-known [63, 36, 35] solution, which is briefly outlined in section 3.
The interfacial shear traction problem due to a slip distribution is solved in section 4 by deriving the funda-
mental solution for the relevant problem. Section 6 provides the full governing equation, which is solved for
a number of loading cases. Section 7 closes this article with its concluding remarks.
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Figure 1. Schematic of the system under consideration:a semi-infinite contact interface is
subjected to a remote normal load P (x, t) that maintains the contact, and a remote shear
load R(x, t) that induces sliding at the interface. The edge of the contact zone is x = 0, y = 0
and the interface runs along the y = 0, x > 0 positive real line.

2. Constitutive hypothesis

We are concerned with solving the antiplane contact problem between two elastically similar half spaces
subjected to some a piori general, time-dependent loading. The contact interface, shown in fig.1, is flat and
semi-infinite; this is an idealisation aimed at facilitating the study of the contact conditions that woould occur
about the edge of the contact interface in a bearing or geophysical fault subjected to antiplanar loading, and
is justified because the elastodynamic loads are expected to propagate away from the edge of the contact
interface over very short periods of time. As is shown in fig.1, ex hypothesi1, heareafter the contact interface
is defined to be the positive half real line, i.e., the contact exists and has to be maintained only for x > 0,
whilst for x < 0 the interfaces are free surfaces.

This contact is maintained by a certain remote load P (x, t). Along the interface, this remote load induces
a certain interfacial normal load N(x, t), which in turn entails a frictional distributed force acting along the
interface of the form Ffric(x, t) = f · N(x, t), where f is the friction coefficient. As a first approach, here
we do not concern ourselves with the nature of such friction coefficient, and we assume the simple case of
dry friction obeying Amonton’s law. In more complete approaches one would consider circumstances where
the frictional coefficient itself is a function of the interfacial shear slip (see for instance [37, 38]); in such
situations, the problem would quickly become heavily non-linear. Such cases will be the subject of future
work.

Here, the frictional force Ffric(x, t) is balanced by a net interfacial shear traction q(x, t), which we allow
to be the result of two contributions:

(1) That due to the interfacial shear traction r(x, t) induced by a remote antiplane shear traction R(x, t),
which will be prescribed by us.

(2) That due to slip, i.e., the interfacial shear traction s(x, t) entailed by a certain, a priori unknown
antiplane displacement distribution w(x, t) which describes the relative slip between the two surfaces
in contact. This slip is necessary to accommodate possible imbalances between the frictional and
shear loads.

The elastodynamic approach mirrors the usual treatment of contact under the presence of friction and
slip[15, 62, 58]. In particular, we shall distinguish between regions of stick and slip. In slip regions we have

(2.1) Ffrict(x, t) = fN(x, t) = |q(x, t)| = |s(x, t) + r(x, t)|

1But without loss of generality owing to the translational invariance of the stress measure.
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with the condition that sign(∂tuz) = −sign(q(x, t))(q.v.[64],p. 43). Hereafter this condition will be referred
to as the ‘kinematic contact condition’, and its significance discussed in section 6.

In stick regions, in turn

(2.2) |q(x, t)| ≤ fN(x, t)

subject to the additional kinematic condition that ∂tuz = 0. In the following, and for simplicity, we shall
assume that q(x, t) and Ffrict(x, t) are of the same sign and, accordingly, that the underlying slip is of opposite
sign to the frictional traction.

The elastodynamic problems we ought to solve are therefore four:

(1) We must find an expression for the interfacial shear traction r(x, t) arising from the remote shear
traction R(x, t). This is Kostrov’s problem, which has a well-known solution (see [65, 63]).

(2) We must find a mathematical expression for the interfacial shear traction s(x, t) due to the relative
slip displacement distribution w(x, t) acting along the interface. This w(x, t) is a priori unknown,
and may or may not be compactly supported, albeit we expect it to be so over at least some finite
region x ∈ (0, a) (cf.[62, 58]).

(3) We must find an appropriate expression for N(x, t).
(4) The actual problem we are interested in solving is finding the slip displacement w(x, t) arising from the

force balance eqn.2.1 between the frictional force and the two interfacial shear traction contributions.
This will in principle entail an integral equation.

In the following, we give the general form of s(x, t) and r(x, t) under elastodynamic loading.

3. Interfacial shear traction due to remote antiplanar loading

Let R(x, t) be some remote and arbitrary shear force acting in the antiplane z-direction over the system
shown in fig.1. We wish to find the corresponding interfacial shear r(x, t) traction acting along the contact
interface (x ∈ R+).

The governing equation is[63]

(3.1) ∇2uz(x, y, t) = b2üz

where uz(x, y, t) is the out-of-plane (hereafter, antiplanar) displacement field component, which in antiplanar

motion is assumed not to be dependent on z; and where b =
√
ρ/µ is the transverse slowness of sound for ρ

the material density and µ the shear modulus.
The boundary value problem concerns the geometry shown in fig.1. We require that the free surface x < 0

remains traction free under some remote loading R(x, t). We model the reciprocal problem, whereby we
negate R(x, t) along the free surface, and require that the displacement along the contact interface vanish by
symmetry. Thus,

σyz(x, 0, t) = −R(x, t) x ∈ R−

uz(x, 0, t) = 0 x ∈ R+(3.2)

What we wish to find is r(x, t), the interfacial shear traction for x ∈ R+.
The solution to 3.1 when subjected to boundary conditions such as 3.2 can be expressed in terms of the

representation theorem (q.v.[66, 67]) that relates the displacement field to a body force distribution via the
system’s Green’s function [36]. For antiplanar loading, this takes the form

(3.3) uz(x, y, t) =

∫ t

−∞
dt′
∫
R×R

dx′dy′Gzz(x− x′, y − y′, t− t′)fz(x′, y′, t′)

where Gzz(x, y, t) ≡ Gz(x, y, t) denotes the relevant antiplanar Green’s function of the problem in question[68,
63] (e.g., for an elastic half space, or for an infinite plane), and fz(x, y, t) any antiplanar force distribution
acting on the system.

The solution procedure we briefly outline in the following relies on this representaiton theorem, and is due to
Kostrov [65], who applied it to the study of unsteady crack propagation of finite antiplane cracks. Achenbach
[63], Aki and Richards [36], and Freund [35], amongst others, reproduce variations of the derivation. As noted
by Kostrov [65], r(x, t) has by construction support only for x > 0, and again by construction that R(x, t) has
support only for x < 0. We can therefore write a global interfacial shear traction as T (x, t) = −R(x, t)+r(x, t)
acting along the whole interface (i.e., x ∈ R for y = 0). The first term, R(x, t), is fixed and prescribed, and
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the displacements along x ∈ R− can be arbitrary. However the displacements along x ∈ R+ must vanish.
This means that r(x, t) is the interfacial shear traction that ensures that the displacement field along x ∈ R+

cancels.
In considering T (x, t), we are considering a distributed shear traction acting along the whole y = 0 abscissae

line. The problem of solving the elastic fields resulting from the application of any such T (x, t) over an elastic
half space is Lamb’s (antiplane) problem. The interfacial displacement field uTz (x, 0, t) due to T (x, t) can be
obtained from T (x, t) via the representation theorem:

(3.4) uTz (x, 0, t) =

∫
R×R

∫ t

0

T (x′, t′)Gz(x− x′, y − y′, t− t′)dt′d(x′ × y′) = 0

where Gz(x, y, t) is the antiplane Green’s function for an elastic half space, which is given by [63, 35]

(3.5) Gz(x, y, t) = − 1

πµ

1√
t2 − b2r2

H(t− br), r =
√
x2 + y2

We then substitute T (x, t) = −R(x, t) + r(x, t), with R(x, t) known, on eqn.3.4, leading to the following
integral equation for y = 0:

(3.6)

∫
Γ1

R(x′, t′)√
(t− t′)2 − b2(x− x′)2

dt′dx′ +

∫
Γ2

t(x′, t′)√
(t− t′)2 − b2(x− x′)2

dt′dx′ = 0

The integration limits are found from the support imposed by the H(t − br) functions, which define Γ1 =
{0,∞} × {0, ts} and Γ2 = {−∞, 0} × {0, ts} with ts = max(0, t − b|x − x′|). From that it follows that the
equation above may be written as an integral equation of Abel type, the solution to which is given by[63]

(3.7) t(ξ, η) = − 1

π

1√
η − ξ

∫ ξ

−ξ
R(ξ, η′)

√
ξ − η′
η − η′

dη′

where ξ = 1
b
√

2
(t− bx) and η = 1

b
√

2
(t+ bx) for ξ ≤ η. Expressed explicitly in the (x, t) coordinates, eqn.3.7

is given by

(3.8) r(x, t) =
1

iπ

1√
x

∫ 0

bx−t
R(x, t− b(x− x0))

√
x0

x− x0
dx0

Eqn.3.8 describes the interfacial shear traction due to the remote antiplane loading.
In section 6, the following two particular loading cases will be discussed. For a shock load R(x, t) = R0H(t),

(3.9) tshock(x, t) =
2R0

π

[√
t− bx√
x
− arctan

(√
t− bx√
x

)]
H(t− bx)

For a ramp load R(x, t) = R0tH(t),

(3.10) tramp(x, t) =
2

3π
R0

[√
t− bx√
x

(b2x+ (3− b)t)− 3t arctan

(√
t− bx√
x

)]
H(t− bx)

The ‘shock’ load would correspond to an antiplane contact where the sliding shear force is suddenly applied
at t = 0; the ‘ramp’ load to a sliding contact where the shear force is applied gradually and increases linearly
with time. The ramp load also serves as an indication of the transient response of the system to alternating
loads, the salient features of which may be reproduced by a series of ramp of alternating slope loads.

4. Interfacial shear traction due to a displacement distribution

This is the second problem we are concerned with. In this case, a certain slip displacement w(x, t) is acting
along the contact interface. The governing equation remains eqn.3.1 setting the following boundary value
problem:

σyz(x, 0, t) = 0 x ∈ R−

uz(x, 0, t) = w(x, t) x ∈ R+(4.1)

The problem is amenable to solution in a number of ways. For instance, one could invoke the distributed
dislocation technique employed by Freund [17] and Burgers and Freund [69, 70, 35], amongst many others,
to solve the problem of a point load applied on the faces of a mode I crack, and also reported by Aki and
Richards [36] in connection with a uniformly propagating shear crack. Such approaches, however, rely on the
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assumption that w(x, t) is self-similar, i.e., w(x, t) ∼ w(x/t)[17]. Alternatively, the slip displacement may be
converted (in the sense of distributions) into an equivalent force by virtue of the Burridge-Knopoff theorem
[71], and then the representation theorem may be applied to this force distribution. Here, we shall generalise
the solution by obtaining the relevant fundamental solution instead.

The solution strategy we adopt here therefore relies on obtaining a fundamental solution for the interfacial
shear stress (i.e., the shear stress produced at the interface by a point-like antiplanar displacement), and then
achieving the actual solution to the interfacial stress due to the displacement w(x, t) via convolution between
w(x, t) and the fundamental solution. This is justified via the representation theorem, which shows that in
linear elasticity the displacement and stress fields are isomorphic[36].

In so doing, we are invoking the linearity between interfacial slip and interfacial stress. Although it is
true that the problem we wish to solve is inherently non-linear due to the presence of a frictional force at
the interface, it is the interfacial shear stress due that is affected by this non-linearity via the force balance
equation (eqn.2.1); to wit, the shear stress at the interface is the result of a non-linear force balance – the
associated slip distribution, however, will remain linearly dependent on the net interfacial shear stress because
the material’s inner behaviour remains linear elastic. Note that any potential inelasticity in the constitutive
behaviour of the material is neglected here.

4.1. Fundamental solution. Here we first obtain the fundamental solution, i.e., the interfacial shear trac-
tion associated with a point displacement acting on the contact interface, and then invoke the convolution
theorem to obtain the general interfacial traction. Thus, we first wish to solve

σyz(x, 0, t) = 0 x ∈ R−

uz(x, 0, t) = δ(x− x0)δ(t− t0) x ∈ R+(4.2)

where x0 > 0, t0 > 0.
This problem is of interest on its own as it clarifies the nature of the fundamental solution. As was

commented by Burgers and Freund [69], it is not immediately obvious how to solve it employing standard
procedures such as the Wiener-Hopf method[72]. The reasons for this will be discussed below.

Still, we assume that w(x, t) is sufficiently smooth (in principle, at least C2 and compactly supported over
R+), that the problem may be solved via Wiener-Hopf. We therefore first extend by continuity the boundary
conditions to

σyz(x, 0, t) = p+(x, t) x ∈ R
uz(x, 0, t) = u−(x, t) + δ(x− x0)δ(t− t0) x ∈ R(4.3)

where p+(x, t) and u−(x, t) are, respectively, the resultant traction along x ∈ R+ and the resultant displace-
ment along x ∈ R−; note that p+(x, t) is in fact the fundamental solution we seek. Both are unknown, and
form part of the solution to the boundary value problem.

We begin by defining the following integral transforms:

(4.4) f̂(x, y, s) =

∫ ∞
0

f(x, y, t)e−stdt, F (k, y, s) =

∫ ∞
−∞

f̂(x, y, s)e−skxdx

and apply them over the governing equation ∇2uz = b2üz, to get

(4.5)
∂2Uz
∂y2

= s2β2Uz(k, y, s)

where β2 = b2 − k2.
Applying them over the boundary conditions, which we have extended to apply over the whole line of

abscissae, we finally get the following Hilbert problem:

(4.6) −P+(k)

µβ(k)
= U−(k) + E(k)

where

P+(k) = s

∫ ∞
0

p̂+(x, s)e−skxdx, U−(k) = s2

∫ 0

−∞
û−(x, s)e−skxdx,

E(k) = s2

∫ ∞
0

ûz(x, s)e
−skxdx ≡ E(k; s) = s2e−s(t0+kx0)(4.7)
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We then proceed to decompose the equation into sectionally analytic functions. To begin with, the first
(product) decomposition concerns β(k), and is defined as usual (cf.[35]):

(4.8) β(k) = β+(k)β−(k) =⇒ β±(k) =
√
b± k

The problems arise in the second (sum) decomposition, which concerns the S(k; s) = β−(k)E(k; s) term.
We note here that x0 > 0, s > 0. Thus, the function S(k; s) is bounded only in the Re[k] > 0 half plane,
since in the left half plane the exponential term does not generally vanish. Unfortunately, because the term
is not bounded for all |k| → ∞, Liouville’s generalised theorem (see [73], p.364) will not be satisfied since
this theorem explicitly requires that |S(k)| ≤M ∀k ∈ C,M ∈ R[73, 74], and the usual Wiener-Hopf strategy
reliant on the decomposition of the functions into sectionally analytic functions followed by application of
the monodromy theorem(see [75]) and Liouville’s generalised theorem (see [72, 73]) is not applicable, because
the latter does not hold.

An alternative approach is necessary. Here, we shall follow the one Georgiadis and Charalambakis [76]
developed for the point load applied on the faces of a confined mode I crack. This technique is, in reality,
an extension of the usual analytic continuation techniques (see for instance [75] III 8), and can be justified
because albeit it is true that S(k; s) = β−(k)E(k; s) does not fulfil Liouville’s generalised theorem, it still
satisfies Picard’s little theorem (see [75]).

Therefore, let us divide both sides of eqn.4.6 by 2πi(k − z), and then integrate the equation along the
imaginary axis with the point z lying on the Re[k] > 0 plane alone. This renders

(4.9)
1

2πi

∫ i∞

−i∞

P+(k)

µβ+(k)(k − z)
dk +

1

2πi

∫ i∞

−i∞

β−(k)s2e−s(t0+kx0)

k − z
dk = − 1

2πi

∫ i∞

−i∞

β−(k)U−(k)

k − z
dk

First, we shall tackle the right hand side. We note that as |k| → ∞, β−(k) ∼ k1/2. In addition, we
expect that uz(x, 0, t) ∼ x1/2 for x → 0 (cf.[68]). Invoking the Tauberian theorem[77], this means that
U−(k) ∼ k−3/2. Thus, the first integrand in the RHS decays with k−1 as |k| → ∞. We define the branch
cut entailed by β−(k) for Re[k] > b, so that the integrand on the right hand side is meromorphic on the
Re[k] < 0 half plane. We can close the contour of integration along the imaginary axis with a semi circle in
the Re[k] < 0 half plane, and then invoke Jordan’s lemma (see [78],p.192), by virtue of which the integral
along the circular contour vanishes. Since there are no poles enclosed by this contour (by construction z lies
on the Re[k] > 0 half plane), then the closed contour integral vanishes, and so does the integral along the
imaginary axis.

We further note that P+(k) ∼ k−1/2, because we expect that p+(x, t) ∼ 1/
√
x in the x → 0+ limit (see

for instance [68]), so that the integrand decays with k−1 as |k| → ∞. The first integrand has poles in k = z
and k = −b. We define the branch cut for Re[k] < −b, so we close the contour of integration with a semi
circle along the positive half plane, where we know by Jordan’s lemma that the integral along the semicircle
vanishes. The only pole being k = z, we have that by Cauchy’s integral theorem:

(4.10)
1

2πi

∫ i∞

−i∞

P+(k)

µβ+(k)(k − z)
dk =

P+(z)

µβ+(z)

Thus, we finally find that

(4.11)
P+(z)

µβ+(z)
= − 1

2πi

∫ i∞

−i∞

β−(k)s2e−s(t0+kx0)

k − z
dk

We are now in a position to evaluate the last remaining integral,

(4.12)

∫ i∞

−i∞

β−(k)s2e−s(t0+kx0)

k − z
dk,

We note that the integrand is meromorphic with a simple pole at k = z for Re[z] > 0. As noted, it only
decays for Re[k] > 0, so we may only close a contour of integration at infinity in the positive half plane.
This carries the added complication of coinciding with the branch cut of the integrand, which we define for
Re[k] > b, Im[k] = 0. We close the contour of integration as represented in fig.2. Accordingly,

(4.13)

∮
=

∫
Im[k]

+

∫
ΓJordan

+

∫
Γbranch cut

= 2πiRes[z = k]



8ON THE TRANSIENT DYNAMIC ANTIPLANE CONTACT PROBLEM IN THE PRESENCE OF DRY FRICTION AND SLIP

k=+b

k=z

Re[k]

Im[k]

Γ
Jordan

Γ
branch cut

Figure 2. Contour of integration for eqn.4.12.

where
∫
Im[k]

represents the integral along the imaginary axis, ΓJordan = |k|eiθ, |k|∞, θ ∈ (π/2,−π, 2) is the

Jordan contour tending to infinity shown in fig.2, and Γbranch cut the contour around the branch cut, i.e.,
Γbranch cut = (∞,+b] ∪ [+b,∞). Clearly

∫
ΓJordan

→ 0 by virtue of Jordan’s lemma, and
∫
Im[k]

is the integral

of interest here. Thus, the only term in contention is the integral along the branch cut.
The integral along Γbranch cut does not contribute to the residue. Let us define Γbranch cut = Γ+ + Γ− with

Γ− = (∞,+b], Γ+ = [+b,∞). If we set k − b = reiθ for θ = 0 along Γ− and θ = 2π along Γ+, so that
Γ− ≡ r ∈ (∞, 0], Γ+ ≡ r ∈ [0,∞), we find that

(4.14)

∫
Γ±

√
reiθ/2

b+ reiθ − z
dr =⇒

∫
Γ−

= −
∫

Γ+

upon changing θ = 0 for θ = 2π.
Thus, we have that:

(4.15)
P+(z)

µβ+(z)
= −s2e−st0β−(z)e−szx0

Inversion of the β(z)e−szx0 term. This is the sole non-vanishing term contributing to the fundamental
solution. Its inversion can be readily achieved through the Cagniard-de Hoop method [79, 80], as we detail
here. We first write the inversion in k 2:

(4.16) p̂+(x, s) = −s2e−st0µ
1

2πi

∫ i∞

−i∞
β(z)e−szx0eszxdz

We set τ = −z(x− x0) ≡ −zx̃, and distort the integration path by closing it along the Re[z] > 0 half plane
for the case when x̃ > 0 and along Re[z] < 0 for the case when x̃ < 0, in a manner analogous to what was
done in fig.2 when evaluating eqn.4.12. We now have two branch cuts, defined for k ∈ (−∞,−b] ∪ [b,∞).
Avoiding either results in a contribution, again analogous to the one obtained when evaluating eqn.4.12,
which invoking Schwartz’s reflection principle leads to

(4.17) p̂+(x, s) =
s2e−st0µ

πx̃

∫ ∞
0

Im
[
β
(
−τ
x̃

)]
H(τ − bx̃)dτ

2Note that the scaling factor s carried over by the differential measure cancels with the 1/s factor pre-mutliplying P+(z)
when performing inversion.
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Upon inverting in time, and invoking the properties of the Laplace transform, we finally obtain:

(4.18) p+(x− x0, t− t0) =
b2µ

π((t− t0)2 − b2(x− x0)2)3/2
H(t− t0 − b|x− x0|)

which is the fundamental solution we were seeking.

4.2. Interfacial shear traction through convolution and distributed dislocations. The interfacial
shear traction s(x, t) due to the unknown slip displacement distribution w(x, t) may then be obtained through
convolution with the fundamental solution eqn.4.20:

(4.19) s(x, t) =

∫
R

∫ t

0

w(x0, t0)
b2µ

π((t− t0)2 − b2(x− x0)2)3/2
H(t− t0 − b|x− x0|)dx0dt0

We note that s(x, t) = fN(x, t) − r(x, t) is known, so in principle eqn.4.26 expresses an integral equation
with w(x, t) as its unknown. The equation does not appear to have a direct analytical solution, so besides
asymptotic approaches, a numerical scheme is the only tool left available to explore the transient contact
problem. However, we note that the kernel p+(x, t) of eqn.4.26 is of order −3 with a dimensionality of 2,
which makes the integral hypersingular (cf.[81, 82]) and fundamentally ill-posed (cf.[32]). This prevents an
easy numerical solution, to which section 6 is devoted.

The solution to this passes through the distributional properties of the convolution. In the sequel, and for
simplicity we take the relative slip displacement w(x, t) to be defined about the edge of the contact region
(i.e., w(0, t) = 0). We note (cf.[36]) that we may express w(x, t) as:
(4.20)

w(x, t) =
∂w(x, t)

∂t

∫
[0,t]×[0,x]

dw(x′×t′) =

∫ x

0

∫ t

0

∂2w(x′, t′)

∂x′∂t′
dx′dt′ =

∫ ∞
0

∫ ∞
0

∂2w(x′, t′)

∂x′∂t′
H(t′−t)H(x′−x)dx′dt′

where we have exploited the fact that by construction the support of w(x, t) is t > 0, x > 0. We may express
this as

(4.21) w ≡ 〈w′′xt,H(t)H(x)〉
where 〈f, g〉 = f ? g is the convolution, w′′xt = ∂x∂tw in Lagrange notation, and where H(t)H(x) ≡ udis(x, t)
represents the interfacial slip due to an unitary injected screw dislocation (cf.[83, 84, 85]). Now, since s(x, t)
is given by

(4.22) s = 〈w, p+〉 = 〈〈w′′xt, udis〉, p+〉 = 〈w′′xt, 〈udis, p+〉〉
The term τ(x, t) ≡ 〈udis, p+〉 represents, of course, the interfacial shear traction due to a screw dislocation
acting along the contact interface. Therefore, eqn.4.24 generalises Freund’s [17] and Aki and Richards’ [36]
approaches of expressing the displacement function as the sum of contributions due to dislocations of infini-
tesimal magnitude, themselves derived from Leibfried’s [86] original static distributed dislocation technique.
The use of distributed dislocation solutions in static contact and static fracture mechanics problems is well
established [87]; the model we employ here arises as the natural elastodynamic extension to these.

In the following, we shall call w′′xt = b(x, t) for simplicity, and focus on it, since w may be recovered from
b using eqn.4.22. Here b(x, t) represents loosely speaking the spatio-temporal gradient of a (normalised)
Burgers vector distribution, but it lacks any crystallographical significance that would relate it to the the-
ory of dislocations: the dislocations under consideration here are not crystallographic dislocations, but a
mathematical device to model kernels of strain.

We must first find the interfacial shear traction τ ≡ 〈udis, p+〉 due to a screw dislocation acting along the
contact interface, which is immediately accessible via convolution with p+(x, t), rendering

(4.23) τ(x, t) =
µ

π

√
t2 − b2x2

tx
H(t− bx)

This entails that

(4.24) s(x, t) =
µ

π

∫ t

0

∫ x−1/b(t−t0)

0

b(x0, t0)

√
(t− t0)2 − b2(x− x0)2

(t− t0)(x− x0)
dx0dt0

is the alternative form of the interfacial shear traction due to the displacement distribution w(x, t), in this
case weakly singular. This form can only be given under the assumption that w(x, t) is at least C2 – i.e.,
that b(x, t) exists and is generally compactly supported over the positive axis of abscissae.
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5. The normal contact load

A remote normal load is required to ensure the contact between the two elastic half spaces. Here, we regard
this normal load independent from the remote antiplane shear load [15] and, as a result, in the absence of
frictional forces the normal load plays no part in the shear contact problem [15, 62]. However, given that
here we wish to consider the presence of friction as well as slip, we need to offer an account of the normal
interfacial load. The resulting problem shall then mirror the usual elastostatic problems.

In the most general and protracted case, the contact is established and maintained by a certain remote
normal load, which in the sequence we express with the function P (x, t). The function P (x, t) must be such
that it ensures that the two half surfaces remain in contact, but no further desideratum is imposed a priori.
We wish to find a general formula for the interfacial normal force N(x, t) arising as a result of the application
of P (x, t), since N(x, t) induces the frictional force.

That is, the resulting problem is an in-plane problem where a remote load P (x, t) induces an interfacial
‘contact’ pressure over a half line. This is a classical problem in dynamic fracture [35], corresponding to the
remote loading of a quiescent (i.e., non-propagating) mode I crack, a partial solution to which may be found
in Miklowitz [88] and Freund [35] for the case of suddenly applied, constant remote loads. Although the
normal contact load is described as corresponding to a mode I crack’s normal stress along the epicentral line,
the problem under consideration here is not a fracture problem: the interface exists by virtue of the remote
normal load, and we merely wish to model its interfacial normal stress, which happens to be given by a mode
I crack’s stress field (see [87, 60, 61]).

The resulting expressions for the interfacial normal traction cannot generally be given in explicit form.
This is because they depend on the inverse of the Rayleigh function. For instance, for a shock load of
magnitude N0 these are (see [35], Ch.2):

(5.1) N+(x, t) = − 1

πx

∫ t

ax

Im [Σ+(−τ/x)] dτ, Σ+(k) =
N0

k

(
F+(0)

F+(k)
− 1

)
and

(5.2) F+(k) =

√
a+ k

(cR + k)S+(k)
, lnS+(k) = − 1

π

∫ b

a

1

τ + k
arctan

[
4τ2
√

(τ2 − a2)(b2 − τ2)

(b2 − 2τ2)2

]
dτ

where a = 1/cl is the longitudinal slowness of sound (and cl the longitudinal speed of sound), and cR the
Rayleigh wave speed.

However, as is done in the elastostatic case[15], the interfacial normal traction field about the edge of the
contact zone can be asymptotically treated as a near field Williams expansion. In the elastodynamic case,
we have that [35],

(5.3) N(x, t) ≈ KI(t)√
2πx

where KI(t) is the dynamic stress intensity factor, and depends on the nature of the dynamic remote load.
For a suddenly applied shock load [35] of magnitude N0,

(5.4) Kshock
I (t) = 2N0

√
(1− 2ν)t

(1− ν)
√
aπ

In a more general loading case, KI(t) will be dependent on the load history. If the remote P (x, t) load is
such that its time history can be separated from its spatial variation (i.e., P (x, t) = P (x)h(t)), then [89, 35]

(5.5) KI(t) =

∫ t

0

Kshock
I (t)

∂h(t)

∂t
dτ

For instance, for a ramp:

(5.6) Kramp
I (t) = 4N0

t
√

(1− 2ν)t

3(1− ν)
√
aπ

In the following, we shall employ the asymptotic near fields of the mode I crack to given by eqn.5.3 as a
reasonable model for the normal traction about the edge of contact zone. Unless otherwise stated, we shall
focus on the shock loaded normal load, which serves to model the sudden change of the applied remote normal
load.
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6. The force balance equation

In view of eqns.3.8 and 4.26, the force balance at the interface becomes the following integral equation:
(6.1)

µ

π

∫ t

0

∫
Γ

b(x0, t0)

√
(t− t0)2 − b2(x− x0)2

(t− t0)(x− x0)
dx0dt0 = fN(x, t)− 1

iπ

1√
x

∫ 0

bx−t
R(x, t− b(x− x0))

√
x0

x− x0
dx0

where as in eqn.4.26, Γ ≡ [0, x+ 1/b(t0 − t)]. We rewrite eqn.6.1 as

(6.2) 〈τ(x, t), b(x, t)〉 = F (x, t)

where

(6.3) F (x, t) = fN(x, t)− 1

iπ

1√
x

∫ 0

bx−t
R(x, t− b(x− x0))

√
x0

x− x0
dx0

for a general loading N(x, t) and R(x, t). We not that F (x, t) has compact support for t > 0,x > 0 and
bx < t, and that τ(x, t) is to all effects a convolution kernel (cf.[90]). In addition, the kinematic condition
that sign(∂tuz) = −sign(q(x, t)) must be satisfied. It is worth pointing out that eqn.6.2 is of a similar nature
to the dynamic Peierls-Nabarro equation discussed by Pellegrini [91, 92] in the context of mobility laws for
straight dislocations, although not generally self-similar. As such, general solutions will be unachievable but
numerically; particular ones for simple loadings may still be found as we describe below.

6.1. Static loading and static limit. Eqn.6.2 captures only the transient contribution to the general
contact problem. This may be appreciated in the form of its solution: because the slip convolution integral
eqn.4.26 offers compact support over t− bx > 0, then b(x, t) (and w(x, t)) must be compactly supported over
the said interval. This means that the region of slip due to the transient solution to eqn.6.2 will at most be
an ever expanding region within the cone t − bx > 0, and will not support any loading applied away from
it. This has been imposed by construction upon assuming that the loading begins at t > 0. This means
that mixed-type problems where, say, the contact pressure is time-independent quasistatic but the remote
shearing force is time dependent must be solved via superposition of the static solution under a frictional
force and no remote shearing load (see [15] for further details), and the transient solution given by eqn.6.2
for frictionless case.

We also note that in the static limit eqn.6.2 becomes the standard static antiplane contact equation. The
static limit may be found requiring t → ∞ or, alternatively, ρ → 0 (and b → 0), since in the latter limit
perturbations travel instantaneously:

(6.4) lim
t→∞

τ(x, t) = lim
t→∞

√
t2 − b2x2

tx
=

1

x

so the convolution becomes

(6.5) lim
t→∞
〈τ(x, t), b(x, t)〉 =

µ

π

∫ a

0

ḃ(x0)

x− x0
dx0 =

µ

π

∫ a

0

w(x0)

(x− x0)2
dx0

for a slip region over x ∈ [0, a], and where ḃ(x) represents the slip velocity. This integral is analogous to the
one employed in describing the interfacial shear load σxz due to a distributed dislocation (cf.[15]).

6.2. Numerical solution of the contact problem. Owing to the weakly singular nature of the integral
kernel, we may produce a relatively simple general numerical scheme for the solution of eqn.6.2 based on the
collocation-Nyström method[90, 81]. The solution to multidimensional integral equations using such schemes
is commonplace in the literature, and a detailed description of these methods might be found in [93, 81].
Application of such methods in the context of elastic defects can be found in [94] for static cracks, and [95]
for elastodynamic cracks in anisotropic bodies, amongst many others.

Here, we largely follow the method laid out in [95] and [94]. Let S(t) = [0, xmax]× [0, tmax] ⊂ R+×R+ be
the the computation space. Because the problem is one of propagating waves, xmax ∈ R+ can be arbitrarily
large for finite times, but for numerical purposes, we must ensure that the maximum allowable abscissa xmax

is not reached before the maximum allowable time tmax, so we require xmax < tmax/b.
We define some a priori arbitrary partition {xi}nx

i=0, {tj}nt
j=0 of S(t). This allows us to specify the intervals

Sij = [xi, xi+1]× [tj , tj+1] over which we shall discretise the solution, where (x0, t0) = (0, 0) and (xnx , tnt) =
(xmax, tmax).
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We define a basis function set {Nij(x, t)} offering compact support over [xi, xi+1]× [tj , tj+1]. We do so in
order to be able to express the Burgers vector gradient b(x, t) as

(6.6) b(x, t) =

nx∑
i=0

nt∑
j=0

bijNij(x, t)

with bij ∈ R is a number.
Inserting eqn.6.6 into eqn.6.2, we obtain

(6.7) F (x, t) =
∑
ij

bij

∫ t

0

∫
Γ

Nij(x0, t0)τ(x− x0, t− t0)dt0dx0 =
∑
ij

bijKij(x, t)

where
∑
ij ≡

∑nx−1
i=0

∑n−t−1
j=0 , and

(6.8) Kij(x, t) =

∫ t

0

∫
Γ

Nij(x0, t0)τ(x− x0, t− t0)dt0dx0

which is well-defined for each set of basis functions.
Typically, in Nyström-like methods eqn.6.8 would be solved via numerical quadrature (see [93]). However,

as observed by Martin and Rizzo [94], if we prescribe the basis functions Nij(x, t) being at least C1×1, the
analytic form of Kij(x, t) may be derived a priori. Thus, let xi+1 − xi = ∆xi and tj+1 − tj = ∆tj be the
width of the i × j interval. We may then use a basis set formed by pulse functions in time, and piecewise
linear shape functions in space, i.e., with Nij(x, t) on [xi, xi+1]× [tj , tj+1] of the form:

(6.9) N linear pulse
ij (x, t) =


x−xi

∆xi−1
(x, t) ∈ [xi−1, xi]× [tj , tj+1]

xi+1−x
∆xi

(x, t) ∈ [xi, xi+1]× [tj , tj+1]

0 otherwise

These basis functions are equivalent to the constant velocity over fixed time intervals discretisation employed
by Pellegrini[92] in studying the mobility law of a dislocation.

Upon integration of eqn.6.8 renders (for tj < t, xi < x)
(6.10)

K linear pulse
ij (x, t) =

{
1

∆xi−1
Lij(x− xi, t− tj)− 1

∆xi
Lij(x− xi, t− tj+1) (x, t) ∈ [xi−1, xi]× [tj , tj+1]

1
∆xi−1

Lij(x− xi+1, t− tj)− 1
∆xi

Lij(x− xi+1, t− tj+1) (x, t) ∈ [xi, xi+1]× [tj , tj+1]

where

(6.11) Lij(x, t) =
1

π

[√
t2 − b2x2

bx
+ i ln

(
bx+ i

√
t2 − b2x2

t

)]
H(t− bx)

is obtained from integrating 〈K,Nij〉. On more refined computations, one may employ higher order basis
sets in time and space as required (see for instance [81], Ch.7, and [93], Ch. 5).

A final provision is necessary for the initial interval owing to the fact that it is subjected to a 1/
√
x

singularity on the external load F (x, t). Here we adopt the commonly employed technique [96, 97] of making
the initial interval [0, x1] a fourth of the regular size. Thus, for [0, x1] we set ∆x0 = 1/4∆x, with the shape
function being

(6.12) N0j(x, t) =
x1 − x

1
4∆x

H(x)H(t) (x, t) ∈ [x0, x1]× [tj , tj+1]

The resulting problem consists of nx×nt unknowns (the bij coefficients). As done by Nishimura et al.[95]
in order to find them we shall collocate as many points: we choose to evaluate F (x, t) and Kij(x, t) at a
discrete set of (x, t) collocation points located within each [xi, xi+1] × [tj , tj+1] interval. Collocating within
the integration interval has the advantage of almost diagonalising the problem due to the compact support
provided by the basis functions in the i×j interval (cf.[95]). For simplicity, and aside from the initial interval,
we choose intervals of constant length in space and time, i.e., ∆xi ≡ ∆x = constant and δtj ≡ ∆t = constant,
so that all the collocation points may be given as (x, t) = (xk, tl) = (xk + k, tl + l) for (xk, tl) nodes of the
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interval discretisation, and k ≤ ∆x, l ≤ ∆t. We empirically find that k = 0.5∆x and l = 0.9∆t appear to
produce the most stable results. Thus, we are effectively bound to solve the following problem:

(6.13) Fkl =

nx∑
i=0

l−1∑
j=0

bijKijkl

where we use Fkl ≡ F (xk + k, tl + l), Kijkl ≡ Kij(xk − xi + k, tl − tj + l). This is a simplified deconvolution
problem, owing to the fact that the summation in j finishes for j < l.

The problem can be easily solved by iterating through the time variable. For l = 0, Fk0 = 0 trivially. For
l = 1,

(6.14) Fk1 =

nx∑
i=0

bi0Ki0k1

is a standard matricial problem from which bi0 might be found. For l = 2,

(6.15) Fk2 =

nx∑
i=0

(bi0Ki0k2 + bi1Ki1k2)

where we use bi0 to compute bi1. Subsequent time steps depend on the solution to previous ones.
The kinematic consideration that sign(∂tw) = −sign(q(x, t)) is checked for each step l in the solution.

This is done by computing through numerical integration the spatial integral of b(x, t), ∂tw =
∫
x
b(x, t)dx,

which can be readily achieved through spatial integration of the basis functions,

(6.16) ∂tuz(x, t) =

∫ x

0

bijNij(x
′, t)dx′

If the sign of ∂tuz(x, t) is found to be incorrect over some spatial interval x̄sign, the sign in front of the
frictional force in eqn.6.2 is reversed over that interval, and the bij solution for time step l is recalculated.
The same sign check is performed anew, and if necessary the sign of the frictional force is again reversed, until
sign convergence is achieved. In general, we have observed that over two or three re-iterations of the same
time step convergence is achieved, and the sign reversal is carried through to the following steps. Further
comments on the need for and implications of this kinematic contact condition are discussed below in section
6.4.

The displacement field may be obtained from integrating eqn.6.6, which leads to

(6.17) w(x, t) =
∑
i,j

bijMij(x, t)

where
(6.18)

Mij(x, t) = [(t− tj)H(t− tj) + (tj+1 − t)H(t− tj+1)]

(
1

2
(x− xi)2H(x− xi)−

1

2
(x− xi+1)2H(x− xi+1)

)
with the requirement that w(0, 0) = 0.

The method here described provides a sufficiently stable algorithm for frictionless loading. However, if the
frictional loading arises from a sudden load, the ensuing problem is essentially ill-posed (cf.[32, 33]) and the
algorithm has to be modified to ensure it remains stable. As is commonly done in deconvolution problems,
here we chose to mollify the solution over each time step using a Tikhonov filter [98, 99] (that is, a Tikhonov
regularisation using a singular value decomposition). Thus, for each time step we compute a filtered solution
bfilt(x, t) of the form

(6.19) bfilt
il =

nt∑
k

φkbil

where

(6.20) φk =
σk

σ2
k + α

is the filter factor, and σk the singular values of bij , and α the Tikhonov regularisation parameter. The
Tikhonov regularisation parameter was computed using Mozorov’s discrepancy principle (see [98]). The
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Figure 3. Burgers vector gradients at different time steps for (a) a frictionless shock shear-
ing load (eqn.3.9) and (b) a frictionless ramp shearing load (eqn.3.10). Here R0 = 1, b = 1/10,
∆x = 0.1, ∆t = 0.005 with a mesh size of nx = 100, nt = 100.

filtered solution is used to propagate the solution over to the next time step, which is filtered in turn. The
filter has an effect of stabilising the solution, and of mollifying sudden changes (i.e., steps).

6.3. Frictionless contact. Consider a loading regime where the normal load is static (i.e., contact is enforced
by a time-independent normal load, notionally since t → −∞). Say that at time t = 0 the shearing load
starts to change in value, and therefore becomes time dependent. For example, assume that for t > 0
the remote shearing load may acquire time independent and time dependent components, say R(x, t) =
Rstatic +Rdynamic(x, t). Because the normal load remains static, the frictional forces imposed by Amonton’s
law are time-independent and static as well, and the ensuing frictional contact problem, which may include
the Rstatic time independent component of the shearing load if there is any, may be studied using the usual
elastostatic solutions (see [15, 64, 62] for such solutions).

However, the shearing contact problem becomes dynamic under the influence of Rdynamic(x, t), and must
be studied as an elastodynamic, frictionless contact, i.e., obeying eqn.6.2 with f = 0. The complete problem
(static frictional and frictionless dynamic) may be obtained by superposing the solutions to each of the sub-
problems. Thus, the elastodynamic frictionless problem may be understood as the time dependent deviation
from the static solution. Here we study the significance of the solution to the latter; by construction, contact
is guaranteed to exist by the normal load, and in the absence of friction the elastodynamic solution will first
and foremost offer a measure of the changes in the relative displacement between the two surfaces. That is,
the frctionless problem under consideration here seeks to answer: given an interfacial shear load r(x, t), how
much would the interface have to slip to ensure that the net interfacial shear load is zero?

Solving eqn.6.2 with f = 0 numerically as we described in section 6.2, we achieve the solutions depicted
in figs.3 and 4. These two figures compare at different instants in time the magnitudes of b(x, t) and w(x, t)
for a shock load and a ramp load shearing load, respectively. As can be seen, the solution for b(x, t) vanishes
for x > bt, and is non-zero and divergent at the origin; this is in response to the equally divergent loads.
The slip displacement w(x, t) grows in magnitude from the origin to reach a time-varying but constant value
in what may be deemed the transient stick region; in this, the transient response resembles the elastostatic
response of the classic Cattaneo-Midlin problem (cf.[15]).

The magnitude of b(x, t) is of opposite sign to the shearing load’s, indicating the need to distribute negative
screw dislocations to accommodate a positive shearing load. The ensuing slip w(x, t) is also negative; this is
consistent with the expectation in the elastostatic Cattaneo-Midlin problem a relative increase in the shearing
load results in a relative increase in the slip area [15]. Initially, the shock load produces the strongest variation
in both b(x, t) and w(x, t), but we do not observe a significant change in the qualitative behaviour of the
solution when we impose a ramp load instead: in both cases the transient load propagates as a wave, and the
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Figure 4. Slip displacement at different time steps for (a) a frictionless shock shearing
load (eqn.3.9) and (b) a frictionless ramp shearing load (eqn.3.10). Here R0 = 1, b = 1/10,
∆x = 0.1, ∆t = 0.005 with a mesh size of nx = 100, nt = 100.

area of transient slip is bounded by the transverse speed of sound itself, for x < ctt. All points not reached by
the propagating loads (i.e., all x > ctt) are points of transient stick. This transient stick is inherently different
to the elastostatic stick: it exists solely because causality requires that at some t > 0 not all points of the
contact interface be loaded. In figs.3 and figs.4 the transient stick is demarcated by a plateau in the value of
w(x, t), and a zero value in the Burgers vector density gradient b(x, t), consistent with the expectation that
no distributed dislocations are necessary to accommodate stick.

The transient slip is also inherently different to the elastostatic slip. For one thing, fig.4 would suggest that
if sufficient time is allowed for the slip region to develop, the whole interface would slip. Albeit this is true for
the ramp load solution, it is not true for the shock loading one. This is because whereas the magnitude of the
ramp load monotonically increases over time and, therefore, there is an increasing need to accommodate an
ever increasing interfacial shear traction (which increases with t3/2), the shock load solution (fig.3) saturates
over time to the elastostatic prediction. This may be appreciated in fig.3.a, where for the shock load the
magnitude of the Burgers vector density does not increase over time at the edge of the contact interface,
whereas in fig.4.a the magnitude of the Burgers vector density at the edge of the contact area increases in
time. This increase in magnitude propagates inwards, so that over time the slip distribution of a ramp load
will come to occupy the whole interface. The shock load tends to saturate to the elastostatic interfacial
shear traction, and as such will come to be governed by the same contact considerations that control the
Cattaneo-Midlin problem.

6.4. Frictional contact. Friction plays an important role in the nature of the dynamic contact. In the
numerical solutions we present in the following, we set Ffric(x, t) < 0 and s(x, t) > 0 (see for instance [64],
p.12), so that the signs depicted in eqn.6.1 are a priori correct. We expect that the shearing tractions act in
opposite direction to the sliding between the two surfaces, under the assumption that w(x, t) > 0. As will be
discussed below, these considerations are to be corrected in the dynamic case to account for the kinematic
contact condition and the time varying nature of the contact loads. As in the frictionless case, we explore the
cases of shock and ramp shear loads. In this case however, we allow the magnitude of the remote normal and
shear loads to vary independently from one another. In order to parametrise better the effect these two loads
have on one another, we introduce the parameter ξ = R0/(fN0), so that a small ξ entails a large frictional
force, and a large ξ a weak one, relative to the magnitude of the remote shearing load. Unless otherwise
stated, the same numerical parameters as those employed in the frictionless case were used: R0 = 1, b = 1/10,
∆x = 0.1, ∆t = 0.005 with a mesh size of nx = 100, nt = 100, and fN0 determined from the choice of ξ.

Figures 5 and 6 depict the magnitudes of b(x, t) and w(x, t) for different ξ under shock loading. As in the
frictionless case, the solution always has a region of transient ‘stick’, which is defined relative to the edge of
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Figure 6. Magnitude of w(x, t) for different ξ = R0/(fN0) ratios under shock loading.
Those values of ξ more representative of characteristic features of the solution are represented.
The same numerical solution parameters as those employed in the frictionless case were used.

the contact zone by the region unreached by the loading wave at some instant in time. In that sense, the
transient ‘stick’ is inherently different to the elastostatic stick, given that in the former the condition that
|q(, x, t)| ≤ fN(x, t) is trivially fulfilled for all x > tct, simply because the loading, travelling at the transverse
speed of sound, lacks sufficient time to reach the current region of stick.

The slip zones we describe here apply best for the instants in time following the onset of the loading.
Thus, we do not observe a steady state stick-slip zone of the sort that would be found in the elastostatic
Cattaneo-Midlin problem. In fact, with our underlying assumptions we cannot reach the steady state. This
is because in section 5 we have modelled the frictional load using the asymptotic normal elastodynamic field
of a quiescent mode I crack. These asymptotic fields are monotonically increasing with t1/2 (see eqn.5.5),
which means that unless a reflected ‘release’ wave were to reach the interface, the near field of a mode I crack
is unbounded in time as well as space. In order to reach a stationary solution at t→∞, we would be required
to employ the full solution (see [35]). The quality of the asymptotic fields we employ here is nonetheless good
over relatively short periods of time[89, 35], and indeed the far field of the full solution increases with t3/2
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intermediate range, the distribution of slip changes sign midway through the slip wave to
accommodate the increase in the shearing load relative to the frictional force.

[100], which suggests the near field dominates the response for t < bL, L some characteristic length-scale of
the problem. Over longer periods of time, the steady state ‘static’ solutions can only be reached if there are
free surfaces involved; this would entail considering a finite sized problem that would undoubtedly modify
the solutions considered here. Thus, the solution we are modelling here is relevant for short periods of time,
and therefore best suited to study the transient response.

In the wake of the transient stick region, there arises a region of slip. It is in this slip region that we
observe strong qualitative and quantitative differences between the frictionless and frictional loading cases.
In particular, as may be seen in fig.5, for large values of ξ the shock load is found to lead to regions where
w(x, t) < 0, i.e., of the same sign as the frictional force. Such regime of reverse slip is triggered because for
large enough ξ, the frictional force is very weak compared to the shearing force, which comes to dominate the
contact response as in the frictionless case. For larger values of the frictional force relative to the shearing
force (i.e., low ξ), the frictional force comes to dominate the slip distribution gradients b(x, t), which becomes
positive (see fig.5); the slip distribution also becomes positive, as expected (see 5).

There exists an intermediate regime of values of ξ for which the slip distribution changes sign as the slip
wave advances. In the current numerical regime, it was found to happen for ξ ' 100. Fig.7 depicts this
situation for ξ = 150. As may be seen, the sign of w(x, t) changes as the slip wave progresses, in such a way
that the differential displacement between the edge of the contact zone and the region of stick is positive,
whilst the slip about the edge of the contact zone is increasingly negative. This is necessary to accommodate
the increase in magnitude of the shearing load relative to the frictional one’s, which for such ration ξ. The
transition is accompanied with a change in sign of b(x, t) (see the inset in fig.7); the distribution of dislocations
is continuous across this change.

The reverse slip regime is a direct consequence of the kinematic contact condition. If such condition is not
observed, and the sign of the frictional force remains negative throughout the contact, incoherent behaviour
arises. Such situation is depicted in fig.8. A priori, it would seem that the behaviour in this case is not
dissimilar from the solutions presented in figs.5 and 6, aside from the fact that in this case the sign reversal
appears to take place for much smaller values of ξ (and, consequently, larger frictional forces). The problem
arises when one considers the meaning of the reverse slip in this case. Here, the sign of the frictional force is
always negative, so a negative slip can only be allowed if the sign of the slip velocity is positive. As may be
ascertained by comparing fig.5.a with fig.6, this is not the case here: the apparent reverse slip regime arises
from the need to accommodate the shearing force alongside a weak frictional force, but rather than allowing
the sign of the frictional force reverse its value, here the frictional force is always decreasing the magnitude
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to the shearing force . The same numerical solution parameters as those employed in the
frictionless case were used.

of the net interfacial force, regardless of the sign of the slip velocity gradient. This also explains why the
apparent reverse slip arises in this case for much lower values of ξ (larger values of the frictional force will
reduce more the interfacial force), and why the apparent magnitude of the Burgers vector gradient b(x, t)
is smaller (the interfacial shear force is weaker because the frictional force is substracting from the shearing
force).

As said, whether the slip reversal will occur is directly related to the relative magnitude between the
frictional and shearing loads, which changes over time. We can better understand this if we consider the
asymptotic short range solution to eqn.6.2. Let us therefore expand the kernel τ(x − x0, t − t0) in eqn.6.2
about t0 = 0,x0 = 0:

(6.21) τ(x− x0, t− t0) =

√
t2 − b2x2

tx
+ O[t0, x0]

Integrating, we find

(6.22)

√
t2 − b2x2

tx
w(x, t) + h.o.t. = F (x, t) =⇒ w(x, t) ≈ tx√

t2 − b2x2
F (x, t)

Here w(x, t) < 0 entails |Ffric| < |r(x, t)| over short times and short distances. This shows that the transient
reverse slip we describe here is related to the relative magnitude of the transient shearing and frictional forces.
If the frictional forces are large enough (e.g., in fig.5 for ξ < 100 under shock loading), the slip reversal does
not take place (or else, is observed over very short periods of time). This behaviour is reminiscent of the
Adams instability[34, 101], which occurs as a result of an interfacial resonance along dissimilar materials.
As with the Adams instability, it is less likely for larger frictional forces – however, it does not appear to
be an inherent surface resonance causing it, but a balance between the shear and frictional forces. It is also
reminiscent of the extraneous development of the slip zone reported by Fineberg and coworkers[50, 51, 49, 48],
although in that case it was attributed to a breakdown of the usual frictional law, and not as would happen
in this context, due to the interplay between two varying remote loads.

The transient nature of the slip reversal manifest itself in an additional way, in that if sufficient time is
allowed to pass, the solution naturally evolves to an expected stick-slip solution. Fig.9 shows the solution
to the shock loaded contact over an extended amount of time. The solution begins as depicted in fig.6, as a
direct slip solution. Eventually, the magnitude of the shearing force at the edge of the contact zone becomes
dominant, and a zone of reverse slip starts to arise about x = 0. The solution then evolves in a similar
way as that shown in fig.8 for ξ = 150: the reverse slip peak increases over time, whilst the forward stick
magnitude appears to increase. In this case, this mixed reverse-forward slip regime peaks at about t ≈ 750∆t.
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Figure 10. Magnitude of the relative w(x, t) displacement ξ under normal ramp loading
over different instants in time. We note that for ξ = 10 the solution changes from fully
reverse slip to partial reverse slip. Over longer periods of time (inset), the solution becomes
entirely forward slip.

Thereafter, the peak of reverse slip becomes so dominant that the sign of the whole slip distribution is flipped
to reverse slip.

The opposite phenomenon, whereby a transient reverse-forward stick-slip wave becomes a fully forwards
stick-slip wave, is observed for lower values of ξ. This is particularly clear in the case of a normal ramp
loading, where the frictional load increases in magnitude over time, thereby requiring longer times for the
solution to evolve from reverse-forward stick-slip wave to a fully reverse (or fully forward) stick-slip wave.
Fig.10 depicts this transient effect that a ramped normal has on the solution; as may be seen, the same regime
of forward-reverse stick slip appears to be present; however, in this case the magnitude of the frictional load
is ever increasing because the normal load is a ramp, and its increase rate eventually overtakes that of the
shearing load irrespective of the value of ξ. This means that in this case eventually all solutions evolve into
a fully forward slip ones. Fig.10 depicts this already happening for ξ = 10 in the inset.
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Figure 11. Magnitude of the relative w(x, t) and b(x, t) when the shearing load is a ramp,
and the normal load a shock.

The effect of imposing a shearing ramped load (and therefore a ramp friction) rather than a suddenly
applied one is also revealing of the transient effects affecting the contact. Because the magnitude of the
frictional load increases with t3/2, the singularity 1/

√
x at the edge of the contact area is quickly weakened.

Thus, the initial magnitude of the friction loads will quickly lose its dominance in leading to the transient
forward contact which, as can be seen in fig.8 for ξ = 100, eventually grows to the reverse contact which
we observed in fig.6 for ξ = 100. In this case, this is brought about by the growth in the magnitude of the
shearing load, which being a ramp begins. Thus, an initially slowly varying but subsequently faster growing
shearing load such as the ramp load is seen to lead to a transient regime of forward slip that is eventually
superseded by a regime of reverse slip. If such sign reversal is to be avoided, it seems that the best strategies
are to either decrease lubrication or, else, to impose the external loads in such a way that the shearing load
grows at least as fast as the normal load.

Thus, the transient solutions in the presence of friction paint a complicated picture of contact, one where
the initiation of the contact is subjected to a regime where partial reverse (or forward) slip of the contact
surface may take place, either starting at the edge of the contact zone or within the contact interface. Over
time, however, this behaviour recedes and full stick-slip contact is established. Furthermore, and as can
be seen in fig.11 (and, to a lesser extent, in fig.6 for the shock loading case) the transient slip distribution
displays large peaks above the relative displacement of the region of stick, i.e., we observe regions of slip
where the relative displacement is larger than it is in the region of stick. This is again a transient feature of
the solution, and the magnitude of the peaks tend to decrease over time. It is also affected by the magnitude
of the frictional forces. For instance, in fig.5.b. the relative amplitude of the peak slip for ξ = 10 (18% for
t = 75∆t) is clearly smaller than that for ξ = 2, (34% for t = 75∆t); in general, the peak of slip appears to
be larger when the frictional forces are weaker.

This study helps understand the nature of the interplay between shearing and frictional forces, and how
the interfacial slip must respond to accommodate it. In general, we find that if the shearing load is larger
than the frictional load, then the interfacial slip will tend to evolve to a regime of reverse slip because the
shearing force grows faster than the frictional force, and it is of larger magnitude. If the shearing load is close
to or weaker than the frictional force, the transient contact interfacial slip will be one of forward (or ‘regular’)
slip. This finding appears significant, for in between these two extreme regimes there arises a transitional
regime where forward slip may evolve into reverse slip, or vice versa. Because the slip distribution and its sign
(and sign reversal) affects the interfacial loads, we expect that such transient regimes will be of importance
in the wear performance of the surfaces. It is important to remark that this intermediate regime has been
found to appear for values of ξ ≈ 10 − 100. If the normal and shearing loads are of similar magnitude, this
would entail frictional coefficients of f = 0.1− 0.01, which are not unusual (cf.[62]).
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7. Discussion and conclusions

This article has analysed the transient antiplanar contact between two elastically similar surfaces subjected
to dry friction. We have focused solely on the transient problem, i.e., on the nature of the contact problem
immediately after contact is established, or after a contact load has changed significantly or significantly fast
with respect to its elastostatic value. If the loading is such that it can be divided into a time independent
and time dependent part, the transient solution would concern the deviations the time dependent loading
induces on the well-known elastostatic solutions (see [15, 62]).

We have obtained the dynamic loads present in the elastodynamic equivalent to the classical Cattaneo-
Midlin problem for a semi-infinite contact, antiplanar interface. Thus, we have employed Kostrov’s[65]
solution to describe the interfacial shear tractions due to the application of a remote antiplanar shear load.
Using a modified version of the Wiener-Hopf technique, we have also rigorously derived the form of the
‘correction’ interfacial shear traction due to a general distribution of slip w(x, t). We have obtained the
fundamental solution to this problem, and reached a hypersingular integral describing the stress field dual of
w(x, t). We have then employed a convolution argument to modify the integral to a weakly singular form. This
form has been found to be a fully elastodynamic extension of Leibfried’s distributed dislocation technique.
This approach, not self-similar, may be of further interest in describing elastodynamic problems where an
unknown slip distribution results in a balanced stressed field, as could be the case in crack propagation,
inclusion expansion, or dislocation pile-ups. The frictional load has been described invoking Amonton’s laws,
for which we have employed the quiescent mode I crack’s asymptotic normal traction fields (cf. [35]).

The superposition of shear loading, slip, and friction has lead to a bivariate Volterra integral equation,
the solution to which is the slip distribution necessary to accommodate the transient loading. This solution
can only generally be achieved numerically. A simple Nyström collocation method has then been proposed
to solve the said equation, and the main features of the solution have been explored. We have found that the
solution invariably consists of a region of slip followed by one of stick. The region of stick is a transient feature,
defined by the regions of contact interface that at any instant in time remain unloaded due to the retardation
principle affecting the loading. The ensuing slip region is necessary to accommodate the imbalance between
the shearing and frictional loads. As in the static case, it tends to grow from the edge of the contact zone
inwards; however, in this case it consists of a slip wave that propagates inwards, and that displays a number
of relevant transient features.

Crucially, we have found that the transient slip wave can entail a reverse-forward slip regime between the
contact surfaces, where the sign of the slip distribution evolves from forward (or regular) slip to reverse slip,
i.e., from opposing to having the same nominal sign as the frictional force. This reverse-forward slip wave
is brought about by the imbalance between the frictional and shearing loads, and arises when the shearing
ones dominate over the frictional ones. It is therefore greater and it lasts longer when the frictional loads
are weak. The reverse-forward slip is nonetheless inherently transient, and over time it is observed to lead
to either fully reverse slip (particularly for very weak frictional forces), or to fully forward slip (particularly
for moderate to large frictional forces). The transient is such that under certain conditions it is possible that
what begins as reverse slip evolves into forward slip, or vice versa. The latter appears to occur when the
frictional forces are weak (e.g., highly lubricated contact surfaces), whilst the former seems to occur if the
frictional coefficient is large. At the same time, the transient slip distribution has been seen to display large
peaks above the displacement of the region of stick, i.e., regions of slip where the relative displacement is
larger than in the regions of stick, which is not found in the elastostatic case. This peak slip was found to
be larger for weaker frictional forces. Thus, there appears to exist a trade-off between avoiding the transient
reverse slip by reducing the interfacial friction (for instance, by lubricating it), and minimising the relative
magnitude of the slip peak.

We have also explored the importance of the time dependence of the frictional force by considering normal
loads other than a shock (or pulse). In studying a ramped application of the frictional force, we have found
that this tends to have a stabilising effect over the transient. In general, if the interfacial friction cannot be
modified, the best strategy for avoiding transient sign reversals (waves of forward-reverse slip) might be to
tune the application of the shearing loads in such a way that they grow at least as fast as a shock load in the
near field (i.e., faster than t3/2) and faster in the far field.

Much of the nature of the transient contact depends on the form the frictional law takes. In this study
we have assumed that Amonton’s law with Coulombian friction applies. The role of the kinematic contact
condition, whereby the slip velocity must oppose the direction of application of the frictional force, has
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proven to be crucial in reaching a stable, physically meaningful solution. As we have shown, otherwise
one may reach solutions where the slip velocity and the frictional law are of the same sign. Depending on
specific applications, it is possible that more complicated models for the interfacial friction such as those
based in the Gutenberg-Richter or Omori laws [36], may be necessary to better capture the dynamic effects
governing the frictional law itself. Future work will explore the influence of frictional laws in the transient
response. Alternative kinematic contact conditions based on modern observations of the apparent breakdown
of Amonton’s laws under dynamic loading[51, 49] would also affect the solutions presented here.

Although antiplanar contact is of relevance in many industrial applications (e.g., rolling of large cylinders),
future work will focus on extending the approach to transient loading presented here to normal contacts, and
to contacts between dissimilar materials. We believe that the study of the transient conditions affecting the
contact between two surfaces offers a fruitful venue for feature research, and one that is of direct interest to
industrial practice. This is because it helps clarify the nature of the contact problem itself under transient
loading: we have shown that many transient features, including peaks of slip and loss of contacts, do not
manifest in the conventional steady state, nor can be found in the t→∞ elastostatic limit. However, many
of these features can affect the performance of the contact surfaces and, particularly if they are subjected
to cyclic loading, impact the fatigue and wear performance of the surfaces; this is particularly true because
the transient slip magnitudes can be large, and because these transient features may arise under conditions
where the elastostatic solutions expect nothing anomalous.
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