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SUMMARY

HIV-1 encodes four ‘‘accessory proteins’’ (Vif, Vpr,
Vpu, and Nef), dispensable for viral replication
in vitro but essential for viral pathogenesis in vivo.
Well characterized cellular targets have been associ-
ated with Vif, Vpu, and Nef, which counteract host re-
striction and promote viral replication. Conversely,
although several substrates of Vpr have been
described, their biological significance remains un-
clear. Here, we use complementary unbiased mass
spectrometry-based approaches to demonstrate
that Vpr is both necessary and sufficient for the
DCAF1/DDB1/CUL4 E3 ubiquitin ligase-mediated
degradation of at least 38 cellular proteins, causing
systems-level changes to the cellular proteome. We
therefore propose that promiscuous targeting of
multiple host factors underpins complex Vpr-depen-
dent cellular phenotypes and validate this in the case
of G2/M cell cycle arrest. Ourmodel explains howVpr
modulates so many cell biological processes and
why the functional consequences of previously
described Vpr targets, identified and studied in isola-
tion, have proved elusive.

INTRODUCTION

The HIV-1 ‘‘accessory proteins’’ Vif, Vpr, Vpu, and Nef function

by binding host proteins and recruiting them to cellular degrada-

tion machinery, resulting in depletion of these target substrates

(Matheson et al., 2016; Simon et al., 2015; Sugden et al., 2016;

Sumner et al., 2017). Some targets of Vif, Vpu, and Nef,

such as APOBEC3 family members, Tetherin, and SERINC3/

SERINC5, are dominantly acting viral restriction factors, and

their degradation is therefore thought to directly enhance in vivo

viral replication. Conversely, the role of Vpr in enhancing viral

replication remains unclear.
Ce
This is an open access article und
Unlike other accessory proteins, Vpr is packaged into

nascent viral particles and delivered into newly infected cells,

and it is therefore present in the earliest stages of the viral

replication cycle. Although Vpr does not enhance in vitro viral

replication in most experimental systems, a number of cellular

phenotypes have been ascribed to it; it has been described

as an ‘‘enigmatic multitasker’’ (Guenzel et al., 2014). For

example, expression of Vpr has variously been reported to

cause arrest of cycling cells at the G2/M phase, apoptosis,

enhancement of HIV gene expression, and stimulation or inhibi-

tion of key signaling pathways such as nuclear factor kB

(NF-kB) and nuclear factor of activated T cells (NFAT) (Ayyavoo

et al., 1997; Felzien et al., 1998; Lahti et al., 2003; Re et al.,

1995; Roux et al., 2000).

Although the mechanisms by which Vpr causes such complex

effects is controversial, most reports agree that they depend on

Vpr interacting with a cellular E3 ligase complex containing

DCAF1, DDB1, and Cul4 (Dehart and Planelles, 2008; Le Rouzic

et al., 2007). As with the other accessory proteins, Vpr is there-

fore presumed to function by recruiting cellular factors to this

E3 ligase complex, resulting in their subsequent degradation.

Accordingly, several host factors depleted by Vpr have been

identified, but their connection to Vpr-associated cell biological

phenotypes is generally unclear, as is their role in regulating viral

replication in vivo (Hofmann et al., 2017; Hrecka et al., 2016; La-

guette et al., 2014; Lahouassa et al., 2016; Lv et al., 2018;

Maudet et al., 2013; Romani et al., 2015; Schröfelbauer et al.,

2005; Zhou et al., 2016).

We previously used unbiased quantitative proteomics to

map temporal changes in cellular protein abundance during

HIV infection of CEM-T4 T cells and identify targets of Vpu

(SNAT1), Nef (SERINC3/5), and Vif (PPP2R5A-E) (Greenwood

et al., 2016; Matheson et al., 2015). Nonetheless, known acces-

sory protein targets only account for a tiny fraction of all HIV-

dependent protein changes observed in our experiments

(Greenwood et al., 2016). Given the varied cell biological pheno-

types ascribed to Vpr, we hypothesized that it may be respon-

sible for some of the remaining changes. Therefore, in this study,

we undertake a comprehensive analysis of the effects of Vpr on
ll Reports 27, 1579–1596, April 30, 2019 ª 2019 The Authors. 1579
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Figure 1. Proteomic Analysis of the Effect of Vpr in HIV Infection

(A) Graphical summary of the HIV and DVpr HIV infection TMT experiment.

(B) Fluorescence-activated cell sorting (FACS) plots showing quantification of infection in an example replicate for each of the three conditions. Infected cells lose

CD4 expression and become GFP-positive.

(C) Scatterplots displaying pairwise comparisons between wild type,DVpr, andmock-infected cells. Each point represents a single protein, with HIV proteins and

host proteins of interest highlighted with different symbols (see key).

(D) Principal-component analysis of the samples in this experiment, with wild-type infected (red), DVpr (blue), and mock-infected (gray) replicates.

See also Table S1.
the cellular proteome of HIV-1-infected cells and combine this

with further unbiased approaches to identify cellular proteins

directly targeted and degraded by Vpr. Our data suggest a

model for the effects of Vpr on cells in which promiscuous target-

ing of host factors distinguishes it from other HIV accessory

proteins.

RESULTS

Vpr Is Required for Global Proteome Remodeling in
HIV-Infected Cells
First, we compared total proteomes of uninfected CEM-T4

T cells with cells infected with either wild-type (WT) HIV or an

HIV Vpr deletion mutant (HIV DVpr) at an infectious MOI of 1.5
1580 Cell Reports 27, 1579–1596, April 30, 2019
(Figure 1A), resulting in approximately 75% infection (Figure 1B).

Data from this experiment are available, together with the other

proteomics datasets presented here, in a readily searchable

interactive format in Table S1. As expected, among the 7,774

quantitated proteins, we observed widespread changes in cells

infected with wild-type HIV (Figure 1C left panel). Together with

known Nef, Vpu, and Vif targets, we saw depletion of previously

reported Vpr targets, including HLTF (Hrecka et al., 2016;

Lahouassa et al., 2016), ZGPAT (Maudet et al., 2013), MCM10

(Romani et al., 2015), UNG (Schröfelbauer et al., 2005), TET2

(Lv et al., 2018), and MUS81 and EME1 (Laguette et al., 2014;

Zhou et al., 2016). DCAF1, part of the ligase complex used by

Vpr to degrade targets, was also depleted, consistent with a pre-

vious report (Lapek et al., 2017).



In HIV DVpr infection (Figure 1C, right panel), depletion of Nef,

Vpu, and Vif targets was maintained. Remarkably, as well as

abolishing depletion of known Vpr targets, almost all of the pre-

viously uncharacterized protein changes were also reduced or

abolished in HIV DVpr infection. Although 1,940 proteins

changed significantly (q < 0.01) in wild-type HIV-infected cells,

only 45 significant changes occurred in cells infected with HIV

DVpr. Indeed, principal-component analysis showed that cells

infectedwith the HIVDVpr virus aremore similar on the proteome

level to uninfected cell than to cells infected with the wild-type

virus (Figure 1D).

Incoming Vpr Protein Alone Drives Global Cellular
Proteome Remodeling
Because Vpr enhances the expression of other viral proteins

(Forget et al., 1998; Goh et al., 1998; Figure 1C), differences be-

tween wild-type and DVpr viruses could potentially be explained

by secondary changes in expression levels of other proteins or

different rates of progression of wild-type and DVpr viral infec-

tion. To eliminate these potential confounders, we next exam-

ined the effect of Vpr acting alone. Unlike other HIV-1 accessory

proteins, Vpr is specifically packaged into nascent viral particles.

We therefore repeated our proteomics analysis using CEM-T4

T cells exposed to lentiviral particles lacking or bearing Vpr in

the presence of reverse transcriptase inhibitors (RTis). This

approach excludes all de novo viral protein expression, focusing

on changes induced by incoming Vpr delivered directly by virions

(Figure 2A). For these experiments, cells were exposed to viral

particles at an infectious MOI of 0.5 (determined in the absence

of RTis).

Strikingly, changes induced by Vpr-containing viral particles

phenocopied the Vpr-dependent proteome remodeling seen in

HIV infection (Figure 2B) with a high degree of correlation (r2 =

0.67; Figure 2C). Taking both experiments together, Vpr is both

necessary and sufficient to cause significant (q < 0.01) depletion

of at least 302 proteins and upregulation of 413 (highlighted in

blue and red, respectively, in Figure 2C). This is a stringent false

discovery rate, and, in practice, the number of Vpr-dependent

changes is almost certainly even higher. Where antibodies

were available, we confirmed a proportion of these changes by

immunoblot (Figure 2D).

Cellular Proteome Remodeling Requires Interaction
with DCAF1 and Cellular Substrates
Although the function or functions of Vpr remain controversial, in

all phenotypic descriptions, Vpr activity is dependent on the

interaction between Vpr and the DCAF1/DDB1/Cul4 ligase com-

plex, recruitment of which results in ubiquitination and degrada-

tion of known Vpr targets by the ubiquitin-proteasome system

(Dehart and Planelles, 2008). Therefore, in addition to testing

the effect of wild-type Vpr protein, we tested a number of previ-

ously describedmutant Vpr variants (Figure 2A). Figure 2E shows

an immunoblot of the Vpr protein delivered in the viral particles

(top panel) and the abundance of Gag-Pol peptides in the cellular

lysate at 48 h determined from the tandem mass tag (TMT)

mass spectrometry (MS) experiment. Incoming Vpr alone was

sufficient to cause arrest at G2/M, as described previously

(Poon et al., 1998), and Figure 2F shows 7-aminoactinomycin
D (7-AAD) DNA staining to determine the extent of G2/M arrest

under each condition. Visualizations of the proteome remodeling

caused by each mutant are shown in Figures 2G and 2H.

Because the Q65 residue of Vpr is required for the interaction

with DCAF1 (Le Rouzic et al., 2007), we first compared proteome

changes caused by a Q65R Vpr mutant with wild-type Vpr. As

predicted, Q65R Vpr was almost completely inactive (Figures

2G and 2H). We recapitulated this finding by comparing the

effects of wild-type Vpr in control cells or cells depleted of

DCAF1 (Figure S1A). Short hairpin RNA (shRNA)-mediated

depletion of DCAF1 resulted in an approximately 50% reduction

in protein abundance of DCAF1 (Figure S1B). Because a propor-

tion of cellular DCAF1 was still expressed, known Vpr effects,

including degradation of HLTF and upregulation of CCNB1,

were partially rather than completely inhibited (Figure S1C).

Consistent with this, Vpr-mediated changes were broadly

reduced in magnitude in DCAF1 knockdown cells (Figure S1D).

Thus, as with depletion of known Vpr targets, extensive Vpr-de-

pendent proteomic remodeling is dependent on the interaction

of Vpr with its cognate DCAF1/DDB/Cul4 ligase. Importantly,

depletion of DCAF1 alone did not phenocopy Vpr-mediated pro-

teome remodeling, and the widespread effects of Vpr are there-

fore unlikely to result from sequestration and/or depletion of

DCAF1.

Residues E24, R36, Y47, D52, and W54 of Vpr are also

required for recruitment and degradation of previously described

Vpr targets and have been reported to form the substrate-bind-

ing surface (Hrecka et al., 2016; Selig et al., 1997; Wu et al.,

2016). In particular, Y47, D52, and W54 make up the proposed

DNA-mimicking motif by which Vpr binds the cellular target

UNG2 (Wu et al., 2016). In agreement, the VprE24R, R36P and

VprW54R mutants showed attenuated remodeling of the prote-

ome, whereas a triple mutant, VprY47A, D52A, W54R, was defective

for almost all Vpr-dependent protein changes (Figures 2G and

2H). Global protein remodeling therefore depends on both the

substrate binding surfaces of Vpr and recruitment of DCAF1,

suggesting that this process is mediated by recruitment of Vpr

substrates to the DCAF1/DDB1/CUL4 E3 ligase complex and

their subsequent degradation.

Vpr causes G2/M arrest in cycling cells, but themechanism re-

mains contentious (Belzile et al., 2010; Berger et al., 2015; Fre-

goso and Emerman, 2016; Goh et al., 1998; Höhne et al., 2016;

Laguette et al., 2014; Liang et al., 2015; Re et al., 1995; Romani

et al., 2015; Terada and Yasuda, 2006), as is the connection to

the replicative advantage Vpr provides in vivo. To investigate

this important issue, we took advantage of previously character-

ized Vpr mutants. Residue S79 of Vpr is required for Vpr-depen-

dent cell cycle arrest (Zhou and Ratner, 2000; Figure 2F). Of the

othermutants we tested, VprQ65R and VprY47A, D52A, W54R are also

unable to cause G2/M arrest, VprE24R, R36P had an intermediate

phenotype, and VprW54R caused G2/M arrest at wild-type levels

(Figure 2F). Strikingly, most Vpr-dependent protein changes

were also observed with the VprS79A mutant (Figures 2G and

2H) and are therefore independent of G2/M cell cycle arrest.

The presence or absence of G2/M arrest was also a poor corre-

late of proteomic remodeling across the entire panel of mutants.

Cell cycle arrest therefore only explains a minority of Vpr-depen-

dent changes (Figures 2G and 2H).
Cell Reports 27, 1579–1596, April 30, 2019 1581
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To confirm this finding, we examined published datasets

describing proteins increased or depleted during different

phases of the cell cycle or in chemically G2/M-arrested cells

(Fischer et al., 2016; Ly et al., 2015; Figure S2). Compared with

cells exposed to Vpr in our study, cells arrested in G2 using a

PLK1 inhibitor showed similar regulation of the cyclin family of

proteins (Figure S2B), but there was little other correlation be-

tween these datasets. Thus, although some changes in protein

levels induced by Vpr may be explained by the effects of cell cy-

cle arrest, proteins regulated by the cell cycle in these datasets

only account for a minority of Vpr-dependent changes (Figures

S2A, S2C, and S2D).

Vpr Directly Targets Multiple Nuclear Proteins with
Nucleic Acid Binding Activity
Vpr has nuclear localization, and all reported direct Vpr targets

are nuclear proteins. Primary Vpr targets are therefore predicted

to be nuclear. Conversely, secondary effects resulting from, for

example, transcriptional changes should be distributed across

the cell. Analysis of the 302 proteins depleted by Vpr revealed

profound enrichment for proteins that reside in the nucleus

(>80%) (Figure 3A, left). This raised the possibility that a signifi-

cant proportion of proteins depleted by Vpr are directly targeted

by Vpr because secondary effects should not be limited to the

nucleus. Consistent with this hypothesis, proteins upregulated

by Vpr (Figure 3A, right), which are all predicted to be secondary

indirect effects, were distributed across multiple compartments.

Furthermore, proteins depleted by Vpr were enriched (>70%) for

nucleic acid binding activity (Figure 3B, left). Vpr associates with

DNA-binding proteins such as UNG via a substrate-binding sur-

face that mimics DNA (Wu et al., 2016). Thus, rather than target-

ing a small number of cellular proteins for degradation, Vpr may

have a much wider range of direct targets, and the structure of

the substrate binding surface suggests a possible mechanism

for promiscuous recruitment of DNA- and RNA-binding cellular

proteins.

To identify proteins targeted directly by Vpr, we first adopted a

co-immunoprecipitation approach (Figure 3C). CEM-T4 T cells

were transduced with a 33 hemagglutinin (HA)-tagged Vpr lenti-

virus in the presence of an shRNA to DCAF1 and the pan-cullin
Figure 2. Analysis of the Nature of Vpr-Mediated Proteome Remodelin

(A) Graphical summary of the Vpr viral particle TMT experiment. Three replicates o

single replicates of cells exposed to viral particles bearing five different Vpr muta

(B) Scatterplot displaying pairwise comparison between cells exposed to empty

(C). Scatterplot comparing pairwise comparisons from two proteomics experime

shown in Figure 1A) or through cellular exposure to Vpr protein alone (y axis,

immunoblot in (D).

(D) Immunoblot of selected proteins in CEM-T4 T cells transduced with an empt

(E) Top: immunoblot of purified virus preparations used to infect cells for the pr

reduce the affinity of antibody binding. Bottom: bar chart showing the average sc

lysate by MS. Bars show mean and SD.

(F) 7-AAD stain of cells exposed to empty vector, Vpr wild-type, or Vpr mutants.

G2/M (red) phase.

(G) Scatterplots showing pairwise comparison of each Vpr mutant tested and em

proteins highlighted in blue and red, respectively.

(H) Heatmap showing the behavior of the 100 proteins most depleted by Vpr p

subsets. Color indicates the log2 fold change of each protein in each condition com

Pearson correlation and centroid linkage, and conditions were clustered by colu

See also Figures S1 and S2.
inhibitor MLN4924 to minimize substrate degradation and

enhance co-immunoprecipitation. Factors specifically co-immu-

noprecipitated in the presence of Vpr are expected to include

direct Vpr targets and, accordingly, were enriched for proteins

depleted (rather than increased) in the presence of Vpr (Figures

3D–3G). However, the co-immunoprecipitation (coIP) was domi-

nated by DCAF1, a stable binding partner of Vpr, identified with a

signal intensity 2 orders of magnitude greater than that of

all other proteins (Figure 3E). This is despite knockdown of

DCAF1 in these cells, which reduces the DCAF1 protein abun-

dance by approximately 50% (Figure S2B). In addition, at least

13 proteins co-immunoprecipitating with Vpr here have been re-

ported previously to physically interact with DCAF1 alone

(Coyaud et al., 2018; Guo et al., 2016; Hossain et al., 2017), of

which 11 are not regulated by Vpr, and two, CEP78 and IQGAP2,

are upregulated by Vpr, explaining their presence in this list of

proteins.

This mismatch between the high abundance of DCAF1 and the

relatively low abundance of direct Vpr targets for degradation is

consistent with previous reports that have also found that IP-MS

based techniques are ideal for identification of the cellular ma-

chinery co-opted by viral proteins but often struggle to identify

cellular targets that interact transiently and in competition with

each other (Jäger et al., 2011; Luo et al., 2016). We therefore

adopted an alternative approach, pulsed-stable isotope labeling

with amino acids in cell culture (pulsed SILAC), to identify host

proteins specifically destabilized within 6 h of exposure to Vpr

(Figure 4A). This technique is directly analogous to a traditional

pulse-chase experiment using radiolabeled methionine and/or

cysteine but allows a global unbiased analysis of potential

cellular targets (Boisvert et al., 2012). Because proteins are fully

labeled prior to exposure to Vpr, differences in abundance of

labeled proteins between conditions exclusively reflect changes

in protein degradation rates.

Six hours after exposure to Vpr, the stability of most proteins

was unchanged (Figure 4B, top panel). However, a subset of pro-

teins depleted by Vpr was already destabilized, consistent with

Vpr-dependent proteasomal degradation. Therefore, these 27

proteins, including HLTF, represent direct targets for Vpr-medi-

ated depletion (Figure 4C). After 24 h of exposure to Vpr,
g

f cells exposed to empty viral particles or Vpr-bearing viral particles along with

nts were analyzed.

or Vpr-bearing viral particles.

nts, demonstrating the effect of Vpr in the context of HIV-1 infection (x axis, as

as shown in Figure 2A). Labeled proteins were selected for confirmation by

y vector lentivirus or Vpr-encoding lentivirus 48 h after transduction.

oteomics experiment displayed in (A). Changes to amino acid sequence may

aled abundance of matrix, capsid, and integrase peptides detected in the cell

Watson pragmatic modeling was used to identify cells in G1 (blue), S (gray), or

pty vector control, with defined groups of 302 Vpr-depleted and 413 increased

articles (blue) and increased (red) within the defined significantly modulated

pared with empty-particle treatment. Genes were clustered using uncentered

mn means.
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Figure 3. Co-immunoprecipitation MS to Identify Direct Targets for Vpr-Mediated Degradation

(A) Defined groups of Vpr-depleted and increased proteins were subject to gene ontology enrichment analysis and compared with a background of all proteins

quantitated in these experiments. Gene Ontology (GO) cellular compartment enrichment analysis results were manually curated for 9 commonly used organelle

(legend continued on next page)
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changes in protein stability reflected overall changes in protein

abundance caused by Vpr in other experiments (Figure 4B, bot-

tom panel), including proteins with increased as well as

decreased stability. These changes are therefore indicative of

both direct and indirect Vpr targets.

Combining all orthogonal approaches—whole cell proteomics

to identify proteins depleted by Vpr in the context of viral infec-

tion or Vpr protein alone delivered in viral particles, MS coIP

with epitope-tagged Vpr, and pulsed SILAC-based identification

of proteins post-translationally degraded by Vpr—we identified

at least 38 direct targets for Vpr-dependent degradation

(Table 1). Vpr is both necessary and sufficient for depletion of

these proteins, which are either bound by Vpr, or destabilized

within 6 h of Vpr exposure (or both). In practice, this list very likely

underestimates the true number of direct Vpr targets because

several known targets of Vpr behaved appropriately but beyond

the statistical cutoffs used to derive this table (Table S2). Table 1

is also limited to proteins expressed in the CEM-T4 T cell model,

which excludes some known Vpr targets such as SMUG1

(Schröfelbauer et al., 2005). It should be noted that some cellular

phenotypes for Vpr are exclusive to non-T cell targets, such as

primary dendritic cells (Miller et al., 2017) and macrophages

(Connor et al., 1995; Mashiba et al., 2015), and are unlikely to

be explained by Vpr-mediated depletion of any of the proteins

listed here.

The Direct Vpr Targets SMN1, CDCA2, and ZNF267
Contribute to G2/M Cell Cycle Arrest
Several cellular phenotypes have been described for Vpr,

including G2/M arrest, transactivation of the HIV long terminal

repeat (LTR), and modulation of cellular signaling pathways

such as NFkB andNFAT arrest (Bolton and Lenardo, 2007; Gum-

muluru and Emerman, 1999; Höhne et al., 2016; Liang et al.,

2015; Liu et al., 2014; Muthumani et al., 2006; Rogel et al.,

1995). The mechanisms responsible for these phenotypes are

controversial. Wide-scale proteome remodeling by Vpr and

direct targeting of multiple proteins suggest a model in which

Vpr interacts with diverse cellular proteins and pathways, result-

ing in cumulative or redundant effects on cellular phenotypes.

This model does not contradict any single mechanism but sug-

gests that several are involved, with potential variability between

different cell types and experimental systems.

To test our model, we investigated the best-described pheno-

type for Vpr, cell cycle arrest at the G2/M phase. We hypothe-
level classifications, shown here. Bars shown in redwith a + symbol were enriched

were de-enriched. Where p < 0.05, the associated p value represents the results

(B) GO: molecular function analysis of the Vpr-depleted and -increased proteins

Fisher’s exact test with Bonferroni correction.

(C) Graphical summary of the IP-MS experiment. All cells were stably transduced

(D) 20 most abundant proteins identified by coIP determined by number of unique

for each protein (exponentially modified protein abundance index [emPAI]). Prot

proteins are highlighted in blue and red, respectively.

(E) The same 20 proteins with signal intensity rather than peptide count shown.

(F) Pie chart indicating the overlap between the proteins co-immunoprecipitated w

proteins (red) and proteins detected but falling into neither list (gray).

(G) Bar chart showing the enrichment of Vpr-depleted and Vpr-increased proteins

numbers of proteins that would be co-immunoprecipitated from each group by ch

table (Vpr-depleted or -increased, identified by coIP or not identified).
sized that differential depletion of cellular proteins by different

Vpr mutants tested in Figure 2, which displayed a spectrum of

capacity to cause G2/M arrest, would highlight proteins whose

depletion results in this cellular phenotype. We first examined

proteins with a published connection to Vpr-mediated G2/M

arrest: MCM10, MUS81, and EME1. MCM10 has been reported

to be directly degraded by Vpr, resulting in cell cycle arrest (Ro-

mani et al., 2015). Vpr-mediated depletion of MUS81 and EME1

has been proposed to be a consequence of Vpr interaction with

SLX4 (Laguette et al., 2014), another proposed mechanism of

Vpr-mediated G2/M arrest, although this is controversial (Berger

et al., 2015; Fregoso and Emerman, 2016; Zhou et al., 2016). In

our system, of these three proteins (MCM10, MUS81, and

EME1), only depletion of MCM10 showed a strong correlation

with the extent of G2/M arrest caused by the different mutants

(Figure 5A). As described previously (Romani et al., 2015), deple-

tion of MCM10 by RNAi was sufficient to cause accumulation of

CEM-T4 T cells at G2/M (Figures 5B and 5C).

We therefore interrogated our Vprmutant dataset (Figure 2) for

other direct Vpr targets (Table 1) that, like MCM10, correlated

with the extent of G2/M arrest. In total, we identified 14 targets

with a significant relationship (p < 0.05 in a linear regression anal-

ysis) (Figure 5D). Next we tested whether shRNA-mediated

depletion could phenocopy Vpr-dependent cell cycle arrest at

G2/M (Figure 5D). Depletion of 3 Vpr targets (SMN1, CDCA2,

and ZNF267) caused G2/M arrest (Figures 5D and 5E). The cor-

relation between G2/M arrest and depletion of these three pro-

teins by Vpr mutants is shown in Figure 5F. The phenotype

resulting from RNAi protein depletion was confirmed with a sec-

ond shRNA (Figure 5G). Thus, several Vpr targets contribute

independently to G2/M cell cycle arrest, consistent with a model

whereby depletion of multiple cellular proteins underpins the

various phenotypes associated with Vpr expression.

Some Vpr Targets Are Conserved across Primate
Lentiviruses, but Global Cellular Proteome Remodeling
Is Unique to the HIV-1/SIVcpz Lineage
Targeting of key cellular proteins such as BST2 or the APOBEC3

family is conserved across multiple lentiviral lineages, demon-

strating the in vivo selective advantage of these interactions.

We therefore tested a diverse panel of lentiviral Vpr proteins to

determine whether they share activity with the NL4-3 Vpr variant

used in all of the experiments above. We included Vpr variants

from primary isolates of HIV-1 from two distinct cross-species
comparedwith the expected number through chance, whereas bars in blue (�)

of a Fisher’s exact test with Bonferroni correction.

, in this case showing all terms enriched within each group with p < 0.05 in a

with a ShDCAF1 vector as described earlier. MLN4924 is a pan-Cullin inhibitor.

peptides, normalized as a proportion of the maximum possible peptide count

eins falling within the defined list of 302 Vpr-depleted and 413 Vpr-increased

ith Vpr and the defined list of 302 Vpr-decreased (blue) and 413 Vpr-increased

within proteins co-immunoprecipitated with Vpr compared with the expected

ance. The p value was calculated by Fisher’s exact test of a 23 2 contingency

Cell Reports 27, 1579–1596, April 30, 2019 1585



A

C

B

‘medium’ 
label

‘heavy’ 
label

‘light’ label

+ Empty vector viral 
particles

+ Vpr 
viral particles

6 h 24 h

Harvest and 
combine samples

Digest proteins, 
fractionate and 
analyse by LC/

MS2

Cells grown 
for multpiple 

generations in 
‘medium’ or 
‘heavy’ K/R 

media

At t = 0 h 
switched to ‘light’ 

K/R media for 
remainder of 
experiment

Figure 4. Pulsed SILAC Method to Identify Direct Targets for Vpr-Mediated Degradation
(A) Graphical summary of the pulsed SILAC experiment.

(B) Scatterplots showing the changes to protein stability of proteins after 6 or 24 h of exposure to a Vpr-bearing lentivirus compared with a control lentivirus, with

previously defined groups of Vpr-depleted (blue) and -increased (red) proteins highlighted.

(C) Expanded view of proteins degraded within 6 h of Vpr exposure. Significantly degraded (significance B [Sig.B] < 0.01) proteins are highlighted in gold. The

previously described Vpr targets HLTF, MUS81, and ZGPAT are shown in purple.
transmissions from apes to humans (group M and group O), in

addition to a closely related variant from Simian immunodefi-

ciency virus (SIV) of chimpanzees (SIVcpz). We also tested Vpr

variants from divergent primate lineages, including HIV-2, and

SIVs from sooty mangabeys (SIVsmm), African green monkeys

(SIVagm), and red-capped mangabeys (SIVrcm) (Figures 6A–

6C). In addition to Vpr, which is present in all primate lentiviruses,

viruses of some lineages also bear Vpx, a gene duplication of

Vpr. Because depletion of some substrates and cellular func-

tions switches between Vpr and Vpx in lineages encoding this
1586 Cell Reports 27, 1579–1596, April 30, 2019
accessory gene (Fletcher et al., 1996; Lim et al., 2012), we also

included a Vpx variant from HIV-2.

Extensive Vpr-dependent remodeling of the cellular proteome

was conserved across the HIV-1/SIVcpz lineage (Figure 6D, top

row). Although Vpr variants from other lineages showed a nar-

rower set of changes, depletion of some proteins, particularly

those most heavily depleted by HIV-1 Vpr, was conserved

across multiple lineages (Table 2). Depletion of selected proteins

for which commercial antibody reagents were available was

readily confirmed by immunoblot of cells transduced with an



Table 1. Direct Targets for Vpr-Mediated Degradation

Accession Gene

Previously Confirmed

Direct Target

Predicted from

Temporal Profilea
Vpr Necessary

Incoming Vpr

Sufficient

Degraded

within 6 h CoIP

(Figure 1) (Figure 2) (Figure 4) (Figure 3)

Q56NI9 ESCO2 – – yes yes ND yes

Q16637 SMN1 / SMN2 – yes yes yes NS yes

Q14527 HLTF yesb yes yes yes yes –

Q96KM6 ZNF512B – – yes yes yes –

Q8WY36 BBX – – yes yes yes yes

A6NFI3 ZNF316 – – yes yes yes –

Q8NI77 KIF18A – – yes yes ND yes

Q8TF76 HASPIN – – yes yes yes –

Q9Y4B6 VPRBP yesc – yes yes NS yes

Q96FF9 CDCA5 – yes yes yes yes –

Q6PK04 CCDC137 – yes yes yes yes –

Q9NXE8 CWC25 – – yes yes yes –

Q86Y91 KIF18B – yes yes yes yes –

Q6P4F7 ARHGAP11A – – yes yes yes –

Q6NW34 NEPRO – – yes yes yes –

Q9BVJ6 UTP14A – – yes yes yes –

Q9NVN8 GNL3L – yes yes yes yes –

Q5QJE6 DNTTIP2 – – yes yes yes –

Q69YH5 CDCA2 – – yes yes yes –

Q96BK5 PINX1 – – yes yes yes –

Q8N5A5 ZGPAT yesd – yes yes yes –

Q13823 GNL2 – – yes yes yes –

Q9UHI6 DDX20 – – yes yes NS yes

Q96ME7 ZNF512 – – yes yes yes –

Q14586 ZNF267 – – yes yes NS yes

Q9H8V3 ECT2 – – yes yes yes –

P57678 GEMIN4 – – yes yes NS yes

P52701 MSH6 – – yes yes NS yes

O75190 DNAJB6 – – yes yes yes –

Q96NY9 MUS81 yese – yes yes yes –

O60563 CCNT1 – – yes yes yes –

Q9P031 CCDC59 – – yes yes yes –

Q9UIS9 MBD1 – – yes yes NS yes

Q9UMY1 NOL7 – – yes yes yes –

Q6ZN55 ZNF574 – – yes yes NS yes

Q9BXS6 NUSAP1 – – yes yes yes –

O95235 KIF20A – – yes yes yes –

P35251 RFC1 – – yes yes NS yes

ND, not detected or quantitated in this experiment; NS, degraded but with Sig.B > 0.01. See also Table S2.
aProteins previously predicted as potential Vpr targets because of a similar pattern of temporal regulation in HIV-1 infection (Greenwood et al., 2016).
bHrecka et al., 2016; Lahouassa et al., 2016.
cLapek et al., 2017.
dMaudet et al., 2013.
eLaguette et al., 2014; Zhou et al., 2016.
overlapping panel of Vpr variants (Figure 6E). These conserved

targets of direct Vpr-mediated degradation are likely to provide

an in vivo replicative advantage for all primate lentiviruses.
Although the failure of SIVrcm, SIVagm, or SIVsmm Vpr variants

to degrade proteins that are targeted by HIV-1/SIVcpz may be

due to the use of human rather than cognate primate cells, it is
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notable that HIV-2 Vpr did not cause global proteome remodel-

ing, despite being tested in the host cell to which it is adapted.

Although none of the identified HIV-1 Vpr targets were

degraded by the HIV-2 Vpx (HIV-2ROD) tested, we noted a shared

ability of HIV-2 Vpx and SIVagm Vpr to deplete TASOR, a critical

component of the human silencing hub (HuSH) transcription

repressor complex (Tchasovnikarova et al., 2015; Figure 7A).

While this manuscript was in preparation, two other groups inde-

pendently discovered and reported Vpx-mediated depletion of

TASOR (Chougui et al., 2018; Yurkovetskiy et al., 2018). The

HuSH complex mediates position-dependent transcriptional

repression of a subset of lentiviral integrations, and we showed

previously that antagonism of HuSH is able to potentiate HIV

reactivation in the J-LAT model of latency (Tchasovnikarova

et al., 2015). As predicted, Vpx phenocopied the effect of

RNAi-mediated TASOR depletion on reactivation of the HuSH-

sensitive J-LAT clone A1 (Figure 7B).

Previous reports (Chougui et al., 2018; Yurkovetskiy et al.,

2018) were conflicted regarding the conservation of TASOR

depletion across Vpr variants. With some exceptions, most pri-

mate lentiviruses can be categorized into 5 lineages (Figure 7C),

two of which encode Vpx. The previously described canonical

function of Vpx is degradation of SAMHD1 (Hrecka et al., 2011;

Laguette et al., 2011). Two lentiviral lineages lack Vpx but use

Vpr to degrade SAMHD1, whereas the HIV-1/SIVcpz lineage

lacks SAMHD1 antagonism (Lim et al., 2012). We considered

that TASOR antagonism may follow the same pattern and thus

tested Vpx proteins from both Vpx-bearing lineages and repre-

sentative Vpr variants from lineages that use Vpr to degrade

SAMHD1. All of these proteins were able to deplete TASOR in

Vpx/Vpr-transduced cells (Figure 7D), and, therefore, antago-

nism of SAMHD1 and TASOR appears to follow the same

pattern.

Although the targeting of some substrates was conserved

across Vpr variants from multiple lineages, we did not observe

broad proteome remodeling outside of the HIV-1/SIVcpz line-

age. However, in the experiment described in Figure 6A, an

HIV-1-based lentiviral transduction system was used. Of the

Vpr and Vpx variants tested, only Vpr proteins from the HIV-1/

SIVcpz alleles are efficiently packaged into the virion. In

these cases, cells receive both incoming and de novo-synthe-

sized Vpr, whereas, in the case of other variants tested, only
Figure 5. Direct Vpr Targets Involved in G2/M Arrest

(A) Correlation between depletion of MCM10, MUS81, and EME1 by each Vpr mu

caused by that mutant. The red line shows linear regression analysis.

(B) Example DNA staining showing G2/M arrest caused by shRNA-mediated de

pragmatic modeling was used to identify cells in G1 (blue), S (gray), or G2/M (red

(C) Real-time qRT-PCR analysis of MCM10 mRNA abundance in cells transduce

DDCT method relative to GAPDH mRNA abundance and normalized to the cont

(D) Targeted shRNA screen of direct Vpr target proteins identified here whose de

show means and SEM of at least two replicates from more than three indepen

condition contains combined data from three different control shRNAs.

(E) Real-time qRT-PCR analysis of mRNA abundance in cells transducedwith con

to GAPDH mRNA abundance and normalized to the control condition. Bars show

(F) Correlation between depletion of SMN1, CDCA2, and ZNF267 by each Vpr m

caused by that mutant.

(G) Example DNA staining showing G2/M arrest caused by shRNA-mediated de

representative of at least two independent experiments.
de novo-synthesized Vpr is present. Therefore, there is a time

lag of 18–24 h for viral entry, reverse transcription, integration,

and de novo synthesis of protein to begin. The more limited pro-

teome remodeling seen in Vpr variants could reflect a lack of time

for such changes to occur.

To account for this, we carried out an experiment in which cells

were transduced with Vpr or Vpx from the primary HIV-2 isolate

7312a and assayed 48–96 h post-transduction (Figure 7E), al-

lowing time for additional changes to develop after de novo

Vpr/Vpx synthesis. Even 96 h after transduction, HIV-2 Vpr

showed very limited changes. The majority of these changes

consisted of depletion of proteins also targeted by HIV-1 Vpr

(Figure 7F, left panel). Curiously, 7312a HIV-2 Vpx also depleted

several proteins modulated by HIV-1 Vpr (Figure 7F, right panel),

including direct targets for HIV-1 Vpr-mediated degradation,

BBX, HASPIN, and ARHGAP11A. Some proteins were degraded

by both HIV-2 Vpr and Vpx, whereas others were only degraded

by the Vpx of this isolate. In lentiviral strains and/or lineages that

encode both Vpr and Vpx, the responsibility for degrading

certain targets of HIV-1 Vpr is therefore shared between Vpr

and Vpx, further emphasizing their in vivo importance.

Conversely, global proteome remodeling does not occur from

extended expression of HIV-2 Vpr or Vpx. The difference be-

tween HIV-1 and HIV-2 Vpr in this respect may contribute, in

part, to the increased pathogenicity of HIV-1 in humans over

HIV-2 (Jaffar et al., 2004), particularly given the potential for

HIV-1 Vpr to drive these changes in Vpr-exposed but uninfected

bystander cells.

DISCUSSION

Proteomics analyses of cells infected with viruses from different

orders have revealed widespread and varied changes to the

cellular proteome (Diamond et al., 2010; Ersing et al., 2017;

Greenwood et al., 2016; Weekes et al., 2014). Although these

changes are presumed to be multifactorial, in the case of

HIV-1 infection, our data show that the majority of changes can

be attributed to the action of a single viral protein, Vpr. We

propose that this global cellular proteome remodeling consists

of direct targeting of multiple cellular proteins for proteasomal

degradation via the DCAF1/DDB1/CUL4A E3 ligase complex,

followed by resulting secondary effects on other proteins.
tant tested in the experiment shown in Figure 2 and the extent of G2/M arrest

pletion of MCM10, representative of three independent experiments. Watson

) phase.

d with control or MCM10-targeting shRNA. Values were generated using the

rol condition. Bars show mean and SEM of three technical replicates.

pletion correlated with G2/M arrest in the experiment detailed in Figure 2. Bars

dent experiments. Dashed lines show control average ± 3 SDs. The control

trol or targeting shRNA. Values were generated using theDDCTmethod relative

mean and SEM of three technical replicates.

utant tested in the experiment shown in Figure 2 and the extent of G2/M arrest

pletion of SMN1, CDCA2, and ZNF267 using a second independent shRNA;
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Figure 6. Identification of Proteome Changes Conserved Between Human and Primate Lentiviral Vpr Lineages

(A) Graphical summary of the TMT experiment testing conservation of Vpr function.

(B) GFP+ (transduced) cells at harvest. Cells were transduced at an infectious MOI of 1.5 based on prior titration, with the actual resulting percent transduction

varying slightly across the samples. Because non-HIV-1/SIVcpz Vpr is not packaged in the viral particles used, the percent transduced represents all cells

exposed to Vpr under those conditions.

(C) Proportion of cells in G2/M at point of harvest, based on 7-AAD staining and Watson pragmatic modeling.

(D) Scatterplots showing the pairwise comparison between each Vpr tested and empty vector control, with defined groups of 302 Vpr-depleted (blue) and 413

increased (red) proteins highlighted.

(E) Immunoblot of example known, non-conserved, and conserved targets of Vpr-mediated depletion. The HIV-2 Vpr is a primary isolate HIV-2 Vpr (7312a),

whereas the proteomics experiment described in (A) used HIV-2 ROD Vpr.
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Table 2. Proteins Depleted by Vpr Variants from Multiple Lineages

Accession Gene Name Direct Target

Lineages Showing

Profound Depletiona

Profound Depletion by Number of Tested Vpr Variants

within Each Lineage

HIV-1/SIVcpz SIVrcm SIVsmm/HIV-2 SIVagm

Q86Y91 KIF18B yes 4 4/4 1/1 1/2 1/1

Q8NI77 KIF18A yes 4 4/4 1/1 2/2 1/1

Q14865 ARID5B – 4 4/4 1/1 2/2 1/1

P46013 MKI67 – 4 2/4 1/1 2/2 1/1

Q56NI9 ESCO2 yes 3 4/4 0/1 2/2 1/1

Q6P4F7 ARHGAP11A yes 3 4/4 0/1 1/2 1/1

Q96KM6 ZNF512B yes 3 4/4 0/1 2/2 1/1

Q9Y4B6 DCAF1 yes 3 4/4 0/1 2/2 1/1

Q6NW34 NEPRO yes 3 4/4 1/1 2/2 0/1

Q8N3Z6 ZCCHC7 – 3 3/4 0/1 1/2 1/1

Q8NDF8 PAPD5 – 3 2/4 0/1 1/2 1/1

Q8TF76 HASPIN yes 2 4/4 0/1 0/2 1/1

Q9NXE8 CWC25 yes 2 4/4 0/1 0/2 1/1

Q96BK5 PINX1 yes 2 4/4 0/1 1/2 0/1

Q9NVN8 GNL3L yes 2 3/4 1/1 0/2 0/1

Q6ZN06 ZNF813 – 2 4/4 1/1 0/2 0/1

Q9NW13 RBM28 – 2 3/4 0/1 1/2 0/1

Q6W2J9 BCOR – 2 4/4 0/1 0/2 1/1
aDefined here as a log2 fold change of less than �1 compared with the empty vector (50% reduction).
Although many of the changes caused by Vpr are secondary,

they occur within the physiological time frame of productive

infection (Murray et al., 2011; Perelson et al., 1996) and are there-

fore relevant to our understanding of the HIV-1-infected cell.

Further, we have recently mapped changes to the cellular prote-

ome in HIV-1-infected primary human CD4+ T cells and

confirmed that the Vpr-mediated changes described here in

CEM-T4s are recapitulated in the natural cell type of HIV infec-

tion (Naamati et al., 2019).

Before this study, the list of direct Vpr targets was already

extensive. Here we confirmed Vpr-mediated depletion of the

previously described Vpr targets HLTF (Hrecka et al., 2016;

Lahouassa et al., 2016), ZGPAT (Maudet et al., 2013), MCM10

(Romani et al., 2015), UNG2 (Schröfelbauer et al., 2005), TET2

(Lv et al., 2018), and MUS81 and EME1 (Laguette et al., 2014;

Zhou et al., 2016), whereas SMUG1 (Schröfelbauer et al., 2005)

and PHF13 (Hofmann et al., 2017) were not detected in our

model T cell line. By analogy with other HIV accessory proteins,

it might have been predicted that this list of Vpr targets would be

nearly complete. Instead, we show here that it is only the tip of

the iceberg.

Although surprising, the ability of Vpr to degrade multiple

cellular factors may be explained by the biology of this small pro-

tein. Mechanistically, depletion of multiple proteins with nucleic

acid binding properties is consistent with known structural deter-

minants of Vpr substrate recruitment. From a functional view-

point, although HIV-1 has three accessory proteins (Vpu, Nef,

and Vif) to aid viral replication and counteract host defenses in

the late stages of the viral replication cycle, Vpr is the only

HIV-1 accessory protein packaged into virions. Multiple targets
may therefore be required to protect incoming virions from

cellular factors and to prime newly infected cells for productive

viral replication.

This work is not the first attempt to use unbiased proteomics

analysis to characterize Vpr function. Previous studies have

used single proteomics experiments or methods to identify

candidate proteins that either interact with or are depleted by

Vpr, with individual proteins followed up using targeted immu-

noreagents. For example, Vpr binding partners were identified

by Jäger et al. (2011) and Hrecka et al. (2016) using IP-MS. Jäger

et al. (2011) did not determine whether any of these proteins

were depleted, whereas Hrecka et al. (2016) focused on the sin-

gle target protein, HLTF and found it to be depleted by Vpr. Simi-

larly, Lahouassa et al. (2016) used a SILAC-based approach to

quantify proteomic changes in cells exposed to viral particles

bearing Vpr, identifying 8 proteins that were depleted by at least

20%. Of these, only one, HLTF, was confirmed to be a direct Vpr

target by targeted orthogonal approaches.

As expected, the lists of ‘‘candidate’’ Vpr proteins identified

but not pursued in the above studies overlaps with this work,

and, in some instances, we confirmed these candidates to be

direct targets for Vpr-mediated degradation. For example,

SMN1 was found to bind Vpr by Jäger et al. (2011) and to be

degraded by Vpr by Lahouassa et al. (2016) in independent

proteomics experiments. Similarly, ESCO2 was found to bind

Vpr by Hrecka et al. (2016), but the depletion was not

confirmed by immunoblot, most likely because of poor perfor-

mance of the commercial antibody used. We have shown here

that both of these proteins are direct targets for Vpr-mediated

degradation.
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Figure 7. Shared Targets of Lentiviral Vpr and Vpx Proteins

(A) Scatterplots showing pairwise comparison between each Vpr tested and empty vector control, with HuSH complex components highlighted.

(B) Bar graph of the percentage of GFP-positive JLAT-A1 cells after transduction with control (Cre recombinase), Vpr, or Vpx proteins and treatment with tumor

necrosis factor alpha (TNF-a). Mean and SEM of 3 biological replicates per condition are shown, representative of three independent similar experiments. The p

values were determined by ordinary one-way ANOVA with Bonferroni comparison between Vpr/Vpx treatment and control-treated cells.

(C) Phylogenetic tree of primate lentiviruses based on an alignment of Vpr nucleic acid sequences, with 5 major lineages of primate lentiviruses labeled. Infor-

mation regarding Vpr and Vpx activity is based on a selected number of isolates tested in each lineage (Lim et al., 2012).

(D) Immunoblot of TASOR in cells transduced with a panel of Vpx and Vpr proteins.

(legend continued on next page)
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In contrast to previous studies, rather than using a targeted

approach to followuponly a small numberof potential Vpr targets,

we combined complementary proteomics analyses to describe

theglobal proteome remodelingcausedbyVprandmultipledirect

substrates for Vpr-mediated depletion. The two established

criteria for Vpr targets (binding and destabilization) are satisfied

by numerous proteins identified here, including ESCO2, SMN1,

BBX, and KIF18A. These proteins are therefore not candidate

Vpr targets, but bona fide Vpr targets, proven to the same stan-

dard of evidence as other, previously described substrates.

However, in our proposed model, Vpr binds and degrades

multiple cellular proteins, with the total pool of Vpr shared over

multiple targets. Therefore, identification of cellular targets by

coIP is technically problematic and more prone to false nega-

tives compared with other proteins that establish interactions

with a small number of binding partners. We therefore used an

alternative method of identifying direct targets for Vpr-mediated

depletion: proteins that are post-translationally degraded within

6 h of treatment with Vpr. We are confident that the other pro-

teins identified in this fashion also represent direct targets for

Vpr-mediated degradation because secondary effects are

excluded by both intrinsic elements of the technique and the

short time frame allowed.

Despite the importance of Vpr in vivo, a positive in vitro viral

replication phenotype is often absent in T cell infection models

(Goh et al., 1998; Guenzel et al., 2014). Nonetheless, expression

of Vpr in T cells causes cell cycle arrest (Bolton and Lenardo,

2007; Gummuluru and Emerman, 1999; Rogel et al., 1995); cell

death (Bolton and Lenardo, 2007); transactivation of the viral

LTR (Gummuluru and Emerman, 1999); enhancement or antago-

nism of crucial signaling pathways, including NFAT (Höhne et al.,

2016) and NF-kB (Liang et al., 2015; Liu et al., 2014; Muthumani

et al., 2006); disruption of PARP1 localization (Höhne et al., 2016;

Muthumani et al., 2006); defects in chromatid cohesion (Shimura

et al., 2011); and induction of the DNA damage response (Ri-

chard et al., 2010; Vassena et al., 2013). At least some of these

phenotypes can be segregated (Bolton and Lenardo, 2007;

Höhne et al., 2016). The molecular mechanisms underpinning

these phenomena have remained controversial. In our model,

these multiple phenotypes can be explained by Vpr targeting

multiple cellular proteins and pathways with potential for redun-

dant or cumulative effects.

Here we considered the most well-described cellular pheno-

type for Vpr, G2/M cell cycle arrest, with findings compatible

with this model. In addition to confirming the previously

described effect of Vpr-mediatedMCM10 degradation, we iden-

tified three other proteins that are directly targeted by Vpr, show

depletion correlating with the extent of G2/M-mediated arrest in

a panel of Vpr mutants, and result in arrest at G2/M when

depleted through RNAi. Notably, depletion of two of these pro-

teins, SMN1 and CDCA2 (Repo-Man), has been shown to acti-

vate the DNA damage response and stimulate ATM and/or

ATR kinase activity (Kannan et al., 2018; Peng et al., 2010), a crit-
(E) Graphical summary of the TMT experiment to examine proteome changes in

(F) Scatterplots displaying pairwise comparison between cells transducedwith 73

vector for 96 h. Blue and red dots represent the defined groups or proteins deple

direct targets of NL4-3 Vpr-mediated degradation listed in Table 1.
ical step toward G2/M arrest caused by Vpr (Berger et al., 2015;

Fregoso and Emerman, 2016; Roshal et al., 2003). The contribu-

tion of multiple Vpr targets to the same cellular phenotype may

also be exemplified by another described cellular phenotype

for Vpr, premature chromatid segregation (PCS) (Shimura

et al., 2011). Although not specifically investigated here, RNAi-

mediated knockdown of three proteins depleted by Vpr—

ESCO2, CDCA5 (Sororin), and HASPIN—has been associated

previously with this phenotype in different systems (Dai et al.,

2006; Hou and Zou, 2005; Rankin et al., 2005).

In conclusion, Vpr degrades multiple cellular targets, resulting

in global remodeling of the host proteome and labyrinthine

changes to different cellular pathways. This explains why its ef-

fects on cellular phenotypes and viral replication are complex

and remain poorly understood, why the functional conse-

quences of individual Vpr targets identified and studied in isola-

tion have proved elusive, and why the search for a single critical

Vpr target has been problematic.
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éral, E., Yatim, A., Emiliani, S., Schwartz, O., and Benkirane, M. (2011).

SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor

counteracted by Vpx. Nature 474, 654–657.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-TASOR Atlas Antibodies Cat#HPA006735; RRID: AB_1852384

Rabbit anti-BBX Bethyl Laboratories Cat#A303-151A; RRID: AB_10893371

Rabbit anti-HLTF Bethyl Laboratories Cat#A300-230A; RRID: AB_2117307

Rabbit anti-RALY Bethyl Laboratories Cat#A302-070A; RRID: AB_1604220

Rabbit anti-ZNF512B Bethyl Laboratories Cat#A303-234A; RRID: AB_10952552

Mouse anti-SMN1/2 Cell Signaling Technology Cat#12976S; RRID: AB_2798076

Rabbit anti-ESCO2 Novus Biologicals Cat#NB100-87021; RRID: AB_1201179

Mouse anti-UNG2 Origene Cat#TA503563; RRID: AB_11126624

Rabbit anti-Vpr Proteintech Cat#51143-I-AP;RRID: AB_10695191

Mouse anti-CCNB1 Santa Cruz Cat#SC-245; RRID: AB_627338

Mouse anti-ZGPAT Santa Cruz Cat#SC-515524

Mouse anti-b-actin Sigma-Aldrich Cat#A5316; RRID: AB_476743

Mouse anti-p24 Abcam Cat#ab9071; RRID: AB_306981

Mouse anti-VCP Abcam Cat#ab11433; RRID: AB_298039

Goat anti-mouse HRP Jackson ImmunoResearch Cat#115-035-146; RRID: AB_2307392

Goat anti-rabbit HRP Jackson ImmunoResearch Cat#111-035-144; RRID: AB_2307391

Mouse anti-CD4-AF647 Biolegend Cat#317422; RRID: AB_571941

Mouse anti-CD271(NGFR)-APC Biolegend Cat#345107; RRID: AB_10639737

Chemicals, Peptides, and Recombinant Proteins

Sigma EZview Red Anti-HA Affinity Gel Sigma-Aldrich Cat#E6779

IgG-Sepharose GE Healthcare Cat#17096901

IGEPAL CA-630 (NP-40) Sigma-Aldrich Cat#I3021

Benzonase Sigma-Aldrich Cat#E1014

MLN4924 Millipore Cat#5054770001

Zidovudine (AZT) NIH AIDS Reagent Program Cat#3485

Efavirenz NIH AIDS Reagent Program Cat#4624

7-AAD Stratech Cat#17501-AAT

TNFa PeproTech, 300-01A Cat#300-01A

R10 Arginine Cambridge Isotope Laboratories Cat#CNLM-539

R6 Arginine Cambridge Isotope Laboratories Cat#CLM-2265

K8 Lysine Cambridge Isotope Laboratories Cat#CNLM-291

K4 Lysine Cambridge Isotope Laboratories Cat#DLM-2640

TMT10plex Isobaric Label Reagent Thermo Fisher Scientific Cat#90110

TMT11-131C Isobaric Label Reagent Thermo Fisher Scientific Cat#A34807

PreOmics-IST NHS Sample preparation kit PreOmics Cat#P.O.00030

SpeedBead Carboxylate modified magnetic particles GE Healthcare Cat#45152105050250

SpeedBead Carboxylate modified magnetic particles GE Healthcare Cat#65152105050250

Trypsin, Mass Spectrometry Grade Thermo Fisher Scientific Cat#90057

Deposited Data

Raw proteomics data This paper PRIDE: PXD013221

UniProt Human reference proteome (26/09/2017) Uniprot (UniProt Consortium, 2019) https://www.uniprot.org

trEMBL (Human) sequence database (26/09/2017) Uniprot (UniProt Consortium, 2019) https://www.uniprot.org
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

GO Ontology database (06/09/2018) Gene Ontology Consortium (The

Gene Ontology Consortium, 2019)

Accessed through

http://www.pantherdb.org

CRAPome v1.1 (Mellacheruvu et al., 2013) http://www.crapome.org/

Experimental Models: Cell Lines

CEM-T4 NIH AIDS Reagent Program,

Dr JP Jacobs (Foley et al., 1965),

Cat#117

J-Lat Tat-GFP Cells (A1) NIH AIDS Reagent Program,

Dr E Verdin (Jordan et al., 2003;

Jordan et al., 2001)

Cat#9852

HEK293T Lehner Lab stock RRID:CVCL_0063

Oligonucleotides

MCM10_FOR 50-CTTATACAGAAGAGGCTGATG-30 Sigma-Aldrich KiCqStart: H_MCM10_1

MCM10_REV 50-CCTCTTGCAACTCTTCATTC-30 Sigma-Aldrich KiCqStart: H_MCM10_1

ZNF267_FOR 50-GTAGAATTCTCTTTGGAGGAG Sigma-Aldrich KiCqStart: H_ZNF267_1

ZNF267_REV 50-CTCACTCTTCACATTCCAAG Sigma-Aldrich KiCqStart: H_ZNF267_1

CDCA2_FOR 50-AGGAAAGTCATCATCCTACC Sigma-Aldrich KiCqStart: H_CDCA2_1

CDCA2_REV 50-GATGGTTTGTTTCAGGAGAG-3 Sigma-Aldrich KiCqStart: H_CDCA2_1

SMN1_FOR 50-GGAAAGCCAGGTCTAAAATTC-3 Sigma-Aldrich KiCqStart: H_SMN1_1

SMN1_REV 50-AGAATCTGGACATATGGGAG-3 Sigma-Aldrich KiCqStart: H_SMN1_1

GAPDH_FOR 50 ATGGGGAAGGTGAAGGTCG-3 Cano et al., 2015 N/A

GAPDH_REV 5- CTCCACGACGTACTCAGCG-3 Cano et al., 2015 N/A

Recombinant DNA

pNL4-3-dE-EGFP NIH AIDS Reagent Program,

Drs Haili Zhang, Yan Zhou, and

Robert Siliciano (Zhang et al., 2004)

Cat#11100

pNL4-3-dE-EGFP-dVpr This paper N/A

pHRSIN RSV NL4.3 Vpr Ub Emerald This paper N/A

pHRSIN RSV NL4.3 Vpr S79A Ub Emerald This paper N/A

pHRSIN RSV NL4.3 Vpr Q65R Ub Emerald This paper N/A

pHRSIN RSV NL4.3 Vpr E24R R36P Ub Emerald This paper N/A

pHRSIN RSV NL4.3 Vpr W54R Ub Emerald This paper N/A

pHRSIN RSV NL4.3 Vpr Y47A, D52A, W54R Ub Emerald This paper N/A

pHRSIN RSV NL4.3 HA-Vpr Ub Emerald This paper N/A

pHRSIN RSV NL4.3 3xHA-Vpr Ub Emerald This paper N/A

pHRSIN RSV 98BR004 HA-Vpr Ub Emerald This paper N/A, but based on Vpr sequence

GenBank: AAK31002.1

pHRSIN RSV BCF09 HA-Vpr Ub Emerald This paper N/A, but based on Vpr sequence

GenBank: CAA75954.1

pHRSIN RSV SIVcpzPtt MB897 HA-Vpr Ub Emerald This paper N/A, but based on Vpr sequence

GenBank: ABU53019.1

pHRSIN RSV SIVrcm 02CM8081 HA-Vpr Ub Emerald This paper N/A, but based on Vpr sequence

GenBank: ADK78264.1

pHRSIN RSV SIVagm Sab92018 HA-Vpr Ub Emerald This paper N/A, but based on Vpr sequence

GenBank: ADO34202.1

pHRSIN RSV SIVsmm E660 HA-Vpr Ub Emerald This paper N/A, but based on Vpr sequence

GenBank: ANT86736.1

pHRSIN RSV HIV-2 ROD HA-Vpr Ub Emerald This paper N/A, but based on Vpr sequence

GenBank: CAA28911.1

pHRSIN RSV HIV-2 7312a HA-Vpr Ub Emerald This paper N/A, but based on Vpr sequence

GenBank: AAL31354.1

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pHRSIN RSV SIVmus 01CM1239 HA-Vpr Ub Emerald This paper N/A, but based on Vpr sequence

GenBank: ABO61047.1

pHRSIN RSV HIV-2 Rod HA-Vpx Ub Emerald This paper N/A, but based on Vpx sequence

GenBank: AAB00766.1

pHRSIN RSV HIV-2 7312a HA-Vpx Ub Emerald This paper N/A, but based on Vpx sequence

GenBank: AAL31353.1

pHRSIN RSV SIVrcm NG411 HA-Vpx Ub Emerald This paper N/A, but based on Vpx sequence

GenBank: AAK69676.1

pHRSIN RSV SIVmnd-2 5440 HA-Vpx Ub Emerald This paper N/A, but based on Vpx sequence

GenBank: AAO22477.1

pC.SIREN.puro shControl 1 (GTTATAGGCTCGCAAAAGG) This paper N/A

pC.SIREN.puro shControl 2 (GTAAGGCTATGAAGAGATAC) This paper N/A

pC.SIREN.puro shControl 3 (ACTACCGTTGTTATAGGTG) This paper N/A

pC.SIREN.hygro DCAF1 (GCTGAGAATACTCTTCAAGAA) This paper N/A

pC.SIREN.puro shMCM10-1 (AGATGCAGGAGCGCTACTTTG) This paper N/A

pC.SIREN.puro shMCM10-2 (GACGGCGACGGTGAATCTTAT) This paper N/A

pC.SIREN.puro shCCNT1 (GCCTGCATTTGACCACATTTA) This paper N/A

pC.SIREN.puro shPINX1 (CCTTCAGCAAGAGAGTTTAAT) This paper N/A

pC.SIREN.puro shZNF267-1 (TACTCGTTCCTCCAATCTTAT) This paper N/A

pC.SIREN.puro shZNF267-2 (ATCAATATAGGAAGGTCTTTA) This paper N/A

pC.SIREN.puro shMBD1 (CACCAACCTTCCAAGTGTAAA) This paper N/A

pC.SIREN.puro shKIF20A (CCGATGACGATGTCGTAGTTT) This paper N/A

pC.SIREN.puro shCWC25 (GATCACAGAAGAAGATGGCA) This paper N/A

pC.SIREN.puro shZNF574 (ACCACCTTGTAAGTTCTAAAT) This paper N/A

pC.SIREN.puro shSMN1-1 (ATCTGTGAAGTAGCTAATAA) This paper N/A

pC.SIREN.puro shSMN1-2 (GGCTATCATACTGGCTATTAT) This paper N/A

pC.SIREN.puro shCDCA2-1 (AGACTGGGTTCAGGTTATTTC) This paper N/A

pC.SIREN.puro shCDCA2-2 (CCGTTCTCAGTTCTCCTAATA) This paper N/A

pHRSIN NL4-3 Vpr IRES SBP-DLNGFR This paper N/A

pHRSIN HIV-2 Rod Vpx IRES SBP-DLNGFR This paper N/A

Software and Algorithms

Prism v7.04 Graphpad Prism v7.04

PANTHER (release 10/10/2018) Mi et al., 2017 http://www.pantherdb.org

Flowjo v10.5.2 FlowJo, LLC Flowjo v10.5.2

Proteome Discoverer v2.2 Thermo Fisher Scientific Cat# OPTON-30808

Mascot v2.3 Matrix Science http://www.matrixscience.com/

server.html

R Studio v1.0.44 R Studio https://www.rstudio.com

Jalview Waterhouse et al., 2009 http://www.jalview.org

Biocoductor Packages (for LIMMA) Huber et al., 2015 http://www.bioconductor.org

Other

Vivacon 30kDa MWCO ultrafiltration units Sartorius VN01H22
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Edward

J.D. Greenwood (ejdg2@cam.ac.uk).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
CEM-T4 (female) T cells (AIDS Reagent Program, Division of AIDS, NIAD, NIH: Dr. JP Jacobs, (Foley et al., 1965) and J-LAT A1 (male)

T cells (AIDS Reagent Program, Division of AIDS, NIAD, NIH: Dr E Verdin, (Jordan et al., 2003; Jordan et al., 2001) were cultured in

RPMI supplemented with 10% FCS, 100 units/ml penicillin and 0.1 mg/ml streptomycin at 37�C in 5% CO2. HEK293T (female) em-

bryonic kidney cells (Lehner laboratory stocks) were cultured in DMEM supplemented with 10% FCS, 100 units/ml penicillin and

0.1 mg/ml streptomycin at 37�C in 5% CO2. All cells were confirmed to be mycoplasma negative (MycoAlert, Lonza).

METHOD DETAILS

NL4-3 molecular clones
pNL4-3-dE-EGFP (derived from the HIV-1 molecular clone pNL4-3 but encoding Enhanced Green Fluorescent Protein (EGFP) in the

env open reading frame (ORF), rendering Env non-functional) was obtained through the AIDS Reagent Program, Division of AIDS,

NIAD, NIH: Drs Haili Zhang, Yan Zhou, and Robert Siliciano (Zhang et al., 2004) and the complete sequence verified by Sanger

sequencing. The DVpr mutant was generated by cloning three stop codons into the Vpr open reading frame, immediately after

the overlap with Vif to prevent interference with that gene:

WT Vpr ORF sequence

ATGGAACAAGCCCCAGAAGACCAAGGGCCACAGAGGGAGCCATACAATGAATGGACACTAGAGCTTTTAGAGGAA.

DVpr ORF sequence

ATGGAACAAGCCCCAGAAGACCAAGGGCCACAGAGGGAGCCATACAATGAATGGACACTAGAGCTTTAATAGTAA

Viral stocks
VSVg-pseudotyped NL4-3-dE-EGFP HIV viral stocks were generated by co-transfection with pMD.G (VSVg) as previously described

(Greenwood et al., 2016). NL4-3-dE-EGFP HIV viral stocks were titerd by infection/transduction of known numbers of relevant target

cells under standard experimental conditions followed by flow cytometry for GFP and CD4, using Anti-CD4-AF647 (clone OKT4;

BioLegend) at 48 hr to identify % infected cells. Single Vpr and Vpx proteins were expressed in a modified dual promotor pHRSIN

(van den Boomen et al., 2014) vector in which Vpr or Vpx expression is driven by the rous sarcoma virus (RSV) promotor, and Emerald

GFP expression is driven by the ubiquitin promotor. Virus was generated by co-transfection with pCMVdr8.91 and pMD.G (Zufferey

et al., 1997) in 293T as previously described (Greenwood et al., 2016). Infectious MOI was normalized by infection in the absence of

reverse transcription (RTi) inhibitors, which were includedwhere specified (see below). GenBank accession numbers of the untagged

sequences for the Vpr and Vpx proteins used are given in the Key Resources Table. Amino acid sequences were codon optimized,

modified to include a HA tag, and synthesized as double stranded DNA (IDT), inserted into the empty vector construct by Gibson

assembly, and confirmed by sanger sequencing.

Lentivector for shRNA expression
For lentiviral DCAF1 shRNA-mediated knockdown, hairpins were cloned into pHRSIREN-PGK-hygro, with transduced cells selected

for hygromycin resistance. The same methodology was used to clone other target shRNA haripins, into pHRSIREN-PGK-puro

(encoding puromycin resistance). Gene specific target sequences were chosen from the Broad institute GPP web portal, and are

provided in the forward orientation in the Key Resources Table.

CEM-T4 T cell infections
CEM-T4 T cells were infected with concentrated NL4-3-dE-EGFP or pHRSIN lentiviral stocks by spinoculation at 8003 g for 1 h in a

non-refrigerated benchtop centrifuge in complete media supplemented with 10 mM HEPES. Where reverse transcription treatment

was specified (RTi), cells were incubated with zidovudine (10 mM) and efavirenz (100 nM) (AIDS Reagent Program, Division of AIDS,

NIAD, NIH) for 1 hr prior to spinoculation, and inhibitors maintained at these concentrations during subsequent cell culture. For MS

experiments, cells were subject to dead cell removal (magnetic dead cell removal kit, Miltenyi). Subsequent sample preparation, TMT

labeling, and MS are described below, at the end of this section.

Immunoblotting
Antibodies against the following proteins were used for immunoblot, listed by manufacturer: Atlas antibodies: TASOR (HPA006735).

Bethyl: BBX (A303-151A), HLTF (A300-230A), RALY (A302-070A), ZNF512B (A303-234A). Cell Signaling Technology: SMN1/2 (2F1).

Novus: ESCO2 (NB100-87021). Origene: UNG2 (2C12). Proteintech: Vpr (51143-I-AP). Santa Cruz: CCNB1 (SC-245), ZGPAT

(SC-515524). Sigma: b-actin (AC74). Abcam: p24 (ab9071), VCP (ab11433). The following secondary antibodies were used: goat

anti-mouse-HRP and goat anti-rabbit-HRP (immunoblot, Jackson ImmunoResearch, West Grove, PA). Blots were immersed in

chemiluminescent substrate (SuperSignal West Pico or Dura, Thermo Fisher Scientific), and signal was visualized using X-ray film

or the iBright CL1000 imaging system (Thermo Fisher Scientific).
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ShRNA knockdown confirmation by RT-PCR
Total RNA was extracted using the RNeasy Plus Mini kit (QIAGEN). Total RNA (250 ng) was reverse transcribed into cDNA using a

poly(d)T primers and SuperScript III Reverse Transcriptase (Invitrogen) following the manufacturer’s instructions. Real-time qRT–

PCR was performed using the ABI 7500 Real-Time PCR system (Applied Biosystems) and SYBR Green PCR Master Mix (Applied

Biosystems), with cycling parameters of 50�C for 2 min and 95�C for 5 min, followed by 40 cycles of 95�C for 15 s and 60�C for

1 min. The gene-of-interest specific primer pairs were predesigned and purchased from Sigma-Aldrich as KiCqStart primers. The

sequences are detailed in the key resources table. The difference in the amount of input cDNA was normalized to an internal control

of GAPDH (Cano et al., 2015).

7-AAD staining
Cells were fixed in ice cold 70%ethanol for at least 30minutes, washedwith PBS and stained in 25ug/ml 7-AAD for 15minutes before

acquisition on a BD FACSCalibur. Analysis was carried out in Flowjo, v.10.5.2. Dead cells and doublets were excluded by gating on

forward scatter, side scatter, and fluorescent area and height. Univariate cell cycle modeling was carried out using theWatson prag-

matic method in Flowjo.

Immunoprecipitation Mass spectrometry (IP-MS)
Prior to infection with Vpr positive or negative lentivirus, CEM-T4 T cells were treated for two hours with the pan-cullin inhibitor

MLN4924, 500nm (Millipore). 24 hours post infection, cells were lysed in 1%NP-40 (IGEPALCA-630, Sigma-Aldrich), with benzonase

(Sigma-Aldrich) at 2000 units/ml. Lysates were pre-cleared with IgG-Sepharose (GE Healthcare, UK) and incubated for 3 hr at 4�C
with anti-HA coupled to agarose beads (EZview Red Anti-HA Affinity Gel, Sigma-Aldrich). After washing in 0.5% NP-40, samples

were eluted with 0.5 mg/ml HA peptide (Sigma-Aldrich) at 37�C for 1 hr. Proteins defined as co-immunoprecipitating with Vpr

were detected with at least 3 peptides in the Vpr condition, not identified in the control condition, and were present in < 20% of

IP-MS available in the Crapome v1.1 database (Mellacheruvu et al., 2013).

Labeling with amino acids in cell culture (Pulsed-SILAC)
For SILAC labeling, CEM-T4 T cells were grown for at least 7 cell divisions in SILAC RPMI lacking lysine and arginine (Thermo Fisher

Scientific) supplemented with 10% dialysed FCS (GIBCO, Thermo Fisher Scientific), 100 units/ml penicillin and 0.1 mg/ml strepto-

mycin, 280 mg/L proline (Sigma, UK) and medium (K4, R6; Cambridge Isotope Laboratories, Tewksbury, MA) or heavy (K8, R10;

Cambridge Isotope Laboratories) 13C/15N-containing lysine (K) and arginine (R) at 50 mg/L. At 0 h, cells were washed in media con-

taining only light (12C /14N) lysine and arginine and were maintained in this media for the duration of the experiment.

J-LAT reactivation experiments
JLAT A1 cells were transduced with Cre recombinase, NL4-3 Vpr or HIV-2 ROD Vpx within a pHRSIN IRES SBP-DLNGFR vector

(Matheson et al., 2014). 24 h after transduction, cells were treated with 2 ng/ml TNFa (PeproTech, 300-01A). After an additional

24 h cells were stained with anti-CD271 (NGFR)-APC (clone ME20.4, Biolegend), and analyzed for NGFR and GFP expression by

flow cytometry. Cells were gated for NGFR+ cells to exclude non-transduced cells. Flow cytometry data was acquired on a BD

FACSCalibur.

Sample Preparation for Mass spectrometry
Samples were prepared using three different methods depending on the experiment. Initial infection experiment (Figure 1) was by

SDC-FASP. Vpr particle (Figure 2) and shRNA (Figure S1) experiments were by PreOmics NHS-iST sample preparation Kit. pSILAC

and IP-MS experiments were by SP3.

SDC-FASP

Samples prepared essentially according to the protocol in León et al. (2013). Briefly samples were lysed in 50mM TEAB (pH8.5) 2%

SDS, reduced and alkylated with TCEP/Iodoacetamide, quantified by BCA assay. 50ug of each sample was diluted with TEAB/8M

urea for loading onto 30kDa ultrafiltration devices. Samples were washed 3 times with 500uL urea buffer and 3 times with digestion

buffer (TEAB/0.5% sodium deoxycholate) before resuspending in 50uL digestion buffer containing 1ug trypsin and incubating over-

night at 37 degrees. After digestion samples were spun through the filters and filters washed with 50uL TEAB. SDC was removed by

acidification and two phase partitioning with ethyl acetate before vacuum drying and labeling with TMT reagents according to the

manufacturer’s instructions.

PreOmics iST

Samples lysed in kit lysis buffer and quantified by BCA assay. 25ug of each sample was digested essentially according to manufac-

turer’s instructions, scaling volumes for a digestion of 25ug total protein.

SP3

Samples were lysed in 50mM TEAB (pH8.5) 2% SDS (IP-MS were adjusted to 2% SDS), reduced and alkylated with TCEP/Iodoace-

tamide before digestion using the SP3 method (Hughes et al., 2014). Briefly, carboxylate modified paramagnetic beads are added to

the sample and protein is bound to the beads by acidification with formic acid and addition of acetonitrile (ACN, final 50%). The beads

are then washed sequentially with 100% ACN, 70% Ethanol (twice) and 100% ACN. 10-20uL TEAB (Triethylammonium bicarbonate)
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pH8 and 0.1% Sodium deoxycholate (SDC) is then added to the washed beads along with trypsin. Samples were then incubated

overnight at 37 degrees with periodic shaking at 2000rpm. After digestion, peptides are immobilised on beads by addition of 200-

400uL ACN and washed twice with 100uL ACN before eluting in 19uL 2% DMSO and removing the eluted peptide from the beads.

Offline high pH reversed-phase (HpRP) peptide fractionation
For whole cell proteome samples HpRP fractionation was conducted on an Ultimate 3000 UHPLC system (Thermo Scientific)

equipped with a 2.1 mm 3 15 cm, 1.7m Aqcuity BEH C18 column (Waters, UK). Solvent A was 3% ACN, Solvent B was 100%

ACN, solvent C was 200 mM ammonium formate (pH 10). Throughout the analysis solvent C was kept at a constant 10%. The

flow rate was 400 mL/min and UV was monitored at 280 nm. Samples were loaded in 90% A for 10 min before a gradient elution

of 0%–10% B over 10 min (curve 3), 10%–34% B over 21 min (curve 5), 34%–50% B over 5 mins (curve 5) followed by a 10 min

wash with 90% B. 15 s (100 mL) fractions were collected throughout the run. Peptide containing fractions were orthogonally recom-

bined into 24 fractions (i.e., fractions 1, 25, 49, 73, 97 combined) and dried in a vacuum centrifuge. Fractions were stored at �80�C
prior to analysis.

Mass spectrometry
Data were acquired on an Orbitrap Fusion mass spectrometer (Thermo Scientific) coupled to an Ultimate 3000 RSLC nano UHPLC

(Thermo Scientific). HpRP fractions were resuspended in 20 ml 5% DMSO 0.5% TFA and 10uL injected. Fractions were loaded at

10 ml/min for 5 min on to an Acclaim PepMap C18 cartridge trap column (300 um 3 5 mm, 5 um particle size) in 0.1% TFA. After

loading a linear gradient of 3%–32% solvent B was used for sample separation over a column of the same stationary phase

(75 mm 3 50 cm, 2 mm particle size) before washing at 90% B and re-equilibration. Solvents were A: 0.1% FA and B:ACN/0.1%

FA. 3h gradients were used for whole cell proteomics samples, 1h gradients for IP-MSs.

An SPS/MS3 acquisition was used for TMT experiments and was run as follows. MS1: Quadrupole isolation, 120’000 resolution,

5e5 AGC target, 50 ms maximum injection time, ions injected for all parallelisable time. MS2: Quadrupole isolation at an isolation

width of m/z 0.7, CID fragmentation (NCE 35) with the ion trap scanning out in rapid mode from m/z 120, 8e3 AGC target, 70 ms

maximum injection time, ions accumulated for all parallelisable time. In synchronous precursor selection mode the top 10 MS2

ions were selected for HCD fragmentation (65NCE) and scanned out in the orbitrap at 50’000 resolution with an AGC target of

2e4 and a maximum accumulation time of 120 ms, ions were not accumulated for all parallelisable time. The entire MS/MS/MS cycle

had a target time of 3 s. Dynamic exclusionwas set to± 10 ppm for 90 s,MS2 fragmentation was trigged on precursor ions 5e3 counts

and above. For IP-MS,MS2 instead usedHCD fragmentation (NCE 34) and amaximum injection time of 250ms and had a target cycle

time of 2 s. For pSILAC MS1 was acquired at 240’000 resolution.

QUANTIFICATION AND STATISTICAL ANALYSIS

Description of statistical tests and n values are provided in the figure legends. Anova and Fisher’s exact test analysis were carried out

as described in figure legends using Graphpad Prism (v7.04).

Gene ontology enrichment
Gene ontology enrichment analysis was carried out using the statistical overrepresentation test of PANTHER (release 10/10/2018) (Mi

et al., 2017), using the web interface at: http://www.pantherdb.org/, and using the GOOntology database (release 06/09/2018), (Ash-

burner et al., 2000; The Gene Ontology Consortium, 2019). Lists of proteins highly significantly depleted or increased by Vpr were

compared to a background list of proteins quantitated in the two experiments used to define those lists. p values shown are the re-

sults of a Fisher’s exact test with Bonferroni correction. In the case of GO: Cellular compartment analysis, this is highly conservative

as it is corrected for all 1061 possible cellular compartment terms, not just those curated. When calculating the proportion of proteins

with a specific GO term, only proteins with a GO term of that class were included in the denominator.

MS Data processing and analysis
For TMT labeled samples data were searched byMascot within ProteomeDiscoverer 2.1 in two rounds of searching. First searchwas

against the UniProt Human reference proteome (26/09/17) (UniProt Consortium, 2019), the HIV proteome and compendium of com-

mon contaminants (GPM). The second search took all unmatched spectra from the first search and searched against the human

trEMBL database (Uniprot, 26/09/17). The following search parameters were used. MS1 Tol: 10 ppm, MS2 Tol: 0.6 Da. Enzyme:

Trypsin (/P). MS3 spectra were used for reporter ion based quantitation with a most confident centroid tolerance of 20 ppm. PSM

FDR was calculated using Mascot percolator and was controlled at 0.01% for ‘high’ confidence PSMs and 0.05% for ‘medium’ con-

fidence PSMs. Normalization was automated and based on total s/n in each channel. Protein/peptide abundancewas calculated and

output in terms of ‘scaled’ values, where the total s/n across all reporter channels is calculated and a normalized contribution of each

channel is output. Proteins/peptides satisfying at least a ‘medium’ FDR confidencewere taken forth to statistical analysis in R (v3.3.1)

(R Core Team, 2013). This consisted of a moderated t test (Limma) with Benjamini-Hochberg correction for multiple hypotheses to

provide a q value for each comparison (Huber et al., 2015; Schwämmle et al., 2013). IP-MS were submitted to a similar search

workflow with quantitative data being derived from MS1 spectra via proteome discover minora feature detector node. For pSILAC
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experiments data were processed in MaxQuant and searched using Andromeda with similar search parameters (Cox and Mann,

2008). MaxQuant output was uploaded into Perseus for calculation of significance B (Tyanova et al., 2016). Where conditions

were not carried out in triplicate, downstream analysis was limited to proteins identified with at least 3 unique peptides.

Phylogenetic tree of Vpr sequences
An existing nucleic acid sequence alignment of representative Vpr sequences from HIV-1, HIV-2 and SIVs from 22 primate species

was downloaded from the Los Alamos National Laboratories HIV database (https://hiv.lanl.gov/content/sequence/NEWALIGN/align.

html). A tree was generated using the percentage identity average distance in jalview (Waterhouse et al., 2009) and visualized in

Figtree (http://tree.bio.ed.ac.uk/software/figtree). Sequences from 5 primate species not falling into the highlighted linages are

not shown. Cercopithecus lineage includes closely related viruses from primates of the Miopithecus and Piliocolobus genera.

DATA AND SOFTWARE ANALYSIS

In addition to Table S1, which includes data from all of the proteomics experiments carried out here, proteomics data have been

deposited to the ProteomeXchange Consortium via the PRIDE (Vizcaı́no et al., 2016) partner repository. The accession number

for the data reported in this paper is PRIDE: PXD013221.
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