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Summary

Functional inequalities constitute a very powerful toolkit in studying various problems arising in
classical information theory, statistics and many-body systems. Extensions of these tools to the
noncommutative setting have been introduced in the beginning of the 90’s in order to study the
asymptotic properties of certain quantum Markovian evolutions. In this thesis, we study various
extensions and problems arising from the specific noncommutative nature of such processes.

The first logarithmic Sobolev inequality to be proved, due to Gross, was for the Ornstein
Uhlenbeck semigroup, that is the Brownian motion with friction on the real line. The generalization of
this result to the quantum Ornstein Uhlenbeck semigroup was found very recently by Carlen and Maas,
and de Palma and Huber by means of different techniques. The latter proof consists of a quantum
generalization of the so-called entropy power inequality. Here, we consider another possible version of
the entropy power inequality and use it to derive asymptotic properties of the frictionless quantum
Brownian motion.

The proof of Carlen and Maas discussed in the previous paragraph relies on their new quantum
extension of the classical notion of displacement convexity. This is classically known to imply most of
the usual functional inequalities such as the modified logarithmic Sobolev inequality and Poincaré’s
inequality. Here, we further study the framework introduced by Carlen and Maas. In particular, we
show how displacement convexity implies quantum functional and transportation cost inequalities.
The latter are then used to derive certain concentration inequalities of quantum states in the spirit
of Bobkov and Go6tze. These concentration inequalities are used in order to derive finite sample size
bounds for the task of quantum parameter estimation.

The main advantage of classical logarithmic Sobolev inequalities over other methods resides in
their tensorization property: the strong log-Sobolev constant of the product of independent Markovian
evolutions is equal to the maximum over the set of strong log-Sobolev constants of the individual
evolutions. However, this property is strongly believed to fail in the non-commutative case, due to the
non-multiplicativity of noncommutative L, - L, norms. In this thesis, we show tensorization of the
logarithmic Sobolev constants for the simplest quantum Markov semigroup, namely the generalized
depolarizing semigroup. Moreover, we consider a new general method to overcome the issue of
tensorization for general primitive quantum Markov semigroups by looking at their contractivity
properties under the completely bounded L, - L, norms. This method was first investigated in the
restricted case of unital semigroups by Beigi and King.

Noncommutative functional inequalities considered in the present literature only deal with
primitive quantum Markovian semigroups which model memoryless irreversible dynamics converging
to a specific faithful state. However, quantum Markov semigroups can in general display a much
richer behavior referred to as decoherence: In particular, under some mild conditions, any such
semigroup is known to converge to an algebra of observables which effectively evolve unitarily. Here, we
introduce the concept of a decoherence-free logarithmic Sobolev inequality, and the related notion of
hypercontractivity of the associated evolution, to study the decoherence rate of non-primitive quantum

Markov semigroups. Moreover, we utilize the transference method recently introduced by Gao, Junge

11



SUMMARY

and LaRacuente, in order to find decoherence times associated to a class of decoherent Markovian
evolutions of great importance in the field of quantum error protection, namely collective decoherence
semigroups.

Finally, we develop the notion of quantum reverse hypercontractivity, first introduced by
Cubitt, Kastoryano, Montanaro and Temme in the unital case, and apply it in conjunction with the
tensorization of the modified logarithmic Sobolev inequality for the generalized depolarizing semigroup
in order to find strong converse rates in quantum hypothesis testing and for the classical capacity of
classical-quantum channels. Moreover, the transference method also allows us to find strong converse

bounds on the various capacities of quantum Markovian evolutions.
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Introduction

Ideal quantum systems undergo a unitary evolution. These closed evolutions are the ones traditionally
considered in quantum computing. However, in realistic situations, the interactions between a system
and its environment lead to a strong entanglement between them. This in turn results in the dynamical
destruction of the initial entanglement between different subsystems of the system under consideration.
This phenomenon, usually referred to as environment induced decoherence (EID), was introduced in
the 70’s by the German physicist Dieter Zeh as an attempt to solve the longstanding measurement
problem. For example, [Joos and Zeh, 1985] showed that the “non-diagonal” elements (in the position
basis) of the reduced density matrix of a particle subject to scattering effects of its environment vanish
exponentially fast. In this case, effective observables (e.g. operators that are diagonal in the position

basis) become fixed points of the evolution as time increases.

More precisely, let Hg be the Hilbert space corresponding to a quantum system S, and let Hg
denote the Hilbert space of the environment E of S. Assume that at time ¢ = 0, S and E are prepared

in a pure uncorrelated state:

Ysg =1vs ®YE.

Next, denote by Hgg the Hamiltonian modeling the interaction between E and S. In full generality,

Hgp can be written as the sum of three terms:
Hsp=Hs®1lp+1s® Hg + A\Vsg .

The first term Hg models the local interactions occurring within S alone, whereas Hg denotes the
interactions within the environment. The last term Hgpg results from the coupling of the system and
its environment. The parameter A > 0 is usually referred to as the coupling strength. Then, the state

of the system at time ¢ > 0 is given by

ps(t) = Trg (758 (s @) e 57 | (-1.1)

where the partial trace Trg models the operation of discarding the state of the environment. Hence,
apart from some trivial situations (e.g. A = 0), the purity of the initial state g is decreases: pg(t) is
a density operator on Hg, that is a positive operator whose trace is equal to 1. Moreover, the energy
of S is no longer preserved: Tr(ps(t) Hg) # (s, Hs¥s).

The analysis of (-1.1) as a function of time is in general difficult to carry out due to possible
memory effects arising from the interaction term Hgg. The situation becomes much more tractable
when considering that the coupling strength is small. In this case, the evolution (-1.1) can be

approximated with the one of a memoryless system (Markovian approximation):

ps(t) ~ ps(t) = Pre(ibs) -

When looking at the dual Heisenberg picture, that is the evolution of quantum observables, the maps

17



INTRODUCTION

(Pi)is0 define a quantum Markov semigroup (QMS). This is a family of completely positive, unital
maps Py : B(Hs) > B(Hs) on the algebra B(Hg) of linear operators on Hg that satisfy the following
semigroup property: for any t,s >0,

Piis =ProPs.

In this thesis, we undertake a quantitative analysis of the asymptotic behavior
of quantum Markovian evolutions. In order to achieve this goal, we introduce new
non-commutative extensions of a set of powerful classical tools known as functional

inequalities.

This contribution is by no means complete, nor the first attempt of the sort. In what follows,
we provide a brief summary of already known results in this direction, and explain how the new results

obtained as part of this thesis complement them.

Quantum functional inequalities for primitive semigroups

The investigation of non-commutative functional inequalities started almost at the same time as their
classical analogues [Gross, 1975a, Lindsay, 1990, Carlen and Loss, 1993, Carlen and Lieb, 1993, Biane,
1997]: Let (P:)iz0 be a QMS on the algebra B(H) of bounded operators on a finite dimensional
Hilbert space H, and denote by L := %L::o
full-rank state o that is invariant under the evolution generated by L. In this case, the semigroup

its generator. Assume moreover that there exists a unique

is said to be primitive. Primitive semigroups model the simplest type of decoherence, where initial
observables evolve towards their average computed in the invariant state o. Equivalently, the algebra
of effective observables is simply equal to the trivial algebra C 134,

Perhaps the easiest example of a functional inequality is the Poincaré inequality: there exists a
positive constant A such that, for all X € B(H),

)\V&I‘a(X)ngﬁ(X) = _<X7 E(X))Gr (PI)

where (A, B), = Tr(¢"/?A*¢'/?B), and Var(X) := (X - Tr(6 X), X - Tr(0 X)),. Denoting by Ly (o)
the Hilbert space corresponding to this inner product, PI simply implies the following exponential
Ly (o)-convergence of any evolved observable X, := P, (X) towards the expected value Tr(cX) of the

initial observable X:
Var(X;) < e M Var(X) .

In the case when the semigroup is symmetric with respect to (.,.), (KMS-symmetry), the best constant
A(L) achieving the bound in PI is simply the spectral gap of L, that is the absolute value of the second
(necessarily negative) highest eigenvalue of L.

The Poincaré inequality provides a theoretically simple way of estimating the convergence of
a quantum Markov semigroup towards an invariant state o. For this, we introduce the family of

non-commutative weighted L, (o) spaces, p > 1, with norm given by
1o do\E
|X [, (o) = (Trlo? Xo 2 [7)” .
Then, for a given initial state p, and denoting by p; := Py.(p) the state evolved up to time ¢, we get

loe = ol = 1 Xe = Ly o) < 1Xe = Loy € €O X = 11, (0) < Vo o €21,

18



where X, := U’%pta’% = 75t(X) can be interpreted as the density of p, with respect to o, P, denoting
the dual of P, with respect to (.,.)s so that A(£) = A(£). However, estimating the spectral gap of
L can turn out to be a difficult problem (see e.g. [Kastoryano and Brandao, 2016]). Moreover, the
bounds found from this method are often loose. Fortunately, tighter bounds can be achieved from

more elaborate techniques.

The notion of hypercontractivity and logarithmic Sobolev inequalities was fully extended to the
non-commutative framework by [Olkiewicz and Zegarlinski, 1999]: A quantum logarithmic Sobolev

inequality of order 2, defined in Section 7.2, can be introduced as follows: for any state p,
OéQD(pHO') SEQV[/(X)7 (LSIQ)

where X = O'_%p%(f_% can be interpreted as the square root of the non-commutative density of p
with respect to o, and the logarithmic Sobolev constant as = az(L) is the best constant achieving
the bound in LSI;. Alternatively, the quantum modified logarithmic Sobolev inequality is defined as
follows [Kastoryano and Temme, 2013, Carbone and Martinelli, 2015]: for any initial state p,

41 D(p|lo) <EP,(p) :=-Tr(Ls(p)(Inp-Ino)), (MLSI)

and the modified logarithmic Sobolev constant aq(L) is the best constant achieving the bound in

MLSI. Under the quantum detailed balance condition
Tr(cAL(B)) = Tr(cL(A)B) (c-DBC)

for any A, B € B(H), the Stroock-Varopoulos inequality proved in Part III implies the so-called
L;-regularity:
(5]

EP,(p)22& (X)) = a1(L)> % . (-1.2)

In practice, the constants a1 (£) and as(L) can be very different from each other: in the case of the

generalized depolarizing semigroup ('PflepOl)tzo, defined for any X € B(C?%) and all t > 0 as
plerel( Xy et X+ (1-c) Tr(0X), (-1.3)

the constant a1 (£9P°!) was computed in [Miiller-Hermes et al., 2016, whereas the constant as(L£P)
is found in Theorem 7.2.4. In particular, o (£3P°!) > i whereas v (L£3P") ~ In(d)~! when o =d ' 1.

Mixing times can be found by noticing that

dD(p|o)

EPO’(p) == dt

= D(pilo) <O D(plo). (-1.4)
t=0

This convergence in relative entropy typically provides much better bounds than the one provided by

a simple Poincaré inequality. Indeed, by Pinsker’s inequality:
lor = o1 < /2D (pi0) <e > \/2In o o .

The question of the usefulness of the constant as(L) can be posed. First, we recall that in
the case of classical diffusions, as = 2a;. A good reason for the introduction of as in the quantum
(and classical discrete) setting is because it is usually easier to compute than «;. Moreover, it was

shown in [Temme et al., 2014] that as (L) is always strictly positive in finite dimensions, with a lower
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INTRODUCTION

bound depending on the smallest eigenvalue of o and the spectral gap A(L). This and (-1.2) directly
implies the positivity of a; (L) for semigroups satisfying a detailed balance condition, and justifies the

introduction of LSI5.

Functional inequalities for non-primitive semigroups

The study of convergence to equilibrium of classical and quantum Markovian evolutions, and their
related functional inequalities, usually assume the condition of primitivity of the semigroup: there
exists a unique full-rank invariant state o towards which the semigroup converges. One of the major
contributions of this thesis is the study of the convergence of non-primitive semigroups [Blanchard
and Olkiewicz, 2003, Deschamps et al., 2016, Carbone et al., 2013].

For sake of simplicity, we assume that the semigroup (P;)¢so is faithful, which means that it
admits at least one full-rank invariant state. This condition certifies the existence of a conditional
expectation Ex : B(H) — N projecting any operator X on the algebra of effective observables A/
(see Section 0.1.4 for more details). For instance, assume that the system under consideration is
constituted of n qubits which are subject to the exact same noise. This leads to an overall invariance
of the evolution under permutation of the qubits that is usually referred to as collective decoherence.
More simply, the depolarizing semigroup of Equation (-1.3) can be extended to the non-primitive case
as follows: let A be a matrix subalgebra of B(C¥), and Exr : B(C*) - N be a conditional expectation
onto N. Then, the simple quantum Markov semigroup (PtN )¢s0 associated to N is defined for any
X e B(C*) and t >0 by

PN(X):=et X +(1-et) Ex[X].

This semigroup converges to N as t - co. We recover the depolarizing semigroup by choosing
N =Clpcry and Ex[.] = Tr(o.) Igcr)-

The modified logarithmic Sobolev inequality MLSI was extended to this framework by [Bardet,
2017|: for any state p,

401 D(p| Ex+(p)) < EPo, (p) (DF-MLSI)

where the invariant state o1, appearing on the right hand side of DF-MLSI is defined as oy :=
k™' Ep«(1). If DF-MLSI is satisfied, an argument similar to the one of (-1.4) leads to the exponential
convergence in relative entropy of the solution p; towards Enr.(p;). Once again, the question of the
positivity of the optimal constant (L) for any evolution occurring on a finite dimensional Hilbert
space can be raised. Interestingly enough, the situation turns out to be very different from the primitive
case.

In Chapter 8, we extend the logarithmic Sobolev inequality of order 2 to the non-primitive
setting. A natural way of proceeding is by replacing the relative entropy on the left-hand side of LSI,
by the relative entropy between p and its projection Ear.(p). However, we show in Chapter 8 that
this inequality is never satisfied in a truly non-primitive case unless as = 0. A way to overcome this

issue is through a weakening the inequality by adding an additional term on its right-hand side:
d 2
D(plEx+(0)) < 82,2(X) + 51X 0 (DF-LSL)

for some ¢ >0, d > 0. Since d > 0, the Stroock-Varopoulos argument employed in the primitive case in
order to get a lower bound on the rate of convergence in (-1.4) fails. Fortunately, one can employ a

different technique in order to estimate the speed of decoherence in terms of the constants ¢ and d. This
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method uses the equivalence between the logarithmic Sobolev inequality and the hypercontractivity of
the semigroup that still pertains in the non-primitive setting.

A primitive QMS (P;)s»0 with associated invariant state o is said to be hypercontractive if for
any ¢ >0, and In(p(t) - 1) = %,

[P Lo(0) > Ly ()] < exp {Qd (; - p(lt))} . (HC)
The non-commutative Gross lemma [Olkiewicz and Zegarlinski, 1999] states that hypercontractivity
is equivalent to the defective logarithmic Sobolev inequality DF-LSI; for primitive QMS satisfying
0-DBC. In the non-primitive case, the concept ot hypercontractivity needs to be defined with respect
to a different family of norms, call it L,(N), depending on the algebra N. In particular, the following
requirements should be fulfilled:

- L,(N) should reduce to L, (o) for primitive QMS with unique full-rank invariant state o;
- [ XL, vy = IX Ly ary for all X € N, which implies that no further contraction can happen in N;
- the QMS (P;)s0 should contract from La(N') to Ly, (N).

It turns out that the amalgamated L, norms introduced in [Junge and Parcet, 2010] are well-suited. In
Chapter 8, we extend Gross’ lemma by showing a weak equivalence between hypercontractivity with
respect to these amalgamated norms and DF-LSI;. Assuming that the semigroup is hypercontractive

with respect to these norms, we show the following convergence bound:

[Pee(p = Enre(p)) |1 < max/day, In(Jlom, oo) ¥ etreAEN
1€

as long as one assumes that dim(?) > 3. The coefficients dy, refer to the dimensions of the blocks
appearing in the block decomposition of the algebra N (see Equation (0.9)). We also show universal
lower bounds on the constants ¢ and d in the spirit of [Temme et al., 2014]. Notice however that the
problem of finding a universal lower bound on the constant «y(£) in DF-MLST is still open.

Computing the exact constants ¢ and d in DF-LSI; is in general difficult. In Chapter 9, we
show how one can get estimates on decoherence times by showing that, given a faithful QMS that is
reversible with respect to the completely mixed state, there exists a classical Markov semigroup whose
constants control the ones of the original QMS. This so-called transference method was introduced
in [Gao et al., 2018b] who were exclusively concerned with the transfer of classical diffusions. Here, we
broaden their scope to incorporate evolutions on finite groups. One important class of QMS for which
the method applies is the one of collective decoherence already mentioned above. For those evolutions,
we show that the decoherence time, that is the time it takes for the evolution to approximately reach
N:

Taeeo(€) =inf {2 03 |Pru(p) - Ex o Pr(p)lly <& ¥p},

is independent of the size of the system: for instance, consider the Lindblad generator of the weak

collective decoherence semigroup on B((C?)®"):
LyNX)=S2XY!-X, where X':=>1%"g0, 01%" .
i=1
In this example, the algebra A of effective observables coincides with the fized point algebra

F(chd,n) _ {X S VE> O, thcd,”(X) = X} .
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We show in Chapter 8 that the following estimate holds:
[Pt = Bp : La(dy Lae) > La(dyf 1gg) | < [ PP = Ex : Lo(T') > Lo(TY)]

where P** denotes the classical heat semigroup on the circle T! which converges to the Lebesgue

measure A. Moreover, the latter was in shown e.g. in [Saloff-Coste, 1994] to satisfy the following bound

| PPt —Ey : Ly(T') - Ly (TH| < \/2+ /7t e % .

This implies that the weak collective decoherence converges exponentially fast to its fixed point algebra

independently of the size n of the system.

Tensorization

The great advantage of classical logarithmic Sobolev inequalities over kinds of functional inequalities
resides in their tensorization property: the logarithmic Sobolev constants aq,as of n copies of a
Markovian evolution are equal to the ones of a single copy. One easy way to understand this is by
noticing that, in the commutative case, operator norms are multiplicative. This simple fact no longer
holds true in the non-commutative setting. In Chapter 10, we find a uniform bound on oy (£3P!)
for the generalized depolarizing semigroups and their tensor powers. The proof of this result is a
generalization of the proof of a similar result in the classical case [Mossel et al., 2013]. We also show
that the constant ag(L4P°") tensorizes in the qubit case.

In [Beigi and King, 2016], the authors proposed to define the hypercontractivity property in terms
of the completely bounded norms, which are known to be multiplicative even in the non-commutative
framework, and proved that it is equivalent to the so-called notion of a complete logarithmic Sobolev
inequality for a primitive QMS (P¢)s 0. This provides a way to recover the tensorization property
in the non-commutative framework. In practice, this amounts to embedding the QMS (P )0 into
the non-primitive faithful QMS (id; ®P; )0 on B(C* ® H) for each k € N, and study the latter’s
hypercontractivity properties. Let o be the unique invariant state of (P;)ss0. Then Ny := B(CF) ® 14
and oy = % ® 0. Since we proved the impossibility of a positive logarithmic Sobolev constant of
order 2 for these evolutions in Chapter 8, we are entitled to introduce a weak constant d similarly to
DF-LSI; in our definition of the complete logarithmic Sobolev inequality. This is problematic since,

contrary to the constant ¢, the constant d is additive under tensorization.

Concentration of quantum states

Concentration of measure is the phenomenon according to which almost all the points of a metric
probability measure space (2,d, pt) are close to a subset of positive measure. One way of deriving such
inequalities is from transportation-cost inequalities: such an inequality is said to hold if there exists a

constant ¢ > 0 such that for any probability measure v << p,
d
Wi (u,v) <4/ 2c Ent (—V) ,
dp

where Wi(p,v) = infrenu,y [ d(z,y)dr(x,y), and the minimization is over all the probability
measures on {2 x Q) having p and v as marginals. The transportation-cost inequality was shown
by [Marton, 1986] to encode the concentration properties of the measure p. In particular, it implies

the existence of a constant C such that, given any Borel set A c Q of measure p(A) >

5, and any
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r-enlargement A, := {z € Q, d(z, A) <r},
p(A) <1-¢7"

The original proof of Marton is of a probabilistic nature. Later, a functional analytical proof was
proposed by [Bobkov and Goetze, 1999] who used the following dual formulation of the Wasserstein

distance:

Wi(p,v) = sup fdu—/ fdv,
1£hip<1
where the supremum is taken over the set of functions f : Q — R of Lipschitz constant | fip :=
sup,., |f(z) - f(y)|/d(x,y) less than 1. Following the approach of [Bobkov and Goetze, 1999], we
prove a concentration phenomenon for quantum states in Section 12.7: first, we define the following

quantum Wasserstein distance: given two states p, o,

Wi(p.o):= sup | Te(X(p-0))],
X |Lip<t
where the supremum is taken over all operators X € B(H) of quantum Lipschitz constant less than

one. Here, the Lipschitz constant is defined as follows:
| X Lip = 1L, Xl ,

for some fixed operator L € B(H). The above commutator replaces the finite difference in the definition
of | flip. Given a state o on H, we then define the quantum transportation-cost inequality as follows:

there exists a constant ¢ such that, for any state p of support included in the one of o,

Wi(p,0) <\/2¢D(plo). (TCy)

Similarly to their classical counterparts, we show that such inequalities can be for instance derived
whenever a primitive quantum Markov semigroup of invariant state ¢ satisfies a logarithmic Sobolev
inequality. The link between the semigroup chosen and the above inequality is through the definition
of the Lipschitz constant, where the operators L are chosen as the Lindblad operators associated to
the evolution. Moreover, this implies the following Gaussian concentration of the state o: for any
observable X,

2
Tr (0 Loy (X = Tr(0X))) < exp A , (Gauss)
2c|(072 Xo2)|3,,
which means that the operator X is concentrated around its expected value in the state o. Similarly,

we show that a weaker concentration can be obtained from a Poincaré inequality.

Non-commutative curvature and displacement convexity

The convergence to equilibrium of a diffusion process on a smooth Riemannian manifold M can be
described by the properties of the underlying manifold. This was first observed by [Bakry and Emery,
1985] who showed e.g. that the logarithmic Sobolev constant is lower bounded by the curvature of M.
Extending this geometric interpretation to the case of Markovian evolutions on spaces of less regularity

has been a subject of focus in the classical community over the past two decades. A milestone was
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reached with the appearance of articles establishing a connection between Bakry-Emery’s criterion and
the well established theory of optimal transport [McCann, 1997, Jordan et al., 1998 Otto and Villani,
2000a]. In these papers, the focus was shifted from the geometry of the underlying sample space, say a
smooth Riemannian manifold M, to the set of probability measures P(M) on M. The latter is given

the structure of a metric space by means of the Wasserstein distance of order 2: for any u,v € P(M),

1/2
Wo(p,v) = inf (/dw, 2dn(x, ) ,
2(1,v) U (z,y) dn(z,y)
where II(u, v) denotes the set of probability measures on M x M of marginals p and v. [Benamou and
Brenier, 2000] showed (originally in the case of M = R%) that the metric space (P2(M),Ws) can be

provided with a weak Riemannian structure:

1 3
Wa(u,v) = inf f f 2d dt), -1.5
() = int( [ [ o s (-15)

where Po (M) is the set of probability measures on which W5 takes finite values, and where the infimum

is taken over distributional solutions (u¢,v:) of the following continuity equation:

d
%,ut+v.(vt,ut) =0. (_16)

Using [Benamou and Brenier, 2000]’s formulation of the Wasserstein distance, a diffusion semigroup can
be canonically defined as the gradient flow of the relative entropy functional in the space (P (M), Wa).
Bakry and Emery’s conditions were then reinterpreted in terms of the convexity properties of the
latter along geodesic paths in Po(M). The mesoscopic notion of transportation of masses in P (M)
being more robust than the local notion of transportation of points in M, this new approach lead to a
particularly prolific generalization of Bakry-Emery’s criterion to non-smooth metric-measure length
spaces. Since then, the original framework of Bakry and Emery was further extended to the case of
Markov chains over discrete sets (e.g. lattice spin systems) by [Maas, 2011, Erbar and Maas, 2012].
This framework is briefly described in Chapter 4.

Recently, [Carlen and Maas, 2014, Carlen and Maas, 2017] introduced an extension of the latter
in the context of primitive quantum Markov semigroups. In Chapter 12, we extend their notion
of quantum geodesic convezity to the case of primitive QMS acting on the algebra B(#H) of linear
operators acting on a finite dimensional Hilbert space H satisfying the detailed balance condition: for

any constant speed geodesic (7(5))se0,1] in D(H),

D(v(s)]o) < (1=5)D((0)]o) + sD(y(1)]o) - gS(l =) Wa,c(7(0),7(1))*,  (Displ. Conv.)

where the quantum Wasserstein distance Wa ¢ is defined in [Carlen and Maas, 2017] similarly to
Equation (-1.5). Moreover, we show that Displ. Conv. implies a quantum version of the celebrated

HWI inequality, according to which, for any full-rank state p on H:

D(plo) < Wac(p.oIWEP(p) - S Wae(p. ). (HWI)

We show that, in the case of x >0, HWT implies that the modified logarithmic Sobolev constant a1 (L)
defined through MLSI is lower-bounded by 3.

In the case when Displ. Conv. holds with constant x = 0, we show that a Poincaré inequality
can be retrieved, with constant depending on the diameter of the set of states under the Wasserstein

distance W5 . A similar conclusion can be reached concerning the modified logarithmic Sobolev
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inequality in the case of a doubly stochastic QMS. We end the chapter in Section 12.8 with a preliminary
discussion on extensions of the framework to the infinite dimensional setting of continuous variable

quantum systems.

Entropy power inequality and isoperimetry

Perhaps the first logarithmic Sobolev inequality to be discovered was the one of the classical Ornstein
Uhlenbeck semigroup modeling the behavior of the velocity of a massive Brownian particle under the

influence of friction:

Ent(f?) < 2/]1; IV flPduc (Gross)

where Ent(f) := [ fIn fdu - [ fduIn [ fdu, and where p is the standard Gaussian measure on R™.
The original proof of (Gross) by [Gross, 1975b] used the equivalence with the hypercontractivity proved
before by [Nelson, 1973a|. A few decades earlier, [a.J. Stam, 1959] had proved the superadditivity
of the entropy power function, also known as the entropy power inequality: given two independent

random variables X and Y on R"
N(X+Y)>N(X)+N(Y), (EPT)

where N(X) = exp(25(X)/2), S(X) =~ [ fx(z)In fx(2)d"z being the differential Shannon entropy
of the signal X of corresponding probability distribution function fx. The entropy power inequality
was in fact originally proposed by [Shannon, 1948| as a way to establish the capacity region of the
Gaussian broadcast channel. It can be proved to be equivalent to the following entropy convex

combination inequality: for any two independent random variables X and Y on R", and any A € [0, 1]:
S(VAX +V1-XY) 2 AS(X) +(1-N)S(Y).

In words, the entropy of a mixture of two independent signals X and Y is greater than the average
entropy of X and Y. More than thirty years after its original proof by Stam, [Carlen, 1991] showed
that EPI implies Gross. This alternative proof makes use of the so-called entropic isoperimetric

inequality: given a random variable X on R"™ of associated density fx:
I(fx)N(X) 2 2men, (Isop.)

which can be derived from (EPI). Here, I(fx) := f fo = - [ fxAln fx is the Fisher information of

the random variable X.

Recently, the entropy power inequality has been a subject of focus in the quantum community
[Koenig and Smith, 2014, Audenaert et al., 2016, Carlen et al., 2016]. In analogy with their classical
counterparts, the quantum entropy power and divergence-based quantum Fisher information of a

“well-enough behaved” state p on Lo (R™) are defined as follows:

n

N(p) =€ J(p) =Z Tr(p [Py, [Py, In(p)]]) + Tr(p[Q;, [Q;,1n(p)]]),

where S(p) := = Tr(plnp) denotes the entropy of p, and the operators Pj : 1) = —i0, 1), Q; ¢ = (z +
z;(z)), are the usual momentum and position operators. In Chapter 11, we prove the following
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quantum isoperimetric inequality:

J(p)N(p)=2en. (qlsop.)

We also show how this inequality provides convergence times for the quantum heat semigroup whose
generator is defined in Equation (5.44) as:

2

L£aheat (1) .= — [(Q;,[Qy, 11+ [P}, [P),-1]- (-1.7)

| =
INagE

J

Here, the double commutators should be interpreted as non-commutative second order differentiations
in the directions P; and @);. We show that any state p, of finite first and second moments converges
to its Gaussification, that is a Gaussian state ptG of same first and second moments as p;, polynomially

fast: for any € € (0,1) there exists t. > 0 as well as a. > 0 such that for any ¢ > ¢.:
D(ptlp) < ae t77F (-1.8)

Similarly to [Carlen, 1991], one motivation behind the derivation of gqIsop. was to find the logarithmic
Sobolev constant of the quantum Ornstein Uhlenbeck semigroup whose generator takes the following

form:
£O9(X) = - 3 (1Qu[Qu XN+ [P [P XT) - (X +i[@XP-PXQD. (19

This generator, which models the evolution of a two-energy levels atom which traverses a photonic
cavity, reduces to the one of the classical Ornstein Uhlenbeck semigroup when restricting its action
to the “diagonal” of functions of the position operators. However, qlsop. turns out to be the wrong
generalization of the isoperimetric inequality to serve that purpose. More recently, [De Palma and
Huber, 2018| observed that the original quantum-quantum entropy power inequality proved by [Koenig
and Smith, 2014] does the job. We recall their proof for sake of completeness in Section 11.3.

Applications to quantum information theory

Part V is devolved to applications of the results obtained in the previous chapters to quantum

information theory. These results are organized in three categories:

Applications to quantum statistics Initiated in the mid 60’s, the field of quantum statistics
deals with the problem of extracting information from a particular quantum system (its quantum
state, its evolution, etc.) from the analysis of the data obtained after performing certain quantum
measurements. The importance of this basic task can be observed by noticing that it is at the core of
many more complex quantum information processing protocols. Perhaps one of the first important
discoveries was the generalization of Stein’s lemma to the quantum setting: assume that n identical
and independent copies of a quantum system have been prepared in either a state p or a state o. Bob’s
task is to infer which state the system has been prepared in by means of a quantum measurement,
also referred to as a test. Two kinds of error can be made: either Bob infers the system is in the state
o when it is in state p, or vice versa. The corresponding probabilities of error are respectively called

the type I error and type II error, and are denoted as follows:

a(Tn) = Te(p®" (Lpgon = T0)),  B(Th) = Tr(Tno®"),
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where 0 < T, <1 models any allowed test performed on the n received copies. Then, for any € > 0,

~lim S min {3(T,): a(T,) <2} = Diplo).
This is the content of Stein’s lemma, which provides the quantum relative entropy with an operational
interpretation. This means that the smallest error rate that one can hope to achieve for the type II
error while imposing the type I error to stay lower than a threshold ¢ is given by the quantum relative
entropy. While the above limit provides a good understanding of the asymptotic problem, finding
finite n bounds on the type II error may be more relevant to tackle practical situations where only
finite resources are available. Fortunately, a recent classical method [Liu et al., 2017] based on the
reverse hypercontractivity for the random walk on the complete graph can be extended to the quantum
regime and yields the following finite sample size strong converse bound: for any n € N and any test
0< T, < lyen such that the type II error 8(T;,) decreases at a rate r > D(p| o), the type I error grows

exponentially fast with a rate given by

oTy)21-e", (-1.10)

2
where [ = (\/'y+ (r=D(p|lo)) - \/7) , and hence tends to zero in the limit of r - D(p|lo) (see
Section 13.1.2). The same method can also be used to derive similar strong converse bounds on the

classical capacity of classical-quantum channels (see Section 15.3).

Another important task in quantum statistics is the one of the estimation of a quantum state
indexed by a real parameter §. Once again, we assume that n copies of the same state py are being
produced. Then, an estimator is described by a sequence of positive operator valued measurements
(POVMs in short) M := {M(™}, ., where, for each n, M : B(R) — P(H®") is a POVM on the
Hilbert space H®" of the n systems, B(R) standing for the Borel algebra associated to R. The merit of
such a sequence can be quantified in terms of the following error exponent (see [Hayashi, 2002, Nagaoka,
2005, Masahito, 2005]):

ﬂ(MaeaEan) = _%logPM(")(én € [0_556+€]c)a
ne

where Py (0, € [0 —€,0 +£]°) := Te(M ([0 —¢,0 + €])pg") is the probability that the estimated
value 6, is at least e away from the true parameter 6. In the asymptotic setting n — oo, it was shown
in Lemma 14 of [Hayashi, 2002] that, under some technical assumptions, any POVM M satisfies

1
limsup limsup (M, 0,e,n) < s (6)

)
e—=0 n—oo 2

(-1.11)

where Isip(0) := Tr(pg(L5EP)?) is the quantum symmetric logarithmic derivative (SLD for short)
Fisher information (see Section 1.3). This bound was also shown to be saturated for a sequence of

projective-valued measurements My associated to the self-adjoint operator

x (M ._ 1 Zn: 18¢-1) g (LSLD " 9]1) ® 18(F) (-1.12)
0 n i Istp ()

where the estimated value 6,, is determined to be the outcome of the measurement Me(n). Using the
concentration of quantum states arising from the modified logarithmic Sobolev inequality for the
tensor product of generalized depolarizing semigroups converging to p?”, we show in Section 13.2 that

any estimator constructed from such a family of observables of the form of X (™, with identical local
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terms X, is such that the following lower bound holds for any integer n:

1
-1/2 1/2
210, X 0”2

Lip

B(M,0,e,n) > (-1.13)

Applications to entanglement theory In various information processing tasks (compression,
communication, etc.), the advantage of quantum protocols over their classical analogues lies in the
possibility of encoding information in entangled states. We recall that a separable state on a bipartite

system H 4 ® Hp is one that can be written as the mixture of product states:
S () g ()
1 2
PAB =), Dipy ® Py - (-1.14)
i=1

Any state that cannot be decomposed as in Equation (-1.14) is called entangled. One of the main
goals of quantum information processing is to figure out ways to create and manipulate quantum
states without losing their entanglement properties. Therefore, entanglement breaking channels, i.e.
quantum channels that only output separable states when acting on one half of a bipartite quantum
state, represent a kind of noise that a quantum system needs to be protected from in such non-classical
protocols. In Chapter 14, we provide estimates on the time it takes for a continuous or discrete time
Markovian evolution applied to one half of a bipartite quantum system to ensure that it becomes
entanglement breaking.

Our upper bounds are based on the observation that full rank product quantum states lie in the
relative interior of the set of separable quantum states, as already proved in [Lami and Giovannetti,
2016]. We then use techniques similar to those of [Gurvits and Barnum, 2002| to obtain estimates on
the radius of the separable ball around such states in different metrics. Combining these with the
tools to estimate decoherence time of Markovian evolutions studied in Chapter 8, we obtain estimates
on how long it takes for all outputs to be in the separable ball.

To derive lower bounds, we exploit the fact that quantum channels that only output separable
states remain positive maps when composed with partial transposition. Thus, if we can show that the
output of a state under the channel has a negative partial transposition, the channel still preserves
some entanglement. Applying this reasoning with the maximally entangled state as an input, we are
then able to obtain criteria based on the spectrum of the quantum channel to certify that it still
preserves some entanglement. Unlike our upper bounds, we do not make any assumptions on the
structure of the quantum channels to prove these lower bounds, although we derive specialized versions

for quantum channels of particular interest, such as quantum Markov semigroups in continuous time.

Application to estimates on capacities of quantum Markovian evolutions In Chapter 15,
we are interested in the estimation of the optimal amount of information that can be sent for different
information processing tasks involving quantum inputs and noise. We consider the following tasks.
The capacity associated to each of these tasks, i.e. the optimal achievable asymptotic rates at which
the task can be performed, can be expressed in terms of an appropriate entropic quantity. The main
difficulty of quantum channel coding in comparison to its classical analogue lies in the fact that the
entropic expressions characterizing most of the capacities are intractable for general quantum channels.
For instance, in the case of classical communication over identical uses of a quantum channel ®, the

classical capacity C(®) of ® is characterized by the regularized Holevo information:

1
C(®) = XrEg(cI)) = 711_{]20 gX((I)® ),
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where the Holevo information x(®) of a quantum channel ® is defined in Equation (15.2). In general,
the regularized Holevo information does not reduce to its single-letter expression: xreq(®) # x(®), in
sharp contrast with the classical setting. This is due to the so-called superadditivity of the Holevo

information: there exist channels ®; and ®5 such that

X((I)l ® (I)Q) > X((I)l) + X(Cbg) .

Fortunately, recent progress has been made in finding good strong converse bounds' on various
capacities. In the case when the channel is assumed to arise from a quantum convolution semigroup
(see Section 5.5.3), we use the transference methods of Chapter 9 in order to estimate the behavior of

the capacity as a function of time.
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