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Abstract

This thesis studies various problems related to the asymptotic behaviour and
derivation of mean field models from systems of many particles.

Chapter 1 introduces mean field models and their derivation, and then summarises
the following chapters of this thesis.

Chapters 2, 3 and 4 directly study systems composed of many particles.

In Chapter 2 we prove quantitative propagation of chaos for systems of interact-
ing SDEs with interaction kernels that are merely Hölder continuous (the usual
assumption being Lipschitz). On the way we prove the existence of differen-
tiable stochastic flows for a class of degenerate SDEs with rough coefficients and
a uniform law of large numbers for SDEs.

Chapters 3 and 4 study the asymptotic behaviour of the Arrow-Hurwicz-Uzawa
gradient method, which is a dynamical system for locating saddle points of
concave-convex functions. This method is widely used in distributed optimisation
over networks, for example in power systems and in rate control in communication
networks. Chapter 3 gives an exact characterisation of the limiting solutions of
the gradient method on the full space for arbitrary concave-convex functions. In
Chapter 4 we extend this result to the subgradient method where the dynamics
of the gradient method are restricted to an arbitrary convex set.

Chapters 5, 6 and 7 study the stability of mean field models. Chapters 5 and 6
prove an instability criterion for non-monotone equilibria of the Vlasov-Maxwell
system. In Chapter 5 we study a related problem in approximation of the spectra
of families of unbounded self adjoint operators. In Chapter 6 we show how the
instability problem for Vlasov-Maxwell can be reduced to this spectral problem.



In Chapter 7 we give a proof of well-posedness of a class of solutions to the
Vlasov-Poisson system with unbounded spatial density.

Chapters 8 and 9 change track and study the dynamics of a solute in a fluid
background. In Chapter 8 we study a simple model for this phenomena, the
kinetic Fokker-Planck equation, and show contraction of its semi-group in the
Wasserstein distance when the spatial variable lies on the torus. Chapter 9 studies
a more complex model of passive transport of a solute under a large and highly
oscillatory fluid field. We prove a homogenisation result showing convergence to
an effective diffusion equation for the transported solute profile.
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Chapter 1

Introduction

We begin this thesis with a look through the menagerie of mean
field equations and their formal derivation. During this expos-
itory adventure we will briefly hint at some of the results pre-
sented in this thesis. After that we will give a more detailed
description of the results contained in this manuscript, chapter
by chapter.

1.1 Layout of this thesis

This thesis is composed of nine chapters. Aside from this introductory chapter,
these consist of research papers, namely [87, 92, 93, 18, 19, 95, 46, 88]. These
chapters are self contained and can be read individually in any order, although
it should be noted that Chapter 6 applies the results of Chapter 5, and that
Chapter 4 builds on the results of Chapter 3.

1.2 Mean field models

Mean field models describe the evolution of a density of a very large number of
interacting particles where the force on each particle is approximated by an aver-
aged mean field force over all the other particles. They are of central importance
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in the mathematical study of many phenomena in the physical, biological and so-
cial sciences, ranging from the dynamics of plasmas and galaxies to the swarming
and flocking of fish and birds. Examples of mean field models include the Vlasov-
Poisson and Vlasov-Maxwell equations for galaxies and plasmas, the vorticity
formulation of the two dimensional Euler equation for incompressible fluids, the
Hartree equation in quantum mechanics and the aggregation and aggregation-
diffusion equations. We refer the reader to [77, 113, 182] for viewpoints from
both mathematics and physics.

1.2.1 The Boltzmann equation.

Although it is not strictly a mean field model, any history of such models must
begin with the Boltzmann equation (see e.g. [36]) as it was the first instance of an
equation derived from the interaction of many particles, in this case the colliding
molecules that compose a rarefied gas.

The most basic description of such a gas would be the complete list of the positions
and velocities of each of the N � 1 particles that compose it, which is a vector
in R6N . The phase-space distribution function of this system is a (non-negative)
function fN(z1, z2, . . . , zN) that maps R6N to R+ and is symmetric under the
relabelling of particles. (Here and later we we use zi = (xi, vi) ∈ R3+3 to denote
a coordinate in phase-space.) However, from a practical perspective, the only
relevant physical quantity is the first marginal

f 1,N(x1, v1) =
∫
fN(z1, z2, . . . , zN) dz2 · · · dzN (1.2.1)

also known as the one-particle distribution function, which describes the statistics
of a single particle and allows the computation of macroscopic quantities such as
temperature and local density. Due to symmetry under relabelling of particles,
the special choice of z1 in the above formula is arbitrary and irrelevant. Inte-
grating out any other choice of N − 1 phase-space variables would give the same
function. More generally we can define the k-th marginal (k-particle distribution
function) fk,N(z1, . . . , zk) by the formula

fk,N(z1, . . . , zk) =
∫
fN(z1, . . . , zk, zk+1, . . . , zN) dzk+1 · · · dzN .
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Although not as observationally physically relevant as the first marginal f 1,N ,
the higher marginals are important as they describe correlations between the
particles. They are also important mathematically, as they arise when one tries to
close an evolution equation on the one-particle distribution function f 1,N . Indeed,
the full N -particle distribution evolves according to the Liouville equation

∂tf
N(t, z1, . . . , zN)+

N∑
i=1

vi·∇xif
N(t, z1, . . . , zN) = {changes in fN from collisions}

(1.2.2)
where we have kept the collisional term schematic. To obtain the time deriva-
tive of the one-particle distribution function f 1,N , we integrate out the variables
z2, . . . zN in the Liouville equation (1.2.2). However, the effect of collisions upon
the one-particle distribution function f 1,N cannot be computed from f 1,N alone,
because, as the collisions are pairwise, they depend upon the two-particle distri-
bution function f 2,N . Thus we have obtained

∂tf
1,N(t, x1, v1) + v1 · ∇x1f

1,N(t, x1, v1) = {collisional term involving f 2,N}.

Similarly, when integrating (1.2.2) to obtain an equation for f 2,N , the collisional
term involves f 3,N , and repeating for f 3,N , f 4,N , . . . we obtain a hierarchy of
equations: the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy (see
e.g. the lecture notes [77]), in which each equation involves the function described
by the next equation.

Building upon the earlier work of Maxwell [141], Boltzmann theorised that the
velocities of two particles just prior to performing a collision are approximately
independent, i.e. that

f 2,N(t, x1, v1, x2, v2) ≈ f 1,N(t, x1, v1)f 1,N(t, x2, v2). (1.2.3)

This assumption, now commonly known as ‘molecular chaos’ and referred to by
Boltzmann at the time as the ‘Stoßzahlansatz’, allowed him to close an equa-
tion on the time evolution of the one-particle distribution function f(t, x, v) =
f 1,N(t, x, v):

∂tf(t, x, v) + v · ∇xf(t, x, v) = Q(f, f)

where Q is the collision operator, which is a bilinear integral operator acting only
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in the v variable.

The Boltzmann equation is not of mean field type. This is because, in its deriva-
tion as a limit N → ∞ of Newtonian dynamics, to ensure that the number of
collisions a typical particle experiences per unit time remains constant, it is neces-
sary to scale the particle size with N , in what is called the ‘Boltzmann-Grad limit’
(see e.g. the recent work [70]). This scaling is a different nature to mean field
models, such as the Vlasov equation described below, in which the inter-particle
forces are scaled instead.

We close the discussion of the Boltzmann equation by remarking that the rigorous
derivation of the Boltzmann equation from Newtonian dynamics remains one of
the major open problems in kinetic theory and mathematical physics, which we do
not touch upon in this thesis. The best result in this direction remains Lanford’s
1975 proof [120] that the Boltzmann-Grad limit holds for a very short time,
which is of the order of the time between two successive collisions of a typical
particle. Recently, Lanford’s result has been revisited and refined by Gallagher,
Saint-Raymond and Texier [70], which we recommend to the interested reader as
a starting point.

1.2.2 The Vlasov equation.

The other important equation in the history of mean field models is the Vlasov
equation [77, 182]. Consider N particles with positions and velocities (Zi,N)Ni=1 =
(X i,N , V i,N)Ni=1 ∈ R6N . We assume that these evolve under Newton’s laws with
pairwise interaction forces given by a kernel K, i.e.


Ẋ i,N
t = V i,N

t

V̇ i,N
t = 1

N

N∑
j=1

K(X i,N
t , Xj,N

t )
(1.2.4)

Here the factor N−1 in front of the interaction term ensures that the force on a
single particle stays of order one independently of N , and we define K(x, x) = 0
for notational simplicity.

While the Vlasov equation can be derived from the BBGKY hierarchy, a more
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convenient tool in this case turns out to be the empirical measure µN defined by

µNt = 1
N

N∑
i=1

δZi,Nt
(1.2.5)

which is the average of Dirac masses at each particle’s phase-space position.
Formally, the empirical measure µN is a weak solution to the following equation


∂tµ

N
t + v · ∇xµ

N
t + Ft · ∇vµ

N
t = 0

Ft(x) =
∫
K(x, y) dµNt (y)

(1.2.6)

where we note that the integral in the definition of F is equal to 1
N

∑N
j=1K(x,Xj,N

t )
by the definition of the empirical measure. The equation (1.2.6) is a general form
of the Vlasov equation. At a formal level, we expect that in taking N → ∞ so
that µN approaches a smooth density, we would obtain a classical solution or at
the very least a solution that is a function and not a measure.

For Coulombic interactions, which in the attractive case model stars in a galaxy
and in the repulsive case model ions in a plasma [114], (1.2.6) is known as the
Vlasov-Poisson equation and may be written as


∂tft(x, v) + v · ∇xft(x, v)−∇xφt(x) · ∇vft(x, v) = 0,

−∆φt(x) = ±ρt(x), ρt(x) =
∫
ft(x, v) dv,

(1.2.7)

where the repulsive and attractive cases are the + and − cases respectively. The
Vlasov-Poisson system is widely used in the modelling of both plasmas and galax-
ies as it captures kinetic effects such as Landau damping, the relaxation towards
equilibrium of small perturbations in a plasma predicted mathematically by Lan-
dau in 1946 [119], which, although observed experimentally, is not predicted
by fluid mechanical models such as Magneto-Hydro-Dynamics (MHD). The non-
linear theory of Landau damping was recently made mathematically rigorous by
Mouhot and Villani [151, 150], and this has lead to the development of a general
theory of such damping in this kind of kinetic and fluid equations, from which
we mention Dietert [45] on the Kuramoto model, and Bedrossian and Masmoudi
[15] on the two dimensional Euler equation, among many others.

For plasmas, the Vlasov-Poisson equation assumes that the interactions are given
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by an electrostatic force, which corresponds to assuming infinite speed of propa-
gation of electromagnetic radiation. To remove this assumption, we must replace
the electrostatic interactions with a full coupling with Maxwell’s equations for
a dynamic electromagnetic field. By doing so we recover the Vlasov-Maxwell
system:

∂tf
±(t, x, v) + v̂ · ∇xf

±(t, x, v)± (E(t, x) + v̂ ×B(t, x)) · ∇vf
±(t, x, v) = 0,

∇x ·B = 0, ∂tB = −∇x × E,

∇x · E =
∫
R3

(f+ − f−) dv, ∂tE = ∇x ×B −
∫
R3
v̂(f+ − f−) dv.

(1.2.8)
Here f±(t, x, v) are the phase space densities of positively and negatively charged
particles, and v̂ = v/

√
1 + |v|2 is the relativistic velocity.

The Vlasov-Maxwell equation (1.2.8) has the structure of a wave equation and
has finite speed of propagation. In contrast, Vlasov-Poisson (1.2.7) has infinite
speed of propagation of information, even if the maximum speed of the particles
is bounded. The additional difficulty of the dynamic electromagnetic field makes
analysis of the Vlasov-Maxwell system (1.2.8) more challenging than the simpler
Vlasov-Poisson equation (1.2.7). For example, global existence and uniqueness of
smooth solutions is known in the full three dimensional setting for Vlasov-Poisson
(1.2.7), the original result due to Pfaffelmoser [168], later simplified by Schaeffer
[177], with an alternative method given by Lions and Perthame [133]. For the
Vlasov-Maxwell system, global existence and uniqueness of smooth solutions in
three dimensions is known only under some assumption of symmetry, a result due
to Glassey and Schaeffer [74] refining their earlier results in dimension [73, 75].
The full three dimensional Cauchy problem remains an open problem.

In this thesis we present two new results on the Vlasov-Poisson and Vlasov-
Maxwell systems. In Chapters 5 and 6 we present new linear instability results
for the Vlasov-Maxwell system (1.2.8). In Chapter 7 we present a new well-
posedness result for the Vlasov-Poisson system (1.2.7) for a class of solutions
with unbounded density.

24



1.2.3 First order systems.

Another class of mean field models arises from first order dynamics, where the
second order Newtonian dynamics in (1.2.4) are replaced by a first order system
where only the particle positions are considered. Indeed, consider N particles in
Rd with positions (X i,N)Ni=1 ∈ RNd, that evolve as

Ẋ i,N
t = 1

N

N∑
j=1

K(X i,N
t , Xj,N

t ) (1.2.9)

for an interaction kernel K(x, y). The forces are scaled in the same way as in
(1.2.4), ensuring that they remain of order one independent of N .

The corresponding empirical measure is

µNt = 1
N

N∑
i=1

δXi,N
t

(1.2.10)

which is a probability measure on Rd. Formally, the empirical measure (1.2.10)
is a weak solution to the following non-linear first order equation


∂tµ

N
t +∇ · (FtµNt ) = 0,

Ft(x) =
∫
K(x, y)dµNt (y).

(1.2.11)

Although, strictly speaking, (1.2.11) (respectively (1.2.9)) includes the second
order system (1.2.4) (respectively (1.2.6)) as a special case, the second order
structure of (1.2.4), (1.2.6) has distinctive properties that make the analysis dif-
ferent. In particular, second order systems are slightly more stable, in the sense
that changes in the forces have to filter through the velocities before affecting the
positions, a property exploited in Chapter 7 to show improved well-posedness re-
sults for the Vlasov-Poisson system (1.2.7). Furthermore, in the case where noise
is added (discussed in Section 1.2.4), it is often more natural to consider noise
in the velocity variable only and not in the spatial dynamics. This distinction
changes the form of the results in Chapter 2 (summarised below in Section 1.3.5)
on propagation of chaos for noisy systems.

A first example of a specific first order mean field model is the vorticity formu-
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lation of the two dimensional incompressible Euler system. Although the two
dimensional Euler equation is not derived as a mean field limit of a particle
system. In its vorticity formulation, it has an interpretation, originally due to
Helmholtz [84], as the N → ∞ limit of the interaction of point vortices, where
the total vortex strength normalised to a constant.


∂tωt + ut · ∇ωt = 0

ut = x⊥

|x|2
∗ ωt

(1.2.12)

In many ways the two dimensional vorticity equation (1.2.12) behaves like a first
order counterpart to the Vlasov-Poisson system in two spatial dimensions (four
phase space dimensions). They share the same strength of interaction kernel,
the only difference between them being that the Biot-Savart law in the vorticity
equation (1.2.12) is directed perpendicular to the Coulomb law in the Vlasov-
Poisson system (1.2.7). Unlike the Vlasov-Maxwell (1.2.8) and Vlasov-Poisson
(1.2.7) equations, we do not present any results on the vortex equation in this
thesis.

1.2.4 Systems with noise.

The vorticity equation (1.2.12) is derived from the two dimensional incompress-
ible Euler equation. The two dimensional incompressible Navier-Stokes equation
instead produces the following equation in vorticity formulation, which we will
refer to as the viscous vorticity equation.


∂tωt + ut · ∇ωt −∆ωt = 0,

ut = x⊥

|x|2
∗ ωt,

(1.2.13)

where x⊥ = (−x2, x1) for x = (x1, x2) ∈ R2. This is the formal limit of a particle
system in the same way as the inviscid case (1.2.12). However, here the particle
system is a system of stochastic differential equations (SDEs). Instead of writing
the specific system for the viscous vorticity equation we consider the more general
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system of first order SDEs for N particles (X i,N)Ni=1 ∈ RNd:

dX i,N
t = 1

N

N∑
j=1

K(X i,N
t , Xj,N

t ) dt+ dBi,N
t (1.2.14)

where (Bi,N)Ni=1 are standard independent Brownian motions. Formally, the mean
field limit of this system of SDEs is the non-linear convection diffusion equation
(which could also be called a non-linear Fokker-Planck equation, or the PDE for
the law of a McKean-Vlasov equation)


∂tft +∇ · (Ftft)−

1
2∆ft = 0,

Ft(x) =
∫
K(x, y)ft(y) dy

(1.2.15)

The empirical measure µN corresponding to the particle system (X i,N)Ni=1 is de-
fined by the same formula (1.2.10) as in the deterministic case. However, there
is an important distinction: for noisy systems the empirical measure is random,
so is a random probability measure on Rd.

For second order systems governed by Newton’s laws, models often consider noise
in the velocities only. Indeed, let (X i,N , V i,N)Ni=1 ∈ R2Nd be the positions and
velocities of N particles, then they evolve as


dX i,N

t = V i,N
t dt

dV i,N
t = 1

N

N∑
j=1

K(X i,N
t , Xj,N

t ) + dBi,N
t

(1.2.16)

where again (Bi,N)Ni=1 are standard independent Brownian motions. The formal
mean field limit of this particle system is the non-linear kinetic Fokker-Planck
equation 

∂tft + v · ∇xft +∇v · (Ftft)−
1
2∆vft = 0,

Ft(x) =
∫
K(x, y)ft(y, v) dvdy,

(1.2.17)

where the unknown is the phase space density ft(x, v).
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1.2.5 Propagation of chaos

The notion of molecular chaos (1.2.3) was key in the formal derivation of the
Boltzmann equation above. One might naively hope that this property would
be made exact, that the N -particle distribution function would exactly tensorise,
i.e.

fN(t, z1, z2, . . . , zN) = f⊗N(t, z1, z2, . . . , zN) = f(t, z1)f(t, z2) · · · f(t, zN).
(1.2.18)

We could certainly impose that the initial condition fN(0, z1, . . . , zN) has this
property, but we cannot impose this at later times as the solution is then given
to us by the particle dynamics. We then have to check: are we lucky enough that
this tensorisation is propagated? The answer, of course, is no. The collisions
cause correlations between the particles and the solution for any positive time is
no longer tensorised. As a result we cannot ask for perfect tensorisation.

It was the work of Kac [106] that gave the correct formulation: the tensorisation
holds only in the limit N → ∞ when looking at the kth marginal for k fixed in
the limit.

Definition 1.2.1 (Chaotic family of measures). We say that a family (fN)∞N=1 of
laws on RdN which are symmetric under particle permutations is chaotic if there
is a law f on Rd such that

lim
N→∞

fk,N(z1, z2, . . . , zk) = f⊗k(z1, z2, . . . , zk) = f(z1)f(z2) · · · f(zk)

holds for each k ∈ N where the limit holds in the weak* topology on the space of
probability measures.

Kac proposed this definition for the purpose of the derivation of the homogeneous
Boltzmann equation from a random walk on the energy sphere, a stochastic sys-
tem now known as Kac’s process. He showed, by a beautiful combinatorial argu-
ment, that, although the tensorisation property (1.2.18) is not propagated by the
stochastic process, the property of chaoticity is propagated. This phenomenon
is known as the propagation of chaos and is the central problem in rigorously
deriving mean field models from systems of interacting particles.
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Later Sznitman [185] gave an alternate definition based upon the empirical mea-
sure, which will be of more use in this thesis. Recall that in general the empirical
measure is a random variable, and in particular can be obtained from the distri-
bution function fN(z1, . . . , zN) by constructing a probability space and random
variables (Zi,N)Ni=1 with law fN and then defining µN = 1

N

∑N
i=1 δZi,N .

Definition 1.2.2 (Chaotic family of measures (2)). We say that a family (fN)∞N=1

of laws on RdN which are symmetric under particle permutations is chaotic if there
is a probability measure f on Rd such that

lim
N→∞

Ed(µN , f) = 0

where d metrises weak convergence of probability measures.

This definition turns out to be equivalent to the previous definition due to Kac,
and this equivalence is quantitative in the speed of convergence. This convergence
is measured in terms of particular metrics on the space of probability measures.
In particular, we define the Wasserstein-p distance:

Definition 1.2.3 (Wasserstein distance). Let p ∈ [1,∞) and µ, ν be probability
measures on Rd with p-th moment finite. Then the Wasserstein-p distance between
µ and ν is given by

Wp
p (µ, ν) = inf

{∫
|x− y|p dπ(x, y) : π is a coupling of µ and ν

}

where by a coupling we mean a measure on the product space Rd × Rd with
marginals µ and ν.

The Wasserstein-p distance metrises weak convergence of probability measures for
those measures which have finite p-th moment. In the special case of p = 1 it is
also known as the Monge-Kantorovich-Wasserstein-(Rubinstein) (MKW) metric
and can be defined equivalently by duality as:

Definition 1.2.4 (Monge-Kantorovich-Wasserstein-(Rubinstein) metric). Let µ
and ν be probability measures on Rd with first moment finite. Then the MKW
distance is given by

dMKW(µ, ν) = sup
{∫

h dµ−
∫
h dν : h is 1-Lipschitz

}
.
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The Wasserstein distances are the basis for the rich theory of optimal transporta-
tion (see e.g. [198] for an overview). The Wasserstein-2 distance in particular
has a deep geometric interpretation related both to gradient flows (see e.g. [9])
and to curvature of metric spaces [198]. These distances are used throughout this
thesis.

1.3 Summary of Chapter 2

It is the derivation of (1.2.15) and (1.2.17) in the limit N → ∞ of (1.2.14)
and (1.2.16) respectively that is the topic of the second chapter (Chapter 2) of
this thesis. In this summary we shall only give a brief overview of the existing
literature, preferring to concentrate on the philosophical differences in the var-
ious approaches. A more extensive picture is given at the start of Chapter 2.
The importance of this problem in kinetic theory and mathematical physics was
discussed in the preceding Section 1.2.

1.3.1 Compactness versus quantitative.

It is important to distinguish between compactness methods and quantitative
methods. The former gives convergence without a rate, but has the advantage of
being easier to establish. For most convergence results in the field a compactness
proof is given first, and only later and with different techniques is a quantitative
estimate on the rate established. In many models only a compactness proof with
no rate is known, for example in the viscous vorticity model (1.2.13) (see the
recent study of Fournier, Hauray and Mischler [66] and the references therein.)
As our results in this thesis are quantitative, we shall not spend much time
summarising the full extent of compactness methods.

1.3.2 Stochastic versus deterministic.

A second important distinction is between the deterministic dynamics of (1.2.9)
and (1.2.4) and the stochastic (noisy) dynamics of (1.2.14) and (1.2.16). De-
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terministic systems have two advantages over their noisy counterparts. Firstly,
very fine control over particle positions and velocities can be established, which
allows conditions on inter-particle distances, for example, to be propagated in
time, an approach followed by Hauray and Jabin [81] for Vlasov with singular
forces. In noisy systems, close encounters between particles are uncommon over-
all, but due to noise are also extremely unlikely to never occur, making such
propagation estimates impossible. Secondly, the empirical measure is a weak so-
lution of the corresponding limit equation, which fails in the noisy case. This
allows the application of weak-strong stability estimates on the limit equation.
These make quantitative proofs of propagation of chaos easier than in the noisy
case. However, for compactness methods the situation is reversed, with the noise
regularising the system and making undesirable events also uncommon, giving
compactness.

1.3.3 Quantitative methods for the deterministic case.

The standard baseline quantitative result on deterministic systems is due to Do-
brushin [49] and also Braun and Hepp [29], both on the Vlasov equation (1.2.6)
with a kernel K that is globally Lipschitz in both variables. Their proofs rely on
the observation that, when K is Lipschitz, the Vlasov equation (1.2.6) is well-
posed in the space of measures equipped with the weak* topology. This allows
an explicit computation, now commonly known as the Dobrushin estimate, on
the dependence of the solution to the Vlasov equation upon its initial datum in
the Wasserstein distance. The same estimate applies to the first order system
(1.2.11) again assuming that K is Lipschitz. For more singular kernels, results
are more limited, a notable result being due to Hauray and Jabin [81].

1.3.4 Quantitative methods for the stochastic case.

For noisy systems (1.2.15) and (1.2.17), the empirical measure is no longer a weak
solution to the limit equation (even in the formal sense), and the Dobrushin es-
timate does not directly apply. Instead, for Lipschitz kernels K one applies a
coupling technique popularised by Sznitman in his lecture notes [185], where

31



the particle system is coupled to a system of N mutually independent particles
with the vector field of the limit equation. This method has the advantage that
the driving Brownian motions effectively ‘disappear’ from the mathematical esti-
mates, and a Dobrushin style proof is then possible.

For non-Lipschitz kernels very few quantitative results exist in the literature.
We mention the work of Fournier and Hauray [65] on a particle model for the
Landau equation where the kernel K(x, y) has a singularity of strength |x− y|α

with α ∈ (0, 1) on the diagonal, and is Lipschitz elsewhere, and also the recent
results of Jabin and Wang [100, 101] for kernels K(x, y) = W (x − y) which are,
respectively, L∞ or, (roughly speaking) W−1,∞. However, these results require
specially prepared initial conditions that are uniformly bounded above and below
by exponentials or Gaussians.

1.3.5 The results of Chapter 2

The main results of Chapter 2 are quantitative propagation of chaos for the
noisy systems (1.2.14) and (1.2.16) for interaction kernels that are merely Hölder
continuous. In particular, the results apply to kernels that are nowhere Lipschitz
and to general initial data. We give an informal statement of these results below,
leaving the exact formulation and extensions to the chapter itself.

Theorem 1.3.1. Let the initial condition f0 be in L2 with some decay at infin-
ity. Let [0, T ] be an arbitrary finite time interval. Consider the particle systems
(1.2.14) and (1.2.16) with initial positions i.i.d. with law f0. Let ft be the corre-
sponding solution to the respective limit equations (1.2.15) and (1.2.17). Assume:

• First order system: Let K ∈ C0,α(Rd × Rd;Rd) with α ∈ (0, 1).

• Second order system: Let K ∈ C0,α(Rd × Rd;Rd) with α ∈ (1/3, 1).

Then
E sup
t∈[0,T ]

dMKW (µNt , ft) ≤ CN−γ (1.3.1)

for an explicit constant γ > 0 depending only on the dimension d and upon α.

The proof brings together ideas from empirical process theory (see e.g. [193]) and

32



stochastic flows for SDEs with rough coefficients ([116] describes the smooth case
in detail).

The main hindrance to proving propagation of chaos in systems such as (1.2.4),
(1.2.9), (1.2.14) and (1.2.16) is the non-independence of the particles as this
obstructs an application of the law of large numbers. Although the particles
will have the same individual laws they interact through the force field that
depends upon all of the particles. Every proof of propagation of chaos must
deal with this problem at some key point. For example, the coupling method of
Sznitman [185] uses the Lipschitz assumption on K to view the particle system
as a perturbation of N independent particles to which the law of large numbers
directly applies.

To prove Theorem 1.3.1 we take a different and novel approach based upon prov-
ing a uniform law of large numbers. We now describe this in the first order case.
We define the empirical process ((Xb,i,N)Ni=1)b∈C as the solutions to the SDE

 dX
b,i,N
t = bt(Xb,i,N

t )dt+ dBi,N
t

X i,N
0 i.i.d. with law f0

where b ranges over a set C of all Hölder continuous vector fields with norm
bounded by a constant, i.e.

C = {b ∈ C0,α([0, T ]× Rd;Rd) : ‖b‖C0,α ≤ C}. (1.3.2)

Note that for each b ∈ C fixed, the N particles (X i,N)Ni=1 are independent and
identically distributed. Let µb,Nt be the empirical measure corresponding to
(Xb,i,N)Ni=1. Let f bt be the law of Xb,1,N

t for each b fixed. The key observation
is that, if we choose

bNt (x) = 1
N

N∑
i=1

K(x,X i,N
t ) (1.3.3)

with X i,N
t given by the original particle system (1.2.14), then, at least formally,

(XbN ,i,N
t )Ni=1 = (X i,N

t )Ni=1. (1.3.4)

We can avoid dealing with the original dependent particle system (1.2.14) by the
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inequality

dMKW(µNt , ft) ≤ dMKW(µb
N ,N
t , f b

N

t ) + dMKW(f bNt , ft)

≤ sup
b∈C

dMKW(µb,Nt , f bt ) + dMKW(f bNt , ft).

The key being that the only appearance of bN on the final line is as the vector field
in a PDE rather than an SDE, which is a much smoother object. The remaining
problem is to estimate the supremum:

Theorem 1.3.2. Let the assumptions of Theorem 1.3.1 hold. Then

E sup
b∈C

dMKW(µb,Nt , f bt ) ≤ CN−γ
′

for an explicit γ′ > 0 depending only upon the dimension d and upon α.

Remark 1.3.1. In stating the above theorem we have swept under the rug a
major technical issue of defining the empirical process (µb,N)b∈C in such a way
that the supremum makes sense. In particular, the statement above holds only in
a formal sense, assuming that everything can be defined. The resolution of this
issue is left to Chapter 2 itself.

1.3.6 Significance of the results

The more application minded reader may ask, given that most models in the
physical and biological sciences have a kernel of the form K(x, y) = W (x − y)
with W smooth apart from a singularity at the origin, whether it is of interest to
consider kernels that are nowhere smooth. This question has a simple response:
Theorem 1.3.1 should not be considered a result about singular kernels as such,
rather it should be considered an improvement in what should be thought of
as a singular kernel. The baseline regularity below which a kernel is considered
singular has previously been taken to be Lipschitz; Theorem 1.3.1 shows that this
can be reduced to Hölder continuous for noisy systems.
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1.4 Arrow-Hurwicz-Uzawa Gradient method

In the previous Section 1.3 we discussed the modelling and study of systems
comprised of many individual interacting components via mean field equations
and described their rigorous derivation. In this section we will present another
example of a system comprised of many interacting individual elements. How-
ever, in this case mean field approximation will not be appropriate and we will
instead work with the high dimensional dynamics directly. This will lead to the
study of the Arrow-Hurwicz-Uzawa gradient method, which was introduced by
the eponymous authors [10] as a numerical method of finding saddle points of
concave-convex functions.

Given a function ϕ(x, y) : Rn × Rm → R which is concave-convex (concave in x
for fixed y, convex in y for fixed x), the gradient method is the system of ordinary
differential equations for z(t) = (x(t), y(t)) ∈ Rn+m given by


dxi
dt

= ∂ϕ

∂xi
, i = 1, 2, . . . , n,

dyj
dt

= − ∂ϕ
∂yj

, j = 1, 2, . . . ,m.
(1.4.1)

The problem of finding saddle points of a concave-convex function ϕ is a central
problem in numerical analysis and optimisation (see e.g. [27, 61] among many
others). In particular the dual problem of a convex optimisation problem is to find
a saddle point of the associated concave-convex Lagrangian (see e.g. [27]). This
link between the gradient method and optimisation problems has been exploited
[110, 61] in the control of many distributed systems, such as wireless networks,
multi-path routing [183, 199, 124], power systems, microeconomics [194] and in
a general framework for distributed optimisation over networks.

In Section 1.5 and Section 1.6 we shall describe the results on the asymptotic
behaviour of this system and the related subgradient method, where the dynamics
(1.4.1) are restricted to a convex domain, that are proved in this thesis. First,
however, we will give more details of the network optimisation problems for which
the gradient method is applied, and show how these can be interpreted as many
particle systems.
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1.4.1 Motivation: Network Utility Maximisation (NUM)

Consider the simple concave optimisation problem (see e.g. [27])

max
x∈Rn

U(x) (1.4.2)

for a concave function U : Rn → R.

Network Utility Maximisation (NUM) is concerned with the specific case where
the utility function U is distributed as a sum over the nodes of a network. We
present here a simple example of such a problem and show how the gradient
dynamics (1.4.1) can be applied to yield a distributed algorithm for its solution.
For more general examples and a more detailed exposition of the theory we en-
courage the reader to consult [28, 164, 183, 110]. Another more specific example,
the multi-path routing problem, is discussed in Chapter 4 as an application of
the results therein.

For our purposes a network is just an undirected graph G = (V , E), with V =
{1, 2, . . . , n}. Each node (vertex) i ∈ V is associated with a variable xi ∈ R. We
assume that the optimisation problem (1.4.2) splits into a sum over the graph as
follows:

max
x∈Rn

∑
i∈V

Ui(xi, xni,1 , . . . , xni,d(i)). (1.4.3)

Here, for a vertex i ∈ V , d(i) is its degree (number of edges), and (ni,j)d(i)
j=1 are its

neighbours (vertices which share an edge with i). Each Ui is a concave real-valued
function that only depends upon the variable xi associated with the vertex i, and
the variables associated with its neighbouring vertices.

If each Ui only depended upon xi and not its neighbours then the problem (1.4.3)
would tensorise completely over the graph and could be solved fully locally, (in a
distributed manner), by computing, for each i ∈ V , the solution to the optimisa-
tion problem

max
xi∈R

Ui(xi).

One could imagine that each node is capable of this computation on its own.
However in the general case this is not possible and in any algorithm there must
be communication between the nodes.

36



To transform the optimisation problem (1.4.3) into a form more amenable to
distributed computation, we apply the technique of dual decomposition (see e.g.
[28]). For each vertex i, we add the additional variables xi,1, . . . , xi,d(i) which
will hold local (to i) copies of the variables xni,1 , . . . , xni,d(i) , respectively, of the
neighbouring vertices. Then the relaxed problem

max
xi,xi,j

∑
i∈V

Ui(xi, xi,1, . . . , xi,d(i))

is fully distributed and can be solved locally at each vertex. Of course, this is
a relaxation too far and this problem is not equivalent to (1.4.3). To restore
this missing correspondence we must add the constraint that, for each vertex
i ∈ V , all the local copies of the variable xi are equal. This yields the constrained
optimisation problem

max
xi,xj,i

xi=xj,i if (i,j)∈E

∑
i∈V

Ui(xi, xi,1, . . . , xi,d(i)) (1.4.4)

which is equivalent to (1.4.3).

A simple approach to constructing a distributed algorithm for solving (1.4.4) is
to relax the constraints with Lagrange multipliers, and solve the corresponding
saddle point problem for the resulting Lagrangian:

ϕ(x, y) =
∑
i∈V

Ui(xi, xi,1, . . . , xi,d(i)) +
∑

ek=(i,j)∈E
yk(xi − xj,i) (1.4.5)

where we have abused notation and let x denote the full vector of the xi’s and the
x′i,js, the second sum is over directed edges and y ∈ R2|E| are Lagrange multipli-
ers. Finding a saddle point of (1.4.5) is equivalent1 to solving (1.4.4) and hence
(1.4.3).

A key observation of the celebrated work [110] of Kelly, Maulloo and Tan is that
many of the then existing distributed methods for solving the NUM problem
can be interpreted as applications of the gradient method to the associated La-
grangian. Indeed, for the example (1.4.5), when we write the gradient dynamics

1In general this would require a feasibility condition on the problem (1.4.3) (see e.g. [27]).
However, in this case the problem is so simple that these conditions are automatically satisfied.
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(1.4.1) we obtain:


dxi
dt

= ∂Ui
∂xi

(xi, xi,1, . . . , xi,d(i)) +
∑

ek=(i,j)∈E
yk, i ∈ V ,

dxi,j
dt

= ∂Ui
∂xi,j

(xi, xi,1, . . . , xi,d(i))−
∑

ek=(i′,j)∈E
yk, i ∈ V , (i, j) ∈ E ,

dyk
dt

= −xi + xj,i, k = 1, . . . , 2|E|,

(1.4.6)

where the sums are again over directed edges and ek = (i, j) in the equation
for yk. These dynamics are localised in the sense that, for each vertex i ∈ V ,
to update the local variables xi, xi,1, . . . , xi,d(i) of the vertex, we only need know
these local variables themselves, and the Lagrange multipliers corresponding to
edges touching i.

The system (1.4.6) is an example of a many particle system. However, unlike the
systems of interacting particles described in Section 1.2, the ‘particles’ (nodes
in the graph) are not interchangeable because of the geometry of the graph G.
Moreover, the structure of the graphs arising in applications vary considerably
and it is not (in general) reasonable to model them as random graphs, which is
one way in which exchangability could be recovered. For these reasons, among
others, the analysis of the system (1.4.6) is done directly without passing to a
scaling limit2.

1.5 Summary of Chapter 3

Chapter 3 studies the asymptotic behaviour and limiting solutions of the gradient
method (1.4.1) applied to arbitrary concave-convex function in C2.

1.5.1 Previous results

When either the concavity or the convexity of ϕ is strict, convergence of the gradi-
ent method (1.4.1) to a saddle point was proved by Arrow, Hurwicz and Usawa in

2It should be noted, however, that the many particle dynamics may have been derived from
a scaling limit, for example from the fluid limit of a Markov chain.
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[10]. Without the strictness assumption, they observed the presence of oscillatory
behaviour and non-convergence. However, in many important applications [61],
strictness is lacking, but still convergence is observed and proved. This includes
the large class of augmented Lagrangian methods, such as Penalty functions and
the alternating direction method of multipliers [68, 27].

The majority of such convergence proofs follow the same formula. First it is
observed that, for any saddle point z̄ = (x̄, ȳ), the Euclidean distance

W (t) = 1
2 |z(t)− z̄|2

is non-increasing along trajectories of the gradient method. As a consequence of
an application of LaSalle’s theorem3 we obtain that any solution converges to the
set of solutions that lie at a constant distance from any saddle point. One then
studies these solutions and shows that the only possible such solution is a saddle
point itself, thus proving convergence.

Despite the simple form and wide applicability of the gradient dynamics (1.4.1),
a complete classification of the limiting behaviour is absent from the control
literature. It is this gap that Chapter 3 aims to fill. The main result is that the
limiting solutions of the gradient method solve an explicit linear ODE, which we
state a shortened version of below. We state the result for when 0 is a saddle
point, the general result being then obtained by a translation of coordinates.

Theorem 1.5.1. Let ϕ ∈ C2 be an arbitrary concave-convex and 0 be a saddle
point of ϕ. Then the limiting solutions of the gradient method are exactly the
solutions to the linear ODE

ż(t) =
 0 ϕxy(0)
−ϕyx(0)

 z(t) (1.5.1)

for an explicit set of initial conditions.

Here ϕxy, ϕyx are the matrices of partial derivatives of ϕ.

In addition to this result we also state and prove several corollaries, which, how-
3The application of LaSalle’s theorem is justified here as we study the gradient method

whose trajectories are smooth. For the subgradient method this is no longer the case and a
more careful analysis is needed.
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ever, we will leave to the chapter itself.

The proofs of Theorem 1.5.1 are geometric in nature and embarrassingly(!) el-
ementary. The key observation is that not only is the Euclidean distance from
any saddle point non-increasing along the dynamics of the gradient method, but
also the Euclidean distance between any two solutions is itself non-increasing,
i.e.

d

dt
|z(t)− z′(t)|2 ≤ 0

for any two solutions z(t) and z′(t) of the gradient method (1.4.1). A property
which we refer to in the chapter (and the following chapter) as pathwise stability.4

With this observation in hand, one can then deduce geometric properties of the
set of limiting solutions culminating in showing that they solve the explicit linear
ODE given above.

1.6 The subgradient method

In many applications it is required that the dynamics of the gradient method
(1.4.1) are restricted to lie in a closed convex set K ⊆ Rn+m. For example,
in applications to optimisation, this is needed to ensure that the Lagrangian
multipliers remain non-negative in the relaxation of inequality constraints. This
is achieved by projecting the dynamics onto K and the resulting system is known
as the subgradient method.5

A major issue in the study of the subgradient method is that it is a non-smooth
differential equation, i.e. its trajectories are not differentiable. This means that
the classical LaSalle type theorems (e.g. [112]) do not apply, as noted in [38]
where tools from non-smooth analysis are used. We do however note that, if K
is an affine subspace, then the resulting subgradient dynamics are smooth.

4We use the term pathwise stable, rather than incrementally stable, contractive or monotone
as these later terms have different (conflicting!) definitions in the different mathematics and
engineering communities.

5For brevity we do not write the subgradient method explicitly in this introduction, as doing
so would require too many definitions. In the special case of positive orthant constraints the
subgradient method is given by (1.7.1) below.
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1.7 Summary of Chapter 4

In Chapter 4 we extend the results of Chapter 3 to the subgradient method on a
convex set K. The main result is that the limiting solutions of the non-smooth
subgradient method solve an explicit smooth system of differential equations. We
state a simplified version of this result below.

Theorem 1.7.1. Let K ⊆ Rn+m be non-empty closed and convex. Let ϕ : K → R
be C2 and concave-convex. Then the ω-limit set of the subgradient method on K
applied to ϕ is contained in the unique minimal face F of K that contains all
the saddle points of ϕ. Furthermore, the limiting solutions are solutions to the
(smooth) subgradient method on V where V is the affine span of the face F .

As a consequence of this result, the study of the limiting solutions of the non-
smooth subgradient method reduces to the study of the limiting solutions of a
smooth system, the subgradient method on an affine subspace. In particular,
the results in Chapter 3 apply to this system and give an exact classification of
limiting behaviour.

To illustrate Theorem 1.7.1 consider the special case of positive orthant con-
straints. For concreteness the positive orthant is given by

K = Rn+×Rm+ = {(x, y) ∈ Rn+m : xi ≥ 0, i = 1, . . . , n, and yj ≥ 0, j = 1, . . . ,m}.

In this case the subgradient method has the simple form

dxi
dt

=
[

∂ϕ

∂xi

]+

xi

i = 1, 2, . . . , n,

dyj
dt

=
[
− ∂ϕ
∂yj

]+

yj

j = 1, 2, . . . ,m,
(1.7.1)

where we have used the notation

[a]+b =

a if b > 0 or a > 0,

0 otherwise.

Here the projection operators [·]+· act to ensure that the dynamics preserve the
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coordinatewise non-negativity of the solution z(t) = (x(t), y(t)). Such constraints
arise naturally in many applications, for example in ensuring the non-negativity
of Lagrange multipliers or transmission rates.

In this case, the faces correspond to the fixing some subset of coordinates xi, yj
to zero, and keeping the rest non-negative, i.e. each face is of the form

F = {(x, y) ∈ Rn+ × Rm+ : xi = 0 for i ∈ I, yj = 0 for j ∈ J}

where I ⊆ {1, . . . , n} and J ⊆ {1, . . . ,m} are arbitrary subsets of coordinates.

The above Theorem 1.7.1 then implies that the subgradient method is convergent
to a saddle point, if the gradient method obtained from the function ϕ(x, y) by
fixing an arbitrary subset of the coordinates to zero is convergent.

The proof of Theorem 1.7.1 on the subgradient method is based upon the same
observation as the proof of Theorem 1.5.1 for the gradient method, that the
Euclidean distance between any two solutions is non-increasing in time. However,
due to the non-smoothness of the dynamics, we take a more abstract view, using
tools from topological dynamics. This results in a proof that is no longer as
elementary as that for Theorem 1.5.1.

1.8 Instabilities of the Vlasov-Maxwell system

Chapters 5 and 6 are devoted to the study of instabilities of the relativistic Vlasov-
Maxwell system (1.2.8). We summarise them below.

1.8.1 The (in)stability problem

The stability or instability of stationary solutions to (1.2.8) is a classical problem
in mathematical physics (see e.g. [114]). An early result on this problem is the
linear stability criterion of Penrose [167] for spatially homogeneous equilibria.
Later results include [96, 139] among many others. In [130, 132], Lin and Strauss
established a sharp linear stability for monotone (defined in the next paragraph)
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equilibria, and obtained non-linear stability results in [131]. Their result asso-
ciates to each monotone equilibrium of (1.2.8) a Schrödinger operator L0 acting
in the spatial variable only, and states that the equilibrium is linearly stable if
L0 ≥ 0 (i.e. has no negative eigenvalues), and is linearly unstable if L0 possesses
a negative eigenvalue.

1.8.2 Monotonicity of equilibria

Typically one assumes (justified by the so-called ‘Jean’s theorem’6) that the equi-
librium can be written in the form f 0,±(x, v) = µ±(e±, p±), i.e. as a function of
the microscopic energy e± and momentum p± which are conserved along solutions
to (1.2.8).7 Such an equilibrium is called monotone if

∂µ±

∂e±
< 0 whenever µ± > 0. (1.8.1)

Equilibria that do not satisfy this condition are called non-monotone. The as-
sumption of monotonicity is very often made in the study of (in)stability of the
Vlasov Poisson (1.2.7) and Vlasov Maxwell (1.2.8) systems, as it is believed to
make equilibria more stable. However, there are many interesting examples of
non-monotone equilibria, both stable and unstable, and the mathematical theory
in these cases is far more sparse. A notable exception being the work of Penrose
[167] for homogeneous equilibria.

1.9 Summary of Chapters 5 and 6

In Chapter 6 we extend the linear instability result of Lin and Strauss [132] to
non-monotone equilibria. We give a simplified statement below.

Theorem 1.9.1. Let f 0,± be an equilibrium of the Vlasov-Maxwell system in
either 1.5D symmetry or 3D with cylindrical symmetry. Assume that f 0,±(x, v) =

6Which is not strictly a ‘theorem’ as it is not always true (see Remark 6.1.1). It is, however,
always convenient.

7The exact form of the conserved quantities e± and p± depends upon the symmetries of the
considered equilibria, so we will not record them at this point.
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µ±(e±, p±) is C1 with compact support in the x variable. Then there exists a
Schrödinger operator8 L0 acting only in the x variable, such that if L0 has a
negative eigenvalue then there exists a growing mode solution

(eλtf±(x, v), eλtE(x), eλtB(x)), λ > 0

to the RVM system (1.2.8) linearised around the f 0,±.

This builds on the work of Ben-Artzi [16, 17] who studied the stability question
for non-monotone equilibria in the simpler 1.5D periodic setting. By taking the
Laplace transform and inverting the linearised Vlasov equation, the problem of
linear instability is converted in the problem of finding a growth rate λ > 0 for
which a self-adjoint operatorMλ has a non-trivial kernel. We wish to count the
number of negative eigenvalues ofMλ for λ large and small. If they are different,
then the continuity in λ of the spectrum ensures that at some intermediate λ an
eigenvalue of Mλ must cross zero and give a non-trivial kernel. However, the
operatorMλ comes from Maxwell’s equations and has the schematic form

Mλ = A+Kλ =
−∆ + 1 0

0 ∆− 1

+Kλ, (1.9.1)

where Kλ is a symmetric bounded arising from computing the current and charge
densities j(t, x) and ρ(t, x) from linearised Vlasov equation. Due to the opposite
signs of the Laplacians and the unbounded domain, the operatorMλ has essen-
tial spectrum extending both to positive and negative infinity. This means that
eigenvalues may be absorbed or emitted from the essential spectrum, and the
counting argument cannot work. To get around this problem we use the results
of Chapter 5 (described in the next paragraph), to show it is sufficient to apply
the counting argument to finite dimensional approximations toMλ.

Summary of Chapter 5 In Chapter 5 we consider the problem of approxi-
mating the discrete spectra of families of self-adjoint operators that are merely
strongly continuous. We look at families

{
Mλ

}
λ∈[0,1]

of the form (1.9.1) where

8In Chapter 6 the theorem is stated in a different way without explicit reference to the
operator L0. We differ here as this version is slightly shorter (if less precise).
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{
Kλ
}
λ∈[0,1]

is a bounded, symmetric and strongly continuous family. Such fam-
ilies have, for every λ ∈ [0, 1], discrete spectrum inside (−1, 1) and it is these
eigenvalues we wish to approximate. We show that, under uniform relative com-
pactness assumptions on the strongly continuous bounded perturbation Kλ, this
is possible and give an explicit construction of such finite dimensional approx-
imations, in such a way that the spectrum of the approximations converges in
compact subsets of (−1, 1) to the spectrum of Mλ, uniformly in the parameter
λ.

1.10 Uniqueness for the Vlasov-Poisson system

The Cauchy problem for the Vlasov-Poisson system (1.2.7) has received consid-
erable attention in the literature, with classical solutions constructed in [192, 11,
168, 178] and weak solutions in [133, 71] (see also the discussion in Pages 23
to 24).

In [143] Miot established the uniqueness of weak solutions to Vlasov-Poisson
under the assumption that the Lp norms of the spatial density ρ grow at most
linearly in p, i.e. that

sup
t∈[0,T ]

sup
p≥1

1
p
‖ρ(t)‖Lp(Rd) ≤ C <∞. (1.10.1)

This generalises the uniqueness established by Loeper in [134] where ρ is assumed
to obey the stronger bound

sup
t∈[0,T ]

‖ρ(t)‖L∞(Rd) ≤ C <∞. (1.10.2)

The argument in [134] uses a log-Lipschitz Grönwall estimate, which, although
this is not done in the paper9, would give a stability estimate of the form

W2(f2(t), f2(t)) ≤ CW2(f1(0), f2(0))exp(−ct) (1.10.3)

in the Wasserstein-2 distance (see Definition 1.2.3) for any two solutions f1, f2

9Such estimates are often not done explicitly in the literature as they are usually easily
deduced from uniqueness proof. Note however, that this is not the case in [143].
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of the Vlasov-Poisson system (1.2.7) each obeying the regularity bound (1.10.2).
This estimate is valid up to the time when the right hand side reaches some
macroscopic size (1/9 for example). This bound grows (for large t) like an ex-
ponential tower eect . The argument of Miot in [143], however, does not establish
continuous dependence upon initial data.

1.11 Summary of Chapter 7

In Chapter 7 we clarify the results of Loeper [134] and Miot [143] by interpolating
the function spaces (1.10.2) and (1.10.1) in the framework of exponential Orlicz
spaces (see e.g. [170]). We establish continuous dependence estimates (similar
to (1.10.3)) which hold when the spatial density is assumed to belong to these
spaces.

In particular, we improve the result of [143] by establishing continuous depen-
dence with a bound that grows like the exponential tower eect , and we improve
the growth bound deduced from [134] down to a stretched exponential ect2 .

The proofs have two ingredients. Firstly, we establish an estimate on the Newton
kernel (K in (1.2.7)) when convolved with functions in an exponential Orlicz
space. Secondly, we exploit that the Vlasov-Poisson system originates from second
order Newtonian mechanics (also exploited in [143]). Schematically, the Vlasov-
Poisson system acts like a second order ODE

Ẍ = F (X)

as the forces depend only on the particle positions and not their velocities. The
key observation is that second order differential inequalities

Ẍ ≤ ϕ(X), X ≥ 0, Ẋ ≥ 0

can be closed when ϕ is only log2-Lipschitz, (first order inequalities can only10

be closed for ϕ log-Lipschitz), and give better growth bounds than first order
differential inequalities.

10This can be extended slightly to functions like x| log(x)| log | log(x)|, etc.
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1.12 Asymptotic behaviour of solutes in a fluid
background

The mathematical modelling of particles suspended in a fluid background is a
topic of great importance in both fluid and statistical mechanics. On a micro-
scopic level, the rapid oscillatory motion of particles suspended in water, reported
in 1828 by Brown [30] and eponymously named Brownian motion, later led to
the development of the first stochastic models of particle motion successively by
Einstein, Smoluchowski and Langevin [55, 200, 121]. On the macroscopic level,
understanding the spreading of a passively transported solute in a fluid is im-
portant both in applications, for example in understanding efficient methods for
mixing fluids, but also experimentally, where observations of fluids are taken by
observing passively transported dyes or tracer particles (see e.g. [190]).

1.12.1 The Langevin equation

Langevin, building upon the prior work of Einstein [55] and Smoluchowski [200],
developed the first dynamical theory of Brownian motion [121]. He theorised that
a suspended particle with position Xt and velocity Vt satisfied Newton’s Laws of
motion with a force Ft due to collisions with surrounding smaller fluid particles.
Thus, 

dXt

dt
= Vt,

dVt
dt

= Ft.

(1.12.1)

The force F is split into two parts. The first kind of collision is due to the
modelled particle, having velocity Vt, displacing fluid particles due to its motion.
This is a frictional force −λVt. The second part of the force ξt is due to random
density fluctuations in the fluid background. Hence,

dVt
dt

= −λVt + ξt.

Due to the separation of time scales between the slowly moving tracked particle
and the more rapidly moving fluid background, the fluctuation force ξ has un-
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correlated time marginals, i.e. ξt and ξs are independent for t 6= s. Furthermore,
being due to fluctuations they are on average zero. In modern language dξt is
a brownian motion (meaning Wiener process, rather than the Brownian motion
due to Brown), and the pair X, V solve the SDE

 dXt = Vt,

dVt = −λVt + dBt,
(1.12.2)

where B is a standard brownian motion. The forward Kolmogorov (Fokker-
Planck) equation for the evolution of the probability law of the SDE (1.12.2) is
the kinetic Fokker-Planck equation

∂tf(t, x, v) + v · ∇xf(t, x, v) = ∇v · (λvf(t, x, v) + 1
2∇vf(t, x, v)) (1.12.3)

where the unknown is a probability density function f .

1.13 Summary of Chapter 8

In Chapter 8 we study the mixing properties of the dynamics (1.12.2) in a periodic
spatial domain. In particular, we ask the question:

Question 1.13.1. Are the dynamics (1.12.2) contractive in the Wasserstein-2
distance? More explicitly, do there exist constants c, γ > 0 such that

W2(µt, νt) ≤ ce−γtW2(ν0, µ0) (1.13.1)

where µt, νt are the laws of any two solutions to the SDE (1.12.2) for (X, V ) ∈
T× R?

Such questions of convergence to equilibrium and contraction (in various metrics)
of the kinetic Fokker-Planck equation have been a central object of study in
statistical mechanics, and are approached using both analytic and probabilistic
methods.

From an analytic perspective, one typically works in a L2 space weighted by the
inverse of the equilibrium measure. In the spatially homogeneous setting, where
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only velocities are considered, contractivity is established by showing that the gen-
erator is coercive in this L2 space, which implies contractivity of the correspond-
ing semi-group. In the inhomogeneous setting the generator is no longer coercive,
leading Villani to develop the theory of hypocoercivity [197], where ‘skew’ norms
are constructed for which the generator is coercive. Despite this success, analytic
methods have trouble accessing the probabilistic definition of the Wasserstein-
2 distance, with a notable exception of the case where the dynamics are a W2

gradient flow, which holds in the spatially homogeneous Fokker-Planck equation
[105], but does not hold in the inhomogeneous setting considered here.

From a probabilistic point of view a common approach is to construct a coupling
between two stochastic processes that realises the desired bound in the metric
between the laws. In the spatially homogeneous setting, and in the case of a
spatial confining potential that is sufficiently well behaved, this is successful and
has been used to establish contraction in the Wasserstein-2 distance [25, 24].

Having a periodic spatial domain simplifies the analytic theory. However, for cou-
pling techniques, which work in the case of a ‘nice’ spatially confining potential,
no such coupling result in W2 has ever been established, which, considering the
simplicity of the problem is somewhat of a puzzle. In Chapter 8 we present a
result that explains this failure:

Theorem 1.13.1. There exists no ‘nice’ coupling of stochastic processes that
verifies the contraction property (1.13.1).

Here ‘nice’ roughly means adapted to the same filtration. However, we do con-
struct an explicit coupling that achieves convergence:

Theorem 1.13.2. For any initial data µ0, ν0, there exists a ‘nice’ coupling that
verifies the following bound

W2(µt, νt) ≤ ce−γt(
√
W2(µ0, ν0) +W2(µ0, ν0)). (1.13.2)

In fact this dependence on the square root (which is much larger when the distance
is small) is shown to be optimal for such couplings. It is however not optimal in
the sense that the semi-group is a contraction.
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Theorem 1.13.3. Question 1.13.1 is answered in the affirmative, in that (1.13.1)
holds.

But, due to the previous results, any such coupling that attains this bound cannot
be a ‘nice’ coupling of two stochastic processes.

1.14 Macroscopic transport of tracers

A common approximation to the Langevin dynamics (1.12.2) is to consider the
overdamped limit where the time scale of velocity changes are taken to be much
faster than the time scale of position changes. In such a regime, (1.12.2) becomes
instead the equation

dXt = cdBt.

However, this is missing a large part of the picture, as we have neglected the
macroscopic motion of the fluid itself and spatial variation of the molecular dif-
fusion coefficient. When one takes these effects into account and passes to the
corresponding PDE for the density one obtains

∂tu(t, x) + b(x) · ∇u(t, x) +∇ · (D(x)∇u(t, x)) = 0 (1.14.1)

where u : [0,∞) × Rd → R is the concentration of the solute, b is the velocity
field of the fluid (assumed to be incompressible) and D is the molecular diffusion
matrix.

1.15 Summary of Chapter 9

In Chapter 9 we study the dispersion of solutes in the presence of strong convection
and rapidly oscillating coefficients. This corresponds to the parabolic problem, a
version of (1.14.1),

∂tu
ε(t, x) + 1

ε
b
(
x,
x

ε

)
· ∇uε(t, x)−∇ ·

(
D
(
x,
x

ε

)
∇uε(t, x)

)
= 0 (1.15.1)
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for a small parameter ε � 1. Such problems arise from a rescaling t, x → tε, xε

of (1.14.1), which corresponds to looking at long time and large space behaviour,
and also in models of turbulence (see e.g. [137]).

We assume for simplicity that the functions b(x, y) and D(x, y) are 1-periodic in
the second variable. We are interested in obtaining an effective equation (without
the presence of ε) that is valid in the ε→ 0 limit.

Problems of this form fall under the framework of homogenisation theory (see e.g.
[1]). This problem in particular has been addressed in [142] under the assumption
that the fluid flow is purely periodic, i.e. b = b(x/ε) and has zero average, i.e.∫

[0,1]d b(y) dy = 0.

The first step towards removing these assumptions was the development of the
two-scale expansions with drift method [140, 2]. This is a generalisation of the
classical two-scale convergence method [1], modified to account for the strong
convection. Heuristically, the two-scale expansion with drift posits the following
formal asymptotic expansion for the solution of (1.15.1):

uε(t, x) =
∞∑
i=0

εiui

(
t, x− b∗t

ε
,
x

ε

)
, (1.15.2)

where ui(t, x, y) are assumed to be 1-periodic in the y variable, and b∗ is a con-
stant drift vector. This formal expansion is made rigorous by a notion of weak
convergence against oscillating test functions of the same form as the terms in
(1.15.2), which allows the identification of an equation for u0 (which is proved to
not depend upon y). This equation is in Lagrangian coordinates for the presumed
effective macroscopic flow.

The limitation of this method is that the velocity field b must be assumed to take
the form b = b∗ + b̃(x/ε) where b̃(y) has zero average.

In Chapter 9 we develop a method of convergence along mean flows which gen-
eralises the two-scale expansions with drift method to more general vector fields.
In analogy with (1.15.2) we posit the formal asymptotic expansion:

uε(t, x) =
∞∑
i=0

εiui

(
t,Φ−t/ε(x), t

ε
,
x

ε

)
, (1.15.3)
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where ui(t, x, τ, y) are 1-periodic in y and now depend upon a fast time variable
τ . Here Φt(x) is the flow of the ODE generated by the mean flow

Ẋ = b̄(X) :=
∫

[0,1]d
b(X, y) dy.

We develop a notion of weak convergence along flows, and a corresponding weak
compactness result, to make this expansion rigorous and obtain an equation for
u0 (which is proved to not depend on the fast variables y and τ).

An aside: Two-scale convergence. The method of two-scale convergence
was developed by Nguetseng and Allaire [1] for periodic homogenisation and
in its simplest form consists in identifying weak limits uε(x) ⇀ u0(x, y) of the
form

lim
ε→0

∫
uε(x)ϕ(x, x/ε) dx =

∫ ∫
[0,1]d

u0(x, y)ϕ(x, y) dydx

for test functions ϕ(x, y) and limit u0 which are periodic in their second variable.
Two-scale convergence has the advantage of being simpler and more straightfor-
ward to apply than the earlier method of oscillating test function of Tartar (see
e.g. his extensive monograph [188]), but is less general.

In the classical theory of two-scale convergence one has corrector results which
state that if uε two-scale converges to u0, and ∇uε two-scale converges, then it
two scale converges to ∇xu0 + ∇yu1 for some function u1 ∈ H1

y . In the case of
the theory we develop of convergence along mean flows, we have that, instead,
∇uε converges to J(τ, x)∇u0 + ∇yu1 where J is the Jacobian of the flow Φ. It
is this dependence of the limits upon a fast time variable τ that necessitates the
appearance of τ in (1.15.3) (it is not present in (1.15.2)).

The appearance of the Jacobian in the limit means that to obtain an effective
equation for u0 we must take the fast time average of the limit equation, i.e. take
limits of the form

Mf := lim
l→∞

1
2l

∫ l

−l
f(x, τ) dτ (1.15.4)

for the coefficients of the equation. To ensure that such limits exist we draw
upon the theory of Banach Algebras with mean value (w.m.v.). This theory was
constructed to deal with the problem of non-periodic homogenisation (see e.g.
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[35, 155, 156, 8, 176, 157]), and uses the Gelfand transform (see e.g. [122])
to represent functions on a non-compact domain (e.g. R) as functions on a
compact space. We make the assumption that the Jacobian J lies in such an
algebra. In particular it must be uniformly bounded in the fast time variable, an
assumption that is necessary for the formal validity of the asymptotic expansion
(1.15.3).

The assumption that the Jacobian J is uniformly bounded is needed to obtain a
bound on the enhancement of diffusion due to Lagrangian stretching where the
convection enlarges spatial gradients. In such cases the solution uε can decay to
zero in a very short t� 1 (as ε→ 0) time scale, and the limit u0 can be identically
zero for any positive time. For general fluid fields b the behaviour of the Jacobian
can be very complicated and it is difficult to obtain a complete picture of this
phenomenon. However, in the case of completely integrable Hamiltonian flows,
which in particular includes all two dimensional incompressible flows and all shear
flows, the Jacobian behaves in a far simpler manner. In a forthcoming work [89]
(which unfortunately was not complete in time to be part of this thesis) we shall
address the behaviour in this case, obtaining rigorous asymptotic expansions both
for a time boundary layer where diffusion is driven by the large convection, and
for times of order one, where the large convection has no effect as the solution is
invariant along streamlines.
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Chapter 2

Propagation of chaos for Hölder
continuous interaction kernels

We develop a new technique for establishing quantitative prop-
agation of chaos for systems of interacting particles. Using this
technique we prove propagation of chaos for diffusing particles
whose interaction kernel is merely Hölder continuous, even at
long ranges. Moreover, we do not require specially prepared ini-
tial data. On the way, we establish a law of large numbers for
SDEs that holds over a class of vector fields simultaneously. The
proofs bring together ideas from empirical process theory and
stochastic flows.
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2.1 Introduction

We consider the following system of N particles diffusing in Rd:


dX i,N
t = bNt (X i,N

t )dt+ dBi,N
t , i = 1, . . . , N,

bNt (x) = 1
N

N∑
i=1

K(x,X i,N
t ),

(X i,N
0 )Ni=1 i.i.d. with law f0.

(2.1.1)

where Bi,N are i.i.d. standard d-dimensional Brownian motions and K(x, y) :
Rd × Rd → Rd is the interaction kernel. We are interested in the derivation of
a mean-field model in the N � 1 regime for the density of particles ft(x). One
expects that f should solve the non-linear convection-diffusion equation:

∂tft +∇ · (b∞t ft)− 1
2∆ft = 0, (t, x) ∈ (0, T )× Rd,

b∞t (x) =
∫
ft(y)K(x, y) dy,

f0(x) initial condition.

(2.1.2)

To rigorously derive this limit one has to show that the empirical measure

µNt = 1
N

N∑
i=1

δXi,N
t

(2.1.3)

converges weakly to the solution ft to (2.1.2) as N →∞. This convergence of the
empirical measure to a deterministic limit is known as chaoticity of the particle
system [185]. At the initial time t = 0 this property is given, as the particles are
i.i.d.. At any later time the particles are no longer independent. Establishing that,
nevertheless, they are chaotic and the empirical measure converges as N → ∞
is the problem of showing propagation of chaos. Of particular interest is making
these notions quantitative - obtaining explicit polynomial (in N) bounds on some
probability distance d(µNt , ft).

Establishing propagation of chaos is a central part of the rigorous mathematical
derivation of macroscopic or mesoscopic continuum models from microscopic laws
governing the motion of particles [76, 98]. The notion dates back to Boltzmann’s
idea of molecular chaos used for the derivation of the Boltzmann equation from
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Newtonian collisions of gas particles. More generally, the notion of propagation of
chaos is used in the derivation of the Vlasov-Poisson and Vlasov-Maxwell equa-
tions for galaxies and plasmas, for models of swarming [33, 34], in the Vortex
dynamics interpretation of the Euler equation [66], the particles method for nu-
merical integration of PDEs, the theory of particle filters in statistics [147], the
derivation of the spatially homogeneous Boltzmann equation from Kac’s model
[144], among many others.

The main general technique for establishing quantitative propagation of chaos
in this regime is the coupling method of Sznitman [185], which requires K to
be Lipschitz continuous. Following this, many authors have obtained results
assuming that K(x, y) is Lipschitz except for a singularity at x = y, and in
the presence of specially prepared initial conditions [65, 33, 81, 98]. For these
techniques, the presence of the noise is a hindrance as it makes it harder to
control the distances between particles.

Main result: In this work we develop a new method for establishing quantitative
propagation of chaos, and apply it to give quantitative estimates of propagation
of chaos of the system (2.1.1) under the assumption that K is merely Hölder
continuous. In particular, this covers cases where K is nowhere Lipschitz and
the result does not require specially prepared initial conditions. However, the
result relies completely on the presence of noise, and fails at the first hurdle in
its absence.

Second order systems. We also consider second order Langevin systems of the
form: 

dX i,N
t = V i,N

t dt,

dV i,N
t = bNt (X i,N

t )dt− κV i,N
t dt+ dBi,N

t ,
i = 1, . . . , N,

bNt (x) = 1
N

N∑
i=1

K(x,X i,N
t ),

(X i,N
0 , V i,N

0 )Ni=1 i.i.d. with law f0(x, v).

(2.1.4)

where again Bi,N
t are i.i.d. standard d-dimensional Brownian motions, and κ is

a constant (possibly zero). X i,N ∈ Rd is the spatial position of the ith particle
and V i,N ∈ Rd is its velocity. The associated mean-field model is the non-linear
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kinetic Fokker-Planck equation:

∂tft + v ·∇xft − κ∇v · (vft) + b∞t ·∇vft − 1

2∆vft = 0, (t, x, v) ∈ (0, T )×Rd×Rd,

b∞t (x) =
∫ (∫

ft(y, v) dv
)
K(x, y) dy,

f0(x, v) initial condition.
(2.1.5)

Such systems model Newtonian particles under pairwise interaction forces that
depend only on the spatial positions of the particles, and whose velocities are
driven by independent white noises.

The empirical measure is given by

µNt = 1
N

N∑
i=1

δ(Xi,N
t ,V i,Nt ). (2.1.6)

Main result: We give quantitative estimates of propagation of chaos of the
system (2.1.4) under the assumption that K is Hölder continuous with Hölder
exponent greater than 2/3. Again this applies to interaction kernels that are
nowhere Lipschitz and the result does not require specially prepared initial con-
ditions. The restriction of the Hölder exponent to be at least 2/3 is due to the
degeneracy of the generator of the diffusion process in the spatial variable. The
generator is only hypoelliptic rather than elliptic and this reduces the regularising
effect on the dynamics.

On the way to proving the propagation of chaos, we also establish a Glivenko-
Cantelli theorem [193] for SDEs over all bounded Hölder continuous vector fields,
(with a similar result in the second order case). This will be discussed in more
detail below in Section 2.2.2 with a more precise statement, but we provide an
informal statement below.

Glivenko-Cantelli theorem for SDEs (informal statement) Let Xb
t solve dXt =

bt(Xt) dt + dBt for a vector field b, and (Xb,i,N
t )Ni=1 be N i.i.d. copies of Xb.

Then
E sup

b
sup
t∈[0,T ]

d(µb,Nt , f bt ) ≤ CN−γ

where µb,N is the empirical measure associated with (Xb,i,N)Ni=1, f b is the law of

58



Xb, d is some metric on the space of probability measures and the supremum
is over all smooth vector fields b with α-Hölder norm bounded by a uniform
constant.

The proof uses recent results on stochastic flows for rough drifts (see e.g. [63, 12,
146, 59, 201, 60] among others), and methods from empirical process theory.

2.1.1 Layout of the chapter

The chapter is laid out as follows. In Section 2.1.2 we give preliminary defini-
tions. Section 2.2 presents the main results of the chapter. In Section 2.3 we
discuss prior work, compare our method to existing techniques and discuss open
questions. The proofs of the results begin in Section 2.4 where we give the proof
of Theorem 2.2.4. Then in Section 2.5 we apply the results proved in Section 2.4
to prove Theorem 2.2.1. Section 2.6 provides the proof of Proposition 2.2.2. Fi-
nally Section 2.A presents some properties of metric entropy which are used in
the earlier sections of the chapter.

2.1.2 Preliminaries

Before we state the main results of this work we require some preliminary defini-
tions.

We will always work with a single probability space (Ω,F ,P) that contains N
i.i.d. Brownian motions (Bi,N)Ni=1 defined for times [0, T ] for a fixed final time T .
We emphasise that throughout this work N is a fixed number and we will never
take a limit N → ∞. We denote the Lp norm on the probability space as �·�p.
Deterministic norms are denoted with a double bar, e.g. ‖·‖L∞(Rd). The space of
Borel probability measures on Rd is denoted P(Rd), those with finite pth moment
are denoted Pp(Rd). We also make use of the following norm.

Definition 2.1.1 (Sub-Gaussian norm). For a random variable X we define the
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sub-Gaussian[193, 196] norm1 �X� by

�X� = sup
p≥1

1
√
p
�X�p .

When �X� is finite we say that the random variable X is sub-Gaussian. If the
random variable with law µ ∈ P(Rd) is sub-Gaussian then we say that µ is sub-
Gaussian.

The space of random variables with finite sub-Gaussian norm coincides with an
exponential Orlicz space [193]. It is easy to see that if X is a random variable
with �X� = c, then X obeys the tail bound

P(|X| > u) ≤ C exp
(
−Cu

2

c2

)
(2.1.7)

for any u > 0, and absolute constants C. We refer the reader to [193, 196] for
more details.

We define Lip1 to be the set of functions h : Rd → R that are 1-Lipschitz and
vanish at zero.

To metrise weak convergence in P(Rd), we define the following metrics:

Definition 2.1.2 (Bounded Lipschitz metric). For µ, ν ∈ P(Rd) we define the
bounded-Lipschitz (BL) metric dBL by

dBL(µ, ν) = sup
{∫

h dµ−
∫
h dν : h ∈ Lip1, ‖h‖L∞(Rd) ≤ 1

}
.

Definition 2.1.3 (Monge-Kantorovich-Wasserstein-(Rubinstein) metric). Given
µ and ν in P1(Rd) we define the Monge-Kantorovich-Wasserstein-(Rubinstein)
(MKW) metric dMKW by

dMKW(µ, ν) = sup
{∫

h dµ−
∫
h dν : h ∈ Lip1

}
.

1The sub-Gaussian norm is sometimes called the ψ2 norm and denoted ‖·‖ψ2
. This notation

is used, for example, in [193].
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The MKW metric can also be defined using optimal transportation as

dMKW(µ, ν) = inf
{∫
|x− y| dπ(x, y) : π ∈ P(Rd × Rd) has marginals µ and ν

}
.

We will mostly use the first definition as it more amenable to the tools of empirical
process theory.

Integral to the proofs is the concept of metric entropy[193].

Definition 2.1.4 (Metric entropy). Let (X , d) be a totally bounded metric space.
Then the metric entropy of X is defined for ε > 0 by

H(ε,X , d) = inf{log(m) : (xi)mi=1 is an ε-net of X},

where an ε-net is a set of points (xi)mi=1 ⊆ X for which every x ∈ X has d(x, xi) ≤
ε for some i.

We summarise the various properties and estimates of metric entropy that are
used throughout this work in Section 2.A for the convenience of the reader.

The usual Lebesgue spaces will be denoted Lp(Rd) for p ∈ [1,∞]. We denote the
usual Hölder spaces on Rd for k a positive integer and α ∈ (0, 1) as Ck,α(Rd),
and the (fractional) Sobolev space of differentiability s ≥ 0 and integrability
p ∈ [1,∞] as Ws,p(Rd). When we wish to emphasis which variable a norm is
respect to we will denote it with a subscript, e.g. Lqx(Rd).

To allow sets of functions that do not decay at infinity to have finite metric entropy
we make use of weighted spaces. For x ∈ Rd we define 〈x〉 =

√
1 + |x|2.

Definition 2.1.5 (Weighted Lp spaces). For r ∈ R and q ∈ [1,∞] we define
Lr,q(Rd) as the space of functions h such that h 〈x〉r ∈ Lq(Rd) with the norm

‖h‖Lr,q(Rd) = ‖h 〈x〉r‖Lq(Rd)

(
=
(∫
|h|q 〈x〉rq dx

)1/q
when q 6=∞

)
.

In particular, L0,q(Rd) = Lq(Rd).

Next we define of ‘abstract Hölder spaces’. We will use these in the proofs rather
than the usual Sobolev spaces because they behave more naturally under com-
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position with Hölder continuous functions.

Definition 2.1.6. Let (V, ‖·‖V) be a Banach space of functions U → R for
U = Rd or U = [0, T ] × Rd. Let α ∈ (0, 1] and k be a non-negative integer,
then we define the space Λk,α(V) as those functions h ∈ V for which the following
norm is finite

‖h‖Λk,α(V) = sup
|β|≤k

∥∥∥∂βh∥∥∥
V

+ sup
|β|=k

sup
y,z∈,y 6=z

∥∥∥∥∥(∂βh)(·+ z)− (∂βh)(·+ y)
|y − z|α

1·+z∈U,·+y∈U
∥∥∥∥∥

V
.

where β ranges over multi-indices.

Note that for α ∈ (0, 1), Λ0,α(L∞(Rd)) is the Hölder space C0,α(Rd). More gener-
ally, if q ∈ [1,∞], s = k+α is not an integer then Λk,α(Lq(Rd)) is the Besov space
Bs
q,∞ (see [189] for the definitions and properties of the Besov spaces). In particu-

lar the fractional Sobolev space Ws,q(Rd) embeds continuously in Λk,α(Lq(Rd)).

Due to the driving Brownian motions, the natural regularity for the vector field
bN in (2.1.1) is a parabolic space.

Definition 2.1.7 (Parabolic space). Let (V, ‖·‖V) be a Banach space of functions
[0, T ]×Rd → R. Let α ∈ (0, 1] then we define the parabolic space Λ0,α

para(V) is the
space of functions h ∈ V with the following norm finite

‖h‖Λ0,α
para(W) = ‖h‖W +

sup
(s,y),(t,z)∈R1+d,

(s,y)6=(t,z)

∥∥∥∥∥h(·+ t, ·+ z)− h(·+ s, ·+ y)
|y − z|α + |s− t|α/2 1·+(t,z)∈U,·+(s,y)∈U

∥∥∥∥∥
W
.

We also define the particular case of the parabolic Hölder spaces.

Definition 2.1.8 (Parabolic Hölder space). For α ∈ (0, 1) the parabolic Hölder
space C0,α

para is the space of continuous functions ϕ : [0, T ] × Rd → R with the
norm

‖ϕ‖C0,α
para([0,T ]×Rd) = sup

(t,x)∈[0,T ]×Rd
|ϕ(t, x)|+ sup

(s,y),(t,x)∈([0,T ]×Rd)2,
(s,y)6=(t,x)

|ϕ(t, x)− ϕ(s, y)|
|t− s|α/2 + |x− y|α .
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Just as Λ0,α(L∞(Rd)) is the Hölder space C0,α(Rd) (for α ∈ (0, 1)) the parabolic
Hölder space C0,α

para(Rd) is equal to Λ0,α
para(L∞(Rd)).

Stochastic flows are the analogue of the flow map of an ODE in the stochastic
setting [116].

Definition 2.1.9 (Ck,β stochastic flow). We say that a random map φs,t : Rn →
Rn is a Ck,β (k ≥ 1,β ∈ (0, 1)) stochastic flow of diffeomorphisms if it satisfies
the following

1. φt,t is the identity map almost surely.

2. φu,t ◦ φs,u = φs,t holds as maps, almost surely for all s < u < t.

3. φs,t(x) is k-times differentiable with respect to x and all the derivatives are
continuous, with the k-th derivative β-Hölder continuous. Furthermore, the
map φs,t : Rn → Rn is a diffeomorphism of Rn almost surely.

Note that a Ck,β stochastic flow need not be globally Ck,β as both it and its
derivatives may grow without bound as |x| → ∞.

We say that a stochastic differential equation (for X ∈ Rn) generates if Ck,β

stochastic flow of diffeomorphisms if the solution map

φs,t : Rn → Rn

Xs 7→ Xt

has a version that is a Ck,β stochastic flow of diffeomorphisms.

Definition 2.1.10 (Glivenko-Cantelli class). Let Q be a probability measure on
a measurable space (X ,A) and F a class of measurable functions X → R. We
say that F is a Glivenko-Cantelli class (with respect to Q) if

sup
f∈F

∣∣∣∣∣ 1
N

N∑
i=1

f(X i,N)−
∫
f dQ

∣∣∣∣∣→ 0

in probability or almost surely, where (X i,N)∞i=1 are i.i.d. with law Q.

Remark 2.1.1. Strictly speaking, the convergence in the definition above should
be in outer probability or outer almost surely (see [193, §1] for the definition and
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properties of the outer integral), as the supremum may fail to be measurable in
general. In this work, however, all considered suprema will be measurable and we
will have no need of the more technical definition of the outer integral.

In this work we consider both the first order many particle system (2.1.1) and
the second order many particle system (2.1.4) along with their respective limit
equations. We hope that the reader will admit us the abuse of notation of using
the same symbols X, f, µN for each, as which is considered will be clear from the
context.

2.2 Main results

In this section we present the main results of this chapter.

2.2.1 Propagation of chaos

The first such results are on propagation of chaos.

2.2.1.1 First order systems.

For first order systems we have the full regularising effect of the driving noise and
we only require that the interaction kernel K is Hölder continuous for some pos-
itive exponent. Under this assumption we achieve sub-Gaussian concentration of
the Wasserstein distance over compact time intervals around the initial distance.
Recall that the norm �·� is defined by Definition 2.1.1 and is equivalent to a
sub-Gaussian tail bound (2.1.7). Note that we cannot expect

��dMKW(µNt , ft)
�� to

be small in general, as even at the initial time we have that���dMKW(µN0 , f0)
��� =∞

unless f0 has sub-Gaussian tails. For this reason we bound instead a compen-
sated quantity dMKW(µNt , ft) − dMKW(µN0 , f0). Bounds upon dMKW(µN0 , f0) are
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a separate question to propagation of chaos and are considered elsewhere (e.g.
[48, 64]).

Theorem 2.2.1 (Propagation of chaos for first order systems). Let (X i,N)Ni=1 be
a solution of the first order many particle system (2.1.1), µN be the associated
empirical measure given by (2.1.3) and ft(x) be the solution to the limit equation
(2.1.2). Then the following hold:

1. Hölder interactions: Let K ∈ C0,α(Rd × Rd;Rd) and f0 ∈ Pp(Rd) ∩
Lr,2(Rd) for some α ∈ (0, 1], 2 6= p > 1 and r > 1 + (d/2). Then it holds
that ����� sup

t∈[0,T ]
dMKW(µNt , ft)− dMKW(µN0 , f0)

����� ≤ CN−γ,

for any γ < 1
2 + max(d+2

α2 ,
d
p−1)

.

(2.2.1)

2. Sobolev interactions: Let K(x, y) = W (x − y) for W ∈ Ws,q(Rd;Rd)
with 1 ≥ s > (2 + d)/q and q ∈ (2,∞]. Assume that f0 ∈ Lr,q′(Rd)∩Pp(Rd)
for some 2 6= p > d/q, r > (d/q)+(d/2)+1 and where (1/q)+(1/q′) = 1/2.
Then it holds that����� sup

t∈[0,T ]
dMKW(µNt , ft)− dMKW(µN0 , f0)

����� ≤ CN−γ,

for any γ < 1
2 + max(d+2

s2
, d
p−1)

.

(2.2.2)

By combining the above theorem and the results on the convergence of dMKW(µN0 , f0)
in [64] we can obtain the following simple corollary.

Corollary 2.2.1. Under the assumptions of Theorem 2.2.1 we have

E sup
t∈[0,T ]

dMKW(µNt , ft) ≤ EdMKW(µN0 , f0) + CN−γ

with γ as given in the respective cases (1), (2) of Theorem 2.2.1. Furthermore,
if p is large enough (depending only on d) then it holds that

E sup
t∈[0,T ]

dMKW(µNt , ft) ≤ CN−γ.
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We now give some remarks on Theorem 2.2.1.

Remark 2.2.1. We do not require any special preparation for the initial condi-
tion f0, and the initial particle positions are chosen i.i.d. according to f0. In
particular, any compactly supported uniformly bounded density will satisfy all the
assumptions of the theorem. The restriction to i.i.d. initial particle positions is
made throughout this work, both to simplify the proofs and as it is a natural initial
condition. However, the author believes that there is no fundamental reason why
this could not be dropped with additional work.

Remark 2.2.2. In both cases in the above theorem the d/(p − 1) term in γ

comes from the metric entropy of the space Lip1 in a weighted L∞ norm (see
Proposition 2.A.1). The requirement that p 6= 2 is merely to avoid complicating
the theorem statements with logarithmic correction terms for this critical weight.
Results for p = 2 can be obtained by using the inclusion P2 ⊂ Pp for any p < 2.
We maintain the avoidance of p = 2 throughout the other results of the chapter.

Remark 2.2.3. If we consider instead the bounded Lipschitz metric dBL, then
the same method of proof allows us to estimate����� sup

t∈[0,T ]
dBL(µNt , ft)

����� ≤ CN−γ

under the same assumptions as Theorem 2.2.1 and with the same corresponding
values of γ. This is because the bounded Lipschitz metric is almost surely bounded
by 2 and there is no need to compensate for the initial error. Additionally, the ex-
ponent γ can be improved to anything less than 1/(2+max((d+2)/α2)) in (1) and
1/(2+max((d+2)/s2)) in (2), as the metric entropy estimate for the bounded Lip-
schitz functions is smaller than that for Lip1 (see also Remark 2.2.2). Analogous
results in the bounded Lipschitz metric can be formulated for the Glivenko-Cantelli
theorems for SDEs (Theorems 2.2.4 and 2.2.6) presented later in this work, and
for the second order propagation of chaos result Theorem 2.2.2 below.

Remark 2.2.4. The assumption on K in (2) may be weakened to

K ∈ Λ0,s(L∞y (Rd; Lqx(Rd;Rd)))

for the same s and q. (This space is defined in Definition 2.1.6.) Note that this
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condition is implied by the assumption in (2). We provide the proof under this
weaker assumption. Note that with this weakened assumption the case q = ∞
collapses into (1) with α = s as Λ0,s(L∞(Rd×Rd;Rd)) is exactly the Hölder space
C0,s(Rd × Rd;Rd).

Remark 2.2.5. In case (2) in the above theorem the assumptions on K imply
that K ∈ C0,α(Rd × Rd;Rd) for α = s − (d/q) > 0 by Sobolev embedding. So
in this sense case (2) is weaker than case (1). The advantage of (2) is that γ is
obtained from the Sobolev exponent s instead of the (smaller) Hölder exponent α.
In particular, note that singularities of the form

K(x, y) = W (x− y) = |x− y|α, α ∈ (0, 1)

are (locally) only α-Hölder, while they are (locally) in the Sobolev space W1,q for
any q < d/(1− α). For this type of singularity the exponent γ obtained by (2) is
substantially better than that from (1).

Remark 2.2.6. The integrability assumptions on f0 in the above theorem are not
optimal, and the author has made little attempt to optimise them. In particular,
the proof does not use the regularising effect (gain of integrability and smoothness)
of the parabolic limit equation in the PDE estimates, instead relying on more
elementary L2 energy estimates. A more careful analysis is beyond the scope of
this thesis, in which we are primarily concerned with the assumptions on K and
upon the exponent γ obtained, and not on optimal integrability of the initial data.

2.2.1.2 Second order systems.

In the second order case we have a similar result, but with the restriction that α >
2/3 as we have merely a gain of 2/3 derivatives from the hypoelliptic regularising
effect of the noise. However, the particle spatial trajectories have better time
regularity properties than in the first order case (at least C1 rather than C0,(1/2)−ε)
and as a result we obtain a better exponent γ.

Theorem 2.2.2 (Propagation of chaos for second order systems).
Let (X i,N , V i,N)Ni=1 be a solution of the second order many particle system (2.1.4),
µN be the associated empirical measure given by (2.1.6) and ft(x) be the solution
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to the limit equation (2.1.5). Then the following hold:

1. Hölder interactions: Let K ∈ C0,α(Rd×Rd;Rd) and f0 ∈ Pp(Rd×Rd)∩
Lr,2(Rd × Rd) for α ∈ (2/3, 1], 2 6= p > 1 and r > 1 + d. Then there are
finite constants c, C such that the following holds�����

[
sup
t∈[0,T ]

dMKW(µNt , ft)− cdMKW(µN0 , f0)
]

+

����� ≤ CN−γ, (2.2.3)

where here and throughout [a]+ is the positive part of a, and γ is given by

γ = 1
2 + max(d+1

α2 ,
d
p−1)

.

2. Sobolev interactions: Let K(x, y) = W (x−y) for someW ∈Ws,q(Rd;Rd)
with q ∈ (2,∞], q > (d + 1)/s and 3/2 ≥ s > (2/3) + (d/q). Let
f0 ∈ Pp(Rd × Rd) ∩ Lr,q′(Rd × Rd) for some p > d/q with also p > 2,
r > (d/q) + d + 1 and where (1/q) + (1/q′) = 1/2. Then there are finite
constants c, C such that the following holds�����

[
sup
t∈[0,T ]

dMKW(µNt , ft)− cdMKW(µN0 , f0)
]

+

����� ≤ CN−γ,

where

γ =


1

2 + d+1
s2

, if s ≤ 1,
1

2 + max(d+1
s
, d)

, otherwise.

Using the elementary inequality x ≤ [x − y]+ + y for x, y ≥ 0, we can use
Theorem 2.2.2 to obtain bounds on the expectation:

Corollary 2.2.2. Under the assumptions of Theorem 2.2.2 we have

E sup
t∈[0,T ]

dMKW(µNt , ft) ≤ CEdMKW(µN0 , f0) + CN−γ

with γ as given in the respective cases (1), (2) of Theorem 2.2.2. Furthermore,
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if p is large enough (depending only on d) then it holds that

E sup
t∈[0,T ]

dMKW(µNt , ft) ≤ CN−γ.

We make some remarks on Theorem 2.2.2 (see also the remarks after Theo-
rem 2.2.1 which are applicable here as well).

Remark 2.2.7. In the first order case (Theorem 2.2.1) we admitted as evident
the well-posedness of both the limit PDE (2.1.2) and the particle system (2.1.1).
In the second order case neither is a priori obvious due to the degeneracy of the
noise and the roughness of the coefficients. We note here that the well-posedness
of the particle system (2.1.4) is a consequence of the existence of a differentiable
stochastic flow (see [201]). That the limit PDE (2.1.5) is also well-posed may be
obtained from this by standard methods. However, we point out to the reader that
for most of the chapter the proofs are done on mollified (C1

b ) vector fields, and so
existence and uniqueness is not a concern.

Remark 2.2.8. We need to subtract cdMKW(µN0 , f0) (for c > 1) and take the
positive part, while in Theorem 2.2.1 we could choose c = 1 and the non-negativity
of the expression was automatic. This is because the initial error may be amplified
by the dynamics as the vector fields involved are not bounded (see the proof of
Lemma 2.4.4 for details).

Remark 2.2.9. The assumption on K in (1) can be weakened to

K ∈ Λ0,s(L∞y (Rd; Lqx(Rd;Rd)))

for s ∈ (2/3, 1], q > (d + 1)/s and p > d/q. (This space is defined in Defini-
tion 2.1.6). This includes the result stated in the theorem as the case q =∞.

The assumption on K in (2) can be weakened when s > 1 to

W ∈ Λ1,(s−1)(Lq(Rd;Rd))

under the additional assumption that p ≥ 4. This implies the assumption on K

in the theorem statement. Note that the s ≤ 1 case of this weakened assumption
was included in the relaxation of (1) directly above.
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In each case the proof is given for these weakened assumptions.

2.2.2 Empirical process & Glivenko-Cantelli theorems for
SDEs

In this subsection we define the empirical process hinted at in the informal state-
ment Section 2.1. We present first the definitions and results for first order
systems.

2.2.2.1 First order systems.

Let C̃α be the set of vector fields given by

C̃α = {b : ‖b‖C([0,T ];C0,α(Rd;Rd)) ≤ C} (2.2.4)

for some α ∈ (0, 1) and C < ∞ fixed. For any b ∈ C̃ and any N ∈ N denote
(Xb,i,N)Ni=1 as the solution to

 dX
b,i,N
t = bt(Xb,i,N

t )dt+ dBi,N
t ,

Xb,i,N
0 = X i,N

0
i = 1, . . . , N (2.2.5)

where X i,N
0 and Bi,N are the same as in (2.1.1). Note that (Xb,i,N)Ni=1 are i.i.d.

by construction. The empirical process (µb,Nt )t∈[0,T ],b∈C̃α is defined by

µb,Nt = 1
N

N∑
i=1

δXb,i,N
t

. (2.2.6)

Note that for any b ∈ C̃α and any i ∈ {1, . . . , N}, the law of Xb,i,N
t is given by f bt ,

the solution to the following parabolic PDE:
 ∂tf

b
t +∇ · (btf bt )− 1

2∆f bt = 0, (t, x) ∈ (0, T )× Rd,

f b0(x) = f0(x) initial condition.
(2.2.7)

We would like to be able to consider µb,Nt for random b ∈ C̃α. To do so we need
that the stochastic process (Xb,i,N)Ni=1 indexed by t ∈ [0, T ] and b ∈ C̃α be (almost
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surely) continuous. Let us be precise about this for the benefit of readers less
familiar with such notions. We wish to construct a (random) map (in other words
a stochastic process) ϕ defined by

ϕ : ([0, T ], | · |)× (C̃α,L∞([0, T ]; L−r,∞(Rd;Rd)))→ (Rd)N

(t, b) 7→ (Xb,i,N
t )Ni=1,

for some r > 0. The statement that ϕ is continuous at a point (t, b) ∈ [0, T ]× C̃α

means that for any sequence tn, bn ∈ [0, T ] × C̃α converging to t, b as n → ∞ in
the topologies in the above display, we have that (Xbn,i,N

tn )Ni=1 → (Xb,i,N
t )Ni=1 as

n→∞ in Rd·N .

We ask that ϕ be almost surely continuous, i.e.

P(∀(t, b) ∈ [0, T ]× C̃α, ϕ is continuous at (t, b)) = 1. (2.2.8)

This is amuch stronger requirement than with the quantifiers switched, i.e.

∀(t, b) ∈ [0, T ]× C̃α,P(ϕ is continuous at (t, b)) = 1. (2.2.9)

The former implies the latter but not vice versa.

The size of the index set C̃α causes a technical issue that although (2.2.9) can be
shown, it is impossible to show (2.2.8):

Proposition 2.2.1. Let f0 ∈ Pp(Rd) for some p > 1. Then the process (Xb,i,N
t )Ni=1

indexed by b ∈ C̃α and t ∈ [0, T ] cannot be modified to give an almost surely
continuous process with the L∞([0, T ]; L−r,∞(Rd;Rd)) (any r > 0) topology on C̃α.

This is because, roughly speaking, constructing this process would give unique-
ness for SDEs with random α-Hölder coefficients, and there are simple coun-
terexamples. We refer the reader to the proof of Proposition 2.2.1 for further
details.

For this reason we define Cα as the set of smooth (C1
b in x) vector fields in C̃α, i.e.

Cα = C([0, T ]; C1
b(Rd;Rd)) ∩ C̃α. (2.2.10)
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Note that Cα contains vector fields with C1
b norm arbitrarily large. Also Cα is

dense in C̃α in the L∞([0, T ]; L−r,∞(Rd;Rd)) topology for any r > 0.

For this set of vector fields we can construct a continuous stochastic process.

Theorem 2.2.3. Let f0 ∈ Pp(Rd) for some p > 1. Then the process (Xb,i,N
t )Ni=1

defined by (2.2.5) and indexed by t ∈ [0, T ], b ∈ Cα has a modification that
is continuous, where Cα is equipped with the L∞([0, T ]; L−r,∞(Rd;Rd)) topology
(any r ∈ (0, p)). As a consequence, the same holds for the empirical process
(µb,Nt )t∈[0,T ],b∈Cα given by (2.2.6) above, mapping into the space of probability mea-
sures equipped with the weak topology.

In the style of language of (2.2.8), this theorem states that we can construct the
process µb,Nt in such a way that

P

For any sequence (tn, bn)→ (t, b) as n→∞ in [0, T ]× Cα,

we have µbn,Ntn → µb,Nt as n→∞ weakly in P(Rd)).

 = 1

where the convergence of bn is in L∞([0, T ]; L−r,∞(Rd;Rd)).

The inability to construct the process on the full set of α-Hölder continuous
vector fields C̃α means that the following results are a priori, in the sense that
they must be applied to smoothed (C1

b) vector fields, but are uniform in the degree
of smoothness.

Our main result on this empirical process is that the Wasserstein distance between
the empirical measure µb,Nt and the law f bt has (polynomial in N) sub-Gaussian
concentration about the initial distance dMKW(µN0 , f0).

Theorem 2.2.4 (Glivenko-Cantelli theorem for SDEs). Let f0 ∈ Pp(Rd) for some
2 6= p > 1. Assume that C ⊂ Cα obeys the metric entropy bound

H(ε, C, ‖·‖L∞([0,T ];L−r,∞(Rd;Rd))) ≤ Cε−k (2.2.11)

for some r ∈ (1, p). Then it holds that����� sup
t∈[0,T ],b∈C

dMKW(µb,Nt , f bt )− dMKW(µN0 , f0)
����� ≤ CN−γ, (2.2.12)
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with
γ = 1

2 + max(d, d/(p− 1), k) .

As discussed below the statement of Theorem 2.2.1, we can easily use this bound
to obtain estimates on the expectation of the Wasserstein distance.

Corollary 2.2.3. Under the assumptions of Theorem 2.2.4 it holds that

E sup
t∈[0,T ],b∈C

dMKW(µb,Nt , f bt ) ≤ EdMKW(µN0 , f0) + CN−γ,

where
γ = 1

2 + max(d, d/(p− 1), k) .

Moreover, if p is large enough depending only on d, k then it holds that

E sup
t∈[0,T ],b∈C

dMKW(µb,Nt , f bt ) ≤ CN−γ, γ = 1
2 + max(d, k) . (2.2.13)

Remark 2.2.10. Similar results with weaker non-polynomial rates may be easily
obtained with minor modification of the proof for the case that different types of
estimates on the metric entropy hold. In particular convergence to zero of (2.2.12)
as N →∞ will hold for any set C ⊂ Cα that is totally bounded in the norm used
in (2.2.11).

Remark 2.2.11. Despite the density of Cα in C̃α in the L∞([0, T ]; L−r,∞(Rd;Rd))
norm, we cannot replace the subset C with its closure in Cα in this norm in the
above theorem. This is due to the difficulty in defining the process considered over
such a large index set (see Proposition 2.2.1).

Remark 2.2.12. We call this result a Glivenko-Cantelli theorem as it implies
that

F = {ω 7→ h(Xb
t (ω)) : h is 1-Lipschitz, t ∈ [0, T ], b ∈ C},

is a Glivenko-Cantelli class with respect to the Weiner measure (see Defini-
tion 2.1.10).

The proof of Theorem 2.2.4 also provides better estimates of weaker measures of
distance, see Proposition 2.4.2 in Section 2.4 below.
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Applications of Theorem 2.2.4 combined with well known metric entropy of func-
tion spaces [54, 189] gives explicit convergence rates. In particular, for the
parabolic Hölder scale of spaces we obtain:

Corollary 2.2.4. Let f0 ∈ Pp(Rd) for some 2 6= p > 1, and let Cαpara be given by

Cαpara = C([0, T ]; C1
b(Rd;Rd)) ∩ {b : ‖b‖C0,α

para([0,T ]×Rd;Rd) ≤ C}

for some constants C ∈ (0,∞) and α ∈ (0, 1). Then it holds that����� sup
t∈[0,T ],b∈C

dMKW(µb,Nt , f bt )− dMKW(µN0 , f0)
����� ≤ CN−γ, (2.2.14)

where
γ = 1

2 + max(d+2
α
, d
p−1)

.

As before, this estimate can be combined with estimates of the initial distance
dMKW(µN0 , f0) to obtain results corresponding to Corollary 2.2.3. Similar results
can be easily obtained for the non-parabolic spaces. While we do not claim that
the γ in (2.2.14) is optimal, the result is optimal for the Hölder scale in the sense
that no such estimate is possible for α = 0. In fact:

Proposition 2.2.2. Let f0 ∈ Pp(Rd) for some p > 1 and let C0 be given by

C0 = C([0, T ]; C1
b(Rd;Rd)) ∩ {b : ‖b‖C([0,T ]×Rd;Rd) ≤ C}

for some constant C ∈ (0,∞). Then it holds that

inf
N≥1

E sup
t∈[0,T ],b∈C

dBL(µb,Nt , f bt ) ≥ c > 0. (2.2.15)

Note that the use of dBL in (2.2.15) is a stronger statement than if dMKW were
used as the Wasserstein metric generates a stronger topology. The proof of Propo-
sition 2.2.2 is provided in Section 2.6 where a stochastic control problem is in-
troduced, which is solvable only if no such uniform law of large numbers can
hold.
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2.2.2.2 Second order systems.

The definitions in the second order case are analogous to those in the first order
case, but with give them in full for completeness. Let C̃α be the set of vector
fields given by

C̃α = {b : ‖b‖C([0,T ];C0,α(Rd;Rd)) ≤ C} (2.2.16)

for some constants C, α with α ∈ (2/3, 1). Define (Xb,i,N , V b,i,N)Ni=1 for b ∈ C̃α

and N ∈ N as the solution to
dXb,i,N

t = V b,i,N
t dt,

dV b,i,N
t = bt(Xb,i,N

t )dt− κV b,i,N
t dt+ dBi,N

t ,

(Xb,i,N
0 , V i,N

0 ) = (X i,N
0 , V i,N

0 ),

i = 1, . . . , N, (2.2.17)

where X i,N
0 , V i,N

0 and Bi,N are the same as in (2.1.4).

The empirical process (µb,Nt )t∈[0,T ],b∈C̃α is defined by

µb,Nt = 1
N

N∑
i=1

δ(Xb,i,N
t ,V b,i,Nt ). (2.2.18)

For any b ∈ C̃α and i ∈ {1, . . . , N}, the law of (X i,N
t , V i,N

t ) is f bt which solves the
following degenerate parabolic PDE:
 ∂tf

b
t + v ·∇xf

b
t − κ∇v ·(vf bt ) + bt ·∇vf

b
t − 1

2∆vf
b
t = 0, (t, x) ∈ (0, T )× Rd × Rd,

f b0(x, v) = f0(x, v) initial condition.
(2.2.19)

As before we must work with a dense smooth subset

Cα = C([0, T ]; C1
b(Rd;Rd)) ∩ C̃α. (2.2.20)

The stochastic process indexed by Cα has a continuous modification.

Theorem 2.2.5. Let f0 ∈ Pp(R2d) for some p > 1. Then the process (Xb,i,N
t , Vt)Ni=1

indexed by t ∈ [0, T ], b ∈ Cα has a modification that is continuous, where Cα

is equipped with the L∞([0, T ]; L−r,∞(Rd;Rd)) topology (any r > 0). As a con-
sequence, the same holds for the empirical process (µb,Nt )t∈[0,T ],b∈C in the weak
topology on P(Rd).
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For the second order system the main result of this subsection is the follow-
ing.

Theorem 2.2.6 (Glivenko-Cantelli theorem for SDEs (second order case)). Let
f0 ∈ Pp(R2d) for some 2 6= p > 1 and assume α ∈ (2/3, 1). Assume that C ⊂ Cα

obeys the metric entropy bound

H(ε, C, ‖·‖L∞([0,T ];L−r,∞(Rd;Rd))) ≤ Cε−k (2.2.21)

for some r ∈ (1, p). Let µb,N and f b be defined by (2.2.18) and (2.2.19) respec-
tively. Then it holds that�����

[
sup

t∈[0,T ],b∈C
dMKW(µb,Nt , f bt )− cdMKW(µN0 , f0)

]
+

����� ≤ CN−γ, (2.2.22)

where γ is given by
γ = 1

2 + max(d, d/(p− 1), k) . (2.2.23)

As before we can use this result to obtain estimates like the following.

Corollary 2.2.5. Under the assumptions of Theorem 2.2.6, the following holds

E sup
t∈[0,T ],b∈C

dMKW(µb,Nt , f bt ) ≤ CEdMKW(µN0 , f0) + CN−γ, (2.2.24)

with γ given by (2.2.23). Moreover, if p is large enough depending only on d, k

then it holds that

E sup
t∈[0,T ],b∈C

dMKW(µb,Nt , f bt ) ≤ CN−γ, γ = 1
2 + max(d, k) . (2.2.25)

As in the first order case we can obtain results in the Hölder scale of spaces.
In this case, however, it makes more sense to consider the usual non-parabolic
spaces.

Corollary 2.2.6. Let f0 ∈ Pp(R2d) for some 2 6= p > 1. Let α ∈ (2/3, 1) and
consider the class of α-Hölder functions defined by

C = C([0, T ]; C1
b(Rd;Rd)) ∩ {b : ‖b‖C0,α([0,T ]×Rd;Rd) ≤ C}.
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Then it holds that�����
[

sup
t∈[0,T ],b∈C

dMKW(µb,Nt , f bt )− cdMKW(µN0 , f0)
]

+

����� ≤ CN−γ, (2.2.26)

where
γ = 1

2 + max(d+1
α
, d
p−1)

.

As before this can be used to bound the expectation of the supremum.

Remark 2.2.13. In the second order case the exponent γ is bounded below on
the range of α considered, (for p > 2), i.e.

γ = 1
2 + d+1

α

>
2

7 + 3d > 0. (2.2.27)

Remark 2.2.14. The lower bound of 2/3 on α seems unlikely to be optimal in
the sense that compactness methods would likely yield a Glivenko-Cantelli theorem
for α ∈ (0, 1) but without an explicit convergence rate. We do not pursue such
results here.

2.3 Prior work and discussion

There has been much prior work on propagation of chaos of the particle system
(2.1.1). This has been split between the noisy case considered in this manuscript,
and the noiseless case where the driving Brownian motions are absent.

2.3.1 Lipschitz interactions

The first quantitative results in propagation of chaos are due to Dobrushin [49]
in the noiseless case, and then later Sznitman in the case with noise considered
in this work. Both these results rely on the interaction kernel K being Lipschitz
continuous. Dobrushin observed that the empirical measure µN is a weak solution
to the limit equation and then established that, under the assumption that K
is Lipschitz, the limit equation is well-posed in the space of measures using the

77



MKW distance, from which propagation of chaos then follows from the conver-
gence of initial data. In the case with noise, the empirical measure is no longer
a weak solution to the limit equation. To get around this problem, Sznitman
[185] developed a coupling method to prove propagation of chaos. This will be
described in detail below in Section 2.3.4.

2.3.2 Singularity only at the origin

A subsequent line of enquiry was into interaction kernels which are Lipschitz apart
from a single singularity where K or its derivative blows up in a specified manner.
The caseK(x, y) = W (x−y) withW Lipschitz away from the origin2 has received
much attention as it models, for example, gravitational attraction.

2.3.2.1 Noiseless case

In [81] and later papers by various authors, propagation of chaos is established
in the case without noise for interaction kernels satisfying the bounds |W (x)| ≤
C|x|−α and |∇W (x)| ≤ C|x|−α−1 for some α < 1. As in the proof of Dobrushin,
these works rely on weak-strong stability estimates on the limit equation. How-
ever, to avoid the singularity at the origin, control must be obtained over the
minimum distance between particles, and this requires specially prepared initial
particle positions to control these distances at the initial time. A comprehensive
review is given in [98].

2.3.2.2 Noisy case

Subsequently to proving the results of this work, the author was surprised to
find that the noisy case has been considered harder than the noiseless case. This
is in stark contrast with the comparison of existence and uniqueness theory for
ODEs and SDEs where noise allows for less regular vector fields. When, however,
one considers that to handle a singularity at the origin one must control the

2In these cases one must disallow self-interaction, so that the force term bNt (Xi,N
t ) on the ith

particle in (2.1.1) is replaced with 1
N−1

∑N
j=1,j 6=iK(Xi,N

t , Xj,N
t ). The results of this chapter

also apply to this case, see Section 2.3.6.1 below.
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distances between particles and avoid near collisions, this makes more sense.
Among recent work along these lines is [65] where propagation of chaos is obtained
for a system similar to (2.1.1) with W (z) = z|z|α−1 for some α ∈ (0, 1), (so W
is α-Hölder continuous). Another recent work is [82] where the 1-dimensional
Vlasov-Poisson-Fokker-Planck equation is considered, and the interaction kernel
is the sign function, i.e. constant except for a jump at the origin. As in the works
mentioned in the previous paragraph, the proof in [65] uses control over particle
distances. A review is given in [102].

2.3.3 Bounded interactions or bounded potentials

In a recent work [100] an intriguing combinatorial argument is made to prove
propagation of chaos for systems with bounded interaction kernels W (z) ∈ L∞,
later extended to bounded potentials [101] (roughly speaking W (z) ∈W−1,∞) in
both the noisy and noiseless cases under the condition that divW = 0. These
works rely on controlling the relative-entropy between the solution to the N -
particle Liouville equation and the limit solution. An advantage of these works
over the results in this chapter in the K(x, y) = W (x − y) case is that the
assumptions on the interaction kernel are weaker in the sense that L∞ (even
W−1,∞) rather than Hölder regularity is asked. However, this comes at the cost
of assuming thatW is divergence free, and rather surprisingly, rather non-generic
assumptions on the initial datum f0, which cannot be taken to be smooth with
compact support, for example.

2.3.4 The coupling method of Sznitman

To prove propagation of chaos for Lipschitz interactions K in the noisy case
Sznitman introduced a coupling method, where the particles (2.1.1) are coupled
to an auxiliary particle system with the vector field bN replaced by the vector
field of the limit equation b∞. In the notations of (2.2.5), the auxiliary particle
system is (Xb∞,i,N)Ni=1. We give a heuristic description of the proof below.
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2.3.4.1 Heuristic description

By the triangle inequality we observe that

Ed(µNt , ft) ≤ Ed(µNt , µ
b∞,N
t ) + Ed(µb

∞,N
t , ft). (2.3.1)

The second term is the expected difference between the empirical measure of N
i.i.d. samples from their law ft, and so tends to zero as N → ∞ by the law of
large numbers. Using Lipschitz continuity of the vector field b∞ we obtain the
bound

|X i,N
t −Xb∞,i,N

t | ≤ ‖∇b∞‖L∞

∫ t

0
|X i,N

s −Xb∞,i,N
s | ds+

∫ t

0
|bNs (X i,N

s )−b∞(X i,N
s )| ds,

and one concludes via the Grönwall inequality that

d(µNt , µ
b∞,N
t ) ≤ et‖∇b

∞‖L∞
1
N

N∑
i=1

∫ t

0
|bNs (X i,N

s )− b∞(X i,N
s )| ds.

That is, the particle system depends smoothly on the vector field. Then one uses
Lipschitz continuity of K to obtain that the vector field depends smoothly on the
particle positions, and closes the argument.

2.3.4.2 Limitations

This coupling method relies heavily on stability estimates on the particle system,
and uses no stability estimates on the limit PDE. This can be seen in (2.3.1) where
for the first term, one uses stability estimates, and on the second term, the law of
large numbers is used. By coupling in this way, we are philosophically viewing the
limit PDE as a perturbation of the particle system; viewing a smoother system
as a perturbation of a rougher system.

2.3.5 A new coupling method

To get around the limitation of the coupling method above, we reverse the roles
of the particle system and the limit PDE in (2.3.1). We wish to apply stability
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estimates on the limit equation to the second term in (2.3.1) and the law of large
numbers to the first term. This way we make better use of the two powerful tools
at our disposal: estimates on parabolic PDEs and the law of large numbers.

To apply the law of large numbers to the first term, we must necessarily couple
with a continuum object and not a discrete particle system. The only choice is
to couple with f bNt defined by (2.2.7), that is, with the limit PDE with the vector
field b∞ replaced with vector field of the particle system bN . (Note that f bNt is
a random variable, even though it is a continuum object). Again the discussion
below is heuristic. We refer the reader to the proof of Theorem 2.2.1 in Section 2.5
below for a more complete and rigorous presentation.

2.3.5.1 Heuristic description

By the triangle inequality we have

Ed(µNt , ft) ≤ Ed(µNt , f b
N

t ) + Ed(f bNt , ft). (2.3.2)

This can be rewritten as

Ed(µNt , ft) ≤ Ed(µb
N ,N
t , f b

N

t ) + Ed(f bNt , f b
∞

t ).

Using stability estimates on the limit equation one readily obtains that it is
sufficient to bound the first term on the right hand side by something that tends
to zero as N →∞.

For the first term we wish to apply the law of large numbers. We have, however,
a problem. The particle system is identically distributed, but not independent,
so we cannot apply the law of large numbers directly. Moreover, we know very
little about bN . Indeed, our lack of knowledge of how to estimate bN was our
motivation for constructing this method. Because of this, we give up all hope of
understanding bN , and instead use the trivial bound

d(µb
N ,N
t , f b

N

t ) ≤ sup
b∈C

d(µb,Nt , f bt )
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Figure 2.1: Illustration of the coupling method of Sznitman and the coupling
method proposed in this chapter. To compare µN and f one can either go right
then down, which is the coupling method of Sznitman, or down then right, which
is the coupling method proposed here.

where b ∈ C ranges over all possible vector fields.3 This coupling and the coupling
of Sznitman are illustrated in Fig. 2.1.

One is then left with the problem of bounding E supb∈C d(µb,Nt , f bt ). If the supre-
mum where outside the expectation this would be easy, as it is the empirical
measure of N i.i.d. samples compared to their law f bt and the usual law of large
numbers applies. In this way, we have exchanged the non-independence of the
particles with taking a supremum over a very large set. This technique is com-
monly used in proving consistency of estimators in theoretical statistics [193], but
to the authors knowledge has not been applied to the problem of propagation of
chaos in this way before.

That this supremum can be bounded (Theorem 2.2.4) is perhaps surprising. The
proof crucially relies on the existence of a differentiable stochastic flow associated
with the SDE (2.2.5) for a single particle.

3Of course, in practice C will not be all possible vector fields, but merely those in some norm
bounded set. Thus there will be some asymptotically (as N → ∞) small chance that b 6∈ C,
which must be handled separately. We omit this here for brevity.
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2.3.6 Discussion

2.3.6.1 Simple extensions

No self-interaction The propagation of chaos result Theorem 2.2.1 can be easily
extended to the case of no self-interaction, where bNt (X i,N

t ) on the ith particle
in (2.1.1) is replaced with 1

N−1
∑N
j=1,j 6=iK(X i,N

t , Xj,N
t ). This may be done by

considering instead the interaction kernel K̃ given by

K̃(x, y) = K(x, y)−K(x, x).

Note that as K is always at least bounded and continuous, there is no problem
defining K(x, x) and it will be uniformly bounded.

Multi-particle interactions Theorem 2.2.1 also easily extends to the case where
bN is instead given by

bNt (x) = 1
Nm

N∑
i1,...,im=1

K(x,X i1,N
t , . . . , X im,N

t )

for K ∈ C0,α. All the additional work happens at the PDE level and is straight-
forward.

2.3.7 Open questions

2.3.7.1 The curse of dimensionality

The existence of differentiable stochastic flows for SDEs with Hölder continuous
vector fields (see e.g. [63, 12, 146, 59]) and their use in this chapter leads to an
obvious question:

Can one use these stochastic flow results on the particle system (2.1.1) and adapt
the coupling method of Sznitman directly?

In this work we have avoided this by using only the existence of a differentiable
stochastic flow for a single particle, a system of fixed dimension d. The main ob-
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stacle in applying stochastic flow results to the whole system is that the dimension
of the particle system (2.1.1) is Nd which blows up as N → ∞. Answering the
above question would require a more careful analysis that kept track of how the
constants in the proofs of these papers depend upon the dimension. It is conceiv-
able that the special structure of (2.1.1) could be exploited to obtain bounds on
these constants uniformly in N . The author plans to consider this in future.

We do remark, however, that the approach taken in this chapter has conceptual
advantages and brings new insight into the problem of establishing propagation
of chaos.

2.3.7.2 The C0,0+ barrier

The results of this chapter show that, in the presence of noise, the regularity
barrier of Lipschitz continuity of K for quantitative propagation of chaos can
be reduced to K being Hölder continuous. However, stochastic flows are known
to exist for vector fields in Lp, p > d (see [12]). This leads to the following
question:

Can the barrier in the noisy case be reduced to K ∈Ws,p, p > d, s > 0?

The method used in this work fails in this case, as it requires the vector fields to
be uniformly bounded for the key estimate Corollary 2.4.1.

2.4 Empirical process & Glivenko-Cantelli

In this section we prove the Glivenko-Cantelli results (Theorems 2.2.4 and 2.2.6)
and Proposition 2.4.2 which will be used in the proof of the propagation of chaos
result in Section 2.5. Before we move on to these results we will begin by estab-
lishing that the stochastic process Xb,i,N is almost surely continuous.
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2.4.1 The stochastic process

In this subsection we will prove that the stochastic process (Xb,i,N
t )Ni=1 indexed by

b ∈ C has a continuous modification (Theorems 2.2.3 and 2.2.5) and show that it
is impossible to construct a continuous modification of the same process indexed
by the larger set C̃ (Proposition 2.2.1). As the proof in the second order case is no
harder, we leave it to the reader. Furthermore, we may without loss of generality
consider the single particle (N = 1) case due to independence of the particles.
For this reason we drop the i, N indices in this subsection.

Key to understanding both continuity for C and discontinuity for C̃ is the obser-
vation that if Yt = Xt −Bt and Xt solves (2.4.3), then Yt solves

dYt = bt(Yt +Bt)dt, Y0 = X0, (2.4.1)

which is an ODE with drift vector field b̃t(x, ω) = bt(x+Bt(ω)).

Proof of Proposition 2.2.1. We argue by contradiction. Suppose that an almost
surely continuous version exists, and without loss of generality that d = 1. To
start with assume that f0 = δ0. Define the random vector field b̃t(x, ω) = min(|x−
Bt(ω)|α, 1). Then by the computation above we deduce that Y b̃

t = X b̃
t −Bt almost

surely solves the ODE

dYt = min(|Yt|α, 1)dt, Y0 = 0. (2.4.2)

Note that this does not uniquely determine Y as the above ODE does not have
unique solutions. However, as the process is continuous we can identify Y b̃

t as
the unique limit of any sequence of Y bn with (random) bn ∈ C1

b and bn → b̃ in
L−r,∞(Rd;Rd) almost surely. As these approximating vector fields are in C1

b the
path Xbn

t is unique for each n. But we can easily construct a sequence bn such
that Y bn to converge to either the zero solution to (2.4.2) or a non-zero solution,
contradicting uniqueness of this limit.

Extending this proof to more general initial conditions than f0 = δ0 may be done
by replacing the function min(|Yt|α, 1) with a vector field in C0,α that exhibits
non-uniqueness for the corresponding ODE at every point in R. We leave this to
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the reader.

Proof of Theorem 2.2.3. Away from a fixed null set, N say, Bt is a continuous
path on [0, T ]. By the computation around Eq. (2.4.1), we have that for any b ∈ C,
Y b
t = Xb

t−Bt is the solution to a random ODE, and the random vector field is con-
tinuous and has spatial Lipschitz constant bounded by Lb := ‖b‖C([0,T ];C1

b
(Rd;Rd))

away from the null setN . Hence we can solve this ODE to construct Y b
t (and thus

also Xb
t ) uniquely. Moreover, by standard Grönwall estimates on the solution we

deduce that for any b̃ ∈ C it holds that

sup
t∈[0,T ]

|Xb
t −X b̃

t | ≤ T exp(LbT )
∥∥∥b− b̃∥∥∥

L∞([0,T ];L∞(Rd;Rd))

away from N . To complete the proof it now suffices to replace this L∞ estimate
with an L−r,∞ estimate. This may be done by a simple localisation argument.
We leave this to the reader.

Remark 2.4.1. Although as evidenced by Proposition 2.2.1 the process indexed
by C̃ cannot have an almost surely continuous version, and in the proof of con-
tinuity (Theorem 2.2.3) of the process indexed by C we used the C1

b bound, we
nevertheless have uniform ‘Lipschitz continuity at each point’ in the sense that,
due to Corollary 2.4.1 (presented below), we have

sup
b∈C̃
E sup
t∈[0,T ],b̃∈C

|Xb
t −X b̃

t |∥∥∥b− b̃∥∥∥ <∞

where the norm on b− b̃ is L−r,∞([0, T ]×Rd;Rd). It is this estimate that will be
key to the later analysis, and we will never use the C1

b norm of the vector fields
considered.

2.4.2 Estimates on the SDEs

Before we begin the proof of Theorem 2.2.4 proper, we will obtain some prelimi-
nary estimates on the SDEs:

dXt = bt(Xt)dt+ dBt (2.4.3)
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and  dXt = Vtdt,

dVt = −b(Xt)dt− κVtdt+ dBt.
(2.4.4)

2.4.2.1 Growth bounds

We first obtain some simple a priori growth estimates for (2.4.3) and (2.4.4) which
will be used throughout the sequel.

Lemma 2.4.1. Let X solve (2.4.3) then

sup
t∈[0,T ]

|Xt| ≤ |X0|+ C ‖b‖L∞([0,T ]×Rd;Rd) + sup
t∈[0,T ]

|Bt|.

Let (X, V ) solve (2.4.4) then

sup
t∈[0,T ]

(|Xt|+ |Vt|) ≤ C(|X0|+ |V0|+ ‖b‖L∞([0,T ]×Rd;Rd) + sup
t∈[0,T ]

|Bt|).

As a consequence, supt∈[0,T ] |Xt| (respectively supt∈[0,T ](|Xt| + |Vt|)) possesses as
many moments as |X0| (respectively |X0|+ |V0|).

Proof. The first claim on (2.4.3) is immediate from the definition of solution in
integral form. For the first claim on (2.4.4) we first estimate

|Xt| ≤ |X0|+
∫ t

0
|Vs| ds

|Vt| ≤ |V0|+ t ‖b‖L∞([0,T ]×Rd;Rd) + sup
s∈[0,t]

|Bs|+ |κ|
∫ t

0
|Vs| ds

and then conclude with the Grönwall inequality on |Xt| + |Vt|. The remaining
claims now follow from the triangle inequality and well known results on Brownian
motion (see e.g. [148]). We omit the details.

2.4.2.2 Reference processes

Next we define a ‘reference process’ in each of the first and second order cases.
This process will have the property that the difference between it and our actual
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process will be sub-Gaussian. For the first order case we define (X̃ i,N
t )Ni=1 as

X̃ i,N
t = X i,N

0 , i = 1, . . . , N, t ∈ [0, T ]. (2.4.5)

While in the second order case we instead define (X̃ i,N , Ṽ i,N
t )Ni=1 as the solution

to the following ODE with random initial condition:

dX̃ i,N
t = Ṽ i,N

t dt,

dṼ i,N
t = −κṼ i,N

t dt, i = 1, . . . , N

(X̃ i,N
0 , Ṽ i,N

0 ) = (X i,N
0 , V i,N

0 ).

(2.4.6)

In both first and second order cases the reference process is nothing other than
the solution to the corresponding SDE with b = 0 and the driving noise re-
moved.

Being a linear ODE, the equation (2.4.6) can be explicitly solved to give

(X̃ i,N
t , Ṽ i,N

t ) =
(
X i,N

0 + V i,N
0

1− e−κt
κ

, V i,N
0 e−κt

)
, i = 1, . . . , N. (2.4.7)

We further define (in each case) the empirical measure corresponding to the refer-
ence process as µ̃Nt and the common law of each reference particle as f̃t. (Although
f̃t is the solution to a transport equation, we do not have explicit need of this
fact.)

As discussed above, the reason we consider these reference processes is that the
increment between the stochastic process we care about and the reference process
is sub-Gaussian, even though each individual process may not be sub-Gaussian
(which will be the case if the initial measure f0 is not sub-Gaussian).

Lemma 2.4.2. Let Zb,i,N
t = Xb,i,N

t − X̃ i,N
t for the first order case (resp. Zb,i,N

t =
(Xb,i,N

t − X̃ i,N
t , V b,i,N

t − Ṽ i,N
t ) for the second order case), where Xb,i,N

t solves
(2.2.5) for b ∈ C and X̃ i,N

t is the reference process defined by (2.4.5), (resp.
(Xb,i,N

t , V b,i,N) solves (2.2.17) for b ∈ C and (X̃ i,N
t , Ṽ i,N

t ) is the reference process
defined by (2.4.6).) Then for each i, we have the following almost sure bound:

sup
t∈[0,T ]

|Zb,i,N
t | ≤ C

(
1 + sup

t∈[0,T ]
|Bi,N

t |
)
,

88



and the following time increment bound for any t ∈ [0, T ], ε > 0,

E sup
s∈[0,T ],|s−t|1/3≤ε

|Zb,i,N
t − Zb,i,N

s | ≤ Cε.

Proof. We first prove the almost sure bounds. The first inequality in the first
order case follows directly from the integral form of the SDE (2.4.3), noting that
X̃ i,N
t is nothing other than the initial condition X i,N

0 . For the second order case
we first observe that

d(eκtVt) = eκtbt(Xt)dt+ eκtdBt, (2.4.8)

(where we have omitted the b, i, N indices for brevity), so that

(eκtVt − V0) =
∫ t

0
eκsbs(Xs) ds+

∫ t

0
eκsdBs

=
∫ t

0
eκsbs(Xs) ds+ eκtBt − κ

∫ t

0
eκsBs dt

(2.4.9)

by stochastic integration by parts. From this the bound on |Vt−Ṽt| = |Vt−e−κtV0|
is easily deduced as b ∈ C is uniformly bounded. The bound on |Xt − X̃t| is now
deduced by integrating this bound on [0, t].

Now we prove the time increment estimates. For the first order system we have,
from the integral form of the ODE,

sup
s∈[0,T ],|s−t|1/3≤ε

|(Xt − X̃t)− (Xs − X̃s)| ≤ ε2 sup
b∈C
‖b‖L∞([0,T ]×Rd;Rd)

+ sup
s∈[0,T ],|t−s|1/3≤ε

|Bs −Bt|

The supremum over C is bounded by a constant. That the remaining part has
expectation bounded by a constant times ε can either be seen as a consequence
of the law of the iterated logarithm (see e.g. [148]) or that the 1/3-Hölder norm
of Brownian motion has finite expectation (see e.g. [195]).

The corresponding estimate for the second order case is similar using instead the
integral form of (2.4.9). We leave it to the reader.

Using the reference processes we can obtain an estimate on the Wasserstein dis-
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tance dMKW(µb,Nt , f b) using the following inequality. Note that, as is evident from
its proof, establishing (2.4.10) requires no properties of the particle system other
than the relationship of the empirical measures to the laws.

Lemma 2.4.3. Let Xb,i,N
t solve (2.2.5) for b ∈ C and X̃ i,N

t be the reference process
defined by (2.4.5). Then the following holds:

dMKW(µb,Nt , f bt ) ≤ dMKW(µ̃Nt , f̃t)+

+ sup
h∈Lip1

(
1
N

N∑
i=1

(h(Xb,i,N
t )− h(X̃ i,N

t ))− E(h(Xb,i,N
t )− h(X̃ i,N

t ))
)
.

(2.4.10)

In the second order case where (Xb,i,N
t , V b,i,N) solve (2.2.17) for b ∈ C and

(X̃ i,N
t , Ṽ i,N

t ) is the reference process defined by (2.4.6) the corresponding inequal-
ity to (2.4.10) holds, i.e. with Xb,i,N replaced with (Xb,i,N , V b,i,N) and so on. We
omit writing this inequality for brevity.

Proof. We only give the proof in the first order case for brevity. The second order
case is analogous and we leave it to the reader. We have

dMKW(µNt , f bt ) = sup
h∈Lip1

(
1
N

N∑
i=1

h(Xb,i,N
t )− Eh(Xb,i,N

t )
)

≤ sup
h∈Lip1

(
1
N

N∑
i=1

(h(Xb,i,N
t )− h(X̃ i,N

t ))− E(h(Xb,i,N
t )− h(X̃ i,N

t ))
)

+ sup
h∈Lip1

(
1
N

N∑
i=1

h(X̃ i,N
t )− Eh(X̃ i,N

t )
)
.

The final supremum is nothing other that dMKW(µ̃Nt , f̃t). The proof is complete.

As the reference processes are simple (by choice) and their evolution is determin-
istic, we have the following control over the distance of the reference empirical
measure to the law.

Lemma 2.4.4. In the first and second order cases the following holds:

sup
t∈[0,T ]

dMKW(µ̃Nt , f̃t) ≤ cdMKW(µN0 , f0). (2.4.11)
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Moreover, in the first order case c may be taken to be equal to 1.

Proof. For the first order case the claim (with c = 1) is obvious from the defini-
tions. For the second order case we argue directly by evolving an initial coupling
between f0 and µN0 along the trajectories of the ODE flow given by (2.4.6). In-
deed, let π0 ∈ P(R2d×R2d) be any coupling between µN0 and f0, and define πt as
the pushforward of π0 by the (autonomous, deterministic, smooth) flow φt of the
ODE (2.4.6). Then πt ∈ P(R2d×R2d) is a coupling of µ̃Nt and f̃t and we have the
bound
∫
|(x1, v1)− (x2, v2)| dπt(x1, v1, x2, v2)

=
∫
|φt(x1, v1)− φt(x2, v2)| dπ0(x1, v1, x2, v2)

≤ ‖∇φt‖L∞(R2d;R2d)

∫
|(x1, v1)− (x2, v2)| dπ0(x1, v1, x2, v2).

The ODE flow φt is uniformly Lipschitz in (x, v) over times t ∈ [0, T ], so the
L∞ norm above is bounded by a constant. Thus dMKW(f̃t, µ̃Nt ) is bounded by a
constant times the final integral in the above display. The claim of the lemma
now follows by taking the infimum over all couplings π0 between f0 and µN0 .

2.4.2.3 Local Lipschitz dependence upon the field

We now recall that in both the first and second order cases the SDE generates a
differentiable stochastic flow. The first order case is established in [63] (see also
[12, 146, 59] for results along the same lines). For the second order case see [201]
(see also [60]). We have need of a simple corollary that provides global bounds
in space with a weight.

Theorem 2.4.1. Let b ∈ L∞([0, T ]; C0,α(Rd;Rd)), with α ∈ (0, 1) (resp. α ∈
(2/3, 1)) then the SDE (2.4.3) (resp. (2.4.4)) generates a C1,α′ stochastic flow
(see Definition 2.1.9) φs,t : Rd → Rd (resp. R2d → R2d), for α′ depending only
upon α. For any p ∈ [1,∞) and r > 0 there is a constant Cp,r depending only on
p, r and ‖b‖L∞([0,T ];C0,α(Rd;Rd)) but not b itself, such that

����� sup
0≤s≤t≤T

‖∇φs,t‖L−r,∞(Rd;Rd×d)

�����
p

≤ Cp,r <∞ (2.4.12)

91



(resp. the same claim with Rd replaced with R2d).

As discussed above, the existence of the stochastic flow is shown elsewhere, so it
suffices to prove (2.4.12).

Proof of (2.4.12). We give the proof in the first order case, the second order proof
being analogous. Local estimates of the form����� sup

0≤s≤t≤T
‖∇φs,t‖L∞(Q;Rd×d)

�����
p

≤ C

for p ∈ [1,∞) and Q a unit cube in Rd follow from [63], and as the bounds
upon b are global, these estimates are uniform over unit cubes Q. Now let An for
n = 1, 2, 3, . . . be the annulus {2n ≤ |x| ≤ 2n+1} and A0 = {|x| ≤ 2} be subsets
of Rd. Then it holds that

sup
0≤s≤t≤T

‖∇φs,t‖L−r,∞(Rd;Rd×d) ≤
∞∑
n=0

2−nr sup
0≤s≤t≤T

‖∇φs,t‖L∞(An;Rd×d) . (2.4.13)

Each An can be covered by mn unit cubes Qn,i and mn can be chosen to be at
most C2nd. Hence, it holds that���‖∇φs,t‖L∞(An;Rd×d)

���
p
≤

��� mnmax
i=1
‖∇φs,t‖L∞(Qn,i;Rd×d)

���
p
.

We apply the elementary inequality
��maxmi=1 |Xi|

��
p
≤ Cpm

1/p maxmi=1 �Xi� which
may be obtained by bounding the maximum of the Xi with the sum of the |Xi|.
This yields ���‖∇φs,t‖L∞(An;Rd×d)

���
p
≤ Cp2nd/p. (2.4.14)

Therefore, combining (2.4.14) and (2.4.13) we obtain����� sup
0≤s≤t≤T

‖∇φs,t‖L−r,∞(Rd;Rd×d)

�����
p

≤ Cp
∞∑
n=0

2nd/p−nr

and this sum is convergent for all p sufficiently large. The estimate for smaller p
then follows by bounding with the estimate for larger p.

We obtain the following corollary of Theorem 2.4.1, which holds for both the first
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and second order systems.

Corollary 2.4.1. Let b ∈ C, f0 ∈ Pp(Rd) (respectively Pp(R2d)) for some p >
r > 1. Then there exists a random variable L with finite expectation uniform over
b ∈ C, such that for any b̃ ∈ C and t ∈ [0, T ] it holds that

|Xb
t −X b̃

t | ≤ L
∫ t

0

∥∥∥bs − b̃s∥∥∥L−r,∞(Rd;Rd)
ds

in the first order case, and

|Xb
t −X b̃

t |+ |V b
t − V b̃

t | ≤ L
∫ t

0

∥∥∥bs − b̃s∥∥∥L−r,∞(Rd;Rd)
ds

respectively in the second order case (with a different L).

Proof. We give the proof in the first order case. The second order case is anal-
ogous and no harder. Let φ, φ̃ be the associated stochastic flows given by Theo-
rem 2.4.1 and let

J = sup
0≤s≤t≤T

sup
|x|≤supt∈[0,T ] |X b̃

t |
|∇φs,t(x)|.

Define the function ψ(u) = (φt,u◦ φ̃0,u)(X0). Then ψ(0) = Xb
t and ψ(t) = X b̃

t . We
wish to estimate |ψ(t) − ψ(0)| ≤

∫ t
0

∣∣∣dψ
ds

∣∣∣ ds, but it is not immediately clear how
to evaluate the derivative due to the presence of the non-differentiable Brownian
motions. Instead we prove the moral equivalent using Riemann sums. Let 0 =
t0 < t1 < · · · < tn = t be a partition of [0, t] of maximum width h. Now consider

|ψ(tk+1)− ψ(tk)| = |(φtk+1,t ◦ φ̃0,tk+1)(X0)− (φtk,t ◦ φ̃0,tk)(X0)|

= |(φtk+1,t ◦ φ̃0,tk+1)(X0)− (φtk+1,t ◦ φtk,tk+1 ◦ φ̃0,tk)(X0)|

≤ J |φ̃0,tk+1(X0)− (φtk,tk+1 ◦ φ̃0,tk)(X0)|

≤ J |(φ̃tk,tk+1 ◦ φ̃0,tk)(X0)− (φtk,tk+1 ◦ φ̃0,tk)(X0))|

≤ J
∣∣∣∣∫ tk+1

tk

b̃s(φ̃tk,s(X b̃
tk

))− bs(φtk,s(X b̃
tk

)) ds
∣∣∣∣

≤ J
∫ tk+1

tk

|b̃s(X b̃
tk

)− bs(X b̃
tk

)| ds

+ J
∫ tk+1

tk

|bs(φ̃tk,s(X b̃
tk

))− bs(φtk,s(X b̃
tk

))| ds,
(2.4.15)
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Note that we have the simple estimate

sup
x
|φ̃u,s(x)− φu,s(x)| ≤

∫ s

u
‖bτ‖L∞(Rd;Rd) +

∥∥∥b̃τ∥∥∥L∞(Rd;Rd)
dτ ≤ C|s− u|.

Therefore, as bs is α-Hölder continuous, the final integral in (2.4.15) is bounded
by CJ |tk+1 − tk|1+α for some constant C, and when we take the partition width
h to zero in the sum in the display below, this term contributes nothing. Hence,

|Xb
t −X b̃

t | = |ψ(t)− ψ(0)|

≤ lim
h→0

n−1∑
k=0
|ψ(tk+1)− ψ(tk)|

= J
∫ t

0
|bs(X b̃

s)− b̃s(X b̃
s)| ds.

Next we note that

J
∫ t

0
|bs(X b̃

s)− b̃s(X b̃
s)| ds ≤ J sup

0≤s≤T

〈
X b̃,i,N
s

〉r ∫ t

0

∥∥∥bs − b̃s∥∥∥L−r,∞(Rd;Rd)
ds.

Now define

L : = J sup
0≤s≤T

〈
X b̃,i,N
s

〉r
=
(

sup
0≤s≤T

〈
X b̃,i,N
s

〉r) sup
0≤s≤t≤T

sup
|x|≤supt∈[0,T ] |X b̃

t |
|∇φs,t(x)|

 .
Note that for any ε > 0,

L ≤
(

sup
0≤t≤T

〈
X b̃
t

〉r+ε)
sup

0≤s≤t≤T
‖∇φs,t‖L−ε,∞

so that by Hölder’s inequality

EL ≤
����� sup

0≤t≤T

〈
X b̃
t

〉�����
ε

p

����� sup
0≤s≤t≤T

‖∇φs,t‖L−ε,∞

�����
q

with (1/p′) + (1/q) = 1 with p′(r + ε) = p. (We ensure p′ > 1 by taking ε

sufficiently small and using r < p.) These are both finite by Lemma 2.4.1 and
Theorem 2.4.1 respectively. The proof is complete.
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2.4.3 The empirical process theory argument

To control the supremum in (2.2.12) we will use the following key proposi-
tion.

Recall that a semi-metric space is a metric space without the triangle inequality.
The definition of metric entropy extends without modification to semi-metric
spaces. For a random variable X valued in a Banach space V we say that X is
centred if Eg(X) = 0 for all g in the dual of V.

Proposition 2.4.1. Let (X , d) be a totally bounded semi-metric space and (V, ‖·‖V)
be a separable Banach space. Let ϕ : X → V be a centred random map, Y a
non-negative sub-Gaussian random variable and (G(x, ε))x∈X ,ε∈(0,1] be a family of
random variables. Let (ϕ1,N , Y i,N , Gi,N), . . . , (ϕN,N , Y N,N , GN,N) be i.i.d. copies
of (ϕ, Y,G) and assume the following:

(i) Metric entropy bounds: The semi-metric space X obeys the following
bound

H(ε,X , d) ≤ Chε
−k

for constants Ch, h > 0.

(ii) ‘Pointwise Lipschitz’ condition: For every x ∈ X , ε ∈ (0, 1] we have

sup
d(x,x̃)≤ε

‖ϕ(x)− ϕ(x̃)‖V ≤ G(x, ε) (2.4.16)

and there is a constant CG such that for all ε ∈ (0, 1],

sup
x∈X

EG(x, ε) ≤ CGε. (2.4.17)

(iii) Dominating sub-Gaussians (envelope function): We have

sup
x∈X
‖ϕ(x)‖V ≤ Y

with �Y � ≤ CY , and if V 6= R then also Y ≤ CY almost surely.
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(iv) Pointwise law of large numbers: We have

sup
x∈X

E
∥∥∥∥∥ 1
N

N∑
i=1

ϕi,N(x)
∥∥∥∥∥

V
≤ CVN

−1/2.

Then it holds that�����sup
x∈X

∥∥∥∥∥ 1
N

N∑
i=1

ϕi,N(x)
∥∥∥∥∥

V

����� ≤ C(CG + (CY + CV)
√
Ch)N−γ, γ = 1

2 + k
.

Note that in the above proposition the usual case is that V = R. In which case
assumption (iv) follows from assumption (iii) and the usual law of large numbers
under second moment conditions.

In order to prove this proposition and also for later proofs, we will need a couple
of standard results on the sub-Gaussian norm.

Lemma 2.4.5 (Law of large numbers). Let X1, . . . , XN be i.i.d. centred sub-
Gaussian random variables. Then����� 1

N

N∑
i=1

Xi

����� ≤ C �X1�N−1/2

for an absolute constant C.

The proof is a simple corollary of [196, Lemma 5.9.].

Lemma 2.4.6 (Orlicz maximal inequality). Let X1, . . . , Xm be real sub-Gaussian
random variables, not necessarily independent. Then��� mmax

i=1
|Xi|

��� ≤ C
mmax
i=1

�Xi�
√

log(1 +m)

for an absolute constant C.

We refer the reader to [193, §2.2.] for details of the proof.

We will also need a variant of Talagrand’s inequality for empirical processes
[186].

Theorem 2.4.2 (Talagrand’s inequality for Banach spaces). Let (V, ‖·‖V) be
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a separable Banach space and X1, . . . , XN be i.i.d. centered V-valued random
variables with ‖X1‖V ≤ 1 almost surely. Then,�����

∥∥∥∥∥ 1
N

N∑
i=1

Xi

∥∥∥∥∥
V
− E

∥∥∥∥∥ 1
N

N∑
i=1

Xi

∥∥∥∥∥
V

����� ≤ CN−1/2

For an absolute constant C.

Proof of Proposition 2.4.1. Let ε > 0 to be chosen and let (xm)Mm=1 be an ε-
net of X . By assumption (i) M may be taken to be at most exp(Chε−k). Let
m ∈ {1, . . . ,M} be arbitrary, and x ∈ X be in the ε-ball centred at xm. Then we
have the bound∥∥∥∥∥ 1

N

N∑
i=1

ϕi,N(x)
∥∥∥∥∥

V
≤
∥∥∥∥∥ 1
N

N∑
i=1

(ϕi,N(x)− ϕi,N(xm))
∥∥∥∥∥

V
+
∥∥∥∥∥ 1
N

N∑
i=1

ϕi,N(xm)
∥∥∥∥∥

V
.

(2.4.18)

Consider the summands in the first term on the right hand side. By assumptions
(ii) and (iii), we have

∥∥∥ϕi,N(x)− ϕi,N(xm)
∥∥∥

V
≤ min(2Y i,N , Gi,N(xm, ε))

=: Emin(2Y i,N , Gi,N(xm, ε)) + Ai,N,m
(2.4.19)

where (Ai,N,m)Ni=1 (defined by the last equality) are i.i.d. uniformly sub-Gaussian
centered random variables. To control the last term in (2.4.18) we split into two
cases. Firstly, if V 6= R then we write the last term in (2.4.18) as

∥∥∥∥∥ 1
N

N∑
i=1

ϕi,N(xm)
∥∥∥∥∥

V
= E

∥∥∥∥∥ 1
N

N∑
i=1

ϕi,N(xm)
∥∥∥∥∥

V

+
(∥∥∥∥∥ 1
N

N∑
i=1

ϕi,N(xm)
∥∥∥∥∥

V
− E

∥∥∥∥∥ 1
N

N∑
i=1

ϕi,N(xm)
∥∥∥∥∥

V

)
.

Hence, by assumption (iv) and Talagrand’s inequality (Theorem 2.4.2), we have
the bound �����

∥∥∥∥∥ 1
N

N∑
i=1

ϕi,N(xm)
∥∥∥∥∥

V

����� ≤ C(CV + CY )N−1/2. (2.4.20)

Secondly, if V = R then we can directly apply the law of large numbers for
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sub-Gaussian random variables (Lemma 2.4.5) to obtain that�����
∥∥∥∥∥ 1
N

N∑
i=1

ϕi,N(xm)
∥∥∥∥∥

V

����� ≤ CCYN
−1/2. (2.4.21)

Hence, by assumption (ii), (2.4.19) and whichever of (2.4.20) or (2.4.21) applies
we have

sup
x∈X ,d(x,xm)≤ε

∥∥∥∥∥ 1
N

N∑
i=1

ϕi,N(x)
∥∥∥∥∥

V
≤ Emin(2Y i,N , Gi,N(xm, ε))

+
∣∣∣∣∣ 1
N

N∑
i=1

Ai,N,m
∣∣∣∣∣+

∥∥∥∥∥ 1
N

N∑
i=1

ϕi,N(xm)
∥∥∥∥∥

V︸ ︷︷ ︸
=:Bm

≤ CGε+Bm.

By the law of large numbers for sub-Gaussian random variables (Lemma 2.4.5),
the uniform sub-Gaussian bounds on Ai,N,m and the above bounds on the average
of ϕi,N(xm), we have

��Bm
�� ≤ C

���A1,N,m
���N−1/2 + C(CV + CY )N−1/2 ≤ 4C(CY + CV)N−1/2.

Putting the estimates over the ε-net together, and using the Orlicz maximal
inequality (Lemma 2.4.6), we obtain�����sup

x∈X

∥∥∥∥∥ 1
N

N∑
i=1

ϕi,N(x)
∥∥∥∥∥

V

����� ≤
����� max
m=1,...,M

sup
x∈X ,d(x,xm)≤ε

∥∥∥∥∥ 1
N

N∑
i=1

ϕi,N(x)
∥∥∥∥∥

V

�����
≤

���� max
m=1,...,M

CGε+Bm

����
≤ CGε+

���� max
m=1,...,M

Bm

����
≤ CGε+ C

√
log(1 +M) max

i=1,...,M

��Bm
��

≤ CGε+ C(CY + CV)
√
Chε

−k/2N−1/2.

By choosing ε = N−1/(2+k) we obtain the claimed result.

In addition to Theorems 2.2.4 and 2.2.6 we will also prove a proposition that will
be used in the proofs of Theorems 2.2.1 and 2.2.2.
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Proposition 2.4.2. Let f b, µb,N be as in (2.2.7),(2.2.6) in the first order case,
and respectively (2.2.19),(2.2.18) in the second order case. Let f0 ∈ Pp(Rd) (re-
spectively f0 ∈ Pp(R2d)) for some p > 1. Let C be a bounded subset of Cα for
some α ∈ (0, 1) (respectively α ∈ (2/3, 1)) which satisfies

H(ε, C, ‖·‖L∞([0,T ];L−r,∞(Rd;Rd))) ≤ Cε−k (2.4.22)

for some r ∈ (1, p). Let h : Rd × Rd → R be a bounded function satisfying

sup
y,δ∈Rd,δ 6=0

‖h(·, y + δ)− h(·, y)‖L−r′,q(Rd)

|δ|β
<∞,

where β ∈ (0, 1], q ∈ [1,∞] and r′ > d/q. Then we have������sup
b∈C

sup
t∈[0,T ]

∥∥∥∥∥ 1
N

N∑
i=1

h(·, Xb,i,N
t )− Eh(·, Xb,i,N

t )
∥∥∥∥∥

L−r′,q(Rd)

������ ≤ CN−γ, γ = 1
2 + k

β

.

Proof of Theorems 2.2.4 and 2.2.6 and Proposition 2.4.2. We begin by present-
ing the proofs of Theorems 2.2.4 and 2.2.6. We first note that by Lemmas 2.4.3
and 2.4.4 we have[

sup
t∈[0,T ],b∈C

dMKW(µb,Nt , f bt )− cdMKW(µN0 , f0)
]

+
≤

sup
h∈Lip1,t∈[0,T ],b∈C

(
1
N

N∑
i=1

(h(Xb,i,N
t )− h(X̃ i,N

t ))− E(h(Xb,i,N
t )− h(X̃ i,N

t ))
)
,

(2.4.23)
in the first order case (with c = 1) and the corresponding inequality in the second
order case (with c > 1).

From here on we give the proof for the first order system (Theorem 2.2.4). The
proof for the second order system (Theorem 2.2.6) is analogous (using instead the
second order versions of the above lemmas) and we leave it to the reader. The
proof follows from the application of Proposition 2.4.1 with a carefully chosen
map ϕ and semi-metric space (X , d).

We set (X , d) to be

([0, T ], | · |1/3)× (C, ‖·‖L∞([0,T ];L−r,∞(Rd;Rd)))× (Lip1, ‖·‖L−p,∞(Rd;Rd))
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with the product metric, where |·| is the standard Euclidean norm. By assumption
the metric entropy of the second space in the above display is bounded by Cε−k.
By the results in [54, 161] the metric entropy of the third space in the above
display is bounded by Cε−min(d,d/(p−1)) (see Proposition 2.A.1 for details.) As the
metric entropy of ([0, T ], | · |1/3) is logarithmic in ε, the metric entropy of (X, d)
is controlled, using Lemma 2.A.1 by

H(ε,X, d) ≤ Cε−d/(p−1) + Cε−k + C log(1/ε) ≤ Cε−max(d,d/(p−1),k). (2.4.24)

We define ϕi,N : X → R for i = 1, . . . , N , by

ϕi,N(t, b, h) = (h(Xb,i,N
t )− h(X̃ i,N

t ))− E(h(Xb,i,N
t )− h(X̃ i,N

t )). (2.4.25)

With this choice of ϕ and X the supremum on the right hand side of (2.4.23) will
be equal to

sup
x∈X

∣∣∣∣∣ 1
N

N∑
i=1

ϕi,N(x)
∣∣∣∣∣ .

Using that h is 1-Lipschitz, it follows from Lemma 2.4.2 that supx∈X |ϕi,N(x)|
is bounded by a sub-Gaussian random variable Y i,N . Thus assumptions (i) and
(iii) of Proposition 2.4.1 are satisfied, and as the target space V is simply R,
assumption (iv) is also satisfied. This just leaves the verification of assumption
(ii). We will compute this for each variable (t, b, h) in turn. For brevity we
compute this for ϕi,N(t, b, h) = h(Xb,i,N

t )−h(X̃ i,N
t ), the estimate for the centered

version (2.4.25) follows easily.

Let Li,N be as in Corollary 2.4.1 applied respectively to Xb,i,N , so that Li,N are
i.i.d. with finite expectation. Then as h ∈ Lip1 we have

|ϕi,N(t, b, h)− ϕi,N(t, b̃, h)| ≤ Li,NT
∥∥∥b− b̃∥∥∥

L∞([0,T ];L−r,∞(Rd;Rd))
.

Next we consider

|ϕi,N(t, b, h)− ϕi,N(t, b, h̃)| = |(h(Xb,i,N
t )− h(X̃ i,N

t ))− (h̃(Xb,i,N
t )− h̃(X̃ i,N

t ))|

≤
(

sup
s∈[0,T ]

〈
Xb,i,N
s

〉p
+
〈
X̃ i,N
s

〉p)∥∥∥h− h̃∥∥∥
L−p,∞(Rd)
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and we can control the expectation of this supremum by Lemma 2.4.1 for Xb,i,N

(the estimate for X̃ i,N being easier) and the pth moment of X0.

Lastly we control the dependence on time. Let t ∈ [0, T ], then we have

sup
s∈[0,T ],|t−s|1/3≤ε

|ϕi,N(t, b, h)− ϕi,N(s, b, h)| ≤

sup
s∈[0,T ],|t−s|1/3≤ε

‖h‖Lip |(X
b,i,N
t − X̃ i,N

t )− (Xb,i,N
s − X̃ i,N

s )|

and the expectation of the supremum on the right hand side is controlled by
Lemma 2.4.2.

This completes the proof of Theorem 2.2.4.

We now prove Proposition 2.4.2. The proof again relies on Proposition 2.4.1 and
a carefully chosen map ϕ and semi-metric space (X , d). We split the proof into
two cases. Firstly we handle q ∈ [1,∞). Let V = L−r′,q(Rd) and

X = ([0, T ]× | · |αβ/3)× (C, ‖·‖βL∞([0,T ];L−r,∞(Rd;Rd)))

with the product metric where r ∈ (1, p). As in the above proof, we estimate the
metric entropy of X,

H(ε,X , d) ≤ Cε−k/β

where the dominant term comes from the second space in the definition of X
(using Lemma 2.A.3). We define ϕi,N : X → V by

(ϕi,N(t, b))(x) = h(x,Xb,i,N
t )− Eh(x,Xb,i,N

t ).

This is uniformly bounded in V = L−r′,q(Rd) by 2 supy∈Rd ‖h(·, y)‖L−r′,q(Rd) which
is finite as h is uniformly bounded and 〈x〉−r

′q is integrable by assumption. To
verify the ‘Pointwise Lipschitz’ condition we argue in the same way as in the
proof of Theorem 2.2.4. We have, again working with the uncentered version for
brevity,

∥∥∥ϕi,N(t, b)− ϕi,N(s, b̃)
∥∥∥

V
≤ |X i,N,b

t −X i,N,b̃
s |β sup

δ,y∈Rd,δ 6=0

‖h(·, y + δ)− h(·, y)‖V
|δ|β

This supremum is finite by assumption, and the expectation of |X i,N,b
t −X i,N,b̃|β
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can be controlled as in the proof of Theorem 2.2.4 using also the β appearing in
the metric of X .

It remains to check the pointwise law of large numbers. We compute

sup
(t,b)∈X

E
∥∥∥∥∥ 1
N

N∑
i=1

ϕi,N(t, b)
∥∥∥∥∥

V

= sup
(t,b)∈X

E

∫
Rd

∣∣∣∣∣ 1
N

N∑
i=1

h(x,X i,b,N
t )− Eh(x,X i,b,N

t )
∣∣∣∣∣
q

〈x〉−qr
′
dx

1/q

≤ C sup
(t,b)∈X

∫
Rd
E
∣∣∣∣∣ 1
N

N∑
i=1

h(x,X i,b,N
t )− Eh(x,X i,b,N

t )
∣∣∣∣∣
q

〈x〉−qr
′
dx

1/q

≤ C sup
(t,b)∈X

∫
Rd

 sup
x′∈Rd

E
∣∣∣∣∣ 1
N

N∑
i=1

h(x′, X i,b,N
t )− Eh(x′, X i,b,N

t )
∣∣∣∣∣
q
 〈x〉−qr′ dx

1/q

≤ C sup
x∈Rd,(t,b)∈X

����� 1
N

N∑
i=1

h(x,X i,b,N
t )− Eh(x,X i,b,N

t )
�����
q

,

where we have used that 〈x〉−qr
′
is integrable on Rd twice, first on the third

line to apply Jensen’s inequality and then on the fourth line after bringing the
expectation out of the integral. As h is a uniformly bounded function, we can
apply Lemma 2.4.5 (or just the usual law of large numbers) to obtain that

sup
(t,b)∈X

E
∥∥∥∥∥ 1
N

N∑
i=1

ϕi,N(t, b)
∥∥∥∥∥

V
≤ CN−1/2

as required. This completes the proof of Proposition 2.4.2 for p <∞.

Now suppose that q =∞. In this case we set V = R and

X = ([0, T ]× | · |αβ/3)× (C, ‖·‖βL∞([0,T ];L−r,∞(Rd;Rd)))× (Rd, ρr′,β)

with the product metric, where r ∈ (1, p). Here ρr′,β is a semi-metric on Rd

defined by

ρr′,β(x, y) = min(|x− y|β, 1)
(1 + min(|x|, |y|))min(r′,1) .

It is easy to check that the metric entropy of (Rd, ρr′,β) is logarithmic for any
r′ > 0 and β ∈ (0, 1]. Hence, as in the p <∞ case, the metric entropy of X has
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the bound
H(ε,X , d) ≤ Cγε

−k/β.

We define ϕi,N : X → R by

ϕi,N(t, b, x) = h(x,Xb,i,N
t )− Eh(x,Xb,i,N

t ).

This is uniformly bounded by 2. The ‘Pointwise Lipschitz’ conditions for [0, T ]
and C are the same as in the proof of Theorem 2.2.4, except that h is only β-
Hölder continuous instead of Lipschitz, which is taken into account in the choice
of metrics on [0, T ] and C. This leaves the estimate for (Rd, ρr′,β). Again consider
the uncentred case to ease notation. Let x, y ∈ Rd with |x−y| ≤ 1, then we have,
where without loss of generality |x| ≥ |y|,

|ϕi,N(t, b, x)− ϕi,N(t, b, y)| = |h(x,Xb,i,N
t )− h(y,Xb,i,N

t )|

≤ | 〈x〉r
′
h(x,Xb,i,N

t )− 〈y〉r
′
h(y,Xb,i,N

t )| 〈x〉−r
′

+ 〈y〉r
′
|h(y,Xb,i,N

t )|| 〈x〉−r
′
− 〈y〉−r

′
|

≤ C|x− y|β 〈x〉−r
′
+ C 〈y〉r

′
〈y〉−r

′−1 |x− y|

≤ Cρr′,β(x, y).

where we have again considered the uncentered case to ease notation, and we
have assumed without loss of generality that |x| ≥ |y|. This completes the proof
of Proposition 2.4.2.

2.5 Propagation of chaos

In this section we prove the propagation of chaos results Theorems 2.2.1 and 2.2.2.
This section is organised as follows. In Section 2.5.1 we prove Theorem 2.2.1 after
stating a pair of preliminary lemmas without proof. In Section 2.5.2 we present
the proof of Theorem 2.2.2 again after stating without proof a pair of lemmas.
Note that the proof of Theorem 2.2.2 is very similar to that of Theorem 2.2.1 so
we give only the differences. Finally in Sections 2.5.3 and 2.5.4 we provide the
postponed proofs of the lemmas.
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2.5.1 The first order case

As a first step, we must obtain a prior estimates on the time regularity of the
vector field bN and show that the contribution of bN not being sufficiently regular
to (2.2.1) is of lower order. As the proofs are technical we present them at the
end of this section.

In the first order case we expect that bN ∈ Λ0,α′
para(Lq([0, T ] × Rd;Rd)) for α′ < α

as X i,N will be merely (almost 1/2)-Hölder continuous in time due to the driving
noise.

Lemma 2.5.1. [Time regularity (first order case)] Let the interaction kernel
K(x, y) lie in Λ0,α(L∞y (Rd; Lqx(Rd))) with α ∈ (0, 1] and f0 ∈ P1(Rd). Define the
event EA by

EA = {
∥∥∥bN∥∥∥

Λ0,α′
para(Lq([0,T ]×Rd))

> A}

for any α′ ∈ (0, α). Then there exists A > 0 such that we have the bound�����1EA
(

sup
t∈[0,T ]

dMKW(µNt , ft)− dMKW(µN0 , f0)
)����� ≤ CN−1/2.

where C and A depend only on α′ and the norm of K.

Next we bound the dependence of the laws f bt using simple energy estimates. As
we will work throughout the proof with mollified kernels, we prove the results for
smooth vector fields (with constants independent of the degree of smoothness)
which avoids any issues with existence or uniqueness. Again, we delay the proof
until the end of this section. In the first order case we have:

Lemma 2.5.2 (Weighted energy estimate (first order case)). Let b, b̃ ∈ L∞([0, T ]×
Rd;Rd) be continuous in t and C1

b in x, and f0 ∈ Lp+r,q(Rd) for some r, p > 0
and q ∈ [2,∞), then

∥∥∥f bt − f b̃t ∥∥∥Lp,2(Rd)
≤ C

∫ t

0

∥∥∥bs − b̃s∥∥∥L−r,q′ (Rd;Rd)
dt,

1
q′

+ 1
q

= 1
2 ,

where C depends only on f0, ‖b‖L∞([0,T ]×Rd) and
∥∥∥b̃∥∥∥

L∞([0,T ]×Rd)
.

With these lemmas we are ready to prove the main propagation of chaos re-
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sult.

Proof of Theorem 2.2.1. We divide the proof into 5 steps.

Step 1. Mollification of the interaction kernel. Note first that Sobolev
embedding implies that K(x, y) is in C0,α(Rd;Rd) for some α > 0 in all cases of
the theorem. Now let Kn be a sequence of smooth interaction kernels obeying the
same bounds as K. Then using Corollary 2.4.1 on the entire N · d dimensional
system we deduce that the solutions Xn,i,N

t to the SDE system (2.1.1) with K

replaced by Kn converge almost surely to the solution X i,N
t of the original system

(2.1.1). Using this, it is sufficient to prove propagation of chaos for a smooth
kernel K with constants depending only on the bounds assumed in the theorem.
Thus from here on in the proof K shall be assumed to be in C1

b . As a consequence
all the considered vector fields b will also lie in C([0, T ]; C1

b(Rd;Rd)), and we can
freely apply Theorem 2.2.4 to such fields.

Step 2. Choice of functional space and exponents. We have assumed that
K(x, y) ∈ Λ0,s(L∞y (Rd; Lqx(Rd))) (note that, as explained in Remark 2.2.4, case
(1) of Theorem 2.2.1 is included in case (2) as q =∞). By the assumption on f0

we may choose r, r′ such that

f0 ∈ Lr+r′,q′(Rd), r > d/q, r′ > (d/2) + 1.

Note that with these choices we have the continuous inclusions:

Lr′,2(Rd) ↪→ L1,1(Rd) ↪→ (P1(Rd), dMKW), (2.5.1)

which will be how we control the Wasserstein distance between functions (as
opposed to measures).

Step 3. Regularity of the interaction field. Let s′ < s, then by Lemma 2.5.1
we may assume bN ∈ C where

C = C([0, T ]; C1
b(Rd;Rd)) ∩ {b : ‖b‖Λ0,s′

para(Lq([0,T ]×Rd;Rd)) ≤ A}, (2.5.2)

for some A <∞. Note that by Proposition 2.A.1(4) we have the metric entropy
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bound
H(ε, C,L∞([0, T ]; L−p′,∞(Rd;Rd))) ≤ Cε−(d+2)/s′ (2.5.3)

for any p′ ∈ (d/q, p). [Recall that p > d/q by assumption.] Here we have used
that q > (d + 2)/s so that s′ can be chosen large enough for q > (d + 2)/s′ to
hold. Note further that, due to Sobolev embedding, all elements b ∈ C have a
uniform bound in C0,α

para, i.e. ‖b‖C0,α
para([0,T ]×Rd;Rd)) ≤ CA for α = s− (d+ 2)/q > 0

and an absolute constant C.

Step 4. Consistency: The uniform law of large numbers on the par-
ticles. Note that the particle system (X i,N

t )Ni=1 is equal to (XbN ,i,N
t )Ni=1, and the

limit process ft is equal to f b
∞
t .

By the triangle inequality,

sup
t∈[0,T ]

dMKW(µNt , ft)− dMKW(µN0 , f0)

≤
(

sup
t∈[0,T ]

dMKW(µb
N ,N
t , f b

N

t )− dMKW(µN0 , f0)
)

+ sup
t∈[0,T ]

dMKW(f bNt , f b
∞

t ).

Using Theorem 2.2.4 with C given by (2.5.2) and using (2.5.3), the first term can
be bounded as����� sup

t∈[0,T ]
dMKW(µb

N ,N
t , f b

N

t )− dMKW(µN0 , f0)
�����

≤
�����sup
b∈C

sup
t∈[0,T ]

dMKW(µb,Nt , f bt )− dMKW(µN0 , f0)
����� ≤ CN−γ1 ,

where
γ1 = 1

2 + max(d+2
s′
, d
p−1)

.

Step 5. Stability: Estimates on the limit equation. This leaves the other
distance dMKW(f bNt , f b

∞
t ), for which we will use estimates on the limit equation.

Step 5.1. Dependence of f upon the field. By applying the energy estimate
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(Lemma 2.5.2) we obtain
∥∥∥f bNt − f b∞t ∥∥∥

L1,1(Rd)
≤ C

∥∥∥f bNt − f b∞t ∥∥∥
Lr′,2(Rd)

≤ C
∫ t

0

∥∥∥bNs − b∞s ∥∥∥L−r,q(Rd;Rd)
ds

(2.5.4)

where the first continuous inclusion in (2.5.1) is used for the first line and f0 ∈
Lr+r′,q′(Rd) is needed to apply the energy estimate for the second.

Step 5.2. Dependence of the field upon f . For b ∈ C, define bb,Nt by

bb,Nt (x) = 1
N

N∑
i=1

K(x,Xb,i,N
t ),

so that bNt = bb
N ,N
t . Next define bb,∞t by

bb,∞t (x) =
∫
K(x, y)f bt (y) dy,

so that b∞t = bb
∞,∞
t . Then we have

∥∥∥bNt − b∞t ∥∥∥L−r,q(Rd;Rd)
≤
∥∥∥bNt − bbN ,∞t

∥∥∥
L−r,q(Rd;Rd)

+
∥∥∥bbN ,∞t − bb

∞,∞
t

∥∥∥
L−r,q(Rd;Rd)

≤ sup
b∈C

∥∥∥bb,Nt − bb,∞t
∥∥∥

L−r,q(Rd;Rd)
+
∥∥∥bbN ,∞t − bb

∞,∞
t

∥∥∥
L−r,q(Rd;Rd)

(2.5.5)
By applying Proposition 2.4.2 to K we can control the first of these by�����sup

b∈C
sup
t∈[0,T ]

∥∥∥bb,Nt − bb,∞t
∥∥∥

L−r,q(Rd;Rd)

����� ≤ CN−γ2 , γ2 = 1
2 + d+2

s′2

. (2.5.6)

Here we have used that bb,∞t = Ebb,Nt for b deterministic, that r > d/q, that K is
bounded and that K ∈ Λ0,s(L∞y (Rd; Lqx(Rd;Rd))) implies

sup
06=(δ1,δ2)∈Rd×Rd

∥∥∥∥∥K(x+ δ1, y + δ2)−K(x, y)
|δ1|2 + |δ2|2

∥∥∥∥∥
L∞y (Rd;Lqx(Rd;Rd))

<∞

and by taking δ1 = 0 and using that Lq embeds continuously into L−r,q, we recover
the assumption of Proposition 2.4.2.
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The second of the terms on the right of Eq. (2.5.5) can be controlled by

∥∥∥bbN ,∞t − bb
∞,∞
t

∥∥∥
L−r,q(Rd;Rd)

≤ C sup
x∈Rd

∫
|K(x, y)||f bNt (y)− f b∞t (y)| dy

≤ C
∥∥∥f bNt − f b∞t ∥∥∥

L1(Rd)
≤ C

∥∥∥f bNt − f b∞t ∥∥∥
L1,1(Rd)

(2.5.7)
where for q = ∞ the first inequality is clear, and for q < ∞ we have used that
〈x〉−rq is integrable on Rd to obtain it.

Step 5.3. Grönwall estimate. Combining (2.5.7) with the previous estimates
(2.5.4),(2.5.5),(2.5.6) yields

∥∥∥f bNt − f b∞t ∥∥∥
L1,1(Rd)

≤ Y + C
∫ t

0

∥∥∥f bNs − f b∞s ∥∥∥
L1,1(Rd)

ds

where Y is a non-negative sub-Gaussian random variable with norm bound �Y � ≤
CN−γ2 . Therefore, applying the Grönwall inequality we have

sup
t∈[0,T ]

∥∥∥f bNt − f b∞t ∥∥∥
L1,1(Rd)

≤ CY,

and as the L1,1 distance controls the Wasserstein distance (this is the second
continuous inclusion in (2.5.1)), we have proved the theorem.

2.5.2 The second order case

We now move onto the second order case. We begin, as before, with estimates
on the time regularity of the interaction field.

In the second order case we expect higher regularity for bN as K is evaluated
at the spatial positions X i,N which are time differentiable. However, we need
additional moments to control the velocities.

Lemma 2.5.3. [Time regularity (second order case)] Let c be the constant in the
claim of Lemma 2.4.4. Then the following hold:

1. Let K(x, y) ∈ Λ0,α(L∞y (Rd; Lqx(Rd))) for some α ∈ (0, 1] and let f0 ∈ P2(Rd×
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Rd). Let EA be the event

EA = {
∥∥∥bN∥∥∥

Λ0,α(Lq([0,T ]×Rd))
> A}.

Then there exists A > 0 such that we have the bound�����1EA
[

sup
t∈[0,T ]

dMKW(µNt , ft)− cdMKW(µN0 , f0)
]

+

����� ≤ CN−1/2,

where C and A depend only on the norm of K.

2. Let K(x, y) = W (x − y) for W ∈ Λ1,α(Lq(Rd;Rd)) for some α ∈ (0, 1/2)
and let f0 ∈ P4(R2d). Let EA be the event

EA = {
∥∥∥bN∥∥∥

Λ1,α(Lq([0,T ]×Rd))
> A}.

Then there exists A > 0 such that we have the bound�����1EA
[

sup
t∈[0,T ]

dMKW(µNt , ft)− cdMKW(µN0 , f0)
]

+

����� ≤ CN−1/2,

where C and A depend only on the norm of K.

The second order energy estimate is:

Lemma 2.5.4 (Weighted energy estimate (second order case)). Let the vector
fields b, b̃ lie in L∞([0, T ] × Rd;Rd) and be continuous in t and C1

b in x, and
f0 ∈ Lp+r,q(Rd × Rd) for some r, p > 0 and q ∈ [2,∞), then

∥∥∥f bt − f b̃t ∥∥∥Lp,2(R2d)
≤ C

∫ t

0

∥∥∥bs − b̃s∥∥∥L−r,q′ (Rd;Rd)
dt,

1
q′

+ 1
q

= 1
2 ,

where C depends only on f0, ‖b‖L∞([0,T ]×Rd;Rd) and
∥∥∥b̃∥∥∥

L∞([0,T ]×Rd;Rd)
.

Proof of Theorem 2.2.2. We model the proof on that of Theorem 2.2.1, and thus
split it into 5 steps. Much of the proof is analogous to that of Theorem 2.2.1.
Therefore we only explain the differences.

Step 1. Mollification of the interaction kernel. This is identical to the
corresponding step in the proof of Theorem 2.2.1. We thus omit it.

109



Step 2. Choice of functional space and exponents. By the assumptions
on f0 we may choose r, r′ such that the following holds:

f0 ∈ Lr+r′,q′(Rd × Rd), r > d/q, r′ > d+ 1.

As in the proof of Theorem 2.2.1 we have the continuous inclusions:

Lr′,2(Rd × Rd) ↪→ L1,1(Rd × Rd) ↪→ (P1(Rd × Rd), dMKW).

Step 3. Regularity of the interaction field. The choice of C depends upon
which of assumptions (1) and (2) is made. More precisely which of the relaxed
assumptions in Remark 2.2.9 is made. In each case:

1. By Lemma 2.5.3(1) we may assume that bN ∈ C where

C = C([0, T ]; C1
b(Rd;Rd)) ∩ {b : ‖b‖Λ0,s(Lq([0,T ]×Rd;Rd)) ≤ A},

for some A < ∞. Note that the metric entropy of C is bounded using
Proposition 2.A.1 as

H(ε, C, ‖·‖L∞([0,T ];L−p′,∞(Rd;Rd))) ≤ Cε−(d+1)/s (2.5.8)

where we have used that q > (d+1)/s and used p > d/q to take p′ ∈ (d/q, p).

2. By Lemma 2.5.3(2) we may assume that bN ∈ C where

C = C([0, T ]; C1
b(Rd;Rd)) ∩ {b : ‖b‖Λ1,(s−1)(Lq([0,T ]×Rd;Rd)) ≤ A},

where we have used that p ≥ 4. The corresponding metric entropy estimate
provided by Proposition 2.A.1 is given again by (2.5.8).(5) for the same
choice of p′ and use of assumptions, but note here s > 1.

Note that Sobolev embedding implies the bound ‖b‖C0,β([0,T ]×Rd;Rd) ≤ CA for
β = min(1, s − (d + 1)/q) for any b ∈ C. Moreover, Sobolev embedding also
implies the bound ‖b‖C([0,T ];C0,α(Rd;Rd)) ≤ CA for b ∈ C and α = s− d/q > 2/3 by
assumption. Therefore, we have sufficient regularity to apply Theorem 2.2.6 in
the next step.
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Step 4. Consistency: The uniform law of large numbers on the parti-
cles. This is identical to the corresponding step in the proof of Theorem 2.2.1,
except we instead apply Theorem 2.2.6 and here

γ1 = 1
2 + max(d+1

s
, d)

(noting that p > 2 by assumption).

Step 5. Stability: Estimates on the limit equation.

Step 5.1. Dependence of f upon the field. This is analogous to step 5 in
the proof of Theorem 2.2.1 using the energy estimate Lemma 2.5.4 and we leave
it to the reader.

Step 5.2. Dependence upon the field upon f . The only differences between
this step and the corresponding step in the proof of Theorem 2.2.1 are that here
bb,∞t is defined by

bb,∞t (x) =
∫
K(x, y)

(∫
f b(y, v) dv

)
dy

and (2.5.7) is replaced by
∥∥∥bbN ,∞t − bb

∞,∞
t

∥∥∥
L−r,q(Rd;Rd)

≤ C sup
x∈Rd

∫
|K(x, y)|

∣∣∣∣∫ f b
N

t (y, v) dv −
∫
f b
∞

t (y, v) dv
∣∣∣∣ dy

≤ C
∥∥∥f bNt − f b∞t ∥∥∥

L1(Rd×Rd)
≤ C

∥∥∥f bNt − f b∞t ∥∥∥
L1,1(Rd×Rd)

.

Lastly, γ2 is here instead given by

γ2 =


1

2+d+1
s2
, if s ≤ 1

1
2+d+1

s

, otherwise.

Step 5.3. Grönwall estimate. This is identical to the proof of Theorem 2.2.1
and we omit it.
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2.5.3 Proof of the time regularity lemmas

For the proof of Lemmas 2.5.1 and 2.5.3 we require the following simple esti-
mate.

Lemma 2.5.5. Let E be an event and K be bounded. Then�����1E
[

sup
t∈[0,T ]

dMKW(µNt , ft)− cdMKW(µN0 , f0)
]

+

����� ≤ CP(E) + CN−1/2, (2.5.9)

where c is chosen as in Lemma 2.4.4.

Proof. We present only the first order case for brevity, the second order case
being analogous. From an identical computation to that used in the proof of
Lemma 2.4.3 and then using Lemma 2.4.4 we deduce that[

sup
t∈[0,T ]

dMKW(µNt , ft)− cdMKW(µN0 , f0)
]

+

≤ sup
t∈[0,T ]

sup
h∈Lip1

(
1
N

N∑
i=1

(h(X i,N
t )− h(X̃ i,N

t ))− E(h(X i,N
t )− h(X̃ i,N

t ))
)

≤ 1
N

N∑
i=1

C

(
1 + sup

t∈[0,T ]
|Bi,N

t |
)

︸ ︷︷ ︸
=:Ai,N

where we have used Lemma 2.4.2 to obtain the final line. Hence the left hand
side of (2.5.9) is bounded by�����1E

1
N

N∑
i=1

Ai,N
����� ≤ ���1EEAi,N

��� +
�����1E

1
N

N∑
i=1

(Ai,N − EAi,N)
�����

≤ (EAi,N)P(E) +
����� 1
N

N∑
i=1

(Ai,N − EAi,N)
�����

≤ CP(E) + C
���A1,N

���N−1/2

where we have used the law of large numbers for sub-Gaussian random variables
(Lemma 2.4.5) on the last line. As A1,N is a sub-Gaussian random variable, the
proof is complete.

We now continue on to the proofs of the time regularity lemmas.
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Proof of Lemma 2.5.1. By using Lemma 2.5.5 it suffices to find A such that

P(
∥∥∥bN∥∥∥

Λ0,α′
para(Lq([0,T ]×Rd;Rd))

> A) ≤ CN−1/2.

By the definition of bN we have the estimate

∥∥∥bN∥∥∥
Λ0,α′
para(Lq([0,T ]×Rd;Rd))

=
∥∥∥∥∥ 1
N

N∑
i=1

K(x,X i,N
t )

∥∥∥∥∥
Λ0,α′
para(Lq([0,T ]×Rd;Rd))

≤ 1
N

N∑
i=1

∥∥∥K(x,X i,N
t )

∥∥∥
Λ0,α′
para(Lq([0,T ]×Rd;Rd))

,

and this is bounded by

‖K‖Λ0,α(L∞y (Rd;Lqx(Rd;Rd)))

(
1 + 1

N

N∑
i=1

∥∥∥X i,N
t

∥∥∥
C0,α′/(2α)([0,T ];Rd)

)

≤ 1
N

N∑
i=1

C
(

1 +
∥∥∥Bi,N

t

∥∥∥
C0,α′/(2α)([0,T ];Rd)

)
︸ ︷︷ ︸

=:Ai,N

where (Ai,N)Ni=1 are i.i.d. random variables with finite second moments (sub-
Gaussian even, see [195]). Set A = 2EA1,N , then from Chebyshev’s inequality we
have

P(
∥∥∥bN∥∥∥

Λ0,α′
para(Lq([0,T ]×Rd;Rd))

> A) ≤ P
(

1
N

N∑
i=1

(Ai,N − EAi,N) > 2EA1,N
)

≤
Var

(
1
N

∑N
i=1A

i,N
)

|EA1,N |2
≤ CN−1,

which completes the proof of the lemma.

To prove the second claim of Lemma 2.5.3 we shall need a simple lemma.

Lemma 2.5.6. Let W ∈ W1,1
loc and g ∈ C1([0, T ];Rd). Then W (x − g(t)) has

weak time derivative given by

∂t[W (x− g(t))] = −g′(t) · (∇W )(x− g(t)).

Proof. Let ϕ ∈ D([0, T ] × Rd) be a test function, and let the pairing of a distri-
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bution in D′([0, T ]× Rd) and a test function in D([0, T ]× Rd) be 〈·, ·〉. Then we
have

〈∂t[W (x− g(t))], ϕ(t, x)〉 = −〈W (x− g(t)), (∂tϕ)(t, x)〉

= −〈W (x), (∂tϕ)(t, x+ g(t))〉

= −〈W (x), ∂t[ϕ(t, x+ g(t))]− g′(t) · (∇ϕ)(t, x+ g(t))〉

= 0 + 〈W (x), g′(t) · (∇[ϕ(t, x+ g(t))]〉

= −〈g′(t) · ∇W (x), ϕ(t, x+ g(t))〉

= −〈g′(t) · (∇W )(x− g(t)), ϕ(t, x)〉

which is the claim of the lemma.

Proof of Lemma 2.5.3. We shall prove each claim in turn. For both claims, by
Lemma 2.5.5 it is sufficient to bound the probability of the bad event.

1. As in the proof of Lemma 2.5.1 we compute
∥∥∥bN∥∥∥Λ0,α(Lq([0,T ]×Rd;Rd))

=
∥∥∥∥∥ 1
N

N∑
i=1

K(·, X i,N
t )

∥∥∥∥∥
Λ0,α(Lq([0,T ]×Rd;Rd))

≤ 1
N

N∑
i=1

∥∥∥K(·, X i,N
t )

∥∥∥
Λ0,α(Lq([0,T ]×Rd;Rd))

≤ ‖K‖Λ0,α(L∞y (Rd;Lqx(Rd;Rd)))

(
1 + 1

N

N∑
i=1

∥∥∥X i,N
t

∥∥∥
C0,1([0,T ];Rd;Rd)

)

≤ 1
N

N∑
i=1

C(1 + sup
t∈[0,T ]

|V i,N
t |)︸ ︷︷ ︸

=:Ai,N

.

Define A = 2EA1,N and E = { 1
N

∑N
i=1A

i,N ≥ A}. Then,

P(E) ≤
Var

(
1
N

∑N
i=1A

i,N
)

|EA1,N |2
≤ CN−1

by Chebyshev’s inequality using that Ai,N are i.i.d. with finite second mo-
ment by Lemma 2.4.1.

114



2. As X i,N is continuously time differentiable, we can apply Lemma 2.5.6 to
obtain

∂tb
N
t (x) = 1

N

N∑
i=1

∂t[K(x,X i,N
t )] = 1

N

N∑
i=1

∂t[W (x−X i,N
t )]

= 1
N

N∑
i=1

V i,N
t · (∇W )(x−X i,N

t ).

Furthermore, the x derivatives satisfy

∇bNt (x) = 1
N

N∑
i=1

(∇W )(x−X i,N
t ),

which is always easier to bound than ∂tbN , so we omit these bounds.

Taking the Lq norm we have

∥∥∥∂tbNt ∥∥∥Lq([0,T ]×Rd;Rd)
≤ C ‖∇W‖Lq(Rd;Rd×d)

1
N

N∑
i=1

sup
s∈[0,T ]

|V i,N
s |,

and similarly,

sup
x,y∈Rd,x 6=y

1
|x− y|α

∥∥∥∂tbN(x+ ·)− ∂tbN(y + ·)
∥∥∥

Lq([0,T ]×Rd;Rd)

≤ C ‖∇W‖Λ0,α(Lq(Rd;Rd))
1
N

N∑
i=1

sup
s∈[0,T ]

|V i,N
s |,

and we can estimate the V i,N terms in the same way as part (1). In the
same way

sup
s,t∈[0,T ],s 6=t

1
|t− s|α

∥∥∥∂tbNt − ∂tbNs ∥∥∥Lq([0,T ]×Rd;Rd)

≤ C ‖∇W‖Λ0,α(Lq(Rd;Rd))

(
1
N

N∑
i=1

sup
s∈[0,T ]

|V i,N
s |

)2

+ C ‖∇W‖Lq(Rd;Rd×d)
1
N

N∑
i=1

∥∥∥V i,N
∥∥∥

C0,α([0,T ];Rd)
.

All of these terms may be controlled using the methods in part (1) and the
proof of Lemma 2.5.1 as α < 1/2. We omit the details.
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2.5.4 Proof of the energy estimates

We now provide the proofs of the two energy estimates.

Proof of Lemma 2.5.2. For brevity, let ft = f bt and f̃t = f b̃t . [We abuse notation
in this proof and use f̃ to refer to the definition in the previous sentence rather
than the law of the reference process.] Let g = f − f̃ , then gt solves


∂tgt +∇ · (btgt)−

1
2∆gt = −∇ · (f̃t(bt − b̃t)), (t, x) ∈ [0, T ]× Rd,

g0 = 0.

We multiply this equation by gt 〈x〉2p and integrate by parts. This yields

d

dt
‖gt 〈x〉p‖2

L2(Rd) −
∫
gtbt · ∇(gt 〈x〉2p) dx+

∫
∇gt · ∇(gt 〈x〉2p) dx

=
∫
f̃t(bt − b̃t) · ∇(gt 〈x〉2p) dx.

We bound the right hand side using Hölder’s inequality by

|RHS| ≤
∥∥∥bt − b̃t∥∥∥L−r,q′ (Rd;Rd)

∥∥∥f̃t∥∥∥Lp+r,q(Rd)

(
‖gt‖Lp,2(Rd) + ‖∇gt‖Lp,2(Rd;Rd)

)
and similarly the second term on the left hand side using instead that the norm
‖b‖L∞([0,T ]×Rd;Rd) is bounded by a constant. Using Young’s inequality, and that
∇ hitting 〈x〉2p produces terms of lower order, we obtain

d

dt
‖gt‖2

Lp,2(Rd) ≤ C ‖gt‖2
Lp,2(Rd) + C

∥∥∥f̃t∥∥∥2

Lp+r,q(Rd)

∥∥∥bt − b̃t∥∥∥2

L−r,q′ (Rd;Rd)
.

Hence, by Grönwall’s inequality, we have

‖gt‖2
Lp,2(Rd) ≤ C

∫ t

0

∥∥∥f̃s∥∥∥2

Lp+r,q(Rd)

∥∥∥bs − b̃s∥∥∥2

L−r,q′ (Rd;Rd)
ds,

which implies that

‖gt‖Lp,2(Rd) ≤ C
∫ t

0

∥∥∥f̃s∥∥∥Lp+r,q(Rd)

∥∥∥bs − b̃s∥∥∥L−r,q′ (Rd;Rd)
ds.
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Thus it suffices to obtain a bound, independent of b̃,
∥∥∥f̃∥∥∥

L∞([0,T ];Lp+r,q(Rd))
≤ C.

This may be done using the equation for f̃t, the assumed Lq moment bound on
f0 and the same technique as above multiplying by |f̃t|q−1 〈x〉q(p+r) instead of
gt 〈x〉2p. We omit the details.

The proof of the weighted energy estimate in the second order case is slightly
different.

Proof of Lemma 2.5.4. As in the proof of Lemma 2.5.2, let ft = f bt , f̃t = f b̃t and
g = f − f̃ . Then g solves

∂tgt + v · ∇xgt − κ∇v · (vgt) + bt · ∇vgt −

1
2∆vgt = −(bt − b̃t) · ∇vf̃t,

for (t, x, v) ∈ [0, T ]× Rd × Rd,

g0 = 0.

By multiplying this equation by gt〈(x, v)〉2p and then integrating by parts, we
obtain the following weighted energy estimate

d

dt
‖gt‖2

Lp,2(R2d) +
∫
v · ∇x(gt〈(x, v)〉2p)gt dxdv + κ

∫
gtv · ∇v(gt〈(x, v)〉2p) dxdv

−
∫
gtbt · ∇v(gt〈(x, v)〉2p) dxdv + 1

2

∫
∇vgt · ∇v(gt〈(x, v)〉2p) dxdv

=
∫
f̃t(bt − b̃t) · ∇v(gt〈(x, v)〉2p) dxdv.

In the similar way as in the proof of Lemma 2.5.2, as ∇x,∇v hitting 〈(x, v)〉2p

give terms of lower order and as bt, b̃t are independent of v, we have

d

dt
‖gt‖2

Lp,2(R2d) + ‖∇vgt‖2
Lp,2(R2d;Rd) ≤ C ‖gt‖2

Lp,2(R2d) +

+ C
∥∥∥bt − b̃t∥∥∥L−r,q′ (Rd;Rd)

∥∥∥f̃t∥∥∥Lp+r,q(R2d)
(‖gt‖Lp,2(R2d) + ‖∇vgt‖Lp,2(R2d;Rd))

By using Young’s inequality and then the Grönwall inequality we obtain, as in
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the proof of Lemma 2.5.2,

‖gt‖Lp,2(R2d) ≤ C
∫ t

0

∥∥∥f̃s∥∥∥Lp+r,q(R2d)

∥∥∥bs − b̃s∥∥∥L−r,q′ (Rd;Rd)
ds.

The claim of the lemma then follows from a bound on supt∈[0,T ]

∥∥∥f̃t∥∥∥Lp+r,q(R2d)
which may be obtained using the assumption that f0 ∈ Lp+r,q(R2d) and similar
energy estimates to the above. We leave this to the reader.

2.6 Counterexample

In this section we will prove Proposition 2.2.2. We begin by introducing a sort-
ing problem, which if the uniform law of large numbers holds over a class C, is
unsolvable.

Problem 2.6.1. Given a class of vector fields C and even N , consider N particles
evolving as (2.2.5) with initial law f0. Tag the first N/2 particles red and the rest
blue. Can we choose a (random) bN ∈ C (depending on N) so that the red and
blue particles are sorted to the right and left respectively, uniformly in N , i.e.

inf
N→∞

E
[

1
N

N∑
i=1

h(XbN ,i,N
t , colour(XbN ,i,N))− Eh(XbN ,i,N

t , colour(XbN ,i,N))
]
> 0

(2.6.1)
where

h(x1, . . . , xd, c) = g(x1)

1 if c = red

−1 if c = blue
(2.6.2)

and g(x) is a smoothed version of the sign function.

A simple argument by contradiction implies the following lemma.

Lemma 2.6.1. If Problem 2.6.1 is solvable for a class of vector fields C, then the
uniform law of large numbers for SDEs cannot hold over this class. In particular,
if Problem 2.6.1 is solvable for C0 given by (2.2.2) then Proposition 2.2.2 is true.

We will now exhibit an explicit vector field b ∈ C0 that solves Problem 2.6.1, thus
proving Proposition 2.2.2. This turns out to be quite simple.
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Firstly, we note that, whatever b ∈ C0 is chosen, the set of times at which any two
particles are in the same position is of measure zero almost surely. This is due
to the absolute continuity with respect to Brownian motion due to Girsanov’s
theorem. Define the function ψε(t) as

ψε(t) =
N/2∏
i=1

N∏
j=N/2+1

ψ

XbN ,i,N
t −XbN ,j,N

t

ε

 (2.6.3)

for ε > 0 arbitrary, and ψ(x) a function that is zero for |x| ≤ 1/2 and 1 for |x| ≥ 1.
Then ψε is adapted, almost surely continuous and zero whenever a red and blue
particle are within ε/2 of each other, and 1 when no such particles are within ε
of each other. Furthermore, it is a simple computation to show that

lim
ε→0

E
∫ T

0
1ψε(t)6=1 dt = T,

no matter what bN ∈ C0 is chosen, although (of course) this limit will not be
uniform in N . Now let ε > 0 be chosen so that the expectation of the above
integral is at least 3T/4.

Let ηε(x) = η(x/ε) where η(x) is a smooth bump function with η(0) = 1 and
η(x) = 0 for |x| ≥ 1/2. Now define bN as

bN(x) = ψε(t)
N/2∑
i=1

ηε(x−XbN ,i,N
t )−

N∑
i=N/2+1

ηε(x−XbN ,i,N
t )

 ,
then bN is adapted, uniformly bounded by 1, smooth in x and continuous in t

almost surely. Moreover, when ψε(t) = 1, bN is equal to 1 on every red particle
and −1 on every blue particle. Therefore, every red particle is pushed by bN at
least the distance

∫ T
0 1ψε=1−1ψε 6=1 dt to the right and similarly every blue particle

to the left. By choice of ε the expectation of this is at least T/2. Hence, the
expectation (2.6.1) is bounded away from zero by a fixed constant independent
of N , completing the proof.
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2.A Metric entropy

In this section we summarise the properties and estimates of metric entropy that
are used in the rest of the chapter. The results henceforth are either well known
or simple corollaries of well known results. The reader is encouraged to consult
[54, 189] for an exposition of metric entropy in the context of functional analysis
and [193] for a more statistical viewpoint (cf. [161]).

Lemma 2.A.1 (Metric entropy of product spaces). Let (X, dX), (Y, dY ) be totally
bounded metric spaces. Define the product metric dX×Y on X × Y , by

dX×Y ((x, y), (x′, y′)) = max(dX(x, x′), dY (y, y′)).

Then it holds that

H(ε,X × Y, dX×Y ) ≤ H(ε,X, dX) +H(ε, Y, dY ).

In particular, if H(ε,X, dX) ≤ Cε−kX and H(ε, Y, dY ) ≤ Cε−kY then we have the
bound H(ε,X × Y, d) ≤ Cε−max(kX ,kY ) for any metric d equivalent to dX×Y .

Proof. Let x1, . . . xn be an ε-net of (X, dX) and y1, . . . , ym be an ε-net of (Y, dY ).
Then {(xi, yj) : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is an ε-net of (X × Y, dX×Y ). The claims
follow.

Lemma 2.A.2 (Metric entropy of finite dimensional spaces). Let K be a compact
set in Rd, and | · | be the Euclidean norm

H(ε,K, | · |) ≤ C log(1/ε).

Proof. It suffices to consider K = [0, 1]d and by Lemma 2.A.1 we need only
consider K = [0, 1]. Then an explicit ε-net is given by {kε : k ∈ N, k ≤ 1/ε}.

Lemma 2.A.3 (Change of metric). Let C be a totally bounded subset of a metric
space (X, d), then it holds that

H(ε, C, dα) ≤ CH(ε1/α, C, d) (2.A.1)
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where dα(x, x′) = |d(x, x′)|α for α ∈ (0, 1]. In particular, if H(ε, C, dα) ≤ Cε−k

then H(ε, C, dα) ≤ Cε−k/α.

Proof. Let (xn)mn=1 be a ε-net with respect to d of C, then (xn)mn=1 is also an εα

net of C with respect to dα. The particular claim follows easily.

The main estimates of metric entropy required for the rest of the chapter are
given in the proposition below.

Proposition 2.A.1 (Metric entropy of smooth functions). Let p > 1, then the
following hold:

1. Lipschitz functions: Let p 6= 2, then the Lipschitz functions on Rd obey:

H(ε,Lip1, ‖·‖L−p,∞(Rd)) ≤ Cε−min(d,d/(p−1)).

2. Hölder functions: For α ∈ (0, 1], the Hölder functions Cα = {f ∈
C0,α(Rd) : ‖f‖C0,α(Rd) ≤ C}, obey the bound:

H(ε, Cα, ‖·‖L−p,∞(Rd)) ≤ Cε−d/α.

3. Parabolic Hölder functions: For α ∈ (0, 1], the parabolic Hölder func-
tions

Cαpara = {f ∈ C0,α
para([0, T ]× Rd) : ‖f‖C0,α

para([0,T ]×Rd) ≤ C},

obey the bound:

H(ε, Cαpara, ‖·‖L∞([0,T ];L−p,∞(Rd))) ≤ Cε−(d+2)/α.

4. Parabolic Lq Hölder functions: Let k ∈ {0, 1, . . . }, α ∈ (0, 1] and
q ∈ [1,∞] with k+ α > (d+ 2)/q. The set of parabolic Lq Hölder functions
Ck,αq,para = {f ∈ Λk,α

para(Lq([0, T ] × Rd)) : ‖f‖Λk,αpara(Lq([0,T ]×Rd)) ≤ C} obeys the
bound:

H(ε, Ck,αq,para, ‖·‖L∞([0,T ];L−p,∞(Rd))) ≤ Cε−(d+2)/(k+α).

for any p > d/q.
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5. Lq Hölder functions: Let k ∈ {0, 1, . . . }, α ∈ (0, 1] and q ∈ [1,∞] with
k + α > (d+ 1)/q. The set of Lq Hölder functions

Ck,αq = {f ∈ Λk,α(Lq([0, T ]× Rd)) : ‖f‖Λk,α(Lq([0,T ]×Rd)) ≤ C},

obeys the bound:

H(ε, Ck,αq , ‖·‖L∞([0,T ];L−p,∞(Rd))) ≤ Cε−(d+1)/(k+α),

for any p > (k + α)− (d+ 1)/q.

In all cases the estimates for vector valued (i.e. in Rn) functions are the same
up to change in constants due to Lemma 2.A.1.

Proof. We prove each in turn.

1. Let h ∈ Lip1 be arbitrary, then we have h(0) = 0 and therefore |h(x)| ≤ |x|.
As a result we have x 7→ h(x) 〈x〉 ∈ C1

b(Rd) with a bound on the C1
b norm

independent of h ∈ Lip1. Let B be the unit ball in C1
b . We deduce that

H(ε,Lip1, ‖·‖L−p,∞(Rd)) ≤ H(ε, B, ‖·‖L−(p−1),∞(Rd)).

The bound then follows from the estimates on entropy numbers in [54] (cf.
[161] for an exposition in terms of metric entropy).

2. This result follows directly from [161, Corollary 3.1].

3. This follows from Lemma 2.A.4 below and the identification (2.A.2),(2.A.2)
with d1 = 1, d2 = d, p =∞, and the parabolic anisotropy p defined below.

4. This follows from Lemma 2.A.4 in the same way as (3).

5. This follows from [161, Theorem 1.1].

We now provide a simple estimate on the metric entropy of weighted spaces of
anisotropic regularity, which was we needed for Proposition 2.A.1(3)-(4). We
make no claim of optimality or originality in this result, which the author has
included because of the inability to find a reference.
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Definition 2.A.1 (Anisotropy). An anisotropy of Rd is tuple a = (a1, . . . , ad) ∈
Rd such that

ai > 0 for each i = 1, . . . , d, and
d∑
i=1

ai = d.

An anisotropy a corresponds to the anisotropic distance | · |a on Rd given by

|x|a = |(x1, . . . , xd)|a =
d∑
i=1
|xi|ai .

Note that for a = (1, . . . , 1) the distance | · |a is equivalent to the usual Euclidean
distance on Rd.

We record in particular that

p := d+ 1
d+ (1/2)(1/2, 1, 1, . . . , 1︸ ︷︷ ︸

d times

) ∈ R1+d

is the parabolic anisotropy. Here the prefactor is to ensure that the sum of the
indices is d+ 1.

Given an anisotropy a and a subset U ⊆ Rd it is possible to define the Besov
space of anisotropic regularity Bs,a

p,q(U) for p, q ∈ (0,∞] and s ∈ R. As we do not
require the full (somewhat lengthy) definition of these spaces we do not provide
them. Instead we refer the reader to [189, §5] for their full definition and for more
details about anisotropies and spaces of anisotropic regularity.

For our purposes it is sufficient to note that

Λk,α
para(Lq([0, T ]× Rd)) = Bp,s

q,q([0, T ]× Rd) (2.A.2)

for any q ∈ [1,∞], non-negative integer k, α ∈ (0, 1] and

s = d+ 1
d+ 2(k + α). (2.A.3)

Lemma 2.A.4. Fix d1, d2 ∈ N, s > 0,∈ [1,∞], r > 0 and an anisotropy a such
that s > d/q and r > d2/q where d = d1 + d2. Define the set C as those functions

123



h ∈ Ba,s
q,q,loc([0, 1]d1 × Rd2) satisfying the estimate

sup
Q
‖h‖Bs,aq,q([0,1]d1×Q) ≤ C ′

for a fixed constant C ′, where the supremum is over unit cubes Q ⊆ Rd2. Then,

H(ε, C, ‖·‖L−r,∞([0,1]d1×Rd2 )) ≤ Cε−d/s.

Proof of Lemma 2.A.4. Fix ε > 0 and let R = R(ε) to be chosen be a constant.
(All constants C will be uniform in ε and R). For n ∈ Zd2 , let Qn be the cube
[0, 1]d1 × (n+ [−1/2, 1/2]d2) and let Q = {Qn : |n| ≤ R}. Define the set E by

E =
∏

Qn∈Q
En

where En is a ε|n|r-net of C|Qn (the restriction of functions in C to Qn). Note that
H(ε|n|r, C|Qn , ‖·‖L∞(Qn)) ≤ C|n|−rd/sε−d/s by [189, theorem 5.30.]. Therefore, En
can be chosen so that log |En| ≤ C|n|−rd/sε−d/s and hence

log |E| ≤ Cε−k
∑

n∈Zd2 ,|n|<R
|n|−rd/s ≤ Cε−d/s

∑
n∈Zd2

|n|−rd/s ≤ Cε−d/s

as rd/s > d2 by assumption, so the sum is finite.

Define the set of functions F , by collecting for each (en)n∈Zd2 ,|n|≤R ∈ E a function
h ∈ C with the property that for each n, ‖h− en‖L∞(Qn) ≤ ε|n|r if such a function
exists. Then log |F | ≤ log |E| ≤ Cε−d/s and we claim that F is a Cε-net of C in the
L−r,∞([0, 1]d1×Rd2). Indeed, suppose that h ∈ C, then for each cube Qn (|n| < R)
we have a function en ∈ En with ‖h− en‖L∞(Qn) ≤ ε|n|r by construction. Then by
construction of F we have g ∈ F with ‖g − en‖L∞(Qn) ≤ ε|n|rε, (such a function
must exist as we could have chosen h in the construction of F ). Therefore,

‖g − h‖L−r,∞(
⋃
Qn∈Q

Qn) ≤ ‖g − e‖L−r,∞(
⋃
Qn∈Q

Qn) + ‖g − e‖L−r,∞(
⋃
Qn∈Q

Qn) ≤ Cε

where e(x) = en(x) for x ∈ Qn. While on {x : |x| > R} we have that |h −
g| 〈x〉−r ≤ 2CR−r as functions in C are uniformly bounded by Sobolev embedding.
By choosing R sufficiently large we may ensure that this is less than ε.
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Chapter 3

Stability and instability in
gradient dynamics - Part I

It is known that for a strictly concave-convex function, the gradi-
ent method introduced by Arrow, Hurwicz and Uzawa [10], has
guaranteed global convergence to its saddle point. Nevertheless,
there are classes of problems where the function considered is not
strictly concave-convex, in which case convergence to a saddle
point is not guaranteed. In the chapter we provide a character-
ization of the asymptotic behaviour of the gradient method, in
the general case where this is applied to a general concave-convex
function. We prove that for any initial conditions the gradient
method is guaranteed to converge to a trajectory described by
an explicit linear ODE. In the following Chapter 4 this study
is extended to the subgradient method, where the dynamics are
constrained in a prescribed convex set.

Acknowledgements
The work in this chapter was done in collaboration with Ioan-
nis Lestas and forms the first part of a two part paper [92] in
preparation.
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3.1 Introduction

Finding the saddle point of a concave-convex function is a problem that is rele-
vant in many applications in engineering and economics and has been addressed
by various communities. It includes, for example, optimization problems that
are reduced to finding the saddle point of a Lagrangian. The gradient method,
first introduced by Arrow, Hurwicz and Uzawa [10] has been widely used in this
context as it leads to decentralized update rules for network optimization prob-
lems. It has therefore been extensively used in areas such as resource allocation
in communication and economic networks (e.g. [97], [110], [183], [61]).

Nevertheless, in broad classes of problems there are features that render the anal-
ysis of the asymptotic behaviour of gradient dynamics nontrivial. In particular,
although for a strictly concave-convex function convergence to a saddle point via
gradient dynamics is ensured, when this strictness is lacking, convergence is not
guaranteed and oscillatory solutions can occur. The existence of such oscillations
has been reported in specific applications [10], [61], [94], [165], however, an ex-
act characterization of those for a general concave-convex function has not been
studied in the literature and is one of the aims of Part I of this work.

Furthermore, when subgradient methods are used to restrict the dynamics in a
convex domain (needed, e.g., in optimization problems), the dynamics become
non-smooth in continuous-time. This increases significantly the complexity in
the analysis as classical Lyapunov and LaSalle type techniques (e.g. [112]) can-
not be applied. This is also reflected in the alternative approach taken for the
convergence proof in [10] for subgradient dynamics applied to a strictly concave-
convex Lagrangian with positivity constraints. Furthermore, an interesting recent
study [38] pointed out that the invariance principle for hybrid automata in [135]
cannot be applied in this context, and gave an alternative proof, by means of
Caratheodory’s invariance principle, to the convergence result in [10] mentioned
above. In general, rigorously proving convergence for the subgradient method,
even in what would naively appear to be simple cases, is a non-trivial problem,
and requires much machinery from non-smooth analysis.

Our aim in this and the following chapter is to carry out a detailed study of the
asymptotic behaviour of continuous-time gradient dynamics in a general setting,
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where the function with respect to which these dynamics are applied is not nec-
essarily strictly concave-convex. Furthermore, we provide a framework of results
that allow one to study the asymptotic behaviour of the subgradient method
(3.3.2) with smooth analysis as opposed to non-smooth analysis.

Our main contributions can be summarized as follows:

• In this chapter, we consider the gradient method applied on a general
concave-convex function in an unconstrained domain, and provide an exact
characterization to the limiting solutions, which can in general be oscilla-
tory. In particular, we show that despite the nonlinearity of the dynamics
the trajectories converge to solutions that satisfy a linear ODE that is ex-
plicitly characterized. Furthermore, we show that when such oscillations
occur, the dynamic behaviour can be problematic, in the sense that arbi-
trarily small stochastic perturbations can lead to an unbounded variance.

• In the following Chapter 4, we consider the subgradient method applied
to a general concave-convex function with the trajectories restricted in a
general convex domain. We show that despite the non-smooth character of
these dynamics, their limiting behaviour is given by the solutions of one of
an explicit family of smooth differential equations. This therefore allows to
remove the complications associated with non-smooth analysis, and prove
convergence in broad classes of problems.

It should be noted that there is a direct link between the results in Part I and Part
II as the smooth dynamics, that are proved to be associated with the asymptotic
behaviour of the subgradient method, are a class of dynamics that can be analysed
with the framework introduced in Part I. Applications of the results in Part I will
therefore be discussed in Part II, as in many cases (e.g. optimization problems
with inequality constraints) a restricted domain for the concave-convex function
needs to be considered.

Finally, we would also like to comment that the methodology used for the deriva-
tions in the two chapters is of independent technical interest. In Part I the
analysis is based on various geometric properties established for the saddle points
of a concave-convex function. In Part II the non-smooth analysis is carried out
by means of some more abstract results on dynamical systems that are applicable
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in this context, while also making use of the notion of a face of a convex set to
characterize the asymptotic behaviour of the dynamics.

This chapter is structured as follows. In Section 3.2 we introduce various defini-
tions and preliminaries that will be used throughout the chapter. In Section 3.3
the problem formulation is given and the main results are presented in Section 3.4,
i.e. characterization of the limiting behaviour of gradient dynamics. This sec-
tion also includes an extension to a class of subgradient dynamics that restrict
the trajectories on affine spaces. This is a technical result that will be used in
Part II to characterize the limiting behaviour of general subgradient dynamics.
The proofs of the results are finally given in Section 3.6.

3.2 Preliminaries

3.2.1 Notation

Real numbers are denoted by R and non-negative real numbers as R+. For vectors
x, y ∈ Rn the inequality x < y holds if the corresponding inequality holds for each
pair of components, d(x, y) is the Euclidean metric and |x| denotes the Euclidean
norm.

The space of k−times continuously differentiable functions is denoted by Ck. For
a sufficiently differentiable function f(x, y) : Rn ×Rm → R we denote the vector
of partial derivatives of f with respect to x as fx, respectively fy. The Hessian
matrices with respect to x and y are denoted fxx and fyy with fxy and fyx denoting
the matrices of mixed partial derivatives in the appropriate arrangement. For a
vector valued function g : Rn → Rm we let gx denote the matrix formed by partial
derivatives of the elements of g.

For a matrix A ∈ Rn×m we denote its kernel and transpose by ker(A) and AT

respectively. If A is in addition symmetric, we write A < 0 if A is negative
definite.
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3.2.1.1 Geometry

For subspaces E ⊆ Rn we denote the orthogonal complement as E⊥, and for a set
of vectors E ⊆ Rn we denote their span as span(E), their affine span as aff(E)
and their convex hull as Conv(E). The addition of a vector v ∈ Rn and a set
E ⊆ Rn is defined as v + E = {v + u : u ∈ E}.

For a set K ⊂ Rn, we denote the interior, relative interior, boundary and closure
of K as intK, relintK, ∂K and K respectively, and we say that K and M

are orthogonal and write K ⊥ M if for any two pairs of points k,k′ ∈ K and
m,m′ ∈M , we have (k′ − k)T (m−m′) = 0.

Given a set E ⊆ Rn and a function φ : E → E we say that φ is an isometry
of (E, d) or simply an isometry, if for all x, y ∈ E we have d(φ(x), φ(y)) =
d(x, y).

For x ∈ R, y ∈ R+ we define [x]+y = x if y > 0 and max(0, x) if y = 0.

3.2.1.2 Convex geometry

When we consider a concave-convex function ϕ(x, y) : Rn × Rm → R (see Def-
inition 3.2.1) we shall denote the pair z = (x, y) ∈ Rn+m in bold, and write
ϕ(z) = ϕ(x, y). The full Hessian matrix will then be denoted ϕzz. Vectors in
Rn+m and matrices acting on them will be denoted in bold font (e.g. A). Saddle
points (see Definition 3.2.2) of ϕ will be denoted z̄ = (x̄, ȳ) ∈ Rn+m.

For a closed convex set K ⊆ Rn and z ∈ Rn, we define the maximal orthogonal
linear manifold to K through z as

MK(z) = z + span({u− u′ : u,u′ ∈ K})⊥ (3.2.1)

and the normal cone to K through z as

NK(z) = {w ∈ Rn : wT (z′ − z) ≤ 0 for all z′ ∈ K}. (3.2.2)

When K is an affine space NK(z) is independent of z ∈ K and is denoted NK .
If K is in addition non-empty, then we define the projection of z onto K as
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PK(z) = argminw∈K d(z,w).

3.2.2 Convex analysis

3.2.2.1 Concave-convex functions and saddle points

Definition 3.2.1 (Concave-convex function). Let K ⊆ Rn+m be non-empty
closed and convex. We say that a function ϕ(x, y) : K → R is concave-convex on K
if for any (x′, y′) ∈ K, ϕ(x, y′) is a concave function of x and ϕ(x′, y) is a convex
function of y. If either the concavity or convexity is always strict, we say that ϕ
is strictly concave-convex on K.

Definition 3.2.2 (Saddle point). For a concave-convex function ϕ : Rn×Rm → R
we say that (x̄, ȳ) ∈ Rn+m is a saddle point of ϕ if for all x ∈ Rn and y ∈ Rm we
have the inequality ϕ(x, ȳ) ≤ ϕ(x̄, ȳ) ≤ ϕ(x̄, y).

If ϕ is in addition C1 then (x̄, ȳ) is a saddle point if and only if ϕx(x̄, ȳ) = 0 and
ϕy(x̄, ȳ) = 0.

3.2.2.2 Dynamical systems

Definition 3.2.3 (Flows and semi-flows). A triple (φ,X, ρ) is a flow (resp. semi-
flow) if (X, ρ) is a metric space, φ is a continuous map from R×X (resp. R+×X)
to X which satisfies the two properties

(i) For all x ∈ X, φ(0, x) = x.

(ii) For all x ∈ X, t, s ∈ R (resp. R+),

φ(t+ s, x) = φ(t, φ(s, x)). (3.2.3)

When there is no confusion over which (semi)-flow is meant, we shall denote
φ(t, x(0)) as x(t). For sets A ⊆ R (resp. R+) and B ⊆ X we define φ(A,B) =
{φ(t, x) : t ∈ A, x ∈ B}.
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Definition 3.2.4 (Global convergence). We say that a (semi)-flow (φ,X, ρ) is
globally convergent, if for all initial conditions x ∈ X, the trajectory φ(t, x) con-
verges to the set of equilibrium points of (φ,X, ρ) as t→∞, i.e.

inf{d(φ(t, x), y) : y an equilibrium point} → 0 as t→∞.

A specific form of incremental stability, which we will refer to as pathwise stability,
will be needed in the analysis that follows.

Definition 3.2.5 (Pathwise stability). We say that a semi-flow (φ,X, ρ) is path-
wise stable1 if for any two trajectories x(t), x′(t) the distance ρ(x(t), x′(t)) is non-
increasing in time.

As the subgradient method has a discontinuous vector field we need the notion
of Carathéodory solutions of differential equations.

Definition 3.2.6 (Carathéodory solution). We say that a trajectory z(t) is a
Carathéodory solution to a differential equation ż = f(z), if z is an absolutely
continuous function of t, and for almost all times t, the derivative ż(t) exists and
is equal to f(z(t)).

3.3 Problem formulation

The main object of study in this work is the gradient method on an arbitrary
concave-convex function in C2.

Definition 3.3.1 (Gradient method). Given ϕ a C2 concave-convex function on
Rn+m, we define the gradient method as the flow on (Rn+m, d) generated by the
differential equation

ẋ = ϕx,

ẏ = −ϕy.
(3.3.1)

1Notions similar to this have been studied before by many different mathematical commu-
nities under different names, such as monotone, contractive or dissipative systems. As these
terms are already used in the control community for different concepts, we shall not use them
to avoid confusion.
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It is clear that the saddle points of ϕ are exactly the equilibrium points of
(3.3.1). In Section 3.A.1 we consider the addition of constant gains to the gradient
method.

In the following Chapter 4 we study instead the subgradient method where the
gradient method (Definition 3.3.1) is restricted to a convex set K by the addition
of a projection term to the differential equation (3.3.1).

Definition 3.3.2 (Subgradient method). Given a non-empty closed convex set
K ⊆ Rn+m and a C2 function ϕ that is concave-convex on K, we define the
subgradient method on K as a semi-flow on (K, d) consisting of Carathéodory
solutions of

ż = f(z)−PNK(z)(f(z)),

f(z) =
[
ϕx −ϕy

]T
.

(3.3.2)

In Section 3.A.1 we consider the addition of constant gains to the subgradient
method. The gradient method is then the subgradient method on Rn+m. The
equilibrium points of the subgradient method on K are exactly the K-restricted
saddle points.

We briefly summarise the contributions of this work in the bullet points be-
low.

• We provide an exact classification of the limiting solutions of the gradient
method (3.3.1) applied to arbitrary concave-convex functions which is not
assumed to be strictly concave-convex. Despite the non-linearity of the
gradient dynamics, we show that these limiting solutions solve an explicit
linear ODE given by derivatives of the concave-convex function at a saddle
point.

• We apply this classification to give exact characterisations of limiting be-
haviour in special cases, for example in Lagrangians originating from opti-
misation problems.

• We show how the lack of convergence of the gradient method can lead to
instability in the presence of noise.

• In the following Chapter 4 we show that the limiting behaviour of the
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subgradient method on arbitrary convex domains is reduced to the limiting
behaviour on affine subspaces. To assist in the analysis of these dynamics,
we extend the exact classification of limiting solutions described in the first
bullet point to the subgradient method on affine subspaces.

The simple form of the gradient method (Definition 3.3.1) and the subgradi-
ent method (Definition 3.3.2) makes them attractive methods for finding saddle
points, and respectively restricted saddle points. This use dates back to Arrow,
Hurwicz and Uzawa [10] who introduced the method.

More recently the localised structure of the system (3.3.1) when applied to net-
work optimization problems has led to a renewed interest [61], [110], [183], [126],
where the (sub)gradient method has been applied to various network resource
allocation problems.

The study of the convergence of the (sub)gradient method was originated by
Arrow, Hurwicz and Uzawa [10], who proved convergence of the gradient method,
under the assumption of strict concave-convexity. However, in the absence of
strict concave-convexity, the dynamics are more complex, and non-convergent
oscillatory behaviour has been observed in some cases (see e.g. [61]).

The study of the subgradient method is much complicated by the discontinuity
of the vector field, which prevents the application of the classical Lyapunov or
LaSalle theorems or other tools of smooth analysis. This problem is the subject
of the following Chapter 4 and we refer the reader to the discussion therein.

3.4 Main Results

This section presents the main results of the chapter. Before stating these we
give some preliminary results.

It was proved in [90] that the gradient method is pathwise stable, which is stated
in the proposition below. For the readers convenience we include a proof in an
appendix.

Proposition 3.4.1. Let ϕ be C2 and concave-convex on Rn+m, then the gradient
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method (3.3.1) is pathwise stable.

Because saddle points are equilibrium points of the gradient method we obtain
the well known result below.

Corollary 3.4.1. Let ϕ be C2 and concave-convex on Rn+m, then the distance
of a solution of (3.3.1) to any saddle point is non-increasing in time.

By an application of LaSalle’s theorem we obtain:

Corollary 3.4.2. Let ϕ be C2 and concave-convex on Rn+m, then the gradient
method (3.3.1) converges to a solution of (3.3.1) which has constant distance from
any saddle point.

Thus classifying the limiting behaviour of the gradient method reduces to the
problem of finding all solutions which lie a constant distance from any saddle
point. In order to facilitate the presentation of the results, for a given concave-
convex function ϕ we define the following sets:

• S̄ will denote the set of saddle points of ϕ.

• S will denote the set of solutions to (3.3.1) that are a constant distance
from any saddle point of ϕ.

Note that if S̄ = S 6= ∅ then Corollary 3.4.2 gives the convergence of the gradient
method to a saddle point.

Our first main result is that solutions of the gradient method converge to solutions
that satisfy an explicit linear ODE.

To present our results we define the following matrices of partial derivatives of ϕ

A(z) =
 0 ϕxy(z)
−ϕyx(z) 0

 , B(z) =
ϕxx(z) 0

0 −ϕyy(z)

 . (3.4.1)

For simplicity of notation we shall state the result for 0 ∈ S̄; the general case
may be obtained by a translation of coordinates. It is common in applications
to consider the gradient method with constant gains (3.A.1), as discussed in
Section 3.A.1, the results stated here may be adapted to this case by a coordinate
transformation.
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Theorem 3.4.1. Let ϕ be C2 and concave-convex on Rn+m. Let 0 ∈ S̄ then
solutions in S solve the linear ODE:

ż(t) = A(0)z(t). (3.4.2)

Furthermore, a solution z(t) to (3.4.2) is in S if and only if for all t ∈ R and
r ∈ [0, 1],

z(t) ∈ ker(B(rz(t))) ∩ ker(A(rz(t))−A(0)) (3.4.3)

where A(z) and B(z) are defined by (3.4.1).

To explain the significance of this result we make the following remarks.

Remark 3.4.1. Despite the non-linearity of the gradient dynamics (3.3.1), the
limiting solutions solve an linear ODE with explicit coefficients depending only
on the derivatives of ϕ at the saddle point.

Remark 3.4.2. The strength of the result is that proving that there are no non-
trivial limiting solutions implies global convergence of the gradient dynamics. In
this way, the problem of showing global convergence reduces to checking for the
existence of these limiting solutions.

Remark 3.4.3. The condition (3.4.3) appears to be very hard to check, as it
requires knowledge of the trajectory for all times t ∈ R. However, in applications
to proving convergence this make the result stronger, as it makes it easier to prove
that trajectories do not satisfy the condition.

Remark 3.4.4 (Localisation). This result uses only local information about the
concave-convex function ϕ, in the sense that if ϕ is only concave-convex on a
convex subset K ⊆ Rn+m which contains 0, then any trajectory z(t) of the gradient
method (3.3.1) that lies a constant distance from any saddle point in K and does
not leave K at any time t will obey the conditions of the theorem.

As a simple illustration of the use of this result we show how to recover the
well known result that the gradient method is globally convergent under the
assumption that ϕ is strictly concave-convex.

Example 3.4.1. Suppose ϕ is strictly concave (the strictly convex case is simi-
lar), then ϕxx is of full rank except at isolated points, and the condition (3.4.3)
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can only hold if x(t) = 0. Then the ODE (3.4.2) implies that y(t) is constant,
and hence (x(t), y(t)) is a saddle point. Thus the only limiting solution of the
gradient method are the saddle points, which establishes global convergence.

From Theorem 3.4.1 we deduce some further results that give a more easily un-
derstandable classification of the limiting solutions of the gradient method for
simpler forms of ϕ.

In particular, the ‘linear’ case occurs when ϕ is a quadratic function, as then
the gradient method (3.3.1) is a linear system of ODEs. In this case S has
a simple explicit form in terms of the Hessian matrix of ϕ at 0 ∈ S̄, and in
general this provides an inclusion as described below, which can be used to prove
global convergence of the gradient method using only local analysis at a saddle
point.

Theorem 3.4.2. Let ϕ be C2, concave-convex on Rn+m and 0 ∈ S̄. Then define

Slinear =span{v∈ker(B) :v is an eigenvector of A} (3.4.4)

where A = A(0) and B = B(0) in (3.4.1). Then S ⊆ Slinear with equality if ϕ is
a quadratic function.

Here we draw an analogy with the recent study [13] on the discrete time gradient
method in the quadratic case. There the gradient method is proved to be semi-
convergent if and only if ker(B) = ker(A + B), i.e. if Slinear ⊆ S̄. Theorem 3.4.2
includes a continuous time version of this statement.

Next we give an illustration of how the presence of oscillatory solutions to the
gradient method can lead to instabilities. Consider the addition of a driving white
noise to the dynamics (3.3.1). This gives the following stochastic differential
equations

dx(t) = ϕxdt+ ΣxdBx(t)

dy(t) = −ϕydt+ ΣydBy(t)
(3.4.5)

where Bx(t), By(t) are independent standard Brownian motions in Rn,Rm re-
spectively, and Σx,Σy are positive definite symmetric matrices in Rn×n,Rm×m

respectively.

Theorem 3.4.3. Let ϕ ∈ C2 be concave-convex on Rn+m. Let 0 ∈ S̄ and S
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contain a bi-infinite line. Consider the noisy dynamics (3.4.5). Then, for any
initial condition, the variance of the solution tends to infinity as t→∞, in that

E|z(t)|2 →∞ as t→∞. (3.4.6)

where E denotes the expectation operator.

The condition that S contains a bi-infinite line is satisfied, for example, as soon as
S is more than a single point if ϕ is a quadratic function, and commonly occurs
in applications, e.g. in the multi-path routing example given in the following
Chapter 4.

One of the main applications of the gradient method is to the dual formulation
of concave optimization problems where some of the constraints are relaxed by
Lagrange multipliers. When all the relaxed constraints are linear, ϕ has the form

ϕ(x, y) = U(x) + yT (Dx+ e) (3.4.7)

where D is a constant matrix and e a constant vector. Under the assumption that
U is analytic we obtain a simple exact characterisation of S. One specific case
of this was studied by the authors previously in [90], but without the analyticity
condition.

Theorem 3.4.4. Let ϕ be defined by (3.4.7) with U analytic and D ∈ Rm×n,
e ∈ Rm constant. Assume that (x̄, ȳ) = z̄ is a saddle point of ϕ. Then S is given
by

S = z̄ + span{(x, y) ∈ W × Rm : (x, y) is an eigenvector of
 0 DT

−D 0

}
W = {x ∈ Rn : s 7→ U(sx+ x̄) is linear for s ∈ R}.

Furthermore W is an affine subspace.

3.4.1 The subgradient method on affine subspaces

We now extend the exact classification (Theorem 3.4.1) to the subgradient method
on affine subspaces. As discussed above, in part II of this work we show that all
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limiting behaviour of the subgradient method on any convex domain is described
by the subgradient on affine subspaces. Let V be an affine subspace of Rn+m

and let Π ∈ R(n+m)2 be the orthogonal projection matrix onto the orthogonal
complement of the normal cone NV . Then the subgradient method (3.3.2) on V
is given by

ż = Πf(z) (3.4.8)

where f(z) =
[
ϕx −ϕy

]T
. We generalise Theorem 3.4.1 for this projected form

of the gradient method. As with the statement of Theorem 3.4.1, we state the
result for 0 being an equilibrium point; the general case may be obtained by a
translation of coordinates.

Theorem 3.4.5. Let Π ∈ R(n+m)2 be an orthogonal projection matrix, ϕ be C2

and concave-convex on Rn+m, and 0 be an equilibrium point of (3.4.8). Then the
trajectories z(t) of (3.4.8) that lie a constant distance from any equilibrium point
of (3.4.8) are exactly the solutions to the linear ODE:

ż(t) = ΠA(0)Πz(t) (3.4.9)

that satisfy, for all t ∈ R and r ∈ [0, 1], the condition

z(t) ∈ ker(ΠB(rz(t))Π) ∩ ker(Π(A(rz(t))−A(0))Π) (3.4.10)

where A(z) and B(z) are defined by (3.4.1).

Remark 3.4.5. As with Theorem 3.4.1, this result can be localised for when ϕ is
not concave-convex on the whole of Rn+m, (see Remark 3.4.4).

3.5 Modification method

The main applications of the (sub)gradient method are to solving constrained
optimisation problems. In these cases the gradient method is not appropriate,
and instead the subgradient method must be employed to ensure the Lagrange
multipliers remain non-negative. For this reason the majority of the examples
will be given in the following Chapter 4 where the subgradient method is studied.
However, as an example for illustration we describe a method of modifying the
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concave-convex function ϕ so that the gradient method converges to a saddle
point.

Such methods are used in network optimisation (see e.g. [10], [61]), where it is
important to preserve the localised structure of the dynamics, which makes the
use of higher order information difficult. Here we consider a method were aux-
iliary variables are used to give convergence. This was used in [90] to achieve
convergence without any additional information transfer. Here we present a nat-
ural generalisation to any concave-convex function ϕ. In Section 3.5.1 we give an
example of how this method can be applied in distributed optimisation problem
to yield guaranteed convergence without requiring additional information trans-
fer.

In the subsequent Chapter 4 we extend this method to the subgradient method
and apply it to the explicit example of multi-path routing over a communication
network.

We define the modified concave-convex function ϕ′ as,

ϕ′(x′, x, y) = ϕ(x, y) + ψ(Mx− x′)

ψ : Rn′ → R,M ∈ Rn′×n is a constant matrix

ψ ∈ C2 is strictly concave with max ψ(0) = 0

(3.5.1)

where x′ is a set of n′ auxiliary variables. It is easy to see that under this condition
ϕ′ is concave-convex in ((x′, x), y). We will denote the versions of the sets defined
below Corollary 3.4.2 for ϕ′ with a prime, e.g. S̄ ′ is the set of saddles points of
ϕ′.

There is an equivalence between saddle points of ϕ and ϕ′. If (x, y) ∈ S̄ then a
simple computation shows that (Mx, x, y) ∈ S̄ ′. Conversely if (x′, x, y) ∈ S̄ ′ then
we must have Mx = x′ and (x, y) ∈ S̄. In this way searching for a saddle point
of ϕ may be done by searching for a saddle point (x′, x, y) of ϕ′ and discarding
the extra x′ variables.

The condition we require on the matrix M is given in the statement of the result
below, and the reason for this assumption is evident in the proof. We do remark
however, that taking n′ = n andM as the n×n identity matrix will always satisfy

139



the given condition, and can also preserve the locality of the gradient method as
described in Section 3.5.1 below.

We remark that by the duality of the gradient method between the parameters
x and y we could have instead (or as well as) added auxiliary variables y′ and
obtained the same results.

We establish that under conditions on the matrix M , this modification method
gives global convergence of the subgradient method (3.3.2) on any affine sub-
space, and thus also the gradient method (3.3.1). The proof of this proposition
is provided in Section 3.7 in a slightly more general case.

Proposition 3.5.1. Let ϕ be C2 and concave-convex on Rn+m. Let ϕ′ satisfy
(3.5.1) and M ∈ Rn′×n be such that ker(M)∩ ker(ϕxx(z̄)) = {0} for some equilib-
rium point z̄ of the subgradient method on V . Then the gradient method (3.3.2)
applied to ϕ′ is globally convergent.

3.5.1 Distributed optimisation problem

Consider the optimisation problem

max
x∈Rn,Ax=Y

L∑
l=1

Ul(x) (3.5.2)

where Ul are (in general non-strictly) concave functions that each depend only
upon some subset Il ⊆ {1, . . . , n} of the components of x ∈ Rn. Functions that
are given by a sum of this kind arise in various kinds of distributed optimisation
problems, for example in communication networks. The optimisation problem
(3.5.2) has the associated Lagrangian

ϕ(x, y) =
n∑
i=l

Ul(x) + yT (Y − Ax) (3.5.3)
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where y ∈ Rm are Lagrange multipliers. The resulting gradient dynamics (3.3.1)
are given by

ẋi =
∑

l∈{1,...,L},
i∈Il

∂Ul
∂xj
−

m∑
j=1

Ajiyj,

ẏ = Ax− Y.

(3.5.4)

These dynamics are localised in the sense that to update xi the only components of
x that are needed are those xj with i, j ∈ Il for some l. Similarly, the components
of y may also be localised depending upon the structure of the matrix A.

Because the Lagrangian ϕ is not strictly concave-convex, the gradient dynamics
(3.5.4) are not guaranteed to converge to a saddle point. For this reason we
consider the modified function ϕ′ defined by (3.5.1). This results in the dynam-
ics

ẋi =
∑

l∈{1,...,L},
i∈Il

∂Ul
∂xj
−

m∑
j=1

Ajiyj +
n′∑
k=1

Mki
∂ψ

∂uk
(Mx− x′),

ẋ′k = ∂ψ

∂uk
(Mx− x′),

ẏ = Ax− Y.

If the function ψ and matrix M are chosen appropriately these dynamics are still
localised. For example, if we take ψ(u) = −|u|2 andM the n by n identity matrix,
then each component x′k is associated with the corresponding component xk and
the pair (xk, x′k) require no additional information to be updated compared to
the original dynamics (3.5.4).

3.6 Proofs of the main results

In this section we prove the main results of the chapter which are stated in
Section 3.4.
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3.6.1 Outline of the proofs

We first give a brief outline of the derivations of the results to improve the read-
ability. Before we give this summary we need to define some additional nota-
tion.

Given z̄ ∈ S̄, we denote the set of solutions to the gradient method (3.3.1) that
are a constant distance from z̄, (but not necessarily other saddle points), as Sz̄.
It is later proved that Sz̄ = S but until then the distinction is important.

3.6.1.1 Gradient method

Subsections 3.6.2 and 3.6.3 provide the proofs of Theorems 3.4.1-3.4.4 and The-
orem 3.4.5.

First in Section 3.6.2 we use the pathwise stability of the gradient method (Propo-
sition 3.4.1) and geometric arguments to establish convexity properties of S.
Lemma 3.6.1 and Lemma 3.6.2 tell us that S̄ is convex and can only contain bi-
infinite lines in degenerate cases. Lemma 3.6.3 gives an orthogonality condition
between S and S̄ which roughly says that the larger S̄ is, the smaller S is. These
allow us to prove the key result of the section, Lemma 3.6.5, which states that
any convex combination of z̄ ∈ S̄ and z(t) ∈ Sz̄ lies in Sz̄.

In Section 3.6.3 we use the geometric results of Section 3.6.2 to prove Theorems
3.4.1-3.4.4. We split the Hessian matrix of ϕ into symmetric and skew-symmetric
parts, which allows us to express the gradients ϕx, ϕy in terms of line integrals
from an (arbitrary) saddle point 0. This line integral formulation together with
Lemma 3.6.5 allow us to prove Theorem 3.4.1, from which Theorem 3.4.2 is then
deduced.

To prove Theorem 3.4.3 we first prove a lemma Lemma 3.6.7 (analogous to
Lemma 3.6.2) that tells us that S containing a bi-infinite line implies the presence
of a quantity conserved by all solutions of the gradient dynamics (3.3.1). In the
presence of noise, the variance of this quantity converges to infinity and allows
us to prove Theorem 3.4.3.

To prove Theorem 3.4.4 we construct a quantity V (z) that is conserved by solu-
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tions in S. In the case considered this has a natural interpretation in terms of
the utility function U(x) and the constraints g(x).

Finally Theorem 3.4.5 is proved by modifying the above proof to take into account
the addition of the projection matrix.

3.6.2 Geometry of S̄ and S

In this section we will use the gradient method to derive geometric properties of
convex-concave functions. We will start with some simple results which are then
used as a basis to derive Lemma 3.6.5 the main result of this section. On the way
we illustrate how the gradient method can be used to prove results (Lemma 3.6.1
and Lemma 3.6.2) on the geometry of concave-convex functions.

Lemma 3.6.1. Let ϕ ∈ C2 be concave-convex on Rn+m, then S̄, the set of saddle
point of ϕ, is closed and convex.

Proof. Closure follows from continuity of the derivatives of ϕ. For convexity let
ā, b̄ ∈ S̄ and c lie on the line between them. Consider the two closed balls about
ā and b̄ that meet at the single point c, as in Fig. 3.1. By Proposition 3.4.1, c
is an equilibrium point as the motion of the gradient method starting from c is
constrained to stay within both balls. It is hence a saddle point.

ā
b̄c

Figure 3.1: ā and b̄ are two saddle points of ϕ which is C2 and concave-convex on
Rn+m. By Proposition 3.4.1 any solution of (3.3.1) starting from c is constrained
for all positive times to lie in each of the balls about ā and b̄.

Lemma 3.6.2. Let ϕ be C2 and concave-convex on Rn+m. Let the set of saddle
points of ϕ contain the infinite line L = {a + sb : s ∈ R} for some a,b ∈ Rn+m.
Then ϕ is translation invariant in the direction of L, i.e. ϕ(z) = ϕ(z + sb) for
any s ∈ R.
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z

ā b̄
L

Figure 3.2: ā and b̄ are two saddle points of ϕ which is C2 and concave-convex
on Rn+m. Solutions of (3.3.1) are constrained to lie in the shaded region for all
positive time by Proposition 3.4.1.

L

z

z + sb

Figure 3.3: L is a line of saddle points of ϕ which is C2 and concave-convex on
Rn+m. Solutions of (3.3.1) starting on hyperplanes normal to L are constrained
to lie on these planes for all time. z lies on one normal hyperplane, and z+sb lies
on another. Considering the solutions of (3.3.1) starting from each we see that
by Proposition 3.4.1 the distance between these two solutions must be constant
and equal to |sb|.

Proof. We do this in two steps. First we will prove that the motion of the gradient
method is restricted to linear manifolds normal to L. Let z be a point and consider
the motion of the gradient method starting from z. As illustrated in Fig. 3.2 we
pick two saddle points ā, b̄ on L, then by Proposition 3.4.1 the motion starting
from z is constrained to lie in the (shaded) region, which is the intersection
of the two closed balls about ā and b̄ which have z on their boundaries. The
intersection of the regions generated by taking a sequence of pairs of saddle points
off to infinity is contained in the linear manifold normal to L.

Next we claim that for s ∈ R the motion starting from z+sb is exactly the motion
starting from z shifted by sb. As illustrated in Fig. 3.3, by Proposition 3.4.1 the
motion from z + sb must stay a constant distance s|b| from the motion from z.
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This uniquely identifies the motion from z + sb and proves the claim. Finally we
deduce the full result by noting that the second claim implies that ϕ is defined
up to an additive constant on each linear manifold as the motion of the gradient
method contains all the information about the derivatives of ϕ. As ϕ is constant
on L, the proof is complete.

We now use these techniques to prove orthogonality results about solutions in
S.

Lemma 3.6.3. Let ϕ ∈ C2 be concave-convex on Rn+m, and z be a trajectory in
S, then z(t) ∈MS̄(z(0)) for all t ∈ R.

Proof. If S̄ = {z̄} or ∅ the claim is trivial. Otherwise we let ā 6= b̄ ∈ S̄ be
arbitrary, and consider the spheres about ā and b̄ that touch z(t). By Proposi-
tion 3.4.1, z(t) is constrained to lie on the intersection of these two spheres which
lies inside ML(z(0)) where L is the line segment between ā and b̄. As ā and b̄
were arbitrary this proves the lemma.

Lemma 3.6.4. Let ϕ be C2 and concave-convex on Rn+m, z̄ ∈ S̄ and z(t) ∈ Sz̄

lie in MS̄(z(0)) for all t. Then z(t) ∈ S.

Proof. If S̄ = {z̄} the claim is trivial. Let ā ∈ S̄ \ {z̄} be arbitrary. Then
by Lemma 3.6.1 the line segment L between ā and z̄ lies in S̄. Let b be the
intersection of the extension of L to infinity in both directions and MS̄(z(0)).
Then the definition of MS̄(z(0)) tells us that the extension of L meets MS̄(z(0))
at a right angle. d(b, z̄) is constant and d(z(t), z̄) as z(t) ∈ S, which implies that
d(z(t), ā) is also constant (as illustrated in Fig. 3.4). Indeed, we have

d(z(t), ā)2 = d(z(t),b)2 + d(b, ā)2

= d(z(t), z̄)2 − d(b, z̄)2 + d(b, ā)2
(3.6.1)

and all the terms on the right hand side are constant.

Using these orthogonality results we prove the key result of the section, a con-
vexity result between Sz̄ and z̄.
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b ā z̄L

z
MS̄(z)

Figure 3.4: ā and z̄ are saddle points of ϕ which is C2 and concave-convex on
Rn+m, and L is the line segment between them. z is a point on a solution in
Sz̄ which lies on MS̄(z) which is orthogonal to L by definition. b is the point of
intersection between MS̄(z) and the extension of L.

Lemma 3.6.5. Let ϕ be C2 and concave-convex on Rn+m, z̄ ∈ S̄ and z(t) ∈ Sz̄.
Then for any s ∈ [0, 1], the convex combination z′(t) = (1 − s)z̄ + sz(t) lies in
Sz̄. If in addition z ∈ S, then z′(t) ∈ S.

Proof. Clearly z′ is a constant distance from z̄. We must show that z′(t) is also a
solution to (3.3.1). We argue in a similar way to Fig. 3.3 but with spheres instead
of planes. Let the solution to (3.3.1) starting at z′(0) be denoted z′′(t). We must
show this is equal to z′(t). As z(t) ∈ S it lies on a sphere about z̄, say of radius
r, and by construction z′(0) lies on a smaller sphere about z̄ of radius rs. By
Proposition 3.4.1, d(z(t), z′′(t)) and d(z′′(t), z̄) are non-increasing, so that z′′(t)
must be within rs of z̄ and within r(1− s) of z(t). The only such point is z′(t) =
(1−s)z̄+sz(t) which proves the claim. For the additional statement, we consider
another saddle point ā ∈ S̄ and let L be the line segment connecting ā and z̄.
By Lemma 3.6.3, z(t) lies in MS̄(z(0)), so by construction, z′(t) ∈MS̄(z′(0)), (as
illustrated by Fig. 3.5). Hence, by Lemma 3.6.4, z′(t) ∈ S.

Proposition 3.6.1 is a further convexity result that can be proved by means of
similar methods, using Lemma 3.6.6 which is proved in the next section using
analytic techniques.

Lemma 3.6.6. Let ϕ be C2 and concave-convex on Rn+m. Let z(t), z′(t) ∈ S.
Then d(z(t), z′(t)) is constant.

Proposition 3.6.1. Let ϕ be C2 and concave-convex on Rn+m, then S is convex.
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z̄

z z′

MS̄(z) MS̄(z′)

Figure 3.5: z̄ is a saddle point of ϕ which is C2 and concave-convex on Rn+m. z
is a point on a solution in S and z′ is a convex combination of z and z̄. MS̄(z)
and MS̄(z′) are parallel to each other by definition.

Proof. The proof is very similar to that of Lemma 3.6.5. Let z(t), z′(t) ∈ S,
and s ∈ (0, 1). Set w(t) = sz(t) + (1 − s)z′(t). By Lemma 3.6.6 we know that
d = d(z(t), z′(t)) is constant. Denote the solution of the gradient method starting
from w(0) as w′(t). We must prove that w′(t) = w(t) and that w(t) ∈ S. First
we imagine two closed balls centered on z(t) and z′(t) and of radii sd and (1−s)d
respectively. By Proposition 3.4.1, w′(t) is constrained to lie within both of these
balls. For each t there is only one such point and it is exactly w(t). Next we
let ā ∈ S̄ be arbitrary, then d(ā,w(t)) is determined by d(z(t), z′(t)), d(ā, z) and
d(ā, z′(t)), (as illustrated by Fig. 3.6). Indeed, we may assume by translation
that ā = 0, and then

d(ā,w(t))2 = d(0, z(t) + (1− s)z′(t))2

= s2d(0, z(t))2 +(1−s)2d(0, z′(t))2 −2s(1−s)zT (t)z′(t)
(3.6.2)

The first two terms in (3.6.2) are constant by Lemma 3.6.6 and the third can be
computed as

2zT (t)z′(t) = d(z(t), z′(t))2 − d(0, z(t))2 − d(0, z′(t))2 (3.6.3)

which is constant for the same reason.
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ā

z
z′

w

Figure 3.6: z and z′ are two elements of S and w is a convex combination of
them. ā is a saddle point in S̄. We know all the distances are constant except
possibly d(w, ā), but this is uniquely determined by the other four distances.

3.6.3 Classification of S

We will now proceed with a full classification of S and prove Theorems 3.4.1-
3.4.4. For notational convenience we will make the assumption (without loss of
generality) that 0 ∈ S̄. Then we compute ϕx(z), ϕy(z) from line integrals from 0
to z. Indeed, letting ẑ be a unit vector parallel to z, we have ϕx(z)

−ϕy(z)

 =
∫ |z|

0

 ϕxx(sẑ) ϕxy(sẑ)
−ϕyx(sẑ) −ϕyy(sẑ)

 ds
 ẑ. (3.6.4)

Together with the definition of the matrices A(z) and B(z) given by (3.4.1) we
obtain  ϕx(z)

−ϕy(z)

 =
∫ |z|

0
(A(sẑ) + B(sẑ))ẑ ds. (3.6.5)

We are now ready to prove the first main result.

Proof of Theorem 3.4.1. Define the set X as solutions of the ODE (3.4.2) which
obey the condition (3.4.3) for all t ∈ R and r ∈ [0, 1]. Then Theorem 3.4.1 is the
statement that X = S. For brevity we define the matrix B′(z) by

B′(z) = B(z) + (A(z)−A(0)). (3.6.6)

As A(z) is skew symmetric and B(z) is symmetric we have

ker(B′(z)) = ker(B(z)) ∩ ker(A(z)−A(0)),
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so that condition (3.4.3) is equivalent to

z(t) ∈ ker(B′(rz(t))) for all t ∈ R, r ∈ [0, 1]. (3.6.7)

We will prove that X ⊆ S0, X ⊆ S and S0 ⊆ X . As the other inclusion S ⊆ S0

is clear this will prove the theorem.

Step 1: X ⊆ S0. For any non-zero point z we can compute the partial derivatives
of ϕ at z using the line integral formula (3.6.5) and (3.6.6),

 ϕx(z)
−ϕy(z)

 = A(0)z +
∫ |z|

0
B′(sẑ)ẑds (3.6.8)

where z = |z|ẑ. If z(t) ∈ X , then ż(t) = A(0)z(t), and by skew-symmetry of
A(0), |z(t)| is constant, which means that z(t) is a constant distance from 0.
Furthermore, the assumption that z(t) ∈ ker(B′(rz(t))) for r ∈ [0, 1] implies that
the integrand in (3.6.8) vanishes, and z(t) is a solution of the gradient method.

Step 2: X ⊆ S. Let z̄ be arbitrary. Consider the function t 7→ d(z(t), z̄)2.
By expanding in the orthonormal basis of eigenvectors of A(0) we observe that
this function is a linear combination of continuous periodic functions. As, by
Proposition 3.4.1, this function is also non-increasing, it must be constant.

Step 3: S0 ⊆ X . Let z(t) ∈ S0 and R = |z(t)| which is constant. For r ∈ [0, R],
define z(t; r) = (r/R)z(t), so that z(t; 0) = 0 and z(t;R) = z(t). Note that the
corresponding unit vector ẑ(t; r) = ẑ(t) does not depend on r. The convexity
result Lemma 3.6.5 implies that z(t; r) ∈ S0, and is a solution of the gradient
method. We shall compute the time derivative of this in two ways. First, we use
(3.3.1) and (3.6.8) to obtain,

ż(t; r) = A(0)z(t; r) +
∫ r

0
B′(sẑ(t))ẑ(t) ds. (3.6.9)

Second, we use the explicit definition of z(t; r) in terms of z(t) to obtain,

ż(t; r) = r

R
A(0)z(t) + r

R

∫ R

0
B′(sẑ(t))ẑ(t) ds. (3.6.10)
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Equating (3.6.9) and (3.6.10) we deduce that

∫ r

0
B′(sẑ(t))ẑ(t) ds = r

R

∫ R

0
B′(sẑ(t))ẑ(t) ds. (3.6.11)

Differentiating with respect to r we have,

B′(rẑ(t))ẑ(t) = 1
R

∫ R

0
B′(sẑ(t))ẑ(t) ds. (3.6.12)

The right hand side of this is independent of r, which implies that the left hand
side is also independent of r, and is thus equal to its value at r = 0, so that

B′(rẑ(t))ẑ(t) = B′(0)ẑ(t) = B(0)ẑ(t). (3.6.13)

Putting this back into our expression for ż we find that

ż(t) = A(0)z(t) + B(0)z(t), (3.6.14)

but as |z(t)| is constant, A(0) skew symmetric, and B(0) symmetric, B(0)z(t)
must vanish, which, together with (3.6.13) shows that z(t) ∈ X .

Corollary 3.6.1. Let ϕ be C2 and concave-convex on Rn+m and there be a saddle
point z̄ which is locally asymptotically stable. Then S = S̄ = {z̄}.

Proof. By local asymptotic stability of z̄, S∩B = {z̄} for some open ball B about
z̄. Then by Proposition 3.6.1, S is convex, and we deduce that S = {z̄}.

The proof of Lemma 3.6.6 is now very simple.

Proof of Lemma 3.6.6. Using Theorem 3.4.1 we have that

z(t)− z′(t) = etA(0)(z(0)− z′(0))

which has constant magnitude as A(0) is skew symmetric.

To prove Theorem 3.4.3 we require the following lemma which shows the existence
of a conserved quantity of the gradient dynamics.
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Lemma 3.6.7. Let ϕ be C2 and concave-convex on Rn+m. Suppose that S con-
tains a bi-infinite line L = {a + sv : s ∈ R}. Assume that 0 ∈ S̄. Then
W (t; z) = |(etA(0)v)Tz|2 is a conserved quantity for any solution z of (3.3.1).

Proof. As S is closed and convex (Proposition 3.6.1) we may assume that the line
passes though the origin and take a = 0. Let v(t) = etA(0)v and note that λv(t)
is a solution to the gradient method (3.3.1) by Theorem 3.4.1 for any λ ∈ R. We
follow the strategy of the first part of the proof of Lemma 3.6.2 with −λv(t), λv(t)
replacing the saddle points ā,b̄. Indeed, let z(t) be any solution to (3.3.1) and let
λ′ = vTz(0). Then for any t ≥ 0, Proposition 3.4.1 implies that z(t) must satisfy

d(±λv(t), z(t)) ≤ d(±λv(0), z(0)), (3.6.15)

where by ± we mean that the equation holds for each of + and −. In the same
way as in the proof of Lemma 3.6.2, taking the intersection of these balls for a
sequence λ→∞ we deduce that z(t) is contained in the linear manifold normal
to the line through the origin and v(t), and passing through λ′v(t). Indeed, by
squaring (3.6.15) and expanding we obtain

|z(t)|2 ∓ 2λv(t)Tz(t) ≤ |z(0)|2 ∓ 2λv(0)Tz(0).

By dividing through by λ and taking the limit λ→∞ we deduce that v(t)Tz(t)
is equal to v(0)Tz(0) which implies that W (t; z) is conserved.

Proof of Theorem 3.4.3. Consider the conserved quantity W (t; z) that was given
by Lemma 3.6.7. Applying Itō’s lemma and taking expectations, we have

d

dt
EW (t; z(t)) = EẆ (t; z(t)) + 1

2ETr(ΣTWzzΣ)

where Σ = diag(Σx,Σy), Ẇ is the total derivative along the deterministic flow
(3.3.1) and Tr is the trace operator. As W is conserved along the deterministic
flow, Ẇ = 0 and a simple computation shows that the second term is independent
of z and bounded below by a strictly positive constant. Therefore EW (t; z(t))
grows at least linearly in time. It remains to note that W (t; z) ≤ |etA(0)v|2|z|2 ≤
|v|2|z|2, so that |z(t)| ≥ cW (t; z(t)) for a constant c > 0. This implies that also
E|z(t)|2 →∞ and completes the proof of the proposition.
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The convexity of S allow us to deduce that the average position of any limiting
trajectory is a saddle point.

Corollary 3.6.2. Let ϕ be C2 and concave-convex on Rn+m and z(t) ∈ S, then
the average position of z(t) defined by

lim
T→∞

1
T

∫ T

0
z(t) dt (3.6.16)

exists and lies inside S̄.

Proof. That the limit exists follows from expanding z(t) = etA(0)z(0) into eigen-
modes and noting that, as A(0) is skew symmetric, each individual limit exists.

To prove that the limit is in S̄ we consider, for T > 0, the function z(t;T ) =
1
T

∫ T
0 z(t+ s) ds. This is a linear combination of the functions t 7→ z(t+ s) which

are in S, so by the convexity result Lemma 3.6.6, it also lies in S. As T → ∞
this tends to a constant independent of t, which by closure of S also lies in S.
But it is a constant, so it is also in S̄.

To prove Theorem 3.4.2 and Theorem 3.4.4 we require the lemma below (this can
be proved in the same way as a similar result in [90]).

Lemma 3.6.8. Let X be a linear subspace of Rn and A ∈ Rn×n a normal matrix.
Let

Y = span{v ∈ X : v is an eigenvector of A}. (3.6.17)

Then Y is the largest subset of X that is invariant under A.

We note that invariance of a subspace under A is equivalent to invariance of the
subspace under the group etA.

Proof of Theorem 3.4.2. Step 1: Slinear ⊆ S when ϕ is a quadratic function.
We will use the characterisation of S given by Theorem 3.4.1. By Lemma 3.6.8,
Slinear is invariant under etA(0), so that z(0) ∈ Slinear =⇒ z(t) = etA(0)z(0) ∈
Slinear. Hence if z(0) ∈ Slinear then z(t) ∈ ker(B′(0)) for all time t, and as ϕ is a
quadratic function, B′(z) is constant, so this is enough to show Slinear ⊆ S.

Step 2: S ⊆ Slinear. Let z(t) ∈ S, then by Theorem 3.4.1 taking r = 0 we have
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z(t) = etA(0) ∈ ker(B′(0)) for all t ∈ R. Thus S lies inside the largest subset
of ker(B′(0)) that is invariant under the action of the group etA(0), which by
Lemma 3.6.8 is exactly Slinear.

In order to prove Theorem 3.4.4 we give a different interpretation of the condition
in Theorem 3.4.1. The condition z ∈ ker(B(sz)) for all s ∈ [0, 1] looks like a line
integral condition. Indeed, if we define a function V (z) by

V (z) = zT
(∫ 1

0

∫ 1

0
B(ss′z)s ds′ ds

)
z (3.6.18)

then as B(z) is symmetric negative semi-definite we have that V (z) = 0 if
and only if z ∈ ker(B(sz)) for every s ∈ [0, 1]. This still leaves the condition
z ∈ ker(A(sz)−A(0)) for all s ∈ [0, 1], and the function V has no natural inter-
pretation in general. However in the specific case where ϕ is the Lagrangian of
a concave optimization problem where the relaxed constraints are linear, we do
have an interpretation. In this case the assumption that 0 is a saddle point is no
longer generic and we must translate coordinates explicitly. Let the Lagrangian
of the optimization problem be given by

ϕ(x′, y′) = U ′(x′) + y′
T
g′(x′)

U ′ ∈ C2 and concave, g′ linear with g′x = D.
(3.6.19)

We pick a saddle point (x̄′, ȳ′), and shift to new coordinates (x, y) = (x′−x̄′, y′−ȳ′)
so that (0, 0) is a saddle point in the new coordinates. After expanding we obtain

ϕ(x, y) = (U ′(x+ x̄′) + ȳ′Tg′(x+ x̄′)) + yTg′(x+ x̄′) (3.6.20)

which is a Lagrangian originating from the utility function

U(x) = U ′(x+ x̄′) + ȳ′Tg′(x+ x̄′) (3.6.21)

and constraints g(x) = g′(x + x̄′). Without loss of generality we assume that
U(0) = 0. As g(x) is a linear function we have

B(z) =
Uxx(x) 0

0 0

 (3.6.22)
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so that V (z) is independent of y, and in fact by direct computation we have
V (z) = U(x). This leads us to the following lemma.

Lemma 3.6.9. Let (3.6.19) hold. Then S is the largest subset of U−1({0})×Rm =
{(x, y) ∈ Rn+m : U(x) = 0} that is invariant under evolution by the group etA(0),
where U is given by (3.6.21).

Proof. Denote the set defined in the lemma as Y .

Step 1: S ⊆ Y. By the computation above we know that z ∈ U−1({0})×Rn+m

if and only if z ∈ ker(B(sz)) for all s ∈ [0, 1]. Thus by Theorem 3.4.1, we have
S ⊆ U−1({0})× Rm and as S is invariant under the action of etA(0).

Step 2: Y ⊆ S. If z(0) is in the largest subset of U−1({0})×Rm invariant under
the action of etA(0), then z(t) is in this set for all t ∈ R. Defining z(t) = etA(0)z(0),
we have z(t) ∈ ker(B(sz(t))) for all s ∈ [0, 1], so z(t) ∈ S by Theorem 3.4.1.

To obtain a more exact expression for S, we make use of the assumption that U
is analytic.

Lemma 3.6.10. Let (3.6.19) hold and in addition U given by (3.6.21) be analytic.
Then the following hold:

(i) U−1({0}) = span(U−1({0})).

(ii) S = {etA(0)z(0) : z(0) ∈ Q} where

Q = span
{

(x, y) ∈ U−1({0})×Rm : (x, y) is an eigenvector of
 0 DT

−D 0

}

Proof. We begin with (i). Recall we have assumed without loss of generality that
U(0) = 0. As U−1({0}) is the set of maxima of a concave function, it is convex. If
U−1({0}) is the single point 0, then (i) is trivial. Otherwise let L be a line segment
(of strictly positive length) in U−1({0}), and let L̂ be the bi-infinite extension of
L. Let f be a linear bijection from R to L̂, and let I ⊂ R be the interval in R
given by f−1(L). Then U(f(t)) : R→ R is an analytic function whose restriction
to I vanishes. Hence U(f(t)) vanishes everywhere on R, which is equivalent to U
vanishing on L̂. By varying the choice of L, we deduce that U−1({0}) contains
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infinite lines in every direction in span(U−1({0})) and by convexity is equal to
span(U−1({0})).

(ii) is a consequence of Lemma 3.6.9 and Lemma 3.6.8.

Lastly, we translate back into the original coordinates.

Lemma 3.6.11. Let (3.6.19) hold and U ′ be analytic, then

U−1({0}) = {x ∈ Rn : R 3 s 7→ U ′(sx+ x̄′) is linear}

where U is given by (3.6.21).

Proof. Suppose that x ∈ U−1({0}) then by Lemma 3.6.10 U(sx) = 0 for all s ∈ R.
Recall that U − U ′ is a linear function. Hence U ′(sx+ x̄′) is linear as a function
of s ∈ R. Now suppose that U ′(sx+ x̄′) is linear as a function of s ∈ R for some
x ∈ Rn, then U(sx) is also linear. But U(0) = 0 and Ux(0) = 0, as 0 is a saddle
point of ϕ, so by linearity U(sx) = 0 for all s ∈ R.

Proof of Theorem 3.4.4. This is just a simple combination of Lemma 3.6.11 and
Lemma 3.6.10.

We now consider the case of the projected gradient method.

Proof of Theorem 3.4.5. We show how to adapt the proof of the results on the
gradient method. We denote the set of equilibrium points of the projected gra-
dient method as S̄Π and similarly SΠ,SΠ

z̄ , in analogy with S,Sz̄.

We first note that the projected gradient method is pathwise stable which can
be verified directly. Together with the assumption that 0 ∈ S̄Π, this means that
the reasoning in Section 3.6.2 applies, and in particular a version of Lemma 3.6.5
holds, i.e.

Lemma 3.6.12. Let ϕ be C2 and concave-convex on Rn+m, Π ∈ R(n+m)2 be an
orthogonal projection matrix, z̄ ∈ S̄Π and z(t) ∈ SΠ

z̄ . Then for any s ∈ [0, 1], the
convex combination z′(t) = (1 − s)z̄ + sz(t) lies in SΠ

z̄ . If in addition z ∈ SΠ,
then z′(t) ∈ SΠ.
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Equation (3.6.4) becomes

Π

 ϕx(z)
−ϕy(z)

Π =
∫ |z|

0
Π

 ϕxx(sẑ) ϕxy(sẑ)
−ϕyx(sẑ) −ϕyy(sẑ)

Πds

 ẑ

and we replace (3.4.1) with

Ã(z) = Π

 0 ϕxy(z)
−ϕyx(z) 0

Π, B̃(z) = Π

ϕxx(z) 0
0 −ϕyy(z)

Π

The remainder of the proofs carry through unaltered.

3.7 Proof of convergence for the modification
method

Instead of proving Proposition 3.5.1 directly we state and prove the following
slightly more general result which contains Proposition 3.5.1 as the special case
that V = Rn+m.

Proposition 3.7.1. Let V ⊆ Rn+m be an affine subspace, and ϕ be C2 and
concave-convex on V . Let ϕ′ satisfy (3.5.1) and M ∈ Rn′×n be such that ker(M)∩
ker(ϕxx(z̄)) = {0} for some equilibrium point z̄ of the subgradient method on V .
Then the subgradient method (3.3.2) on Rn′ × V is globally convergent.

Proof. By translation of coordinates we may assume that z̄′ = (Mx̄, x̄, ȳ) = 0 ∈ V
is an equilibrium point. Let Π′ be the orthogonal projection matrix onto the
subspace Rn′ × V . We decompose Π′ on Rn′ × Rn+m as

Π′ =
I 0
0 Π

 . (3.7.1)

Now let z(t) = (x′(t), x(t), y(t)) be a limiting solution of the subgradient method
on K and let (x̃(t), ỹ(t)) = Π(x(t), y(t)).

Step 1: x′(t) is constant. By applying Theorem 3.4.5 (noting Remark 3.4.5)
we have that z solves (3.4.9). By the form of A(0) we deduce that ẋ′(t) = 0.
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Step 2: x̃(t) and ỹ(t) are constant. From the condition (3.4.10) we have that
B(sz)Πz = 0 for r ∈ [0, 1], from which it follows that

0 = zTΠ′B(rz)Π′z = uTψuuu+ x̃Tϕxxx̃− ỹTϕyyỹ (3.7.2)

where ψuu is the Hessian matrix of ψ evaluated at u = Mx̃ − x′. As each term
is non-positive and ψ is strictly concave we deduce that Mx̃ − x′ = 0 and x̃ ∈
ker(ϕxx(0)). Thus Mx̃(t) is constant. By the condition that ker(M)∩ker(ϕxx) =
{0} we deduce that x̃(t) is constant. Then the form of A(0) allows us to deduce
that ỹ(t) is also constant.

Step 3: x(t) and y(t) are constant. The vector field in (3.4.9) is orthogonal to
ker(Π), so that (x̃(t), ỹ(t)) being constant implies that (x(t), y(t)) are constant.

This proves that any limiting solution to the subgradient method on V is an
equilibrium point, and therefore that the subgradient method on V is globally
convergent.

3.A Appendix

3.A.1 The addition of constant gains

It is common in applications to consider the gradient method with constant gains,
i.e.

ẋi = γxi ϕxi for i = 1, . . . , n,

ẏj = −γyjϕyj for j = 1, . . . ,m.
(3.A.1)

for ϕ ∈ C2 a concave-convex function on Rn+m and γxi , γ
y
j positive constants.

However, in the setting of an arbitrary concave-convex, this is not a generalisation,
and it is sufficient to study the gradient method (3.3.1) without gains, by a
coordinate transformation that we now describe.

Let Λ be a diagonal matrix defined from the gains by

Λ = diag(
√
γx1 , . . . ,

√
γxn,

√
γy1 , . . . ,

√
γym). (3.A.2)
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Given a concave-convex function ϕ we define a new concave-convex function ϕ′

by
ϕ′(z′) = ϕ(Λz′). (3.A.3)

Let z′(t) be a solution to the gradient method (3.3.1) without gains applied to
ϕ′, then z(t) := Λz′(t) is a solution to the gradient method (3.A.1) applied to ϕ
with gains. Indeed, we have

ż(t) = Λż′(t) = Λ2

 ϕx(Λz′(t))
−ϕy(Λz′(t))

 = Λ2

 ϕx(z(t))
−ϕy(z(t))


and the Λ2 term gives the gains.

Thus any properties of the gradient method with gains can be obtained from the
gradient method without gains applied to a suitably modified function.

However, applying this transformation to the subgradient method has the effect
of altering the metric in the convex projection.

Definition 3.A.1 (Subgradient method with gains). Given a non-empty closed
convex set K ⊆ Rn+m, ϕ ∈ C2 a concave-convex function on K and a set of
positive gains γxi , γ

y
j as in (3.A.1), we define the subgradient method on K with

gains as a semi-flow on (K, d) consisting of Carathéodory solutions of

ż = f(z)−PNK(z),dΛ−1 (f(z)) (3.A.4)

where f(z) is the vector field of the gradient method with gains (3.A.1) and
PM,dΛ−1 is a weighted convex projection given by

PM,dΛ−1 (z) = argminw∈M d(Λ−1w,Λ−1z) (3.A.5)

where Λ is defined in terms of the gains by (3.A.2).

This change arises from the stretching of the domain K in the applied coordinate
transformation.

Remark 3.A.1. The form of non-negativity constraints is not affected by this
change to the metric in the convex projection. For example, if the y coordinates
are restricted to be non-negative and the x coordinates unconstrained, then the
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subgradient method with gains (3.A.4) is given by

ẋi = γxi ϕxi for i = 1, . . . , n,

ẏj = [−γyjϕyj ]+yj for j = 1, . . . ,m.
(3.A.6)

This holds more generally for any convex set K with boundaries aligned to the
coordinate axes.

3.A.2 Proof of Proposition 3.4.1

Proof of Proposition 3.4.1. Let (x′(t), y′(t)) and (x(t), y(t)) be two solutions of
(3.3.1) and define 2W (t) = |x′(t)− x(t)|2 + |y′(t)− y(t)|2. Then we have

Ẇ = (x′ − x)T (ẋ′ − ẋ) + (y′ − y)T (ẏ′ − ẏ)

= (x′ − x)T (ϕ′x − ϕx)− (y′ − y)T (ϕ′y − ϕy)

=
∫ 1

0

d

ds

{
(x′ − x)Tϕx ◦ γ(s)− (y′ − y)Tϕy ◦ γ(s)

}
ds

where ϕ′x denotes ϕx at (x′, y′), and γ(s) = ((x′− x)s+ x, (y′− y)s+ y) traverses
the line from x to x′ linearly. Note that only the partial derivatives of ϕ depend
on s. Continuing, letting x̂ = x′ − x and ŷ = y′ − y,

Ẇ =
∫ 1

0
x̂Tϕxx ◦ γ(s)x̂ ds+

∫ 1

0
x̂Tϕxy ◦ γ(s)ŷ ds+

−
∫ 1

0
ŷTϕyy ◦ γ(s)ŷ ds−

∫ 1

0
ŷTϕyx ◦ γ(s)x̂ ds

=
∫ 1

0
x̂Tϕxx ◦ γ(s)x̂ ds−

∫ 1

0
ŷTϕyy ◦ γ(s)ŷ ds

By concavity/convexity we have that ϕxx, ϕyy are negative/positive semi-definite
which shows that Ẇ ≤ 0.
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Chapter 4

Stability and instability in
gradient dynamics - Part II: The

subgradient method

In this chapter we extend the results of Chapter 3 to the sub-
gradient method where the dynamics are constrained to lie in a
prescribed convex set. Having a discontinuous vector field, the
convergence of the subgradient method is non-trivial to study as
the common tools of smooth analysis such as the classical LaSalle
and Lyapunov theorems do not apply. We provide a general
framework of results that reduce the study of the asymptotic
behaviour of the subgradient method to the study of a explicit
family of smooth systems, to which more standard techniques
can be applied.

Acknowledgements
The work in this chapter was done in collaboration with Ioannis
Lestas and forms the second part of a two part paper in prepa-
ration [93].
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4.1 Introduction

In Chapter 3 we studied the asymptotic behaviour of the gradient method when
this is applied on a general concave-convex function in an unconstrained domain,
and provided an exact characterization to its limiting solutions. Nevertheless,
in many applications, such as primal/dual algorithms in optimization problems,
it becomes necessary to constrain the system states in a prescribed convex set,
e.g. positivity constraints on Lagrange multipliers or constraints on physical
quantities like data flow, and prices/commodities in economics [97], [110], [183],
[61]. The subgradient method is used in such cases, which is a version of the
gradient method with a projection term in the vector field additionally included,
so as to ensure that the trajectories do not leave the desired set.

In discrete time, there is an extensive literature on the subgradient method, via
its application in optimization problems (see e.g. [153]). However, in many appli-
cations, for example power networks [32], [51], [108] and classes of data network
problems [110], [183] continuous time models are considered. It is thus important
to have a good understanding of the subgradient dynamics in a continuous time
setting, which could also facilitate analysis and design by establishing links with
other more abstract results in dynamical systems theory.

A main complication in the study of the subgradient method arises from the fact
the this is a non-smooth nonlinear ODE with a discontinuous vector field due to
the projections involved. This prohibits the direct application of classical Lya-
punov or LaSalle theorems (e.g. [112]), which is reflected in the direct approach
used by Arrow, Hurwicz and Uzawa in [10] that avoids the use of such tools.
More recently, the work of Feijer and Paganini [61] unified the previously ad-hoc
and application focused analysis of primal dual gradient dynamics in network
optimisation, and proposed that the switching in the dynamics be interpreted
in the framework of hybrid automata, where a LaSalle Invariance principle was
recently obtained in [135]. However, as recently pointed out in [38], there are
cases where the assumptions required in [135] do not hold. In [38], the LaSalle
invariance principle for discontinuous Carathéodory systems is applied to prove
convergence of the subgradient method under positivity constraints and the as-
sumption of strict concavity. In [173] the subgradient method is used to solve
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linear programs with inequality constraints. In general, proving convergence for
the subgradient method even in simple cases, is a non-trivial problem that re-
quires the non-smooth character of the system to be explicitly addressed.

Our aim in this chapter is to provide a framework of results that allow one to
study the asymptotic behaviour of the subgradient method (4.3.2) with smooth
analysis as opposed to non-smooth analysis. One of our main results is that the
limiting behaviour of the subgradient method constrained to an arbitrary convex
domain is given by the solutions of one of an explicit family of smooth differential
equations. With this result, proving convergence of the subgradient method may
be done with standard Lyapunov and LaSalle type stability tools, reducing the
barrier to obtaining rigorous convergence proofs in applications.

We illustrate our results by means of various examples and also apply those to
modification schemes in network optimization, that provide convergence guar-
antees while maintaining the decentralized structure of the dynamics. We also
discuss an application to the problem of multi-path congestion control (e.g. [199,
110, 126, 129]), where we prove convergence of a modification scheme, that
achieves optimality without requiring any additional information transfer.

The chapter is structured as follows. Various preliminaries from convex analysis
and dynamical systems are given in Section 4.2. The problem formulation is given
in Section 4.3 and the main results are presented in Section 4.4, where various
examples that illustrate those are also discussed. Applications to modification
methods in network optimization, and to the problem of multipath routing are
given in Section 4.5. The proofs of the result are finally given in Section 4.6.

Addendum: Subsequent to the preparation of this thesis, the author became
aware of the work [204], which contains a related result to Theorem 4.4.1 on stabil-
ity of projected dynamical systems and minimal faces. We believe the application
to the subgradient method in the considered applications remains novel.
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4.2 Preliminaries

We use the same notation and definitions as the previous Chapter 3 and we refer
the reader to the preliminaries section therein. In addition we also have need of
the following.

4.2.1 Convex analysis

4.2.1.1 Concave-convex functions and saddle points

For a function ϕ that is concave-convex on Rn+m the (standard) notion of a saddle
point was given in Definition 3.2.2 in the previous chapter. We now consider ϕ
restricted to a non-empty closed convex set K ⊆ Rn+m, in which case the notion
of saddle point needs to be modified to incorporate the constraints.

Definition 4.2.1 (Restricted saddle point). Let K ⊆ Rn+m be non-empty closed
and convex. For a concave-convex function ϕ : K → R, we say that (x̄, ȳ) ∈ K is
a K-restricted saddle point of ϕ if for all x ∈ Rn and y ∈ Rm with (x, ȳ), (x̄, y) ∈
K we have the inequality ϕ(x, ȳ) ≤ ϕ(x̄, ȳ) ≤ ϕ(x̄, y).

If in addition ϕ ∈ C1 then z̄ = (x̄, ȳ) ∈ K is a K-restricted saddle point if and
only if the vector of partial derivatives

[
ϕx(z̄) −ϕy(z̄)

]T
lies in the normal cone

NK(z̄).

AnyK-restricted saddle point in the interior ofK is also a saddle point. If C ⊆ K

is closed and convex and z̄ ∈ C is a K-restricted saddle point, then z̄ is also a
C-restricted saddle point.

However, it in general does not hold that if ϕ : Rn+m → R has a saddle point, and
K is closed convex and non-empty, then ϕ has a K-restricted saddle point. (An
explicit example contradicting this is given later in Example 4.4.3(ii)). In this
chapter we will only consider cases where at least one K-restricted saddle point
exists, leaving the problem of showing existence to the specific application.
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4.2.1.2 Concave programming

Concave programming (see e.g. [27]) is concerned with the study of optimization
problems of the form

max
x∈C,g(x)≥0

U(x) (4.2.1)

where U : Rn → R, g : Rn → Rm are concave functions and C ⊆ Rn is non-empty
closed and convex. This is associated with the Lagrangian

ϕ(x, y) = U(x) + yTg(x) (4.2.2)

where y ∈ Rm+ are the Lagrange multipliers.

Theorem 4.2.1. Let g be concave and Slater’s condition hold, i.e.

∃x′ ∈ relintC with g(x′) > 0. (4.2.3)

Then x̄ is an optimum of (4.2.1) if and only if ∃ȳ with (x̄, ȳ) a C×Rm+ -restricted
saddle point of (4.2.2).

The min-max optimization problem associated finding aK-restricted saddle point
of (4.2.2) is the dual problem of (4.2.1).

4.2.1.3 Faces of convex sets

Some of the main results of this chapter refer to faces of a convex set. We refer
the reader to [78, Chap. 1.8.] for further discussion of such topics.

Definition 4.2.2 (Face of a convex set). Given a non-empty closed convex set
K, a face F of K is a subset of K that has both the following properties:

(i) F is convex.

(ii) For any line segment L ⊆ K, if (relintL) ∩ F 6= ∅ then L ⊆ F .

For the readers convenience we recall some standard properties of faces:

(a) The intersection of two faces of K is a face of K.
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(b) The empty set and K itself are both faces of K. If a face F is neither ∅ or
K it is called a proper face.

(c) If F is a face of K and F ′ is a face of F , then F ′ is a face of K.

(d) For a face F of K, the normal cone NK(z) is independent of the choice of
z ∈ relint(F ). In these cases we drop the z dependence and write it as NF .

(e) K may be written as the disjoint union:

K =
⋃
{relintF : F is a face of K}. (4.2.4)

Property (a) above leads to the following definition.

Definition 4.2.3 (Minimal face containing a set). For a convex set K and a
subset A ⊆ K we define the minimal face containing A as

⋂
{F : F is a face of K and A ⊆ F}

which is a face by property (a) above.

4.2.2 Dynamical systems

Definition 4.2.4 (Flows and semi-flows). A triple (φ,X, ρ) is a flow (resp. semi-
flow) if (X, ρ) is a metric space, φ is a continuous map from R×X (resp. R+×X)
to X which satisfies the two properties

(i) For all x ∈ X, φ(0, x) = x.

(ii) For all x ∈ X, t, s ∈ R (resp. R+),

φ(t+ s, x) = φ(t, φ(s, x)). (4.2.5)

When there is no confusion over which (semi)-flow is meant, we shall denote
φ(t, x(0)) as x(t). For sets A ⊆ R (resp. R+) and B ⊆ X we define φ(A,B) =
{φ(t, x) : t ∈ A, x ∈ B}.

166



Definition 4.2.5 (ω-limit set). Given a semi-flow (φ,X, ρ) we denote the set of
ω-limit points of trajectories as

Ω(φ,X, ρ) =
⋃
x∈X

⋂
t≥0

φ([t,∞), x). (4.2.6)

where A denotes the closure of A ⊆ X in (X, ρ).

Definition 4.2.6 (Invariant sets). For a semi-flow (φ,X, ρ) we say that a set
A ⊆ X is positively invariant if φ(R+, A) ⊆ A. If φ is also a flow we say that A
is negatively invariant if φ((−∞, 0], A) ⊆ A. If φ(t, A) = A for all t ∈ R then we
say A is invariant.

Definition 4.2.7 (Sub-(semi)-flow). For a flow (resp. semi-flow) (φ,X, ρ) and
an invariant (resp. positively invariant) set A ⊆ X we obtain the sub-flow (resp.
sub-semi-flow) by restricting φ(t, x) to act on x ∈ A and denote it as (φ,A, ρ).

Definition 4.2.8 (Global convergence). We say that a (semi)-flow (φ,X, ρ) is
globally convergent, if for all initial conditions x ∈ X, the trajectory φ(t, x) con-
verges to the set of equilibrium points of (φ,X, ρ) as t→∞, i.e.

inf{d(φ(t, x), y) : y an equilibrium point} → 0 as t→∞.

In Chapter 3 much of the analysis relied on a specific form of incremental stability
which we reproduce below for the convenience of the reader.

Definition 4.2.9 (Pathwise stability). We say that a semi-flow (φ,X, ρ) is path-
wise stable1 if for any two trajectories x(t), x′(t) the distance ρ(x(t), x′(t)) is non-
increasing in time.

This is linked with the following special class of (semi)-flows.

Definition 4.2.10 ((Semi)-Flow of isometries). We say that a (semi)-flow (φ,X, ρ)
is a (semi)-flow of isometries if for every t ∈ R (resp. R+), the function φ(t, ·) :
X → X is an isometry, i.e. for all x, y ∈ X it holds that ρ(φ(t, x), φ(t, y)) =
ρ(x, y).

1As was noted on Page 131, we use the term ‘pathwise stability’ to avoid the confusion
around existing similar notions with conflicting definitions in different places.
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Finally we have need of the notion of Carathéodory solutions of differential equa-
tions.

Definition 4.2.11 (Carathéodory solution). We say that a trajectory z(t) is a
Carathéodory solution to a differential equation ż = f(z), if z is an absolutely
continuous function of t, and for almost all times t, the derivative ż(t) exists and
is equal to f(z(t)).

Note that we do not require that f satisfies the assumptions of the Carathéodory
existence theorem.

4.3 Problem formulation

The main object of study in this work is the subgradient method on an arbitrary
concave-convex function in C2 and an arbitrary convex domain K. We first recall
the definition of the gradient method, which is studied in Chapter 3.

Definition 4.3.1 (Gradient method). Given ϕ a C2 concave-convex function on
Rn+m, we define the gradient method as the flow on (Rn+m, d) generated by the
differential equation

ẋ = ϕx

ẏ = −ϕy.
(4.3.1)

The subgradient method is obtained by restricting the gradient method to a
convex set K by the addition of a projection term to the differential equation
(4.3.1).

Definition 4.3.2 (Subgradient method). Given a non-empty closed convex set
K ⊆ Rn+m and a C2 function ϕ that is concave-convex on K, we define the
subgradient method on K as a semi-flow on (K, d) consisting of Carathéodory
solutions of

ż = f(z)−PNK(z)(f(z))

f(z) =
[
ϕx −ϕy

]T
.

(4.3.2)

where the notion of Carathéodory solution to a differential equation is defined in
Definition 4.2.11.
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As explained in Section 3.A.1, all the results of this chapter can be translated to
the subgradient method with gains by a transformation of coordinates.

Remark 4.3.1. For (non-affine) convex sets K the subgradient method (4.3.2) is
a non-smooth system. The vector field is discontinuous due to the convex projec-
tion term, independently of the regularity of the function ϕ or of the boundary of
K. This is in contrast to the gradient method (4.3.1), which is a smooth system,
as it inherits the regularity of the function ϕ.

The equilibrium points of the subgradient method on K are exactly the K-
restricted saddle points.

We briefly summarise the contributions of this work in the bullet points be-
low.

• We give conditions through which convergence can be deduced for the sub-
gradient method (which is a non-smooth system due to the presence of
switching) via the study of solutions to explicit smooth ODEs derived from
the form of the concave-convex function and the convex domain.

• These smooth ODEs are given by the subgradient method on affine sub-
spaces, this links with the previous Chapter 3, where the convergence prop-
erties of these smooth systems are studied.

• We give a proof of the convergence of the subgradient method applied to
any strictly concave-convex function for arbitrary convex domains. Fur-
thermore, we provide example applications of our results on the subgradi-
ent method to various methods of modifying a concave-convex function to
give convergence. In particular, we give an application to the problem of
congestion control in multi-path routing.

The study of the (sub)gradient method was originated by Arrow, Hurwicz and
Uzawa [10], who took a direct approach and established convergence of the subgra-
dient method with positivity constraints under the assumption of strict concave-
convexity [10]. More recently, Feijer and Paganini [61] attempted to use the
invariance principle for hybrid automata [135] to modernise and unify the ad-hoc
approaches that had dominated until then. They provided a new proof of the
convergence result of Arrow, Hurwicz and Uzawa, and also proved convergence of
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a number of modification methods where strict concave-convexity is absent. How-
ever, recently it has been pointed out by Cherukuri, Mallada and Cortés [38] that
there are cases where, when interpreted as a hybrid automata, the subgradient
method does not satisfy all the assumptions of the invariance principle in [135].
In [38] an invariance principle for Carathéodory solutions is applied to prove con-
vergence with positivity constraints for strictly concave-convex functions which
are linear in the second variable (i.e. of the form (4.2.2)).

4.4 Main Results

This section states the main results of the chapter.

The aim of this work is to study the convergence properties of the subgradient
method (Definition 4.3.2) applied to general concave-convex functions which lack
strict concavity and on an arbitrary convex domain.

We divide the results into three parts, which are outlined below for the conve-
nience of the reader.

• In Section 4.4.1 we describe the essential problems that arise in analysis
of the non-smooth dynamics of the subgradient method, and then develop
tools to deal with this problem. In Proposition 4.4.1 we give a invariance
principle for pathwise stable semi-flows, which applies without any smooth-
ness assumption on the dynamics. We then study semi-flows generated by
projecting a pathwise stable ODE onto a closed convex set, and obtain the
key result, Theorem 4.4.1, that says that the dynamics on the ω-limit set
are smooth.

• In Section 4.4.2 we apply these tools to the subgradient method (4.3.2). In
Theorem 4.4.2 we show that the limiting solutions of the (non-smooth) sub-
gradient method on a convex set are given by the dynamics of the (smooth)
subgradient method on an affine subspace, and describe exactly the set of
limiting solutions when there is an internal saddle point. This allows us
to obtain Corollary 4.4.1, a criterion for global asymptotic stability of the
subgradient method.
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• In Section 4.4.3 we combine Theorem 4.4.2 with the results of Chapter 3 (for
convenience of the reader reproduced in Section 4.A) to obtain a general
convergence criterion (Theorem 4.4.3) for the subgradient method.

We illustrate these results with examples throughout.

4.4.1 Pathwise stability and convex projections

If one wishes to extend the results of Chapter 3 to the subgradient method on
a non-empty closed convex set K ⊆ Rn+m, then one runs into two problems,
both coming from the discontinuity of the vector field in (4.3.2). The first is
that the previously simple application of LaSalle’s theorem would become much
more technical - needing tools from non-smooth analysis. The second, more
fundamental, problem is that LaSalle’s theorem only gives convergence to a set
of trajectories, and it remains to characterise this set. The trajectories in this
set still satisfy an ODE with a discontinuous vector field, and we do not have
uniqueness of the solution backwards in time - we still only have a semi-flow.

To solve these issues we reinterpret the prior results in terms of a simple property
which is still present in the subgradient method.

The main tool used to prove the results in Chapter 3 was pathwise stability, (Def-
inition 4.2.9), which says that the Euclidean distance between any two solutions
is non-increasing with time. (We will later prove such a result for the subgra-
dient method). Intuitively, one would think that the distance between any two
of the limiting solutions would be constant, and indeed, one can verify that this
is the case directly from (4.4.22) (below) and the skew-symmetry of A(0) given
by (4.A.1). A more abstract way of saying this is that the sub-flow obtained by
considering the gradient method acting on the set of limiting solutions is a flow
of isometries. In fact, this can be proved more directly for any pathwise stable
semi-flow.

Proposition 4.4.1. Let (φ,X, d) be a pathwise stable semi-flow (see Defini-
tion 4.2.9) with X ⊆ Rn+m which has an equilibrium point z̄. Let Ω be its
ω-limit set. Then the sub-semi-flow (φ,Ω, d) (see Definition 4.2.7) defines a flow
of isometries (see Definition 4.2.10). Moreover, Ω is a convex set.
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Note here that (φ,Ω, d) is a flow rather than a semi-flow. This comes from the
simple observation that an isometry is always invertible, so we can define, for
t ≥ 0, φ(−t, ·) : Ω→ Ω as φ(t, ·)−1.

Remark 4.4.1. Care should be taken in interpreting the backwards flow given by
Proposition 4.4.1. There could be multiple trajectories in X that meet at a point
in y ∈ Ω at time t = 0, but exactly one of these trajectories will lie in Ω for all
times t ∈ R.

We would like to note that we are not the first to make this observation. Indeed,
we deduce this result from a more general result in [44] which was published in
1970.

We consider pathwise stable differential equations which are projected onto a
convex set, and make the following set of assumptions.2

(φ,K, d) is the semi-flow of Carathéodory solutions of

ż = f(z)−PNK(z)(f(z)) where,

K ⊆ Rn is non-empty, closed and convex

C1 3 f :K → Rn satisfies, for all z,w ∈ K,

(f(z)− f(w))T (z−w) ≤ 0.

(4.4.1)

A simple first result is that the projected dynamics are still pathwise stable.

Lemma 4.4.1. Let (4.4.1) hold. Then (φ,K, d) is pathwise stable.

Our main result on such projected differential equations is that, even though the
projection term gives a discontinuous vector field, when we restrict our attention
to the ω-limit set, the vector field is C1. This allows us to replace non-smooth
analysis with smooth analysis when studying the asymptotic behaviour of such
systems.

Theorem 4.4.1. Let (4.4.1) hold and assume that the semi-flow (φ,K, d) has
an equilibrium point. Let Ω be its ω-limit set. Then (φ,Ω, d) defines a flow of
isometries given by solutions to the following differential equation, which has a

2That the final assumed inequality in (4.4.1) holds for the subgradient method is evident
from the proof of the pathwise stability of the gradient method ( Proposition 3.4.1.)
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C1 vector field,
ż = f(z)−PNV (f(z)). (4.4.2)

Here V is the affine span of the (unique) minimal face (see Definition 4.2.3) of
K that contains the set of equilibrium points of the semi-flow. If f is defined on
all of V then Ω is contained in the ω-limit set of the flow generated by (4.4.2) on
V .

Remark 4.4.2. The existence of a minimal face of K that contains the set of
equilibrium points is a simple consequence of the definition of a face (see Defini-
tion 4.2.2 and the discussion that follows). The important part of Theorem 4.4.1
is that the dynamics on Ω are given by (4.4.2), i.e. the projection operator PNK(z)

in (4.3.2) becomes PNV which does not depend on the position z.

Remark 4.4.3. In the statement of Theorem 4.4.1, it is not necessarily the case
that PNV (f(z)) = PNK(z)(f(z)) for all z in the minimal face provided by the
Theorem, this is only guaranteed for z ∈ Ω. Neither is it the case that NK(z)
must be constant and equal to NV on Ω, only that the projection of f(z) onto NV

and NK(z) must be equal.

4.4.2 Subgradient method

We now apply theses results to the subgradient method. Our first result reduces
the study of the convergence on general convex domains, where the subgradient
method is non-smooth, to the study of convergence of the subgradient method
on affine spaces, on which the subgradient method is smooth. We also give an
exact classification of the asymptotic behaviour in the case of an internal saddle
point.

As in Chapter 3, given a concave-convex function ϕ we define S̄ and S respectively
as the set of saddle points and the set of solutions to the gradient method (4.3.1)
that lie a constant distance from any saddle point.

Theorem 4.4.2. Let K ⊆ Rn+m be non-empty, closed and convex. Let ϕ be C2,
concave-convex on K and have a K-restricted saddle point. Let (φ,K, d) denote
the subgradient method (4.3.2) on K and Ω be its ω-limit set. Then Ω is convex,
and (φ,Ω, d) defines a flow of isometries. Exactly one of the following holds:
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(i) There is an internal saddle point z̄ ∈ S̄ ∩ intK and

Ω = {z(t) ∈ S : z(R) ⊆ K}. (4.4.3)

(ii) S̄ ∩ intK = ∅. Let F be the minimal face containing all K-restricted saddle
points and V be the affine span of F , which is proper. Then trajectories
z(t) of (φ,Ω, d) solve the ODE:

ż = f(z)−PNV (f(z)), (4.4.4)

where f(z) =
[
ϕx −ϕy

]T
. Furthermore, if ϕ is also concave-convex on V

then Ω is contained in the ω-limit set of the subgradient method (4.3.2) on
V .

Remark 4.4.4. The ODE (4.4.4) is the subgradient method on the affine sub-
space V . The limiting solutions of this smooth system were classified in Chapter 3.
Later, in Section 4.4.3 we use the results of Chapter 3 together with Theorem 4.4.2
to obtain a convergence criterion for the subgradient method. This is used subse-
quently give proofs for the applications (Section 4.5).

The corresponding result for the subgradient method with constant gains can be
obtained by a coordinate transformation as described in Section 3.A.1.

Note that Theorem 4.4.2(i) is a special case of Theorem 4.4.2(ii) when the (non-
proper) face is the whole set K, and the affine span of K is Rn+m.

Theorem 4.4.2(i) and the results in Chapter 3 give a full characterisation of the
limiting solutions of the subgradient method when there is an internal saddle
point, however, in applications it is common for this to not hold, e.g. in the case
of a Lagrangian originating from an optimisation problem where at least one of
the inequality constraints is binding. In such cases Theorem 4.4.2(ii) applies and
gives a smooth ODE that the limiting solutions must solve.

We now present several examples to illustrate the application of Theorem 4.4.2
in some simple cases.

Example 4.4.1. Consider the case where K ⊆ Rn+m is strictly convex. In this
case the proper faces of K are given by {w} for each w ∈ ∂K, i.e. each consist
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of a single point of the boundary of K. The subgradient method on a single point
is trivially globally convergent.

By applying the two cases of Theorem 4.4.2, we obtain that:

(i) If there is a saddle point in the interior of K, then then the subgradient
method (4.3.2) on K is globally convergent if and only if the (unconstrained)
gradient method (4.3.1) is globally convergent.

(ii) If there is no saddle point in the interior of K, but there is a K-restricted
saddle point, then the subgradient method is globally convergent.

There are cases where the unconstrained gradient method (4.3.1) is globally con-
vergent, but the subgradient method is not, as the next example illustrates.

Example 4.4.2. Define the concave-convex function

ϕ(x1, x2, y) = −1
2 |x1|2 + (x1 + x2)y. (4.4.5)

This has a single saddle point at (0, 0, 0), and corresponds to the optimisation
problem

max
x1+x2=0

−1
2 |x1|2 (4.4.6)

where the constraint is relaxed with the Lagrange multiplier y. On this function
the gradient method is the linear system

ẋ1

ẋ2

ẏ

 =


−1 0 1
0 0 1
−1 −1 0



x1

x2

y

 . (4.4.7)

It is easily verified that all the eigenvalues of this matrix lie in the left half plane,
so that the gradient method is globally convergent. Now consider the family of
convex sets defined by

Ka = {(x1, x2, y) ∈ R3 : x1 ≥ a} (4.4.8)
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for a ∈ R. The subgradient method on Ka is given by the system

ẋ1 = [−x1 + y]+x1−a

ẋ2 = y

ẏ = −x1 − x2.

(4.4.9)

The convergence of the subgradient method on Ka depends crucially on the value
of a. There are three cases:

(i) a < 0: In this case the saddle point (0, 0, 0) lies in the interior of Ka so
that Theorem 4.4.2(i) applies, and as the unconstrained gradient method is
globally convergent, so is the subgradient method on Ka.

(ii) a > 0: Here the unconstrained saddle point (0, 0, 0) lies outside Ka. A
simple computation shows that the point (a, a, 0) is the only Ka-restricted
saddle point. Thus, Theorem 4.4.2(ii) applies. The only proper face of Ka

is the set
Fa = {(a, x2, y) : x2, y ∈ R}. (4.4.10)

The subgradient method on Fa is the systemẋ2

ẏ

 =
 0 1
−1 0

x2

y

+
 0
−a

 (4.4.11)

together with the equality x1 = a. This matrix has imaginary eigenvalues
±i, showing that the subgradient method on Fa is not globally convergent.
This does yet imply that the subgradient method on Ka is not globally conver-
gent, as we have not verified that some subset of these oscillatory solutions
to the subgradient method on Fa are also solutions of the subgradient method
on Ka. However, it is easy to verify that this is indeed the case, so that the
subgradient method on Ka is not globally convergent when a > 0.

(iii) a = 0: In this case the saddle point (0, 0, 0) lies on the boundary of K0, so
that Theorem 4.4.2(ii) applies, and the analysis of the subgradient method
on F0 is the same as in case (ii) above. However, when we check whether
any oscillatory solutions of the subgradient method on F0 are also solutions
of the subgradient method on K0, we find that there are no such solutions.
Indeed, to be a solution to the subgradient method on F0 and the subgradient
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method on K0 we must have both x1 = a = 0 and −x1 + y ≤ 0 by (4.4.9).
Then (4.4.9) implies that y = 0 and then that x1 = 0. So the only such
solution is the saddle point. Therefore the subgradient method is K0 on
globally convergent.

This shows that the subgradient method on Ka undergoes a bifurcation at a = 0.

The following example illustrates that the subgradient method can be globally
convergent when the gradient method is not.

Example 4.4.3. Define the concave-convex function

ϕ(x1, x2, y) = −1
2 |x2|2 + x1y. (4.4.12)

This has a single saddle point at (0, 0, 0) and corresponds to the optimisation
problem

max
x1=0
−1

2 |x2|2 (4.4.13)

where the constraint is relaxed via the Lagrange multiplier y. The gradient method
applied to ϕ is the linear system

ẋ1

ẋ2

ẏ

 =


0 0 1
0 −1 0
−1 0 0



x1

x2

y

 (4.4.14)

whose matrix has eigenvalues −1,±i so the gradient method is not globally con-
vergent. We again consider the subgradient method on the closed convex set Ka

defined by (4.4.8) for a ∈ R splitting into three cases:

(i) a < 0: As in Example 4.4.2(i) the saddle point (0, 0, 0) lies in the interior
of Ka. As the unconstrained gradient method is not globally convergent,
Theorem 4.4.2(i) implies that the subgradient method on Ka is also not
globally convergent.
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(ii) a > 0: The subgradient method on Ka is given by

ẋ1 = [y]+x1−a

ẋ2 = −x2

ẏ = −x1

(4.4.15)

The saddle point (0, 0, 0) lies outside Ka. For (x̄1, x̄2, ȳ) to be a Ka-restricted
saddle point, (4.4.15) implies that x̄1 = x̄2 = 0, but this is impossible in Ka,
so there are no Ka-restricted saddle points. This can also be understood in
terms of the optimisation problem (4.4.13) which has empty feasible set if
we impose the further condition that x1 ≥ a > 0. This means that none of
our results apply, but a direct analysis of (4.4.15) shows that ẏ ≤ −a < 0
so that y(t)→ −∞ as t→∞, and the system is not globally convergent.

(iii) a = 0: Solving (4.4.15) for the K0-restricted saddle points yields the con-
tinuum {(0, 0, y) : y ≤ 0}. None of these lie in the interior of K0 so Theo-
rem 4.4.2(ii) applies. The only proper face of K0 is F0 defined by (4.4.10).
On F0, the subgradient method is the systemẋ2

ẏ

 =
−1 0

0 0

 x2

y

 (4.4.16)

together with the equality x1 = 0, which is clearly globally convergent, noting
that the set of F0-restricted saddle points is {(0, 0, y) : y ∈ R}. Therefore
the subgradient method on K0 is also globally convergent.

So in this case the subgradient method on Ka starts non-convergent for a < 0,
becomes globally convergent for a = 0 and finally looses all its equilibrium points
when a > 0.

Although the minimal face F in Theorem 4.4.2(ii) is given as the intersection
of all faces that contain K-restricted saddle points, it can be useful to obtain
convergence criteria that do not depend upon knowledge of allK-restricted saddle
points. We note that if the subgradient method is globally convergent on any
affine span of a face of K, then global convergence is implied.

Corollary 4.4.1. Let K ⊆ Rn+m be non-empty, closed and convex. Let ϕ be C2
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and concave-convex on Rn+m. Let ϕ have a K-restricted saddle point. Assume
that, for any face F of K that contains a K-restricted saddle point, the subgradient
method on aff(F ) is globally convergent. Then the subgradient method on K is
globally convergent.

Example 4.4.4. To illustrate this result, let us consider the case of positivity
constraints, where (x, y) are restricted to K = Rn+×Rm+ . Here the faces of K are
given by sets of the form

{(x, y) ∈ Rn+ × Rm+ : xi = 0, yj = 0 for i 6∈ I, j 6∈ J}

where I ⊆ {1, . . . , n} and J ⊆ {1, . . . ,m} are sets of indices. The affine span of
such a face is then given by

{(x, y) ∈ Rn+m : xi = 0, yj = 0 for i 6∈ I, j 6∈ J}. (4.4.17)

Thus, by Corollary 4.4.1, checking convergence of the subgradient method in this
case may be done by checking convergence of the gradient method with any arbi-
trary set of coordinates fixed as zero3.

In some cases the faces of the constraint set K have an interpretation in terms
of the specific problem.

Example 4.4.5. Consider the optimisation problem

max
gj(x)≥0,j∈{1,...,m}

U(x) (4.4.18)

where U, gj : Rn → R are concave functions in C2. This is associated with the
Lagrangian

ϕ(x, y) = U(x) +
∑

j∈{1,...,m}
yjgj(x) (4.4.19)

where y ∈ Rm is a vector of Lagrange multipliers4. To ensure that the Lagrange
multipliers are non-negative we define the constraint set K = Rn × Rm+ . As
in Example 4.4.4 the affine spans of the faces of K are given by (4.4.17) for

3This result was presented previously by the authors in [91].
4For simplicity of presentation we shall assume throughout the example that there is no

duality gap in the problems considered.
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I = {1, . . . ,m} and J any subset of {1, . . . ,m}. The subgradient method applied
on such a face corresponds to the gradient method on the modified Lagrangian

ϕ′(x, y) = U(x) +
∑
j∈J

yjgj(x) (4.4.20)

which is associated with the modified optimisation problem

max
gj(x)=0,j∈J

U(x) (4.4.21)

where, compared to (4.4.18), the inequality constraints are replaced by equality
constraints, and some subset of the constraints are removed.

If ϕ is concave-convex on Rn+m, which happens if, for example, the constraints
gj(x) ≥ 0 are linear, then Corollary 4.4.1 applies. We obtain that the subgradient
method on K applied to ϕ is globally convergent, if, for any J ⊆ {1, . . . ,m},
the gradient method applied to the Lagrangian ϕ′ corresponding to the modified
optimisation problem (4.4.21) is globally convergent.

In general, ϕ is only concave-convex on K, so Corollary 4.4.1 does not apply.
However, by applying Theorem 4.4.2 we deduce that the subgradient method is
globally convergent, if, for any J ⊆ {1, . . . ,m}, every solution of the gradient
method applied to the Lagrangian ϕ′ corresponding to the modified optimisation
problem (4.4.21), that additionally lies in K for all times t, converges to the set
of saddle points.

We note that this result is not sharp, i.e. there are optimisation problems for
which the subgradient method is globally convergent, but the gradient method on
one of the modified problem defined above fails to converge.

4.4.3 A general convergence criterion

By combining Theorem 4.4.2 with the results on the limiting solutions of the
(smooth) subgradient method on affine subspaces given in Chapter 3 we obtain
the following convergence criterion for the subgradient method on arbitrary con-
vex sets and arbitrary concave-convex functions. This states that the subgradient
method is globally convergent, if it has no trajectory satisfying an explicit linear
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ODE.

The matrices A(z) and B(z) that will be used in the statement of the theorem
were defined in Chapter 3. For the readers convenience we reproduce both these
definitions and the statement of the result needed to prove Theorem 4.4.3 in
the Section 4.A. The theorem is stated under the assumption that 0 ∈ K is
a K-restricted saddle point. The general case is obtained by a translation of
coordinates.

Theorem 4.4.3. Let K be non-empty, closed and convex in Rn+m with 0 ∈ K.
Let ϕ ∈ C2 be concave-convex on K and have 0 as a K-restricted saddle point.
Let F be the minimal face of K that contains all K-restricted saddle points and
let Π be the orthogonal projection matrix onto the orthogonal complement of NF .
Then if the subgradient method on K applied to ϕ has no non-constant trajectory
z(t) that satisfies the linear ODE

ż(t) = ΠA(0)Πz(t) (4.4.22)

and the condition, for all r ∈ [0, 1] and tR,

z(t) ∈ ker(ΠB(rz(t))Π) ∩ ker(Π(A(rz(t))−A(0))Π), (4.4.23)

then the subgradient method is globally convergent.

Remark 4.4.5. Although the condition (4.4.23) appears difficult to verify, it is
only necessary to show that the condition does not hold. This turns out to be easy
in many cases, for example in the proofs of the convergence of the modification
methods (Theorem 4.5.2).

4.5 Applications

In this section we apply the results of Section 4.4 to obtain global convergence in
a number cases. First we consider the subgradient method under strict concave-
convexity on arbitrary convex domains. Second we look at some examples of
methods of modifying a concave-convex function to obtain convergence. Lastly
we apply one such modification method to the problem of congestion control in
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multi-path routing.

The proofs for this section are provided in Section 4.7.

4.5.1 Convergence under strict concave-convexity on ar-
bitrary convex domains

The convergence of the subgradient method when applied to functions ϕ ∈ C2

which are strictly concave-convex, (i.e. at least one of the concavity or convex-
ity is strict), was proved by Arrow, Hurwicz and Uzawa [10] under positivity
constraints. More recently, [61] and [38] revisited this result, giving more mod-
ern proofs in the case where the concave-convex function ϕ has the form (4.2.2)
with U and g strictly concave. The more general case of restriction of a general
concave-convex function to an arbitrary convex set K appears to be unknown in
the literature. (The theory for discrete time subgradient methods is more com-
plete, see e.g. [153]). Here we prove that for non-empty closed convex set K
the subgradient method on K applied to a strictly concave-convex function is
globally convergent.

Theorem 4.5.1. Let K ⊆ Rn+m be non-empty, closed and convex. Let ϕ be C2

and strictly concave-convex on K, and have a K-restricted saddle point. Then
the subgradient method (4.3.2) on K is globally convergent.

4.5.2 Modification methods for convergence

We will consider methods for modifying ϕ so that the (sub)gradient method
converges to a saddle point. Such methods are used in network optimisation (see
e.g. [10], [61]), where it is important to preserve the localised structure of the
dynamics, which makes the use of higher order information difficult. One such
method was described in the previous Chapter 3 (Section 3.5) for the gradient
method. We will extend this method to the subgradient method, describe two
more such methods, and then give convergence results.
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4.5.2.1 Auxiliary variables method

In Chapter 3 we described a modification method for the gradient method (Sec-
tion 3.5). We now recall this method and extend it to the subgradient method
restricted to an arbitrary convex domain. We refer the reader to Section 3.5 for
some additional discussion. In Section 4.5.3 below we give an example application
of this method to the problem of multi-path congestion control.

Given a concave-convex function ϕ defined on a convex domain K, we define the
modified concave-convex function ϕ′ : Rn′ ×K → R as

ϕ′(x′, x, y) = ϕ(x, y) + ψ(Mx− x′)

ψ : Rn′ → R,M ∈ Rn′×n is a constant matrix

ψ ∈ C2 is strictly concave with max ψ(0) = 0

(4.5.1)

where x′ is a set of n′ auxiliary variables. We define the augmented convex domain
as K ′ = Rn′ ×K. Note that the additional auxiliary variables are not restricted
and are allowed to take values in the whole of Rn′ . Note that the n× n identity
matrix always satisfies the assumptions upon M above.

Note that there is a correspondence between K-restricted saddle points of ϕ and
K ′-restricted saddle points of ϕ′. If (x̄, ȳ) is a K-restricted saddle point of ϕ,
then (Mx̄, x̄, ȳ) is a K ′-restricted saddle point of ϕ′. In the reverse direction,
if (x̄′, x̄, ȳ) is a K ′-restricted saddle point of ϕ′ then Mx̄ = x̄′ and (x̄, ȳ) is a
K-restricted saddle point of ϕ.

4.5.2.2 Penalty function method

For this and the next method we will assume that the concave-convex functions
ϕ is a Lagrangian originating from a concave optimization problem (see Sec-
tion 4.2.1.2). We will assume that the Lagrangian ϕ satisfies

ϕ(x, y) = U(x) + yTg(x)

C2 3 U : Rn → R is concave

C2 3 g : Rn → Rm is concave.

(4.5.2)
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We consider a so called penalty method (see e.g. [68]). This method adds a
penalising term to the Lagrangian based directly on the constraint functions.
The new Lagrangian ϕ′ is defined by

ϕ′(x, y) = ϕ(x, y) + ψ(g(x))

C2 3 ψ : Rm → R is strictly concave with ψu > 0

ψ(u) = 0 ⇐⇒ u ≥ 0.

(4.5.3)

It is easy to see that the saddle points of ϕ and ϕ′ are the same. This method,
when applied (with proper choice of ψ) to distributed optimization problems,
does not destroy the local nature of the gradient method, and implementation
is possible with only minimal additional information transfer. In particular the
additional transfer is only between neighbouring nodes.

Remark 4.5.1. This method has been considered previously by many authors,
(see [61] and the references therein), either without constraints, or with positivity
constraints, i.e. K = Rn+ × Rm+ . Theorem 4.5.2 below applies to all non-empty
closed convex set K ⊆ Rn+m.

4.5.2.3 Constraint modification method

We next recall a method proposed by Arrow et al.[10] and later studied in [61].
Here we instead modify the constraints to enforce strict concavity. The La-
grangian (4.5.2) is modified to become:

ϕ′(x, y) = U(x) + yTψ(g(x))

C2 3 U : Rn → R is concave

C2 3 g : Rn → Rm is concave

C2 3 ψ =[ψ1, . . . , ψm]T : Rm → Rm

ψj(0) = 0, ψju ≥ 0 and ψjuu < 0 for j = 1, . . .m.

(4.5.4)

It is clear that the saddle points of the modified and original Lagrangian will
be the same. Again, the method preserves the local structure of the gradient
method, requiring only minimal additional information transfer.
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Remark 4.5.2. Previous works [10],[61],[38] have proved convergence of this
method with positivity constraints, i.e. K = Rn+ × Rm+ . Theorem 4.5.2 below
applies to any constraint set which is a product set K = Kx ×Ky with Kx ⊆ Rn,
Ky ⊆ Rm both non-empty closed and convex.

4.5.2.4 Convergence results

We now give a global convergence results of the for each of the methods described
above on convex domains.

Theorem 4.5.2 (Convergence of modification methods). Assume that ϕ, ϕ′ and
K satisfy one of the following:

1. Auxiliary variable method: Let ϕ ∈ C2 be concave-convex on K ⊆ Rn+m a
non-empty closed convex set. Let ϕ′ and K ′ be defined by (4.5.1) and the
text directly below it.

2. Penalty function method: Let ϕ have the form (4.5.2), ϕ′ be defined by
(4.5.3) and K ⊆ Rn+m be an arbitrary non-empty closed convex set.

3. Constraint modification method: Let ϕ have the form (4.5.2), ϕ′ be given
by (4.5.4) and K = Kx × Ky with Kx ⊆ Rn, Ky ⊆ Rm both non-empty
closed and convex.

Then, if ϕ has a K-restricted saddle point, then the subgradient method (4.3.2)
on K applied to ϕ′ is globally convergent.

Remark 4.5.3. None of the modification methods produce a strictly concave-
convex function ϕ′. Because of this, these convergence results do not follow from
Theorem 4.5.1 and require a detailed proof. The lack of strict concave-convexity
is important in many applications where converting the problem into a strictly
concave-convex problem is impractical.

Remark 4.5.4. Each of the convergence results in Theorem 4.5.2 is proved using
Theorem 4.4.3. Despite the complexity of the non-linear and non-smooth systems
of ODEs involved, the application of Theorem 4.4.3 makes the convergence easy
to verify, which is evident from the simplicity of the proofs themselves.
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4.5.3 Multi-path congestion control

Multipath routing is a problem that has received considerable attention within
the communications literature due to the significant advantages it can provide
relative to congestion control algorithms that use single paths [124]. Nevertheless
their implementation is not directly obvious as the availability of multiple routes
can render the network prone to route flapping instabilities [202].

A classical approach to analyse such algorithms is to formulate them as solving a
network optimization problem where aggregate user utilities are maximized sub-
ject to capacity constraints [110]. In the seminal work in [110] it was noted that
when capacity constraints are relaxed with penalty functions and primal algo-
rithms are considered, then convergence can be guaranteed despite the presence
of multiple routes. In order, however, to achieve the network capacities, dual or
primal/dual algorithms need to be deployed [183]. Nevertheless, when multiple
routes per source/destination pair are available the corresponding optimization
problem is known to be not strictly convex and the use of classical gradient dy-
namics can lead to unstable behaviour [199], [107], [10]. In order to address this
issue various studies have considered relaxations that lead to a modified opti-
mization problem that is strictly convex [199], [62]. This leads to algorithms with
guaranteed convergence, but with the equilibrium solution deviating from that of
the solution of the original optimization problem.

Here we consider a multi-path routing problem with a fixed number of routes per
source/destination pair, as in [110], [199], [126], [129]. For such schemes we in-
vestigate algorithms that allow the corresponding network optimization problem
to be solved without requiring any relaxation in its solution or any additional in-
formation exchange. In particular, we show that this is feasible by incorporating
appropriate higher order dynamics in the local update rules.

4.5.3.1 Problem formulation

We consider a multi-path routing problem where each source/destination pair has
a fixed number of routes.

In particular, we consider a network that consists of sources s1, . . . , sm, routes
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r1, . . . , rn, and links l1, . . . , ll. Each source si is associated with a unique desti-
nation for a message which is to be routed. Every route rj has a unique source
si, and we write rj ∼ si to mean that si is the source associated with route rj.
Routes rj each use a number of links, and we write rj ∼ lk to mean that the
link lk is used by the route rj. The desired running capacity of the link lk is
denoted Ck, and 0 ≤ C ∈ Rl is the vector of these capacities. We let A be the
connectivity matrix, so that Akj = 1 if lk ∼ rj and 0 otherwise. In the same
way we set Hij = 1 if si ∼ rj and 0 otherwise. xj denotes the current usage of
the route rj. We associate to each source si a strictly concave, increasing utility
function Ui.

The problem of maximising total utility over the network is stated as

max
x≥0,Ax≤C

∑
si

Ui

 ∑
rj∼si

xj

 . (4.5.5)

Here the first sum is over all sources si, and the second over routes rj with rj ∼ si.
(We shall use such notation throughout this section.) This optimisation problem
is associated with the Lagrangian

ϕ(x, y) =
∑
si

Ui

 ∑
rj∼si

xj

+ yT (C − Ax). (4.5.6)

where y ∈ Rl+ are Lagrange multipliers that relax the Ax ≤ C constraint. A
common approach in the context of congestion control is to consider primal-
dual dynamics originating from this Lagrangian so as to deduce decentralized
algorithms for solving the network optimisation problem (4.5.5) [110],[183]. This
gives rise to the subgradient method

ẋj =
U ′i

( ∑
si∼rk

xk

)
−
∑
lk∼rj

yk

+

xj

ẏk =
 ∑
lk∼rj

xj − Ck

+

yk

(4.5.7)

where si ∼ xj in the equation for ẋj and U ′i is the derivative of the utility function
Ui. Note that the equilibrium points of (4.5.7) are saddle points of the Lagrangian
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(under the positivity constraints on x and y) and hence also solutions of the
optimization problem (4.5.5) (Slater’s condition is assumed to hold throughout
this section).

Remark 4.5.5. The dynamics (4.5.7) are nothing other than the subgradient
method (4.3.2) on the positive orthant Rn+l

+ applied to the Lagrangian (4.5.6).

The dynamics (4.5.7) are also localised in the sense that the update rules for xj
depend only on the current usage, xk, of routes with the same source and of the
congestion signals associated with links on these routes. In the same way the
update rules for congestion signals yk depend only on the usage of routes using
the associated link.

4.5.3.2 Instability

The dynamics (4.5.7) inherit the stability properties of the subgradient method
discussed in Section 4.4. In particular the distance of (x(t), y(t)) from any saddle
point (x̄, ȳ) is non-increasing. However, the lack of strict concavity of the La-
grangian (4.5.6) leads to a lack of global convergence of the dynamics (4.5.7) in
some situations as we shall describe below.

To simplify the situation we shall assume that there is a strictly positive saddle
point z̄ > 0. In this situation Theorem 4.4.2(i) applies, and the convergence
properties are the same as the unconstrained gradient method. The structure of
the problem suggests an application of Theorem 3.4.2. Here a simple computation
yields that Slinear is equal to S̄ (we use the notation of Chapter 3) unless the
following algebraic condition on the network topology holds:

∃u ∈ ker(H) \ {0}, λ > 0 such that ATAu = λu. (4.5.8)

Theorem 3.4.2 tells us that global convergence holds if (4.5.8) does not hold, but
in fact more is true.

Proposition 4.5.1. Let z̄ = (x̄, ȳ) > 0 be a saddle point of ϕ defined by (4.5.6)
and Ui ∈ C2 be be strictly concave and strictly increasing. Then the dynamics
(4.5.7) are globally convergent if and only if (4.5.8) does not hold.
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The algebraic criterion (4.5.8) on the network topology is satisfied by many net-
works, for example the network in Fig. 4.1.

We also remark that under the condition (4.5.8), the system is sensitive to noise
in the sense that the unconstrained dynamics satisfy the conditions of Theo-
rem 3.4.3.

4.5.3.3 Modified dynamics

Here we present a modification of the dynamics (4.5.7), that, while still fully
localised, give guaranteed convergence to an optimal solution of (4.5.5).

We use the auxiliary variables method described in Section 4.5.2.1. We define a
modified optimisation problem

max
x≥0,x′∈Rn
Ax≤C

∑
si

Ui

 ∑
rj∼si

xj

− 1
2
∑
rk

κk|x′k − xk|2 (4.5.9)

where x′ ∈ Rn is an additional vector to be optimised over, and κk > 0 are
arbitrary constants. It is important to note that this has the same optimal x
points as (4.5.5). This gives rise to a modified Lagrangian

ϕ′(x′, x, y) =
∑
si

Ui

 ∑
rj∼si

xj

+ yT (C − Ax)

− 1
2
∑
rk

κk|x′k − xk|2.
(4.5.10)

The new dynamics are given by the following subgradient method.

ẋj =
U ′i

( ∑
si∼rk

xk

)
−
∑
lk∼rj

yk + κj(x′j − xj)
+

xj

ẋ′j = κj(xj − x′j)

ẏk =
 ∑
lk∼rj

xj − Ck

+

yk

.

(4.5.11)

Remark 4.5.6. The dynamics (4.5.11) are the subgradient method (4.3.2) on
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Rn+ × Rn × Rl+ applied to the modified Lagrangian (4.5.10). The Lagrangian
(4.5.10) corresponds to (4.5.1) with ψ(z) = −|z|2/2 and M the n × n identity
matrix.

It is apparent (as discussed in Section 4.5.2.1) that the equilibrium points of the
modified dynamics (4.5.11) and the original dynamics (4.5.7) are in correspon-
dence. We remark that the new dynamics are analogous to the addition of a low
pass filter to the unmodified dynamics (4.5.7).

These dynamics are still localised. Each route rk is now associated with its usage,
xk, and a new variable x′k. To update xk the only additional information required
over the unmodified scheme is the value of x′k, and to update x′k one only needs
xk. Thus the new variables x′k are local to the updaters of xk.

Convergence of the modified dynamics to an optimum of the original problem
now follows immediately from Theorem 4.5.2.1).

Theorem 4.5.3. Let Ui ∈ C2 be strictly concave and strictly increasing. Then
solutions of (4.5.11) converge as t→∞ to maxima of the original problem (4.5.5).

Remark 4.5.7. The use of derivative action to damp oscillatory behaviour has
been studied previously in the context of node based multi-path routing in [162]
by incorporating derivative action in a price signal that gets communicated (i.e.
a form of prediction is needed) and a local stability result was derived. This has
also been used in gradient dynamics in game theory in [180]. A control scheme
similar to (4.5.11) for multi-path routing was proposed in [129] and studied in
both continuous and discrete time. In [129] the scheme differs from (4.5.11) in
that the xj variables are updated instantaneously. In our context this would be

x(t) = argmax
x≥0,Ax≤C

ϕ′(x′(t), x, y(t)). (4.5.12)

4.5.3.4 Numerical results

In this section we present numerical simulations to illustrate our analytic results.
We consider the two networks in Fig. 4.1 and Fig. 4.4.

In Fig. 4.2 and Fig. 4.3 we use the network in Fig. 4.1 with capacities all set to
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4
Figure 4.1: A first example network. Sources at 1 and 2 transmit to the desti-
nations 4 and 3 respectively. Each has a choice of two routes. Routes associated
with the source at 1 are dotted lines, while those associated with the source at 2
are solid lines.

1. The utility functions were chosen as log(1 +x) and 1− e−x for the sources at 1
and 2 respectively. The parameters κj were all set to 1. This network satisfies the
condition (4.5.8) and this is apparent in the oscillating modes of the unmodified
dynamics (4.5.7), shown in Fig. 4.2, that do not decay. However, when we apply
the modified dynamics (4.5.11) to this network, we obtain the rapid convergence
to the equilibrium shown in Fig. 4.3.

In Fig. 4.5 and Fig. 4.6 we use the network in Fig. 4.4. We take the utility function
as log(1 + x), and the capacities all set to 0.5. The parameters κj were all set
to 1. On this network the original dynamics Eq. (4.5.7) converge to equilibrium,
shown in Fig. 4.5, but there is transient oscillatory behaviour. When we instead
implement the modified dynamics (4.5.11), we see an improved performance with
more rapid convergence and damping of the oscillations.

4.6 Proofs of the main results

In this section we prove the main results of the chapter which are stated in
Section 4.4.

4.6.1 Outline of the proofs

We first give a brief outline of the derivations of the results to improve the read-
ability.
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Figure 4.2: The unmodified dynamics (4.5.7) running on the network given in
Fig. 4.1 with all link capacities set to 1 and the utility functions are log(1 + x)
and 1− e−x for the sources at 1 and 2 respectively. In this network the condition
(4.5.8) holds, and there is oscillatory behaviour which does not decay.
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Figure 4.3: The modified dynamics (4.5.11) running on the network given in
Fig. 4.1 with all link capacities set to 1, κj = 1 for all j. The utility functions
are log(1 +x) and 1− e−x for the sources at 1 and 2 respectively. In this network
the condition (4.5.8) holds, but the modification of the dynamics causes rapid
convergence to equilibrium.
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Figure 4.4: A second example network. A single source at 1 transmits to the
destination 7. It has a choice of two routes.
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Figure 4.5: The unmodified dynamics (4.5.7) running on the network given in
Fig. 4.4 with all link capacities set to 0.5 and the utility function is log(1 + x).
The system is asymptotically stable, but displays transient oscillatory behaviour.
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Figure 4.6: The modified dynamics (4.5.11) running on the network given in
Fig. 4.4 with all link capacities set to 0.5, κj = 1 for all j and the utility function
is log(1 + x). The oscillatory behaviour of the unmodified dynamics in Fig. 4.5
is damped, and the system rapidly converges to equilibrium.

4.6.1.1 Pathwise stability and convex projections

In Section 4.6.2 we prove the results described in Section 4.4.1.

We revisit some of the literature on topological dynamical systems [44], quoting a
more general result Theorem 4.6.1, from which Proposition 4.4.1 is deduced. Then
Lemma 4.4.1 is proved using the convexity of the domain K. The combination of
these results allow us to prove the main result of the subsection, Theorem 4.4.1,
using that the convex projection term cannot break the isometry property of the
flow on the ω-limit set.

4.6.1.2 Subgradient method

In Section 4.6.3 the results of Section 4.4.2 are then deduced from those of Sec-
tion 4.4.1.
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4.6.2 Convergence to a flow of isometries

In this section we provide the proofs of Proposition 4.4.1, Lemma 4.4.1 and The-
orem 4.4.1.

We begin by revisiting the literature on topological dynamical systems, in which a
type of incremental stability is studied, and show how this leads to an invariance
principle for pathwise stability.

Definition 4.6.1 (Equicontinuous semi-flow). We say that a flow (resp. semi-
flow) (φ,X, ρ) is equicontinuous if for any x(0) ∈ X and ε > 0 there is a δ =
δ(x(0), ε) such that if ρ(x′(0), x(0)) < δ then

ρ(x(t), x′(t)) ≤ ε for all t ∈ R (resp. R+). (4.6.1)

Remark 4.6.1. In the control literature equicontinuity of a semi-flow would cor-
respond to ‘semi-global non-asymptotic incremental stability’, but we shall keep
the term equicontinuity for brevity and consistency with [44].

Definition 4.6.2 (Uniformly almost periodic flow). We say that a flow (φ,X, ρ)
is uniformly almost periodic if for any ε > 0 there is a syndetic set A ⊆ R, (i.e.
R = A+B for some compact set B ⊆ R), for which

ρ(φ(t, x), x) ≤ ε for all t ∈ A, x ∈ X. (4.6.2)

For the readers convenience we reproduce the results, [44, Theorem 8] and [56,
Proposition 4.4.], that we will use.

Theorem 4.6.1 (G. Della Riccia [44]). Let (φ,X, ρ) be an equicontinuous semi-
flow and let X be either locally compact or complete. Let Ω be its ω-limit set.
Then (φ,Ω, ρ) is an equicontinuous semi-flow of homeomorphisms of Ω onto Ω.
This generates an equicontinuous flow.

The backwards flow given by Theorem 4.6.1 is only unique on Ω, (see Remark 4.4.1
which also applies here).

Proposition 4.6.1 (R. Ellis [56]). Let (φ,X, ρ) be a flow, with X compact. Then
the following are equivalent:
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(i) The flow is equicontinuous.

(ii) The flow is uniformly almost periodic.

In our case we study pathwise stability which is a particular form of equiconti-
nuity. We prove stronger results in this special case.

Proof of Proposition 4.4.1. By Theorem 4.6.1 (φ,Ω, d) is an equicontinuous flow
with an equilibrium point z̄. Let R > 0 be arbitrary, and define

YR =
{

z(0) ∈ Ω : sup
t∈R

d(z(t), z̄) ≤ R

}
. (4.6.3)

As the flow is equicontinuous, YR is a closed bounded subset of Rn+m and hence
compact, and moreover, the union of the sets YR over R ≥ 0 is Ω. By Proposi-
tion 4.6.1 the flow (φ, YR, d) is uniformly almost periodic. By pathwise stability,
d : YR × YR → R is a non-increasing along the direct product flow, and is a
continuous function on a compact set. Hence we have the inequality, for any two
points z(0), z′(0) ∈ YR,

lim
t→−∞

d(z(t), z′(t)) = sup
t∈R

d(z(t), z′(t))

≥ inf
t∈R

d(z(t), z′(t)) = lim
t→∞

d(z(t), z′(t)).
(4.6.4)

We claim that the two limits are equal. Indeed, by uniform almost periodicity
there are sequences tn →∞ and t′n → −∞ as n→∞ for which

0 = lim
n→∞

d(z(tn), z(0)) = lim
n→∞

d(z(t′n), z(0)) (4.6.5)

and the analogous limits hold for z′ for the same sequences tn, t′n. Hence, by
continuity of d, we have

lim
t→−∞

d(z(t), z′(t)) = d(z(0), z′(0)) = lim
t→∞

d(z(t), z′(t)). (4.6.6)

Hence d(z(t), z′(t)) is constant. By picking R big enough, this holds for any
z(0), z′(0) ∈ Ω, which completes the proof that the sub-semi-flow generates a
flow of isometries.

It remains to show that Ω is convex. To this end let z(t), z′(t) be two trajectories
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of (φ,Ω, d). Let that λ ∈ (0, 1) and define z′′(t) = λz(t)+(1−λ)z′(t). By the same
argument as used in the proof of Proposition 3.6.1 we deduce that z′′(t) is a trajec-
tory of the original semi-flow, but (as argued above) by uniform almost periodicity
of (φ,Ω, d) we have a sequence of times tn → ∞ for which d(z(tn), z(0)) → 0 as
n → ∞ and the same limit for z′(t). Hence d(z′′(tn), z′′(0)) → 0 also, showing
that z′′(0) is in the ω-limit set.

We now work under the set of assumptions (4.4.1) and consider projected pathwise
stable differential equations.

Proof of Lemma 4.4.1. Let z(t) and z′(t) be two arbitrary solutions to the pro-
jected ODE, and define W (t) = 1

2 |z(t)−z′(t)|2. Then W is absolutely continuous
and for almost all times t ≥ 0 we have,

Ẇ (t) = (z(t)− z′(t))T (ż(t)− ż′(t))

= (z(t)− z′(t))T (f(z(t))− f(z′(t)))+

− (z(t)− z′(t))TPNK(z(t))(f(z(t)))+

+ (z(t)− z′(t))TPNK(z′(t))(f(z′(t))).

(4.6.7)

The first term is non-positive due to the assumption that the original ODE was
pathwise stable. The other two terms are non-positive due to the definition of
the normal cone.

We now use the isometry property together with the geometry of the convex
projection term to obtain the key result of this section, Theorem 4.4.1, which
states that the limiting dynamics of a pathwise stable ODE restricted to a convex
set K have C1 smooth vector field and lie inside one of the faces of K.

To prove the theorem we will make use of a simple lemma on faces of convex
sets.

Lemma 4.6.1. Let K ⊆ Rn be non-empty closed and convex and A ⊆ K. Let
F be the minimal face of K containing A, (see Definition 4.2.3), then relint(F )
intersects ConvA.

The statement of this lemma and the idea behind its proof are illustrated by
Fig. 4.7.
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F
A

Figure 4.7: This figure illustrates the claim of Lemma 4.6.1. The triangle F is
the minimal face containing the convex set A (shaded region). If A intersects two
subfaces of F , then, as shown, to be convex it must also intersect the relative
interior of F .

Proof. As faces are convex, the minimal face containing A is the same as the min-
imal face containing ConvA. So we are free to assume without loss of generality
that A is convex. Assume for a contradiction that A ∩ relint(F ) = ∅. Define the
set F as

{C : C is a proper face of F and A ∩ (relintC) 6= ∅}.

Note that every point in the relative boundary of F lies in the relative interior
of some proper face of F by property (e) below Definition 4.2.2. This implies
that F is not empty. Now, either there is a face C in F that contains all other
faces in F , or there are two faces F1, F2 ∈ F such that there is no face F3 ∈ F
containing both F1 and F2. In the first case, C is a face containing A that is
strictly contained in F , contradicting minimality of F . In the second case let
xi ∈ (relintFi) ∩ A for i = 1, 2, (note that x1 6= x2 by property (e) of faces), and
let x3 be some point in the open line segment between x1 and x2. By convexity of
A, x3 ∈ A. Hence x3 lies in relint(F3) for some face F3, and F3 ∈ F , as otherwise
x3 would lie in relint(F ) contradicting the assumption that (relintF )∩A = ∅. We
claim that F3 contains both F1 and F2, a contradiction. Indeed, first we note that
x1, x2 ∈ F3 by property (ii) in Definition 4.2.2 as x3 ∈ F3. Then, as Fi is convex
and xi ∈ relint(Fi), Fi can be written as the union of line segments which have
xi as an interior point (i.e. not an end point). But each of these line segments
touches F3 at xi, so by Definition 4.2.2(ii) each lies entirely within F3.

Proof of Theorem 4.4.1. Step 1: Identification of the limiting equation.
First, by Lemma 4.4.1 and Proposition 4.4.1 (φ,Ω, d) is a flow of isometries. Now
let F be the minimal face that contains Ω, i.e. the intersection of all faces that
contain Ω, and NF be its normal cone. (In step 2 of the proof we will identify this
face more precisely). We note that the vector field in (4.4.1) must be directed
parallel to V , as otherwise trajectories would leave F , contradicting Ω ⊆ F .
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It is sufficient to show that if z = z(0) ∈ Ω with n(t) = PNK(z(t))(f(z(t))) then n(t)
is orthogonal to F . If z(t) ∈ relintK then NK(z(t)) = NF and the orthogonality
holds. Otherwise z(t) lies in the relative boundary of F .

As each solution of the differential equation (4.4.1) holds only for almost all times
t and we wish to consider an uncountably infinite family of solutions, we run the
risk of taking an uncountable union of sets of measure zero, (which does not
necessarily have zero measure). Avoiding this makes the proof technical. To
better communicate the idea of the proof, we shall first give the proof that would
work if the differential equations held for all times t.

Step 1.1: Heuristic (unrigorous) proof.

Let C = Conv Ω, then, by the definition of a face, Ω ⊆ F implies that C ⊆ F .
From Lemma 4.6.1 and the minimality of F we deduce that C must intersect
relintF . Thus there are x(0),y(0) ∈ Ω and λ ∈ (0, 1) with w = λx(0) + (1 −
λ)y(0) ∈ relintF . Set W = 1

2 |x(t)− z(t)|2. By the isometry property of the flow
we know that Ẇ = 0 at t. Following the computation (4.6.7) in the proof of
Lemma 4.4.1 we deduce that (x− z)Tn = 0. Similarly we obtain (y− z)Tn = 0.
Taking a convex combination of these equalities, we obtain

(w− z)Tn = λ(x− z)Tn + (1− λ)(y− z)Tn = 0 + 0 = 0 (4.6.8)

and as w is in the relative interior of F this implies that n is orthogonal to F .

Step 1.2: Rigorous proof. We now give the fully rigorous proof. We must
show that the set of times t when n(t) is not orthogonal to F is of measure zero.
Let Ω′ be a countable dense subset of Ω that contains z(0). By invariance of Ω
under the flow φ, the set φ(t,Ω′) = {φ(t,x) : x ∈ Ω′} is also dense in Ω for any
t ∈ R. Then the set

A = {t ∈ [0,∞) : ∃x(0) ∈ Ω′ such that

ẋ(t) 6= f(x(t))−PNK(x(t))(f(x(t)))}
(4.6.9)

is the countable union of measure zero sets, and is hence of measure zero. From
the isometry property and by considering W (t) = 1

2 |x(t)− z(t)|2 with x(0) ∈ Ω′,
it follows that (x(t)− z(t))Tn(t) = 0 for all x(0) ∈ Ω′ and t ∈ [0,∞) \ A. Thus,
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for t ∈ [0,∞) \A, (x− z(t))Tn(t) = 0 for all x in a dense subset of Ω, and hence
for any x ∈ Ω. The proof now follows as step 1.1. above.

Step 2: Identification of the limiting face. Finally we will show that the
face F defined above is in fact the minimal face F ′ containing the equilibrium
points of the semi-flow (φ,K, d). We argue by contradiction. If F 6= F ′ then there
must be some trajectory z(t) in Ω and a time t0 with z(t0) ∈ F \F ′. For T > 0 we
define z(t;T ) = 1

2T
∫ T
−T z(t + s) ds. For any finite T this is a convex combination

of trajectories in Ω, and as Ω is convex by Proposition 4.4.1, t 7→ z(t;T ) is
a trajectory in Ω. Next, as the semi-flow is uniformly almost periodic due to
Proposition 4.6.1 the trajectory z(t) is an almost periodic function. Therefore,
the limit T → ∞ of z(t;T ) exists (see e.g. [56]), and this limit is clearly a
constant (z′ say) independent of t. As Ω is closed, z′ ∈ Ω and being a constant,
is an equilibrium point of the semi-flow.

To obtain a contradiction we argue that z′ 6∈ F ′ which is impossible as F ′ contains
all equilibrium points. Indeed, this follows as the trajectory z(t), being almost
periodic and passing through z(t0) ∈ F \ F ′ spends a positive proportion of its
time in F \ F ′. Therefore, there is a δ > 0 such that for any sufficiently large T ,
the average z(t;T ) satisfies d(z(t;T ), F ) ≥ δ and this property carries over to the
limit z′.

4.6.3 Subgradient method

In this section we give the proofs of the results of Section 4.4.2.

Proof of Theorem 4.4.2. We apply Theorem 4.4.1, noting the pathwise stability
of the gradient method (incrementally-stable-fullspace). Let F be the minimal
face given by Theorem 4.4.1. There are two cases.

Case 1. S̄ ∩ intK is non-empty. Then, as F must contain all K-restricted
saddle points, it must contain a point in the interior of K. The only such face
is K itself whose affine span is Rn+m (as K has non-empty interior) which has
normal cone {0}. Thus we are in case (i), (4.4.2) is the gradient method (4.3.1)
and (4.4.3) holds.
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Case 2. S̄ ∩ intK is empty. We are in case (ii) of the theorem. The claims of
(ii) follow directly from Theorem 4.4.1.

4.6.4 A general convergence criterion

In this section we give the proofs of Section 4.4.3.

Proof of Theorem 4.4.3. By Theorem 4.4.2(i) and (ii) any solution z(t) in the
ω-limit set of the subgradient method on K solves (4.4.4). By using Π, the
orthogonal projection matrix onto the orthogonal complement of NV , the ODE
(4.4.4) can be written as (4.A.2). Thus, by Theorem 4.A.1 (in the Section 4.A),
z(t) satisfies (4.4.22) and (4.4.23) for all t ∈ R and r ∈ [0, 1]. Therefore, if
there are no non-constant trajectories of the subgradient method on K satisfying
these conditions then the ω-limit set consists only of equilibrium points and the
subgradient method on K is globally convergent.

4.7 Proofs of the examples

In this section we provide the proofs of the results presented in Section 4.5.

4.7.1 Convergence under strict concave-convexity on ar-
bitrary convex domains

Proof of Theorem 4.5.1. We adapt the reasoning in Example 3.4.1, using instead
Theorem 4.4.3. We consider the strictly concave case. The strictly convex case
is the same, but switching the roles of x and y. By translation of coordinates
we may assume that 0 is a K-restricted saddle point. Let V, F,Π be as in The-
orem 4.4.3, and let z(t) = (x(t), y(t)) be a trajectory of the subgradient method
on K satisfying (4.4.22) and (4.4.23) for all t ∈ R and r ∈ [0, 1].

Step 1: x(t) = 0. z(t) lies in V for all times t, which implies that Πz(t) = z(t).
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(4.4.23) implies that, for all r ∈ [0, 1] and t ∈ R,

x(t)Tϕxx(rz(t))x(t)− y(t)Tϕyy(rz(t))y(t) = 0.

By the concavity and convexity of ϕxx and ϕyy respectively we deduce that

x(t)Tϕxx(rz(t))x(t) = 0.

Strict concavity of ϕ implies that ϕxx is of full rank except at isolated points.
Thus, by varying r ∈ [0, 1] we deduce that x(t) = 0.

Step 2: y(t) is constant.

Let Π be decomposed on Rn × Rm as

Π =
Π11 Π12

Π21 Π22

 . (4.7.1)

Then (4.4.22) (for x(t) = 0) is

ẏ = Π21ϕxy(0)y.

The relation Πż = ż then implies that

Π11ẋ+ Π12ẏ = ẋ

and as ẋ = 0 we deduce that Π12Π21ϕxy(0)y = 0 and hence that Π21ϕxy(0)y = 0,
i.e. ẏ = 0. Therefore all limiting solutions of the subgradient method on K are
equilibrium points and the subgradient method on K is globally convergent.

4.7.2 Modification methods

We consider each method in turn. Theorem 4.5.2 may then be obtained by
combining all the results proved in each subsection below.
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4.7.2.1 Auxiliary variables method

The majority of the proof for the auxiliary variables method was completed in
Chapter 3. We provide the remainder below.

Proof of Theorem 4.5.2.1). It was proved in Proposition 3.7.1 that for any affine
subspace V containing a V -restricted saddle point the subgradient method applied
to ϕ′ is globally convergent. By Theorem 4.4.2 this implies global convergence of
the subgradient method for any closed convex K.

4.7.2.2 Penalty function method

The proof below shows that this method gives convergence by adding just enough
strict convexity to eliminate the oscillations caused by the matrix A(0).

Proposition 4.7.1. Let K ⊆ Rn+m be non-empty closed and convex. Let (4.5.2),
(4.5.3) hold, and assume that there exists a K-restricted saddle point. Then the
subgradient method (4.3.2) on K is globally convergent.

Proof. By the change of variables

ϕ̃′(x, y) = ϕ′(x+ x̄, y + ȳ)

= U(x+ x̄) + ȳTg(x+ x̄) + yTg(x+ x̄) + ψ(g(x+ x̄))

= Ũ(x) + yT g̃(x) + ψ(g̃(x))

for a K-restricted saddle point (x̄, ȳ) we may assume that 0 is a K-restricted
saddle point. We apply Theorem 4.4.3 and let F, V,Π be as in Theorem 4.4.3
and z(t) = (x(t), y(t)) be a trajectory of the subgradient method on K satisfying
(4.4.22) and (4.4.23) for all t ∈ R and r ∈ [0, 1].. Define (x̃(t), ỹ(t)) = z̃(t) =
Πz(t). We compute that

A(0) =
 0 gx(0)T

−gx(0) 0

 . (4.7.2)

Step 1: gx(0)x̃(t) = 0.
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The condition (4.4.23) implies that the following expression is zero for all s ∈
[0, 1],

z̃TB(sz)w = x̃Tϕxxx̃+ [gxx̃]Tψuu[gxx̃] + ψu(x̃Tgxxx̃) (4.7.3)

where ϕxx is evaluated at sz, with gx, gxx at sx, and ψuu, ψuk at u = g(sx), and
where xTgxxx is the vector with ith component xTgixxx where g = [g1, . . . , gm]T .
All the terms are non-positive by the assumptions on ψ and ϕ. Strict concavity
of ψ and that (4.7.3) vanishes for all s ∈ [0, 1] implies that gx(sx)x̃ = 0 for all
s ∈ [0, 1]. In particular gx(0)x̃(t) = 0.

Step 2: x̃(t) is constant.

Let Π be decomposed as in (4.7.1). Then x̃, ỹ satisfy

˙̃x = Π11gx(0)T ỹ ˙̃y = −Π21gx(0)T ỹ.

Taking the time derivative of gx(0)x̃ = 0 we obtain gx(0)Π11gx(0)T ỹ = 0. As
Π11 is positive semi-definite, ker(gx(0)Π11gx(0)T ) = ker(Π11gx(0)T ), and hence
˙̃x = Π11gx(0)T ỹ = 0 and x̃(t) is constant.

Step 3: ỹ(t) is constant. The relation Π ˙̃z = ˙̃z implies that Π11 ˙̃x+P12 ˙̃y = ˙̃x = 0
and 0 = Π12 ˙̃y = −Π12Π21gx(0)T ỹ. Therefore, again, as Π12Π21 is positive semi-
definite we have ỹTgx(0)Π12Π21gx(0)T ỹ = 0 and Π21gx(0)T ỹ = 0 = − ˙̃y, which
implies ỹ is constant.

4.7.2.3 Constraint modification method

We first consider the case without constraints. The proof below shows that the
method works by disrupting the linear structure of the oscillating solutions by
changing A(z) to ensure it is not equal to A(0), (where 0 is a saddle).

Proposition 4.7.2. Let (4.5.4) hold and S̄ 6= ∅. Then S = S̄ and the gradient
method (4.3.1) is globally convergent.

Proof. Without loss of generality we may assume that 0 is a saddle point of ϕ. We
use the classification of S given by Theorem 3.4.2 and use the notation therein.
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We first compute,

A(z) =
 0 (ψggx)T

−ψggx 0

 . (4.7.4)

Let z(t) = (x(t), y(t)) ∈ Slinear then we have

0 = d

ds
[(ψig(g(sx))Tgx(sx)x]s=0 for i = 1, . . . ,m (4.7.5)

Then by applying the chain rule we obtain

0 = [gx(0)x]Tψigg(0)[gx(0)x] + ψig(0)T (xTgxx(0)x), (4.7.6)

where xTgxx(0)x is the vector with components xTgixxx where g = [g1, . . . gm]T .
All the terms are non-positive due to the assumptions on ψ and g. As ψigg < 0 we
have gx(0)x = 0. Hence ẏ = 0 and therefore ẋ is constant. As |x|2 + |y|2 is also
constant this means that ẋ is zero. Therefore the Slinear = S̄ and the gradient
method is globally convergent.

Now we extend the stability to the subgradient method on sets which have a
product structure. Due to Corollary 4.4.1 this is essentially an exercise in alge-
bra.

Corollary 4.7.1. Let K = Kx×Ky for Kx ⊆ Rn and Ky ⊆ Rm non-empty closed
and convex. Let (4.5.4) hold and there be a K-restricted saddle point. Then the
subgradient method (4.3.2) on K is globally convergent.

Proof. By Corollary 4.4.1 it suffices to prove that the subgradient method con-
verges on aff(F ) where F is an arbitrary face of K that contains a K-restricted
saddle point z̄. By translation of coordinates we may assume that z̄ = 0. By
the product structure of K, V = aff(F ) must also decompose into V = Vx × Vy
with Vx ⊆ Rn and Vy ⊆ Rm affine subspaces. Let the orthogonal projection ma-
trices onto Vx, Vy, which exist as (0, 0) ∈ Vx × Vy, be P,Q respectively. Then the
subgradient method on V , satisfies, for (x, y) ∈ V ,

ẋ = Pϕx = ϕVx , ẏ = −Qϕy = −ϕVy (4.7.7)

where ϕV (x, y) := ϕ(Px,Qy). By a rotation of coordinate bases we may assume
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that Vx = Rn′×{0} and Vy = Rm′×{0} for some n′ ≤ n and m′ ≤ m. Then ϕV :
Rn′×Rm′ → R is of the form (4.5.4) and Proposition 4.7.2 gives convergence.

4.7.3 Multi-path congestion control

Proof of Proposition 4.5.1. The if claim follows directly from the discussion above.
For the only if we explicitly construct a trajectory that does not converge. Let
u satisfy (4.5.8), then it can be directly verified that

z(t) = z̄ + cetA(z̄)

 u

−Au


is a solution (for any c > 0) of the unconstrained gradient method (4.3.1) applied
to ϕ. By taking c small enough using that z̄ > 0 (and skew-symmetry of A(z̄))
we can ensure that z(t) > 0 for all t ∈ R, and hence z(t) is also a solution of the
subgradient dynamics (4.5.7).

4.A Appendix

We now recall a result proved in the previous Chapter 3 on the limiting solutions
of the subgradient method on affine subspaces. To present this result we recall
from Chapter 3 the definition of the following matrices of partial derivatives of
ϕ.

A(z) =
 0 ϕxy(z)
−ϕyx(z) 0

 , B(z) =
ϕxx(z) 0

0 −ϕyy(z)

 . (4.A.1)

Consider the ODE (4.4.4) in more detail. Let Π ∈ R(n+m)2 be the orthogonal
projection matrix onto the orthogonal complement of NV . Then the ODE (4.4.4)
can be written as

ż = Πf(z) (4.A.2)

where f(z) =
[
ϕx −ϕy

]T
. The result is stated for 0 being an equilibrium point;

the general case may be obtained by a translation of coordinates.
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Theorem 4.A.1. [Theorem 3.4.5] Let Π ∈ R(n+m)2 be an orthogonal projection
matrix, ϕ be C2 and concave-convex on Rn+m, and 0 be an equilibrium point of
(4.A.2). Then the trajectories z(t) of (4.A.2) that lie a constant distance from
any equilibrium point of (4.A.2) are exactly the solutions to the linear ODE:

ż(t) = ΠA(0)Πz(t)

that satisfy, for all t ∈ R and r ∈ [0, 1], the condition

z(t) ∈ ker(ΠB(rz(t))Π) ∩ ker(Π(A(rz(t))−A(0))Π)

where A(z) and B(z) are defined by (4.A.1).

Remark 4.A.1. As discussed in Chapter 3, this result can be localised for when
ϕ is not concave-convex on the whole of Rn+m. In particular trajectories in the
ω-limit set of the subgradient method given by Theorem 4.4.2(ii) satisfy the con-
ditions given in Theorem 4.A.1.
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Chapter 5

Approximations of strongly
continuous families of unbounded

self-adjoint operators

The problem of approximating the discrete spectra of families
of self-adjoint operators that are merely strongly continuous is
addressed. It is well-known that the spectrum need not vary
continuously (as a set) under strong perturbations. However,
it is shown that under an additional compactness assumption
the spectrum does vary continuously, and a family of symmetric
finite-dimensional approximations is constructed. An important
feature of these approximations is that they are valid for the
entire family uniformly. An application of this result to the study
of plasma instabilities is illustrated.
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5.1 Introduction

5.1.1 Overview

We present a method for obtaining finite-dimensional approximations of the dis-
crete spectrum of families of self-adjoint operators. We are interested in operators
that decompose into a system of two coupled Schrödinger operators with oppo-
site signs (see (5.1.1) below). However our results are applicable to “standard”
Schrödinger operators, and in fact we prove our main result, Theorem 5.1.1, for
Schrödinger operators first, see Theorem 3′. We are interested in the following
problem:

Problem 5.1.1. Consider the family of self-adjoint unbounded operators

Mλ = A+Kλ =
−∆ + 1 0

0 ∆− 1

+
Kλ++ Kλ+−
Kλ−+ Kλ−−

 , λ ∈ [0, 1] (5.1.1)

acting in an appropriate subspace of L2(Rd) ⊕ L2(Rd), where {Kλ}λ∈[0,1] is a
bounded, symmetric and strongly continuous family. Is it possible to construct
explicit finite-dimensional self-adjoint approximations ofMλ whose spectrum in
compact subsets of (−1, 1) converges to that ofMλ uniformly in λ?

This problem is motivated by Maxwell’s equations, which in the Lorenz gauge
may be written as the following elliptic system for the electromagnetic potentials
φ and A (after taking a Laplace transform in time):

 (−∆ + λ2)A + j = 0

(∆− λ2)φ+ ρ = 0
(5.1.2)

where ρ and j are the charge and current densities, respectively. The specific
problem we have in mind, treated separately in Chapter 6, is that of instabilities
of the relativistic Vlasov-Maxwell system describing the evolution of collisionless
plasmas and it is outlined in Section 5.6 below. The Vlasov equation provides
the coupling of the two equations in (5.1.2), making the system self-adjoint (see,
for instance, the expressions (5.6.5) and (5.6.6)).
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5.1.2 The main result

Let us first summarise the notation we use throughout this article. For operators
we use upper case calligraphic letters, such as T . The spectrum of T is denoted
sp(T ). For the sesquilinear form associated to an operator we use the same letter
in lower case Fraktur font. Hence the operator T has the associated form t. The
space of bounded linear operators on a Hilbert space H is denotedB(H). Domains
of operators or forms are denoted by D. The graph norms of an operator T and a
form t are denoted ‖·‖T and ‖·‖t, respectively. Strong, strong resolvent and norm
resolvent convergence are denoted by s−→, s.r.−−→ and n.r.−−→, respectively. For brevity,
we denote N = N ∪ {∞}. We also recall the definition of a sectorial form:

Definition 5.1.1. A form t is said to be sectorial if its numerical range Θ(t)
(that is, the set {t[u, u] : ‖u‖ = 1, u ∈ D(t)} ⊆ C) is a subset of a sector of the
form

{ζ : | arg(ζ − γ)| ≤ θ} , θ ∈ [0, π/2), γ ∈ R.

Let H = H+ ⊕ H− be a (separable) Hilbert space with inner product 〈·, ·〉 and
norm ‖·‖ and let

Aλ =
Aλ+ 0

0 −Aλ−

 and Kλ =
Kλ++ Kλ+−
Kλ−+ Kλ−−

 , λ ∈ [0, 1]

be two families of operators on H depending upon the parameter λ ∈ [0, 1], where
the family Aλ is also assumed to be defined for λ in an open neighbourhood D
of [0, 1] in the complex plane. The two families Aλ and Kλ satisfy:

i) Sectoriality: The families {Aλ±}λ∈D are holomorphic of type (B)1. That is,
they are families of sectorial operators and the associated sesquilinear forms aλ±
are holomorphic of type (a): all {aλ±}λ∈D are sectorial and closed, with domains
that are independent of λ and dense in H±,2 and D 3 λ 7→ aλ±[u, v] are holomor-
phic for any u, v ∈ D(aλ±). Furthermore, we assume that Aλ± are self-adjoint for
λ ∈ [0, 1].

1We adopt the terminology of Kato [109].
2Hence we shall remove the λ superscript when discussing the domains of aλ and aλ±.
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ii) Gap: Aλ± > 1 for every λ ∈ [0, 1].

iii) Bounded perturbation: {Kλ}λ∈[0,1] ⊂ B (H) is a self-adjoint strongly con-
tinuous family.

iv) Compactness: There exist self-adjoint operators P± ∈ B (H±) which are
relatively compact with respect to Aλ±, satisfying Kλ = KλP for all λ ∈ [0, 1]
where

P =
P+ 0

0 P−

 .

Finally, if the family Aλ does not have a compact resolvent we assume:

v) Compactification of the resolvent: There exist holomorphic forms {wλ
±}λ∈D

of type (a) and associated operators {Wλ
±}λ∈D of type (B) such that for λ ∈ [0, 1],

Wλ
± are self-adjoint and non-negative. Define

Wλ =
Wλ

+ 0
0 −Wλ

−

 , λ ∈ D,

and
Aλε := Aλ + εWλ, λ ∈ D, ε ≥ 0 (5.1.3)

with respective associated forms wλ and aλε . Then we assume that D(wλ)∩D(a)
are dense for all λ ∈ D and the inclusion (D(wλ) ∩ D(a), ‖·‖aλε ) → (H, ‖·‖) is
compact for some λ ∈ D and all ε > 0.

Goal. Define the family of (unbounded) operators {Mλ}λ∈[0,1], acting in H, as

Mλ = Aλ +Kλ, λ ∈ [0, 1]. (5.1.4)
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It is these operators that we wish to approximate.

The Projections. Let Aλε be as in (5.1.3), and define

Mλ
ε = Aλε +Kλ, λ ∈ [0, 1]. (5.1.5)

Let

• {eλε,k}k∈N ⊂ H be a complete orthonormal set of eigenfunctions of Aλε ,

• Gλε,n : H→ H be the orthogonal projection operators onto span(eλε,1, . . . , eλε,n),

• M̃λ
ε,n be the n-dimensional operator defined as the restriction of Mλ

ε to
Gλε,n(H).

For λ ∈ [0, 1], ε ≥ 0 and n ∈ N we define the measures (where we always take
multiplicities into account!)

νλ,ε =
∑

x∈sppp(Mλ
ε )\spess(Mλ

ε )
δx

and for any ε > 0 the measures

ν̃λ,ε,n =
∑

x∈sp(M̃λ
ε,n)

δx,

where δx is the standard Dirac delta function centred at x. Consider a cutoff
function φη satisfying

φη(x) =

1 x ∈ [−1, 1]

0 x ∈ R \ (−1− η, 1 + η)
, φη ∈ C(R, [0, 1]), η ∈ (0, α). (∗)

Finally, define the measures
µηλ,ε = φηνλ,ε

and
µ̃ηλ,ε,n = φην̃λ,ε,n.

Our main result is formulated for the general case where the spectrum of Aλ may
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have a continuous part:

Theorem 5.1.1. The mappings [0, 1] × [0,∞) 3 (λ, ε) 7→ µηλ,ε and [0, 1] 3 λ 7→
µ̃ηλ,ε,n (here ε > 0) are weakly continuous and as n → ∞, dBL(µ̃ηλ,ε,n, µ

η
λ,ε) → 0

uniformly in λ ∈ [0, 1].

Remark 5.1.1. Note that the above statement does not depend on the particular
choice of cutoff function φη, as long as the requirements in (∗) are satisfied.

A Simpler Case: Semi-Bounded Operators. As the notation becomes
quite cumbersome due to the decomposition H = H+ ⊕ H−, we shall first treat
the simpler case of semi-bounded operators. Let Aλ and Kλ, where λ ∈ [0, 1],
be two families of operators on some Hilbert space H (which is not assumed to
decompose as before) where the family Aλ is also assumed to be defined for λ in
an open neighbourhood D of [0, 1] in the complex plane. For the sake of precision,
we repeat the assumptions (i)-(v) reformulated for this case.

i) Sectoriality: The family Aλ is sectorial of type (B) in λ ∈ D and self-adjoint
for λ ∈ [0, 1].

ii) Semi-boundedness: Aλ > 1 for every λ ∈ [0, 1].

iii) Bounded perturbation: {Kλ}λ∈[0,1] ⊂ B (H) is a self-adjoint strongly con-
tinuous family.

iv) Compactness: There exists a self-adjoint operator P ∈ B (H) which is rel-
atively compact with respect to Aλ, satisfying Kλ = KλP for all λ ∈ [0, 1].

v) Compactification of the resolvent: There exist holomorphic forms {wλ}λ∈D
of type (a) and associated operators {Wλ}λ∈D of type (B) such that for λ ∈ [0, 1],
Wλ are self-adjoint and non-negative. Define

Aλε := Aλ + εWλ, λ ∈ D, ε ≥ 0

with respective associated forms wλ and aλε . Then we assume that D(wλ)∩D(a)
are dense for all λ ∈ D and the inclusion (D(wλ) ∩ D(a), ‖·‖aλε ) → (H, ‖·‖) is
compact for some λ ∈ D and all ε > 0.
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We define the projections and measures as above and therefore do not repeat the
definition again.

Theorem 3′. In the semi-bounded case the mappings [0, 1] × [0,∞) 3 (λ, ε) 7→
µηλ,ε and [0, 1] 3 λ 7→ µ̃ηλ,ε,n (here ε > 0) are weakly continuous and as n → ∞,
dBL(µ̃ηλ,ε,n, µ

η
λ,ε)→ 0 uniformly in λ ∈ [0, 1].

In the subsequent sections we will prove Theorem 3′ before proving Theorem 5.1.1
in Section 5.5.

5.1.3 Discussion

One of the main driving forces behind the study of linear operators in the 20th
century was the development of quantum mechanics. Particular attention had
been given to the characterisation of the spectra of such operators, as it encodes
many important physical properties (such as energy levels, for instance). When
operators become too complex, a typical approach is to view them as perturba-
tions of simpler operators whose spectrum is well understood. Two of the classic
texts on this topic are those written by Kato [109] and Reed and Simon [171].
Both are still widely cited to this day. We also refer to Simon’s review paper
[181] and the references therein.

Recently, Hansen [80] presented new techniques for approximating spectra of
linear operators (self-adjoint and non-self-adjoint) from a more computational
point of view. In [184], Strauss presents a new method for approximating eigen-
values and eigenvectors of self-adjoint operators via an algorithm that is itself
self-adjoint, and which does not produce spectral pollution. Both papers pro-
vide extensive references to additional literature in the field. We also mention
[115], where analysis similar to ours is performed for bounded operators. We
note that spectral pollution (the appearance of spurious eigenvalues within gaps
in the essential spectrum when approximating) has attracted significant attention
[42, 127, 128]. We do not encounter this issue here because of how the problem is
set up: the trial spaces are (and therefore commute with) the spectral projectors
of the block diagonal parts of the unperturbed operator, see e.g. [128] for more
discussion of this topic.
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The question that we are motivated by is somewhat different. We are interested
in the simultaneous approximation of families of operators, rather than approxi-
mating a single fixed linear operator. This may be viewed as perturbation theory
with two parameters: the continuous parameter λ representing small continuous
perturbations generating the family of operators, and the discrete parameter n
representing the dimension of the finite-dimensional approximation. One of the
important aspects of this theory is that the finite-dimensional approximations
approximate the entire family of operators uniformly in λ. Previously, in [17,
Proposition 2.5] a much weaker result of this type was obtained, where the re-
solvent set of Schrödinger operators with a compact resolvent was shown to be
stable under similar perturbations. We also mention [43, 41, 104] where the con-
vergence of the so-called Hill’s method (or Fourier-Floquet-Hill) is studied. This
is a numerically-oriented method for studying spectra of periodic differential op-
erators (not necessarily self-adjoint) and involves the truncation of the associated
Fourier series. We refer in particular to [104] for an instance where this method
is also applied to a family of operators.

There are two substantial difficulties in proving our results. If the spectrum of
Aλ were discrete for some λ (and therefore for all λ) we would have a natural
way to construct approximations by projecting onto increasing subspaces associ-
ated to the eigenvalues of Mλ. However we do not require the spectrum to be
discrete, and, indeed, in the type of problems we have in mind it is not. This
necessitates the introduction of yet another perturbation parameter, ε, related
to the compactification of the resolvent. The other difficulty is in ensuring that
the finite-dimensional approximations approximate the whole family of operators
uniformly in λ. To this end, the compactness assumption (iv) plays a crucial
role.

We make several remarks on Theorem 5.1.1 and Theorem 3′ and the assumptions
(i)-(v):

Remark 5.1.2. The compactness requirements (iv) on P are motivated by (5.1.1).
If A has a compact resolvent (e.g. when acting in L2(Td) ⊕ L2(Td) where Td is
the d-dimensional torus) we may take P to be the identity. Otherwise (e.g. for
L2(Rd) ⊕ L2(Rd)) if the perturbations Kλ are compactly supported in the sense
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that ⋃
λ∈[0,1],u∈H

supp(Kλu) ⊂ K (5.1.6)

where K = K+ × K− ⊂ Rd × Rd is compact, then we may take P± as multi-
plications by the indicator functions of the sets K±. Indeed, we first note that
(5.1.6) implies that for all λ, Kλ = PKλ. Then as Kλ and P are symmetric,
we deduce that Kλ = (Kλ)∗ = (Kλ)∗P∗ = KλP as required. That P is relatively
compact with respect to −∆ follows from Rellich’s theorem. We also remark that
this choice of P is in fact the natural inclusion map from L2 to L2(K).

Remark 5.1.3. Care must be taken regarding the spaces we view operators as
acting on. If we view Mλ

ε,n = Gλε,nMλ
εGλε,n : H → H then 0 will always be a

spurious eigenvalue with infinite multiplicity. To remove this unwanted eigenvalue
we must instead consider M̃λ

ε,n : Hλ
ε,n → Hλ

ε,n where Hλ
ε,n = Gλε,n(H) is the n-

dimensional space corresponding to the eigenprojection Gλε,n.

Remark 5.1.4. Property (ii) implies that there exists α(λ) > 0 such that (−α(λ)−
1, 1 + α(λ)) is in the resolvent set of Aλ. Since the spectrum is continuous
in λ ∈ [0, 1] this implies that there is a uniform constant α > 0 such that
(−α− 1, 1 + α) is in the resolvent set of Aλ for all λ ∈ [0, 1].

Remark 5.1.5. We finally remark that the construction of a compactifying op-
erator W in general is not easy. We have in mind an application to a case where
this is applied to −∆ and then it is simple: any reasonable unbounded potential
will do.

This chapter is organised as follows. In Section 5.2 we present some results re-
lated to general properties (such as self-adjointness, equivalence of norms, etc.)
of the various operators. In Section 5.3 we construct the finite-dimensional ap-
proximations to our family of operators, which are used in Section 5.4 to prove
Theorem 3′. In Section 5.5 these results are extended to families of operators
which are not positive, proving Theorem 5.1.1. Finally, in Section 5.6 we give a
brief description of an application of these results related to plasma instabilities,
which is the subject of Chapter 6 where one can find the full details.
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5.2 Preliminary results

We remind the reader that in this section, as well as in Section 5.3 and Section 5.4
we treat the semi-bounded case (Theorem 3′).

Considering the definition (5.1.4) and the subsequent specifications of the prop-
erties of the various operators and associated forms, we have the following re-
sults.

Lemma 5.2.1. The forms mλ have the same domains as the forms aλ, and are
independent of λ. For any λ ∈ [0, 1],Mλ is self-adjoint and has the same essential
spectrum and domain as Aλ. In particular its spectrum inside (−∞, 1] is discrete.

Proof. The equality D(mλ) = D(aλ) holds since Kλ is bounded for each λ. The
fact that the domains are independent of λ was assumed above in the sectoriality
assumption (i). Self-adjointness follows from the Kato-Rellich theorem, due to
Aλ being self-adjoint for λ ∈ [0, 1] and the symmetry assumption (iii) on Kλ. The
essential spectrum result follows from Weyl’s theorem as Kλ = KλP is relatively
compact with respect to Aλ (for any λ) because P is.

Next, we turn our attention to the map λ 7→ Mλ. Intuitively, one would expect
Mλ to have continuity properties similar to those of Kλ and therefore be merely
continuous in the strong resolvent sense. In fact, due to the relative compactness
assumption on P we have more:

Proposition 5.2.1. The family {Mλ}λ∈[0,1] is norm resolvent continuous.

Proof. Fix some λ ∈ [0, 1] and let [0, 1] 3 λn → λ as n → ∞. It is sufficient to
prove ∥∥∥(Mλn + i)−1 − (Mλ + i)−1

∥∥∥
B(H)
→ 0 as n→∞.

Using the triangle inequality we have
∥∥∥(Mλn + i)−1 − (Mλ + i)−1

∥∥∥
B(H)
≤
∥∥∥(Mλn + i)−1 − (Aλn +Kλ + i)−1

∥∥∥
B(H)

+
∥∥∥(Aλn +Kλ + i)−1 − (Mλ + i)−1

∥∥∥
B(H)

.
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By observing that {Aσ + Kλ}σ∈D is also a holomorphic family of type (B) we
deduce that the second term tends to zero as n→∞. For the first term we follow
the method used to deduce the second Neumann series (see [109, II-(1.13)])

(Aλn +Kλn + i)−1 = (Aλn +Kλ + i)−1(1 + (Kλn −Kλ)(Aλn +Kλ + i)−1)−1

which is valid whenever
∥∥∥(Kλn −Kλ)(Aλn +Kλ + i)−1

∥∥∥
B(H)

< 1. By the norm
resolvent continuity of operator inversion and again using the norm resolvent
continuity of the family {Aσ +Kλ}σ∈[0,1], it is sufficient to show that

∥∥∥(Kλn −Kλ)(Aλ +Kλ + i)−1
∥∥∥
B(H)
→ 0 as n→∞. (5.2.1)

We observe thatAλ+Kλ is self-adjoint with the same domain asAλ by Lemma 5.2.1,
so P is also relatively compact with respect to Aλ +Kλ. By assumption (iv) we
have

(Kλn −Kλ)(Aλ +Kλ + i)−1 = (Kλn −Kλ)P(Aλ +Kλ + i)−1.

This is a composition of a strongly convergent sequence of operators and the com-
pact operator P(Aλ+Kλ+i)−1. The compactness converts the strong convergence
to norm convergence and proves (5.2.1).

5.3 Constructing approximations

We first treat approximations of operators with discrete spectra, which are nat-
urally defined via a sequence of increasing projection operators. For brevity,
we call these approximations n-approximations (“n” refers to the dimension of
the projection). Then, our strategy when treating operators with a continuous
spectrum is to first “perturb” them by adding a family of unbounded operators
(think of adding an unbounded potential to a Laplacian) depending upon a small
parameter ε. For each ε > 0 these perturbations are assumed to eliminate any
continuous spectrum, so that then we may apply an n-approximation. We there-
fore call these (ε, n)-approximations. We start with a standard result for which
we could not find a good reference and we therefore state and prove it here.

Lemma 5.3.1. Let H be a Hilbert space and let Tn s.r.−−→ T as n→∞ with Tn, T
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self-adjoint operators on H. Let Kn s−→ K as n → ∞ with Kn,K bounded self-
adjoint operators on H. Then Tn + Kn and T + K are self-adjoint in H and
Tn +Kn s.r.−−→ T +K.

Proof. The self-adjointness follows from the Kato-Rellich theorem. For the con-
vergence it is sufficient to prove that (Tn + Kn + αi)−1 s−→ (T + K + αi)−1 for
some real α 6= 0. As the Kn are strongly convergent, by the uniform boundedness
principle they are uniformly bounded in operator norm by some M ≥ ‖K‖B(H).
Letting α = 2M , and using the second Neumann series,

(Tn +Kn + αi)−1 = (Tn + αi)−1(1 +Kn(Tn + αi)−1)−1

= (Tn + αi)−1
∞∑
k=0

(−1)k(Kn(Tn + αi)−1)k

is convergent uniformly in n as ‖Kn(Tn + αi)−1‖B(H) ≤ M/α = 1/2 < 1. As
n → ∞ each term of the series converges strongly to the corresponding term of
the series for (T + K + αi)−1 and as the series convergences uniformly in n we
may may swap the order of summation and take strong limits.

5.3.1 Operators with discrete spectra

In this paragraph we assume thatAλ has discrete spectrum and compact resolvent
for some λ (and, in fact, for all λ, as Aλ is a holomorphic family of type (B)3). We
exploit a property of self-adjoint holomorphic families [109, VII Theorem 3.9 and
VII Remark 4.22]: all eigenvalues of Aλ can be represented by functions which are
holomorphic on [0, 1]. That is, there exists a sequence of scalar-valued functions
{µλk}k∈N which are all holomorphic functions of λ ∈ [0, 1] that represents all the
repeated eigenvalues of Aλ. Moreover, there exists a sequence of vector-valued
functions {eλk}k∈N which are all also holomorphic functions of λ ∈ [0, 1] such that
for every λ ∈ [0, 1], {eλk}k∈N form a complete orthonormal family of corresponding
eigenvectors. An immediate consequence is that the unitary operator defined
by

Uλσ : H→ H

eσk 7→ eλk for any k ∈ N
3See property (i) in Section 5.1.2 for a precise definition.
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is jointly holomorphic in λ, σ ∈ [0, 1], i.e. possesses a locally convergent power
series in the two variables λ, σ. We now define the n-truncation operator by

Gλn : H→ H

eλk 7→

e
λ
k if k ≤ n,

0 if k > n.

Since the eigenfunctions form a complete orthonormal set we have the convergence
Gλn

s−→ 1 as n→∞ for fixed λ. Additionally by expressing Gλn = UλσGσnUσλ for some
fixed σ ∈ [0, 1] we see that Gλn

s−→ 1 as n→∞. Moreover, for any sequence λn → λ

we have Gλnn
s−→ 1 as n→∞. For notational convenience we define Gλ∞ = 1 for all

λ ∈ [0, 1].

We now define the finite-dimensional approximations of Aλ andMλ by

Aλn = GλnAλGλn and Mλ
n = GλnMλGλn , (5.3.1)

respectively. It is too much to hope for convergenceMλ
n

n.r.−−→Mλ as n→∞, but
we can hope forMλ

n
s.r.−−→Mλ. Indeed:

Lemma 5.3.2. For any sequence λn → λ ∈ [0, 1] as n → ∞, we have the
convergenceMλn

n
s.r.−−→Mλ.

Proof. By the stability of strong resolvent continuity with respect to bounded
strongly continuous perturbations (see Lemma 5.3.1), it is sufficient to prove that
Aλnn

s.r.−−→ Aλ as n→∞ and that Gλnn KλnGλnn
s−→ Kλ. The latter is true as it is the

composition of strong convergences of bounded operators. For the former it is
sufficient to show that (Aλnn + i)−1 s−→ (Aλ + i)−1 as n→∞. Splitting this term
as

(Aλnn + i)−1 = Gλnn (Aλnn + i)−1Gλnn + (1− Gλnn )(Aλnn + i)−1(1− Gλnn ),

(where we have used the fact that Gλnn is a spectral projection which commutes
with (Aλnn + i)−1), we see that the second term converges strongly to zero since
(Aλnn + i)−1 is uniformly bounded and since Gλnn

s−→ 1. For the first term on the
right hand side, note that

Gλnn (Aλnn + i)−1Gλnn = Gλnn (Aλn + i)−1Gλnn
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which converges strongly to (Aλ+i)−1 by the composition of strong convergences.

5.3.2 Operators with continuous spectra

We are now ready to turn to the general case of families {Aλ}λ∈[0,1] that may
have continuous spectra. Such operators require (ε, n)-approximations. The ε-
approximations Aλε of Aλ were defined in (5.1.3) and the corresponding approxi-
mationsMλ

ε were defined in (5.1.5).

Lemma 5.3.3. 1. For any ε > 0, {Aλε}λ∈D is a holomorphic family of type
(B) with compact resolvent.

2. For any λ ∈ [0, 1], ε ≥ 0, Aλε is self-adjoint and we have Aλε ≥ Aλ ≥ 1 + α,
where α was defined in Remark 5.1.4.

Proof. The second claim is obvious since Wλ ≥ 0. For the first we must show
that aλε is sectorial and that its domain D(aλε ) is independent of λ and dense
in H, and that for any fixed u ∈ D(aλε ) the function aλε [u] is holomorphic in
λ ∈ D. For any λ ∈ D, aλε is the sum of the sectorial forms aλ and εwλ so by
[109, VI§1.6-Theorem 1.33] it is closed and sectorial with domain D(a)∩D(wλ),
which is independent of λ since both Aλ andWλ are holomorphic families of type
(B). Furthermore, we assumed that D(a) ∩ D(wλ) is dense in H. For any fixed
u ∈ D(aλε ), aλε [u] = aλ[u] + εwλ[u] is the sum of two holomorphic functions of
λ ∈ D, so aλε [u] is also holomorphic in D. Finally by the assumption that the
inclusion (D(aλε ), ‖·‖aλε ) ↪→ H is compact we deduce that the resolvent of Aλε is
compact.

For each ε > 0 the operator Aλε has a discrete spectrum, and therefore the n-
approximations of Aλε and Mλ

ε may be defined analogously to (5.3.1) via the
projection operators

Gλε,n : H→ H

eλε,k 7→

e
λ
ε,k if k ≤ n,

0 if k > n,
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(where {eλε,k}k∈N are normalised eigenfunctions of Aλε ) as

Aλε,n = Gλε,nAλεGλε,n and Mλ
ε,n = Gλε,nMλ

εGλε,n.

We know by Lemma 5.3.2 that the family {Aλε,n}λ∈[0,1],n∈N is continuous in the
strong resolvent sense. In addition, we have:

Lemma 5.3.4. The family {Aλε}λ∈[0,1],ε∈[0,∞) is continuous in the strong resolvent
sense.

Proof. By the equivalence of strong and weak convergence of the resolvent for self-
adjoint operators [172, VIII, Problem 20(a)] it is sufficient to prove that (Aλε+1)−1

is weakly continuous jointly in λ and ε. Without loss of generality we restrict to
ε ∈ [0, 1] the general case being no harder. Let U ⊆ D be an open set containing
the interval [0, 1] such that for λ ∈ U , Re aλ ≥ 1 and Rewλ ≥ −1. Then, for
λ ∈ U and ε ∈ [0, 1] the forms aλε are closed and sectorial, with Re aλε ≥ 0. Hence
the associated operators have the resolvent bound

∥∥∥(Aλε + ζ)−1
∥∥∥
B(H)
≤ 1/Re ζ for

Re ζ > 0. In particular,

sup
ε∈[0,1],λ∈U

∥∥∥(Aλε + 1)−1
∥∥∥
B(H)
≤ 1. (5.3.2)

Now fix u, v ∈ H, let εn → ε∞ ∈ [0,∞) and define the sequence of holomorphic
functions fn : U → C by

fn(λ) =
〈
(Aλεn + 1)−1u− (Aλε∞ + 1)−1u, v

〉
with f∞ = 0. To prove the joint weak continuity of the resolvent it is clearly
sufficient to show that fn → 0 uniformly over λ ∈ [0, 1]. The case ε∞ > 0 is
straightforward so we assume that ε∞ = 0. Without loss of generality we may
assume that εn 6= 0 for all n. We will use a simple corollary of Montel’s theorem
(see e.g. [174, Theorem 14.6]) that states that a sequence of holomorphic functions
that is uniformly bounded on an open set U ⊆ C and converges pointwise in U
converges uniformly on any compact set K ⊂ U . The uniform boundedness of fn
follows from (5.3.2) above. Thus it suffices to show that fn → 0 pointwise. To
this end we will establish pointwise convergence of the corresponding forms aλεn .
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Indeed,

∀λ ∈ D,w ∈ D(aλεn), aλεn [w]− aλ[w] = εnw
λ[w]→ 0 as n→∞.

For n ∈ N the forms have common form domain D(a) ∩D(w), which is a form
core for aλ, and the sequence of form differences aλεn − aλ is uniformly sectorial.
Thus due to [109, VIII.§3.2-Theorem 3.6] Aλεn

s.r.−−→ Aλ as n → ∞, which implies
the pointwise convergence fn → 0 and completes the proof.

Corollary 5.3.1. The family {Mλ
ε}λ∈[0,1],ε∈[0,∞) is continuous in the strong re-

solvent sense.

Proof. This follows from the stability of strong resolvent continuity with respect
to bounded strongly continuous perturbations.

5.4 Proof of Theorem 3′

We split the proof into first proving upper and lower semi-continuity of the spec-
trum. Informally, we recall that upper-semicontinuity of spectra means that the
spectrum cannot expand when perturbed, while lower-semicontinuity means that
the spectrum cannot shrink when perturbed. Then the claims on the measures
µηλ,ε and µ̃

η
λ,ε,n will be addressed.

Proof of Theorem 3′. We split the proof into three parts, denoted I, II, III.

I. Claim: along any sequence (λm, εm)→ (λ∞, ε∞) it holds that µηλm,εm ⇀

µηλ∞,ε∞ as m → ∞. Indeed, we have to show that for any bounded continuous
function f it holds that, as m→∞,

∫
f dµηλm,εm =

∑
y∈sp(Mλm

εm )

φη(y)f(y)→
∑

y∈sp(Mλ∞
ε∞ )

φη(y)f(y) =
∫
f dµηλ∞,ε∞

(5.4.1)
where (as before) multiplicity is taken into account in the summations. Without
loss of generality we assume that f ≥ 0. We know that the spectrum of Mλ∞

ε∞

inside the support of φη is discrete, consisting of a finite number of eigenvalues,
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each of finite multiplicity. Let them be σ1, . . . , σM of respective multiplicities
N1, . . . , NM . We split the proof of (5.4.1) into two steps.

I1. Claim: lim infm
∑
y∈sp(Mλm

εm ) φη(y)f(y) ≥ ∑y∈sp(Mλ∞
ε∞ ) φη(y)f(y).

By the strong resolvent convergence ofMλm
εm toMλ∞

ε∞ (Corollary 5.3.1) we know
that for any δ > 0 small enough there are only finitely many ms for which
Mλm

εm does not have, for each i = 1, . . . ,M , at least Ni eigenvalues (counting
multiplicity!) within δ of σi. Thus, by the continuity and non-negativity of ϕηf ,
for any ε′ > 0, we may choose δ small enough so that

∑
y∈sp(Mλm

εm )

φη(y)f(y) ≥
∑

y∈sp(Mλ∞
ε∞ )

φη(y)f(y)− ε′

for all but finitely many ms, which completes I1.

I2. Claim: lim supm
∑
y∈sp(Mλm

εm ) φη(y)f(y) ≤ ∑y∈sp(Mλ∞
ε∞ ) φη(y)f(y).

We first claim that for all but finitely many ms we have

#
(
sp(Mλm

εm ) ∩ [−η − 1, 1 + η]
)
≤ #

(
sp(Mλ∞

ε∞ ) ∩ [−η − 1, 1 + η]
)

=: M ′,

counting multiplicities. Indeed, suppose not. Then there would exist a subse-
quence (for which we abuse notation and still denote bym) for whichMλm

εm has (at
least) M ′ + 1 distinct eigenvalues (counting multiplicity). Say σm,1, . . . , σm,M ′+1

with normalised eigenfunctions um,1, . . . , um,M ′+1. By compactness of [−η−1, 1+
η]M ′+1 we may pass to a subsequence (again we retain the index m) on which
σm,i → σ∞,i for each i = 1, . . . ,M ′ + 1 and some σ∞,is. By Proposition 5.4.1(i)
below we may pass to successive subsequences to obtain a final subsequence (still
denoted m) for which additionally um,i → u∞,i strongly as m → ∞ for each i

where u∞,i is a normalised eigenfunction of Mλ∞
ε∞ with eigenvalue σ∞,i. More-

over, as all the operators involved are self-adjoint, for each m the eigenfunctions
{um,i}M

′+1
i=1 form an orthonormal system, and as orthonormality is preserved by

strong limits, this holds also for {u∞,i}M
′+1

i=1 . But this implies that Mλ∞
ε∞ has at

least M ′ + 1 eigenvalues in [−η − 1, 1 + η], a contradiction, proving the claim.

We can now complete the proof of I2. Suppose that the claimed bound fails, then
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there would exist ε′ > 0 and a subsequence (still denoted m) for which

∑
y∈sp(Mλm

εm )

φη(y)f(y) ≥
∑

y∈sp(Mλ∞
ε∞ )

φη(y)f(y) + ε′

for each m. Let Mm = #
(
sp(Mλm

εm ) ∩ [−η − 1, 1 + η]
)
. Then by the previous

claim we know that for all but finitely many ms we have Mm ≤ M ′. Thus
some number M ′′ ∈ {1, . . . ,M ′} is equal to infinitely many of the Mms. We
pass to this subsequence (still denoted m) so that Mm = M ′′ for every m. Let
these eigenvalues be {σm,i}M

′′
i=1. As in the proof of the claim above, after passing

to another subsequence we have σm,i → σ∞,i for each i where {σ∞,i}M
′′

i=1 are
distinct (counting multiplicity) eigenvalues of Mλ∞

ε∞ . Hence, by continuity and
non-negativity of fφη, we have

∑
y∈sp(Mλ∞

ε∞ )

φη(y)f(y) ≥
M ′′∑
i=1

φη(σ∞,i)f(σ∞,i)

= lim
m→∞

M ′′∑
i=1

φη(σm,i)f(σm,i) ≥
∑

y∈sp(Mλ∞
ε∞ )

φη(y)f(y) + ε′

where the limit is on the subsequence we obtained. This is a contradiction which
completes I2, and the weak convergence µηλm,εm ⇀ µηλ∞,ε∞ follows.

II. Claim: for any ε > 0 and n ∈ N fixed and along any sequence λm → λ∞

it holds that η̃λm,ε,n ⇀ η̃λ∞,ε,n. This may be shown either by the same proof
as in I, or we may simply note that the operators involved are finite dimensional
matrices whose coefficients vary continuously in λ.

III. Claim: for any fixed ε > 0 we have dBL(µ̃ηλ,ε,n, µ
η
λ,ε) → 0 uniformly

in λ ∈ [0, 1] as n → ∞. The convergence µ̃ηλn,ε,n ⇀ µηλ∞,ε along any sequence
λn → λ∞ follows from the same proof as in I, replacing the reference to Propo-
sition 5.4.1(i) with Proposition 5.4.1(ii). Uniform convergence follows from the
compactness of [0, 1]. Indeed, suppose that this uniform convergence does not
hold. Then there would exist δ > 0 such that, for infinitely many ns it holds
that dBL(µ̃ηλn,ε,n, µ

η
λn,ε

) > δ for some λn ∈ [0, 1]. Extract a subsequence (we abuse
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notation and retain the index n) for which λn → λ∞ ∈ [0, 1]. From I we know
that for all but finitely many ns we must have dBL(µηλn,ε, µ

η
λ∞,ε) < δ/2. Therefore,

by the triangle inequality

dBL(µ̃ηλn,ε,n, µ
η
λ∞,ε) ≥

∣∣∣dBL(µ̃ηλn,ε,n, µ
η
λn,ε

)− dBL(µηλn,ε, µ
η
λ∞,ε)

∣∣∣ > δ/2

for infinitely many ns, which is a contradiction to the weak convergence µ̃ηλn,ε,n ⇀
µηλ∞,ε.

The missing ingredient in the above proof is:

Proposition 5.4.1. Let σn → σ as n→∞ with σn, σ ∈ (−∞, 1] and λn → λ as
n→∞ with λn, λ ∈ [0, 1]. Then the following hold.

1. Let εn → ε ≥ 0 as n→∞, and {un}∞n=1 be a sequence with ‖un‖ = 1, un ∈
D(Mλ

εn) and Mλn
εn un = σnun. Then {un}∞n=1 has a subsequence strongly

converging to some u 6= 0, which satisfiesMλ
εu = σu.

2. Let ε > 0 be fixed, and {un}∞n=1 be a sequence with ‖un‖ = 1, Gλnε,nun = un

and Mλn
ε,nun = σnun. Then {un}∞n=1 has a subsequence strongly converging

to some u 6= 0, which satisfiesMλ
εu = σu.

Proof. As the proof of the first claim is slightly simpler and otherwise the same,
we only give the proof for the second claim, leaving the first to the reader. Each
un solves the equation

Gλnε,nAλnε Gλnε,nun − σnun + Gλnε,nKλnGλnε,nun = 0.

The requirement that un = Gλnε,nun and the fact that Gλnε,n commutes with Aλnε
means that this is equivalent to

Aλnε un = σnun − Gλnε,nKλnun. (5.4.2)

Taking the inner product with un we estimate,
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a0[un] ≤ Caλn [un] ≤ Caλnεn [un] ≤ Cσn ‖un‖2 + C sup
λ∈[0,1]

∥∥∥Kλ∥∥∥
B(H)
‖un‖2 ≤ C ′

(5.4.3)
where C is independent of n and comes from the relative form boundedness of the
holomorphic family {Aλ}λ∈D (see [109, VII-§4.2]) and the supremum is finite by
the uniform boundedness principle as {Kλ}λ∈[0,1] is strongly continuous. Hence
for all n we have

∥∥∥|A0|1/2un
∥∥∥2
≤ C ′, where |A0|1/2 is the square root of the positive

self-adjoint operator A0. By assumption, P is relatively compact with respect
to A0, and hence also to |A0|1/2. Indeed, the inverse of |A0|1/2 can be expressed
using the functional calculus (see [109, V-§3.11-Equation 3.43]) of the self-adjoint
operator A0 as

|A0|−1/2 = 1
π

∫ ∞
0

ζ−1/2(A0 + ζ)−1 dζ

where the integral is absolutely convergent in operator norm due to the bound
‖(A0 + ζ)−1‖B(H) ≤ (1+ζ)−1 for ζ ≥ 0. By composing both sides of this equation
on the left with P and moving P inside the integral (which is possible as P is
bounded and the integral converges absolutely in norm) we deduce that P|A0|−1/2

is given by an absolutely norm convergent integral of compact operators, and is
hence compact.

Thus we may pass to a subsequence (though we retain the subscript n) for which

Pun → v ∈ H.

Then by rewriting (5.4.2) and using Kλ = KλP for all λ ∈ [0, 1] we have

un = −(Aλnε − σn)−1Gλnε,nKλnPun (5.4.4)

where the resolvent exists by the assumption that Aλ ≥ 1 + α for all λ ∈ [0, 1].
As remarked before Gλε,n

s−→ 1 uniformly in λ ∈ [0, 1] so that Gλnε,n
s−→ 1 as n→∞.

Therefore by the composition of strong convergences

un → −(Aλε − σ)−1Kλv := u

as n → ∞. Then as un is strongly convergent, necessarily v = Pu and the
assertion of the proposition follows.
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5.5 Non-positive operators: proof of Theorem
5.1.1

We define the ε-approximations of Aλ± as before in terms of a pair of holomorphic
families Wλ

± with the same assumptions. The eigenprojections of Aλε are then
denoted by Gλ±,ε,n and we define

Gλε,n =
Gλ+,ε,n 0

0 Gλ−,ε,n


and

Aλε,n = Gλε,nAλεGλε,n
Mλ

ε,n = Gλε,nMλ
εGλε,n.

All the preceding proofs of continuity can be adapted to this case. Indeed, Propo-
sition 5.2.1 holds without modification, while Lemma 5.3.2 and Lemma 5.3.4 can
be extended by using the identity

T+ 0
0 T−

+ i

−1

=
(T+ + i)−1 0

0 (T− + i)−1


and the stability of norm (resp. strong) continuity to symmetric bounded norm
(reps. strongly) continuous perturbations. With these continuity results, the
proof of lower semi-continuity of Σ and Σε can be easily adapted. The compact-
ness result Proposition 5.4.1 that establishes the upper semi-continuity needs a
little more modification. Recall that the discrete region of the spectrum is the gap
(−α−1, 1+α) rather than the half-line (−∞, 1+α). We restate the compactness
result below.

Proposition 5.5.1. Let σn → σ as n → ∞ with σn, σ ∈ [−1, 1] and λn → λ as
n→∞ with λn, λ ∈ [0, 1]. Then the following hold.

1. Let εn → ε ≥ 0 as n→∞, and {un}∞n=1 be a sequence with ‖un‖ = 1, un ∈
D(Mλ

εn) and Mλn
εn un = σnun. Then {un}∞n=1 has a subsequence strongly

converging to some u 6= 0, which satisfiesMλ
εu = σu.

2. Let ε > 0 be fixed, and {un}∞n=1 be a sequence with ‖un‖ = 1, Gλnε un = un
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and Mλn
ε,nun = σnun. Then {un}∞n=1 has a subsequence strongly converging

to some u 6= 0, which satisfiesMλ
εu = σu.

Proof (sketched). We need only change (5.4.3) to the two estimates

a0
±[u±k ] ≤ C±a

λk
± [u±k ] ≤ C±a

λk
±,εk [u

±
k ]

≤ C±|σk|
∥∥∥u±k ∥∥∥2

+ C± sup
λ∈[0,1]

∥∥∥Kλ∥∥∥
B(H)
‖uk‖2 ≤ C ′

obtained by taking the inner product of (5.4.2) with u±k where uk = (u+
k , u

−
k ) ∈

H+×H−, from which the relative compactness of Puk follows as before, and lastly
note that Aλ± ≥ 1+α implies that the resolvent (Aλkεk −σk)

−1 exists in (5.4.4).

This proves Theorem 5.1.1.

5.6 An application: plasma instabilities

The discussion in this section is informal. As stability analysis typically relies
on a detailed understanding of the spectrum of the linearised problem, most re-
sults in this direction require delicate spectral analysis. However, an outstanding
open problem has been stability analysis of plasmas that do not possess special
symmetries (such as periodicity or monotonicity4) due to the more complicated
structure of the spectrum. A significant obstacle has been the existence of an
essential spectrum extending to both ±∞. Let us briefly outline the problem,
which is treated in detail in Chapter 6.

Plasmas are typically modelled by the relativistic Vlasov-Maxwell system: Let-
ting f = f(t, x, v) be a probability density function measuring the density of
electrons that at time t ≥ 0 are located at the point x ∈ Rd, have momentum
v ∈ Rd and velocity v̂ = v/

√
1 + |v|2, the (relativistic) Vlasov equation

∂f

∂t
+ v̂ · ∇xf + F · ∇vf = 0 (5.6.1)

4Monotonicity, roughly speaking, means that there are fewer particles at higher energies.
For a precise definition see e.g. [17].
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is a transport equation describing their evolution due to the Lorentz force F =
−E − v̂ × B. Here we have taken the mass of the electrons and the speed of
light to be 1 for simplicity. The fields E = E(t, x) and B = B(t, x) are the
(self-consistent) electric and magnetic fields, respectively. They satisfy Maxwell’s
equations (written here for their respective potentials φ and A, satisfying E =
−∇φ− ∂tA and B = ∇×A in the Lorenz gauge ∂tφ+∇ ·A = 0):

 (−∆ + ∂2
t )A− j = 0,

(∆− ∂2
t )φ+ ρ = 0,

(5.6.2)

where ρ = ρ(t, x) = −
∫
f dv is the charge density and j = j(t, x) = −

∫
v̂f dv is

the current density (negative signs are due to the electrons charge). Linearising
(5.6.1) we obtain

∂f

∂t
+ v̂ · ∇xf + F0 · ∇vf = −F · ∇vf

0, (5.6.3)

where f 0 and F0 are the equilibrium density and force field, respectively, and
f and F are their first order perturbations. Maxwell’s equations do not require
linearisation as they are already linear. We seek solutions to (5.6.2)-(5.6.3) that
grow exponentially in time. Therefore, substituting into (5.6.3) the ansatz that
all time-dependent quantities behave like eλt with λ > 0, we get

λf + v̂ · ∇xf + F0 · ∇vf = −F · ∇vf
0.

An inversion of this equation leaves us with the integral expression

f = −(λ+ (v̂,F0) · ∇x,v)−1(F · ∇vf
0) (5.6.4)

which depends upon λ as a parameter. By substituting the expression (5.6.4)
into Maxwell’s equations (5.6.2), f is eliminated as an unknown, and the only
unknowns left are φ and A. Note that an immediate benefit is that the problem
now only involves the spatial variable x, and not the full phase-space variables
x, v.

We are therefore left with the task of showing that Maxwell’s equations are sat-
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isfied with the parameter λ > 0. Gauss’ equation, for instance, becomes

(∆− λ2)φ = −ρ =
∫
f dv = −

∫
(λ+ (v̂,F0) · ∇x,v)−1(F · ∇vf

0) dv

which is an equation of the form

(∆− λ2)φ+Kλ−−φ+Kλ−+A = 0, (5.6.5)

where, for instance,

Kλ−−φ =
∫

(λ+ (v̂,F0) · ∇x,v)−1(∇φ · ∇vf
0) dv,

Kλ−+A =
∫

(λ+ (v̂,F0) · ∇x,v)−1((v̂ × (∇×A)) · ∇vf
0) dv.

The rest of Maxwell’s equations can be written as

(−∆ + λ2)A +Kλ+−φ+Kλ++A = 0. (5.6.6)

(we omit the precise form of these operators here). The system (5.6.5)-(5.6.6)
for φ and A turns out to be self-adjoint and is precisely of the form (5.1.1).
Exhibiting linear instability, i.e. the existence of a growing mode with rate λ > 0,
is equivalent to solving this system for some λ > 0. The operator in this system
has the form

Mλ = Aλ +Kλ =
−∆ + λ2 0

0 ∆− λ2

+
Kλ++ Kλ+−
Kλ−+ Kλ−−

 , λ > 0.

Hence now one would like to show that for some λ > 0, the operator Mλ has
a nontrivial kernel. As this operator is self-adjoint for all λ > 0, its spectrum
lies on the real line. We use this fact to “track” the spectrum as λ varies from
0 to +∞ and find an eigenvalue that crosses through 0. By adding to Aλ the
operator

W =
1 + x2 0

0 −1− x2


and defining

Mλ
ε = Aλ + εW +Kλ, λ > 0, ε > 0
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we obtain a family of operators with a compact resolvent. This family enjoys the
properties that we studied in this chapter. For instance, natural candidates for
the projection operators P± are multiplications by the indicator functions (in the
appropriate spaces) onto the (compact) support of the steady-state around which
we linearise.

Let us describe the method for finding a nontrivial kernel in a nutshell. It is
shown that there exist 0 < λ∗ < λ∗ <∞ (independent of n and ε) for which the
corresponding approximate operatorsMλ∗

ε,n andMλ∗
ε,n have a different number of

negative (and positive) eigenvalues, and therefore due to the continuous depen-
dence of the spectrum (as a set) on the parameter λ there must exist λ∗ < λn < λ∗

for whichMλn
ε,n has a nontrivial kernel. Since λn is a bounded sequence, one can

extract a convergent subsequence converging, say, to some λ∞ ∈ [λ∗, λ∗]. Theo-
rem 5.1.1 is then invoked to show that one can also take the two limits n → ∞
and ε→ 0 to conclude thatMλ∞ has a nontrivial kernel. We refer to Chapter 6
for full details.
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Chapter 6

Instabilities of the relativistic
Vlasov-Maxwell system on

unbounded domains

The relativistic Vlasov-Maxwell system describes the evolution
of a collisionless plasma. The problem of linear instability of
this system is considered in two physical settings: the so-called
“one and one-half” dimensional case, and the three dimensional
case with cylindrical symmetry. Sufficient conditions for insta-
bility are obtained in terms of the spectral properties of certain
Schrödinger operators that act on the spatial variable alone (and
not in full phase space). An important aspect of these conditions
is that they do not require any boundedness assumptions on the
domains, nor do they require monotonicity of the equilibrium.

Acknowledgements
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6.1 Introduction

We obtain new linear instability results for plasmas governed by the relativis-
tic Vlasov-Maxwell (RVM) system of equations. The main unknowns are two
functions f± = f±(t,x,v) ≥ 0 measuring the density of positively and negatively
charged particles that at time t ∈ [0,∞) are located at the point x ∈ Rd and have
momentum v ∈ Rd. The densities f± evolve according to the Vlasov equations

∂f

∂t

±
+ v̂ · ∇xf

± + F± · ∇vf
± = 0 (6.1.1)

where v̂ = v/
√

1 + |v|2 is the relativistic velocity (the speed of light is taken to be
1 for simplicity) and where F± = F±(t,x,v) is the Lorentz force, given by

F± = ±
(
E + Eext + v̂× (B + Bext)

)
with E = E(t,x) and B = B(t,x) being the electric and magnetic fields, respec-
tively, and Eext(t,x),Bext(t,x) external fields. The self-consistent fields obey
Maxwell’s equations

∇ · E = ρ, ∇ ·B = 0, ∇× E = −∂B
∂t
, ∇×B = j + ∂E

∂t
,

where
ρ = ρ(t,x) =

∫
(f+ − f−) dv (6.1.2)

is the charge density and

j = j(t,x) =
∫

v̂(f+ − f−) dv (6.1.3)

is the current density. In addition to the speed of light, we have taken all other
constants that typically appear in these equations (such as the particle masses)
to be 1 so as to keep the notation simple.

Novelty of the results. Let us mention the main novel aspects of our insta-
bility results:

Unbounded domains: our problems are set in unbounded domains (as opposed
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to domains with boundaries or periodic domains). One consequence is that the
spectrum of the Laplacian (which shall appear prominently) has an essential part
and there is no spectral gap.

Non-monotone equilibrium: we do not assume that the equilibrium in question is
(strongly) monotone (see (6.1.7) below). Many estimates in previous works rely
heavily on monotonicity assumptions.

Existence of equilibria: in Section 6.7 we prove the existence of nontrivial equi-
libria in the unbounded, compactly supported 1.5d case. Previously, this has been
done in the periodic setting by means of a perturbation argument about the triv-
ial solution which is a center (in the dynamical systems sense). The proof here
relies on a fixed point argument.

6.1.1 Main results

For the convenience of the reader, we provide the full statements of our results
here, although some necessary definitions are too cumbersome. We shall refer to
the later sections for these definitions.

The physical setting. As is explained in detail below we consider two prob-
lems: the 1.5 dimensional case and the 3 dimensional case with cylindrical sym-
metry. We shall refer to these two settings as the 1.5d case and the 3d case,
respectively, for brevity. In a nutshell, we consider these settings because they
provide enough structure so that basic existence and uniqueness results hold and
because they possess well-known conserved quantities which may be written ex-
plicitly.

The equilibrium. The conserved quantities mentioned above – the microscopic
energy e± and momentum p± – are the subject of further discussion below (see
(6.1.17) for the 1.5d case and (6.1.28) for the 3d case), however we stress the
fact that they are functions that satisfy the time-independent Vlasov equations.
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Hence any functions of the form

f 0,±(x,v) = µ±(e±, p±) (6.1.4)

are equilibria of the corresponding Vlasov equations. The converse statement –
that any equilibrium may be written in this form – is called Jeans’ theorem [103]
(see Remark 6.1.1 below). In Section 6.7 we prove that there exist such equilibria.
When there is no room for confusion we simply write µ±(e, p) or µ± instead of
µ±(e±, p±).

Remark 6.1.1 (Jeans’ “theorem”). Jeans’ “theorem” is commonly referred to
as such in the literature, though it is not (strictly speaking) a “theorem”. For
instance, for the so-called Vlasov-Einstein system it has been shown to be false
[179] while for the gravitational Vlasov-Poisson system it has indeed been proven
rigorously [14]. As far as the authors know, there are no other proofs (or dis-
proofs), though it is often easy to give a formal justification of this “theorem” by
counting degrees of freedom. Indeed, if one can argue that (due to symmetries) an
equilibrium f 0(x,v) can have at most d ∈ {1, . . . , 6} degrees of freedom and find
d conserved quantities (that is, d quantities that are constant along the Vlasov
flow), then formally it could be argued that f 0 may be rewritten as a function of
these quantities.

We shall always assume that

0 ≤ f 0,±(x,v) ∈ C1 have compact support Ω in the x-variable.

Again, the existence of such equilibria is the subject of Section 6.7. Note that
in the 3d case, Ω must be cylindrically symmetric. In addition, we must assume
that

there exist weight functions w± = c(1 + |e±|)−α

where α > dimension of momentum space, and c > 0,
(6.1.5)

such that the integrability condition(∣∣∣∣∣∂µ±∂e
∣∣∣∣∣+

∣∣∣∣∣∂µ±∂p
∣∣∣∣∣
)

(e±, p±) < w±(e±) (6.1.6)
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holds1. This implies that
∫ (
|µ±e |+ |µ±p |

)
dxdv < ∞ in both the 1.5d and 3d

cases, where we have abbreviated the writing of the partial derivatives of µ±. This
abbreviated notation shall be used throughout the chapter. It is often assumed
that

µ±e < 0 whenever µ± > 0. (6.1.7)

We call this a strong monotonicity condition. We do not make any such
assumption. Monotonicity assumptions are natural both in the study of Vlasov
systems [130, 132, 160, 125, 151] and the 2d Euler equations [39, 191] as they
typically lead to stability. A famous exception to this rule is Penrose’s result [167]
often referred to as the “Penrose criterion”. In many of the aforementioned works
monotonicity assumptions play an important role throughout. It is therefore not
always clear if such conditions can be relaxed, or altogether dropped, as this
would require extensive reformulation of the existing proofs.

The main results. To facilitate the understanding of our main results we
state them now, trying not obscure the big picture with technical details. Hence
we attempt to only extract those aspects of the statements that are crucial for
understanding, while referring to later sections for some additional definitions.
First we define our precise notion of instability:

Definition 6.1.1 (Spectral instability). We say that a given equilibrium µ± is
spectrally unstable, if the system linearised around it has a purely growing mode
solution of the form

(
eλtf±(x,v), eλtE(x), eλtB(x)

)
, λ > 0. (6.1.8)

We also need the following definition:

Definition 6.1.2. Given a self-adjoint operator (bounded or unbounded) A, we
denote by neg(A) the number of negative eigenvalues (counting multiplicity) that
it has whenever there is a finite number of such eigenvalues.

1This condition is one of smoothness and decay for large energies of the particle density.
In the presence of a confining potential, equilibria can be shown to exist under the even more
stringent condition that µ± has compact support (see Section 6.7 for a construction in the 1.5d
case.)
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In our first result we obtain a sufficient condition for spectral instability of equi-
libria in the 1.5d case. The condition is expressed in terms of spectral properties
of certain operators that act on functions of the spatial variable alone.

Theorem 6.1.1 (Spectral instability: 1.5d case). Let f 0,±(x,v) = µ±(e, p) be
an equilibrium of the 1.5d system (6.1.15) satisfying (6.1.6). There exist self-
adjoint Schrödinger operators A0

1 and A0
2 and a bounded operator B0 (all defined in

(6.1.23)) acting only on functions of the spatial variable (and not the momentum
variable) such that the equilibrium is spectrally unstable if 0 is not in the spectrum
of A0

1 and
neg

(
A0

2 +
(
B0
)∗ (
A0

1

)−1
B0
)
> neg

(
A0

1

)
. (6.1.9)

The second result provides a similar statement in the 3d case with cylindrical
symmetry, as discussed in further detail in Section 6.1.4 below.

Theorem 6.1.2 (Spectral instability: 3d case). Let f 0,±(x,v) = µ±(e, p) be a
cylindrically symmetric equilibrium of the RVM system satisfying (6.1.6). There
exist self-adjoint operators Ã0

1,Ã0
2 and Ã0

3 and a bounded operator B̃0
1 (all defined

in (6.1.33)) acting in the spatial variable alone (and not the momentum variable)
such that the equilibrium is spectrally unstable if 0 is not an L6-eigenvalue of Ã0

3

(see Definition 6.1.3 below), 0 is not an eigenvalue of Ã0
1 (0 will always lie in the

essential spectrum of Ã0
1, but this is not the same as 0 being an eigenvalue) and

neg
(
Ã0

2 +
(
B̃0

1

)∗ (
Ã0

1

)−1
B̃0

1

)
> neg

(
Ã0

1

)
+ neg

(
Ã0

3

)
. (6.1.10)

Let us make precise the notion of an L6-eigenvalue.

Definition 6.1.3 (L6-eigenvalue). We say that λ ∈ R is an L6-eigenvalue of a
self-adjoint Schrödinger operator A : H2(Rn;Rm) ⊂ L2(Rn;Rm) → L2(Rn;Rm)
given by A = −∆ + K, if there exists a function 0 6= uλ ∈ H2

loc(Rn;Rm) ∩
L6(Rn;Rm), with ∇uλ ∈ L2(Rn;Rm)n, such that Auλ = λuλ in the sense of
distributions. The function uλ is called an L6-eigenfunction.

Remark 6.1.2. We remark that L6 is a natural space to consider in three di-
mensions due to the embedding H1(Ω) ↪→ L6(Ω) where Ω ⊂ R3 is a bounded and
smooth domain. In fact, any function which decays at infinity and whose first
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derivatives are square integrable, also belongs to L6(R3). Therefore this is a nat-
ural condition for the potential formulation of Maxwell’s equations where there
is no physical reason for the potentials to be square integrable, but the condition
that the fields are square integrable corresponds to the physical condition that the
electromagnetic fields have finite energy.

The proofs of these two theorems appear in Section 6.4.1 and Section 6.4.2, re-
ceptively. Let us describe the main ideas of the proofs. For brevity, we omit the
± signs distinguishing between positively and negatively charged particles in this
paragraph. Since we are interested in linear instability, we linearise the Vlasov
equation around f 0. The only nonlinear term is the forcing term F ·∇vf , so that
the linearisation of (6.1.1) becomes

∂f

∂t
+ v̂ · ∇xf + F0 · ∇vf = −F · ∇vf

0 (6.1.11)

where F0 is the equilibrium self consistent Lorentz force and F is the linearised
Lorentz force. We make the following growing-mode ansatz:

Ansatz: the perturbations (f,E,B) have

time dependence eλt, where λ > 0.
(6.1.12)

Equation (6.1.11) can therefore be written as

(λ+D) f = −F · ∇vf
0 (6.1.13)

where
D = v̂ · ∇x + F0 · ∇v (6.1.14)

is the linearised Vlasov transport operator. We then invert (6.1.13) by applying
λ (λ+D)−1, which is an ergodic averaging operator along the trajectories of D
(depending upon λ as a parameter), see [16, Eq. (2.10)]. Hence we obtain an
expression of f in terms of a certain average of the right hand side −F · ∇vf

0

depending upon the parameter λ (see (6.3.2) and (6.3.9)). This expression for f
is substituted into Maxwell’s equations through the charge and current densities,
resulting in a system of (elliptic) equations for the spatial variable alone (recall
that the momentum variable is integrated in the expressions for ρ and j). The
number of linearly independent equations is less than one would expect due to
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the imposed symmetries. However, in both cases the equations can be written so
that they form a self-adjoint system denotedMλ (see (6.3.5) for the 1.5d case
and (6.3.14) for the 3d case) that has the general form

Mλ =
−∆ + 1 0

0 ∆− 1

+Kλ

acting on the electric and magnetic potentials, where Kλ is a uniformly bounded
and symmetric family.

The problem then reduces to showing that the equationMλu = 0 has a nontrivial
solution for some value of λ > 0. The difficulty here is twofold: first, the spectrum
ofMλ is unbounded (not even semi-bounded) and includes essential spectrum
extending to both +∞ and −∞. Second, for each λ, the operator Mλ has
a different spectrum: one must analyse a family of spectra that depends upon
the parameter λ. In the previous Chapter 5 we address the following related
problem:

Problem 6.1.1. Consider the family of self-adjoint unbounded operators

Mλ = A+Kλ =
−∆ + 1 0

0 ∆− 1

+
Kλ++ Kλ+−
Kλ−+ Kλ−−

 , λ ∈ [0, 1]

acting in (an appropriate subspace of) L2(Rd) ⊕ L2(Rd), where {Kλ}λ∈[0,1] is
a uniformly bounded, symmetric and strongly continuous family. Is it possible
to construct explicit finite-dimensional symmetric approximations ofMλ whose
spectrum in (−1, 1) converges to that ofMλ for all λ simultaneously?

A solution to this problem allows us to construct finite-dimensional approxima-
tions toMλ. We discuss this problem in Section 6.2.2. The conditions (6.1.9)
and (6.1.10) appearing in the main theorems above translate into analogous con-
ditions on the approximations, and those, in turn, guarantee the existence of a
nontrivial approximate solution. Since the approximate problems converge (in an
appropriate sense) to the original problem, this is enough to complete the proof.
A crucial ingredient is the self-adjointness of all operators: this guarantees that
the spectrum is restricted to the real line. The strategy is to “track” eigenvalues
as a function of the parameter λ and conclude that they cross through 0 for some
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value λ > 0. To do so, we require knowledge of the spectrum of the operatorMλ

for small positive λ, which is obtained from the assumptions (6.1.9) and (6.1.10),
and for large λ which arises naturally from the form of the problem.

Yet even with a solution to this problem at hand, some difficulties remain. In the
cylindrically symmetric case there is a geometric difficulty. Namely, cylindrical
symmetries must be respected, a fact that requires a somewhat more cumbersome
functional setup. In particular, the singular nature of the coordinate chart along
the axis of symmetry requires special attention. To circumvent this issue we shall
do all computation in Cartesian coordinates, and use carefully chosen subspaces to
decompose the magnetic potential. The second difficulty is the lack of a spectral
gap, which is due to the unbounded nature of the problem in physical space. As
a consequence, the dependence of the spectrum ofMλ on λ is delicate, especially
as λ→ 0, and needs careful consideration.

6.1.2 Previous results

Existence theory. The main difficulty in attaining existence results for Vlasov
systems is in controlling particle acceleration due to the nonlinear forcing term.
Hence existence and uniqueness has only been proved under various symmetry
assumptions. In [73] global existence in the 1.5d case was established and in [72]
the cylindrically symmetric case was considered. Local existence and uniqueness
is due to [203].

Stability theory. One of the important early results on (linear) stability of
plasmas is that of Penrose [167]. Two notable later results are [96, 139]. We
refer to [16] for additional references. The current result continues a program
initiated by Lin and Strauss [130, 132] and continued by the first author [16, 17].
In [130, 132] the equilibria were always assumed to be strongly monotone, in
the sense of (6.1.7). This added sign condition (which is widely used within the
physics community, and is believed to be crucial for stability results) allowed
them to obtain in [130] a linear stability criterion which was complemented by
a linear instability criterion in [132]. Combined, these two results produced a
necessary and sufficient criterion for stability in the following sense: there exists
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a Schrödinger operator L0 acting only in the spatial variable, such that L0 ≥ 0
implies spectral stability, and L0 � 0 implies spectral instability. In [16, 17]
the monotonicity assumption was removed, which mainly impacted the ability to
obtain stability results. The instability results are similar to the ones of Lin and
Strauss, though the author only considers the 1.5d case with periodicity. This
is due to his methods which crucially require a Poincaré inequality. We remark
that our results recover all previous results when one restricts to the monotone
case.

6.1.3 The 1.5d case

First we treat the so-called 1.5d case, which is the lowest dimensional setting that
permits nontrivial electromagnetic fields. In this setting, the plasma is assumed to
have certain symmetries in phase-space that render the distribution function to be
a function of only one spatial variable x and two momentum variables v = (v1, v2),
with v1 being aligned with x. The only non-trivial components of the fields are the
first two components of the electric field and the third component of the magnetic
field: E = (E1, E2, 0) and B = (0, 0, B), and similarly for the equilibrium fields.
The RVM system becomes the following system of scalar equations

∂tf
± + v̂1∂xf

± ± (E1 + v̂2B)∂v1f
± ± (E2 − v̂1B)∂v2f

± = 0 (6.1.15a)

∂tE1 = −j1 (6.1.15b)

∂tE2 + ∂xB = −j2 (6.1.15c)

∂xE1 = ρ (6.1.15d)

∂tB = −∂xE2 (6.1.15e)

where ρ and j1, j2 are defined by (6.1.2) and (6.1.3).

6.1.3.1 Equilibrium

In Section 6.7 we prove that there exist equilibria f 0,±(x,v) which can be written
as functions of the energy and momentum

f 0,±(x,v) = µ±(e±, p±) (6.1.16)
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as in (6.1.4). The energy and momentum are defined as:

e± = 〈v〉 ± φ0(x)± φext(x), p± = v2 ± ψ0(x)± ψext(x) (6.1.17)

where 〈v〉 =
√

1 + |v|2, and φ0 and ψ0 are the equilibrium electric and magnetic
potentials2 (both scalar, in this case), respectively:

∂xφ
0 = −E0

1 , ∂xψ
0 = B0 (6.1.18)

and similarly φext and ψext are external electric and magnetic potentials that
give rise to external fields Eext

1 and Bext. It is a straightforward calculation
to verify that e± and p± are conserved quantities of the Vlasov flow, i.e. that
D±e± = D±p± = 0, where the operators D± are defined below, (6.1.20).

6.1.3.2 Linearisation

Let us discuss the linearisation of the Vlasov-Maxwell system (6.1.15) about a
steady-state solution (f 0,±,E0,B0). Using ansatz (6.1.12) and Jeans’ theorem
(6.1.4), together with (6.1.17) and (6.1.18) the linearised system becomes:

(λ+D±)f± = ∓µ±e v̂1E1 ± µ±p v̂1B ∓ (µ±e v̂2 + µ±p )E2 (6.1.19a)

λE1 = −j1 (6.1.19b)

λE2 + ∂xB = −j2 (6.1.19c)

∂xE1 = ρ (6.1.19d)

λB = −∂xE2, (6.1.19e)

where

D± = v̂1∂x ± (E0
1 +Eext

1 + v̂2(B0 +Bext))∂v1 ± (E0
2 − v̂2(B0 +Bext))∂v2 (6.1.20)

are the linearised transport operators as in (6.1.14), and

ρ =
∫

(f+ − f−) dv, ji =
∫
v̂i(f+ − f−) dv

2Note that E0
2 vanishes for any equilibrium. This can be deduced from (6.1.15). We provide

the details in appendix for completeness (see Lemma 6.A.1.)
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are the charge and current densities, respectively.

We now construct electric and magnetic potentials φ and ψ, respectively, as in
(6.1.18). Equation (6.1.19b) implies that E1 has the same spatial support as j1

which is a moment of f± which, in turn, has the same x support as µ± (this can
be seen from (6.1.19a) for instance). We deduce that E1 is compactly supported
in Ω and choose an electric potential φ ∈ H2(Ω) such that E1 = −∂xφ in Ω and
E1 = 0 outside Ω. Since E1 vanishes at the boundary of Ω, we must impose
Neumann boundary conditions on φ, and as E1 depends only on the derivative
of φ we may impose that φ has mean zero. The magnetic potential ψ is chosen
to satisfy B = ∂xψ and E2 = −λψ (this is due to (6.1.19e)). Then the remaining
Maxwell’s equations (6.1.19b)-(6.1.19d) become

λ∂xφ = −λE1 = j1 in Ω (6.1.21a)

(−∂2
x + λ2)ψ = −∂xB − λE2 = j2 in R (6.1.21b)

− ∂2
xφ = ∂xE1 = ρ in Ω (6.1.21c)

where (6.1.21c) is complemented by the Neumann boundary condition

−∂xφ = E1 = 0 on ∂Ω.

The linearised Vlasov equations can now be written as

(λ+D±)f± = ±µ±e v̂1∂xφ± µ±p v̂1∂xψ ± λ(µ±e v̂2 + µ±p )ψ

= ±µ±e D±φ± µ±p D±ψ ± λ(µ±e v̂2 + µ±p )ψ
(6.1.22)

where we have used the fact that D±u = v̂1∂xu if u is a function of x only.

Now let us specify the functional spaces that we shall use. For the scalar potential
φ we define the space

L2
0(Ω) :=

{
f ∈ L2(Ω) :

∫
Ω
f = 0

}

while for the magnetic potential ψ we simply use L2(R), the standard space
of square integrable functions. We denote by Hk(R) (resp. Hk(Ω)) the usual
Sobolev space of functions whose first k derivatives are in L2(R) (resp. L2(Ω)).
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Moreover, we naturally define

Hk
0 (Ω) :=

{
f ∈ Hk(Ω) :

∫
Ω
f = 0

}

and the corresponding version which imposes Neumann boundary conditions

Hk
0,n(Ω) :=

{
f ∈ Hk

0 (Ω) : ∂xf = 0 on ∂Ω
}
.

Finally, to allow us to consider functions that do not decay at infinity we use the
conditions (6.1.5) and (6.1.6) to define weighted spaces L± as follows: we take
the closure of the smooth and compactly supported functions of (x,v) (with the
x support contained in Ω) under the weighted-L2 norm given by

‖u‖2
L±

=
∫

Ω×R2
w±|u|2 dvdx

and we denote the inner product by 〈·, ·〉L± . In particular we can view any
function u(x) ∈ L2(Ω) or L2

0(Ω) as being in L± by considering u as a function
of (x,v) which does not depend on v. We can extend this to functions in L2(R)
by multiplying them by the characteristic function 1Ω of the set Ω. Hence the
function 1Ω itself may be regarded as an element in L±.

6.1.3.3 The operators

Finally, we define the operators used in the statement of Theorem 6.1.1. First
define the following projection operators:

Definition 6.1.4 (Projection operators). We define Q0
± to be the orthogonal

projection operators in L± onto ker(D±).

Remark 6.1.3. Although this definition makes reference to the spaces L±, the
operators Q0

± do not depend on the exact choice of weight functions w±. This may
be seen by writing (Q0

±h)(x,v) as the pointwise limit of ergodic averages along
trajectories (see Remark 6.3.1 and Lemma 6.6.1).

This allows us to define the following operators acting on functions of the spatial
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variable x, not the full phase-space variables:

A0
1h = −∂2

xh+
∫ ∑
±
µ±e (Q0

± − 1)h dv (6.1.23a)

A0
2h = −∂2

xh−
(∑
±

∫
µ±p v̂2 dv

)
h−

∫ ∑
±
v̂2µ

±
e Q0
± [v̂2h] dv (6.1.23b)

B0h =
(∫ ∑

±
µ±p dv

)
h+

∫ ∑
±
µ±e Q0

± [v̂2h] dv (6.1.23c)

(
B0
)∗
h =

(∫ ∑
±
µ±p dv

)
h+

∫ ∑
±
µ±e v̂2Q0

±h dv. (6.1.23d)

Their precise properties are discussed in Section 6.6.1. For future reference, we
mention the important identity

∫
R

(
µ±p + v̂2µ

±
e

)
dv2 = 0 (6.1.24)

which is due to the fact that ∂µ±

∂v2
= µ±e v̂2 + µ±p .

6.1.4 The cylindrically symmetric case

Since notation can be confusing when multiple coordinate systems are in use, we
start this section by making clear what our conventions are.

Vector transformations and notational conventions. We let x = (x, y, z) =
xe1 +ye2 +ze3 denote the representation of the point x ∈ R3 in terms of the stan-
dard Cartesian coordinates. We define the usual cylindrical coordinates as

r =
√
x2 + y2, θ = arctan(y/x), z = z
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and the local cylindrical coordinates as

er = r−1(x, y, 0), eθ = r−1(−y, x, 0), ez = (0, 0, 1).

By cylindrically symmetric we mean that in what follows no quantity depends
upon θ (which does not imply that the θ component is zero!). When writing f(x)
we mean the value of the function f at the point x in Cartesian coordinates. We
shall often abuse notation and write f(r, θ, z) to mean the value of f at the point
(r, θ, z) in cylindrical coordinates. A point v ∈ R3 in momentum space shall
either be expressed in Cartesian coordinates as

vxyz = (vx, vy, vz) = (v · e1)e1 + (v · e2)e2 + (v · e3)e3

or in cylindrical coordinates (depending upon the point x ∈ R3 in physical space)
as

vrzθ = (vr, vθ, vz) = (v · er)er + (v · eθ)eθ + (v · ez)ez.

However we shall not be too pedantic about this notation, and shall use v (rather
than vxyz or vrzθ) when there’s no reason for confusion.

A vector-valued function F shall be understood to be represented in Cartesian
coordinates. That is, unless otherwise said, F = (Fx, Fy, Fz) = Fxe1+Fye2+Fze3.
Its expression in cylindrical coordinates shall typically be written as F = Frer +
Fθeθ + Fzez.

Differential operators. Partial derivatives in Cartesian coordinates are writ-
ten as ∂x, ∂y and ∂z, while in cylindrical coordinates they are ∂r, ∂θ and ∂z. They
transform in the standard manner. It is important to note that since we work in
phase space, we shall require derivatives with respect to v as well. One important
factor appearing in the Vlasov equation is v̂ · ∇x, which transforms as

(v̂ · ∇x)h = v̂x∂xh+ v̂y∂yh+ v̂z∂zh

= v̂r∂rh+ r−1v̂θ∂θh+ v̂z∂zh

= v̂r∂rh+ r−1v̂θ(vθ∂vrh− vr∂vθh) + v̂z∂zh.
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However the next term in the Vlasov equation transforms “neatly”:

(F · ∇v)h = Fx∂vxh+ Fy∂vyh+ Fz∂vzh

= (Fx cos θ + Fy sin θ)∂vrh+ (−Fx sin θ + Fy cos θ)∂vθh+ Fz∂vzh

= Fr∂vrh+ Fθ∂vθh+ Fz∂vzh.

6.1.4.1 The Lorenz gauge

As opposed to the system (6.1.19), here we do not get a system of scalar equa-
tions. It is well known that there is some freedom in defining the electromagnetic
potentials ϕ (we use ϕ in the cylindrically symmetric case rather than φ to avoid
confusion) and A, satisfying

∂tA +∇ϕ = −E, ∇×A = B.

Remark 6.1.4. Whenever the differential operator ∇ appears without any sub-
script, it is understood to be ∇x, that is, the operator (∂x, ∂y, ∂z) acting on func-
tions of the spatial variable in Cartesian coordinates. The same holds for the
Laplacian ∆.

We choose to impose the Lorenz gauge ∇ · A + ∂ϕ
∂t

= 0, hence transforming
Maxwell’s equations into the hyperbolic system

∂2

∂t2
ϕ−∆ϕ = ρ, (6.1.25a)

∂2

∂t2
A−∆A = j. (6.1.25b)

We remark that this is not unique to the cylindrically symmetric case, and the
expressions above are written in Cartesian coordinates.

6.1.4.2 Equilibrium and the linearised system

We define the steady-state potentials ϕ0 : R3 → R and A0 : R3 → R3 through

∇ϕ0 = −E0, ∇×A0 = B0 (6.1.26)
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which become

E0 = −∂rϕ0er − ∂zϕ0ez, B0 = −∂zA0
θer + 1

r
∂r(rA0

θ)ez. (6.1.27)

The energy and momentum may be defined (analogously to (6.1.17)) as

e±cyl = 〈v〉 ± ϕ0(r, z)± ϕext(r, z),

p±cyl = r(vθ ± A0
θ(r, z)± Aextθ (r, z)),

(6.1.28)

where we remind that 〈v〉 =
√

1 + |vxyz|2. It is straightforward to verify that
they are indeed conserved along the Vlasov flow (which is given by the integral
curves of the differential operators D̃±, defined in (6.1.30) below). To maintain
simple notation we won’t insist on writing the cyl subscript where it is clear
which energy and momentum are meant. The external fields are also assumed
to be cylindrically symmetric and their potentials satisfy equations analogous to
(6.1.27). We recall (6.1.4), namely that any equilibrium is assumed to be of the
form

f 0,±(x,v) = µ±(e±, p±).

Considering the Lorenz gauge, and applying the ansatz (6.1.12) and Jeans’ the-
orem (6.1.4) the linearisation of the RVM system about a steady-state solution
(f 0,±,E0,B0) is

(λ+ D̃±)f± = ±(λ+ D̃±)(µ±e ϕ+ rµ±p (A · eθ))± λµ±e (−ϕ+ A · v̂) (6.1.29a)

λ2ϕ−∆ϕ =
∫

(f+ − f−) dv (6.1.29b)

λ2A−∆A =
∫

(f+ − f−)v̂ dv (6.1.29c)

where

D̃± = v̂xyz · ∇x ± (E0 + Eext + v̂xyz × (B0 + Bext)) · ∇v

= v̂r∂r + v̂z∂z + (±E0
r ± Eext

r ± v̂θ(B0
z +Bext

z ) + r−1v̂θvθ)∂vr
+ (±v̂z(B0

r +Bext
r )∓ v̂r(B0

z +Bext
z ) + r−1v̂θvr)∂vθ

± (E0
z + Eext

z + v̂θ(B0
r +Bext

r ))∂vz

(6.1.30)
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are the linearised transport operators. The Lorenz gauge condition under the
growing mode ansatz is

∇ ·A + λϕ = 0. (6.1.31)

6.1.4.3 Functional spaces

Even more so than in the 1.5d case, choosing convenient functional spaces is
crucial, due to the singular nature of the correspondence between Cartesian and
cylindrical coordinates. We define

L2
cyl(R3) = the largest closed subspace of L2(R3) comprised of func-

tions which have cylindrical symmetry.

A short computation using cylindrical coordinates shows that the decomposi-
tion L2(R3) = L2

cyl(R3) ⊕ (L2
cyl(R3))⊥ reduces the Laplacian. This means that

the Laplacian commutes with the orthogonal projection of L2(R3) onto L2
cyl(R3).

Hence the Laplacian is decomposed as

∆ = ∆cyl + ∆cyl⊥ .

As we have no use for (L2
cyl(R3))⊥ we shall abuse notation slightly and denote

∆cyl as simply ∆. We now consider vector valued functions

A ∈ L2
cyl(R3;R3) := (L2

cyl(R3))3.

We decompose such functions as

A = (A · eθ)eθ + ((A · er)er + (A · ez)ez)

= Aθ + Arz ∈ L2
θ(R3;R3)⊕ L2

rz(R3;R3).
(6.1.32)

By computing with cylindrical coordinates we once again discover that this de-
composition reduces the vector Laplacian ∆ on L2

cyl(R3;R3). Note that this
reduction does not occur for ∆ on L2(R3;R3) (i.e. without the cylindrical sym-
metry).

We further define the corresponding Sobolev spacesHk
cyl(R3),Hk

θ (R3;R3),Hk
rz(R3;R3)

of functions whose first k weak derivatives lie in L2
cyl(R3), L2

θ(R3;R3) and L2
rz(R3;R3),
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respectively. Note that, because of the reductions above, ∆ is self-adjoint on
L2
cyl(R3) with domain H2

cyl(R3) and ∆ is self-adjoint on each of L2
θ(R3;R3) and

L2
rz(R3;R3) with domains H2

θ (R3;R3) and H2
rz(R3;R3), respectively.

As in the 1.5d case we shall require certain weighted spaces N± that allow us to
include functions that do not decay. We define N± as the closure of the smooth
compactly supported functions u : R3×R3 → R which are cylindrically symmetric
in the x variable, and have x-support contained in Ω, under the norms

‖u‖N± =
∫
R3×Ω

w±|u|2 dvdx,

where the weight functions w± are the ones introduced in (6.1.5).

6.1.4.4 The operators

We now define the operators used in the statement of Theorem 6.1.2. As in the
1.5d case we shall require the following definition of projection operators:

Definition 6.1.5 (Projection operators). We define Q̃0
± to be the orthogonal

projection operators in N± onto ker(D̃±).

As in the 1.5d case, the operators Q̃0
± do not depend upon the exact choice

of weights w±. Now we are ready to define the operators of the cylindrically
symmetric case. For brevity, given v̂ = (v̂r, v̂θ, v̂z), we define v̂θ = v̂θeθ and
v̂rz = v̂rer + v̂zez. All operators act on functions of the spatial variables only:
the operator Ã0

1 acts on functions in L2
cyl(R3), Ã0

2 on functions in L2
θ(R3;R3),

Ã0
3 on functions in L2

rz(R3;R3), and B̃0
1 on functions in L2

θ(R3;R3) with range
L2
cyl(R3). We have:

Ã0
1h = −∆h+

∫ ∑
±
µ±e (Q̃0

± − 1)h dv (6.1.33a)

Ã0
2h = −∆h−

(
r
∫ ∑
±
µ±p v̂θ dv

)
h−

∫ ∑
±

v̂θµ
±
e Q̃0
±[h · v̂θ] dv (6.1.33b)
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Ã0
3h = −∆h−

∫ ∑
±

v̂rzµ
±
e Q̃0
±[h · v̂rz] dv (6.1.33c)

B̃0
1h =

∫ ∑
±
µ±e (Q̃0

± − 1)[h · v̂θ] dv (6.1.33d)

(B̃0
1)∗h =

∫ ∑
±
µ±e v̂θ(Q̃0

± − 1)h dv (6.1.33e)

The precise properties of these operators are discussed in Section 6.6.2. We also
mention an identity analogous to (6.1.24)

∫
R3

(rµ±p + v̂θµ
±
e ) dv = 0 (6.1.34)

which is due to the integrand being a perfect derivative: ∂µ±

∂vθ
= rµ±p + v̂θµ

±
e .

6.1.5 Organization of the chapter

In Section 6.2 we provide some necessary background, including the crucial result
on approximating spectra found in Chapter 5. Then we treat the two problems –
the 1.5d and 3d cases – in parallel: in Section 6.3 we formulate the two problems
as an equivalent family of self-adjoint problems which we then successively solve
in Section 6.4. The proofs of the main theorems are concluded in Section 6.5. In
Section 6.6 we provide the rigorous treatment of the various operators appearing
throughout the chapter, and in Section 6.7 we show that there exist nontrivial
equilibria.

6.2 Background, Definitions and Notation

In this section we remind the reader of the various notions of convergence in
Hilbert spaces in order to avoid confusion. For a Hilbert space H we denote
its norm and inner product by ‖·‖H and 〈·, ·〉H, respectively. When there is no
ambiguity we drop the subscript. We denote the set of bounded linear operators
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from a Hilbert space H to a Hilbert space G as B (H,G), and when H = G we
simply write B (H). The operator norm is denoted ‖·‖H→G, where, again, when
there is no ambiguity we may drop the subscript.

Definition 6.2.1 (Convergence inB (H,G)). Let T , Tn ∈ B (H,G), where n ∈ N.

(a) We say that the sequence Tn converges to T in norm (or uniformly) as
n → ∞ whenever ‖Tn − T ‖H→G → 0 as n → ∞. In this case we write
Tn → T .

(b) We say that the sequence Tn converges to T strongly as n → ∞ whenever
we have the pointwise convergence Tnu → T u in G for all u ∈ H. In this
case we write Tn s−→ T .

Now let us recall some important notions related to unbounded self-adjoint op-
erators:

Definition 6.2.2 (Convergence of unbounded operators). Let A and An be self-
adjoint, where n ∈ N.

(a) We say that the sequence An converges to A in the norm resolvent sense as
n→∞ whenever (An − z)−1 → (A− z)−1 for any z ∈ C \ R. In this case
we write An n.r.−−→ A.

(b) We say that the sequence An converges to A in the strong resolvent sense
as n → ∞ whenever (An − z)−1 s−→ (A − z)−1 for any z ∈ C \ R. In this
case we write An s.r.−−→ A.

Remark 6.2.1. Notice that for any self-adjoint operator A, the resolvent (A −
z)−1 is a bounded operator for any z ∈ C \ R.

6.2.1 Basic facts

The subsequent results will be used throughout the chapter without explicit ref-
erence.

Lemma 6.2.1. Let H,G be Banach spaces, T , Tn ∈ B (H,G) and u, un ∈ H

where n ∈ N, and assume that Tn s−→ T and un → u. Then Tnun → T u as
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n→∞.

Proof. We compute

‖Tnun − T u‖ ≤ ‖Tn(un − u)‖+ ‖(Tn − T )u‖

≤
(

sup
n∈N
‖Tn‖

)
‖un − u‖+ ‖(Tn − T )u‖ .

This supremum is finite by the uniform boundedness principle, so the first term
converges to zero since un → u. The second term converges to zero since Tn s−→
T .

Corollary 6.2.1. If Tn s−→ T and Sn s−→ S as n → ∞ then TnSn s−→ T S as
n→∞.

The following result complements Weyl’s theorem (see [109, IV, Theorem 5.35])
on the stability of the essential spectrum under a relatively compact perturbation.
In our setting we know more about the perturbation than being merely relatively
compact.

Lemma 6.2.2. Let A = −∆ +K : H2(Rn) ⊂ L2(Rn)→ L2(Rn) be a self-adjoint
Schrödinger operator with K ∈ B(L2(Rn)) and K = KP where P : L2(Rn) →
L2(Rn) is the multiplication operator by the characteristic function 1Ω of some
bounded domain Ω ⊂ Rn. Then A has a finite number of negative eigenvalues
(counting multiplicity).

Proof. By Weyl’s theorem (see [109, IV, Theorem 5.35]), there are at most count-
ably many negative eigenvalues and they may only accumulate at 0. Denote these
as the increasing sequence λ1 ≤ λ2 ≤ · · · , where equality comes from multiplicity.
As A is self-adjoint, the corresponding normalised eigenfunctions e1, e2, . . . form
an orthonormal set. Let E be their linear span, i.e.

E = span{ei : i = 1, 2, . . . }.

Note that E is a linear subspace of L2(Rd), but is not necessarily closed (at this
point in the proof) as we have not taken the closed span.

We claim that there exists an injective linear map from E into a finite dimensional
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space, and hence E is finite dimensional, proving the lemma. Indeed, we define
the map T : E → H2(Ω) by u 7→ 1Ωu, with image T (E). (We do not denote it
P as their codomains differ.) T is manifestly linear, so it remains to check the
other claimed properties.

Step 1. T is injective into its image. By linearity it suffices to show that
T u = 0 implies that u = 0 for any u ∈ E . Let u = ∑m

i=1 aiei for m finite and
scalar ai be an arbitrary element of E . Then it is enough to show that

u(x) =
m∑
i=1

aiei(x) = 0 for almost every x ∈ Ω =⇒ ai = 0, i = 1, . . . ,m.

(If Ω were Rn then this would follow immediately from orthogonality of the ei.)
Suppose that this is not the case, and let aj be the first non-zero coefficient in
the sum and j′ be the first integer above j for which λj 6= λj′ . Then we have

λ−kj Aku =
j′−1∑
i=j

aiei + λ−kj

m∑
i=j+1

λki aiei →
j′−1∑
i=j

aiei in L2(Rn) as k →∞

where Ak is the k-th power of the operator A, by the ordering of eigenvalues. By
the assumption on K we have Au = 0 almost everywhere in Ω. This implies that
v(x) = ∑j′−1

i=j aiei(x) is zero for almost every x in Ω. But v is an eigenfunction of
A with eigenvalue λj, so that

λjv = Av = −∆v +Kv = −∆v,

where we have used once again that K = KP and that v = 0 almost everywhere
in Ω. As λj < 0 and v ∈ L2(Rn) we must have v = 0 almost everywhere in
Rn, and by orthogonality of the ei in L2(Rn) this implies that aj = 0, which is a
contradiction.

Step 2. The image of T is finite dimensional. Let v = ∑m
i=1 aiT ei = T u
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for scalar ai and m finite be an arbitrary element of T (E). Then we have

‖∇v‖2
L2(Ω) − ‖K‖ ‖v‖

2
L2(Ω) ≤

∥∥∥∥∥∇
m∑
i=1

aiei

∥∥∥∥∥
2

L2(Rn)
− ‖K‖

∥∥∥∥∥P
m∑
i=1

aiei

∥∥∥∥∥
2

L2(Rn)

≤
〈
A

m∑
i=1

aiei,
m∑
i=1

aiei

〉
L2(Rn)

=
m∑
i=1

λi|ai|2 ‖ei‖2
L2(Rn) ≤ 0

where on the second line we have used orthogonality of the eigenfunctions ei and
on the final line we have used that λi < 0. Hence any v ∈ T (E) obeys the bound

‖∇v‖2
L2(Ω) ≤ C ‖v‖2

L2(Ω)

and by the Poincaré inequality on the bounded domain Ω, (enlarging Ω as needed
to ensure that its boundary is smooth), T (E) is finite dimensional.

As discussed above, these two steps complete the proof.

6.2.2 Approximating strongly continuous families of un-
bounded operators

Here we summarise the main results of Chapter 5 on properties of approximations
of strongly continuous families of unbounded operators. We shall require these
results in the sequel. We refer to Chapter 5 for full details, including proofs. Let
H = H+ ⊕ H− be a (separable) Hilbert space with inner product 〈·, ·〉 and norm
‖·‖ and let

Aλ =
Aλ+ 0

0 −Aλ−

 and Kλ =
Kλ++ Kλ+−
Kλ−+ Kλ−−

 , λ ∈ [0, 1]

be two families of operators on H depending upon the parameter λ ∈ [0, 1] (the
range [0, 1] of values of the parameter is, of course, arbitrary), where the family
Aλ is also assumed to be defined for λ in an open neighbourhood D0 of [0, 1] in
the complex plane. They satisfy:
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i) Sectoriality: The sesquilinear forms aλ± corresponding to Aλ± are sectorial
and closed for λ ∈ D0, symmetric for real λ, have dense domains D(aλ±) indepen-
dent of λ ∈ D0, and D0 3 λ 7→ aλ±[u, v] are holomorphic for any u, v ∈ D(aλ±).
[In the terminology of [109], aλ± are holomorphic families of type (a) and Aλ are
holomorphic families of type (B).]

ii) Gap: Aλ± > 1 for every λ ∈ [0, 1]. We let α > 1 be a lower bound to all Aλ±.

iii) Bounded perturbation: {Kλ}λ∈[0,1] ⊂ B (H) is a symmetric strongly con-
tinuous family.

iv) Compactness: There exist symmetric operators P± ∈ B (H±) which are
relatively compact with respect to the forms aλ±, satisfying Kλ = KλP for all
λ ∈ [0, 1] where

P =
P+ 0

0 P−

 .

Finally, if the family Aλ does not have a compact resolvent we assume:

v) Compactification of the resolvent: There exist holomorphic forms {wλ
±}λ∈D0

of type (a) and associated operators {Wλ
±}λ∈D0 of type (B) such that for λ ∈ [0, 1],

Wλ
± are self-adjoint and non-negative, and if wλ is the form associated with

Wλ =
Wλ

+ 0
0 −Wλ

−

 , λ ∈ D0,

then D(wλ) ∩ D(a±) are dense for all λ ∈ D0 and the inclusion (D(wλ) ∩
D(a), ‖·‖aλε ) → (H, ‖·‖) is compact for some λ ∈ D0 and all ε > 0, where aλε

is the form associated with

Aλε := Aλ + εWλ, λ ∈ D0, ε ≥ 0. (6.2.1)
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Define the family of (unbounded) operators {Mλ
ε}λ∈[0,1],ε≥0, acting in H, as

Mλ
ε = Aλε +Kλ, λ ∈ [0, 1].

For ε > 0, let

• {eλε,k}k∈N ⊂ H be a complete orthonormal set of eigenfunctions of Aλε ,

• Gλε,n : H→ H be the orthogonal projection operators onto span(eλε,1, . . . , eλε,n),

• M̃λ
ε,n be the n-dimensional operator defined as the restriction of Mλ

ε to
Gλε,n(H).

Now, for λ ∈ [0, 1], ε ≥ 0 and n ∈ N we define the measures (where we always
take multiplicities into account!)

νλ,ε =
∑

x∈sppp(Mλ
ε )\spess(Mλ

ε )
δx

and for any ε > 0 and n ∈ N the measures

ν̃λ,ε,n =
∑

x∈sp(M̃λ
ε,n)

δx.

Consider a cutoff function φη satisfying

φη(x) =

1 x ∈ [−1, 1]

0 x ∈ R \ (−1− η, 1 + η)
, φη ∈ C(R, [0, 1]), η ∈ (0, α).

Finally, define the measures
µηλ,ε = φηνλ,ε

and
µ̃ηλ,ε,n = φην̃λ,ε,n.

Recall that the space of finite positive Borel measures equipped with the topol-
ogy of weak convergence is metrisable, for example with the bounded Lipschitz
distance

dBL(µ, ν) := sup
‖ψ‖Lip≤1,|ψ|≤1

∫
ψ d(µ− ν).
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Our main result in Chapter 5 is:

Theorem 6.2.1. The mappings (λ, ε) 7→ µηλ,ε and λ 7→ µ̃ηλ,ε,n are weakly contin-
uous and as n→∞, dBL(µ̃ηλ,ε,n, µ

η
λ,ε)→ 0 uniformly in λ ∈ [0, 1].

6.3 An equivalent problem

6.3.1 The 1.5d case

We will now reduce the linearised Vlasov-Maxwell system (6.1.19) to a self-adjoint
problem in L2(R)× L2

0(Ω) depending continuously (in the norm resolvent sense)
on the parameter λ > 0.

6.3.1.1 Inverting the linearised Vlasov equation

Rearranging the terms in (6.1.22) we obtain

(λ+D±)f± = ±(λ+D±)(µ±e φ+ µ±p ψ)± λµ±e (−φ+ v̂2ψ), (6.3.1)

where we use the fact that µ± are constant along trajectories of the vector-fields
D±. In order to obtain an expression for f± in terms of the potentials φ, ψ
we invert the operators (λ + D±) and to do this we must study the operators
D±.

Lemma 6.3.1. The operators D± on L± satisfy:

(a) D± are skew-adjoint and the resolvents (λ + D±)−1 are bounded linear op-
erators for Reλ 6= 0 with norm bounded by 1/|Reλ|.

(b) D± flip parity with respect to the variable v1, i.e. if h(x, v1, v2) ∈ D(D±) is
an even function of v1 then D±h is an odd function of v1 and vice versa.

(c) For real λ 6= 0 the resolvents of D± split as follows:

(λ+D±)−1 = λ(λ2 −D2
±)−1 −D±(λ2 −D2

±)−1
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where the first part is symmetric and preserves parity with respect to v1,
and the second part is skew-symmetric and inverts parity with respect to v1.

Proof. Skew-adjointness follows from integration by parts, noting that w± are
in the kernels of D± (to be fully precise, only skew-symmetry follows. However,
skew-adjointness is a simple extension, see e.g. [187] and in particular exercise 28
therein). The existence of bounded resolvents follows. The statement regarding
parity follows directly from the formulas for D± term by term. Finally, for the
last part we use functional calculus formalism to compute

1
λ+D±

= λ−D±
λ2 −D2

±
= λ

λ2 −D2
±
− D±
λ2 −D2

±
.

As D± are skew-adjoint, D2
± are self-adjoint and hence the first term is self-adjoint

and the second skew-adjoint. For the parity properties we note that as D± flip
parity, D2

± preserve parity and hence so do λ2 −D2
± and their inverses.

Applying (λ+D±)−1 to (6.3.1) yields,

f± = ±µ±e φ± µ±p ψ ± λ(λ+D±)−1[µ±e (−φ+ v̂2ψ)]. (6.3.2)

Furthermore, using Lemma 6.3.1 we split f± into even and odd functions of
v1:

f±ev = ±µ±e φ± µ±p ψ ± µ±e λ2(λ2 −D2
±)−1[−φ+ v̂2ψ]

f±od = ∓µ±e λD±(λ2 −D2
±)−1[−φ+ v̂2ψ]

using the fact that φ, ψ and µ are all even functions of v1. For brevity, we define
operators Qλ± : L± → L± as

Qλ± = λ2(λ2 −D2
±)−1, λ > 0.

When λ → 0 their strong limits exist, and are defined in Definition 6.1.4 (this
convergence is proved in Lemma 6.6.1).

Remark 6.3.1. Operators Qλ± also appeared in the prior works [130, 132, 16, 17].
In each of these Qλ± were defined as an integrated average over the characteristics
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of the operators D±. In fact, as the Laplace transform of a semigroup is the
resolvent of its generator we see that the operators Qλ± in these prior works have
the rule:

Qλ±h =
∫ 0

−∞
λeλsesD±h ds = λ

∫ ∞
0

e−λse−sD±h ds = λ(λ+D±)−1h.

Here we have defined the operators Qλ± directly from the resolvents of D± as this
makes some of its properties clearer, although both approaches have advantages.
In particular we are able to split λ(D±+λ)−1 into symmetric and skew-symmetric
parts in Lemma 6.3.1 which simplifies some computations.

6.3.1.2 Reformulating Maxwell’s equations

Now we substitute the expressions (6.3.2) into Maxwell’s equations (6.1.21). This
shall result in an equivalent system of equations for φ and ψ. Due to the integra-
tion dv we notice that f±od and f±odv̂2 both integrate to zero, so that ρ and j2 only
depend on f±ev.

Remark 6.3.2. It is important to note that due to the continuity equation it is
possible to express either (6.1.21a) or (6.1.21b) using the remaining two equations
in (6.1.21). See Lemma 6.5.4.

Gauss’ equation (6.1.21c). Gauss’ equation becomes

−∂2
xφ =

∫
(f+
ev − f−ev) dv

=
∫ ∑
±

(
µ±e φ+ µ±p ψ +Qλ±[µ±e (−φ+ v̂2ψ)]

)
dv

=
∫ ∑
±

(µ±p + µ±e v̂2)ψ dv +
∫ ∑
±
µ±e (Qλ± − 1)[−φ+ v̂2ψ] dv,

(6.3.3)

where we have pulled µ±e outside the application ofQλ± as they belong to ker(D±).
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Ampère’s equation (6.1.21b). Similarly, Ampère’s equation becomes

(−∂2
x + λ2)ψ=

∫
v̂2(f+

ev − f−ev) dv

=
∫ ∑
±
v̂2
(
µ±e φ+ µ±p ψ +Qλ±[µ±e (−φ+ v̂2ψ)]

)
dv

=
∫ ∑
±
v̂2(µ±p + µ±e v̂2)ψ dv

+
∫ ∑
±
v̂2µ

±
e (Qλ± − 1)[−φ+ v̂2ψ] dv.

(6.3.4)

An equivalent formulation. We write the two new expressions (6.3.3) and
(6.3.4) abstractly in the compact form

Mλ

ψ
φ

 =
−∂2

xψ + λ2ψ − j2

∂2
xφ+ ρ

 =
0

0

 , (6.3.5)

where, for λ > 0, Mλ is a self-adjoint matrix of operators mapping L2(R) ×
L2

0(Ω)→ L2(R)×L2
0(Ω) (see Lemma 6.6.4). We claim that this operator may be

written either as

Mλ =
−∂2

x + λ2 0
0 ∂2

x

−J λ (6.3.6)

or, equivalently, as

Mλ =
Aλ2 (

Bλ
)∗

Bλ −Aλ1

 (6.3.7)

where the various operators appearing above are given by

J λ

h
g

 = −
(∑
±

∫
µ±

1 + v2
1

〈v〉3
dv

)h
0

+

+
∑
±

∫  v̂2

−1

µ±e (Qλ± − 1)
 v̂2

−1

 ·
h
g

 dv

(6.3.8a)

Aλ1h = −∂2
xh+

∫ ∑
±
µ±e (Qλ± − 1)h dv (6.3.8b)
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Aλ2h = −∂2
xh+ λ2h−

(∑
±

∫
µ±p v̂2 dv

)
h−

∫ ∑
±
v̂2µ

±
e Qλ± [v̂2h] dv (6.3.8c)

Bλh =
(∫ ∑

±
µ±p dv

)
h+

∫ ∑
±
µ±e Qλ± [v̂2h] dv (6.3.8d)

(
Bλ
)∗
h =

(∫ ∑
±
µ±p dv

)
h+

∫ ∑
±
µ±e v̂2Qλ±h dv. (6.3.8e)

Remark 6.3.3. Though λ > 0 in the foregoing discussion, all operators can be
defined for λ = 0, as we have already done for some (see (6.1.23)).

The expression (6.3.7) is no more than a rewriting of (6.3.3) and (6.3.4). However
the expression (6.3.6) requires some attention. In particular, to obtain it one has
to use (6.1.24) as well as the integration by parts

∫ ∂µ±

∂v2
v̂2 dv = −

∫
µ±

∂v̂2

∂v2
dv = −

∫
µ±

1 + v2
1

〈v〉3
dv.

The properties of the operators appearing in (6.3.8) are discussed in details in
Lemma 6.6.2 and Lemma 6.6.3. Let us briefly summarise:

• Aλ1 : H2
n,0(Ω) ⊂ L2

0(Ω) → L2
0(Ω) is self-adjoint and has a purely discrete

spectrum with finitely many negative eigenvalues.

• Aλ2 : H2(R) ⊂ L2(R) → L2(R) is self-adjoint, has essential spectrum in
[λ2,∞) and finitely many negative eigenvalues.

• Bλ : L2(R)→ L2
0(Ω) is a bounded operator, with bound independent of λ.

• J λ : L2(R) × L2
0(Ω) → L2(R) × L2

0(Ω) is a bounded symmetric operator,
with bound independent of λ.

6.3.2 The cylindrically symmetric case

Our approach here is fully analogous to the one presented in Section 6.3.1 hence
we shall keep it brief, omitting repetitions as much as possible. For convenience
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we denote analogous operators by the same letter, but we shall add a tilde to any
such operator in this section. Hence, e.g. the operators analogous to D± shall be
denoted D̃±.

6.3.2.1 Inverting the linearised Vlasov equation

Recall the linearised Vlasov equation (6.1.29a)

(λ+ D̃±)f± = ±(λ+ D̃±)(µ±e ϕ+ rµ±p (A · eθ))± λµ±e (−ϕ+ A · v̂).

Inverting, we get the expression

f± = ±µ±e ϕ± rµ±p (A · eθ)± µ±e λ(λ+ D̃±)−1(−ϕ+ A · v̂), (6.3.9)

and, recalling that we only care about the quantity f+−f−, we write it for future
reference:

f+− f− =
∑
±
µ±e ϕ+

∑
±
rµ±p (A · eθ) +

∑
±
µ±e λ(λ+ D̃±)−1(−ϕ+ A · v̂). (6.3.10)

Lemma 6.3.2. The operators D̃± on N± satisfy:

(a) D̃± are skew-adjoint and the resolvents (λ + D̃±)−1 are bounded linear op-
erators for Reλ 6= 0 with norm bounded by 1/|Reλ|.

(b) D̃± flip parity with respect to the pair of variables (vr, vz), i.e. if h ∈ D(D̃±)
is an even function of the pair (vr, vz) then D̃±h is an odd function of (vr, vz)
and vice versa (see Remark 6.3.4 below).

(c) For real λ 6= 0 the resolvents of D̃± split as follows:

(λ+ D̃±)−1 = λ(λ2 − D̃2
±)−1 − D̃±(λ2 − D̃2

±)−1 (6.3.11)

where the first part is symmetric and preserves parity with respect to (vr, vz),
and the second part is skew-symmetric and inverts parity with respect to
(vr, vz).

We leave the proof, which is analogous to the proof of Lemma 6.3.1, to the
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reader.

Remark 6.3.4. For a function h that is expressed in cylindrical coordinates as
h(x, vr, vz, vθ), we say that h is an even function of the pair (vr, vz) if it holds that
h(x, vr, vz, vθ) = h(x,−vr,−vz, vθ), where we flip the sign of both variables simul-
taneously. Note that this is a weaker property than both being an even function
of vr and an even function of vz. Odd functions of (vr, vz) are defined similarly.

As in the 1.5d case, we define averaging operators. However, in this case both
the symmetric and skew-symmetric parts are required. The operators Q̃λ±,sym and
Q̃λ±,skew map N± to N± and are defined by the rules

Q̃λ±,sym = λ2(λ2 − D̃2
±)−1, λ > 0

Q̃λ±,skew = −λD̃±(λ2 − D̃2
±)−1, λ > 0.

Note that by (6.3.11) we have λ(λ+ D̃±)−1 = Q̃λ±,sym + Q̃λ±,skew.

6.3.2.2 Reformulating Maxwell’s equations

We now rewrite Maxwell’s equations (6.1.29b)-(6.1.29c) as an equivalent self-
adjoint problem using the expression (6.3.10). We start with (6.1.29b):

0 = λ2ϕ−∆ϕ−
∫

(f+ − f−) dv

= λ2ϕ−∆ϕ−
∫ ∑
±

(
µ±e ϕ+ rµ±p (A · eθ) + µ±e λ(λ+ D̃±)−1(−ϕ+ A · v̂)

)
dv

(6.3.12)
where ϕ ∈ Hϕ. Next, the system of equations (6.1.29c) becomes

0 = λ2A−∆A−
∫

(f+ − f−)v̂ dv

= λ2A−∆A−
∫ ∑
±

(
µ±e ϕ+ rµ±p (A · eθ) + µ±e λ(λ+ D̃±)−1(−ϕ+ A · v̂)

)
v̂ dv,

(6.3.13)
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where A = (Aθ,Arz) ∈ L2
θ(R3;R3) × L2

rz(R3;R3). As in (6.3.5), we shall write
these equations as a single system of the form

M̃
λ


Aθ

ϕ

Arz

 =


0
0
0

 , (6.3.14)

which is a self-adjoint operator on the space L2
θ(R3;R3)×L2

cyl(R3)×L2
rz(R3;R3),

see Lemma 6.6.8. In analogy with (6.3.7), we define

M̃
λ =


Ãλ2 (B̃λ1 )∗ (B̃λ2 )∗

B̃λ1 −Ãλ1 −(B̃λ3 )∗

B̃λ2 −B̃λ3 −Ãλ3

 . (6.3.15)

With v̂ = (v̂r, v̂θ, v̂z), we recall the notation v̂θ = v̂θeθ and v̂rz = v̂rer + v̂zez

introduced before. Then the components of M̃λ are now given by

Ãλ1h =−∆h+ λ2h+
∫ ∑
±
µ±e (Q̃λ±,sym − 1)h dv (6.3.16a)

Ãλ2h = −∆h + λ2h−
(
r
∫ ∑
±
µ±p v̂θ dv

)
h−

∫ ∑
±

v̂θµ
±
e Q̃λ±,sym[h · v̂θ] dv

(6.3.16b)

Ãλ3h = −∆h + λ2h−
∫ ∑
±

v̂rzµ
±
e Q̃λ±,sym[h · v̂rz] dv (6.3.16c)

B̃λ1 h =
∫ ∑
±
µ±e (Q̃λ±,sym − 1)[h · v̂θ] dv (6.3.16d)

(B̃λ1 )∗h =
∫ ∑
±
µ±e v̂θ(Q̃λ±,sym − 1)h dv (6.3.16e)

B̃λ2 h =
∫ ∑
±
µ±e v̂rzQ̃λ±,skew[h · v̂θ] dv (6.3.16f)
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(B̃λ2 )∗h = −
∫ ∑
±
µ±e v̂θQ̃λ±,skew [v̂rz · h] dv (6.3.16g)

B̃λ3h =
∫ ∑
±
µ±e v̂rzQ̃λ±,skew h dv (6.3.16h)

(B̃λ3 )∗h = −
∫ ∑
±
µ±e v̂rzQ̃λ±,skew [h · v̂rz] dv. (6.3.16i)

These are derived from (6.3.12) and (6.3.13), where some terms vanish due to
parity in (vr, vz), (see Lemma 6.3.2(c)). In particular, in every occurrence of
λ(λ + D̃±)−1 = Q̃λ±,sym + Q̃λ±,skew, exactly one of these operators vanishes after
integration dv. In addition, we have made use of (6.1.34). We further define an
operator J̃ λ as

J̃
λ =


λ2 −∆ 0 0

0 −λ2 + ∆ 0
0 0 −λ2 + ∆

− M̃λ
.

Let us briefly discuss these operators in further detail (their precise properties
are treated in Section 6.6.2):

• The operators

Ãλ1 : H2
cyl(R3) ⊂ L2

cyl(R3)→ L2
cyl(R3)

Ãλ2 : H2
θ (R3;R3) ⊂ L2

θ(R3;R3)→ L2
θ(R3;R3)

Ãλ3 : H2
rz(R3;R3) ⊂ L2

rz(R3;R3)→ L2
rz(R3;R3)

are self-adjoint, have essential spectrum in [λ2,∞) and a finite number of
eigenvalues in (−∞, λ2).

• The operators

B̃λ1 : L2
θ(R3;R3)→ L2

cyl(R3)

B̃λ2 : L2
θ(R3;R3)→ L2

rz(R3;R3)

B̃λ3 : L2
cyl(R3)→ L2

rz(R3;R3)
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are bounded, with bound independent of λ.

• J̃
λ:L2

θ(R3;R3)×L2
cyl(R3)×L2

rz(R3;R3)→ L2
θ(R3;R3)×L2

cyl(R3)×L2
rz(R3;R3)

is a bounded symmetric operator with bound independent of λ.

6.4 Solving the equivalent problem

The problem is now reduced to finding some λ ∈ (0,∞) for which the operators
Mλ (in the 1.5d case) and M̃λ (in the cylindrically symmetric case) have non-
trivial kernels (not the same λ in both cases, of course). Our method is to compare
their spectrum for λ = 0 and λ very large, and use spectral continuity arguments
to deduce that as λ varies an eigenvalue must cross through 0 (both operators
are self-adjoint, see Lemma 6.6.4 and Lemma 6.6.8 below, hence the spectrum
lies on the real axis).

6.4.1 The 1.5d case

6.4.1.1 Continuity of the spectrum at λ = 0

Recall the condition (6.1.9) which we require for instability:

neg(A0
2 + (B0)∗(A0

1)−1B0) > neg(A0
1). (6.4.1)

We wish to move this condition to values of λ greater than 0:

Lemma 6.4.1. Assume that (6.4.1) holds and that zero is in the resolvent set of
A0

1. Then there exists λ∗ > 0 such that for all λ ∈ [0, λ∗]

neg(Aλ2 + (Bλ)∗(Aλ1)−1Bλ) > neg(Aλ1).

Proof. The proof follows immediately from the following three simple steps:

Step 1. Aλ1 is invertible for small λ ≥ 0. We know from Lemma 6.6.3 (below)
that Aλ1 is continuous in the norm resolvent sense and has discrete spectrum. The
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norm resolvent continuity implies that its spectrum varies continuously in λ, so
as 0 is not in its spectrum at λ = 0 there exists λ∗ such that 0 is not in the
spectrum for 0 ≤ λ ≤ λ∗. Hence for all such λ, Aλ1 is invertible and the operator
Aλ2 + (Bλ)∗(Aλ1)−1Bλ is well defined.

Step 2. neg(Aλ1) = neg(A0
1) for all λ ∈ [0, λ∗]. The spectrum of Aλ1 is purely

discrete and 0 is in its resolvent set. This means that none of its eigenvalues can
cross 0 for small values of λ.

Step 3. neg(Aλ2 +(Bλ)∗(Aλ1)−1Bλ) ≥ neg(A0
2+(B0)∗(A0

1)−1B0) for all λ ∈ [0, λ∗].
Observe that

• [0,∞) 3 λ 7→ Aλ2 + (Bλ)∗(Aλ1)−1Bλ is norm resolvent continuous,

• Aλ2 + (Bλ)∗(Aλ1)−1Bλ has essential spectrum in [λ2,∞),

• Aλ2 + (Bλ)∗(Aλ1)−1Bλ has finitely many negative eigenvalues.

These statements follow from arguments similar to those appearing in the proof
of Lemma 6.6.3(a)-(c), the last by the boundedness of the perturbation and the
location of the essential spectrum (see Lemma 6.2.2). Since 0 is not in the re-
solvent set at λ = 0 we pick σ < 0 larger than all the (finitely many) negative
eigenvalues of A0

2 + (B0)∗(A0
1)−1B0. The continuous dependence of the spectrum

(as a set) on the parameter λ implies that for small values of λ no eigenvalues
cross σ and the number of negative eigenvalues can only grow as λ increases.

6.4.1.2 Truncation

We follow the plan hinted at in Section 6.2.2: first we discretise the spectrum,
then truncate. The only continuous part in the spectrum ofMλ is due to Aλ2 ,
hence we let W (x) be a smooth positive potential function satisfying W (x)→∞
as x → ±∞ which we shall add to Aλ2 . It is well known that the Schrödinger
operator −∂2

x + W on L2(R) is self-adjoint (on an appropriate domain therein)
with compact resolvent (and therefore discrete spectrum). Moreover, C∞0 (R) is
a core for both ∂2

x + W and ∂2
x. Thus our approximating operator family is
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{Mλ
ε}λ∈[λ∗,∞),ε∈[0,∞), where

Mλ
ε =

Aλ2,ε (Bλ)∗

Bλ −Aλ1

 =
−∂2

x + εW 0
0 ∂2

x

+
λ2 0

0 0


︸ ︷︷ ︸

Aλε

−J λ

defined on L2(R)×L2
0(Ω) and where λ∗ is as given in Lemma 6.4.1. For ε > 0 this

operator has discrete spectrum. As indicated in the statement of Theorem 6.2.1
and the preceding definitions, we define truncated versions using the eigenspaces
of the operator Aλ

ε . As this operator is diagonal, we can choose the eigenvectors
to lie in exactly one of L2(R) or L2

0(Ω). We denote the nth truncation, a projection
onto an eigenspace of dimension 2n consisting of n eigenvectors in each of L2(R)
and L2

0(Ω), asMλ
ε,n which is self-adjoint and defined for ε > 0, λ ≥ 0, n ∈ N.

Moreover, the mapping λ 7→ sp(Mλ
ε,n) is continuous (that is, the set of eigenvalues

varies continuously). In particular, if there are λ∗ < λ∗ for which neg(Mλ∗
ε,n) 6=

neg(Mλ∗

ε,n) then there must exist λε,n ∈ (λ∗, λ∗) for which 0 ∈ sp(Mλ
ε,n). We

have therefore just proved:

Lemma 6.4.2. Fix ε > 0, n ∈ N. Suppose that there exist 0 < λ∗ < λ∗ < ∞
such that neg(Mλ∗

ε,n) 6= neg(Mλ∗

ε,n). Then there is a λε,n ∈ (λ∗, λ∗) for which
ker(Mλ

ε,n) is non-trivial.

The next step is thus to establish estimates on neg(Mλ
ε,n).

6.4.1.3 The spectrum for large λ

We begin by looking at neg(Mλ
ε,n) when λ is large. This turns out to be relatively

simple due to the block form of the untruncated operator.

Lemma 6.4.3. There is λ∗ > 0 such that for all λ ≥ λ∗, ε > 0, and n ∈ N,
the truncated operatorMλ

ε,n has spectrum composed of exactly n positive and n
negative eigenvalues. In particular neg(Mλ

ε,n) = n.

Proof. Take u = (u1, 0) ∈ L2(R)× L2
0(Ω) with u1 ∈ D(Aλ2,ε), ‖u‖L2(R)×L2(Ω) = 1
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and u in the 2n dimensional subspace associated with the truncation. Then,
〈
Mλ

ε,nu,u
〉
L2(R)×L2

0(Ω)
=
〈
Aλ1,ε,nu1, u1

〉
L2(R)

=
〈
Aλ1,εu1, u1

〉
L2(R)

=
〈
Aλ1u1, u1

〉
L2(R)

+ ε
∥∥∥√Wu1

∥∥∥2

L2(R)
.

As the second term is non-negative we may apply Lemma 6.6.3(d) to see that,
for all large enough λ (independently of n and ε), Mλ

ε,n is positive definite on
a subspace of dimension n, so has n positive eigenvalues. Performing the same
computation on u = (0, u2) in the subspace associated with the truncation and
with u2 ∈ D(Aλ1,ε), we obtain that for large enough λ,Mλ

ε,n is negative definite
on a subspace of dimension n. AsMλ

ε,n has exactly 2n eigenvalues the proof is
complete.

6.4.1.4 The spectrum for small λ

We now consider sp(Mλ∗
ε,n). We recall the result on spectra of real block matrix

operators in [17]:

Lemma 6.4.4. Let M be the real symmetric block matrix

M =
A2 BT

B −A1


with A1 invertible. Then M has the same number of negative eigenvalues as the
matrix

N =
A2 +BTA−1

1 B 0
0 −A1

 .
Lemma 6.4.5. Assume that (6.4.1) holds and that zero is in the resolvent set of
A0

1. Then there exist λ∗, ε∗ > 0 such that for all ε ∈ (0, ε∗) there is N > 0 such
that for all n > N the operatorMλ∗

ε,n satisfies

neg(Mλ∗
ε,n) ≥ neg(A0

2 + (B0)∗(A0
1)−1B0) + n− neg(A0

1).

Proof. The number λ∗ is the one given in Lemma 6.4.1, and satisfies that for all
λ ∈ [0, λ∗] the kernel of Aλ1 is trivial. Since eigenvalues (counting multiplicity) are
stable under strong resolvent perturbations (see [109, VIII.3.5.Thm 3.15.]), there
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exists ε∗ > 0 such that neg(A0
2,ε + (B0)∗(A0

1)−1B0) ≥ neg(A0
2 + (B0)∗(A0

1)−1B0)
for all ε ∈ [0, ε∗]. The result then follows from Lemma 6.4.4, since neg(Mλ∗

ε,n) =
neg(Aλ∗2,ε + (Bλ∗)∗(Aλ∗1 )−1Bλ∗) + n− neg(Aλ∗1 ).

6.4.2 The cylindrically symmetric case

For brevity we write

M̃
λ =

Ãλ2 (B̃λ4)∗

B̃λ4 −Ã
λ

4


where

Ã
λ

4 =
Ãλ1 (B̃λ3 )∗

B̃λ3 Ãλ3

 and B̃λ4 =
B̃λ1
B̃λ2

 .

6.4.2.1 Continuity of the spectrum at λ = 0

Lemma 6.4.6. Assume that (6.1.10) holds, that Ã0
3 does not have 0 as an L6-

eigenvalue (see Definition 6.1.3) and that Ã0
1 does not have 0 as an eigenvalue.

Then there exists λ∗ > 0 such that for λ ∈ [0, λ∗],

neg(Ãλ2 + (B̃λ4)∗(Ãλ

4)−1B̃λ4) > neg(Ãλ

4).

Proof. We first note that as the mean perturbed charge is zero (this is since∫
ρ dx is an invariant of the linearised system), it follows from direct computation

on the Green’s function of the Laplacian that any L6-eigenfunction of Ã0
1 will

also be square integrable and so be a proper eigenfunction. Indeed, for any L6

eigenfunction u of Ã0
1, we may define ρ by ρ = −∆u which satisfies

∫
ρ dx = 0

and has compact support. Then, for x outside the support of ρ, we have

u(x) = 1
4π

∫ ρ(y)
|x− y|

dy

= 1
4π|x|

∫
ρ(y) dy + 1

4π|x|2
∫
ρ(y) |x|(|x| − |x− y|)

|x− y|
dy.

The first term vanishes, and using the compact support of ρ it is easily seen that
the second integral is bounded independently of x. Hence u(x) decays like C|x|−2
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for large |x| and square integrability follows. Note also that B̃0
3 = 0. Thus Ã0

4

having an L6-eigenfunction of 0 contradicts our assumptions, a fact that we will
later use.

We model the proof on that of Lemma 6.4.1, splitting it into 4 steps.

Step 1. Ã
λ

4 is invertible for small λ ≥ 0 when restricted to functions
supported in Ω. Let P ∈ B

(
L2
cyl(R3)× L2

rz(R3;R3)
)
be multiplication by

the indicator function of Ω. We claim that for all small enough λ > 0, P(Ãλ

4)−1P
is a well defined bounded operator that is strongly continuous in λ > 0 and has
a strong limit as λ → 0. To prove this, we argue that if this were not the case,
then 0 would be an L6-eigenvalue of Ã0

4, a contradiction.

As L2
cyl(R3)× L2

rz(R3;R3) is a closed subspace of L2(R3;R4) we may work in the
larger space to ease notation. To this end, let ‖·‖ and 〈·, ·〉 denote the L2(R3;R4)
norm and inner product. We can express Ãλ

4 in the form

Ã
λ

4u = −∆u + λ2u +Kλu

where Kλ is uniformly bounded, strongly continuous in λ ≥ 0 and Kλ = PKλP .

Step 1.1. Ã
λ

4 is bounded from below when restricted to functions sup-
ported in Ω. First we claim that there exist constants λ′ > 0 and C > 0 such
that we have the uniform lower bound∥∥∥∥1ΩÃ

λ

4uλ

∥∥∥∥ ≥ C
∥∥∥1Ωuλ

∥∥∥ , ∀λ ∈ (0, λ′] (6.4.2)

where the constant C does not depend on λ or on uλ and where uλ satisfies
Ã
λ

4uλ = 0 outside Ω. Indeed, if not there would be sequences λn → 0 and
{un}∞n=1 with ‖1Ωun‖L2 = 1 that satisfy

Ã
λn

4 un = −∆un + λ2
nun +Kλnun = fn → 0 (6.4.3)
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as n→∞, with fn supported in Ω. Hence,

‖∇un‖2 + λ2
n ‖un‖2 +

〈
Kλnun,un

〉
= 〈fn,un〉 → 0 (6.4.4)

so that ‖∇un‖2 is uniformly bounded for large enough n. Therefore, there exists a
subsequence (we abuse notation and keep the same sequence) such that ∇un ⇀

v weakly in L2(R3;R4) for some v ∈ L2(R3;R4). By the standard Sobolev in-
equality ‖ϕ‖L6(R3) ≤ C ‖∇ϕ‖L2(R3) we have a uniform bound on ‖un‖L6(R3;R4).
Therefore, by passing again to a subsequence if necessary, we have the conver-
gence un ⇀ u weakly in L6(R3;R4) for some u ∈ L6(R3;R4). Furthermore, by
Rellich’s theorem we have the strong convergence un → u in L2

loc(R3;R4). This
implies that necessarily v = ∇u. In particular we deduce that ‖1Ωu‖ = 1 so
u 6= 0. Passing to the limit in (6.4.3), u satisfies

−∆u +K0u = 0

in the sense of distributions and by elliptic regularity u ∈ H2
loc(R3;R4). In fact u is

an L6-eigenfunction of Ã0
4 with eigenvalue 0, which contradicts our assumptions.

This proves the claim.

Step 1.2. Ã
λ

4 is invertible for all small enough λ > 0. For any λ > 0,
0 does not lie in the essential spectrum of Ãλ

4 so is either an eigenvalue or in
the resolvent set. Let λ > 0 be small enough so that (6.4.2) holds, then any
eigenfunction u of 0 satisfies all the assumptions of the claim above, and hence
‖1Ωu‖ ≤ C−1

∥∥∥∥1ΩÃ
λ

4u
∥∥∥∥ = 0 so that u = 0 inside Ω. Clearly this implies that

u = 0 in R3 which is a contradiction. In the same way we deduce a uniform
bound C from below for the operator P(Ãλ

4)−1P for such small λ > 0.

Step 1.3. P(Ã0
4)−1P is well defined and bounded. Finally we give a

meaning to P(Ã0
4)−1P (which is required as Ã0

4 is not invertible on the whole
space). We define it to be the strong operator limit of P(Ãλ

4)−1P as λ → 0.
Indeed, suppose that f is fixed with support in Ω and λn → 0. Then we wish to
compute the limit of Pun for un = (Ãλn

4 )−1Pf as n → ∞ and show that it is
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independent of the sequence λn → 0. Indeed un will satisfy

Ã
λn

4 un = λ2
nun −∆un +Kλnun = f .

By the same argument as before we can extract a subsequence and limit u ∈
L6(R3;R4) with convergences as in Step 1.1. In particular Pun → Pu. We
claim that the limit u is independent of the limiting sequence λn → 0. Indeed, if
two different limits u and v existed, then their difference w = u−v ∈ L6(R3;R4)
would solve Ã0

4w = 0, i.e. would be an L6-eigenfunction with eigenvalue 0, which
we assumed impossible.

Finally, the uniform bound (6.4.2) implies that the approximations P(Ãλ

4)−1P
are uniformly bounded in operator norm for all sufficiently small positive λ. The
convergence, for all u ∈ L2(R3;R4), P(Ãλ

4)−1Pu → P(Ã0
4)−1Pu as λ → 0

implies that the limiting operator has the same bound in operator norm.

Step 2. neg(Ãλ

4) = neg(Ã0
4) for all λ ∈ [0, λ∗]. Ã

λ

4 is norm resolvent contin-
uous in λ ≥ 0, so the only way the number of negative eigenvalues could change
is for an eigenvalue to be absorbed into the essential spectrum at 0 as λ → 0.
Assume this happens, then we have a sequence λn → 0, a sequence of negative
eigenvalues σn → 0 and eigenfunctions un which satisfy

−∆un + λ2
nun +Kλnun = σnun.

By the same argument as in the previous steps, we may take subsequences and
obtain a contradiction.

Step 3. neg(Ãλ2 + (B̃λ4)∗(Ãλ

4)−1B̃λ4) ≥ neg(Ã0
2 + (B̃0

4)∗(Ã0
4)−1B̃0

4) for all λ ∈
[0, λ∗]. This may be proved in the same way as Step 3 of Lemma 6.4.1.

Step 4. neg(Ã0
2 + (B̃0

4)∗(Ã0
4)−1B̃0

4) > neg(Ã0
4). As B̃0

2 = 0 and B̃0
3 = 0 we have,

neg(Ã0
2 + (B̃0

4)∗(Ã0
4)−1B̃0

4)

= neg(Ã0
2 + (B̃0

1)∗(Ã0
1)−1B̃0

1) > neg(Ã0
1) + neg(Ã0

3) = neg(Ã0
4)
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where the inequality is obtained from the assumption of the lemma.

6.4.2.2 Finding a non-trivial kernel

The next few steps of the proof follow those of the 1.5d case, hence we only
provide a short overview.

Truncation. As the domain is unbounded, each Laplacian appearing in the prob-
lem contributes an essential spectrum on [0,∞). We therefore introduce a smooth
positive potential function W : R3 → R satisfying W (x) → ∞ as |x| → ∞ and
denote by W⊗n the n-dimensional vector-valued function with n copies of W .
Then we define

M̃
λ

ε =
Ãλ2,ε (B̃λ4)∗

B̃λ4 −Ã
λ

4,ε

 =
−∆ + εW⊗3 0

0 ∆− εW⊗4

+
λ2 0

0 −λ2


︸ ︷︷ ︸

Ã
λ

ε

−J̃
λ
.

As above we can naturally define finite-dimensional operators M̃λ

ε,n, for which
we can easily prove:

Lemma 6.4.7. Fix ε > 0, n ∈ N. Suppose that there exist 0 < λ∗ < λ∗ < ∞
such that neg(M̃λ∗

ε,n) 6= neg(M̃λ∗

ε,n). Then there exists λε,n ∈ (λ∗, λ∗) for which
ker(M̃λ

ε,n) is non-trivial.

The spectrum for large λ. This is again similar to the 1.5d case, in particular due
to the appearance of the λ2 terms. We have:

Lemma 6.4.8. There is a number λ∗ > 0 such that for all λ ≥ λ∗, ε > 0, and
n ∈ N, the truncated operator M̃λ

ε,n has spectrum composed of exactly n positive
and n negative eigenvalues. In particular neg(M̃λ

ε,n) = n.

The spectrum for small λ. Again this is similar to the 1.5d case.

Lemma 6.4.9. Assume that (6.1.10) holds and that zero is neither an eigenvalue
of Ã0

1 nor is it an L6-eigenvalue of Ã0
3. Then there exist λ∗, ε∗ > 0 such that for
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all ε ∈ (0, ε∗) there is N > 0 such that for all n > N the operator M̃λ∗
ε,n satisfies

neg(M̃λ∗
ε,n) ≥ neg

(
Ã0

2 +
(
B̃0

1

)∗ (
Ã0

1

)−1
B̃0

1

)
+ n− neg

(
Ã0

1

)
− neg

(
Ã0

3

)
. (6.4.5)

6.5 Proofs of the main theorems

In this section we complete the proofs of Theorem 6.1.1 and Theorem 6.1.2. In
both settings – the 1.5d and the cylindrically symmetric – we first show that the
results of Section 6.4 imply that there exists some λ > 0 such that the equivalent
problems (6.3.5) and (6.3.14) have a non-trivial solution (the λ need not be the
same in both cases, of course). Then we show that these non-trivial solutions
lead to genuine non-trivial solutions of the linearised RVM in either case.

6.5.1 The 1.5d case

6.5.1.1 Existence of a non-trivial kernel of the equivalent problem

By Lemma 6.4.3 and Lemma 6.4.5 we have 0 < λ∗ < λ∗ < ∞ and ε∗ > 0 such
that for any ε < ε∗ there is an Nε such that for n > Nε we have,

neg(Mλ∗
ε,n) ≥ neg(A0

2 + (B0)∗(A0
1)−1B0) + n− neg(A0

1)

> n = neg(Mλ∗

ε,n),

where the strict inequality is due to the assumption (6.1.9). Fix ε ∈ (0, ε∗). By
Lemma 6.4.2 for each n > Nε there exists λε,n ∈ (λ∗, λ∗) such that 0 ∈ sp(Mλε,n

ε,n ).
By compactness of the interval [λ∗, λ∗] we may pass to a subsequence where
λε,nk → λε as k → ∞, for some λε ∈ [λ∗, λ∗]. By Theorem 6.2.1 we have
µ̃ηλε,nk ,ε,nk

⇀ µηλε,ε as k → ∞, where µ̃ηλε,nk ,ε,nk is the measure generated by the
spectra of the approximationsMλε,nk

ε,nk and µηλε,ε is the measure generated by the
spectra ofMλε

ε . In order to avoid the continuous spectrum tending to +∞ and
the discrete spectrum tending to −∞, the cutoff function φη must be chosen so
that its support lies within [−K

2 ,
λ2
∗

2 ] where K > 0 is the spectral gap of the
Neumann Laplacian ∂2

x on L2
0(Ω). Since 0 lies in the support of all µ̃ηλε,nk ,ε,nk it
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must also lie in the support of µηλε,ε. Furthermore, since φη(0) = 1 we have that
0 ∈ sp(Mλε

ε ). We now repeat this argument to send ε ↓ 0, obtaining λ ∈ [λ∗, λ∗]
with 0 ∈ sp(Mλ). Finally, the discreteness of the spectrum ofMλ in (−∞, λ2),
(Lemma 6.6.4), ensures that 0 is an eigenvalue ofMλ, i.e. Mλ has a non-trivial
kernel.

6.5.1.2 Existence of a growing mode

Now that we know that there exist some λ ∈ (0,∞) and some u =
[
ψ φ

]T
∈

H2(R) × H2
0,n(Ω) that solve (6.3.5) we show that a genuine growing mode as

defined in (6.1.8) really exists. To this end, we use φ, ψ and λ to define

E1 = −∂xφ E2 = −λψ B = ∂xψ

(which lie in H1(Ω), H2(R) and H1(R), respectively) and to define f±(x, v) as in
(6.3.2):

f± = ±µ±e φ± µ±p ψ ± λ(λ+D±)−1[µ±e (−φ+ v̂2ψ)].

Observe that f± are both in L2(R×R2) since µ±e and µ±p are continuous functions
that are compactly supported in the spatial variable which satisfy the integrability
condition (6.1.6). In fact, f± are in the domains of D±, respectively, since e± and
p± are constant along trajectories and φ and ψ are twice differentiable.

Lemma 6.5.1. The functions f± solve the linearised Vlasov equations (6.3.1).

Proof. This is almost a tautology: applying the operators λ+D± to the expres-
sions for f±, respectively, one is left precisely with the expressions (6.3.1).

Lemma 6.5.2. The functions f± belong to L1(R× R2).

Proof. Dropping the ± for brevity, the first term making up f is estimated as
follows

‖µeφ‖L1(R3) . ‖µe‖L2(R3)‖φ‖L2(R) . ‖µe‖1/2
L∞(R3)‖µe‖

1/2
L1(R3)‖φ‖L2(R) <∞.

The other terms are estimated similarly (for the terms involving the averaging
operator this may be seen by writing the ergodic average explicitly (see Re-
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mark 6.3.1) or by using boundedness of the averaging operator on L±). This
implies that f± ∈ L1(R× R2).

We now define the charge and current densities ρ and ji by

ρ =
∫

(f+ − f−) dv ji =
∫
v̂i(f+ − f−) dv, i = 1, 2.

Integrating f± in the momentum variable v alone, we obtain that ρ ∈ L1(R) as
well as ji ∈ L1(R) since |v̂i| ≤ 1. In particular ρ, ji are distributions on R.

Lemma 6.5.3. The continuity equation λρ + ∂xj1 = 0 holds in the sense of
distributions.

Proof. This follows from integrating the linearised Vlasov equations in the mo-
mentum variable. Indeed, we informally have

∫
(λ+D±)f± dv = ±

∫ [
(λ+D±)(µ±e φ+ µ±p ψ) + λµ±e (−φ+ v̂2ψ)

]
dv

= ±
∫
λψ

(
µ±p + µ±e v̂2

)
dv ±

∫
D±

(
µ±e φ+ µ±p ψ

)
dv = 0,

where the first term on the right hand side vanishes due to the identity (6.1.24)
and the second term vanishes since µ± are even in v̂1, whereas D± = v̂1∂x when
applied to functions of x alone (recall that µ± are constant along trajectories of
D±, as are µ±e and µ±p ). We obtain the continuity equation by subtracting the
“−” expression above from the “+” expression. Owing to the low regularity of
f±, ρ and j1 this is true in a weak sense.

Lemma 6.5.4. Maxwell’s equations (6.1.21) hold.

Proof. Equations (6.1.21b) and (6.1.21c) hold due to (6.3.5) and the definitions
of the operators (6.3.8). Indeed, from the second line of (6.3.5), we have

0 =
(∫ ∑

±
µ±p dv

)
ψ +

∫ ∑
±
µ±e Qλ± [v̂2ψ] dv + ∂2

xφ−
∫ ∑
±
µ±e (Qλ± − 1)φ dv

= ∂2
xφ+

∫ ∑
±

(
µ±p ψ + µ±e Qλ± [v̂2ψ]− µ±e (Qλ± − 1)φ

)
dv

(6.3.2)= ∂2
xφ+

∫
(f+ − f−) dv.
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which is (6.1.21c). Similarly, (6.1.21b) is obtained from the first line of (6.3.5).

We therefore just need to show that (6.1.21a) holds. However this is a simple
consequence of (6.1.21c) and the continuity equation. Indeed, we may first write

−λ∂xE1 = λ∂2
xφ

(6.1.21c)= −λρ cont. eq.= ∂xj1

which is the derivative of (6.1.21a). Next, as φ ∈ H2
n,0(Ω), its derivative E1

vanishes on ∂Ω, and j1 also vanishes there due to the compact support of the
equilibrium in Ω. Thus, −λE1 and j1 have the same derivative inside Ω and the
same values on ∂Ω, which means they must be equal.

Lemma 6.5.5. The charge and current densities ρ, j1 and j2 are elements in
L1(R) ∩ L2(R).

Proof. This follows from Maxwell’s equations and the regularity of ψ, φ which are
in H2(R) and H2

0,n(Ω) respectively.

This concludes the proof of Theorem 6.1.1.

6.5.2 The cylindrically symmetric case

6.5.2.1 Existence of a non-trivial kernel of the equivalent problem

The proof of the existence of a non-trivial kernel in the cylindrically symmetric
case is in complete analogy to the one in the 1.5d case presented in Section 6.5.1.1
and is therefore omitted.

6.5.2.2 Existence of a growing mode

Let λ > 0 and u =
[
Aθ ϕ Arz

]T
∈ H2

θ (R3;R3) × H2
cyl(R3) × H2

rz(R3;R3) be
such that (6.3.14) is satisfied, i.e. M̃λ

u = 0. Let H2
cyl(R3;R3) 3 A = Aθ + Arz

as in (6.1.32) and define

E = −∇ϕ B = ∇×A
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(which each lie in H1
cyl(R3;R3) ⊆ H1(R3;R3)). Furthermore, define

f± = ±µ±e ϕ± rµ±p (A · eθ)± µ±e λ(λ+ D̃±)−1(−ϕ+ A · v̂).

As in the 1.5d case we begin by establishing that f± are integrable and satisfy the
linearised Vlasov and continuity equations. The proof of this result is analogous
to the corresponding results in the 1.5d case, so is omitted.

Lemma 6.5.6. The functions f± solve the linearised Vlasov equations (6.1.29a)
in the sense of distributions, and belong to L1(R3×R3). Furthermore, the charge
and current densities ρ and j defined by

ρ =
∫

(f+ − f−) dv j =
∫

v̂(f+ − f−) dv,

belong to L1(R3) and L1(R3;R3), respectively, and satisfy the continuity equation
λρ+∇ · j = 0 in the sense of distributions.

Next we recover Maxwell’s equations from (6.3.14) and the continuity equa-
tion.

Lemma 6.5.7. Both the Lorenz gauge condition λϕ +∇ ·A = 0 (see (6.1.31))
and Maxwell’s equations (6.1.25) are satisfied.

Proof. In the same way as the 1.5d case, (6.1.25a) is obtained from the second
line of (6.3.14). Similarly, (6.1.25b) is obtained from the first and third lines of
(6.3.14).

It remains to show that the Lorenz gauge condition holds. Using (6.1.25a) and
(6.1.25b) in the continuity equation, we have, in the sense of distributions

0 = λ(−∆ + λ2)ϕ+∇ · [(−∆ + λ2)A]

= (−∆ + λ2)[λϕ+∇ ·A].

As −∆ + λ2 is invertible, this implies that λϕ+∇ ·A = 0.

This concludes the proof of Theorem 6.1.2.
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6.6 Properties of the operators

Here we gather all important properties of the operators defined in Section 6.3,
as well as the operators defined in (6.1.23) and (6.1.33).

6.6.1 The 1.5d case

As the only dependence on λ is through the operatorsQλ± we start with them:

Lemma 6.6.1. In the respective spaces L±, Qλ± satisfy:

(a)
∥∥∥Qλ±∥∥∥B(L±)

= 1.

(b) Qλ± can be extended from λ > 0 to Reλ > 0 as holomorphic operator valued
functions. In particular they are continuous for λ > 0 in operator norm
topology.

(c) As R 3 λ → ∞, Qλ±
s−→ 1, and for u ∈ D(D±),

∥∥∥(Qλ± − 1)u
∥∥∥
L±
≤

‖D±u‖L± /λ.

(d) As λ → 0, Qλ± converge strongly to the projection operators Q0
± defined in

Definition 6.1.4.

(e) For any λ ≥ 0, Qλ± are symmetric.

Proof.
∥∥∥Qλ±∥∥∥B(L±)

≤ 1 follows from ‖(D± + λ)−1‖B(L±) ≤
1
|λ| as iD± is self-adjoint

and the nearest point of the spectrum of D± is 0. That
∥∥∥Qλ±∥∥∥B(L±)

= 1 is proved
by observing that Qλ±1 = 1. Part (b) follows from the analyticity of resolvents as
functions of λ. For (c) we compute using functional calculus for u ∈ D(D±):

∥∥∥Qλ±u− u∥∥∥L± =
∥∥∥∥∥
(

λ2

λ2 −D2
±
− 1

)
u

∥∥∥∥∥
L±

=
∥∥∥∥∥ D2

±
λ2 −D2

±
u

∥∥∥∥∥
L±

≤
∥∥∥∥∥ D±
λ+D±

∥∥∥∥∥
B(L±)

∥∥∥∥∥ 1
λ−D±

∥∥∥∥∥
B(L±)

‖D±u‖L±

≤ 1 · 1
λ
· ‖D±u‖L± → 0 as λ→∞

and deduce the strong convergence Qλ±
s−→ 1 by the density of D(D±) in L±.
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For (d) we introduce the spectral measure (resolution of the identity) of the self-
adjoint operator −iD±, which we denote byM±(α), where α ∈ R. The projection
onto ker(D±) is then Q0

± = M±({0}) =
∫
R χ(α) dM±(α) where χ(0) = 1 and

χ(α) = 0 when α 6= 0. Recall that λ(λ+D±)−1 =
∫
R

λ
λ+iα dM±(α). We compute

for u ∈ L±,

∥∥∥λ(λ+D±)−1u−M±({0})u
∥∥∥2

L±
=
∥∥∥∥∥
∫
R

(
λ

λ+ iα
− χ(α)

)
dM±(α)u

∥∥∥∥∥
2

L±

=
∫
R

∣∣∣∣∣ λ

λ+ iα
− χ(α)

∣∣∣∣∣
2

d ‖M±(α)u‖2
L±
,

the last equality being due to orthogonality of spectral projections. This now
tends to 0 as λ→ 0 by the dominated convergence theorem. Replacing D± with
−D±, which has the same kernel, we deduce that λ(λ − D±)−1 s−→ Q0

±. Finally
we have Qλ± = λ(λ − D±)−1λ(λ + D±)−1 s−→ (Q0

±)2 = Q0
± by the composition of

strong operator convergence. To show (e) for λ > 0 we simply note that D2
± are

self-adjoint, and extend to λ = 0 by the strong operator convergence.

These results carry through to the other operators.

Lemma 6.6.2. The operators J λ and Bλ have the properties:

(a) For all λ ∈ [0,∞), Bλ maps L2(R) into L2
0(Ω) and J λ maps L2(R) ×

L2
0(Ω)→ L2(R)× L2

0(Ω).

(b) The familes {J λ}λ∈[0,∞) and {Bλ}λ∈[0,∞) are both uniformly bounded in
operator norm.

(c) Both (0,∞) 3 λ 7→ J λ and (0,∞) 3 λ 7→ Bλ are continuous in the operator
norm topology.

(d) As λ→ 0, J λ → J 0 and Bλ → B0 in the strong operator topology.

(e) For any λ ≥ 0 the operator J λ is symmetric.

(f) Let P be the multiplication operator acting in L2(R)× L2
0(Ω) defined by

P =
1Ω 0

0 1Ω
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where 1Ω is the indicator function of the set Ω. Then J λ = J λP.

Proof. Part (a) is easily verifiable. We note that due to the relation

Bλ = −
[
0 1

]
J λ

1
0


it is sufficient to prove the results for J λ. We observe that due to the decay
assumptions (6.1.6) on µ±, the moment

−
∑
±

∫
µ±

1 + v2
1

〈v〉3
dv

is bounded in L∞(R) and is real valued, so it is a bounded symmetric multiplica-
tion operator from L2(R) to L2(R). Next we decompose the second part of J λ

as ∑
±

∫
µ±e T±(Qλ± − 1)T ∗±

ψ
φ

 dv (6.6.1)

where T± : L± ×L± → L± is multiplication by the vector
[
v̂2 −1

]
, and we have

used the natural (and bounded) inclusions from L2(R) and L2
0(Ω) into L±. Clearly

T± are bounded and we know that Qλ± have bound 1 by Lemma 6.6.1. Finally, we
note that due to the decay assumptions on µ±e and its compact support in x, that
multiplication by µ±e followed by integration dv is bounded from L± to L2(R) and
L2(Ω). Therefore J λ has a uniform bound in operator norm. Parts (c) and (d)
then follow from the corresponding results for Qλ± in Lemma 6.6.1 using (6.6.1).
(e) is clear from the symmetry of Qλ± and (6.6.1). Finally (f) follows from the
compact spatial support of µ±, µ±e , µ±p inside Ω.

Lemma 6.6.3 (Properties of Aλ1 and Aλ2). Let 0 ≤ λ <∞.

(a) The operator Aλ1 is self-adjoint on L2
0(Ω) and the operator Aλ2 is self-adjoint

on L2(R) with the respective domains H2
0,n(Ω) and H2(R).

(b) Both [0,∞) 3 λ 7→ Aλ1 and [0,∞) 3 λ 7→ Aλ2 are continuous in the norm
resolvent topology.

(c) The spectrum of Aλ1 is purely discrete. The spectrum of Aλ2 in (−∞, λ2) is
discrete and made up of finitely many eigenvalues. It is continuous (possibly

286



with embedded eigenvalues) in [λ2,∞).

(d) There exist constants γ > 0 and Λ > 0 such that for all λ ≥ Λ, Aλi > γ,
i = 1, 2.

Proof. Clearly −∂2
x is symmetric. The perturbative terms are symmetric as well

since Qλ± are symmetric, see Lemma 6.6.1. Self-adjointness is guaranteed by
standard arguments, such as the Kato-Rellich theorem.

Let us prove (b), considering first Aλ2 . It is sufficient to prove that (Aλ2 − i)−1 →
(Aσ2 − i)−1 in operator norm as λ → σ (with λ, σ ≥ 0). We use the second
resolvent identity to obtain

(Aλ2 − i)−1 − (Aσ2 − i)−1 = (Aλ2 − i)−1(Aσ2 −Aλ2)(Aσ2 − i)−1

= (Aλ2 − i)−1((σ2 − λ2)− (J σ
11 − J λ

11))(Aσ2 − i)−1

where J λ
11 is the upper left component of J λ written in block matrix form. Hence,

as the resolvents are each bounded in operator norm by 1,
∥∥∥(Aλ2 − i)−1− (Aσ2 − i)−1

∥∥∥
B(L2(R))

≤ |σ2 − λ2|+
∥∥∥(J σ

11 − J λ
11)(Aσ2 − i)−1

∥∥∥
B(L2(R))

.

It thus suffices using Lemma 6.6.2(f) to show that (J σ
11 − J λ

11)P(Aσ2 − i)−1 → 0
in operator norm, where P is the multiplication operator on L2(R) given by the
indicator function of the set Ω. P is relatively compact with respect to −∂2

x by
the Rellich theorem, and hence also relatively compact with respect to Aσ2 as it
also has the domain H2(R) by part (a). Hence P(Aσ2 − i)−1 is compact, which
allows us to upgrade the strong convergence J λ

11
s−→ J σ

11 given by Lemma 6.6.2 to
operator norm convergence. The norm resolvent continuity of Aλ2 follows. The
proof for Aλ1 is analogous, but lacking the |σ2 − λ2| term.

Part (c) is simple: both operators have a differential part (Laplacian) and a rela-
tively compact perturbation. Hence both conclusions follow from Weyl’s theorem
[109, IV, Theorem 5.35]. The finiteness of the discrete spectrum below the es-
sential part in the case of Aλ2 is a consequence of Lemma 6.2.2. For part (d), we
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begin with Aλ1 . Fix an arbitrary h ∈ H2
0,n(Ω), then we compute,

〈
Aλ1h, h

〉
L2

0(Ω)
= ‖∂xh‖2

L2
0(Ω) −

∑
±

∫∫
hµ±e (1−Qλ±)h dvdx

Now we note as h ∈ H2
0,n(Ω), h is in D(D±) when interpreted in L±. We now use

Lemma 6.6.1(c) to estimate,

〈
Aλ1h, h

〉
L2

0(Ω)
≥ ‖∂xh‖2

L2
0(Ω) −

1
λ

∑
±

∥∥∥µ±e /w±∥∥∥L∞(Ω×R3)
‖D±h‖L± ‖h‖L±

≥ ‖∂xh‖2
L2

0(Ω) −
C√
Kλ
‖∂xh‖2

L2
0(Ω)

≥ K ‖h‖2
L2

0(Ω)

(
1− C√

Kλ

)

where K is the spectral gap of the Laplacian on the bounded domain Ω, and we
have used

‖D±h‖2
L±

=
∫∫

w±|v̂1∂xh|2 dvdx ≤ ‖∂xh‖2
L2

0(Ω) sup
x∈Ω

∫
w±|v̂1|2 dv

and the natural bounded inclusions from L2
0(Ω) into L±. We now just take Λ >

C/
√
K.

For Aλ2 the proof is easier due to the λ2 term. For h ∈ H2(R) we compute, using
the formulation (6.3.8a),

〈
Aλ2h, h

〉
L2(R)

= ‖∂xh‖2
L2(R) + λ2 ‖h‖2

L2(R) −
〈
J λ

h
0

 ,
h

0

〉
L2(R)×L2

0(Ω)

≥ (λ2 − C ′) ‖h‖2
L2(R)

where we have used that the uniform bound in operator norm of J λ given by
Lemma 6.6.2. We now take Λ >

√
C ′.

Lemma 6.6.4 (Properties ofMλ). For each λ ∈ [0,∞), the operator Mλ is
self-adjoint on L2(R) × L2

0(Ω) with domain H2(R) × H2
0,n(Ω). For any λ ≥ 0,

the operator Mλ has essential spectrum [λ2,∞). The family {Mλ}λ∈[0,∞) is
continuous in the norm resolvent topology.
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Proof. The proof essentially mimics (and uses) the preceding proofs, and is there-
fore left for the reader.

6.6.2 The cylindrically symmetric case

As many of the proofs are the same as in the 1.5 dimensional case above, we give
the details only where they differ.

Lemma 6.6.5. In the respective spaces N±, Q̃λ±,sym and Q̃λ±,skew satisfy:

(a)
∥∥∥Q̃λ±,sym∥∥∥B(N±)

= 1 and
∥∥∥Q̃λ±,skew∥∥∥B(N±)

≤ 1
2 .

(b) Q̃λ±,sym and Q̃λ±,skew can be extended from λ > 0 to Reλ > 0 as holomorphic
operator valued functions. In particular they are continuous for λ > 0 in
operator norm topology.

(c) As R 3 λ → ∞, Q̃λ±,sym
s−→ 1, and for u ∈ D(D̃±), we have the bound∥∥∥(Q̃λ±,sym − 1)u

∥∥∥
N±
≤
∥∥∥D̃±u∥∥∥

N±
/λ.

(d) As R 3 λ → ∞, Q̃λ±,skew
s−→ 0, and for u ∈ D(D̃±), we have the bound∥∥∥Q̃λ±,symu∥∥∥N± ≤

∥∥∥D̃±u∥∥∥
N±

/λ.

(e) As 0 < λ→ 0, Q̃λ±,sym
s−→ Q̃0

±, where Q̃0
± are defined in Definition 6.1.5.

(f) As 0 < λ→ 0, Q̃λ±,skew
s−→ 0.

(g) For any λ ≥ 0, Q̃λ±,sym are symmetric and Q̃λ±,skew are skew-symmetric.

Proof. The claims about Q̃λ±,sym may be proved in the same way as those in
Lemma 6.6.1. For (a), the spectral theorem applied to the self-adjoint operators
−iD̃± implies that Q̃λ±,skew are unitarily equivalent to a multiplication operator,
so that

∥∥∥Q̃λ±,skew∥∥∥B(N±)
=
∥∥∥∥∥ −iαλλ2 + α2

∥∥∥∥∥
L∞α (sp(iD̃±))

≤
∥∥∥∥∥ −iαλλ2 + α2

∥∥∥∥∥
L∞α (R)

= 1
2 .

The proof of (b) follows, as in the proof of Lemma 6.6.1, from the holomorphicity
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of the resolvent. For (d), we let u ∈ D(D̃±), and then for λ > 0 we have,
∥∥∥Q̃λ±,skewu∥∥∥N± ≤ λ

∥∥∥(λ2 + D̃2
±)−1

∥∥∥
B(N±)

∥∥∥D̃±u∥∥∥
N±

≤ 1
λ

∥∥∥D̃±u∥∥∥
N±
→ 0 as λ→∞.

The strong convergence to 0 then follows from the density of D(D̃±). For (f), we
repeat the proof of Lemma 6.6.1, noting that it is shown that λ(λ+ D̃±)−1 s−→ Q̃0

±

and Q̃λ±,sym
s−→ Q̃0

± as λ → 0. That Q̃λ±,skew
s−→ 0 as λ → 0 now follows from the

identity, valid for all λ > 0,

λ(λ+ D̃±)−1 = Q̃λ±,sym + Q̃λ±,skew.

Finally, (g) is a consequence of Lemma 6.3.2.

Lemma 6.6.6. The operators J̃ λ, and B̃λi for i = 1, 2, 3, 4 have the properties:

(a) For all λ ∈ [0,∞), we have

B̃λ1 ∈ B
(
L2
θ(R3;R3), L2

cyl(R3)
)
,

B̃λ2 ∈ B
(
L2
θ(R3;R3), L2

rz(R3;R3)
)
,

B̃λ3 ∈ B
(
L2
cyl(R3), L2

rz(R3;R3)
)
,

B̃λ4 ∈ B
(
L2
θ(R3;R3), L2

cyl(R3)× L2
rz(R3;R3)

)
,

with bounds uniform in λ.

(b) Each of (0,∞) 3 λ 7→ J̃ λ and (0,∞) 3 λ 7→ B̃λi , i = 1, 2, 3, 4 are continu-
ous in the operator norm topology.

(c) As λ→ 0, J̃ λ
→ J̃

0, B̃λ1 → B̃0
1, B̃λ2 → 0 and B̃λ3 → 0 in the strong topology.

(d) For any λ ≥ 0 the operator J̃ λ is symmetric.

(e) Let P̃ be the multiplication operator acting in L2
cyl(R3) × L2

θ(R3;R3) ×
L2
rz(R3;R3) defined by

P̃ =


1Ω 0 0
0 1Ω 0
0 0 1Ω
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where 1Ω is the indicator function of the set Ω. Then J̃ λ = J̃ λ
P̃.

Proof. That the operators map the corresponding spaces to each other may be
verified directly from (6.3.16), noting in particular the notation v̂θ = eθv̂θ and
v̂rz = erv̂r + ezv̂z. As in the proof of Lemma 6.6.2, the uniform (in λ) bound
on the operator norms may be obtained using the decay assumptions on the
equilibrium and the uniform bound on the norms of Q̃λ±,sym and Q̃λ±,skew given by
Lemma 6.6.5. In the same way (c) and (d) follow from the corresponding results
in Lemma 6.6.5.

To show the symmetry of J̃ λ for λ > 0 we use the block matrix form, noting
that Q̃λ±,sym appears on the diagonal, and that the off diagonal entries have B̃λi
and their adjoints in the appropriate configuration. Then we extend to λ = 0 by
the strong convergence. As in Lemma 6.6.2 (e) follows from the spatial support
properties of the equilibrium.

Lemma 6.6.7 (Properties of Ãλ1 , Ãλ2 , Ãλ3 and Ãλ

4). Let 0 ≤ λ <∞.

(a) The operator Ãλ1 is self-adjoint on L2
cyl(R3), the operator Ãλ2 is self-adjoint

on L2
θ(R3;R3), Ãλ3 is self-adjoint on L2

rz(R3;R3) and Ãλ

4 is self-adjoint on
L2
cyl(R3) × L2

rz(R3;R3) with the respective domains H2
cyl(R3), H2

θ (R3;R3),
H2
rz(R3;R3) and H2

cyl(R3)×H2
rz(R3;R3).

(b) The mappings [0,∞) 3 λ 7→ Ãλ1 , [0,∞) 3 λ 7→ Ãλ2 , [0,∞) 3 λ 7→ Ãλ3 and
[0,∞) 3 λ 7→ Ãλ

4 are continuous in the norm resolvent topology.

(c) The spectra of Ãλ1 , Ãλ2 , Ãλ1 and Ãλ

4 in (−∞, λ2) are discrete and finite. In
[λ2,∞) their spectra are continuous (possibly with embedded eigenvalues).

(d) There exist constants γ > 0 and Λ > 0 such that for all λ ≥ Λ, Ãλi > γ,
i = 1, 2, 3, 4.

Proof. The proof for each of Ãλi , i = 1, 2, 3, 4 is analogous to that of Lemma 6.6.3
for Aλ2 . We omit the details.

Lemma 6.6.8 (Properties of M̃λ). For each λ ∈ [0,∞), the operator M̃λ is
self-adjoint on L2

θ(R3;R3) × L2
cyl(R3) × L2

rz(R3;R3) with domain H2
θ (R3;R3) ×

H2
cyl(R3)×H2

rz(R3;R3). For any λ ≥ 0, the operator M̃λ has essential spectrum
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(−∞,−λ2]∪[λ2,∞). The family {M̃λ
}λ∈[0,∞) is continuous in the norm resolvent

topology.

Proof. This is again analogous to the previous proofs, and is left to the reader.

6.7 Existence of equilibria

In this section we prove that there exist compactly supported equilibria of the
1.5d system which can be written in the form (6.1.16)-(6.1.17). Existence in the
3d case was already provided in [130]. We note that providing explicit examples
of equilibria is a much more challenging task, which we do not pursue here. The
construction below utilises the physically relevant idea of magnetic confinement.
We mention in this context the recent result [159] where global-in-time existence
and uniqueness of solutions was established in a similar setting, though with a
singular magnetic potential.

Proposition 6.7.1 (Existence of confined equilibria). Let R > 0, α > 2 and
A± ⊂ R2 be bounded domains. Then there are constants c, C > 0 such that if two
functions µ±(e±, p±) ∈ C1

0(R2) with support in A± satisfy

|µ±|, |µ±e |, |µ±p | ≤ c(1 + |e±|)−α

and a function ψext ∈ H2
loc(R) satisfies

|ψext(x)| ≥ C(1 + |x|2) for |x| ≥ R

then there are potentials φ0, ψ0 ∈ H2
loc(R) such that (µ±(e±, p±), φ0, ψ0, ψext, φext =

0) is an equilibrium of the 1.5d relativistic Vlasov-Maxwell equations (6.1.15) with
spatial support in [−R,R], where the relationship between (x, v1, v2) and (e±, p±)
is as defined in (6.1.17).

Remark 6.7.1 (Trivial solutions). Of course, the result does not say that the
obtained equilibrium is not everywhere zero. This may be ruled out by choosing
µ± and ψext in such a way that (for example) µ±(x = 0, v = 0) > 0 if φ0, ψ0 ≡ 0.
Let us sketch the argument. Recall that we write f 0,±(x, v) = µ±(〈v〉±φ0(x), v2±
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ψ0(x)± ψext(x)) = µ±(e±, p±). If f 0,±(x,v) = 0 for all (x,v) then ρ, ji = 0 and
φ0, ψ0 = 0 for all x. Therefore e± = 〈v〉 and p± = v2 ± ψext(x), and

f 0,±(0, 0) = µ±(1,±ψext(0)).

The RHS is something we can ensure is positive by choosing A±, µ± and ψext

appropriately. Under this appropriate choice one obtains a contradiction.

Proof of Proposition 6.7.1. Given two elements ρ, j2 ∈ L2(R) with compact sup-
port, we define

φ0 = G ∗ ρ, ψ0 = G ∗ j2,

where G(x) = −|x|/2 is the fundamental solution of the Laplacian in one dimen-
sion. [We note that one expects j1 to vanish for an equilibrium, due to parity in
v1, hence it does not appear in the setup.] Thus we define e± = e±(x, v1, v2) and
p± = p±(x, v1, v2) via the usual relations (6.1.17), which we recall for the reader’s
convenience:

e±(x,v) = 〈v〉 ± φ0(x), p±(x,v) = v2 ± ψ0(x)± ψext(x)

(φext is zero). We let F : L2(R)2 → L2(R)2 be the (non-linear) map defined by

F

ρ
j2

 =
∫  1

v̂2

 (µ+(e+, p+)− µ−(e−, p−)) dv. (6.7.1)

A fixed point of F is the charge and current densities of an equilibrium solution
(µ±(e±, p±), φ0, ψ0, ψext, φext = 0). We define X ⊆ L2(R)2 as

X = {(ρ, j2) ∈ L2(R)2 : both supported in [−R,R] and bounded by C ′}

for a positive constant C ′ to be chosen. This set is clearly convex. We will show
that for c > 0 sufficiently small and C > 0 sufficiently large, F is a compact
continuous map X ↪→ X and thus, by the Schauder fixed point theorem, has a
fixed point.

Step 1: Compact support. We show that C ′ and C can be chosen so that F
maps X into functions supported in [−R,R].
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For (ρ, j2) ∈ X and |x| > R, we have,

|φ0(x)| = |(G ∗ ρ)(x)| ≤ C ′
∫ R

−R
|G(x− y)| dy = C ′

2

∫ R

−R
|x− y| dy = C ′R|x|

and the same bound holds for ψ0. This allows us to control v2 using e± and x.
Indeed,

|v2| ≤ 〈v〉 = e± ∓ φ0(x) ≤ |e±|+ |φ0(x)| ≤ |e±|+ C ′R|x|.

Which gives the following lower bound for |p±|+ |e±| in terms of x:

|p±|+ |e±| = |v2 ± ψ0(x)± ψext(x)|+ |e±| ≥ ψext(x)− |v2| − |ψ0(x)|+ |e±|

≥ ψext(x)− |e±| − 2C ′R|x|+ |e±|

≥ C(1 + |x|2)− 2C ′R|x|.

By taking C ′ small enough and C large enough we can ensure that if |x| > R

then (e±, p±) lie outside any disc in R2, and in particular outside A±, where µ±

are supported. This proves the claim.

Step 2: Uniform L∞ bound. We show that C ′ and c can be chosen so that
F maps to functions with L∞ norm smaller than C ′.

Estimating φ0(x) for |x| ≤ R

|φ0(x)| ≤ C ′

2

∫ R

−R
|x− y| dy = C ′

2 (x2 +R2),

we take C ′ small enough (recall it was already taken to be small in the previous
step, hence we may require it to be even smaller) so that |φ0(x)| ≤ 3/4 for
|x| ≤ R. Now the decay assumption on µ± allows us to show a uniform bound
on |F1(ρ, j2)(x)| in |x| ≤ R:

|F1(ρ, j2)(x)| ≤
∑
±

∫
|µ±(e±, p±)| dv ≤

∑
±

∫ c

(1 + |e±|)α dv

≤
∑
±

∫ c

(1 + 〈v〉 − |φ0(x)|)α dv ≤
∑
±

∫ c

(1 + 〈v〉 − 3
4)α dv

=
∫ 2c

(1
4 + 〈v〉)α dv = C ′′c <∞.

(6.7.2)
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We can bound |F2(ρ, j2)(x)| in the same way as |v̂| ≤ 1. Finally we choose c so
that C ′′c ≤ C ′.

Step 3: Uniform L∞ bound on the derivative. We show that there is a
constant C ′′′ such that for any (ρ, j2) ∈ X, we have ‖∂xF1(ρ, j2)‖L∞[−R,R] ≤ C ′′′

and ‖∂xF2(ρ, j2)‖L∞[−R,R] ≤ C ′′′.

We compute for F1, and note that F2 is analogous. Using the chain rule, we have

∂x

∫ (
µ+(e+, p+)− µ−(e−, p−)

)
dv =

(∂xφ0)
∫

(µ+
e (e+, p+) + µ−e (e−, p−)) dv

+ (∂xψ0 + ∂xψ
ext)

∫
(µ+

p (e+, p+) + µ−p (e−, p−)) dv.

The two integrals are bounded uniformly in x by the arguments in Step 2 using
the corresponding assumed bounds on µ±e and µ±p respectively. As the external
field ψext lies in H2

loc(R), its derivative ∂xψext lies in H1([−R,R]) and is bounded
in L∞([−R,R]) by Morrey’s inequality. It remains to bound ∂xφ

0 and ∂xψ
0

uniformly for all x ∈ [−R,R]. These are controlled directly using the Green’s
function G(x) and uniform bounds of Step 2. Indeed,

|(∂xφ0)(x)| = |((∂xG) ∗ ρ)(x)| ≤ C ′

2

∫ R

−R
| sign(x− y)| dy ≤ C ′R

and the computation for ∂xψ0 is identical.

Step 4: F is a compact continuous map from X to X. Steps 1 and 2 imply
that F(X) ⊆ X. Step 3 and the Rellich theorem imply that F(X) is relatively
compact in X. It remains to show that F is continuous. This may be shown
using dominated convergence and the bounds in Step 2. Indeed, suppose that
{(ρn, jn2 )}n∈N ⊆ X is a sequence converging to (ρ, j2) ∈ X strongly in L2(R)2. We
shall show that F1(ρn, jn2 ) → F1(ρ, j2) in L2, the result for F2 is analogous. By
Step 2 and dominated convergence it is enough to show convergence pointwise,
i.e. for each x ∈ [−R,R]. Next, by (6.7.2) and dominated convergence again, it is
sufficient to show that the corresponding densities µ±(e±, p±) converge pointwise
in (x,v). Continuity of µ± reduces this to showing pointwise convergence of the
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corresponding microscopic energy and momenta e± and p±. The definitions of
these quantities imply that it is enough to show that the corresponding electric
and magnetic potentials φ0,n and ψ0,n converge pointwise. Finally, as the poten-
tials are (ρn, jn2 ) convolved with G(x) = −|x|/2, the convergence (ρn, jn2 )→ (ρ, j2)
in L2([−R,R])2 gives the required pointwise convergence.

This concludes the proof.

6.A Appendix

Lemma 6.A.1. Let (f 0,±, E0
1 , E

2
0 , B

0) ∈ C1 be an equilibrium of (6.1.15) with
f 0,± compactly supported in x and be such that f 0,±(x,v)|v| → 0 as |v| → ∞.
Then E2

0 is identically zero.

Proof. Let ψ(x) be a test function (smooth and compactly supported) and define
Ψ(x) as

Φ(x) =
∫ x

−∞
ψ(y) dy

Then by testing the Vlasov equation with Ψ (which is possible due to the compact
x support of f 0,±), we deduce that

−
∫
R3
v̂1f

± dvφ(x)dx = 0.

As φ was arbitrary we have ∫
f±v̂1 dv = 0

for all x (and each of ±).

By multiplying the Vlasov equation by v2 and integrating by parts (using the
decay assumption on f 0,± in v) we obtain that

∓
∫
R3

(E0
2(x)− v̂1B

0(x))f 0,± dxdv = 0

This implies that
∫
E0

2(x)
∫
f 0,± dv −B0(x)

∫
f 0,±v̂1 dv dx = 0
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As the second integral of f± vanishes by the computation before, and as f± ≥ 0,
we deduce that E2, being a constant due to (6.1.15e), is zero.
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Chapter 7

A stability estimate for solutions
of the Vlasov-Poisson system
with spatial density in Orlicz

spaces

In this chapter we present quantitative well-posedness results for
the Vlasov-Poisson system for solutions with unbounded spatial
density belonging to a class of exponential Orlicz spaces. This
improves and interpolates between the uniqueness proved in [134]
and [143]. We also show that the conditions on the spatial den-
sity are satisfied for a class of initial data that possess exponential
velocity moments. The proofs exploit the second order structure
of the Newtonian dynamics of the Vlasov-Poisson system.

Acknowledgements
The work in this chapter was done in collaboration with Evelyne
Miot and consists of a paper currently in preparation [95].
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7.1 Introduction

The purpose of this chapter is to study uniqueness and stability issues for a class
of weak solutions of the Vlasov-Poisson system in dimension d = 2 or d = 3,
which reads:

∂tf + v · ∇xf + E · ∇vf = 0, (t, x, v) ∈ [0, T ]× Rd × Rd

E(t, x) = (K ∗x ρ) (t, x), K(x) = γ
x

|x|d

ρ(t, x) =
∫
Rd
f(t, x, v) dv.

(7.1.1)

The system (7.1.1) describes the evolution of a microscopic density f = f(t, x, v)
of interacting particles, that are electric particles for γ = 1 (Coulombian inter-
action) or stars for γ = −1 (gravitational interaction). The function ρ is called
macroscopic (or spatial) density.

Existence and uniqueness of classical solutions of (7.1.1) defined on [0, T ] for all
T > 0 were established by Ukai and Okabe [192] for d = 2 and by Pfaffelmoser
[168] for d = 3. Arsenev [11] proved global existence of weak solutions with
finite energy. Another kind of global solutions, which propagate the velocity
moments, was constructed by Lions and Perthame [133]. We refer to the articles
[71, 163], and to references quoted therein, for further related results. On the
other hand, part of the literature is devoted to determining sufficient conditions
for uniqueness. Loeper [134] established uniqueness on [0, T ] in the class of weak
solutions such that the macroscopic density ρ is uniformly bounded: 1

f ∈ C
(
[0, T ],M+(Rd × Rd)− w∗

)
and ρ ∈ L∞

(
[0, T ], L∞(Rd)

)
. (7.1.2)

This result was extended by the second author in [143] to weak solutions satisfying

f ∈ C
(
[0, T ],M+(Rd × Rd)− w∗

)
and sup

[0,T ]
sup
p≥1

‖ρ(t)‖Lp
p

< +∞. (7.1.3)

Our first result, stated in Theorem 7.1.1 below, establishes uniqueness in the class

1Here and throughoutM+(Rd × Rd) denotes the space of bounded positive measures.

300



of solutions with macroscopic density belonging to a certain class of exponential
Orlicz spaces defined in (7.1.7). These spaces interpolate the functional spaces
arising in (7.1.2) and (7.1.3). More precisely, we obtain in Theorem 7.1.1 a
quantitative stability estimate involving the Wasserstein distance2 between such
weak solutions, in the spirit of the method of Dobrushin [49] to establish stability
estimates for mean field PDE with Lipschitz convolution Kernels K.

In the second part of this paper, we look for sufficient conditions on the initial
data ensuring that any corresponding solution has spatial density belonging to
the exponential Orlicz spaces defined in (7.1.7) on [0, T ]. In Proposition 7.1.1 we
prove that this holds for data with finite exponential velocity moment.

7.1.1 Preliminary definitions on Orlicz spaces and on the
Wasserstein distance

Orlicz spaces. We begin by recalling some standard definitions related to Or-
licz spaces. We refer the reader to e.g. [170] for a more thorough exposition.

Definition 7.1.1 (N -function). We say that a function φ : [0,∞) → [0,∞) is
an N-function if it is continuous, convex with φ(τ) > 0 for τ > 0 and satisfies
both limτ→0 φ(τ)/τ = 0 and limτ→∞ φ(τ)/τ =∞.

Definition 7.1.2 (Luxemburg norm). Let U be a domain of Rd. For an N-
function φ we define the Luxemburg norm of a function f defined on U as

‖f‖Lφ(U) = inf
{
λ > 0 :

∫
U
φ(|f(x)|/λ) dx < 1

}
. (7.1.4)

Remark 7.1.1. If it holds for some constant C ′ that
∫
U
φ(|f(x)|/γ) dx < C ′ (7.1.5)

then ‖f‖Lφ(U) ≤ Cγ, where C is an absolute constant depending only on C ′.

Remark 7.1.2. On bounded domains only the asymptotic behaviour as τ → ∞
of the N-function φ is important in defining the space Lφ. In particular, if two

2See Definition 7.1.4 hereafter of the Wasserstein distance.
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N-functions φ, φ̃ have the same behaviour at infinity in the sense that there are
K, K̃ > 0 such that φ(τ) ≤ φ̃(K̃τ) and φ̃(τ) ≤ φ(Kτ) for all sufficiently large
τ , then the norms ‖·‖Lφ(U) and ‖·‖Lφ̃(U) are equivalent for any bounded domain
U ⊆ Rd.

Definition 7.1.3 (Complementary N -function). For an N-function φ we define
its complementary N-function φ̄ as

φ̄(τ) =
∫ τ

0
a(s) ds

where a is the right inverse of the right derivative of φ.

For α ∈ [1,+∞) we let, for τ ≥ 0,

φα(τ) = exp(|τ |α)− 1. (7.1.6)

The spaces Lφα(Rd) are exponential Orlicz spaces, and can be equivalently char-
acterised as those functions g which lie in Lp for all p ∈ [α,∞) and have the
following norm finite:

‖g‖φα = sup
p≥α

p−1/α ‖g‖Lp(Rd) , (7.1.7)

which is an equivalent norm to the Luxemburg norm ‖·‖Lφα . This equivalence is
standard and can be verified by Taylor expansion of the exponential. Note that in
the α→∞ limiting case we obtain the function φ∞ given by φ∞(τ) =∞ if τ > 1
and 0 otherwise. Although φ∞ is not an N -function, we will use the convention
that Lφ∞ = L∞. Therefore with this convention Lφα indeed interpolates the
functional spaces for ρ that are considered in [134] (for α = +∞) and [143] (for
α = 1).

Remark 7.1.3. When working with exponential Orlicz spaces, one has the choice
between working with the Luxemburg norm (7.1.2) directly, or working with Lp

norms uniformly in p and using (7.1.7), as is done in [143] for α = 1. We take
the former approach in this work.
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Transportation distances. We next turn to some definitions concerning the
notion of transportation distances.

Definition 7.1.4 (Wasserstein distance). For two measures µ, ν ∈ M+(Rd)
with the same mass and finite first moments, we define the (Monge-Kantorovich-
Rubenstein)-Wasserstein distance W1(µ, ν) as

W1(µ, ν) = inf
π∈Π(µ,ν)

∫
Rd×Rd

|x− y| dπ(x, y),

where, here and throughout, Π(µ, ν) denotes the set of couplings between µ and
ν, by which we mean measures in M+(Rd × Rd) which have marginals µ and ν
respectively.

Remark 7.1.4. The Wasserstein distance is usually defined on probability mea-
sures (i.e. elements ofM+ with mass 1) and metrises the weak* topology on the
space of probability measures with finite first moment. In the case of the exten-
sion to general bounded positive measures given above, it should be noted that the
Wasserstein distance does not metrise the weak* topology onM+ with finite first
moment. However, given any fixed mass m, the Wasserstein distance metrises
the weak* topology on measures inM+ of mass m with first moment finite.

7.1.2 Main results

We are now in position to state a quantitative estimate on the Wasserstein dis-
tance between two weak solutions of (7.1.1) with macroscopic density belonging
to some exponential Orlicz space:

ρj ∈ L∞([0, T ];Lφα(Rd)) for j = 1, 2 and some α ∈ [1,∞]. (7.1.8)

Theorem 7.1.1. Let ε > 0 and T > 0. Let f1, f2 ∈ C([0, T ],M+(Rd×Rd)−w∗)
be two weak solutions of the Vlasov-Poisson system (7.1.1) with the same total
mass such that (7.1.8) holds. If (1 + T )1+εW1(f1(0), f2(0)) < 1/18, then we have
the bound for t ∈ [0, T ∗]:
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• If α = 1 then

W1(f1(t), f2(t)) ≤ CW1(f1(0), f2(0))exp(−Ct)
(
1 + t| logW1(f1(0), f2(0)|2

)
.

• If α > 1 then

W1(f1(t), f2(t)) ≤ CW1(f1(0), f2(0))1/γ exp(Ctγ)
(
1 + t| logW1(f1(0), f2(0))|1+(1/α)

)
,

where
γ = 2

1− (1/α) ∈ [2,+∞),

and where T ∗ satisfies the lower bound

T ∗ ≥

C
′ log | logW1(f1(0), f2(0))| − C ′−1 when α = 1,

C ′γ| logW1(f1(0), f2(0))|1/γ − C ′−1 when α 6= 1.

(we set T ∗ = T if the right hand side is larger than T ).

The constants C and C ′ depend only upon the norms of ρ1, ρ2 in (7.1.8) and on
ε.

Remark 7.1.5. The bound is stated in a way that is easy to understand for
large t and is suboptimal near t = 0. In particular the bound does not converge to
W1(f1(0), f2(0)) as t→ 03. Such a bound could be obtained by a careful analysis
of the proofs, but we do not present this here.

Remark 7.1.6. As will be clear in the proof of Theorem 5.1.1, the time T ∗

essentially corresponds to the first time at which the right hand side becomes
larger or equal to 1.

Remark 7.1.7. For α = +∞, the estimate of Theorem 7.1.1 reads

W1(f1(t), f2(t)) ≤ CW1(f1(0), f2(0))1/2 exp(Ct2) (1 + t| logW1(f1(0), f2(0))|) ,

which is valid up to times of order | logW1(f1(0), f2(0))|1/2.

In [49], Dobrushin considered the stability of measure-valued solutions of first
3They do, of course, converge to zero as W1(f1(0), f2(0))→ 0.
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order mean-field PDE with Lipschitz convolution Kernels K and obtained the
inequality

W1(f1(t), f2(t)) ≤ W1(f1(0), f2(0)) exp (Ct‖∇K‖L∞) .

The same estimate was derived by Moussa and Sueur [152] for a mixed first/second
order PDE. Hauray and Jabin [81] handled the case of more singular Kernels, see
also the recent work by Lazarovici and Pickl [123] on cut-off kernels and the
references quoted therein.

In the present situation, we are able to address the case of the singular con-
volution Kernel K = γx/|x|d because, in contrast with the works mentioned
above, the solutions have some additional regularity - the macroscopic density
belongs to Lφα . Nevertheless, as a consequence of the singularity of K, the
growth of W1(f1(t), f2(t)) in Theorem 7.1.1 is not linearly bounded in terms of
W1(f1(0), f2(0)).

We mention that although stability estimates are not explicitly done in [134], the
computations therein involve a log-Lipschitz Grönwall estimate and would yield
the inequality

W2(f1(t), f2(t)) ≤ CW2(f1(0), f2(0))exp(−Ct), (7.1.9)

with W2 denoting

W2(µ, ν) =
(

inf
π∈Π(µ,ν)

∫
Rd×Rd

|x− y|2 dπ(x, y)
)1/2

,

so the W2-Wasserstein distance grows in time roughly like an exponential tower
ee
ct . Therefore the estimate of Theorem 7.1.1 setting α = +∞, which corresponds

to the regularity considered in [134], improves this to stretched exponential growth
of the form ect

2 . This improvement is due to the second-order structure of the
characteristic system (7.2.5) of ODE associated to the Vlasov-Poisson system,
which was already exploited in the proof of uniqueness in [143].

Finally, we would like to point out that the same technique of exploiting the
second-order structure can be applied to general measure solutions (with no reg-
ularity assumption on the spatial density), and allows the Dobrushin estimate to
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be improved slightly from Lipschitz kernels to log2-Lipschitz kernels:

Theorem 7.1.2. Let the convolution kernel K be bounded and satisfy the log2-
Lipschitz property:

|K(x)−K(y)| ≤ C|x− y|| log(x− y)|2 for all |x− y| ≤ 1/9. (7.1.10)

Then the Vlasov-Poisson system (7.1.1) possesses a unique solution in the space
C([0, T ];M+(Rd × Rd) − w∗) for any initial datum in M+(Rd × Rd). Moreover
obeys the stability estimate, for any two solutions f1, f2 ∈ C([0, T ];M+(Rd ×
Rd)− w∗) with the same mass and satisfying (1 + T )W1(f1(0), f2(0)) < 1/9,

W1(f1(t), f2(t)) ≤ CW1(f1(0), f2(0))exp(−Ct)(1 + t| logW1(f1(0), f2(0))|2).

which holds for times t ∈ [0, T ∗] with T ∗ defined analogously to Theorem 5.1.1.

We remark that the conventional improvement of the Dobrushin estimate by re-
placing the Grönwall inequality with a log-Lipschitz inequality only allows one
to treat log-Lipschitz kernels K, rather than the slightly weaker assumption
(7.1.10).

In the second part of our analysis, we seek for initial data f0 for which the
macroscopic density indeed belongs to some exponential Orlicz space.

Proposition 7.1.1. Let f0 ∈ L∞(Rd × Rd) be such that
∫
Rd×Rd

f0(x, v)ec〈v〉
dα

dxdv <∞

for some α ∈ [1,∞) and c > 0, where 〈v〉 =
√

1 + |v|2. For T > 0, let f ∈
C([0, T ],M+(Rd × Rd)− w∗) ∩ L∞([0, T ], L1 ∩ L∞(Rd × Rd)) be any solution to
(7.1.1), with this initial datum, provided by [133, Theo. 1]4. Then it satisfies

sup
t∈[0,T ]

‖ρ(t)‖Lφα ≤ C <∞.

In particular, this solution satisfies the uniqueness criterion of Theorem 7.1.1.
4The existence of such a solution is ensured by [133, Theo. 1] because f0 has finite velocity

moments of sufficiently large order:
∫
|v|mf0(x, v) dx dv < +∞ for some m > d2 − d. This is

proved in [133] for d = 3. The case d = 2 is a straightforward adaptation of the case d = 3.
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We remark that setting α = 1, we retrieve as a special case the condition obtained
in [143, Theo. 1.2] to ensure that (7.1.3) holds. For any α ∈ [1,∞), an exam-
ple of initial data that are allowed by Proposition 7.1.1 are Maxwell-Boltzmann
distributions of the form

f0(x, v) = e−c|v|
dα 〈v〉p h0(x, v), c > 0, p ≥ 0, h0 ∈ L1 ∩ L∞.

The plan of the remainder of this chapter is as follows. In Section 7.2 we prove
Theorem 7.1.1. In order to do so, we first establish a log-Lipschitz like estimate
for the force field E = K ∗ ρ associated to a function ρ satisfying (7.1.8). Then,
we introduce in (7.2.7) a notion of distance between two solutions in terms of the
characteristics defined in (7.2.5), which controls the Wasserstein distance (see
(7.2.8)). This quantity was used in the original proof of Dobrushin and also in
[143], while the proof of [134] uses a slightly different version. Applying similar
arguments as in [49], we derive a second-order differential inequality for this
distance, which eventually leads to Theorem 7.1.1. In Section 7.2.4 we show how
to adapt this technique to prove Theorem 7.1.2. Finally, the last Section 7.3 is
devoted to the proof of Proposition 7.1.1.

7.2 Proof of Theorem 7.1.1

7.2.1 An estimate for the Newton kernel

To prove Theorem 7.1.1 we have need of the following lemma on the Newton ker-
nel. Note that the complementary N -functions of the φα behave asymptotically
(see Remark 7.1.2) like

φ̄α(τ) ∼ τ log(τ)1/α as τ →∞. (7.2.1)

Recall that Orlicz spaces obey a form of Hölders inequality (see e.g. [170])
∫
fg dx ≤ C ‖f‖Lφ ‖g‖Lφ̄

for the constant C > 1.
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Given α ∈ [1,∞] we define the constant β ∈ [1, 2] by

β = 1
α

+ 1. (7.2.2)

In particular, note that β = 1 for α = +∞ and β = 2 as α = 1.

Lemma 7.2.1. Let α ∈ [1,∞), then there exists C = C(α) > 0 such that for all
g ∈ Lφα ∩ L1 we have the estimate

∫
Rd
|K(x− z)−K(y − z)| |g(z)| dz ≤ C(‖g‖Lφα + ‖g‖L1)ψα(|x− y|) (7.2.3)

where ψ is defined by

ψα(τ) =


τ | log(τ)|β, for τ ∈

[
0, 1

9

]
,

1
9 log(9)β, for τ ≥ 1

9

(7.2.4)

and where β is defined by (7.2.2).

Remark 7.2.1. In the case α = +∞, namely for g ∈ L1 ∩ L∞ the estimate of
Lemma 7.2.1 is standard, see e.g. [136, Lemma 8.1] for the case n = 2: we have
∫
Rd
|K(x− z)−K(y − z)| |g(z)| dz ≤ C(‖g‖L1∩L∞)|x− y| (1 + | log |x− y||) .

Remark 7.2.2. For the case α = 1, the following variant of Lemma 7.2.1 was
obtained in [143, Lemma 2.2]: for all x, y ∈ Rd with |x− y| sufficiently small,
∫
Rd
|K(x− z)−K(y − z)| |g(z)| dz ≤ C p (‖g‖L1 + ‖g‖Lp)|x− y|1−d/p, ∀p > d.

In particular, recalling (7.1.7) for α = 1, this yields
∫
Rd
|K(x− z)−K(y − z)| |g(z)| dz ≤ C‖g‖Lφ1

|x− y|
(
p2|x− y|−d/p

)
, ∀p > d,

so setting p = | log |x− y|| we retrieve the estimate of Lemma 7.2.1. In fact one
can also prove the other cases via this method. Nevertheless, we give a direct
proof of Lemma 7.2.1 below for completeness.
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Proof. We set
δ = 1

d

(
1 + 1

α

)
= β

d
∈
(1
d
,

2
d

]
.

By standard estimates using Hölder’s inequality (see e.g. [138]) it is well-known
that, fixing some p0 > d,
∫
Rd
|K(x− z)−K(y − z)| |g(z)| dz ≤ C(‖g‖Lp0 + ‖g‖L1) ≤ C(‖g‖Lφα + ‖g‖L1).

Hence, in view of the form of ψα, letting R = |x− y| we may assume without loss
of generality that R ≤ 1/9. We introduce A = (x + y)/2. Since R| logR|δ < 1,
we may split the integral as follows:

∫
Rd
|K(x− z)−K(y − z)| |g(z)| dz

=
∫
Rd\B(A,| logR|−δ)

|K(x− z)−K(y − z)| |g(z)| dz

+
∫
B(A,| logR|−δ)\B(A,R)

|K(x− z)−K(y − z)| |g(z)| dz

+
∫
B(A,R)

|K(x− z)−K(y − z)| |g(z)| dz

= I1 + I2 + I3.

For I1 we apply the mean value theorem to obtain the bound

I1 ≤ C‖g‖L1 R sup
u∈[x,y],z∈Rd\B(A,| logR|−δ)

1
|u− z|d

≤ C‖g‖L1 R| logR|dδ

where [x, y] is the line segment joining x and y, and where we have used that

|u− z| ≥ | logR|−δ − R

2 ≥
| logR|−δ

2

in the considered supremum. Therefore we have obtained

I1 ≤ C‖g‖L1R| logR|β.

For I3 we apply Hölder’s inequality for Orlicz spaces,

I3 ≤ C‖g‖Lφα‖1B(A,R)|K(x− z)−K(y − z)|‖Lφ̄α ≤ C‖g‖Lφα‖1B(0,3R/2)K‖Lφ̄α
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where we have used the fact that φ̄α is increasing, that

|K(x− z)−K(y − z)| ≤ |K(x− z)|+ |K(y − z)|

and that z ∈ B(A,R) implies that both x− z and y − z lie in B(0, 3R/2).

Now we set λ = R| logR|1/α and we consider the integral
∫
Rd
φ̄α(1B(0,3R/2)|K(z)|/λ) dz.

By Remark 7.1.1, to show that I3 ≤ C‖g‖Lφαλ it is sufficient to show that the
integral above is bounded by a constant. Furthermore, by Remark 7.1.2 using
the fact that |K(z)|/λ ≥ 1 > 0 on B(0, 3R/2) we may work with the asymptotic
form (7.2.1).

Thus, we estimate

∫
|z|≤3R/2

|K(z)|
λ

log
(
|K(z)|
λ

)1/α

dz = 1
λ

∫
|z|≤3R/2

|z|1−d log
(
|z|1−d

λ

)1/α

dz

≤ C

λ

∫ 3R/2

0
| log r|1/α dr

where we have used the inequality

0 ≤ log
(
|z|1−d

λ

)
≤ (d− 1)| log |z||+ | log λ| ≤ C| log |z||

with this definition of λ.

Thus, noting that for r ≤ 3R/2 ≤ 1/6 we have

1
α
| log r|(1/α)−1 ≤ 1

2 | log r|1/α,

so that
| log r|1/α ≤ 2

(
| log r|1/α − 1

α
| log r|(1/α)−1

)
,
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we obtain

∫
|z|≤3R/2

|K(z)|
λ

log
(
|K(z)|
λ

)1/α

dz ≤ C

λ

∫ 3R/2

0

(
| log r|1/α − 1

α
| log r|(1/α)−1

)
dr

= C

λ

[
r| log r|1/α

]3R/2
0
≤ C

λ
R| logR|1/α.

Thus we have shown that I3 ≤ C‖g‖LφαR| logR|1/α.

Finally, we bound I2. In the same way as for I3, we apply Hölder’s inequality for
Orlicz spaces to obtain

I2 ≤ C‖g‖Lφα‖1B(A,| logR|−δ)\B(A,R)|K(x− z)−K(y − z)|‖Lφ̄α .

Applying the mean value theorem we obtain for z ∈ B(A, | logR|−δ) \B(A,R)

|K(x− z)−K(y − z)| ≤ C R sup
u∈[x,y]

|u− z|−d

≤ C R sup
u∈[x,y]

1
||z − A| − |u− A||d

≤ C R|z − A|−d,

where we have used that |z − A| ≥ R to obtain the final inequality. Hence, by
a change of variables, and since φ̄α is increasing, in order to estimate I2 it is
sufficient to obtain the bound

‖1B(0,| logR|−δ)\B(0,R)R|z|−d‖Lφ̄α ≤ C R| logR|β.

Therefore, setting λ′ = R| logR|β, by Remark 7.1.1 it is enough to show that
∫
R≤|z|≤| logR|−δ

φ̄α(R|z|−d/λ′) dz ≤ C.

Let |z| ≤ | logR|−δ, then we have by definition of λ′

R|z|−d

λ′
≥ R| logR|dδ

λ′
= 1,

so by Remark 7.1.2 we may instead bound the asymptotic form (7.2.1). Therefore,
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we estimate

∫
R≤|z|≤| logR|−δ

R|z|−d

λ′
log

(
R|z|−d

λ′

)1/α

dz

= | logR|−β
∫
R≤|z|≤| logR|−δ

|z|−d log(|z|−d| logR|−β)1/α dz

= C| logR|−β
∫ | logR|−δ

R
r−1| log(r−d| logR|−β)|1/α dr

.

Since for r ≤ | logR|−δ we have

| log(r−d| logR|−β)| = log(r−d| logR|−β) = d| log r| − β log | logR| ≤ d| log r|,

we infer that

∫
R≤|z|≤| logR|−δ

R|z|−d

λ′
log

(
R|z|−d

λ′

)1/α

dz

≤ C| logR|−β
∫ | logR|−δ

R
r−1| log r|1/α dr

≤ C| logR|−β
[
−| log r|(1/α)+1

]| logR|−δ

R

≤ C,

as we wanted, and hence we obtain I2 ≤ C‖g‖Lφα (Rd)R| logR|β. Finally, putting

this all together, we conclude that
∫
Rd
|K(x− z)−K(y − z)| |g(z)| dz

≤ I1 + I2 + I3 ≤ C(‖g‖L1R + ‖g‖LφαR| logR|β + ‖g‖LφαR| logR|1/α)

which implies the claim of the lemma.

7.2.2 Lagrangian formulation of the Vlasov-Poisson sys-
tem and the Wasserstein distance

Let f ∈ C([0, T ],M+(Rd × Rd) − w∗) be a weak measure-valued solution of the
Vlasov-Poisson system (7.1.1) on [0, T ] such that ρ belongs to L∞([0, T ], L1 ∩
Lp(Rd)) for some p > d. By potential estimates it is well-known that E belongs
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to L∞([0, T ]×Rd). Moreover, by Caldéron-Zygmund inequality (see e.g. see [52,
Theo. 4.12]) ∇E ∈ L∞([0, T ], Lp(Rd)). By the theory on transport equations
(see [47, Theo. III2] or [7, Theo. 5.7] for more recent results on the theory),
there exists a unique Lagrangian flow associated to E, namely a map (X, V ) ∈
L1

loc([0, T ]×Rd×Rd;Rd×Rd) such that for a.e. (x, v) ∈ Rd×Rd, t 7→ (X, V )(t, x, v)
is an absolutely continuous integral solution of the characteristic system of ODE

Ẋ(t, x, v) = V (t, x, v), X(0, x, v) = x

V̇ (t, x, v) = E(t,X(t, x, v)), V (0, x, v) = v.
(7.2.5)

Moreover, we have the representation5

∀t ∈ [0, T ], f(t) = (X, V )(t)#f0. (7.2.6)

Let f1, f2 be two weak solutions of the Vlasov-Poisson equation (7.1.1) as in
Theorem 7.1.1, then fj(t) = (Xj(t), Vj(t))#fj0 for (Xj, Vj)(t, x, v) the solutions
to the characteristic equations (7.2.5) associated to Ej.

Remark 7.2.3. In fact, under the assumptions of Theorem 7.1.1, the charac-
teristic flows are Hölder continuous as functions of (x, v). This may be deduced
from a similar Grönwall type estimate to the proof of Lemma 7.2.2 below using
that Ei satisfy a log2-Lipschitz bound of the form (7.1.10). This will not be needed
for the proof of Theorem 7.1.1.

Given a coupling π0 ∈ Π(f10, f20) (defined in Definition 7.1.4) we define the
following quantities:

X (t) = Xπ0(t) =
∫
R2d×R2d

|X1(t, x, v)−X2(t, y, w)| dπ0(x, v, y, w),

V(t) = Vπ0(t) =
∫
R2d×R2d

|V1(t, x, v)− V2(t, y, w)| dπ0(x, v, y, w).
(7.2.7)

By (7.2.6), the measure πt = ((X1(t), V1(t)); (X2(t), V2(t)))# π0 belongs to the
space Π(f1(t), f2(t)). Therefore, by the Definition 7.1.4 of the Wasserstein dis-

5The # notation means that f(t)(B) = f0
(
((X,V )(t, ·, ·)−1(B)

)
for all Borel set B ⊂ Rd.
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tance, we have

W1(f1(t), f2(t)) ≤ inf
π0∈Π(f10,f20)

(Xπ0(t) + Vπ0(t)) , t ∈ [0, T ]. (7.2.8)

On the other hand, note the converse estimate:

inf
π0∈Π(f10,f20)

(Xπ0(0) + Vπ0(0))

≤ inf
π0∈Π(f10,f20)

∫
R2d×R2d

(|x− y|+ |v − w|) dπ0(x, v, y, w)

≤ inf
π0∈Π(f10,f20)

∫
R2d×R2d

√
2|(x, v)− (y, w)| dπ0(x, v, y, w)

=
√

2W1(f1,0, f2,0).

(7.2.9)

We emphasize that the quantity which would lead to (7.1.9) in [134] is in-
stead{∫

R2d×R2d

(
|X1(t, x, v)−X2(t, y, w)|2 + |V1(t, x, v)− V2(t, y, w)|2

)
dπ0(x, v, y, w)

}1/2
,

since it controls the Wasserstein distance W2(f1(t), f2(t)).

7.2.3 Proof of Theorem 7.1.1 completed

We will prove Theorem 7.1.1 proper with the following lemma which controls
the which controls the distance involving the spatial characteristics, namely the
quantity X (t).

We recall that β = 1 + (1/α). For a given 0 < A < 1/9, we define the function
Gα(t) = Gα(t;A) = Gα(t;A, c) as the solution to

G′α(t;A, c) = −cGα(t;A, c)β/2 Gα(0;A, c) = | log(A)| (7.2.10)

for times t ∈ [0, T ∗] where T ∗ = T ∗(α,A, c) is the maximal time such that
Gα(·;A, c) > log(9) on [0, T ∗) (we set T ∗ = T if T ∗ is larger than T ). Note
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that Gα(·;A, c) is decreasing and is explicitly given by

Gα(t;A, c) =

| log(A)| exp(−ct) when α = 1,(
| log(A)|1/γ − cγ−1t

)γ
when α 6= 1,

(7.2.11)

where γ is given by (7.1.1). Moreover, we have

T ∗(α,A, c) =


1
c

log
(
| logA|
log 9

)
when α = 1,

γ

c

(
| logA|1/γ − (log 9)1/γ

)
when α 6= 1.

(7.2.12)

Lemma 7.2.2. Let π0 ∈ Π(f10, f20) and (7.1.8) hold. Assume that

0 ≤ A := (1 + T )(X (0) + V(0)) < 1
9 .

Then the following estimate holds

X (t) ≤ exp(−Gα(t;A(t), c)), t ≤ T ∗(α,A, c),

where
A(t) = (1 + t)(X (0) + V(0)) ≤ A

and where c > 0 is a constant depending only on α and the norms in (7.1.8).

Proof. By integrating the characteristic ODEs (7.2.5) twice we have

X1(t, x, v)−X2(t, y, w)

= x− y + (v − w)t

+
∫ t

0

∫ s

0
[E1(τ,X1(τ, x, v))− E2(τ,X2(τ, y, w))] dτds.

(7.2.13)

Since fj(t) = (Xj(t), Vj(t))#fj0, we can evaluate the fields Ej as follows, where
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we omit the τ dependence for brevity:

E1(X1(x, v))− E2(X2(y, w))

=
∫
R2d

K(X1(x, v)−X1(x0, v0))f10(x0, v0) dx0dv0

−
∫
R2d

K(X2(x, v)−X2(y0, w0))f20(y0, w0) dy0dw0

=
∫
R2d×R2d

[K(X1(x, v)−X1(x0, v0))−K(X2(x, v)−X2(y0, w0))] dπ0(x0, v0, y0, w0)

=
∫
R4d

[K(X1(x, v)−X1(x0, v0))−K(X2(x, v)−X1(x0, v0))] dπ0(x0, v0, y0, w0)

+
∫
R4d

[K(X2(x, v)−X1(x0, v0))−K(X2(x, v)−X2(y0, w0))] dπ0(x0, v0, y0, w0)

=
∫
Rd

[K(X1(x, v)− z)−K(X2(x, v)− z)]ρ1(z) dz

+
∫
R4d

[K(X2(x, v)−X1(x0, v0))−K(X2(x, v)−X2(y0, w0))] dπ0(x0, v0, y0, w0).

Thus, by applying Lemma 7.2.1 we obtain the estimate

|E1(X1(x, v))− E2(X2(y, w))| ≤ Cψα(|X1(x, v)−X2(x, v)|)

+
∫
R4d
|K(X2(x, v)−X1(x0, v0))−K(X2(x, v)−X2(y0, w0))| dπ0(x0, v0, y0, w0).

It follows that∫
R4d
|E1(X1(x, v))− E2(X2(y, w))|dπ0(x, v, y, w)

≤ C
∫
R4d

ψα(|X1(x, v)−X2(x, v)|) dπ0(x, v, y, w)

+
∫
R4d

dπ0(x, v, y, w)(∫
R4d
|K(X2(x, v)−X1(x0, v0))−K(X2(x, v)−X2(y0, w0))| dπ0(x0, v0, y0, w0)

)
≤ C

∫
R4d

ψα(|X1(x, v)−X2(x, v)|) dπ0(x, v, y, w)

+
∫
R4d

(∫
R4d
|K(z −X1(x0, v0))−K(z −X2(y0, w0))|ρ2(τ, z) dz

)
dπ0(x0, v0, y0, w0)

where we have exchanged the order of integration with dπ0(x0, v0, y0, w0) and used
that f1(τ) = (X1(τ), V1(τ))#f10 in the last inequality. Therefore, by integrating
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(7.2.13) against the measure dπ0(x, v, y, w) we obtain

X (t) ≤
∫
R4d
|x− y + t(v − w)| dπ0(x, v, y, w)

+
∫ t

0

∫ s

0

∫
R4d
|E1(τ,X1(τ, x, v))− E2(τ,X2(τ, y, w))|dπ0(x, v, y, w) dτ ds

≤ [X (0) + tV(0)]

+ 2C
∫ t

0

∫ s

0

∫
R4d

ψα(|X1(τ, x, v)−X2(τ, x, v)|) dπ0(x, v, y, w) dτ ds

where we have applied Lemma 7.2.1 (noting Remark 7.2.1 if α =∞) to find the
second inequality.

Using that ψα is concave we deduce that

X (t) ≤ (X (0) + V(0)(1 + t) + C0

∫ t

0

∫ s

0
ψα(X (τ)) dτ ds

for a constant C0 depending only on α and the norms in (7.1.8). For a constant
c to be determined later on, let T ∗(α,A, c) be the corresponding time defined by
(7.2.12). Let t0 ∈ [0, T ∗(α,A, c)] be fixed and set

F(t) = (X (0) + V(0)(1 + t0) + C0

∫ t

0

∫ s

0
ψα(X (τ)) dτ ds ≥ X (t), t ∈ [0, t0].

Define ϕα(t) =
∫ t

0 ψα(s) ds and note that ϕα(τ) ≤ Cτ 2| log(τ)|β for τ ≤ 1/9 and
ϕ(τ) ≤ Cτ for τ ≥ 1/9. Then it holds that

F(0) = (X (0) + V(0)(1 + t0), F ′(0) = 0, F ′(t) ≥ 0,

and
F ′′(t) = C0ψα(X (t)) ≤ C0ψα(F(t)) = C0ϕ

′
α(F(t)).

Thus

[(F ′(t))2]′ = 2F ′′(t)F ′(t) ≤ 2C0ϕ
′
α(F(t))F ′(t) = 2C0[ϕα(F(t))]′

and by integrating we deduce that

F ′(t) ≤
√

2C0 ϕα(F(t)), for t ≤ t0,
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which by definition of ϕα implies

F ′(t) ≤ C1F(t)| logF(t)|β/2, for F(t) ≤ 1
9 , (7.2.14)

where C1 depends only on α and the norms in (7.1.8). Now let y(t) be the solution
to

y′(t) = C1y(t)| log y(t)|β/2, y(0) = F(0) = A(t0),

for t ∈ [0, T ∗(α,A, c)]. In view of the definition (7.2.12), since A(t0) ≤ A we
have T ∗(α,A(t0), C1) ≥ T ∗(α,A,C1) so that y ≤ 1/9 on [0, T ∗(α,A,C1)]. Then
(7.2.14) obeys F(t) ≤ y(t) ≤ 1/9 on its domain of definition. By applying the
change of variables y = e−G we deduce that G′ = −C1G

β/2 and that therefore

F(t) ≤ y(t) = exp(−Gα(t, A(t0), C1)), t ∈ [0, t0],

and as t0 was arbitrary the proof of the lemma is complete by setting c = C1.

Using this lemma we are now able to prove the main result Theorem 7.1.1.

Proof of Theorem 7.1.1. By integrating the characteristic equation (7.2.5) once
we obtain

V1(t, x, v)− V2(t, y, w) = v − w +
∫ t

0
[E1(s,X1(s, x, v))− E2(s,X2(s, y, w))] ds.

(7.2.15)
Letting π0 ∈ Π(f10, f20) be arbitrary, in the same way as in the proof of Lemma 7.2.2
we find that

V(t) ≤ V(0) + C
∫ t

0
ψα(X (s)) ds.

By (7.2.9), we may consider only couplings π0 such that X (0)+V(0) ≤ 2W1(f1(0), f2(0))
and, therefore, by assumption on W1(f1(0), f2(0)) in Theorem 5.1.1

A := (X (0) + V(0))(1 + T ) < 1
9 .

So we also have X (t) ≤ exp(−Gα(t, A(t), c)) with A(t) = (X (0) +V(0))(1 + t) by
Lemma 7.2.2 and for t ≤ T ∗(α,A, c). Note that by definition (7.2.12) of the time
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T ∗, since W1(f1(0), f2(0))(1 + T ) ≤ A we have

T ∗(α,A, c) ≥ T ∗ := T ∗(α,W1(f1(0), f2(0))(1 + T ), c).

Thus all the subsequent estimates hold for t ∈ [0, T ∗].

Thus, since ψα is an increasing function, we obtain, dropping the α,A and c in
G for brevity,

∫ t

0
ψα(X (s)) ds ≤

∫ t

0
ψα(exp(−G(s))) ds =

∫ t

0
exp(−G(s))G(s)β ds

≤
∫ t

0
exp(−G(t))G(0)β ds = t exp(−G(t))G(0)β

= t exp(−G(t))| logA(0)|β,

where we have used that s 7→ G(s) = Gα(s, A(s), c) is a decreasing function of s.

Combining the estimates for X and V we have

X (t) + V(t)

≤ exp(−Gα(t;A(t), c)) + V(0) + Ct exp(−Gα(t;A(t), c))| logA(0)|β

≤ exp(−Gα(t;A(t), c)) + A(t) + Ct exp(−Gα(t;A(t), c))| logA(0)|β

= exp(−Gα(t;A(t), c)) + exp(−Gα(0, A(t), c))

+ Ct exp(−Gα(t;A(t), c))| logA(0)|β

≤ 2 exp(−Gα(t;A(t), c))

+ Ct exp(−Gα(t;A(t), c))| logA(0)|β

where we have used that t 7→ Gα(t, A, c) is decreasing for fixed A in the last line.
Thus for t ∈ [0, T ∗] we obtain

X (t) + V(t) ≤ exp(−Gα(t;A(t), c))(2 + C t| logA(0)|β).

We set B = W1(f1(0), f2(0)), so that B ≤ A(0) ≤ 2B. By taking the infimum
over couplings π0 (recall (7.2.8) and (7.2.9)) we obtain

W1(f1(t), f2(t)) ≤ exp(−Gα(t; 2(1 + t)B))(2 + C t| logB|β).
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Now suppose α = 1, then by the explicit formula (7.2.11) we have (recalling that
β = 2 in this case)

W1(f1(t), f2(t)) ≤ exp(log(2(1 + t)B) exp(−ct))(2 + C t | logB|2)

≤ (2(1 + t)B)exp(−ct)(2 + C t| logB|2)

≤ CBexp(−ct)(1 + t| logB|2)

where we have used that (2(1 + t))exp(−ct) is bounded by a constant uniformly
over t ∈ [0,∞).

Suppose instead that α 6= 1, then

W1(f1(t), f2(t)) ≤ exp(−Gα(t;A(t), c))(2 + C t| logB|β)

≤ exp(γ−1 log(2B(1 + t)) + Ctγ)(2 + C t| logB|β)

≤ (2B(1 + t))1/γ exp(Ctγ)(2 + C t| logB|β)

≤ CB1/γ exp(Ctγ)(1 + t| logB|β)

where on the last line we have used that eCtγ tδ ≤ CeC
′tγ for a larger constant

C ′ > C, and on the second line we have used the lower bound

Gα(t;A, c) ≥ γ−1 log(1/A)− Ctγ (7.2.16)

for α 6= 1, which we will now prove. Indeed, from (7.2.11) we use convexity
(noting γ ≥ 2) to obtain

G(t) ≥ G(0)− tG′(0) = G(0)− CtG(0)β/2,

and the desired bound follows from an application of Young’s inequality, i.e.

G(0)β/2t ≤ γ−1tγ + (β/2)G(0).

Finally, we infer the lower bound for T ∗ = T ∗(α,B(1 + T ), c) as follows: since
(1 + T )1+εB ≤ 1, we have

| logB(1 + T )| ≥ ε

1 + ε
| logB|.
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So in view of (7.2.12), we have for α = 1

T ∗ ≥ 1
c

(
log | logB|+ log

(
ε

1 + ε

)
− log log 9

)
≥ C ′ log | logB| − C ′−1,

and for α > 1

T ∗ ≥ γ

c

((
ε

1 + ε

)1/γ
| logB|1/γ − (log 9)1/γ

)
≥ C ′γ| logB|1/γ − C ′−1

for sufficiently large constant C ′.

7.2.4 Proof of Theorem 7.1.2

To prove Theorem 7.1.2 we note that we have the following result, analogous to
Lemma 7.2.1. As its proof is immediate we omit it.

Lemma 7.2.3. Let K be bounded and satisfy (7.1.10), then for any µ ∈M+(Rd)
with mass m, we have the inequality

∫
Rd
|K(x− z)−K(y − z)|dµ(z) ≤ Cmψ1(|x− y|)

where C is the constant in (7.1.10) and ψ1 is defined by (7.2.4).

Furthermore, we note that due to this lemma the vector fields Ei are log2-
Lipschitz, and as noted in Remark 7.2.3 this is enough to define the characteristic
ODEs. The proof of Theorem 7.1.2 is now entirely analogous to the proof of The-
orem 7.1.1 for α = 1, replacing Lemma 7.2.1 with this lemma. Thus we leave it
to the reader.

7.3 Proof of Proposition 7.1.1

We first show that it is sufficient to propagate the exponential velocity mo-
ment.
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Lemma 7.3.1. Let f ∈ L∞(Rd × Rd) and c > 0, then
∫

exp
(∣∣∣∣∫

Rd
f(x, v) dv

∣∣∣∣α /λ) dx ≤ C
∫
Rd×Rd

f(x, v)ec〈v〉
dα

dxdv

for constants C, λ depending only upon ‖f‖L∞ and c.

Proof. We apply the usual ‘interpolation’ method: let

M(x) =
∫
Rd
f(x, v)ec〈v〉

dα

dv,

then for each x we have

ρ(x) :=
∫
Rd
f(x, v) dv ≤

∫
|v|≥R

f(x, v) dv + C ‖f‖L∞ R
d ≤ e−cR

dα

M(x) + CRd,

by Markov’s inequality. We now choose R = R(x) = c−1/(αd) log(1 ∨M(x))1/(dα)

which gives
ρ(x) ≤ 1 + C log(1 ∨M(x))1/α.

Thus,
∫

exp(|ρ(x)|α/λ) dx ≤
∫

exp(|1 + C log(1 ∨M(x))1/α|α/λ) dx

≤
∫

exp((C/λ)(1 + log(1 ∨M(x)))) dx

and choosing λ = C we have
∫

exp(|ρ(x)|α/λ) dx ≤ C
∫
M(x) ∨ 1 dx ≤ C

∫
f(x, v)ec〈v〉

dα

dxdv.

We now prove that the exponential moment is propagated. Since f0 has finite
velocity moments of order larger than d2−d, the solution provided by [133, Theo.
1] has bounded velocity moments of order larger than d2 − d on [0, T ]. By [133,
Cor. 2] it follows that

sup
t∈[0,T ]

‖E(t)‖L∞ ≤ C <∞ (7.3.1)

for any finite T .
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Lemma 7.3.2. Let f ∈ L∞(Rd × Rd), α ≥ 1 and c > 0. Define

M(t) =
∫
f(t, x, v)e1+c〈v〉dα dxdv.

Then we have the differential inequality along the Vlasov-Poisson flow

dM

dt
≤ C(1 + log(M(t))1− 1

dαM(t))

for a constant C depending only upon c, α and ‖f‖L∞.

Proof. We directly compute, using the weak formulation of the Vlasov-Poisson
equation

dM

dt
= −

∫
Rd×Rd

cE(t, x) · ∇v[〈v〉dα]f(t, x, v)e1+c〈v〉dα dxdv

≤ C
∫
Rd×Rd

|E(t, x)| 〈v〉dα−1 f(t, x, v)e1+c〈v〉dα dxdv

≤ C ‖E(t)‖L∞
∫
Rd×Rd

log(e1+c〈v〉dα)1− 1
dα e1+c〈v〉dαf(t, x, v) dxdv.

The claim of the lemma now follows from (7.3.1) and Jensen’s inequality, using
the convexity of τ 7→ τ log(τ)1− 1

dα on τ ∈ (e,∞).

Proof of Proposition 7.1.1. By using Lemma 7.3.2 and solving the resulting dif-
ferential inequality we deduce that

sup
t∈[0,T ]

∫
Rd×Rd

f(t, x, v)ec〈v〉
dα

dxdv ≤ C <∞.

The claim of the proposition now follows from an application of Lemma 7.3.1.

323



324



Chapter 8

Contraction in the Wasserstein
metric for the kinetic

Fokker-Planck equation on the
torus

We study contraction for the kinetic Fokker-Planck operator on
the torus. Solving the stochastic differential equation, we show
contraction and therefore exponential convergence in the Monge-
Kantorovich-Wasserstein W2 distance. Finally, we investigate if
such a coupling can be obtained by a co-adapted coupling, and
show that then the bound must depend on the square root of
the initial distance.
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8.1 Introduction

The kinetic Fokker-Planck equation, also known as the Kramers equation, is a
basic model for the spreading of a solute due to interaction with the fluid back-
ground. It is derived from Langevin dynamics, where the time scale of observation
is much larger than the correlation time of the solute-fluid interactions (see e.g.
[207]).

We prove contraction properties of the spatially periodic kinetic Fokker-Planck
equation in the Wasserstein metric, and show to what extent the probabilis-
tic technique of coupling can be used in such situations. This is of interest,
both intrinsically, and in the broader context of analytic and probabilistic meth-
ods of proving convergence to equilibrium and contraction properties of Fokker-
Planck equations which we summarise in the paragraphs below. The Monge-
Kantorovich-Wasserstein (MKW) distance comes from optimal transport and is
defined as

W2(µ, ν) = inf
π∈Πµ,ν

(∫
|x− y|2dπ(x, y)

)1/2
,

where Πµ,ν is the set of all couplings between µ and ν.

A common analytic technique to show contraction or convergence to equilibrium
of Fokker-Planck equations is to work in a L2 space weighted by the reciprocal of
the equilibrium measure. Here, in the spatially homogeneous setting, contractiv-
ity is established by showing that the generator of the Fokker-Planck semi-group
is coercive on this L2 space, which implies that the generator has a spectral gap.
In the spatially inhomogeneous setting, which is common in kinetic theory, the
generator is, however, not coercive and this method fails.

This lead Villani to develop the celebrated theory of hypocoercivity [197] where
a spectral gap and contraction of the semi-group are shown, roughly speaking,
by constructing equivalent ‘skew’ L2 or Sobolev norms on which the generator
is coercive. This theory is well developed, and applies to a large class of SDEs
[197] and also to collisional models [85]. The kinetic Fokker-Planck equation in
particular has received much attention [86, 69, 149] both in the case of a spatial
confining potential and in, the analytically simpler, case of spatial periodicity.
These works, however, do not address the question of convergence or contraction
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in the Wasserstein metricW2, as this distance is ‘inaccessible’ from these analytic
tools; the closest result to this being [145] where W1 results are obtained by
duality.

A second analytic approach to the study of the Fokker-Planck equation is the
theory of gradient flows [105], in which the Fokker-Planck equation is identified
with the steepest descent flow of an entropy functional in the Wasserstein space
W2. A similar type of degeneracy, to those dealt with in hypocoercivity, causes
this theory fails for the spatially inhomogeneous Fokker-Plank equation in which
we are interested. Dissipation in the Wasserstein distance can also be shown for
non-gradient drifts in the homogeneous setting using analytic methods [24].

A common probabilistic technique to show contraction or convergence is to con-
struct a coupling between two copies of the stochastic process that realises the
desired bound on the metric between the laws. In the spatially homogeneous
Fokker-Planck equation, the synchronisation coupling, where the infinitesimal
motions of the noise are coupled together, gives contraction in Wasserstein met-
rics when the velocity potential is strongly convex. In the spatially inhomogeneous
case with a confining potential, such a straightforward coupling only establishes
contraction if the confining potentials are quadratic (or a small perturbation
thereof) see for example [25]. Establishing contraction in the Wasserstein metric
for more general confining potentials is an open problem. In the spatially periodic
case results are even more limited. In this case the synchronisation coupling does
not cause the spatial distance on the torus to decay. That the spatially periodic
case is more difficult in the probabilistic case is in contrast to the analytic set-
ting, where having the spatial variable on the torus makes many computations
simpler.

In this work we study the contraction properties in the Wasserstein metric of the
kinetic Fokker-Planck equation with spatial variable on the torus and a quadratic
velocity potential. Despite the simplicity of this equation, to the authors’ knowl-
edge this question has not been answered in the literature, and a second goal of
this chapter it to understand what difficulties might explain this.

This kinetic Fokker-Planck equation describes the law of a particle moving in the
phase space T × R whose location in the phase space is (Xt, Vt) and evolves as
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 dXt = Vtdt,

dVt = −λVtdt+ dWt,
(8.1.1)

where dWt is a standard white noise and the spacial variable is in the torus
T = R/(2πLZ) of length 2πL.

The corresponding measure µt on T× R evolves as

∂tµt + v∂xµt = ∂v[λvµt + 1
2∂vµt], (8.1.2)

where this equation is considered in the weak sense.

Solving the stochastic evolution, we are show exponential decay of the distance
between two solutions.

Theorem 8.1.1. If µt and νt are two solutions to the kinetic Fokker-Planck
equation (8.1.2), then we have

W2(µt, νt) ≤
(
e−λt + c e−t/4λ

2L2)W2(µ0, ν0)

for a constant c only depending on L.

The key idea is that, after fixing the net effect of the velocity noise, the spatial
variable has enough randomness left to allow such a coupling. This approach is
not based on a functional inequality which is integrated over time and in fact
the evolution is not a contraction semigroup. We can show the lack of coer-
civity directly in a straightforward way using the explicit solution to the SDE.
Precisely,

Proposition 8.1.1. The kinetic Fokker-Planck operator is not coercive in the
Wasserstein-2 distance. i.e. there is not γ > 0 such that

W2(µt, νt) ≤ e−γtW2(µ0, ν0).

In order to construct a coupling showing convergence in the MKW distance,
random variables (X i

t , V
i
t ) are constructed for t ∈ R+ and i = 1, 2 such that

(X1
t , V

1
t ) has law µt and (X2

t , V
2
t ) has law νt. Then for t ∈ R+ the coupling
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((X1
t , V

1
t ), (X2

t , V
2
t )) gives an upper bound of the MKW distanceW2(µt, νt).

The stochastic differential equation (8.1.1) motivates us to look at couplings where
(X i

t , V
i
t ) are continuous Markov processes with initial distribution µ0 and ν0,

respectively, and whose transition semigroup is determined by (8.1.1). For such
couplings we can consider a more restrictive class of couplings.

Definition 8.1.1 (co-adapted coupling). The coupling ((X1
t , V

1
t ), (X2

t , V
2
t )) is

co-adapted if, for i = 1, 2, under the filtration F generated by the coupling
((X1

t , V
1
t ), (X2

t , V
2
t )), the process (X i

t , V
i
t ) is a continuous Markov process whose

transition semigroup is determined by (8.1.1).

This is an important subclass of couplings, which contains many natural cou-
plings, and an even more restrictive subclass is the class of Markovian couplings,
where additionally the coupling itself is imposed to be Markovian. The existence
and obtainable convergence behaviour under this restriction has already been
studied in different cases, e.g. [117, 31, 37]. Note that the co-adapted coupling is
equivalent to the condition that the filtration generated by (X i

t , V
i
t ) is immersed

in the filtration generated by the coupling, which motivates Kendall [111] to call
such couplings immersed couplings.

By adapting the reflection/synchronisation coupling, we can still obtain exponen-
tial convergence but with a loss in dependence on the initial data.

Theorem 8.1.2. Given initial distributions µ0 and ν0, there exists a co-adapted
coupling ((X1

t , V
1
t ), (X2

t , V
2
t )) such that

W2(µt, νt) ≤
(
E
[
|X1

t −X2
t |2T + (V 1

t − V 2
t )2

])1/2

≤ Cζ(t)(
√
W2(µ0, ν0) +W2(µ0, ν0)),

where

ζ(t) =

e
−min(2λ,1/(2λ2L2))t 4L2λ3 6= 1

e−2λt(1 + t) 4L2λ3 = 1

and C is a constant that depends only on λ and L.

Here we used the notation |X1
t −X2

t |T to emphasis that this is the distance on the
torus T. In fact the filtrations generated by (X1, V 1) and (X2, V 2) agree which
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Kendall [111] calls an equi-filtration coupling.

Remark 8.1.1. This theorem achieves the same exponential decay rate as the
non-Markovian argument, except for the case 4L2λ3 = 1, when the spatial and
velocity decay rates coincide and we have an addition polynomial factor.

In general the loss in the dependence is necessary.

Theorem 8.1.3. Suppose there exists a function α : R+ 7→ R+ and a constant
γ > 0 such that for all initial distributions µ0 and ν0 there exists a co-adapted
coupling ((X1

t , V
1
t ), (X2

t , V
2
t )) such that

(
E
[
|X1

t −X2
t |2T + (V 1

t − V 2
t )2

])1/2
≤ α(W2(µ0, ν0))e−γt.

Then there exists a constant C such that for z ∈ (0, πL] we have the following
lower bound on the dependence on the initial distance

α(z) ≥ C
√
z.

The idea is to focus on a drift-corrected position on the torus, which evolves as a
Brownian motion. By stopping the Brownian motion at a large distance we can
then prove the claimed lower bound.

This shows that a simple hypocoercivity argument on a Markovian coupling
cannot work. Precisely, there cannot exist a semigroup P on the probability
measures over (T × R)×2, whose marginals behave like the solution of (8.1.1)
and which satisfies H(Pt(π)) ≤ cH(π)e−γt for H2(π) =

∫
[(X1 − X2)2 + (V 1 −

V 2)2]dπ(X1, V 1, X2, V 2). Otherwise, the Markov process associated to P would
be a coupling contradicting Theorem 8.1.3.

Addendum: Subsequent to the preparation of the manuscript [46] we attempted
to generalise to non-quadratic potentials, i.e. to the SDE

 dXt = Vt,

dVt = −U ′(Vt)dt+ dWt,

where U : R→ R is C2 and strongly convex with derivative U ′, and (X, V ) evolves
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on T× R. This was mostly a failure1. The explicit computations in the proof of
Theorem 8.1.1 fail to work for non-quadratic potentials U . The construction used
in Theorem 8.1.2 also fails and led me to question whether any such coupling at all
can converge in W2

2. However, surprisingly the optimality result Theorem 8.1.3
can be proved in great generality, which we present below:

Theorem 8.1.4. Let (V 1)t∈R+ , (V 2)t∈R+ be real valued stochastic processes with
the same individual laws. Let X1

0 , X
2
0 ∈ [0, 2π) be deterministic constants, and

define the real valued stochastic processes (X1
t )t∈R+,(X2

t )t∈R+, by

X i
t := X i

0 +
∫ t

0
V i
s ds i = 1, 2.

Let γ > 0 be fixed such that
√
E (|V 1

t − V 2
t |2 + |X1

t −X t
2|2T) ≤ ce−γt (8.1.3)

for some constant c. Then there is an absolute constant C depending only on γ

(and not on the choice of V 1, V 2, X1
0 , X

2
0 ) such that

c ≥ C
√
|X1

0 −X2
0 |T.

Remark 8.1.2. We do not require any assumptions on the processes V i. They
may be arbitrarily dependent on each other. They need not be Markov (or in par-
ticular jointly Markov), and need not be adapted to any filtration (or in particular
the same filtration). This is due to the technique of the proof, which is analytic
in nature and does not use martingales (unlike Theorem 8.1.1).

Remark 8.1.3. The laws of V 1, V 2 are arbitrary, so long as they are equal in
distribution. This means that the proposition applies to many kinetic equations
other than just the kinetic Fokker-Planck equation. These include collisional mod-
els such as the linear BGK equation and linear Boltzmann equations (so long as
the collision/scattering kernels do not depend on the spatial position on the torus.)
The theorem also applies to such models in any dimension by considering only
the first coordinate pair.

1Something one can admit in a thesis, but not in a paper.
2Any embarrassment from the subsequent exhibition of a simple convergent coupling falls

exclusively on the author of this thesis and not upon any collaborators.
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8.2 Set up

The stochastic differential equation (8.1.1) has the explicit solution, when posed
in R2. For clarity, when we are considering X to be in R rather than the torus
we will denote it X̂. The explicit solution is

X̂t = X̂0 + 1
λ

(1− e−λt)V0 +
∫ t

0

1
λ

(1− e−λ(t−s))dWs,

Vt = e−λtV0 +
∫ t

0
e−λ(t−s)dWs,

(8.2.1)

where Wt is the common Brownian motion. In this we separate the stochastic
driving as (At, Bt) given by the stochastic integrals

At =
∫ t

0

1
λ

(1− e−λ(t−s))dWs,

Bt =
∫ t

0
e−λ(t−s)dWs,

which evolve as a vector in R2 with the common Brownian motion Wt. By Itô’s
isometry (At, Bt) is a Gaussian random variable with covariance matrix Σ(t) given
by

ΣAA(t) = 1
λ2

[
t− 2

λ
(1− e−λt) + 1

2λ(1− e−2λt)
]
, (8.2.2)

ΣAB(t) = 1
λ2

[
(1− e−λt)− 1

2(1− e−2λt)
]
, (8.2.3)

ΣBB(t) = 1
2λ(1− e−2λt). (8.2.4)

From this we calculate that the conditional distribution of At given Bt is a Gaus-
sian with variance ΣAA(t)− Σ2

AB(t)Σ−1
BB(t) and mean given by

µA|B(t, b) = ΣAB(t)Σ−1
BB(t)b.

We write gA|B for the conditional density of A given B and gB for the marginal
density of B. Hence

g(t, a, b) = gA|B(t, a, b)gB(t, b) (8.2.5)

is the joint density of A and B.
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The last part of the set up is the change of variables we will need for the Markovian
coupling. We define new coordinates (Y, V ) by taking the drift away


Y = X + 1

λ
V,

V = V.
(8.2.6)

The motivation for this change is the explicit formulas found in (8.2.1) from which
we see that Y is the limit as t → ∞ of Xt without additional noise. In the new
variables, (8.1.1) becomes


dYt = 1

λ
dWt,

dVt = −λVtdt+ dWt,

for the common Brownian motionWt. Note that the motion of Yt does not depend
explicitly upon Vt and is a Brownian motion on the torus.

It remains to show that these new coordinates define an equivalent norm on T×R.
This follows from the triangle inequality and we have

|X1 −X2|T + |V 1 − V 2| ≤ |Y 1 − Y 2|T +
(

1 + 1
λ

)
|V 1 − V 2|

and the other direction is similar. Thus, the two norms are equivalent up to a
constant factor that depends only on λ.

8.3 Non-Markovian Coupling

We wish to estimate how much the spatial variable will spread out over time.
We will then use this to construct a coupling at a fixed time t which exploits the
fact that a proportion of the spatial density is distributed uniformly. In order to
do this we give a lemma on the spreading of a Gaussian density wrapped on the
torus.

Lemma 8.3.1. For σ2 > 2L2 log(3) consider the Gaussian density h on R given
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by
h(x) = 1√

2πσ2
e−x

2/2σ2

and wrap it onto the torus T, i.e. define the density Qh on T by

(Qh)(x) =
∑
n∈Z

h(x+ 2πLn). (8.3.1)

We have the following estimate on the spatial spreading

Qh(x) ≥ β

2πL

where
1− β = 2e−σ2/2L2

1− e−σ2/2L2 ∈ (0, 1).

Proof. We define the Fourier transform of a function on T to be

(Fg)(k) =
∫
T
eikx/Lg(x)dx,

where ∫
T
g(x)dx =

∫ 2πL

0
g(x)dx.

By the definition of Q, the Fourier transform of Qh is given by

(FQh)(k) =
∫
T

∑
n∈Z

h(x+ 2πLn)eikx/Ldx

=
∫
R
h(x)eikx/Ldx

= exp
(
−k

2σ2

2L2

)

where we have used the well-known Fourier transformation of a Gaussian.

By the Fourier series we find that, for any x ∈ T, we have

Qh(x)− β

2πL = 1
2πL

∑
|k|≥1

e−k
2σ2/2L2−ikx/L + 1− β

2πL .

334



We want this to be positive. Therefore it is sufficient to show that∣∣∣∣∣∣
∑
|k|≥1

e−k
2σ2/2L2−ikx/L

∣∣∣∣∣∣ ≤ 1− β.

We estimate the left hand side by∣∣∣∣∣∣
∑
|k|≥1

e−k
2σ2/2L2−ikx/L

∣∣∣∣∣∣ ≤ 2
∑
k≥1

e−kσ
2/2L2 = 1− β

where the final equality follows from summing the geometric series.

We can now use this to construct a coupling at time t. We will use this coupling
to prove exponential decrease in the Wasserstein distance.

Lemma 8.3.2. Let t ≥ 0, be large enough so the variance of gA|B is greater than
2L log(3), and β be such that

(QgA|B)(t, a, b) ≥ β

2πL,

where gA|B is defined by (8.2.5) above. Let µt resp. νt be the distribution of
the solution to the Fokker-Planck equation (8.1.2) with deterministic initial data
µ0 = δx1

0,v
1
0
and ν0 = δx2

0,v
2
0
respectively, at time t. Then there exists a coupling

((X1
t , V

1
t ), (X2

t , V
2
t )) between µt and νt satisfying

E
[
(V 1

t − V 2
t )2

]
= e−2λt

[
(v1

0 − v2
0)2
]

and
E
[
|X1

t −X2
t |2T
]
≤ 2(1− β)

[
|x1

0 − x2
0|2T + 1

λ2 (v1
0 − v2

0)2
]
.

Proof. Let us construct such a coupling. Since we have seen that gA|B is Gaussian
density with variance σ2 = ΣAA(t) − Σ2

AB(t)Σ−1
BB(t), we can us Lemma 8.3.1 to

split the distribution QgA|B as

QgA|B(t, a, b) = β

2πL + (1− β)s(t, a, b).

Then by assumption s is again a probability density for the variable a on the
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torus T. We now consider the torus as a subset of R and then QgA|B and s are
probability density functions supported on [0, 2πL]. Let B be an independent
random variable with density gB(t, b), let Z be an independent uniform random
variable over [0, 1] and let U be an independent uniform random variable over
the torus. Finally let S be a random variable on R with density s(t, ·, B), viewed
as a density function on R, only depending on B.

With this define the random parts A1, A2 of X1
t , X

2
t as

A1 =1Z≤β
[
U − x1

0 −
1
λ

(1− e−λt)v1
0

]
+ 1β>ZS,

A2 =1Z≤β
[
U − x2

0 −
1
λ

(1− e−λt)v2
0

]
+ 1β>ZS.

We then construct (X̂1
t , V

1
t ) defined by

X̂1
t = x1

0 + 1
λ

(1− e−λt)v1
0 + A1,

V 1
t = e−λtv1

0 +B,

and (X̂2
t , V

2
t ) defined by

X̂2
t = x2

0 + 1
λ

(1− e−λt)v2
0 + A2,

V 2
t = e−λtv2

0 +B.

We then construct X i
t by wrapping X̂ i

t onto the torus (i.e. X i
t ∈ [0, 2πL) and

X i
t ≡ X̂ i

t mod 2πL). By construction the pairs (X i, V i) have the right laws so
they form a valid coupling.

We find
E
[
(V 1

t − V 2
t )2

]
= e−2λt

[
(v1

0 − v2
0)2
]

and
E
[
|X1

t −X2
t |2T
]

= (1− β)
[∣∣∣∣x1

0 − x2
0 + 1

λ
(1− e−λt)(v1

0 − v2
0)
∣∣∣∣2
T

]

and we can use Young’s inequality to find the claimed control.

We now put these two lemmas together to prove Theorem 8.1.1, which states
exponential convergence in the MKW W2 distance.
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Proof of Theorem 8.1.1. We first show that we can reduce to working with de-
terministic initial conditions. We denote µx,vt to be the law of the solution to the
SDE initialized at (x, v). Suppose we know that

W2(µx1,v1
t , µx1,v2

t ) ≤ ω(t)d((x1, v1), (x1, v2)).

Then given any coupling π of initial measures µ0, ν0 we have

W2(µt, νt)2 ≤
∫

(T×R)2
W2(µx1,v1

t , µx2,v2
t )2dπ((x1, v1), (x2, v2))

≤ ω(t)2
∫

(T×R)2
d((x1, v1), (x2, v2))2dπ((x1, v1), (x2, v2)).

Then taking an infimum over π shows that this implies

W2(µt, νt) ≤ ω(t)W2(µ0, ν0).

Given any initial points ((x1
0, v

1
0), (x2

0, v
2
0)), we can use Lemma 8.3.2 to get a cou-

pling ((X1
t , V

1
t ), (X2

t , V
2
t )) of µt and νt. From explicitly calculating the variance

of the distribution of A|B using (8.2.2), (8.2.3), (8.2.4), we see that the variance
grows asymptotically as t/λ2. Hence by Lemma 8.3.1 we can choose β so that
1−β → 0 exponentially fast with rate 1/2λ2L2. This, combined with the control
from the second lemma, shows that

E
[
(V 1

t − V 2
t )2 + |X1

t −X2
t |2T
]
≤
(
e−2λt + ce−t/2λ

2L2) [(v1
0 − v2

0)2 + |x1
0 − x2

0|2T
]
.

The explicit solution also allows to prove that the evolution is not a contraction
semigroup.

Proof of Proposition 8.1.1. We will prove the theorem by contradiction. Suppose
γ > 0 and let a 6= b be two distinct points on the torus. Consider the initial
measures

µ0 = δx=aδv=0

and
ν0 = δx=bδv=0.
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Then the distance is W2(µ0, ν0) = |a− b|T.

At time t the spatial distribution of µt and νt, interpreted in R, is a Gaussian with
variance ΣAA which by the explicit formula Equation (8.2.2) can be bounded as

ΣAA(t) ≤ CAt
2

for a constant CA and t ≤ 1.

Hence for d > 0 and t ≤ 1 the spatial spreading is controlled as

µt((T \ [a− d, a+ d])× R) ≤ 2ΣAA(t)
d
√

2π
exp

(
−d2

2Σ2
AA(t)

)

≤ C1
t2

d
exp

(
−C2

d2

t4

)

for positive constants C1 and C2, where we have used the standard tail bound for
the Gaussian distribution (see e.g. [148, Lemma 12.9]).

For any d > 0 small enough that a± d and b± d do not wrap around the torus,
any coupling between µt and νt must transfer at least the mass

1− µt((T \ [a− d, a+ d])× R)− νt((T \ [b− d, b+ d])× R)

between [a− d, a+ d] and [b− d, b+ d].

Hence the Wasserstein distance is bounded by

W2
2 (µt, νt) ≥ (|a− b|T − 2d)2

(
1− 2C1

t2

d
exp

(
−C2

d2

t4

))
.

Taking d = |a− b|Tt3/2 for t sufficiently small, this shows that

W2
2 (µt, νt) ≥ |a− b|2T(1− 2t3/2)2

(
1− 2C1

|a− b|T
√
t exp

(
−C2|a− b|2T

t

))
.

However, for all small enough positive t, we have

(1− 2t3/2)2 > e−γt/2
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and (
1− 2C1

|a− b|T
√
t exp

(
−C2|a− b|2T

t

))
> e−γt/2

contradicting the assumed contraction. For the second estimate we use exp(−c/t) ≤
(1 + c/t)−1 = t/(c+ t).

8.4 Co-adapted couplings

8.4.1 Existence

For Theorem 8.1.2 we construct a reflection/synchronisation coupling using the
drift-corrected positions Y i

t . As the positions are on the torus we can use a
reflection coupling until Y 1

t and Y 2
t agree. Afterwards, we use a synchronisation

coupling which keeps Y 1
t = Y 2

t and reduces the velocity distance.

For a formal definition let ((X1
0 , V

1
0 ), (X2

0 , V
2

0 )) be a coupling between µ and ν

obtaining the MKW distance (the existence of such a coupling is a standard
result, see e.g. [198, Theorem 4.1.]).

We then define the evolution of this coupling in two stages. First, define (X1
t , V

1
t )

and (X3
t , V

3
t ) to be strong solutions to (8.1.1) with initial conditions ((X1

0 , V
1

0 )
and (X2

0 , V
2

0 ) respectively and driving Brownian motion W 1
t . Then we recall the

definition of Y i from (8.2.6), and define the stopping time T := inf{t ≥ 0 : Y 1
t =

Y 3
t }. Then we define a new process W 2

t by

W 2
t =

−W
1
t t ≤ T,

W 1
t − 2W 1

T t > T.

By the reflection principle, W 2 is a Brownian motion. We use this to define a
new solution (X2

t , V
2
t ) to be the strong solution to (8.1.1) with driving Brownian

motion W 2 and initial condition (X2
0 , V

2
0 ). Note now that T = inf{t ≥ 0 : Y 1

t =
Y 2
t }.
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For the analysis we introduce the notation

Mt = Y 1
t − Y 2

t ,

Zt = V 1
t − V 2

t .

Then by the construction the evolution is given by

dMt = 2
λ

1t≤TdW 1
t , (8.4.1)

dZt = −λZtdt+ 2 · 1t≤TdW 1
t , (8.4.2)

where Mt evolves on the torus T.

As a first step we introduce a bound for T .

Lemma 8.4.1. The stopping time T satisfies

P(T > t|M0) = 4
π

∞∑
k=0

1
2k + 1 exp

(
−(2k + 1)2

2λ2L2 t

)
sin

(
(2k + 1)|M0|T

2L

)
. (8.4.3)

Proof. As Mt evolves on the torus, T is the first exit time of a Brownian motion
starting at M0 from the interval (0, 2πL). See [148, (7.14-7.15)], from which the
claim follow after rescaling to incorporate the 2/λ factor.

Remark 8.4.1. The second expression in (8.4.3) is obtained by solving the heat
equation on [0, 2πL] with Dirichlet boundary conditions and initial condition δM0.

Lemma 8.4.2. There exists a constant C such that for any t > 0 the following
holds

P(T > t|M0) ≤ C|M0|T(1 + t−1/2)e−t/(2λ2L2). (8.4.4)

Proof. Using (8.4.3) and the inequality sin(x) ≤ x for x ≥ 0, we have

P(T > t|M0) ≤ 4
π
e−t/(2λ

2L2)
∞∑
k=0

|M0|T
2L

2k + 1
2k + 1e

−4k2t/(2λ2L2)

≤ 2
πL
|M0|Te−t/(2λ

2L2)
(

1 +
∫ ∞

0
e−4u2t/(2λ2L2)du

)
= 2
πL
|M0|Te−t/(2λ

2L2)
(

1 +
√

π

8t/(λ2L2)

)

≤ C|M0|T(1 + t−1/2)e−t/(2λ2L2)
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where on the second line we have bounded the sum by an integral.

Using these simple estimates, we now study the convergence rate of the cou-
pling.

Lemma 8.4.3. There exists a constants C such that for any t ≥ 0 we have the
bound

E
[
|Mt|2T + |Zt|2

∣∣∣(Z0,M0)
]
≤ |Z0|2e−2λt +


C|M0|Te−2λt 2λ < 1/(2λ2L2)

C|M0|T(1 + t)e−2λt 2λ = 1/(2λ2L2)

C|M0|Te−t/(2λ
2L2) 2λ > 1/(2λ2L2).

Proof. Without loss of generality we may assume that Z0 and M0 are determin-
istic in order to avoid writing the conditional expectation.

Applying ItÅŊ’s lemma, we find from (8.4.2) that

d|Zt|2 = −2λ|Zt|2dt+ 4 · 1t≤TZtdW 1
t + 2 · 1t≤Tdt.

After taking expectations we see that

d
dtE|Zt|

2 = −2λE|Zt|2 + 2P(t ≤ T ). (8.4.5)

By explicitly solving (8.4.5) and using Lemma 8.4.2, we obtain

E|Zt|2 = |Z0|2e−2λt + 2e−2λt
∫ t

0
e2λsP(s ≤ T ) ds

≤ |Z0|2e−2λt + C|M0|Te−2λt
∫ t

0
e(2λ−1/(2λ2L2))s(1 + s−1/2) ds︸ ︷︷ ︸

=:It

.

Let us bound It. As the integrand is locally integrable, we have for a constant C

It ≤ C
(

1 +
∫ t

0
e(2λ−1/(2λ2L2))s ds

)
.

Here the s−1/2 term can be bounded by 1 for s > 1 and for s ≤ 1 the additional
contribution can be absorbed into the constant. To bound the remaining integral
we consider three cases:
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• 2λ < 1/(2λ2L2): The integral (and It) are uniformly bounded, It ≤ C.

• 2λ = 1/(2λ2L2): The integrand is equal to 1 and It ≤ C(1 + t).

• 2λ > 1/(2λ2L2): The integrand grows and It ≤ C(1 + e(2λ−1/(2λ2L2))t).

In each case we multiply It by e−2λt to obtain the decay rate. In the first two
cases this gives the dominant term with |M0|T (as opposed to |Z0|) dependence,
while in the last case it is lower order than the e−t/(2λ2L2) decay we obtain from
E|Mt|2T below.

Next let us consider E|Mt|2T. Using the finite diameter of the torus we have the
simple estimate

E|Mt|2T ≤ π2L2P(T > t).

For t ≥ 1 (say), we can use Lemma 8.4.2, to obtain

E|Mt|2T ≤ C|M0|Te−t/(2λ
2L2) for t ≥ 1.

This leaves the case when t ≤ 1 where (8.4.4) blows up. We instead use the
martingale property of Mt. Without loss of generality we may assume that M0 ∈
[0, πL]. Then as Mt is stopped at T we know that Mt ∈ [0, 2πL] for all t ≥ 0.
Hence, for any t ≥ 0,

E|Mt|2T ≤ E|Mt|2 ≤ 2πLEMt = 2πLM0 = 2πL|M0|T

by the martingale property. Combining the t ≤ 1 and t ≥ 1 estimates we have

E|Mt|2T ≤ C|M0|Te−t/(2λ
2L2) for t ≥ 0.

This together with the bound for E|Zt|2 provides the claimed bounds of the lemma
and completes its proof.

Proof of Theorem 8.1.2. By the equivalence of the norms from (X, V ) and (Y, V ),
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we see that

E
(
|X1

t −X2
t |2T + |V 1

t − V 2
t |2
)
≤
(

1 + 1
λ

)
E
(
|Mt|2T + |Zt|2

)
≤ C ′ζ(t)E(|M0|T + |Z0|2)

≤ Cζ(t)E
((
|X1

0 −X2
0 |2T + |V 1

0 − V 2
0 |2
)1/2

+
(
|X1

0 −X2
0 |2T + |V 1

0 − V 2
0 |2
))

.

Here we used Lemma 8.4.3 to go between the first and second line, and to find
the exponentially decreasing term ζ. The constants C and C ′ come from the
constants in equivalence of norms.

8.4.2 Optimality

In order to show Theorem 8.1.3, we focus on the drift-corrected positions Y 1
t

and Y 2
t which behave like time-rescaled Brownian motion on the torus. For their

quadratic distance we prove the following decay bound.

Proposition 8.4.1. Suppose there exist functions α : (0, πL] 7→ R+ and ζ :
[0,∞) 7→ R+ with ζ ∈ L1([0,∞)), such that, for any z ∈ (0, πL] there exist two
standard Brownian motions W 1

t and W 2
t on the torus T = R/(2πLZ) with respect

to a common filtration such that |W 1
0 −W 2

0 | = z, and for t ∈ R+ it holds that

E[|W 1
t −W 2

t |2T] ≤ (α(z))2ζ(t).

Then with a constant c only depending on L, the function α satisfies the bound

α(z) ≥ c ‖ζ‖−1/2
L1([0,∞))

√
z.

From this Theorem 8.1.3 follows easily.

Proof of Theorem 8.1.3. Fix z ∈ (0, πL] and consider the initial distributions
µ = δX=0δV=0 and ν = δX=zδV=0. Between µ and ν, there is only one coupling
and W2(µ, ν) = z.

If there exists a co-adapted coupling ((X1
t , V

1
t ), (X2

t , V
2
t )) satisfying the bound,

then Y 1
t/λ2 and Y 2

t/λ2 are Brownian motions on the torus with a common filtration.
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Moreover,
E[|Y 1

t − Y 2
t |2T] ≤ C E[|X1

t −X2
t |2T + |V 1

t − V 2
t |2]

for a constant C only depending on λ. Hence we can apply Proposition 8.4.1 to
find the claimed lower bound for α.

For the proof of Proposition 8.4.1, we first prove the following lemma.

Lemma 8.4.4. Given two Brownian motions W 1
t and W 1

t on the torus with a
common filtration, then there exists a numerical constant c such that

E[|W 1
t −W 2

t |2T] ≥ c e−2t/L2E[|W 1
0 −W 2

0 |2T].

Proof. The natural (squared) metric |x− y|2T on the torus is not a global smooth
function of x, y ∈ R as it takes x, y mod 2πL. Therefore we introduce the equiv-
alent metric

d2
T(x, y) = L2 sin2

(
x− y

2L

)
,

which is a smooth function of x, y ∈ R. Moreover, the constants of equivalence
are independent of L, i.e. there exist numerical constants c1 and c2 such that

c1|x− y|2T ≤ d2
T(x, y) ≤ c2|x− y|2T.

Now consider Ht defined by

Ht = L sin
(
W 1
t −W 2

t

2L

)
exp

(
[W 1 −W 2]t

4L2

)
.

As W 1
t and W 2

t are Brownian motions, their quadratic variation is controlled as
[W 1 −W 2]t ≤ 4t. By ItÅŊ’s lemma

dHt = 1
2 cos

(
W 1
t −W 2

t

2L

)
exp

(
[W 1 −W 2]t

4L2

)
d(W 1 −W 2)t.
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Therefore we may bound the quadratic variation of H by

[H]t =
∫ t

0

1
4 cos2

(
W 1
t −W 2

t

2L

)
exp

(
[W 1 −W 2]t

2L2

)
d[W 1 −W 2]t

≤
∫ t

0
exp

( 2t
L2

)
dt

<∞.

Therefore, as also |H0| ≤ L, the local martingale Ht is a true martingale and by
Jensen’s inequality

E[|Ht|2] ≥ E[|H0|2].

Using the equivalence of two metrics, we thus find the required bound

E[|W 1
t −W 2

t |2T] ≥ c−1
2 E

[
|Ht|2 exp

(
− [W 1 −W 2]t

2L2

)]

≥ c−1
2 E

[
|H0|2

]
exp

(
− 2t
L2

)
≥ c1c

−1
2 E[|W 1

0 −W 2
0 |2T] exp

(
− 2t
L2

)
.

With this we approach the final proof.

Proof of Proposition 8.4.1. Fix a ∈ (0, 1), let z ∈ (0, πL] be given, and by sym-
metry assume without loss of generality that W 1

0 −W 2
0 = |W 1

0 −W 2
0 | = z. Then

define the stopping time

T = inf{t ≥ 0 : W 1
t −W 2

t 6∈ (az, πL)}.

The distance can be directly bounded as

E[|W 1
t −W 2

t |2T] ≥ P[T ≥ t](az)2.

As ζ is integrable, it must decay along a subsequence of times and thus T must
be almost surely finite.

As W 1
t and W 2

t , considered on R, are continuous martingales, their difference
is also a continuous martingale. By the construction of the stopping time, the
stopped martingale (W 1 −W 2)t∧T is bounded by πL and the optional stopping
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theorem implies
P[W 1

T −W 2
T = πL] = z − az

πL− az
.

Since Brownian motions satisfy the strong Markov property, we find together
with Lemma 8.4.4

E
∫ ∞

0
|W 1

t −W 2
t |2Tdt ≥ E

∫ ∞
T
|W 1

t −W 2
t |2Tdt

≥ P[W 1
T −W 2

T = πL]E
[∫ ∞

T
|W 1

t −W 2
t |2T dt

∣∣∣∣∣ W 1
T −W 2

T = π

]

≥ P[W 1
T −W 2

T = πL]c (πL)2
∫ ∞

0
e−2t/L2dt

≥ z − az
πL− az

c (πL)2L
2

2
≥ Caz

for a constant Ca only depending on a and L, where the strong Markov property
and then the lemma are applied on the second line.

On the other hand, integrating the assumed bound gives

E
∫ ∞

0
|W 1

t −W 2
t |2Tdt ≤ (α(z))2

∫ ∞
0

ζ(t)dt ≤ (α(z))2 ‖ζ‖L1([0,∞)) .

Hence
Caz ≤ (α(z))2 ‖ζ‖L1([0,∞))

which is the claimed result.

8.5 Proof of Theorem 8.1.4

Proof of Theorem 8.1.4. Let (Ω,P) denote the probability space. Without loss
of generality, we may assume that |X1

0 − X2
0 |T = X1

0 − X2
0 . By (8.1.3) and an

application of the Borel Cantelli lemma, we see that

V 1
t − V 2

t → 0, |X1
t −X2

t |T → 0 a.s. as t→∞.
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By continuity in time of X1, X2, the process X̃t := X1
t − X2

t converges almost
surely as t→∞ to a limit X̃∞, which satisfies X̃∞ ∈ 2πZ almost surely. Due to
(8.1.3), we can also express

X̃∞ = X1
0 −X2

0 +
∫ ∞

0
V 1
t − V 2

t dt,

where the integral converges absolutely in L1(Ω). Hence,

EX̃∞ = X1
0 −X2

0 +
∫ ∞

0
EV 1

t − EV 2
t dt = X1

0 −X2
0 = |X1

0 −X2
0 |T

as V 1
t , V

2
t have the same individual laws.

Let N be the number of times X̃t crosses an interval of the form [(2k+ 1)π, (2k+
3/2)π] for some k ∈ Z as t goes from 0 to ∞. We will assume that N is a.s.
finite. The case where N is infinite is an easy adaptation. As X̃∞ ∈ 2πZ a.s. and
X̃0 = d ∈ [0, π], N is at least as large as |X̃∞|/2π. In particular,

EN ≥ 1
2πE|X̃∞| ≥

1
2πEX̃∞ = 1

2π |X
1
0 −X2

0 |T

Observe that, by Fubini’s theorem and (8.1.3)

E
∫ ∞

0
|V 1
t − V 2

t |2 + |X1
t −X2

t |2T dt ≤ Cc2,

where C depends only on γ. Letting tn, tn be the start and end times of the nth
crossing of an interval as in the definition of N , we have the lower bound

N∑
n=1

∫ tn

tn

|V 1
t − V 2

t |2 + |X1
t −X2

t |2T dt ≤
∫ ∞

0
|V 1
t − V 2

t |2 + |X1
t −X2

t |2T dt.

We claim that each term in the sum on the left hand side is almost surely bounded
below by an absolute deterministic constant C ′. With this claim the proposition
follows by taking expectations and combining the above displays. Indeed,

C ′

2π |X
1
0 −X2

0 |T ≤ C ′EN ≤ E
N∑
n=1

∫ tn

tn

|V 1
t − V 2

t |2 + |X1
t −X2

t |2T dt

≤ E
∫ ∞

0
|V 1
t − V 2

t |2 + |X1
t −X2

t |2T dt ≤ Cc2,
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and we finish by taking square roots.

We now prove the claim. Denote the time interval as [τ, τ + T ]. The integral
considered is then

I =
∫ τ+T

τ
|V 1
t − V 2

t |2 + |X1
t −X2

t |2T dt.

We bound this integral below in two ways. First, which is optimal when T is
large, we have the bound

I ≥
∫ τ+T

τ
|X1

t −X2
t |2T dt ≥

∫ τ+T

τ

(
π

2

)2
dt ≥ π2T

4 .

Second, which is optimal when T is small, we have the bound

I ≥
∫ τ+T

τ
|V 1
t − V 2

t |2 dt = T
∫ T

0

1
T
|V 1
t − V 2

t |2 dt ≥ T

(∫ τ+T

τ

1
T
|V 1
t − V 2

t | dt
)2

= 1
T

(∫ τ+T

τ
|V 1
t − V 2

t | dt
)2

≥ 1
T
|X̃τ+T − X̃τ |2 = π2

4T ,

where we have used Jensen’s inequality on the first line. The claim is proved by
noting that min(T, 1/T ) = 1. This completes the proof of the theorem.

348



Chapter 9

Convergence Along Mean Flows

We develop a technique of multiple scale asymptotic expansions
along mean flows and a corresponding notion of weak multiple
scale convergence. These are applied to homogenize convection
dominated parabolic equations with rapidly oscillating, locally
periodic coefficients and O(ε−1) mean convection term. Cru-
cial to our analysis is the introduction of a fast time variable,
τ = t/ε, not apparent in the heterogeneous problem. The ef-
fective diffusion coefficient is expressed in terms of the average
of Eulerian cell solutions along the orbits of the mean flow in
the fast time variable. To make this notion rigorous, we use the
theory of ergodic algebras with mean value.
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9.1 Introduction

This chapter studies the homogenization of parabolic equations of convection-
diffusion type with locally periodic (in space), rapidly oscillating coefficients.
This work addresses the self-similar diffusive scaling in these equations, i.e. for an
unknown scalar density uε(t, x), we consider the Cauchy problem for a convection-
diffusion equation with large convection term:

∂uε

∂t
+ 1
ε
b
(
x,
x

ε

)
· ∇uε −∇ ·

(
D
(
x,
x

ε

)
∇uε

)
= 0 for (t, x) ∈ ]0, T [×Rd

(9.1.1)

with 0 < ε� 1 the scale of heterogeneity. This scaling corresponds to the long-
term behaviour which can be described in terms of the effective or homogenized
limit of the above scaled system.

It has remained a largely open problem to determine the homogenized limit of the
scaled equation (9.1.1). This present work gives a partial answer to this question
in the sense that we homogenize the non-homogeneous equation with locally
periodic coefficients under some structural assumptions on the flows associated
with certain vector fields. This is achieved by the introduction of a new notion
of weak convergence in Lp spaces with 1 < p <∞.

Under no diffuse scaling, i.e. with no large convection term, homogenization of
such equations is classical. In such a scenario, we can either employ the method of
asymptotic expansions (see for instance, the monographs [20, 175]) which provides
us with the approximation

uε(t, x) ≈ u0(t, x) + εu1

(
t, x,

x

ε

)
+ ε2u1

(
t, x,

x

ε

)
+ · · · (9.1.2)

or employ a weak convergence approach of the two-scale convergence method in-
troduced by G. Nguetseng in [154] and further developed by G. Allaire in [1]. The
cornerstone result of the two-scale convergence method is that, up to extraction
of a subsequence, any uniformly (w.r.t. ε) bounded sequence {uε} in some Lp
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space with 1 < p <∞ satisfies

lim
ε→0

∫∫
(0,T )×Rd

uε(t, x)ψ
(
t, x,

x

ε

)
dx dt =

∫∫∫
(0,T )×Rd×Td

u0(t, x, y)ψ(t, x, y) dy dx dt

for some u0(t, x, y) ∈ Lp((0, T )×Rd×Td) called the weak two-scale limit and for
any smooth ψ(t, x, y) which is periodic in the y variable.

Any weak convergence approach to homogenize a partial differential equation
would involve passing to the limit (as the heterogeneity length scale tends to
zero) in the weak formulation associated to the partial differential equation. This
would require passing to the limit in products of weakly converging sequences.
The main feature of the two-scale convergence method is that the particular
choice of test functions allows us to pass to the limit in such products. If uε(t, x)
weakly two-scale converges to u0(t, x, y) ∈ Lp((0, T )×Rd × Td) and if the coeffi-
cient function a(t, x, y), which is periodic in the y variable, is admissible (roughly
speaking, continuous or approximable by continuous functions in a certain sense
- see Definition 9.3.7 for precise statement), then the product has the conver-
gence

a
(
t, x,

x

ε

)
uε(t, x) ⇀

∫
Td

a(t, x, y)u0(t, x, y) dy as ε→ 0,

in the sense of distributions.

In recent years, there have been numerous publications in the mathematics lit-
erature dedicated to generalize the notion of two-scale convergence (originally
developed to handle periodic structures) to address the homogenization of par-
tial differential equations with coefficients that belong to some ergodic algebras.
Typically, all these works are about the study of the limiting behaviour (as ε→ 0)
of the integral

∫
Rd

vε(x)ψ
(
x,
x

ε

)
dx

when {vε} is a uniformly bounded sequence in some Lebesgue space Lp with
1 < p < ∞ and ψ(x, y) belongs to certain ergodic algebra in the y variable.
The notion of algebras with mean value play a crucial role in these theories. This
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notion goes back to the work of Zhikov and Krivenko [206] in the early 1980’s (also
see the book of Jikov, Kozlov and Oleinik [205] for a pedagogical exposition). We
cite some of the references in this context which we have consulted in developing
our theory: [35, 155, 156, 158].

With regard to the homogenization of the scaled equation (9.1.1), the known
results are when the rapidly oscillating coefficients are purely periodic, i.e. of
the type b

(
x
ε

)
, D

(
x
ε

)
. The case when the fluid field b(·) is of zero mean was

treated in [20, 142] using two-scale asymptotic expansions of the form (9.1.2).
They do not prove convergence. Over two decades ago, to address the case of
fluid field b(·) with non-zero mean, G. Papanicolaou suggested in [166] a modified
two-scale asymptotic expansion where the coefficients in the expansion are taken
along rapidly moving coordinates:

uε(t, x) ≈ u0

(
t, x− b∗t

ε

)
+ εu1

(
t, x− b∗t

ε
,
x

ε

)
+ ε2u2

(
t, x− b∗t

ε
,
x

ε

)
+ · · ·

(9.1.3)

The constant b∗ ∈ Rd is the mean field associated with b(·). Note that the
case b∗ = 0 coincides with the classical expansion (9.1.2). We cite the works
in [6, 5, 3] where the above expansion with drift is employed in homogenizing
reactive transport models in periodic porous media.

Analogous to the two-scale convergence method, Marušić-Paloka and Piatnitski
introduced a notion of weak convergence in [140] called the two-scale convergence
with drift (see [2] for a pedagogical exposition of this method) characterizing the
limit

lim
ε→0

∫∫
(0,T )×Rd

uε(t, x)ψ
(
t, x− b∗t

ε
,
x

ε

)
dx dt

where ψ(t, x, y) is periodic in the y variable and as usual the family {uε} is
uniformly bounded (w.r.t. ε) in some Lp space with 1 < p <∞.

Neither the modified two-scale expansion (9.1.3) nor the notion of two-scale con-
vergence with drift seem capable of treating equation (9.1.1) with locally periodic,
rapidly oscillating coefficients, i.e. when b depends upon both x and y. We cite
the work of P-E. Jabin and A. Tzavaras [99] which treats the homogenization
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of (9.1.1) with locally periodic fluid field b(x, y) and diffusion coefficient being
unity. They treat a special case when the mean field b̄(x) of the locally periodic
fluid field b(x, y) vanishes, i.e. b̄(x) ≡ 0 for all x. They introduce a notion of
kinetic decomposition to address this problem. As far as the authors are aware,
the techniques of [99] are not capable of addressing the case of non-zero mean
field.

In this work, we introduce a new multiple scale expansion

uε(t, x) ≈ u0
(
t,Φ−t/ε(x)

)
+ εu1

(
t,
t

ε
,Φ−t/ε(x), x

ε

)
+ ε2u2

(
t,
t

ε
,Φ−t/ε(x), x

ε

)
+ · · ·

(9.1.4)

which we call multiple scale expansion along mean flows. The coefficient functions
ui in (9.1.4) are taken on rapidly moving coordinates Φ−t/ε(x) which is the flow
associated with the mean field b̄(x) of the locally periodic fluid field b(x, y). A
novelty of our method is the introduction of the fast time variable τ := t/ε. The
main assumption in this work is on the Jacobian matrix J(τ, x) associated with
the flow Φτ (x).

Assumption: There is a uniform constant C such that |J(τ, x)| ≤ C for all
(τ, x) ∈ R× Rd.

The above assumption is trivially satisfied in all the previously known works on
the homogenization of (9.1.1) because the Jacobian matrix associated with the
flows in all these works is the identity.

Under this assumption, we derive a homogenized diffusion equation for the zeroth
order approximation u0 in (9.1.4) with an explicit expression for the effective
diffusion coefficient. The diffusion equation for u0 is in Lagrangian coordinates
because of the structure of the asymptotic expansion. The effect of Lagrangian
stretching on the gradient of the scalar density uε, i.e. creating large gradients
has been widely studied in the literature in the case of non-oscillating coefficients
(see for e.g. [83, 21, 40, 79]). If the above assumption is not made on the Jacobian
matrix, we cannot expect a nontrivial limit as the large gradients can drive the
solution to zero quickly. The mathematical model considered in this article is one
of the simplified models for turbulent diffusion studied widely in the physics and
mathematics literature – for further details consult [137, Section 2].
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Taking inspiration from the work of Marušić-Paloka and Piatnitski [140], we
devise a weak convergence approach which involves the characterization of the
limit

lim
ε→0

∫∫
(0,T )×Rd

uε(t, x)ψ
(
t,Φ−t/ε(x), t

ε
,
x

ε

)
dx dt

with a uniformly bounded family {uε} in some Lp space (1 < p < +∞) and the
test function ψ(t, τ, x, y) being periodic in the y variable and belongs to an ergodic
algebra with mean value in the τ variable. We call this notion of convergence weak
Σ-convergence along flows.

To use this new notion of convergence, our strategy is to use test functions of the
form ψ

(
t,Φ−t/ε(x), t

ε
, x
ε

)
in the weak formulation of the scaled problem (9.1.1).

This weak formulation would have terms involving the Jacobian matrix associated
with the flow Φ−t/ε(x). Note that the Jacobian matrix depends on the fast time
variable, i.e. appears as J

(
t
ε
, x
)
, because of the chosen time scale in the flow.

Our strategy, hence, is to consider test functions that belong to some ergodic
algebra in the fast time variable τ .

Inspired by the notion of admissible functions introduced by G. Allaire in [1] and
further clarified by M. Radu in her PhD thesis [169], we introduce a notion of
admissible functions adapted to the weak Σ-convergence along flows (see Defini-
tion 9.3.8). Another novelty of our approach is to consider the flow-representation
of functions (see Section 9.2.2 for precise definition). Our main result is to show
that if the flow-representations of the fluid field b(x, y), the diffusion matrix
D(x, y), the Jacobian matrix J(τ, x) are admissible, then we can derive the ef-
fective limit diffusion equation. These assumptions on the coefficients and the
Jacobian matrix are very essential for our analysis as is evident from the coun-
terexamples that are constructed in Section 9.5 of this chapter.

The main homogenization result of this article is Theorem 9.4.1. We summa-
rize this result below (consult Theorem 9.4.1 in Section 9.4 for precise state-
ment).

Theorem. Let Φτ (x) be the flow associated with the mean field b̄(x). Suppose
the associated Jacobian matrix J(τ, x) is a uniformly bounded function of τ and
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x variables. Let the flow-representations of the coefficients in (9.1.1) and that
of the Jacobian matrix belong to certain ergodic algebra with mean value. Then
the solution family uε(t, x) weakly Σ-converges along the flow Φτ to the unique
solution of the homogenized equation

∂u0

∂t
−∇X ·

(
D(X)∇Xu0

)
= 0

where the effective diffusion matrix D(X) is given in terms of certain averages of
solutions to cell problems and the averages are taken along the orbits of the mean
flow.

Outline of the chapter:

• In Section 9.2, we introduce the method of multiple scale asymptotic expan-
sions along mean flows to derive the effective equation for the scaled equa-
tion (9.2.4a)-(9.2.4b). This result is recorded as Proposition 9.2.1 which
gives an explicit expression for the effective diffusion matrix.

• Section 9.3 introduces the new notion of weak multiple scale convergence. In
Subsections 9.3.1 through 9.3.5, we recall enough of the theory of algebras
with mean value. The notion of Σ-convergence along flows is introduced
in Section 9.3.6. The main compactness result with regard to this new
notion of convergence is given by Theorem 9.3.2. In Section 9.3.8, we obtain
compactness results on the gradient sequences (in the sense of corrector
results in homogenization).

• Section 9.4 deals with the homogenization result. The main result of this
section is Theorem 9.4.1. The main assumptions made on the coefficients
and the Jacobian matrix are explained in Section 9.4.2.

• Section 9.5 provides some discussion on the assumptions made on the coef-
ficients and the Jacobian matrix. In particular, we give some examples of
fluid fields with bounded Jacobians and show that unbounded growth in the
Jacobian matrix can lead to trivial and singular behaviour of the limit u0.
We also provide an explicit example of an equation, where the assumptions
on the flow-representation of the coefficients do not hold, leading to two
different homogenized equations in the ε→ 0 limit.
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• In Section 9.6, we perform asymptotic analysis on some explicit convection-
diffusion models which highlights the effectiveness of this new approach in
addressing the large convection terms. Finally, in Section 9.7, we give some
concluding remarks.

9.2 Asymptotic expansion along flows

9.2.1 Mathematical model

Let b(x, y) : Rd × Td → Rd be a prescribed time-independent fluid field which is
incompressible in both the x and y variables, i.e.

∇x · b(x, y) = ∇y · b(x, y) = 0 for a.e. (x, y) ∈ Rd × Td. (9.2.1)

Define the associated mean field as

b̄(x) :=
∫
Td

b(x, y) dy. (9.2.2)

Notation: For any matrix B, its transpose is denoted by >B.

Let D(x, y) ∈ L∞(Rd × Td;Rd×d) be a given time-independent symmetric (i.e.
D = >D) matrix-valued diffusion coefficient which is assumed to be uniformly
coercive, i.e.

∃λ,Λ > 0 s.t. λ|ξ|2 ≤ >ξD(x, y) ξ ≤ Λ|ξ|2,

holds for all ξ ∈ Rd and for a.e. (x, y) ∈ Rd × Td.
(9.2.3)

Let 0 < ε� 1 be the scale of heterogeneity. Let us consider a scaled Cauchy prob-
lem with rapidly oscillating coefficients for an unknown scalar density uε(t, x) :
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[0, T [×Rd → [0,∞).

∂uε

∂t
+ 1
ε
b
(
x,
x

ε

)
· ∇uε −∇ ·

(
D
(
x,
x

ε

)
∇uε

)
= 0 for (t, x) ∈ ]0, T [×Rd,

(9.2.4a)

uε(0, x) = uin(x) for x ∈ Rd.
(9.2.4b)

The two-scale expansions with drift method (see [140, 50, 6, 2, 5, 3]) employs the
asymptotic expansion for the unknown density:

uε(t, x) =
∞∑
i=0

εiui

(
t, x− b∗t

ε
,
x

ε

)
, (9.2.5)

where the drift velocity b∗ ∈ Rd is a constant and the coefficient functions
ui(t, x, y) are assumed to be periodic in the y variable. Remark that the co-
efficient functions ui in (9.2.5) are written in moving coordinates. To be precise,
consider the ordinary differential equation

Ẋ = b∗; X(0) = x. (9.2.6)

Denote by Φτ (x) the flow associated with (9.2.6). The flow evaluated at the time
instant (−t/ε) is nothing but the moving coordinates taken in the asymptotic
expansion (9.2.5), i.e.

Φ−t/ε(x) = x− b∗t
ε
.

The idea of considering the asymptotic expansion along moving coordinates was
mentioned by G. Papanicolaou in a survey paper [166]. It should be noted that
the two-scale expansions with drift method can handle the homogenization of
convection-diffusion equation (9.2.4a) only when the fluid field is purely periodic,
i.e. b(x, y) ≡ b(y). In that case, the constant drift velocity is taken to be

b∗ =
∫
Td

b(y) dy.
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Taking cues from the constant drift scenario, consider the autonomous system

Ẋ = b̄(X); X(0) = x. (9.2.7)

Again, denoting the flow associated with (9.2.7) by Φτ (x), we postulate the
asymptotic expansion in the spirit of (9.2.5):

uε(t, x) =
∞∑
i=0

εiui

(
t,
t

ε
,Φ−t/ε(x), x

ε

)
. (9.2.8)

Note that the coefficient functions ui(t, τ,X, y) in (9.2.8) depend on an additional
variable τ which we shall call the fast time variable. We assume that the coefficient
functions ui(t, τ,X, y) are periodic in the y variable. The structural assumption
on the coefficients ui(t, τ,X, y) with regard to the τ variable is a little bit subtle.
We shall assume that the coefficient functions, as a function of τ , belong to an
ergodic algebra with mean value. This shall guarantee the existence of certain
weak* limits. This will be made more rigorous in a later stage of the article
(see Section 9.3). The authors of [26] also introduced a fast time variable in
their asymptotic expansion. However, they do not consider the expansion along
moving coordinates as is the case in (9.2.8). Also, the authors of [26] assume that
the coefficient functions decay exponentially in the fast time variable.

9.2.2 Flow representation

We introduce a notion of flow representation that is very central to our analysis.
The choice of considering rapidly moving coordinates in the expansion (9.2.8) is
equivalent to expressing the convection-diffusion equation (9.2.4a) in Lagrangian
coordinates. This necessitates the consideration of the coefficient functions in the
convection-diffusion equation in Lagrangian coordinates. Essentially, the flow
representation takes into account the underlying flow structure associated with
the mean field b̄(x).

To be precise, consider a function f : Rd → R and a flow Φτ (x) : R × Rd → Rd.
The flow representation of f is given by the function f̃ : R × Rd → R defined
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as

f̃(τ, x) := f(Φτ (x)).

We shall use the following convention for their flow representations when we
encounter locally periodic functions, i.e. functions of the form f(x, y) : Rd×Td →
R

f̃(τ, x, y) := f(Φτ (x), y).

The following observations are obvious for the flow representations:

f̃(0, x) = f(x);

f̃(τ,Φτ ′(x)) = f(Φτ+τ ′(x)) for any τ, τ ′ ∈ R;

f̃(τ,X) = f(x) with the convention X := Φ−τ (x).

When we encounter vector-valued functions, it should be noted that their flow
representations are taken component-wise. It should also be noted that the flow
Φτ used in giving the flow representation of a function can be any one-parameter
group of transformation and need not be associated with any vector field.

Remark 9.2.1. The one parameter group U τ defined by (U τf)(x) := f̃(τ, x)
is generated (at least formally, i.e. without regard to functional spaces) by the
skew-symmetric operator b̄(x) · ∇.

9.2.3 Flows associated with vector fields

Let J(τ, x) denote the Jacobian matrix of the flow Φτ generated by (9.2.7), i.e.

J(−τ, x) =


∂Φ1

τ

∂x1
· · · ∂Φ1

τ

∂xd... ...
∂Φdτ
∂x1

· · · ∂Φdτ
∂xd

 =
(
∂Φi

τ

∂xj

)d
i,j=1

. (9.2.9)

We have used the convention that J(τ, x) is the Jacobian of the backwards flow
Φ−τ (x) to ease notation as it is this that appears throughout. The flow represen-
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tation of the Jacobian matrix function J : R× Rd → Rd×d is defined by

J̃(τ,Φ−τ (x)) = J̃(τ,X) = J(τ, x).

In order to ensure the validity of the proposed asymptotic expansion (9.2.8) we
make the assumption of uniform boundedness on the Jacobian matrix:

Assumption 9.2.1. There is a constant C such that |J(τ, x)| ≤ C for all τ ∈ R
and x ∈ Rd.

To finish this subsection we record some facts regarding the change of variables.
Although these are well known, we provide a proof in Appendix 9.A for the
convenience of the reader.

Lemma 9.2.1. Let b̄ ∈ C1(Rd), then the following hold:

(i) ∇X · >J̃(τ,X) = 0 in the sense of distributions.

(ii) ∇X ·
(
J̃(τ,X)f̃(τ,X, y)

)
= 0 in the sense of distributions, for any vector field

f(x, y) which is of null-divergence in the x variable, i.e. ∇x · f(x, y) = 0.

(iii) For any φ, ϕ ∈ C∞c (Rd;R) we have the integration by parts formula:
∫
Rd

φ(X)
(
>J̃(τ,X)∇Xϕ(X)

)
dX = −

∫
Rd

ϕ(X)
(
>J̃(τ,X)∇Xφ(X)

)
dX.

(iv) For any τ ∈ R and x ∈ Rd it holds that

b̄(X) = b̄ (Φ−τ (x)) = J(τ, x)b̄(x) = J̃(τ,X) ˜̄b(τ,X). (9.2.10)

9.2.4 Multiple scale expansion along mean flows

We present a strategy to formally arrive at an effective equation for (9.2.4a)-
(9.2.4b) by using the asymptotic expansion (9.2.8) postulated earlier. In the case
of constant drift (9.2.5), we have the following chain rules for differentiating the
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coefficient functions in the space and times variables:

∇x

(
ui

(
t, x− b∗t

ε
,
x

ε

))
= ∇xui

(
t, x− b∗t

ε
,
x

ε

)
+ 1
ε
∇yui

(
t, x− b∗t

ε
,
x

ε

)
,

∂

∂t

(
ui

(
t, x− b∗t

ε
,
x

ε

))
= ∂ui

∂t

(
t, x− b∗t

ε
,
x

ε

)
− 1
ε
b∗ · ∇xui

(
t, x− b∗t

ε
,
x

ε

)
.

Remark that the above simple expression for the derivative is because of the
Jacobian matrix being the identity for the change of variables:

x 7→ x− b∗t
ε
.

However, for the change of variables

x 7→ Φ−t/ε(x)

where the flow Φτ is associated with (9.2.7), the associated chain rules for differen-
tiating the coefficient functions in the asymptotic expansion (9.2.8) with respect
to the space and time variables shall be

∇x

(
ui

(
t,
t

ε
,Φ−t/ε(x), x

ε

))
= >J̃

(
t

ε
,Φ−t/ε(x)

)
∇Xui

(
t,
t

ε
,Φ−t/ε(x), x

ε

)

+1
ε
∇yui

(
t,
t

ε
,Φ−t/ε(x), x

ε

)
,

∂

∂t

(
ui

(
t,
t

ε
,Φ−t/ε(x), x

ε

))
= ∂ui

∂t

(
t,
t

ε
,Φ−t/ε(x), x

ε

)
+ 1
ε

∂ui
∂τ

(
t,
t

ε
,Φ−t/ε(x), x

ε

)

−1
ε
b̄
(
Φ−t/ε(x)

)
· ∇Xui

(
t,
t

ε
,Φ−t/ε(x), x

ε

)
.

The strategy of any asymptotic expansion method in homogenization is to sub-
stitute the postulated expansion into the model equation and solve a cascade of
equations for obtaining the coefficient functions in the asymptotic expansion. All
the equations in this cascade obtained by this approach have a similar structure.
Next, we state a standard Fredholm type result which guarantees the solvability of
such equations provided the source terms satisfy a compatibility condition.

Lemma 9.2.2. Let x ∈ Rd be a fixed parameter. Suppose g(x, ·) ∈ L2(Td) be the
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source term in the boundary value problem:

b(x, y) · ∇yf −∇y · (D(x, y)∇yf) = g(x, y) in Td. (9.2.11)

Then there exists a unique solution f ∈ H1(Td)/R := {f ∈ H1(Td) :
∫
Td f dy = 0}

to (9.2.11) if and only if the source term satisfies
∫
Td

g(x, y) dy = 0. (9.2.12)

Next, we record a formal result on the homogenized equation for the scaled equa-
tion with rapidly oscillating coefficients (9.2.4a)-(9.2.4b).

Proposition 9.2.1 (formal result). Under Assumption 9.2.1 and the assumption
(9.2.8), the solution to the Cauchy problem (9.2.4a)-(9.2.4b) formally satisfies

uε(t, x) ≈ u0
(
t,Φ−t/ε(x)

)
+ εu1

(
t,
t

ε
,Φ−t/ε(x), x

ε

)
(9.2.13)

where the first order corrector u1 can be written as

u1(t,X, τ, y) = ω̃(τ,X, y) · >J̃(τ,X)∇Xu0(t,X) (9.2.14)

and the zeroth order term u0 satisfies the homogenized diffusion equation

∂u0

∂t
= ∇X ·

(
D(X)∇Xu0

)
for (t,X) ∈ ]0, T [×Rd, (9.2.15a)

u0(0,X) = uin(X) for X ∈ Rd. (9.2.15b)

The effective diffusion coefficient is given by

D(X) = lim
`→∞

1
2`

+`∫
−`

J̃(τ,X)B(τ,X)>J̃(τ,X) dτ, (9.2.16)
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where the elements of the matrix B are given by

Bij(τ,X) =
∫
Td

D̃(τ,X, y)
(
∇yω̃j(τ,X, y) + ej

)
·
(
∇yω̃i(τ,X, y) + ei

)
dy

+
∫
Td

(
b̃(τ,X, y) · ∇yω̃i(τ,X, y)

)
ω̃j(τ,X, y) dy

+
∫
Td

D̃(τ,X, y)∇yω̃j(τ,X, y) · ei dy −
∫
Td

D̃(τ,X, y)∇yω̃i(τ,X, y) · ej dy

(9.2.17)
for i, j ∈ {1, · · · , d}. Furthermore, the components of ω satisfy the cell problem

b(x, y) ·
(
∇yωi + ei

)
−∇y ·

(
D(x, y)

(
∇yωi + ei

))
= b̄(x) · ei in Td,

(9.2.18)

for each i ∈ {1, · · · , d} and with the standard canonical basis (ei)1≤i≤d in Rd.

Remark 9.2.2. Even though we postulate an infinite sum in the asymptotic ex-
pansion (9.2.8), we compute only the zeroth and first order coefficients as in
(9.2.13). Our goal is to obtain an evolution equation for the zeroth order approxi-
mation, i.e. the homogenized equation (9.2.15a). For this purpose, the first order
approximation (9.2.13) suffices. Continuing the expansion for higher order coeffi-
cients in the asymptotic expansion (9.2.8) in the spirit of the theory of matching
asymptotics is out of the scope of this present article.

Remark 9.2.3. The dispersion effects are evident from the expression (9.2.16)
of the effective diffusion in the homogenized equation, i.e. the effective diffu-
sion coefficients depend on the convective velocity. This is because of the strong
convection in the scaled convection-diffusion equation (9.2.4a).

Remark 9.2.4. The cell problem (9.2.18) in Proposition 9.2.1 is given in fixed
spatial coordinate, i.e. ω ≡ ω(x, y). As our analysis essentially considers the
asymptotic expansion in moving coordinates along flows, we can recast the cell
problem (9.2.18) along flows, i.e. for the flow representation of the cell solutions
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ω̃(τ,X, y):

b̃(τ,X, y) ·
(
∇yω̃i(τ,X, y) + ei

)
−∇y ·

(
D̃(τ,X, y) (∇yω̃i(τ,X, y) + ei)

)
= ˜̄b(τ,X) · ei.

(9.2.19)

The above problem is posed on Td. The spatial variable X and the fast time
variable τ are treated as parameters.

Remark 9.2.5. Even though the molecular diffusion matrix D(x, y) is assumed
to be symmetric, the effective diffusion matrix in the homogenized matrix is not
symmetric as is evident from the expression (9.2.17) for B(τ,X). The symmetric
part of B is given by

Bsym
ij =

∫
Td

D̃(τ,X, y)
(
∇yω̃j(τ,X, y) + ej

)
·
(
∇yω̃i(τ,X, y) + ei

)
dy

and the skew-symmetric part of the matrix B is given by

Basym
ij =

∫
Td

ω̃j(τ,X, y)
(˜̄b(τ,X)− b̃(τ,X, y)

)
· ei dy

−
∫
Td

D̃(τ,X, y)∇yω̃i(τ,X, y) ·
(
∇yω̃j(τ,X, y) + ej

)
dy,

where we have used the cell problem for flow representations (9.2.19) to arrive at
the above simplified expression for the skew-symmetric part. The contribution of
the non-symmetric part of the effective diffusion to the dynamics of the homoge-
nized equation (9.2.15a) is because of the fact that the effective diffusion coefficient
D is space dependent. In a purely periodic setting, i.e. when b(x, y) ≡ b(y) and
D(x, y) ≡ D(y), the skew-symmetric part of the effective diffusion matrix does
not contribute to the dynamics of the homogenized equation.

Remark 9.2.6. The expression (9.2.16) for the effective diffusion involves the
averaging in the fast time variable. In this section dealing with formal derivation
of the homogenized limit, we admit that the limits in the expression of the effective
diffusion exist and are finite. In Section 9.3, we introduce a notion of weak con-
vergence in some Lebesgue function spaces which proves that these limits indeed
exist and are finite under certain assumptions on the coefficients. Note that some
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of these assumptions are required: in Counterexample 9.5.2 in Section 9.5, we
provide an explicit example where these limits do not exist, and in fact multiple
limit equations can be obtained on different sequences ε→ 0.

Remark 9.2.7. An interesting feature in the expression (9.2.16) is that the in-
tegrands are all in their flow representations. This suggests that the effective
diffusion is the cumulative effect of the convection and diffusion effects averaged
along the flows.

Proof of Proposition 9.2.1. The equations at different orders of ε obtained by
inserting the asymptotic expansion (9.2.8) in the scaled equation (9.2.4a) are

O(ε−2) : b̃ · ∇yu0 −∇y ·
(
D̃∇yu0

)
= 0,

O(ε−1) : b̃ · ∇yu1 −∇y ·
(
D̃∇yu1

)
= ∇y ·

(
D̃>J̃∇Xu0

)
+ >J̃∇X ·

(
D̃∇yu0

)
+
(˜̄b− b̃

)
·
(
>J̃∇Xu0

)
− ∂u0

∂τ
,

O(ε0) : b̃ · ∇yu2 −∇y ·
(
D̃∇yu2

)
= −∂u0

∂t
− ∂u1

∂τ
+
(˜̄b− b̃

)
·
(
>J̃∇Xu1

)
+>J̃∇X ·

(
D̃
(
>J̃∇Xu0 +∇yu1

))
+∇y ·

(
D̃>J̃∇Xu1

)
,

(9.2.20)
where the flow representation of the Jacobian matrix and coefficients are used.
Note that the relation (9.2.10) is needed, for example, to show the right hand
side of the O(ε−2) equation is zero. We remark that all the equations in (9.2.20)
have the same structure as the boundary value problem (9.2.11) addressed in
Lemma 9.2.2 which says that the solvability of these equations is subject to
satisfying the compatibility condition (9.2.12).

The compatibility condition (9.2.12) is trivially satisfied for the equation ofO(ε−2)
in (9.2.20). Further, the equation of O(ε−2) in (9.2.20) implies that u0 is inde-
pendent of y, i.e.

u0(t, τ,X, y) ≡ u0(t, τ,X).

So the term involving ∇yu0 in the equation of O(ε−1) vanishes. To check if the
right hand side of the equation of O(ε−1) in (9.2.20) satisfies the compatibility
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condition (9.2.12), consider
∫
Td

∇y·
(
D̃(τ,X, y)>J̃∇Xu0

)
dy

+
∫
Td

(˜̄b(τ,X)− b̃(τ,X, y)
)
·
(
>J̃∇Xu0

)
dy −

∫
Td

∂u0

∂τ
dy.

The first integral in the previous expression vanishes by integration by parts.
The second integral in the previous expression vanishes as well, thanks to the
definition (9.2.2) of the mean field b̄(x), and as neither J nor u0 depend upon y.
In the third integral, since u0 is independent of the y variable, in order to satisfy
the compatibility condition, we should have that u0 is independent of the fast
time variable. Hence we have u0(t, τ,X, y) ≡ u0(t,X).

The linearity of equations in (9.2.20) implies that we can separate the variables
in the first order corrector as in (9.2.14). The function ω̃(τ,X, y) is the flow
representation of the function ω = (ωi)1≤i≤d whose components solve the cell
problem (9.2.19) (see Remark 9.2.4).

Finally, we write the compatibility condition for the equation of O(ε0) in (9.2.20):

∫
Td

∂u0

∂t
dy +

∫
Td

∂u1

∂τ
dy

=
∫
Td

(˜̄b(τ,X)− b̃(τ,X, y)
)
·
(
>J̃∇Xu1

)
dy

+
∫
Td

>J̃∇X ·
(
D̃(τ,X, y)

(
>J̃∇Xu0 +∇yu1

))
dy.

The previous expression contains terms that depend on the fast time variable τ .
We propose to average the above equation in the τ variable. The left hand side
becomes:

∂u0

∂t
+ lim

`→∞

1
2`

+`∫
−`

∫
Td

∂u1

∂τ
dy dτ, (9.2.21)

366



and the right hand side averages to

lim
`→∞

1
2`

+`∫
−`

∫
Td

(˜̄b(τ,X)− b̃(τ,X, y)
)
·
(
>J̃(τ,X)∇Xu1

)
dy dτ

+ lim
`→∞

1
2`

+`∫
−`

∫
Td

>J̃(τ,X)∇X ·
(
D̃(τ,X, y)

(
>J̃(τ,X)∇Xu0

))
dy dτ

+ lim
`→∞

1
2`

+`∫
−`

∫
Td

>J̃(τ,X)∇X ·
(
D̃(τ,X, y)∇yu1

)
dy dτ.

(9.2.22)

The second term on in (9.2.21) is zero. The first term in (9.2.22) can be succes-
sively written as

lim
`→∞

1
2`

+`∫
−`

∫
Td

(˜̄b(τ,X)− b̃(τ,X, y)
)
·
(
>J̃(τ,X)∇Xu1

)
dy dτ

= lim
`→∞

1
2`

+`∫
−`

∫
Td

J̃(τ,X)
(˜̄b(τ,X)− b̃(τ,X, y)

)

· ∇X

(
ω̃(τ,X, y) · >J̃(τ,X)∇Xu0(t,X)

)
dy dτ

which is equal to

∇X · lim
`→∞

1
2`

+`∫
−`

∫
Td

J̃(τ,X)
(˜̄b(τ,X)− b̃(τ,X, y)

)
>ω̃(τ,X, y)>J̃(τ,X)∇Xu0(t,X) dy dτ,

where we are able to move the X derivative thanks to Lemma 9.2.1.(ii). The
second term in (9.2.22) evaluates to

lim
`→∞

1
2`

+`∫
−`

∫
Td

>J̃(τ,X)∇X ·
(
D̃(τ,X, y)

(
>J̃(τ,X)∇Xu0

))
dy dτ

= ∇X · lim
`→∞

1
2`

+`∫
−`

∫
Td

J̃(τ,X)D̃(τ,X, y)>J̃(τ,X)∇Xu0 dy dτ.
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The third term in (9.2.22) can be successively written as

lim
`→∞

1
2`

+`∫
−`

∫
Td

>J̃(τ,X)∇X ·
(
D̃(τ,X, y)∇yu1

)
dy dτ

= ∇X · lim
`→∞

1
2`

+`∫
−`

∫
Td

J̃(τ,X)D̃(τ,X, y)∇y

(
ω̃(τ,X, y) · >J̃(τ,X)∇Xu0(t,X)

)
dy dτ

= ∇X · lim
`→∞

1
2`

+`∫
−`

∫
Td

J̃(τ,X)D̃(τ,X, y)>∇yω̃(τ,X, y)>J̃(τ,X)∇Xu0(t,X) dy dτ.

Again, we are allowed to move the X derivative past the Jacobian because of
Lemma 9.2.1.(i). Considering all the above observations, the compatibility con-
dition (9.2.21)=(9.2.22) can be rewritten as a diffusion equation for u0(t,X), i.e.
(9.2.15a)-(9.2.15b). The expression of the effective diffusion coefficient is given
by

D(X) = lim
`→∞

1
2`

+`∫
−`

∫
Td

J̃(τ,X)
(˜̄b(τ,X)− b̃(τ,X, y)

)
>ω̃(τ,X, y)>J̃(τ,X) dy dτ

+ lim
`→∞

1
2`

+`∫
−`

∫
Td

J̃(τ,X)D̃(τ,X, y)>J̃(τ,X) dy dτ

+ lim
`→∞

1
2`

+`∫
−`

∫
Td

J̃(τ,X)D̃(τ,X, y)>∇yω̃(τ,X, y)>J̃(τ,X) dy dτ.

Moving the y integration inside, the expression for the effective diffusion becomes

D(X) =

lim
`→∞

1
2`

+`∫
−`

J̃(τ,X)

∫
Td

(˜̄b(τ,X)− b̃(τ,X, y)
)
>ω̃(τ,X, y) dy

 >J̃(τ,X) dτ

+ lim
`→∞

1
2`

+`∫
−`

J̃(τ,X)

∫
Td

{
D̃(τ,X, y) + D̃(τ,X, y)>∇yω̃(τ,X, y)

}
dy

 >J̃(τ,X) dτ

= lim
`→∞

1
2`

+`∫
−`

J̃(τ,X)B(τ,X)>J̃(τ,X) dτ,
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where the elements of B are given by

Bij(τ,X) =
∫
Td

{(˜̄bi(τ,X)− b̃i(τ,X, y)
)
ω̃j(τ,X, y) + D̃ij(τ,X, y)

+ D̃(τ,X, y)∇yω̃j(τ,X, y) · ei
}

dy

for each i, j ∈ {1, · · · , d}. To simplify the expression for the matrix B, we test
the equation (9.2.19) for the flow-representation ω̃i by ω̃j and deduce

∫
Td

(˜̄bi(τ,X)− b̃i(τ,X, y)
)
ω̃j(τ,X, y) dy =

∫
Td

(
b̃(τ,X, y) · ∇yω̃i(τ,X, y)

)
ω̃j(τ,X, y) dy

+
∫
Td

D̃(τ,X, y)∇yω̃j(τ,X, y) · ∇yω̃i(τ,X, y) dy

+
∫
Td

D̃(τ,X, y)∇yω̃j(τ,X, y) · ei dy.

Using the above equation, we can rewrite the elements of the matrix B as in
(9.2.17).

Remark 9.2.8. The solution ωi to the cell problem (9.2.18) is unique up to
addition of constants in the y-variable, i.e. up to addition of a function η(t, τ,X).
However, any such function would not contribute to the expression of the effective
diffusion. It is evident from the equation (9.2.21)-(9.2.22). So, for our purposes
at hand, we shall not dwell on characterizing η(t, τ,X). It should be noted that the
first order corrector obtained in (9.2.13) essentially is considering the oscillations
in the space variable. We have not characterized the first order corrector with
regard to the fast time variable. This shall be the focus of future publications.

Proposition 9.2.2. The homogenized equation (9.2.15a)-(9.2.15b) has a unique
solution such that

u0(t,X) ∈ C([0, T ];L2(Rd)); ∇Xu0(t,X) ∈ [L2((0, T )× Rd)]d.
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Proof. The elements of the symmetric part of the matrix B are given by

Bsym
ij (τ,X) =

∫
Td

D̃(τ,X, y)
(
∇yω̃j(τ,X, y) + ej

)
·
(
∇yω̃i(τ,X, y) + ei

)
dy.

It is positive definite because, for all ξ ∈ Rd we have

>ξBsym ξ ≥ λ
∫
Td

|∇yω̃ξ + ξ|2 dy = λ
∫
Td

|∇ω̃ξ|2 + 2ξ · ∇yω̃ξ + |ξ|2 dy ≥ λ|ξ|2,

where ω̃ξ := ω̃ · ξ, and the last inequality follows from the vanishing of the second
of the three terms in the integrand due to y-periodicity of ω̃.

Take the effective diffusion matrix D and consider, for ξ 6= 0,

>ξD ξ = lim
`→∞

1
2`

+`∫
−`

>ξJ̃(τ,X)B(τ,X)>J̃(τ,X) ξ dτ

= lim
`→∞

1
2`

+`∫
−`

>
[
>J̃(τ,X) ξ

]
B(τ,X)>J̃(τ,X) ξ dτ

≥ λ lim
`→∞

1
2`

+`∫
−`

∣∣∣>J̃(τ,X)ξ
∣∣∣2 dτ ≥ Cλ|ξ|2 > 0.

This holds, thanks firstly to the positive definite property of the matrix B, and
secondly to uniform bounds from below on the Jacobian matrix, i.e.

C−1|ξ| = C−1|J(τ, x)−1J(τ, x)ξ|

= C−1|J(−τ,Φ−τ (x))J(τ, x)ξ| ≤ |J(τ, x)ξ| ≤ C|ξ|

for the uniform constant C given by Assumption 9.2.1, and where we have used
that the flow is autonomous to express the inverse of the Jacobian in terms of the
Jacobian at a different point. Thus we have shown that the effective diffusion co-
efficient D(X) is positive definite. On the other hand, D(X) is uniformly bounded
from above. Then, it is a standard process to prove existence and uniqueness for
(9.2.15a)-(9.2.15b) (cf. [118] if necessary).
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9.3 Σ-convergence along flows

This section puts forth a new notion of convergence in Lp-spaces (with 1 < p <

∞) which gives a rigorous justification of (at least) the first two terms in the
asymptotic expansion along mean flows (9.2.8) postulated in Section 9.2, i.e. to
justify the approximation (9.2.13) in Proposition 9.2.1. This work is inspired from
the seminal works of G. Nguetseng [154] and G. Allaire [1]. In Section 9.2, we
have formally derived the homogenized limit and obtained an explicit expression
for the effective diffusion (9.2.16). As mentioned in Remark 9.2.6, there was
an inherent assumption that the limits in the fast time variable exist and are
finite.

The works [154, 1] are in the context of periodic homogenization. G. Allaire does
mention in [1] that it would be interesting to extend the two-scale convergence
theory from the periodic setting to the more general almost-periodic setting (see
p.1484 in [1]). This has been addressed in the past one and a half decade [35,
155, 156, 158, 176]. In all these new developments, a central role is played by
the notion of algebra with mean value introduced by Zhikov and Krivenko in
[206].

In this section we present the abstract framework of Σ-convergence along flows.
In subsections 9.3.1-9.3.5 we develop enough of the theory of algebras with mean
value for our later purposes. As we do not aim to extend this theory beyond
what already exists, we shall not give the theory in full generality and we refer
the reader to existing literature (e.g. [35, 155, 156, 157, 176, 8], see also [67]
for an introductory exposition and [205] for a pedagogical exposition) for a more
complete presentation and full proofs. In subsections 9.3.6-9.3.8 we introduce the
new concept of Σ-convergence along flows and prove compactness results.

9.3.1 Algebras with mean value

We shall denote the space of bounded uniformly continuous functions on R by
BUC(R).

Definition 9.3.1 (Algebra with mean value). An algebra with mean value (or
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algebra w.m.v., in short) is a Banach sub-algebra A of BUC(R) such that the
following hold:

(i) A contains the constants.

(ii) A is translation invariant, i.e. for every f ∈ A and a ∈ R, f(· − a) ∈ A.

(iii) Any f ∈ A possesses a mean value M(f), by which we mean that

f
( ·
ε

)
⇀M(f) in L∞(R)-weak* as ε→ 0.

Note that the mean value can be equivalently expressed as

M(f) = lim
`→∞

1
2`

+`∫
−`

f(τ) dτ

and that this limit exists for any f ∈ A.

The theory of algebra w.m.v. is developed for the Banach space of bounded
uniformly continuous functions on Rd, i.e. in any arbitrary dimension. As this
current work considers a fast time variable (i.e. in one dimension), we recall all
the essential notions in this theory with emphasis on one dimension.

9.3.2 Gelfand representation theory

Definition 9.3.2 (Spectrum of a Banach algebra). Given a commutative Banach
algebra A with an identity 1 ∈ A, we define its spectrum ∆(A) as the set of
algebra homeomorphisms, i.e. the maps s : A → C such that

1. s is linear, i.e. for all f, g ∈ A, λ ∈ C, s(f + g) = s(f) + s(g) and
s(λf) = λs(f),

2. s is multiplicative, i.e. for all f, g ∈ A, s(fg) = s(f)s(g),

3. s preserves the identity, i.e. s(1) = 1.

The elements s ∈ ∆(A) are called the characters of A.
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As ∆(A) ⊂ A′, the topological dual ofA, we equip ∆(A) with the weak* subspace
topology induced by A′. This makes ∆(A) a compact Hausdorff space by the
Banach-Alaoglu theorem.

Of central importance to the study of Banach algebras is the Gelfand transform.
We denote by C(∆(A)), the space of complex-valued continuous functions on
∆(A).

Definition 9.3.3 (Gelfand transform). The Gelfand transform is the map G :
A → C(∆(A)) defined by G(f)(s) = s(f).

Notation: For brevity, we denote G(f) as f̂ .

The importance of the spectrum and Gelfand transform is in the following result,
which allows us to replace the analysis of functions in C(R) with functions on a
compact space.

Theorem 9.3.1 (Gelfand-Naimark). Let A be a C∗ algebra. Then G is an iso-
metric isomorphism of A into C(∆(A)).

The mean value operatorM is a bounded linear functional onA. By identifyingA
with C(∆(A)) using the Gelfand transform, and applying the Riesz representation
theorem we arrive at the following proposition, the observation of which forms
the basis of Nguetseng’s formalism of Homogenization Structures [155, 156].

Proposition 9.3.1. Let A be an algebra w.m.v.. Then the mean value operator
M is represented by a Radon probability measure β on ∆(A), i.e. for all f ∈ A
we have:

M(f) =
∫

∆(A)

f̂(s) dβ(s). (9.3.1)

This allows us to introduce the space L2(∆(A)) := L2(∆(A), dβ). It follows from
Definition 9.3.1(iii) that β is invariant under the action of translation operator
f(·) 7→ f(· + t) for any t ∈ R. Note that β may not be supported on the whole
of ∆(A). Indeed, in the Example 9.3.2 below it is a Dirac mass at a single
point.
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9.3.3 Examples of algebras with mean value

To give some intuition for these objects we provide some examples.

Example 9.3.1 (Periodic functions). Let A be the set of continuous functions
from R to C which are periodic with period L. Then the characters s ∈ ∆(A) are
the maps defined by st(f) = f(t) for t ∈ R/(LZ), so that ∆(A) can be identified
with the torus of length L. The Gelfand transform takes f ∈ A ⊂ C(R) to its
representative on the torus. The mean value operator M is given by

M(f) =
∫

∆(A)

f̂(s) dβ(s) = 1
L

L∫
0

f(τ) dτ.

Example 9.3.2 (Functions that converge at infinity). Let A be the space of con-
tinuous functions f : R→ C that converge to a limit at infinity, i.e. lim|τ |→∞ f(τ)
exists. Then the spectrum ∆(A) are the point evaluation maps st(f) = f(t) for
t ∈ R∪{∞}, and the spectrum can be identified with R̄ the one point compactifica-
tion of R. Under this identification, the Gelfand transform takes a function f ∈ A
to a function f̂ : R̄ → C with f̂(t) = f(t) for t ∈ R and f̂(∞) = lim|τ |→∞ f(τ).
The mean value operator M acts by M(f) = f̂(∞).

Example 9.3.3 (Almost-periodic functions). Let T(R) denote the set of all
trigonometric polynomials, i.e. all f(t) that are finite linear combinations of
the functions in the set {

cos(kt), sin(kt) : k ∈ R
}
.

The space of almost-periodic functions in the sense of Bohr [23] is the closure of
T(R) in the supremum norm.

A function f(t) ∈ L2
loc(R) is called almost-periodic in the sense of Besicovitch

if there is a sequence in T(R) that converges to u in the Besicovitch semi-norm
(given by (9.3.3) below).

A function f(t) ∈ BUC(R) is said to be almost-periodic if the set of translates
{
f(· − a) : a ∈ R

}
(9.3.2)
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is relatively compact in BUC(R).

All the above three definitions of almost-periodic functions are equivalent [205].

We also give the example of weakly almost periodic functions due to Eberlein
[53].

Example 9.3.4 (Weakly almost-periodic functions). A function f(t) ∈ BUC(R)
is weakly almost periodic if the set of translates (9.3.2) is relatively weakly compact
in BUC(R).

Readers are to consult [176] for more information on the space of weakly almost-
periodic functions.

9.3.4 Besicovitch spaces

Definition 9.3.4 (Besicovitch space). For an algebra w.m.v. A the corresponding
Besicovitch space B2 = B2

A is the abstract completion of A with respect to the
Besicovitch semi-norm:

‖f‖2
B2
A

= lim sup
`→∞

1
2`

+`∫
−`

|f(τ)|2 dτ. (9.3.3)

Note that the elements of B2 are equivalence classes of functions that are indistin-
guishable under (9.3.3). The mean value operator M extends to a bilinear form
M(fg) on B2

A. It is a standard result (see e.g. [176]) that the Gelfand transform
is an isometric isomorphism between B2 and L2(∆(A)). Note that B2

A inherits
the translation invariance (in the sense of Definition 9.3.1(iii)) from A.

Definition 9.3.5 (Ergodic algebra w.m.v.). An algebra w.m.v. A is said to be
ergodic if any f ∈ B2

A satisfying

‖f(·)− f(· − a)‖B2
A

= 0 for all a ∈ R

is equivalent in B2
A to a constant.

It is easy to see that the constant in Definition 9.3.5 must be M(f).
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Remark 9.3.1. All of the examples of algebras w.m.v. given in Section 9.3.3 are
ergodic.

For our purposes the importance of ergodicity of an algebra w.m.v. is the following
lemma, whose proof may be found in [8].

Lemma 9.3.1. Let A be an ergodic algebra w.m.v. and f ∈ B2
A have the property

that, for any g ∈ A with dg
dτ ∈ A we have:

M

(
f

dg
dτ

)
=

∫
∆(A)

f̂(s) d̂g
dτ (s) dβ(s) = 0

where the first equality is automatic. Then f = M(f) in B2
A and equivalently

f̂ = M(f) β-almost everywhere.

9.3.5 Product algebras and vector valued algebras

We wish to consider continuous functions f(τ, y) for which heuristically ‘f is in
A as a function of τ ’ and ‘f is in C(Td) as a function of y’. To make sense of this,
we recall that the tensor product A⊗ C(Td) is defined by

A⊗ C(Td) :=
{

N∑
i=1

figi : N ∈ N, f1, . . . , fN ∈ A, and g1, . . . , gN ∈ C(Td)
}

and we define A � C(Td) as the closure of A ⊗ C(Td) in the Banach algebra
BUC(R×Td). Note that by construction A⊗C(Td) is dense in A�C(Td). More
discussion of product algebras may be found in [155, 156].

We will often need to use vector valued algebras of functions mapping to Cd. This
poses essentially no additional complications; we refer the reader to e.g. [8] for
details.
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9.3.6 Σ-convergence along flows

Throughout this section we shall consider a flow Φτ (x) : R × Rd → Rd. One
might think of Φτ (x) as the flow of an autonomous ODE

Ẋ = b̄(X),

as was considered in Section 9.2, but this assumption will not be needed in
this section. We will, however, make the following assumptions on the flow
Φτ (x).

Assumption 9.3.1. We assume that the flow Φτ (x) satisfies the following:

(i) Φτ (x) is continuously differentiable from R× Rd to Rd.

(ii) Φτ (x) satisfies the group property, i.e. Φt(Φs(x)) = Φt+s(x) for all t, s ∈ R
and x ∈ Rd.

(iii) The Jacobian J of Φτ (x) defined by (9.2.9) is an uniformly bounded func-
tion of τ , locally uniformly in x, i.e. for any compact K ⊂ Rd we have

sup
x∈K

sup
τ∈R
|J(τ, x)| <∞.

(iv) For any τ ∈ R, Φτ (x) is volume preserving, i.e. det(J(τ, x)) = 1.

We now define the notion of weak Σ-convergence along flows, which generalizes
the notion of two-scale convergence with drift introduced in [140] and also the
notion of Σ-convergence introduced in [155].

Definition 9.3.6 (weak Σ-convergence along flow). Let A be an algebra w.m.v..
Suppose Φτ (x) be a flow satisfying Assumption 9.3.1 and let uε(t, x) be a sequence
in L2((0, T ) × Rd). We say that uε weakly Σ-converges along Φτ (x) to a limit
u0(t,X, s, y) ∈ L2((0, T ) × Rd × ∆(A) × Td) if, for any smooth test function
ψ(t,X, τ, y) which is periodic in the y variable and belongs to A in the τ variable,
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we have

lim
ε→0

∫∫
(0,T )×Rd

uε(t, x)ψ
(
t,Φ−t/ε(x), t

ε
,
x

ε

)
dx dt =

∫∫∫∫
(0,T )×Rd×∆(A)×Td

u0(t,X, s, y)ψ̂(t,X, s, y) dy dβ(s) dX dt,
(9.3.4)

where ψ̂ = G(ψ) is the Gelfand transform of ψ (Definition 9.3.3), β is given by
(9.3.1) and A� C(Td) is defined in Section 9.3.5.

Notation: We denote the weak Σ-convergence along flow Φτ (x) by uε Σ−Φτ−−−−⇀
u0.

Convention: Whenever the limit (9.3.4) holds, we call u0 the Σ-Φτ weak limit
of uε.

Remark 9.3.2. The test functions in (9.3.4) are taken along rapidly moving co-
ordinates in their second variable. This is analogous to the choice of test functions
in the theory of two-scale convergence with drift [140, 2]. Note also that the the
Σ-Φτ weak limit of the family uε(t, x) depends on the choice of the flow Φτ (x). It
should be noted that when Φτ (x) = x for all τ ∈ R and for each x ∈ Rd, i.e. when
the test functions in (9.3.4) are taken on a fixed coordinate system, the weak con-
vergence given in Definition 9.3.6 coincides with the notion of weak Σ-convergence
with regard to the product algebra A� C(Td) developed in [158, 176].

Remark 9.3.3. Definition 9.3.6 makes sense even for test functions ψ(t, x, τ)
without oscillations in space, and in this case the limit u0 will be a function of
(t, x, s) only.

9.3.7 Compactness

To show that the Definition 9.3.6 is not empty, we give the following weak-
compactness result, which is the main result of this section.

Theorem 9.3.2. Let A be an algebra w.m.v.. Suppose Φτ (x) be a flow satisfying
Assumption 9.3.1 and let uε(t, x) be a uniformly (with respect to ε) bounded se-
quence in L2((0, T )×Rd). Then there exists a subsequence (still denoted uε) and
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a limit u0(t,X, s, y) ∈ L2((0, T )× Rd ×∆(A)× Td) such that

uε
Σ−Φτ−−−−⇀ u0

in the sense of Definition 9.3.6.

To prove the above theorem, we will follow the method of Casado-Díaz and Gayte
[35], as we would like to consider algebras which are not separable. To that end,
we will need the following result from [35].

Theorem 9.3.3 (Casado-Díaz and Gayte, Theorem 2.1. [35]). Let X be a sub-
space (not necessarily closed) of a reflexive space Y and let fn : X → R be a
sequence of linear functionals (not necessarily continuous). Assume there exists
a constant C > 0 which satisfies

lim sup
n→∞

|fn(x)| ≤ C‖x‖, ∀x ∈ X.

Then there exists a subsequence nk and a functional f ∈ Y ′ such that

lim
k→∞

fnk(x) = f(x), ∀x ∈ X.

We will also need the following lemma, which is the main novel part of the
proof.

Lemma 9.3.2. Let A be an algebra w.m.v. and let Φτ (x) be a flow satisfying
Assumption 9.3.1. Take ϕ(t,X, τ, y) ∈ L2((0, T )× Rd;A� C(Td)). Then

lim
ε→0

∫∫
(0,T )×Rd

∣∣∣∣ϕ(t,Φ−t/ε(x), t
ε
,
x

ε

)∣∣∣∣2 dx dt =
∫∫∫∫

(0,T )×Rd×∆(A)×Td

|ϕ̂(t,X, s, y)|2 dy dβ(s) dX dt.

Proof. By density in L2((0, T )× Rd;A� C(Td)) of functions of the form

N∑
j=1

gj(t)hj(x)fj(τ)einj ·y

where gj ∈ C∞(0, T ), hj ∈ C∞c (Rd), fj ∈ A and nj ∈ Zd, and linearity it suffices
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to show that

lim
ε→0

∫∫
(0,T )×Rd

g(t)h
(
Φ−t/ε(x)

)
f
(
t

ε

)
ein·x/ε dx dt

=
 T∫

0

g(t) dt

∫
Rd

h(X) dX


 ∫

∆(A)

f̂(s) dβ(s)

 1n=0

for g, h, f, n in the spaces above, and 1n=0 is one when n = 0 and zero otherwise.

We first consider n = 0, in which case the only x dependence of the integrand is
through h. By Fubini’s theorem we may do the x integration first. By the coordi-
nate change: X = Φ−t/ε(x), which has determinant 1 by the Assumption 9.3.1.(iv),
we have

∫∫
(0,T )×Rd

g(t)h
(
Φ−t/ε(x)

)
f
(
t

ε

)
dx dt

=
T∫

0

g(t)f
(
t

ε

)∫
Rd

h(X) dX

 dt =

∫
Rd

h(X) dX


 T∫

0

g(t)f
(
t

ε

)
dt
 ,

so it suffices to show that the last integral converges to the required limit. By the
definition of the mean value operator, f(·/ε) converges L∞(R)-weak* to M(f).
As g ∈ L1(0, T ) this completes the proof for n = 0, noting the identification of
M with β (Proposition 9.3.1).

Now suppose that n 6= 0. As in the n = 0 case we perform the x integration first
with t fixed, but this time we do not change coordinates. Define the (formally)
self-adjoint differential operator Ln = −in · ∇x. Then we have the relation

ein·x/ε = ε

|n|2
Ln(ein·x/ε).
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Substituting this into the x integral and integrating by parts yields
∫
Rd

h
(
Φ−t/ε(x)

)
ein·x/ε dx = ε

|n|2
∫
Rd

h
(
Φ−t/ε(x)

)
Ln(ein·x/ε) dx

= ε

|n|2
∫
Rd

ein·x/εLn
(
h
(
Φ−t/ε(x)

))
dx

= −iε
|n|2

∫
Rd

ein·x/εn · >J̃
(
t

ε
,Φ−t/ε(x)

)
∇Xh(Φ−t/ε(x)) dx.

Consider the integrand on the last line. By assumption h is smooth with compact
support, K say, so by Assumption 9.3.1.(iii) we may estimate

∣∣∣∣∣∣∣
∫
Rd

>J̃(t/ε,Φ−t/ε(x))∇Xh(Φ−t/ε(x))ein·x/ε dx

∣∣∣∣∣∣∣ ≤ CK‖∇h‖L∞(Rd)|Φ−1
−t/ε(K)|,

where |Φ−1
−t/ε(K)| is the Lebesgue measure of the set inside the modulus sign.

As Φ is volume preserving (Assumption 9.3.1.(iv)) this is equal to the Lebesgue
measure of K and is finite. Therefore, the x integral has the bound∣∣∣∣∣∣∣

∫
Rd

h(Φ−t/ε(x))ein·x/ε dx

∣∣∣∣∣∣∣ ≤ Cε

for some constant C. Using this bound in the full t, x integral yields∣∣∣∣∣∣∣
∫∫

(0,T )×Rd

g(t)h
(
Φ−t/ε(x)

)
f
(
t

ε

)
ein·x/ε dx dt

∣∣∣∣∣∣∣
≤ Cε

T∫
0

|g(t)||f(t/ε)| dt ≤ Cε‖f‖L∞(R)‖g‖L1([0,T ]).

This completes the n 6= 0 case and the proof of the lemma.

Remark 9.3.4. It is evident from the above proof that the uniform bound upon
the Jacobian (Assumption 9.3.1.(iii)) is needed only for test functions that de-
pend upon the fast spatial variable y. As a consequence, an analogous compact-
ness result for convergence against test functions depending only upon (t, x, τ)
can be obtained without this assumption (see Remark 9.3.3). However, Assump-
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tion 9.3.1.(iii) is needed to identify the Σ-Φτ limit of gradient sequences (Propo-
sition 9.3.3 below).

The weak Σ-convergence along flows is not limited to bounded sequences in L2.
Our main result, Theorem 9.3.2, generalises straightaway to bounded sequences
in Lp with 1 < p < +∞.

We are now ready to prove the compactness result.

Proof of Theorem 9.3.2. Let Y = L2((0, T ) × Rd × ∆(A) × Td) and X be the
vector subspace of Gelfand transforms of functions in L2((0, T )×Rd;A�C(Td)).
Now define the linear functionals F ε : X ⊂ Y → R, by

F ε(ϕ̂) =
∫∫

(0,T )×Rd

uε(t, x)ϕ
(
t,Φ−t/ε(x), t

ε
,
x

ε

)
dx dt, ϕ̂ ∈ X.

By the Cauchy-Schwarz inequality, the L2 boundedness of {uε} and Lemma 9.3.2
we have

|F ε(ϕ̂)| ≤
(

sup
ε
‖uε‖L2((0,T )×Rd)

) ∥∥∥∥ϕ(t,Φ−t/ε(x), t
ε
,
x

ε

)∥∥∥∥
L2((0,T )×Rd)

≤ C‖ϕ̂(t,X, y, s)‖L2((0,T )×Rd×Td×∆(A)).

By Theorem 9.3.3, we may pass to a subsequence (still indexed by ε) for which

F ε(ϕ̂)→ F (ϕ̂) as ε→ 0, ∀ϕ ∈ L2((0, T )× Rd;A� C(Td))

where F ∈ Y ′. Note that Y = L2((0, T )×Rd×∆(A)×Td) is a Hilbert space, (but
is in general non-separable). Therefore, by the Riesz representation theorem, F
is represented by

F (ϕ̂) =
∫∫∫∫

(0,T )×Rd×∆(A)×Td

u0(t,X, s, y)ϕ̂(t,X, s, y) dy dβ(s) dX dt

for some u0 ∈ L2((0, T )× Rd × Td ×∆(A)), which is the desired limit.

As is classical in the theory of two-scale convergence, we have the following result
shedding some light on the product of two sequences that converge in the sense
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of Σ-convergence along flows.

Theorem 9.3.4 (Limit of the product). Let uε and vε be two families in L2((0, T )×
Rd) such that

uε
Σ−Φτ−−−−⇀ u0(t,X, s, y); vε

Σ−Φτ−−−−⇀ v0(t,X, s, y).

Assume further that

lim
ε→0
‖uε‖L2((0,T )×Rd) = ‖u0‖L2((0,T )×Rd×∆(A)×Td).

Then, we have

uε(t, x) vε(t, x) ⇀
∫∫

∆(A)×Td

u0(t,X, s, y) v0(t,X, s, y) dβ(s) dy

in the sense of distributions.

The proof of Theorem 9.3.4 is by a density argument. These arguments are
similar to the ones found in [1] (see p.1488 in [1] to be precise). As the proof can
be given mutatis mutatndis, we skip the proof of Theorem 9.3.4.

Next, we recall the notion of admissible test functions given by M. Radu [169] in
the context of two-scale convergence:

Definition 9.3.7. Let ϕ ∈ L2(Ω×Td) be a function that can be approximated by
a sequence of functions ϕn ∈ C∞(Ω;C∞(Td)) such that for n→∞:

• ‖ϕn − ϕ‖L2(Ω×Td) → 0.

• sup
ε>0

∥∥∥∥(ϕn − ϕ)
(
x,
x

ε

)∥∥∥∥
L2(Ω)

→ 0.

Then ϕ is said to be an admissible test function.

Inspired by the above definition, we introduce the notion of admissible test func-
tions suitable for the notion of weak Σ-convergence along flows.

Definition 9.3.8 (Admissible test functions). A function ψ(t, x, τ, y) which is
periodic in the y variable and belongs to a certain algebra w.m.v. A in the τ
variable is said to be an admissible test function if it can be approximated by
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a sequence of functions ψn(t, x, τ, y) ∈ C((0, T ) × Rd;A � C(Td)) such that for
n→∞:

•
∥∥∥ψ̂ − ψ̂n∥∥∥

L2((0,T )×Rd×∆(A)×Td)
→ 0.

• sup
ε>0

∥∥∥∥(ψ − ψn)
(
t,Φ−t/ε(x), t

ε
,
x

ε

)∥∥∥∥
L2((0,T )×Rd)

→ 0.

The following result says that having coefficients that are ‘admissible’ in the sense
of Definition 9.3.8 enables us to pass to the limit in the product sequence.

Lemma 9.3.3. Let A be an algebra w.m.v. and Φτ (x) be a flow satisfying As-
sumption 9.3.1. Let the family uε(t, x) ⊂ L2((0, T )× Rd) be such that

uε
Σ−Φτ−−−−⇀ u0(t,X, s, y).

Finally, let a(t, x, τ, y) be admissible in the sense of Definition 9.3.8. Then, for
any smooth test function ψ(t, x, τ, y) which is periodic in the y variable and which
belongs to A as a function of the τ variable, we have

lim
ε→0

∫∫
(0,T )×Rd

uε(t, x)a
(
t,Φ−t/ε(x), t

ε
,
x

ε

)
ψ
(
t,Φ−t/ε(x), t

ε
,
x

ε

)
dx dt

=
∫∫∫∫

(0,T )×Rd×∆(A)×Td

u0(t,X, s, y)â(t,X, s, y)ψ̂(t,X, s, y) dy dβ(s) dX dt

The proof of Lemma 9.3.3 is by a density argument (this is inherent in the def-
inition of admissibility). These arguments are similar to the ones found in [169]
(see p.6 in [169] to be precise). As the proof can be given mutatis mutatndis, we
skip the details.

9.3.8 Additional bounds on derivatives

We first establish conditions under which the Σ-Φt limit does not depend upon y.
The following result follows the flavour of standard two-scale convergence (see e.g.
[154, 1]), where gradient bounds imply that the two-scale limit is independent of
the fast spatial variable. Here the proof is slightly complicated by the flow Φ, but
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is otherwise the same.

Proposition 9.3.2. Let A be an algebra w.m.v., Φ a flow satisfying the Assump-
tion 9.3.1, and uε Σ−Φτ−−−−⇀ u0 in the sense of Definition 9.3.6. Then if

sup
ε
‖∇uε‖L2((0,T )×Rd) <∞,

then u0 does not depend on y, i.e. u0(t, s,X, y) = u0(t, s,X).

Proof. Let Ψ(t,X, τ, y) ∈ [C1
c ((0, T )× Rd × Td;A)]d, then by the uniform bound

on ∇uε in L2 and Lemma 9.3.2 we have

sup
ε

∫∫
(0,T )×Rd

∇uε(t, x) ·Ψ
(
t,Φ−t/ε(x), t

ε
,
x

ε

)
dx dt ≤ C <∞ (9.3.5)

for some constant C depending on Ψ. By integration by parts the integral on the
left hand side is equal to

−1
ε

∫∫
(0,T )×Rd

uε(t, x)∇y ·Ψ
(
t,Φ−t/ε(x), t

ε
,
x

ε

)
dx dt+O(1)

where the order 1 term comes from the gradient hitting Φ−t/ε(x) which are
bounded due to Assumption 9.3.1.(iii) on the Jacobian of the flow. Multiply-
ing this by ε, using the convergence uε Σ−Φτ−−−−⇀ u0 and comparing to the bound
(9.3.5), we have

∫∫∫∫
(0,T )×Rd×∆(A)×Td

u0(t,X, s, y)∇y · Ψ̂(t,X, s, y) dβ(s) dy dX dt = 0.

Noting that, by linearity and as it acts in a different variable, the Gelfand trans-
form commutes with ∇y, we deduce that u0 is orthogonal (in the L2(Td) sense)
to all y-divergences and is hence independent of y.

To obtain the Σ − Φ limit of the gradient sequence ∇uε, we require that the
Jacobian of the flow lie in the algebra.

Proposition 9.3.3 (Two-scale limit for the gradient sequence). Let A be an
algebra w.m.v., Φ a flow satisfying Assumption 9.3.1 and J(τ,Φτ (X)) ∈ C(Rd;A).
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Suppose that

uε
Σ−Φτ−−−−⇀ u0 and ∇uε Σ−Φτ−−−−⇀ v0 as ε→ 0

for a sequence uε in the sense of Definition 9.3.6. Then we have

v0 = >̂̃J(s,X)∇Xu0 +∇yu1

for some u1(t,X, s, y) ∈ L2(R+ × Rd ×∆(A);H1(Td)).

Remark 9.3.5. The above result differs from the classical result for two-scale
convergence (see e.g. [1]) and two-scale convergence with constant drift [140,
2], in the presence of the Jacobian of the flow, which depends on the fast time
variable, in the limit. If the flow Φ is taken to be a constant drift flow Φτ (x) =
x+ b∗τ then the Jacobian is the identity matrix.

Proof of Proposition 9.3.3. Note that u0 is independent of y by Proposition 9.3.2.
We test against Ψ(t,X, τ, y) ∈ [C1

c (R+ × Rd × Td;A)]d which satisfy ∇y · Ψ = 0.
By integration by parts we obtain

∫∫
(0,T )×Rd

∇uε(t, x) ·Ψ
(
t,Φ−t/ε(x), t

ε
,
x

ε

)
dx dt

= −
∫∫

(0,T )×Rd

uε(t, x)∇x ·
(

Ψ
(
t,Φ−t/ε(x), t

ε
,
x

ε

))
dx dt

= −1
ε

∫∫
(0,T )×Rd

uε(t, x)∇y ·Ψ
(
t,Φ−t/ε(x), t

ε
,
x

ε

)
dx dt

−
∫∫

(0,T )×Rd

uε(t, x)
d∑
i=1

(
>J
(
t

ε
, x
)
∇XΨi

(
t,Φ−t/ε(x), t

ε
,
x

ε

))
i

dx dt

= −
∫∫

(0,T )×Rd

uε(t, x)
d∑
i=1

(
>J̃
(
t

ε
,Φ−t/ε(x)

)
∇XΨi

(
t,Φ−t/ε(x), t

ε
,
x

ε

))
i

dx dt.

By the convergences ∇uε Σ−Φτ−−−−⇀ v0 and uε Σ−Φτ−−−−⇀ u0 we may pass to the limit
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the first and last line respectively to obtain
∫∫∫

(0,T )×Rd×∆(A)×Td

v0(t,X, s, y) · Ψ̂(t,X, s, y) dβ(s) dy dX dt

= −
∫∫∫

(0,T )×Rd×∆(A)×Td

u0(t,X)
d∑
i=1

(
>̂J̃(s,X)∇̂XΨi(t,X, s, y)

)
i

dβ(s) dy dX dt

The Gelfand transform is with regard to the s-variable. Hence we have the
commutation: ∇̂XΨi = ∇XΨ̂i. This observation and an integration by parts in
the X-variable yields

0 =
∫∫∫

(0,T )×Rd×∆(A)×Td

(
v0(t,X, s, y)− >̂J̃(s,X)∇Xu0(t,X)

)
· Ψ̂(t,X, s, y) dβ(s) dy dX dt.

Thus the bracketed expression in the above integrand is orthogonal (in the L2(Td)
sense) to y-divergence free vector fields, and is hence equal to the y-gradient of
some function u1. Basic Fourier analysis in Td tells us that u1 is bounded in
L2(R+ × Rd ×∆(A);H1(Td)). This completes the proof of the Proposition.

9.4 Homogenization Result

This section is dedicated to the rigorous derivation of the homogenized equa-
tion for (9.2.4a)-(9.2.4b) using the Σ-convergence along flows developed in Sec-
tion 9.3.

9.4.1 Qualitative analysis

The compactness results (Theorem 9.3.2, Proposition 9.3.3) of previous section
demand uniform (with respect to ε) estimates on the solution family {uε(t, x)}
and on the family of derivatives (in space) of the solution family {∇uε(t, x)}.

Lemma 9.4.1. Suppose the fluid field b(x, y) ∈ L∞(Rd×Td;Rd) is incompressible
in both x and y variables, i.e. satisfying (9.2.1). Suppose the molecular diffusion
tensor D(x, y) ∈ L∞(Rd×Td;Rd×d) is uniformly coercive, i.e. satisfying (9.2.3).
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Suppose the initial data uin(x) ∈ L2(Rd). Then we have uniform (with respect to
ε) a priori estimates on the solutions to (9.2.4a)-(9.2.4b) given by

‖uε‖L∞([0,T ];L2(Rd)) + ‖∇uε‖L2((0,T )×Rd) ≤ C‖uin‖L2(Rd), (9.4.1)

for any arbitrary time T > 0. The constant C in (9.4.1) is independent of ε and
the time instant T .

As the proof of the above lemma is very classical and follows the energy method,
we shall skip the details. Now, we state the following result showing that our
model problem (9.2.4a)-(9.2.4b) is well-posed.

Proposition 9.4.1. Suppose the fluid field b(x, y) ∈ L∞(Rd × Td;Rd) is in-
compressible in both x and y variables, i.e. satisfying (9.2.1). Suppose further
that the diffusion tensor D(x, y) ∈ L∞(Rd × Td;Rd×d) is uniformly coercive, i.e.
satisfying (9.2.3). Suppose the initial data uin ∈ L2(Rd). Then, for any fixed
ε > 0, there exists a unique solution uε ∈ L2((0, T );H1(Rd))∩C1((0, T );L2(Rd))
to (9.2.4a)-(9.2.4b).

For any fixed ε > 0, we can use the a priori bounds (9.4.1) and the Galerkin
method to prove the above result. As this approach is very well-established (see
Chapter 7 in [57] if necessary), we shall skip the proof of the above result as
well.

Remark 9.4.1. The regularity of the coefficients in (9.2.4a) considered in Lemma 9.4.1
and Proposition 9.4.1 are quite weak. We shall impose some stronger regularity
assumptions on the fluid field b(x, y) when we get to the homogenization result
later in this section.

We denote the difference between the mean-field and the locally periodic fluid
field by

F(x, y) := b̄(x)− b(x, y), for (x, y) ∈ Rd × Td. (9.4.2)

Remark 9.4.2. We specialise the main result to the 3 dimensional case. All the
arguments to follow can be cast in the language of differential forms to gener-
alize the theory to dimensions d ≥ 2, but to simplify presentation and increase
accessibility of the proof, we leave this extension to the reader.

388



The null-divergence assumption on the fluid field b(x, y) in the y variable implies
that F(x, y) is divergence free in the y-variable. Helmholtz decomposition of
vector fields on the torus T3 yields the following result.

Lemma 9.4.2. There exists Υ(x, y) ∈ [L2(R3;H1(T3))]3 such that

F(x, y) = ∇y ×Υ(x, y); with
∫
T3

Υ(x, y) dy = 0.

Under the scaling y = x/ε, we have the chain rule:

∇x ×
(

Υ
(
x,
x

ε

))
= ∇x ×Υ

(
x,
x

ε

)
+ 1
ε
∇y ×Υ

(
x,
x

ε

)
. (9.4.3)

Hence by Lemma 9.4.2, we have

F
(
x,
x

ε

)
= ε∇x ×

(
Υ
(
x,
x

ε

))
− ε∇x ×Υ

(
x,
x

ε

)
. (9.4.4)

9.4.2 Assumptions

In this subsection we shall make precise the assumptions on the fluid field b(x, y),
the mean field b̄(x) and the Jacobian matrix J(τ, x) associated with the flow Φτ .
Throughout, we will assume that A is a fixed given ergodic algebra w.m.v.. See
Section 9.5 for further discussions on the assumptions made here.

Assumption 9.4.1. The fluid field b(x, y) belongs to C1(R3 × T3;R3) and its
flow-representation belongs to A as follows:

b̃(τ, x, y) = b(Φτ (x), y) ∈ [C1(R3 × T3;A)]3.

Remark 9.4.3. The mean-field b̄(x) is nothing but the y-average of the fluid
field b(x, y). The regularity hypothesis in Assumption 9.4.1 implies that b̄(x) ∈
C1(R3;R3). Furthermore, the linearity of A implies that the flow-representation
of the mean-field belongs to A as follows:

˜̄b(τ, x) = b̄(Φτ (x)) ∈ [C1(R3;A)]3.
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Assumption 9.4.2. The field ∇x × F(x, y) ∈ C(R3 × T3;R3) and its flow-
representation belongs to A as follows:

∇̃x ×F(τ, x, y) = ∇x ×F (Φτ (x), y) ∈ [C(R3 × T3;A)]3.

Remark 9.4.4. Lemma 9.4.2 implies the flow-representation of Υ is given by a
convolution in the y-variable of a Greens function and the flow-representation of
F . The linearity of A allows us deduce that the flow-representation of Υ(x, y)
belongs to A as follows:

Υ̃(τ, x, y) = Υ(Φτ (x), y) ∈ [C1(R3 × T3;A)]3.

Remark 9.4.5. Observe that ζ := ∇x×Υ solves the equation ∇y× ζ = ∇x×F .
Hence a similar argument as in Remark 9.4.4 and the hypothesis in Assump-
tion 9.4.2 implies that ζ belongs to A as follows:

ζ̃(τ, x, y) = ∇̃x ×Υ(τ, x, y) = ∇x ×Υ(Φτ (x), y) ∈ [C(R3 × T3;A)]3.

Assumption 9.4.3. The molecular diffusion matrix D(x, y) ∈ [L∞(R3;C(T3))]3×3

and its flow-representation belongs to A as follows:

D̃(τ, x, y) = D(Φτ (x), y) ∈ [L∞(R3;C(T3)�A)]3×3.

Assumption 9.4.4. The Jacobian matrix associated with the flow Φ has the
regularity J(τ, x) ∈ [L∞(R3;A)]3×3 and its flow-representation belongs to A as
follows:

J̃(τ, x) = J(τ,Φτ (x)) ∈ [L∞(R3;A)]3×3.

Remark 9.4.6. Assumption 9.4.3 is trivially satisfied if the molecular diffusion
is purely periodic and bounded, i.e. D(x, y) ≡ D(y) ∈ [L∞(T3)]3×3. Similarly,
that the flow representation of b belongs to A as in Assumption 9.4.1 follows
from Assumption 9.4.4 if the fluid field b has the special form:

b(x, y) = b̄(x) + b1(y).
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This may be seen from using Lemma 9.2.1.(iv) to write

b̃(τ,X, y) = ˜̄b(τ,X) + b1(y) =
(
J̃(τ,X)

)−1
b̄(X) + b1(y).

Remark 9.4.7. The assumptions on the coefficients and the Jacobian matrix
(Assumption 9.4.1 - Assumption 9.4.4) ensure that they are admissible test func-
tions in the sense of Definition 9.3.8.

Next, we state our main result on the homogenization of the scaled convection-
diffusion equation (9.2.4a)-(9.2.4b).

Theorem 9.4.1. Let Φτ be the flow associated with the three dimensional au-
tonomous system (9.2.7). Suppose uε(t, x) be the family of solutions associated
with the scaled convection-diffusion equation (9.2.4a)-(9.2.4b). Suppose u0(t,X)
be the Σ-Φτ limit associated with the solution family. Suppose that the following
assumptions hold:

• The fluid field b(x, y) satisfies the Assumption 9.4.1.

• The molecular diffusion D(x, y) satisfies the Assumption 9.4.3.

• The Jacobian matrix J(τ, x) satisfies the Assumption 9.4.4.

• The field F(x, y) given by (9.4.2) satisfies Assumption 9.4.2.

Then the limit u0(t,X) solves the weak formulation

−
∫∫

(0,T )×R3

u0(t,X)∂ψ
∂t

(t,X) dX dt

+
∫∫

(0,T )×R3

D(X)∇Xu0(t,X) · ∇Xψ(t,X) dX dt

−
∫
R3

uin(X)ψ(0,X) dX = 0,

(9.4.5)

where the effective diffusion matrix D(X) is given by

D(X) =
∫

∆(A)

̂̃
J(s,X)B(s,X)>̂̃J(s,X) dβ(s) (9.4.6)
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with the elements of the matrix B(s,X) given by

Bij(s,X) =
∫
T3

̂̃D(s,X, y)
(
∇y

̂̃ωj(s,X, y) + ej
)
·
(
∇y

̂̃ωi(s,X, y) + ei
)

dy

+
∫
T3

(̂̃b(s,X, y) · ∇y
̂̃ωi(s,X, y)

) ̂̃ωj(s,X, y) dy

+
∫
T3

̂̃D(s,X, y)∇y
̂̃ωj(s,X, y) · ei dy

−
∫
T3

̂̃D(s,X, y)∇y
̂̃ωi(s,X, y) · ej dy,

(9.4.7)

where the ωi are the solutions to the cell problem (9.2.18).

Remark 9.4.8. The weak formulation (9.4.5) corresponds to solving the homog-
enized equation

∂u0

∂t
−∇X ·

(
D(X)∇Xu0(t,X)

)
= 0 in (0, T )× Rd, (9.4.8)

u0(0,X) = uin(X) in Rd. (9.4.9)

This equation is identical to that given in the formal homogenisation result Propo-
sition 9.2.1, which may be seen from the identity (9.3.1). In particular, the diffu-
sion coefficient D may be computed using (9.2.16)-(9.2.17), and the limits therein
exist and are finite.

Remark 9.4.9. Recall that for any function f(x, y), the flow representation

f̃(τ,X, y) = f (Φτ (X), y) = f (x, y) for τ ∈ R

with the convention X := Φ−τ (x). Taking the Gelfand transform of a flow repre-
sentation should be understood in the abstract as follows:

̂̃
f(s,X, y) = s

(
f̃(τ,X, y)

)
for s ∈ ∆(A).

Theorem 9.4.1 asserts that a Σ-Φτ of the solution family uε(t, x) solves the ho-
mogenized equation (9.4.8)-(9.4.9). The rest of the section is devoted to proving
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this result. In Lemma 9.4.3, we first prove that we can extract subsequences off
the solution family {uε} and the gradient sequence {∇uε} such that the extracted
subsequences admit Σ-Φτ limits. Lemma 9.4.3 also proves that the Σ-Φτ limit u0

is independent of the s variable.

Inspired by the structure of the Σ-Φτ limits in Lemma 9.4.3, we make a particular
choice of the test functions (in Section 9.4.4) in the weak formulation of the scaled
convection-diffusion (9.2.4a)-(9.2.4b).

As we need to pass to the limit in some singular terms in the weak formulation,
we prove the limit behaviour of the those singular terms in Lemma 9.4.4. In
Section 9.4.6, we derive the cell problem. Finally, in Section 9.4.7, we give the
proof of Theorem 9.4.1.

Remark 9.4.10. Even though the Σ-Φτ compactness results are up to extraction
of a subsequence, the entire sequence uε does converge to the Σ-Φτ limit u0 as the
homogenized equation is uniquely solvable (Proposition 9.2.2).

9.4.3 Σ-compactness along the flow Φτ

Lemma 9.4.3. Let uε(t, x) be the family of solutions to (9.2.4a)-(9.2.4b). Then,
there exists a sub-sequence (which we still index by ε) and two limits u0(t,X) ∈
L2((0, T );H1(R3)), u1(t,X, s, y) ∈ L2((0, T )× R3 ×∆(A);H1(T3)) such that

uε
Σ−Φτ−−−−⇀ u0(t,X), (9.4.10)

∇uε Σ−Φτ−−−−⇀ >̂J̃(s,X)∇Xu0(t,X) +∇yu1(t,X, s, y). (9.4.11)

Proof. The a priori bounds from Lemma 9.4.1 give us the necessary uniform
bounds (with respect to ε) so that the result of Proposition 9.3.3 implies the exis-
tence of u0(t,X, s) and u1(t,X, s, y) such that (9.4.10) and (9.4.11) hold. To prove
that u0 is independent of the s variable, we shall consider the weak formulation
of the ε-problem (9.2.4a)-(9.2.4b) with the test function εϕ

(
t,Φ−t/ε(x), t

ε

)
such

that ϕ(T, ·, ·) = 0 and ϕ(t, x, ·), ∂ϕ
∂τ

(t, x, ·) ∈ A. The weak formulation of interest
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shall be

− ε
∫∫

(0,T )×R3

uε(t, x)∂ϕ
∂t

(
t,Φ−t/ε(x), t

ε

)
dx dt− ε

∫
R3

uin(x)ϕ(0, x, 0) dx

+
∫∫

(0,T )×R3

uε(t, x)b̄
(
Φ−t/ε(x)

)
· ∇Xϕ

(
t,Φ−t/ε(x), t

ε

)
dx dt

−
∫∫

(0,T )×R3

uε(t, x)∂ϕ
∂τ

(
t,Φ−t/ε(x), t

ε

)
dx dt

−
∫∫

(0,T )×R3

uε(t, x)b
(
x,
x

ε

)
· >J̃

(
t

ε
,Φ−t/ε(x)

)
∇Xϕ

(
t,Φ−t/ε(x), t

ε

)
dx dt

+ ε
∫∫

(0,T )×R3

D
(
x,
x

ε

)
∇uε(t, x) · >J̃

(
t

ε
,Φ−t/ε(x)

)
∇Xϕ

(
t,Φ−t/ε(x), t

ε

)
dx dt = 0.

(9.4.12)
The first and second terms on the left hand side of the above expression are of
O(ε). The third and the fifth terms in the weak formulation (9.4.12) together
become, using (9.4.2) and (9.4.4),
∫∫

(0,T )×R3

uε(t, x)
(
b̄ (x)− b

(
x,
x

ε

))
· >J̃

(
t

ε
,Φ−t/ε(x)

)
∇Xϕ

(
t,Φ−t/ε(x), t

ε

)
dx dt

=
∫∫

(0,T )×R3

uε(t, x)F
(
x,
x

ε

)
· >J̃

(
t

ε
,Φ−t/ε(x)

)
∇Xϕ

(
t,Φ−t/ε(x), t

ε

)
dx dt

= ε
∫∫

(0,T )×R3

uε(t, x)∇x ×
(

Υ
(
x,
x

ε

))
· >J̃

(
t

ε
,Φ−t/ε(x)

)
∇Xϕ

(
t,Φ−t/ε(x), t

ε

)
dx dt

− ε
∫∫

(0,T )×R3

uε(t, x)∇x ×Υ
(
x,
x

ε

)
· >J̃

(
t

ε
,Φ−t/ε(x)

)
∇Xϕ

(
t,Φ−t/ε(x), t

ε

)
dx dt,

continuing, this is equal to

= ε
∫∫

(0,T )×R3

Υ
(
x,
x

ε

)
·
(
∇xu

ε(t, x)× >J̃
(
t

ε
,Φ−t/ε(x)

)
∇Xϕ

(
t,Φ−t/ε(x), t

ε

))
dx dt

+ ε
∫∫

(0,T )×R3

Υ
(
x,
x

ε

)
·
(
uε(t, x)∇x × >J̃

(
t

ε
,Φ−t/ε(x)

)
∇Xϕ

(
t,Φ−t/ε(x), t

ε

))
dx dt

− ε
∫∫

(0,T )×R3

uε(t, x)∇x ×Υ
(
x,
x

ε

)
· >J̃

(
t

ε
,Φ−t/ε(x)

)
∇Xϕ

(
t,Φ−t/ε(x), t

ε

)
dx dt
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where we have used the Greens formula for the Curl operator. The second term
on the far right hand side of the above expression vanishes because

∇x × >J̃
(
t

ε
,Φ−t/ε(x)

)
∇Xϕ

(
t,Φ−t/ε(x), t

ε

)
= ∇x × >J

(
t

ε
, x
)
∇Xϕ

(
t,Φ−t/ε(x), t

ε

)
= ∇x ×∇x

(
ϕ
(
t,Φ−t/ε(x), t

ε

))
= 0,

as the curl of a gradient is zero. (This is the reason that Υ was chosen in this
particular manner). In the rest of the terms, using the flow-representation, we
have

ε
∫∫

(0,T )×R3

Υ̃
(
t

ε
,Φ−t/ε(x), x

ε

)

·
(
∇xu

ε(t, x)× >J̃
(
t

ε
,Φ−t/ε(x)

)
∇Xϕ

(
t,Φ−t/ε(x), t

ε

))
dx dt

− ε
∫∫

(0,T )×R3

uε(t, x)∇̃x ×Υ
(
t

ε
,Φ−t/ε(x), x

ε

)

· >J̃
(
t

ε
,Φ−t/ε(x)

)
∇Xϕ

(
t,Φ−t/ε(x), t

ε

)
dx dt.

These are of O(ε). Using the flow-representation for the molecular diffusion D,
the final term on the left hand side of the weak formulation is also of O(ε). Hence,
passing to the limit as ε tends to zero in the weak formulation yields

∫∫∫
(0,T )×R3×∆(A)

u0(t,X, s) ∂̂ϕ
∂τ

(t,X, s) dβ(s) dX dt = 0.

Upon using Lemma 9.3.1, we deduce that the u0 is independent of the s-variable.

9.4.4 Choice of test functions

We consider the weak formulation of the convection-diffusion equation (9.2.4a)-
(9.2.4b) with test function ψε(t, x) such that ψε(T, x) = 0. We split the weak

395



formulation into four terms:

Itime + Iconvect + Idiffuse + Iinitial = 0

which are respectively given by

−
∫∫

(0,T )×R3

uε(t, x)∂ψ
ε

∂t
(t, x) dx dt+ 1

ε

∫∫
(0,T )×R3

b
(
x,
x

ε

)
· ∇uε(t, x)ψε(t, x) dx dt

+
∫∫

(0,T )×R3

D
(
x,
x

ε

)
∇uε(t, x) · ∇ψε(t, x) dx dt−

∫
R3

uin(x)ψε(0, x) dx = 0.

(9.4.13)
The choice of the family of test functions ψε(t, x) is as follows:

ψε(t, x) = ψ
(
t,Φ−t/ε(x)

)
+ εψ1

(
t,Φ−t/ε(x), t

ε
,
x

ε

)
(9.4.14)

where

ψ ∈ C1((0, T )× R3) and ψ1 ∈ C1((0, T )× R3;C1(T3)�A) (9.4.15)

which are compactly supported in space. We shall treat term by term. To begin
with, let us consider the term with the partial time derivative:

Itime =−
∫∫

(0,T )×R3

uε(t, x)∂ψ
∂t

(
t,Φ−t/ε(x)

)
dx dt

+ 1
ε

∫∫
(0,T )×R3

uε(t, x)b̄(Φ−t/ε(x)) · ∇Xψ
(
t,Φ−t/ε(x)

)
dx dt

−
∫∫

(0,T )×R3

uε(t, x)∂ψ1

∂τ

(
t,Φ−t/ε(x), t

ε
,
x

ε

)
dx dt

+
∫∫

(0,T )×R3

uε(t, x)b̄(Φ−t/ε(x)) · ∇Xψ1

(
t,Φ−t/ε(x), t

ε
,
x

ε

)
dx dt

+O(ε).
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Now, for the convection term:

Iconvect =− 1
ε

∫∫
(0,T )×R3

uε(t, x)b
(
x,
x

ε

)
· >J̃

(
t

ε
,Φ−t/ε(x)

)
∇Xψ

(
t,Φ−t/ε(x)

)
dx dt

+
∫∫

(0,T )×R3

b
(
x,
x

ε

)
· ∇uε(t, x)ψ1

(
t,Φ−t/ε(x), t

ε
,
x

ε

)
dx dt

Next, for the diffusion term:

Idiffuse =
∫∫

(0,T )×R3

D
(
x,
x

ε

)
∇uε(t, x) · >J̃

(
t

ε
,Φ−t/ε(x)

)
∇Xψ

(
t,Φ−t/ε(x)

)
dx dt

+
∫∫

(0,T )×R3

D
(
x,
x

ε

)
∇uε(t, x) · ∇yψ1

(
t,Φ−t/ε(x), t

ε
,
x

ε

)
dx dt+O(ε).

Finally, for the term involving initial data:

Iinitial = −
∫
R3

uin(x)ψ(0, x) dx+O(ε).

By using the flow-representation and Lemma 9.2.1.(iv) we notice that

b̄
(
Φ−t/ε(x)

)
= J̃

(
t

ε
,Φ−t/ε(x)

)
b̄(x) = J̃

(
t

ε
,Φ−t/ε(x)

)
˜̄b
(
t

ε
,Φ−t/ε(x)

)
.

(9.4.16)

Again using the flow-representation, we have

b
(
x,
x

ε

)
= b̃

(
t

ε
,Φ−t/ε(x), x

ε

)
, D(x, y) = D̃

(
t

ε
,Φ−t/ε(x), x

ε

)
. (9.4.17)

The observations (9.4.16)-(9.4.17), combined with the Σ-compactness result along
the flow Φt (Lemma 9.4.3) will allow us to pass to the limit as ε → 0 in all but
two singular terms.

9.4.5 Singular terms

We record below a result giving the limit of the singular terms in the weak
formulation.
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Lemma 9.4.4. Under Assumption 9.4.2 on the field F(x, y) and for ψ satisfying
(9.4.15), we have

lim
ε→0

1
ε

∫∫
(0,T )×R3

uε(t, x)J̃
(
t

ε
,Φ−t/ε(x)

) [
b̄(x)− b

(
x,
x

ε

)]
· ∇Xψ

(
t,Φ−t/ε(x)

)
dx dt

=
∫∫∫∫

R+×Rd×∆(A)×Td

(̂̄̃
b(s,X)− ̂̃b(s,X, y)

)

·
(
u1(t,X, s, y)>ˆ̃J(s,X)∇Xψ̂(t,X)

)
dy dβ(s) dX dt.

(9.4.18)

Proof. Consider the singular terms in the weak formulation:

1
ε

∫∫
(0,T )×R3

uε(t, x)J̃
(
t

ε
,Φ−t/ε(x)

) [
b̄(x)− b

(
x,
x

ε

)]
· ∇Xψ

(
t,Φ−t/ε(x)

)
dx dt.

(9.4.19)

Using the observation (9.4.4) on the field F
(
x, x

ε

)
, we rewrite the singular terms

(9.4.19) successively as follows:
∫∫

(0,T )×R3

∇x ×
(

Υ
(
x,
x

ε

))
·
(
uε(t, x)>J̃

(
t

ε
,Φ−t/ε(x)

)
∇Xψ

(
t,Φ−t/ε(x)

))
dx dt

−
∫∫

(0,T )×R3

∇x ×Υ
(
x,
x

ε

)
·
(
uε(t, x)>J̃

(
t

ε
,Φ−t/ε(x)

)
∇Xψ

(
t,Φ−t/ε(x)

))
dx dt

=
∫∫

(0,T )×R3

Υ
(
x,
x

ε

)
·
(
∇xuε(t, x)× >J̃

(
t

ε
,Φ−t/ε(x)

)
∇Xψ

(
t,Φ−t/ε(x)

))
dx dt

+
∫∫

(0,T )×R3

Υ
(
x,
x

ε

)
·
(
uε(t, x)∇x ×

(
>J̃
(
t

ε
,Φ−t/ε(x)

)
∇Xψ

(
t,Φ−t/ε(x)

)))
dx dt

−
∫∫

(0,T )×R3

∇x ×Υ
(
x,
x

ε

)
·
(
uε(t, x)>J̃

(
t

ε
,Φ−t/ε(x)

)
∇Xψ

(
t,Φ−t/ε(x)

))
dx dt,

where we have used the Green’s formula for the curl operator. Note that the
second term on the right hand side of the previous expression is zero because

>J̃
(
t

ε
,Φ−t/ε(x)

)
∇Xψ

(
t,Φ−t/ε(x)

)
= ∇x

(
ψ
(
t,Φ−t/ε(x)

))
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and because of the fact that curl of a gradient is zero. Next, using the flow-
representation, the singular terms (9.4.19) simplify to the following expression:

∫∫
(0,T )×R3

Υ̃
(
t

ε
,Φ−t/ε(x), x

ε

)

·
(
∇xuε(t, x)× >J̃

(
t

ε
,Φ−t/ε(x)

)
∇Xψ

(
t,Φ−t/ε(x)

))
dx dt

−
∫∫

(0,T )×R3

∇̃x ×Υ
(
t

ε
,Φ−t/ε(x), x

ε

)

·
(
uε(t, x)>J̃

(
t

ε
,Φ−t/ε(x)

)
∇Xψ

(
t,Φ−t/ε(x)

))
dx dt.

Thanks to the Assumption 9.4.2 (see Remark 9.4.4 and Remark 9.4.5), we can
pass to the limit, as ε→ 0, in the previous expression using Σ-convergence along
the flow Φt yielding∫∫∫∫
(0,T )×R3×∆(A)×T3

̂̃Υ(s,X, y) ·
(
>̂J̃(s,X)∇Xu0(t,X)× >̂J̃(s,X)∇Xψ̂(t,X)

)
dy dβ(s) dX dt

+
∫∫∫∫

(0,T )×R3×∆(A)×T3

̂̃Υ(s,X, y) ·
(
∇yu1(t,X, s, y)× >̂J̃(s,X)∇Xψ̂(t,X)

)
dy dβ(s) dX dt

−
∫∫∫∫

(0,T )×R3×∆(A)×T3

̂̃∇x ×Υ(s,X, y) ·
(
u0(t,X)>̂J̃(s,X)∇Xψ̂(t,X)

)
dy dβ(s) dX dt.

(9.4.20)
By construction, Υ is of zero average in the y variable (Lemma 9.4.2). Hence the
first term in (9.4.20) vanishes. In the second term of (9.4.20), we use the Green’s
formula for the curl operator in y variable leading to the following expression:

∫∫∫∫
(0,T )×R3×∆(A)×T3

∇y ×
̂̃Υ(s,X, y) ·

(
u1(t,X, s, y)>ˆ̃J(s,X)∇Xψ̂(t,X)

)
dy dβ(s) dX dt.

Again by Lemma 9.4.2, we have

∇y ×
̂̃Υ(s,X, y) = ̂̃F(s,X, y) =

̂̄̃
b(s,X)− ̂̃b(s,X, y).
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Hence, the second term of (9.4.20) is the same as
∫∫∫∫

(0,T )×R3×∆(A)×T3

(̂̄̃
b(s,X)− ̂̃b(s,X, y)

)

·
(
u1(t,X, s, y)>̂J̃(s,X)∇Xψ̂(t,X)

)
dy dβ(s) dX dt.

(9.4.21)
Regarding the third term in (9.4.20), remark that

̂̃∇x ×Υ(s,X, y) = >̂J̃(s,X)
(
∇X ×

̂̃Υ(s,X, y)
)
.

Hence the third term in (9.4.20) rewrites as (upon using Green’s formula):
∫∫∫∫

(0,T )×R3×∆(A)×T3

̂̃Υ(s,X, y) · ∇X ×
(
u0(t,X) ̂̃J(s,X)>̂J̃(s,X)∇Xψ̂(t,X)

)
dy dβ(s) dX dt.

Thanks again to the construction that Υ is of zero average in the y variable
(Lemma 9.4.2), the above expression vanishes. Hence the only non-zero term in
the limit expression is (9.4.21). This is nothing but the limit in (9.4.18).

9.4.6 Cell problem

Now, we record a result to give the limit equation for the weak formulation
involving the test function ψ1, i.e. to derive the cell problem.

Proposition 9.4.2. Let Φτ be the flow associated with the autonomous system
(9.2.7). Under Assumption 9.4.1 on the fluid field b(x, y), Assumption 9.4.3 on
the molecular diffusion D(x, y) and Assumption 9.4.4 on the Jacobian matrix
J(τ, x), the Σ-Φτ limit u1(t,X, s, y) obtained in Lemma 9.4.3 can be written as

u1(t,X, s, y) = ̂̃ω(s,X, y) · >̂J̃(s,X)∇Xu0(t,X), (9.4.22)

where the components of ω(x, y) ∈ [L∞(R3;H1(T3))]d with
∫
T3 w dy = 0 solve the
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cell problem:

b(x, y) · (∇yωi + ei)−∇y · (D(x, y) (∇yωi + ei)) = b̄(x) · ei in T3,

(9.4.23)

for each i ∈ {1, 2, 3}, where {ei}3
i=1 denote the canonical basis in R3 and x is

viewed as a parameter.

Proof. Taking ψ ≡ 0 in the weak formulation (9.4.13) and passing to the limit in
the sense of Σ-convergence along the flow Φτ , we obtain

−
∫∫∫∫

(0,T )×R3×∆(A)×T3

u0(t,X) ∂̂ψ1

∂τ
(t,X, s, y) dy dβ(s) dX dt

+
∫∫∫∫

(0,T )×R3×∆(A)×T3

u0(t,X)
{̂̃
J(s,X)

̂̄̃
b(s,X) · ∇Xψ̂1(t,X, s, y)

}
dy dβ(s) dX dt

+
∫∫∫∫

(0,T )×R3×∆(A)×T3

{̂̃b(s,X, y) · >̂J̃(s,X)∇Xu0(t,X)
}
ψ̂1(t,X, s, y) dy dβ(s) dX dt

+
∫∫∫∫

(0,T )×R3×∆(A)×T3

{̂̃b(s,X, y) · ∇yu1(t,X, s, y)
}
ψ̂1(t,X, s, y) dy dβ(s) dX dt

+
∫∫∫∫

(0,T )×R3×∆(A)×T3

̂̃D(s,X, y)>̂J̃(s,X)∇Xu0(t,X) · ∇yψ̂1(t,X, s, y) dy dβ(s) dX dt

+
∫∫∫∫

(0,T )×R3×∆(A)×T3

̂̃D(s,X, y)∇yu1(t,X, s, y) · ∇yψ̂1(t,X, s, y) dy dβ(s) dX dt = 0.

The first term in the previous equation vanishes as u0 is independent of the s-
variable (Lemma 9.4.3). Finally, performing an integration by parts in the X

variable in the second integral of the previous equation leads to∫∫∫∫
(0,T )×R3×∆(A)×T3

̂̃D(s,X, y)∇yu1(t,X, s, y) · ∇yψ̂1(t,X, s, y) dy dβ(s) dX dt

+
∫∫∫∫

(0,T )×R3×∆(A)×T3

̂̃D(s,X, y)>̂J̃(s,X)∇Xu0(t,X) · ∇yψ̂1(t,X, s, y) dy dβ(s) dX dt

+
∫∫∫∫

(0,T )×R3×∆(A)×T3

{̂̃b(s,X, y) · ∇yu1(t,X, s, y)
}
ψ̂1(t,X, s, y) dy dβ(s) dX dt

(9.4.24)
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+
∫∫∫∫

(0,T )×R3×∆(A)×T3

{(̂̃b(s,X, y)−
̂̄̃
b(s,X)

)
· >̂J̃(s,X)∇Xu0(t,X)

}

ψ̂1(t,X, s, y) dy dβ(s) dX dt

= 0,

(9.4.25)

where we have used Lemma 9.2.1.(ii) and that b is of zero x-divergence. The weak
formulation (9.4.24)-(9.4.25) is associated with the following PDE for u1(t,X, s, y)
in T3:

̂̃b(s,X, y) ·
(
∇yu1 + >̂J̃(s,X)∇Xu0

)
−∇y ·

(̂̃D(s,X, y)
(
∇yu1 + >̂J̃(s,X)∇Xu0

))
=
̂̄̃
b(s,X) · >̂J̃(s,X)∇Xu0.

The above PDE is linear and hence separation of variables may be performed as
in (9.4.22). Taking (9.4.22) and undoing the flow-representation, yields the cell
problem (9.4.23).

9.4.7 Homogenized problem

Proof of Theorem 9.4.1. Taking ψ1 ≡ 0 in the weak formulation (9.4.13) and
passing to the limit in the sense of Σ-convergence along Φτ , we obtain

−
∫∫

(0,T )×R3

u0(t,X)∂ψ
∂t

(t,X) dX dt−
∫
R3

uin(X)ψ(0,X) dX

+
∫∫∫∫

(0,T )×R3×∆(A)×T3

(̂̄̃
b(s,X)− ̂̃b(s,X, y)

)

·
(
u1(t,X, s, y)>̂J̃(s,X)∇Xψ(t,X)

)
dy dβ(s) dX dt

+
∫∫∫∫

(0,T )×R3×∆(A)×T3

̂̃D(s,X, y)>̂J̃(s,X)∇Xu0(t,X) · >̂J̃(s,X)∇Xψ(t,X) dy dβ(s) dX dt

+
∫∫∫∫

(0,T )×R3×∆(A)×T3

̂̃D(s,X, y)∇yu1(t,X, s, y) · >̂J̃(s,X)∇Xψ(t,X) dy dβ(s) dX dt = 0

(9.4.26)
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where we have used Lemma 9.4.4 for the singular terms. Substituting (9.4.22)
for u1(t, s,X, y) in the second term of the above equation yields

∫∫∫∫
(0,T )×R3×∆(A)×T3

̂̃
J(s,X)

(̂̄̃
b(s,X)− ̂̃b(s,X, y)

)(̂̃ω(s,X, y) · >̂J̃(s,X)∇Xu0(t,X)
)

·∇Xψ(t,X) dy dβ(s) dX dt

=
∫∫∫∫

(0,T )×R3×∆(A)×T3

(̂̃
J(s,X)

(̂̄̃
b(s,X)− ̂̃b(s,X, y)

)
> ̂̃ω(s,X, y)>̂J̃(s,X)∇Xu0(t,X)

)

·∇Xψ(t,X) dy dβ(s) dX dt.

Substituting (9.4.22) for u1(t, s,X, y) in the fourth term on the left hand side of
(9.4.26) yields

∫∫∫∫
(0,T )×R3×∆(A)×T3

̂̃
J(s,X)̂̃D(s,X, y)∇y

(̂̃ω(s,X, y) · >̂J̃(s,X)∇Xu0(t,X)
)

·∇Xψ(t,X) dy dβ(s) dX dt

=
∫∫∫∫

(0,T )×R3×∆(A)×T3

(̂̃
J(s,X)̂̃D(s,X, y)>∇y

̂̃ω(s,X, y)>̂J̃(s,X)∇Xu0(t,X)
)

·∇Xψ(t,X) dy dβ(s) dX dt.

Hence the limit weak formulation (9.4.26) rewrites as

−
∫∫

(0,T )×R3

u0(t,X)∂ψ
∂t

(t,X) dX dt+
∫∫

(0,T )×R3

D(X)∇Xu0(t,X) · ∇Xψ(t,X) dX dt

−
∫
R3

uin(X)ψ(0,X) dX = 0,

where the expression for the diffusion matrix D(X) is given by

D(X) =
∫

∆(A)

̂̃
J(s,X)

∫
T3

(̂̄̃
b(s,X)− ̂̃b(s,X, y)

)
> ̂̃ω(s,X, y) dy

 >̂J̃(s,X) dβ(s)

+
∫

∆(A)

̂̃
J(s,X)

∫
T3

̂̃D(s,X, y) dy
 >̂J̃(s,X) dβ(s)
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+
∫

∆(A)

̂̃
J(s,X)

∫
T3

̂̃D(s,X, y)>∇y
̂̃ω(s,X, y) dy

 >̂J̃(s,X) dβ(s).

Using the cell problem, we arrive at the desired expression for the effective diffu-
sion. As the computations are exactly similar to the ones present in the proof of
Proposition 9.2.1, we skip the details.

9.5 Discussion of assumptions

In this section we discuss the assumptions (detailed in Section 9.4.2) of the ho-
mogenization result (Theorem 9.4.1) and give both the examples where they are
satisfied and counterexamples where the failure of these assumptions can lead
either to trivial or non-unique limits. We remark that the main obstacle to
obtaining homogenization results in our setting is, in fact, not related to the os-
cillating coefficients, but rather to deriving an effective equation in Lagrangian
coordinates.

9.5.1 Bounds on the Jacobian

The main restriction on the fluid flow is Assumption 9.4.4 which implies that the
Jacobian of the flow is uniformly bounded in time. This is a highly non-generic
assumption, but is needed for the validity of the posited asymptotic expansion
(9.1.4). Indeed, if the Jacobian is not uniformly bounded in time, then, for
example, the right hand side of the O(ε0) equation in the cascade (9.2.20) may
grow to be of O(ε−1) for sufficiently large values of the fast time variable τ ,
breaking the formal expansion. First we shall give some examples of mean fluid
fields which obey this assumption, which although restrictive, still covers a large
class of vector fields.

Example 9.5.1 (Constant drift). The most obvious example is the constant drift
flow b̄(x) = b∗ for a constant vector b∗ ∈ Rd. In this case the Jacobian ma-
trix is the identity for all times. This case falls under the regime of two-scale
convergence with drift studied in [166, 5].
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Example 9.5.2 (Euclidean motions). Euclidean motions are the composition of
a translation and a rigid rotation. An autonomous flow consists of Euclidean
motions if and only if the vector field is given by b̄(x) = Ax+ b∗ for a constant
skew-symmetric matrix A and a constant vector b∗. The associated Jacobian
matrix is an orthogonal matrix and hence of norm 1.

Example 9.5.3 (Asymptotically constant drift). Let the mean flow b̄ in dimen-
sion d ≥ 2 be given by

b̄(x) =


b∗ when x1 < −R,

c(x) when x1 ∈ [−R,R],

b∗∗ when x1 > R,

where R > 0, e1 · b∗, e1 · b∗∗ > 0 and c(x) is chosen to make b̄ continuously
differentiable and divergence free. To ensure that the Jacobian of the flow is
uniformly bounded in time we require that any integral curve spends only finite
time T in {x1 ∈ [−R,R]}, which implies that the Jacobian is norm bounded by
C exp(T‖∇c‖L∞). This can easily be achieved by requiring that e1 · c(x) ≥ c > 0.

We remark also that the Jacobian in each of these examples belongs to some
algebra w.m.v., specifically the Jacobian in Examples 9.5.1 and 9.5.3 belong to
the algebra of functions that converge at infinity (see Example 9.3.2), and the
Jacobian in Example 9.5.2 belongs to the algebra of almost periodic functions
(see Example 9.3.3).

9.5.2 Necessity of uniformly bounded Jacobian

The assumption of uniform bounds on the Jacobian is not a mere technical as-
sumption. We illustrate this with a counterexample, which we have made as
simple as possible to allow explicit calculations.

Counterexample 9.5.1 (Blow-up of the Jacobian for a shear flow). Consider
the simplest example of a shear flow:

b̄(x1, x2) =
x2

0

 .
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An easy computation gives that the flow Φ generated by this vector field and its
Jacobian are given by

Φτ (x1, x2) =
x1 + τx2

x2

 , J(−τ, x) =
1 τ

0 1

 .
In particular, the Jacobian grows linearly in time.

Consider the parabolic problem on ]0, T [×R2 given by

∂uε

∂t
+ 1
ε
b̄(x1, x2) · ∇uε −∆uε = 0 (9.5.1)

(Note that this example does not have oscillating coefficients.) The posited asymp-
totic expansion (9.1.4) becomes in this case

uε(t, x1, x2) ≈ u0

(
t,
t

ε
, x1 −

x2t

ε
, x2

)
+ ε u1

(
t,
t

ε
, x1 −

x2t

ε
, x2

)
+ · · ·

and the cascade of equations (9.2.20) becomes

O(ε−2) : 0 = 0,

O(ε−1) : 0 = −∂u0

∂τ
,

O(ε0) : 0 = −∂u0

∂t
− ∂u1

∂τ
+ (1 + τ 2)∂

2u0

∂X2
1
− 2τ ∂2u0

∂X1∂X2
+ ∂2u0

∂X2
2
,

where the O(ε−2) equation is trivial due to the lack of oscillating coefficients.
But this cascade is only valid for times τ � ε−1/2, as at this value of τ the
(1 + τ 2) coefficient in the posited O(ε0) equation jumps order. To be a valid
asymptotic expansion for the parabolic problem (9.5.1), we require it to be valid
for τ ∈ [0, T/ε], i.e. up to O(ε−1) values of τ . This means that the posited
asymptotic expansion cannot be correct.

Indeed, the problem (9.5.1) can be explicitly solved using the Fourier transform.
Let (ξ1, ξ2) be Fourier variables corresponding to (X1,X2). Then an easy compu-
tation yields

ûε(t, ξ1, ξ2) = exp
(∫ t

0
−|ξ1|2 −

∣∣∣∣ξ2 −
s

ε
ξ1

∣∣∣∣2 ds
)
ûε(0, ξ1, ξ2),
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(where we have abused notation and used ·̂ to denote the Fourier instead of
Gelfand transform). The integrand in the above exponential converges pointwise
to −∞ as ε → 0 so long as sξ1 6= 0. Therefore, û → 0 almost everywhere in
[0, T ]×R2 as ε→ 0, and it follows from dominated convergence and Plancherel’s
theorem that uε → 0 strongly in L2([0, T ] × R2). So, not only is the asymptotic
expansion not correct, but the limit as ε→ 0 is trivial.

This counterexample illustrates a general phenomenon for shear flows, where the
convection enhances the diffusion (see for example [58] where this is considered
in detail for the more complicated case of cats eye flows, and [79, 40, 21] where
conditions under which the solution converges strongly to zero are studied). As a
consequence of this enhancement, the time scale on which diffusion is observed is
different and one should not expect to obtain a non-trivial limit in the scaling we
consider. We give a partial result to this effect below. The authors shall address
this problem in a forthcoming publication [89].

Proposition 9.5.1. Let the assumptions of Proposition 9.4.1 hold and uε be the
solution to (9.2.4a)-(9.2.4b). Let vε be the solution in Lagrangian coordinates,
i.e. vε(t,X) = uε(t,Φt/ε(X)). Let ξ ∈ Rd be a unit vector, and suppose that for
some (non-empty) open set A ⊂ Rd we have, for X ∈ A,

lim
τ→∞
|>J̃(τ,X)ξ| =∞. (9.5.2)

Then for any v0 a L2((0, T );H1(Rd))-weak limit of vε, we have ξ · ∇Xv0 = 0 on
(0, T )× A.

Remark 9.5.1. As the set A is independent of the choice of initial data uin, the
initial data can be chosen so that v0 6∈ C([0, T ];L2(Rd)), and in particular so that
v0 does not solve a ‘nice’ parabolic PDE with this initial datum.

Proof. Without loss of generality we can assume that A is bounded, and by
applying Egorov’s theorem it is sufficient to prove the claim for Ameasurable with
the limit (9.5.2) uniform on A. By converting (9.4.1) to Lagrangian coordinates,
we have the estimate

∫∫
(0,T )×Rd

|>J̃(t/ε,X)∇Xv
ε(t,X)|2 dXdt ≤ C
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with C only depending on uin. Let t0 ∈ (0, T ) be arbitrary, and define

θ(ε) = inf
X∈A,τ≥t0/ε

|>J̃(τ,X)ξ|2,

so that θ(ε)→∞ as ε→ 0. Then we have
∫∫

(t0,T )×A

|ξ · ∇Xv
ε(t,X)|2 dXdt ≤ θ(ε)−1

∫∫
(t0,T )×A

|>J̃(t/ε,X)ξ|2|ξ · ∇Xv
ε(t,X)|2 dXdt

≤ θ(ε)−1
∫∫

(t0,T )×A

|>J̃(t/ε,X)∇Xv
ε(t,X)|2 dXdt

≤ θ(ε)−1
∫∫

(0,T )×Rd

|>J̃(t/ε,X)∇Xv
ε(t,X)|2 dXdt

≤ Cθ(ε)−1.

That ξ · ∇Xv0 = 0 on (t0, A) follows from upper semi-continuity under weak
convergence. That this holds for (0, T )× A follows as t0 was arbitrary.

9.5.3 Flow representations of coefficients

The main assumptions upon the coefficients b(x, y) and D(x, y) is their flow
representations b̃(τ,X, y) and D̃(τ, x, y) belong to some fixed algebra w.m.v. A.
The reason we require this is to ensure that we obtain a single unique homogenized
equation. This is in contrast to the uniform bounds on the Jacobian, which as
described above, we require in order to be sure that we can obtain any non-
trivial limit. We illustrate the non-uniqueness phenomenon with the following
counterexample. We remark that, again, the difficulty is present without any
rapid spatial oscillations, or complicated mean flows.

Counterexample 9.5.2 (Non-uniqueness of the limit). Consider the 1 + 1 di-
mensional parabolic problem on ]0, T [×R given by

∂uε

∂t
+ 1
ε

∂uε

∂x
− ∂

∂x

(
D(x)∂u

ε

∂x

)
= 0, (9.5.3)
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where D(x) is given by

D(x) =

1 if |x| ∈ [2(2n)2
, 2(2n+1)2) for some integer n ≥ 0,

2 otherwise.
(9.5.4)

(Note that although this function D is not continuous, the example could be easily
modified to have D ∈ C∞.) The corresponding mean flow field b̄ and its flow and
Jacobian are given by

b̄(x) = 1, Φτ (x) = x+ τ, J(τ, x) = 1,

i.e. we are in the constant drift case. The posited asymptotic expansion (9.1.4)
becomes

uε(t, x1, x2) ≈ u0

(
t,
t

ε
, x− t

ε

)
+ u1

(
t,
t

ε
, x− t

ε

)
+ · · ·

and the cascade of equations (9.2.20) is

O(ε−2) : 0 = 0,

O(ε−1) : 0 = −∂u0

∂τ
,

O(ε0) : 0 = −∂u0

∂t
− ∂u1

∂τ
+ ∂

∂X

(
D̃(τ,X)∂u0

∂X

)
,

where the simplicity of the equations is due to the lack of fast spatial oscillations,
and the flow representation of D is given by

D̃(τ,X) = D(X + τ).

Unlike in the previous Counterexample 9.5.1, there is nothing obviously wrong
with this asymptotic expansion. The problem comes when we try to average the
O(ε0) equation in the fast time variable τ . Consider the limit

(MD̃)(X) = lim
l→∞

1
2l

∫ l

−l
D̃(τ,X) dτ.
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We claim that this limit does not exist. Indeed, let ln = 2(2n)2 then for n ≥ 1,
∣∣∣∣∣ 1
2ln

∫ ln

−ln
D̃(τ, 0) dτ − 2

∣∣∣∣∣ ≤ 2 · 2(2n−1)2

2 · 2(2n)2 = 2−4n+1 → 0 as n→∞, (9.5.5)

as the contribution from |τ | ∈ [2(2n−1)2
, 2(2n)2) dominates. Similarly, for l′n =

2(2n−1)2 we obtain
lim
n→∞

1
2l′n

∫ l′n

−l′n
D̃(τ, 0) dτ = 1.

Thus the limit l→∞ depends upon the choice of sequence.

We remark that, as a consequence, D̃, cannot belong to any algebra w.m.v., and
therefore none of our results apply to this problem.

One might think that the failure of the asymptotic expansion in the above coun-
terexample could be rectified by some smarter choice of expansion. However,
this is not the case. For this counterexample it is impossible to obtain a unique
homogenised equation as we will now show.

Proposition 9.5.2. Let vε(t,X) = uε(t,X + t/ε) where uε solves the problem
(9.5.3) in Counterexample 9.5.2 with initial data uin ∈ L2(R). Then there are two
sequences ε→ 0 and ε′ → 0 such vε ⇀ u0 and vε′ ⇀ u′0 weakly in L2([0, T ]×R),
which solve the homogenised problems

∂u0

∂t
− ∂2u0

∂X2 = 0, and ∂u′0
∂t
− 2∂

2u′0
∂X2 = 0, (9.5.6)

with u0(0,X) = u′0(0,X) = uin(X), which are different equations.

Proof. Without loss of generality let T = 1. Define εn = 1/ln and ε′n = 1/l′n for
ln = 2(2n)2 and l′n = 2(2n−1)2 as in Counterexample 9.5.2. We will first show that
the following strong convergences

D̃(t/εn,X)→ 2, and D̃(t/ε′n,X)→ 1,

hold in L2
loc([0, 1]× R) as n→∞. Indeed, let K ∈ (0,∞) be arbitrary, then,

∫ 1

0

∫ K

−K
|D̃(t/εn,X)− 2|2 dtdX =

∫ K

−K

∫ Tn(X)

0
|D(X + t/εn)− 2|2 dtdX + 0 (9.5.7)
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where Tn(X) is chosen as the solution of X + Tn(X)/εn = 2(2n−1)2 (or 0 if this is
negative) so that D(X + t/ε) = 2 for t ∈ [Tn, 1]. Hence

Tn(X) = 2(2n−1)2−4n2 + Xεn ≤ 2−4n+1 +Kεn → 0 as n→∞,

and the convergence of (9.5.7) to zero follows easily. The proof that D̃(t/ε′n)
converges to 1 is similar, where instead Tn(X) is chosen so that D(X + t/ε′n) = 1
for t ∈ [Tn(y), 1].

We will now show the convergence vεn to u0. The argument for vε′n is analogous,
using instead the convergence of D̃(t/ε′n) → 2, and we leave it to the reader.
Straight forward estimates allow us to pass to a subsequence nk on which vεnk (t,X)
and ∂vεnk

∂X
converge L2([0, 1]×R)-weak to limits u0 and ∂u0

∂X
as k →∞. Uniqueness

of solutions of the equation for u0 will later show that vεn → u0 as n→∞, i.e. the
original sequence converges. We abuse notation and keep the original sequence.
Writing (9.5.3) in (t,X) = (t, x− t/ε) coordinates, multiplying by a test function
ϕ(t,X) and integrating by parts, we obtain

∫ ∞
−∞

ϕ(0,X)uin(0,X) dX −
∫ 1

0

∫ ∞
−∞

∂ϕ

∂t
(t,X)vεn(t,X) dtdX

+
∫ 1

0

∫ ∞
−∞

D̃(t/εn,X)∂ϕ
∂X

(t,X)∂v
εn

∂X
(t,X) dXdt = 0.

By the weak convergences of vεn → u0, ∂vεn

∂X
→ ∂u0

∂X
, the strong convergence

D̃(t/εn,X)→ 2 and the compact support of ϕ we can pass to the limit as n→∞
in each of these terms to obtain the weak formulation of the equation (9.5.6) for
u0.

We remark that, although the above counterexample features bad behaviour in
the diffusion coefficient, similar examples could be constructed where the unde-
sirable behaviour is in the drift term b̄ (or b) or the Jacobian J . The issue here is
the appearance of the spatial scale x = O(ε−1) in the problem due to the O(ε−1)
mean drift. Such a scale is not present when the average convection is zero, i.e.
b̄ = 0, even in the convection dominated regime. This additional spatial scale
is exploited in the choice of diffusion coefficient (9.5.4), which exhibits different
behaviour at a sequence of spatial scales tending to infinity.
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Next we show that this bad behaviour is a problem only at infinity, in the sense
that if the trajectories of Φ are bounded, then our assumptions always hold.

Proposition 9.5.3. Let Assumption 9.2.1 hold. Then exactly one of the following
hold:

(i) Φτ has bounded orbits, i.e. for any x the set {Φτ (x) : τ ∈ R} is bounded.

(ii) Φτ converges to infinity, i.e. for any x we have |Φτ (x)| → ∞ as |τ | → ∞.

Let AP denote the algebra of almost-periodic functions (Example 9.3.3). In each
respective case the following also holds:

(i) Φt is uniformly almost-periodic, i.e. Φt(x) ∈ [C(Rd;AP)]d. For every
f(x, y) ∈ C(Rd × Td), the flow-representation is uniformly almost-periodic,
i.e. f̃ ∈ C(Rd×Td;AP). If additionally J(τ, x) is uniformly continuous on
R ×K for each compact set K ⊂ Rd, then J and J̃ are uniformly almost-
periodic, i.e. J, J̃ ∈ [C(Rd;AP)]d×d.

(ii) Let f ∈ C(Rd × Td) converge to a limit as |x| → ∞, i.e. lim|x|→∞ f(x, y)
exists and is finite for each y ∈ Td. Then for each x, y ∈ Rd×Td, the flow-
representation f̃(·, x, y) belongs to the algebra of functions that converge at
infinity (Example 9.3.2).

Remark 9.5.2. The almost-periodicity of the Jacobian of an (locally) uniformly
almost-periodic flow is a subtle issue as there are uniformly almost-periodic func-
tions whose derivative is not uniformly almost-periodic. The assumption in (i)
that J is uniformly continuous is to side steps this issue.

To prove this proposition we have need a definition.

Definition 9.5.1 (Equicontinuous flow). A one-parameter group φτ of home-
omorphisms of K ⊆ Rd is equicontinuous if for any ε > 0 and x ∈ K there
is a δ = δ(x, ε) such that whenever |x′ − x| ≤ δ and x′ ∈ K it holds that
|φτ (x)− φτ (x′)| ≤ ε for all τ ∈ R.

Proof of Proposition 9.5.3. We first prove the dichotomy. Let x ∈ Rd be fixed.
We first claim that either |Φτ (x)| → ∞ as |τ | → ∞ or its orbit is bounded.
Suppose |Φτ (x)| 6→ ∞ as |τ | → ∞, then there must be a compact setK containing
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x and a sequence of times τn with |τn| → ∞ as n→∞ and Φτn(x) ∈ K. Without
loss of generality let 0 < τ1 < τ2 · · · . By integrating Assumption 9.2.1, for any
n ≥ 1 it holds that

sup
τn≤τ≤τn+1

|Φτ (x)− Φτ−τn(x)| ≤ C|Φτn(x)− x| ≤ C diam(K)

and hence the forward orbit is bounded. We now claim that the backwards orbit
is also bounded. Indeed, let s > 0 be arbitrary, then, using Assumption 9.2.1
once more we have

|Φ−s(x)− x| = |Φ−s(x)− Φ−s(Φs(x))| ≤ C|x− Φs(x)|

and the right hand side is bounded uniformly in s > 0.

We have shown that the dichotomy holds for some fixed x, but this together with
Assumption 9.2.1 imply that the same dichotomy holds for all x. Indeed, consider
the orbit starting from an arbitrary x′, then

sup
τ∈R
|Φτ (x)− Φτ (x′)| ≤ C|x− x′| <∞

which we obtain by again integrating Assumption 9.2.1. This implies that if the
orbit of x is bounded (resp. converges to infinity) then the orbit of x′ is bounded
(resp. converges to infinity).

We now prove the claims, starting with (i). Let R > 0 be arbitrary, then the set

KR = {Φτ (x) : τ ∈ R, |x| ≤ R}

is invariant under Φτ and compact. Moreover, the KR are nested and cover Rd.
It is thus sufficient to prove the claims on KR. Note that (Φτ , K, | · |) is a com-
pact dynamical system, and Assumption 9.2.1 implies that it is equicontinuous
in the sense of the above definition. It is a classical result of topological dynam-
ical systems (see e.g. [56]) that for compact dynamical systems the property of
equicontinuity is equivalent to being uniformly almost-periodic, in the sense that
Φτ (x) ∈ [C(KR;AP)]d. Now suppose that f ∈ C(Rd × Td), then f is uniformly
continuous on KR×Td as this set is compact. Moreover, as KR is invariant under
Φτ the function f̃(τ, x, y) restricted to x ∈ KR depends only on f restricted to
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KR×Td. Hence f̃(τ, x, y) = f(Φτ (x), y) (restricted to x ∈ KR) is the composition
of a uniformly continuous function and a uniformly almost-periodic function, and
is uniformly almost-periodic. Finally, suppose that J is uniformly continuous on
R×KR, then the difference quotients defined for any unit vector ξ ∈ Rd, by

Jh(τ, x)ξ = Φ−τ (x+ hξ)− Φ−τ (x)
|h|

converge in [C(KR/2 × R)]d as R 3 h → 0 to J(τ, x)ξ. As both terms in the
difference quotient are uniformly almost-periodic the limit is also. That J̃ is
uniformly almost-periodic can be proved in the same way.

Now we prove the claim for (ii). Let f(x, y) ∈ C(Rd × Td) be as assumed and
converge to g(y) as |x| → ∞. Clearly f̃(τ, x, y) → g(y) as |τ | → ∞, it only
remains to show that f̃ is uniformly continuous. To this end, note that f is
continuous on Rd×T where Rd is the one-point compactification of Rd. As this set
is compact, f is uniformly continuous on this set. Moreover, as Φτ (x) is uniformly
continuous from R×Rd to Rd, the composition f̃ is uniformly continuous, which
completes the proof of the proposition.

9.6 Applications to other models

In this section, we consider some explicit models and perform the asymptotic
analysis using the Σ-Φτ convergence.

9.6.1 Lagrangian coordinates

For a smooth fluid field b̄(x) ∈ C1(Rd;Rd) and diffusion coefficient D(x) ∈
L∞(Rd;Rd×d), consider the Cauchy problem with large convection term

∂uε

∂t
+ 1
ε
b̄(x) · ∇uε −∇ ·

(
D(x)∇uε

)
= 0 for (t, x) ∈ ]0, T [×Rd. (9.6.1)

Let Φτ (x) be the flow associated with the vector field b̄(x). As Remark 9.3.3
suggests, we consider the Σ-Φτ convergence with no oscillations in space, i.e.
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with test functions ψ
(
t,Φ−t/ε(x), t

ε

)
:

lim
ε→0

∫∫
(0,T )×Rd

uε(t, x)ψ
(
t,Φ−t/ε(x), t

ε

)
dx dt =

∫∫∫
(0,T )×Rd×∆(A)

u0(t,X, s)ψ(t.X, s) dβ(s) dX dt.

(9.6.2)

An argument similar to the proof of Lemma 9.4.3 implies that the above limit
function u0 is independent of the s variable. As done earlier in Section 9.4, we
need to pass to the limit (as ε→ 0) in the weak formulation

−
∫∫

(0,T )×Rd

uε(t, x)∂ψ
∂t

(
t,Φ−t/ε(x)

)
dx dt−

∫
Rd

uin(x)ψ(0, x) dx

+
∫∫

(0,T )×Rd̃

D
(
t

ε
,Φ−t/ε(x)

)
∇uε(t, x) · >J̃

(
t

ε
,Φ−t/ε(x)

)
∇Xψ

(
t,Φ−t/ε(x)

)
dx dt = 0.

From the Assumption 9.4.3 on the diffusion coefficient D(x) and the Assump-
tion 9.4.4 on the Jacobian matrix J(τ, x), it follows that the product expression
>D(τ, x)>J(τ, x)∇Xψ(t,X) is an admissible test function in the sense of Defini-
tion 9.3.8. Hence, passing to the limit yields

−
∫∫

(0,T )×Rd

u0(t,X) dX dt−
∫
Rd

uin(X) dX

+
∫∫∫

(0,T )×Rd×∆(A)

̂̃
J(s,X)̂̃D(s,X)>̂J̃(s,X)∇Xu0(t,X) · ∇Xψ(t,X) dβ(s) dX dt = 0.

Remark 9.6.1. In the above computation, passing to the limit as ε → 0 using
Σ-Φτ convergence amount to arrive at a limit equation which is in Lagrangian
coordinates

∂u0

∂t
−∇X ·

(
D(X)∇Xu0

)
= 0

where the diffusion coefficients are given by

D(X) =
∫

∆(A)

̂̃
J(s,X)̂̃D(s,X)>̂J̃(s,X) dβ(s).
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9.6.2 Fluid field with O(ε) perturbation

In a next transport model, we consider a smooth fluid field with a particular
structure

b
(
x,
x

ε

)
= h

(
x

ε

)
+ εh1

(
x,
x

ε

)
. (9.6.3)

The convection-diffusion equation the we consider is

∂uε

∂t
+ 1
ε
h
(
x

ε

)
· ∇uε + h1

(
x,
x

ε

)
· ∇uε −∇·

(
D
(
x

ε

)
∇uε

)
= 0

for (t, x) ∈ (0, T )× Rd.
(9.6.4)

As only the field h
(
x
ε

)
is of O(ε−1) in (9.6.4), we need to consider the flow

associated with the mean field

h∗ :=
∫
Td

h(y) dy, i.e. Φτ (x) = x+ h∗τ.

This suggests the use of two-scale convergence with drift [140, 2]. The solution
family uε satisfies the uniform a priori bounds:

‖uε‖L2((0,T )×Rd) ≤ C; ‖∇uε‖L2((0,T )×Rd) ≤ C.

The compactness results in two-scale convergence with drift theory implies the
existence of u0 ∈ L2((0, T );H1(Rd)) and u1 ∈ L2((0, T )×Rd;H1(Td)) such that,
on a subsequence,

uε
2−scale−h∗−−−−−−⇀ u0(t, x);

∇uε 2−scale−h∗−−−−−−⇀ ∇xu0(t, x) +∇yu1(t, x, y).
(9.6.5)

The idea is indeed to pass to the limit in the weak formulation with

ψ

(
t, x− h∗t

ε

)
+ εψ1

(
t, x− h∗t

ε
,
x

ε

)

as test function which vanish at time instant t = T .
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−
∫∫

(0,T )×Rd

uε(t, x)∂ψ
∂t

(
t, x− h∗t

ε

)
dx dt

+
∫∫

(0,T )×Rd

uε(t, x)h∗ · ∇xψ1

(
t, x− h∗t

ε
,
x

ε

)
dx dt

+ 1
ε

∫∫
(0,T )×Rd

uε(t, x)
(
h∗ − h

(
x

ε

))
· ∇xψ

(
t, x− h∗t

ε

)
dx dt

+
∫∫

(0,T )×Rd

h1
(
x,
x

ε

)
· ∇uε(t, x)ψ

(
t, x− h∗t

ε

)
dx dt

+
∫∫

(0,T )×Rd

D
(
x

ε

)
∇uε(t, x) ·

(
∇xψ

(
t, x− h∗t

ε

)
+∇yψ1

(
t, x− h∗t

ε
,
x

ε

))
dx dt

+O(ε) = 0.

We can pass to the limit in almost all the terms in above expression except for
the fourth term on the left hand side. This is essentially because the product
h1 (x, y)ψ (t, x) does not form an admissible test function in the sense of Def-
inition 9.3.8. However, if we consider the flow representation of the fluid field
h1(x, y) and assume that h̃1(·, x, y) ∈ A for certain ergodic algebra w.m.v. A,
then the product h̃1(τ, x, y)ψ(t, x) forms an admissible test function in the sense
of Definition 9.3.8. Thus, using the notion of weak Σ-Φτ convergence, we can
prove the following result. The proof of which is a simple adaptation of the
calculations already present in Section 9.4. Hence is left to the reader.

Theorem 9.6.1. Suppose the flow representation of the fluid field h(x, y) belongs
to an ergodic algebra w.m.v. A. The two-scale with drift h∗ limits for the solution
family uε obtained in (9.6.5) satisfy the homogenized equation

∂u0

∂t
+ h(x) · ∇u0 −∇ ·

(
D∇u0

)
= 0 for (t, x) ∈ ]0, T [×Rd, (9.6.6)

where the convective field in the homogenized equation is given by

h(x) =
∫∫

∆(A)×Td

̂̃h1(s, x, y) dβ(s) dy (9.6.7)
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and the effective diffusion coefficient in the homogenized equation is given by

Dij =
∫
Td

D(y)
(
∇yωj(y) + ej

)
·
(
∇yωi(y) + ei

)
dy

for i, j ∈ {1, · · · , d} where the ωi solve the cell problem

h(y) · (∇yωi + ei)−∇y · (D(y) (∇yωi + ei)) = h∗ · ei in Td.

Remark that, due to particular choice of the fluid field (9.6.3), the field h1(x, x
ε
)

only contributes to the homogenized equation (9.6.6) via the convective field
(9.6.7) and not the effective diffusion coefficient. Only the fluid field of O(ε−1)
contribute the dispersive effects in the effective diffusion coefficient.

Remark also that even in the constant drift scenario, the previously known two-
scale convergence with drift developed in [140] has a handicap in dealing with
coefficients that depend on the macroscopic variable. Hence, the notion of weak
convergence developed in this work generalizes the known multiple scale tech-
niques (in the spirit of two-scale convergence of Nguetseng and Allaire) in ho-
mogenization theory to a great extent.

9.7 Conclusion

The structural assumption of periodicity (in the y variable) on the fluid field
b(x, y) made in the previous sections is for the sake of simplicity. We can indeed
develop a theory of Σ-convergence along flows (similar to the theory developed
in Section 9.3) under the assumption that the oscillations in space belong to
certain ergodic algebra with mean value. To be precise, suppose b(x, y) a smooth
fluid field which belongs to an ergodic algebra w.m.v. (say A1) in the y variable.
By the definition of algebra w.m.v. (precisely, property (iii) in Definition 9.3.1),
b(x, ·) ∈ A1 possesses a mean value, i.e.

b
(
x,
x

ε

)
⇀Mb(x) in L∞(Rd)-weak* as ε→ 0.
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In this scenario, we take the mean field b̄(x) = Mb(x) and consider the flow Φτ

associated with this mean field. To extend the notion of Σ-convergence along
flows (Definition 9.3.6), we need to essentially characterize the limit

lim
ε→0

∫∫
(0,T )×Rd

uε(t, x)ψ
(
t,
t

ε
,Φ−t/ε(x), x

ε

)
dx dt

where the test function ψ(t, τ, x, y) belongs to an ergodic algebra w.m.v. (say A2)
as a function of the fast time variable τ and belongs to an ergodic algebra w.m.v.
A1 as a function of the y variable. To prove compactness result, in the spirit of
Theorem 9.3.2, the approach is to consider the differentiation theory developed
in the context of algebras w.m.v. developed in [155, 156, 35, 176]. We also need
to approach it use the reiterated homogenization techniques as in [157]. The
effective diffusion matrix obtained under the periodicity assumption (see (9.4.6)-
(9.4.7)) is given in terms of the cell solutions obtained by solving elliptic problems
on a torus. In this general setting, however, the expressions for effective diffusion
shall involve solutions to some variational problems solved on the spectrum of
the algebra w.m.v., i.e. ∆(A1) (cf. the works of Nguetseng [155, 156]). This
potential theory of Σ-convergence along flows in a more general setting is quite
intricate and is left for future investigations.

As is evident from Section 9.5.3, even in the constant drift case, one can only ho-
mogenize the convection-diffusion problems in strong convection regime provided
the flow representation of the diffusion matrix belongs to an algebra w.m.v., i.e.
satisfies Assumption 9.4.3.

All along this article, we have considered time-independent coefficients. This
resulted in the study of autonomous ordinary differential systems (see (9.2.7)).
Considering flows associated with non-autonomous systems would be interest-
ing. But, the authors believe that the analysis would be very complicated and it
remains to be checked if we can get compactness results (in the spirit of Theo-
rem 9.3.2) for non-autonomous flows.

The assumption that the Jacobian matrices are bounded functions of the fast
time variable is quite non-generic (see Section 9.5). To lift this assumption would
require an enormous amount of work in the theory of Banach algebras. The
main difficulty is the appearance of new time scales (as is evident from the shear
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flow case considered in Counterexample 9.5.1). This problem largely remains to
be solved. A partial result in this direction shall be given by the authors in a
forthcoming publication [89].

Finally, the assumption of incompressibility on the fluid field has ensured that
the associated flows are volume preserving (see (iv) in Assumption 9.3.1). This
property of the flows has played an intricate role in our analysis, notably the proof
of Lemma 9.3.2. It is worth mentioning [22] where they have treated the homog-
enization of convection-diffusion problem in strong convection regime where the
fluid field is given by an harmonic potential. In the context of purely periodic
fluid fields, there are works that consider compressible flows and perform the ho-
mogenization of convection-diffusion problems in strong convection regime (see
[50, 4]). The approach is to employ a factorization principle to factor out oscil-
lations from the solution via principal eigenfunctions of an associated spectral
problem and to cancel any exponential decay in time of the solution using the
principal eigenvalue of the same spectral problem. This approach has not been
attempted in the literature for locally periodic coefficients.

9.A Appendix

In this section, we give the proof of Lemma 9.2.1 on some basic facts on the
flows.

Proof of Lemma 9.2.1. We prove each claim in turn.

(i) Let ϕ(X) ∈ C∞c (Rd;R) be an arbitrary test function and let the index i be
arbitrary. By the chain rule,

∂

∂xi

(
ϕ (Φ−τ (x))

)
=

d∑
j=1

∂ϕ

∂Xj
(Φ−τ (x)) ∂Φj

−τ

∂xi
(x).

Integrating over Rd yields:

0 =
∫
Rd

∂

∂xi
(ϕ (Φ−τ (x))) dx =

∫
Rd

d∑
j=1

∂ϕ

∂Xj
(Φ−τ (x)) ∂Φj

−τ

∂xi
(x) dx.
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Making the change of variables: X = Φ−τ (x), the above expression can be
successively written as

0 =
∫
Rd

d∑
j=1

∂ϕ

∂Xj
(X)∂Φj

−τ

∂xi
(Φτ (X)) dX =

∫
Rd

∇Xϕ(X) ·
(
J̃ji(τ,X)

)d
j=1

dX,

i.e. each column of J̃ is divergence free in the sense of distributions, proving
the claim.

(ii) We compute

∇X ·
(
J̃(τ,X)f̃(τ,X)

)
= f̃(τ,X) ·

(
∇X · >J̃(τ,X)

)
+ J̃(τ,X) : ∇X f̃(τ,X),

where : is the Frobenius inner product. The first term on the right hand side
vanishes thanks to (i). For the second term, we use the flow representation
to obtain

∇X ·
(
J̃(τ,X)f̃(τ,X)

)
= J̃(τ,X)J(−τ,X) : ∇xf(Φτ (X), y).

Thanks to the autonomy of the flow, the left side of the Frobenius product is
the identity matrix. Therefore the above display vanishes as f is divergence
free.

(iii) Performing an integration by parts, we have:
∫
Rd

φ(X)
(
>J̃(τ,X)∇Xϕ(X)

)
dX

= −
∫
Rd

φ(X)ϕ(X)
(
∇X · >J̃(τ,X)

)
dX −

∫
Rd

ϕ(X)
(
>J̃(τ,X)∇Xφ(X)

)
dX.

The first term on the right hand side of the previous expression vanishes,
thanks to (i). Hence, we have proved the result.

(iv) Consider the time derivatives for the i-th component:

d
dτ b̄i (Φ−τ (x)) = −b̄ (Φ−τ (x)) · ∇Xb̄i (Φ−τ (x)) (9.A.1)
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and

d
dτ

 d∑
j=1

Jij(τ, x)b̄j(x)
 = d

dτ

 d∑
j=1

∂Φi
−τ

∂xj
(x)b̄j(x)


= −

d∑
j=1

∂

∂xj

(
b̄i (Φ−τ (x))

)
b̄j(x).

(9.A.2)

The relation in (9.A.2) can be continued as

d
dτ

 d∑
j=1

Jij(τ, x)b̄j(x)
 = −

d∑
j,k=1

∂b̄i
∂Xk

(Φ−τ (x)) ∂Φk
−τ

∂xj
(x)b̄j(x)

= −∇Xb̄i (Φ−τ (x)) ·
(
J(τ, x)b̄(x)

)
.

(9.A.3)

Fix x ∈ Rd and define

gi(τ) := b̄i (Φ−τ (x))−
 d∑
j=1

Jij(τ, x)b̄j(x)
 . (9.A.4)

Then, from (9.A.1) and (9.A.3), we have:

d
dtgi(τ) = −∇Xb̄i (Φ−τ (x)) · g(τ).

As g(0) = 0, a Grönwall type argument yields g(τ) = 0. Hence the result.
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