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ABSTRACT Infection by Shigella spp. is a common cause of dysentery in Southeast
Asia. Antimicrobials are thought to be beneficial for treatment; however, antimicro-
bial resistance in Shigella spp. is becoming widespread. We aimed to assess the fre-
quency and mechanisms associated with decreased susceptibility to azithromycin in
Southeast Asian Shigella isolates and use these data to assess appropriate suscepti-
bility breakpoints. Shigella isolates recovered in Vietnam and Laos were screened for
susceptibility to azithromycin (15 �g) by disc diffusion and MIC. Phenotypic resis-
tance was confirmed by PCR amplification of macrolide resistance loci. We compared
the genetic relationships and plasmid contents of azithromycin-resistant Shigella son-
nei isolates using whole-genome sequences. From 475 available Shigella spp. iso-
lated in Vietnam and Laos between 1994 and 2012, 6/181 S. flexneri isolates (3.3%,
MIC � 16 g/liter) and 16/294 S. sonnei isolates (5.4%, MIC � 32 g/liter) were pheno-
typically resistant to azithromycin. PCR amplification confirmed a resistance mecha-
nism in 22/475 (4.6%) isolates (mphA in 19 isolates and ermB in 3 isolates). The sus-
ceptibility data demonstrated the acceptability of the S. flexneri (MIC � 16 g/liter,
zone diameter � 15 mm) and S. sonnei (MIC � 32 g/liter, zone diameter � 11 mm)
breakpoints with a �3% discrepancy. Phylogenetic analysis demonstrated that de-
creased susceptibility has arisen sporadically in Vietnamese S. sonnei isolates on at
least seven occasions between 2000 and 2009 but failed to become established.
While the proposed susceptibility breakpoints may allow better recognition of resis-
tant isolates, additional studies are required to assess the impact on the clinical out-
come. The potential emergence of azithromycin resistance highlights the need for
alternative options for management of Shigella infections in countries where Shigella
is endemic.
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Organisms of the bacterial genus Shigella are a common cause of moderate to
severe diarrhea and dysentery in children attending day care facilities, those living

in resource-limited settings, and travelers to such areas (1–5). In many low- to middle-
income countries (LMICs), such as Vietnam, endemic shigellosis is now predominantly
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caused by Shigella sonnei. Sustained antimicrobial pressure in LMICs has led to the
emergence of resistance to the antimicrobials used for treating shigellosis (6, 7). In
Southeast Asia, antimicrobial resistance (AMR) in the shigellae is largely being driven by
the expansion of a specific S. sonnei lineage, which is known as global lineage III (8).

AMR within the genus Shigella is a problem for clinical management (9, 10). The
treatment of Shigella infections with antimicrobials is recommended by most clinical
guidelines, predominantly to reduce the risk of onward transmission and disease
complications. WHO currently recommends ciprofloxacin as the first-line treatment,
with pivmecillinam, ceftriaxone, and azithromycin being alternative options. However,
Shigella spp. are adept at acquiring AMR genes and plasmids, and reports of multidrug-
resistant (MDR) lineages or isolates with reduced susceptibility to fluoroquinolones and
third-generation cephalosporins are increasing globally (11, 12).

Some recent recommendations have advocated the oral azalide antimicrobial azi-
thromycin as an alternative treatment for shigellosis, particularly for infections caused
by MDR organisms or when fluoroquinolones are inappropriate (9, 13). Clinical evidence
for the efficacy of azithromycin in treating shigellosis is limited (14, 15), and there are
presently no suitable clinically derived susceptibility breakpoints to facilitate the labo-
ratory identification of Shigella spp. exhibiting azithromycin nonsusceptibility. Recently
updated CLSI guidelines suggest epidemiological cutoff values (ECVs) of MICs of �16
mg/liter and �32 mg/liter to the categories non-wild-type S. flexneri and S. sonnei,
respectively (16). Data supporting these guidelines are limited and principally originate
from reports of an international outbreak of S. flexneri serotype 3a among men who
have sex with men (MSM) (17–19). Here, we aimed to assess the frequency and
mechanisms of Shigella species isolates with decreased susceptibility to azithromycin in
Southeast Asia, a setting where fluoroquinolone and third-generation cephalosporin
resistance has become common. Additionally, using a large data set from Vietnam and
Laos spanning 18 years, we aimed to calculate suitable breakpoints for assessing
Shigella susceptibility to azithromycin.

RESULTS
Decreased susceptibility to azithromycin in Shigella spp. in Southeast Asia.

Data from a total of 517 Shigella isolates (198 S. flexneri isolates, 308 S. sonnei isolates,
and 11 isolates of other Shigella spp.) collected between 1994 and 2012 in Vietnam (6
studies, 472 isolates) and Laos (45 isolates) (Table 1) were available for antimicrobial
susceptibility analysis. In this collection of organisms, 180/198 (91%) S. flexneri isolates
were defined as being MDR (resistant to �3 classes of antimicrobials), 3/196 (2%) were
resistant to ceftriaxone, and 78/196 (40%) were resistant to nalidixic acid. In contrast,

TABLE 1 Origin of Shigella isolates and frequency of selected resistance azithromycin markersa

Country/study codea Period of study

No. of isolates of the following
Shigella species:

No. of isolates with the following antimicrobial resistance
markers/total no. of isolates tested (%)b

S. flexneri S. sonnei Other Total DSA NAL CRO MDR

Vietnam/MS 1994–1998 58 22 0 80 3/70 (4.3) 1/80 (1.3) 0/80 (0) 57/80 (72.5)
Vietnam/DE 2000–2002 42 62 8c 112 10/93 (10.8) 32/111 (28.8) 1/111 (0.9) 80/112 (71.4)
Laos 2006–2012 35 9 1d 45 0/45 (0) 14/45 (31.1) 0/45 (0) 34/45 (75.6)
Vietnam/EG 2007–2008 30 78 2e 110 4/104 (3.8) 75/108 (69.4) 22/108 (20.3) 96/110 (87.3)
Vietnam/Hué 2008–2010 21 37 0 58 1/56 (1.8) 27/58 (46.6) 7/58 (12.0) 24/58 (41.4)
Vietnam/AV 2009–2010 4 58 0 62 3/61 (4.9) 58/62 (93.5) 47/62 (75.8) 52/62 (83.9)
Vietnam/KH 2009–2010 8 42 0 50 1/50 (2.0) 47/50 (94.0) 18/50 (36.0) 25/50 (50)

Total 198 308 11 517 22/479 (4.8) 254/514 (49.4) 95/514 (18.5) 368/517 (71.2)
aThe study code is described in reference 6.
bDSA, decreased sensitivity to azithromycin (S. flexneri MIC � 16 mg/liter; S. sonnei MIC � 32 mg/liter); NAL, nalidixic acid-resistant organism (zone diameter � 19
mm); CRO, ceftriaxone-resistant organism (zone diameter � 23 mm); MDR, multidrug resistant, which includes isolates intermediate or resistant to �3 classes of the
following antimicrobials: penicillins (ampicillin), cephems (ceftriaxone), folate inhibitors (trimethoprim), phenicols (chloramphenicol), tetracyclines (tetracycline),
quinolones (specifically, nalidixic acid resistance), aminoglycosides (gentamicin).

cOne S. boydii isolate, one S. dysenteriae isolates, and six isolates for which the species was not available.
dS. boydii.
eTwo S. boydii isolates.
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significantly fewer S. sonnei isolates were MDR (181/308, 59%; P � 0.0001), while a
greater proportion exhibited resistance to ceftriaxone (92/307, 30%; P � 0.0001) and
nalidixic acid (174/307, 69%; P � 0.0003) (20).

From the 517 Shigella isolates collected over the defined period, 479 were recovered
and available for azithromycin susceptibility testing; 181/479 (37.8%) were S. flexneri
isolates, 294/479 (61.4%) were S. sonnei isolates, and 4/479 (0.8%) were isolates
belonging to other Shigella species (which were not considered further). The distribu-
tions of the azithromycin MICs of the 475 Shigella isolates collected over the sampling
period are shown in Fig. 1. The combined MIC50 for azithromycin was 4 mg/liter (MIC90,
8 mg/liter); the S. sonnei isolates exhibited a higher range of MIC values (interquartile
range [IQR], 4 to 8 mg/liter) than the S. flexneri isolates (IQR, 2 to 4 mg/liter). The
proportion of S. flexneri isolates with an MIC of �16 mg/liter was 6/181 (3.3%; 95%
confidence interval [CI], 1.4 to 7.4%), whereas the proportion of S. sonnei isolates with
an MIC of �32 mg/liter was 16/294 (5.4%; 95% CI, 3.2 to 8.9%) (P � 0.05).

Genes conferring decreased susceptibility to azithromycin. Isolates were
screened by PCR amplification for the macrolide resistance genes ermA, ermB, ermC,
mphA, mphB, ereA, ereB, msrA, and mefA, which encode antimicrobial efflux mecha-
nisms. Nucleic acid extractions from 19/475 (4.0%) isolates (14 S. sonnei and 5 S. flexneri
isolates) generated an amplicon for mphA (Table 2). The majority of these organisms
had azithromycin MICs of �32 mg/liter with a corresponding zone of inhibition of �14
mm; three S. flexneri isolates had azithromycin MICs of 16 mg/liter and zone sizes of 11
and 12 mm (2 isolates) to a 15-�g azithromycin disc. A further three organisms
produced ermB amplicons (3/475, 0.6%). The only ermB amplification-positive S. flexneri
isolate had a lower MIC (16 mg/liter) and a larger inhibition zone size (12 mm) than the
two S. sonnei isolates (MIC, 32 mg/liter; zone size, 9 mm). These data suggest that S.
sonnei and S. flexneri exhibit different distributions of MICs when harboring the mphA
and/or ermB gene.

Determining disc susceptibility breakpoints for azithromycin. CLSI recently
provided ECVs for determining azithromycin resistance in S. flexneri (disc diffusion and
MIC) and S. sonnei (MIC only) (16). While ECVs are not generally recommended for
determining clinical susceptibility breakpoints, we used the same criteria in our data
set, given that clinical data on azithromycin usage were not available. We aimed to
determine whether the CLSI cutoff values could be used to determine suitable disc

FIG 1 Distribution of azithromycin MICs for S. flexneri and S. sonnei in Southeast Asia. The histograms show the number of S. sonnei and
S. flexneri isolates collected in 7 studies performed in Southeast Asia between 1994 and 2012 exhibiting different MICs against
azithromycin.
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diffusion breakpoints for S. sonnei. Azithromycin disc inhibition zone sizes were avail-
able for 181 S. flexneri and 294 S. sonnei isolates. A regression analysis for determining
the suitability of the use of MIC data to extrapolate disc diffusion breakpoints demon-
strated a significant correlation between the MIC and the disc diffusion zone size for S.
flexneri (rho, �0.845; P � 0.0001, Spearman’s rank correlation coefficient) and, to a
lesser extent, for S. sonnei (rho, �0.649; P � 0.001).

For S. flexneri, a breakpoint zone size of �15 mm against a 15-�g azithromycin disc
exhibited good discrimination to identify nonsusceptible isolates. Using an error rate-
bounding method, a 3% major error rate was found, and with a �15-mm breakpoint,
there were no very major or minor errors compared to the results obtained with an MIC
of �8 mg/liter (Table 3; Fig. 2), thereby fulfilling CLSI recommendations (21). In contrast,
while the ECV MIC threshold of �32 mg/liter appeared to define nonsusceptible S.
sonnei isolates, no clear demarcation in disc diffusion zone size measurements was

TABLE 2 Source and microbiological and genotypic characteristics of Shigella isolates with decreased susceptibility to azithromycina

Isolate identifier Organism Yr Age (yr)

Azithromycin susceptibility

Resistance gene ESBLb producerMIC (mg/liter) Zone diam (mm)

MS025 S. flexneri
2a

1994–1998 0.75 32 11 mphA �

MS052 S. flexneri 1994–1998 0.83 16 14 mphA �
MS055 S. flexneri

6
1994–1998 0.92 512 6 mphA �

DE0088 S. sonnei 2000 4.00 512 6 mphA �
DE0105 S. sonnei 2000 1.50 512 6 mphA �
DE0108 S. sonnei 2000 1.50 512 6 mphA �
DE0185 S. sonnei 2000 0.67 512 6 mphA �
DE0199 S. sonnei 2000 2.42 512 6 mphA �
DE0490 S. sonnei 2000 1.67 512 6 mphA �
DE0579 S. sonnei 2001 4.00 512 6 mphA �
DE0885 S. sonnei 2001 3.00 512 6 mphA �
DE0891 S. sonnei 2001 1.50 128 6 mphA �
DE1336 S. sonnei 2002 1.92 512 6 mphA �
EG0094 S. sonnei 2007 2.58 256 6 mphA �
EG0352 S. sonnei 2007 2.50 256 6 mphA �
EG0419 S. flexneri

2a
2007 1.92 16 12 ermB �

EG0430 S. sonnei 2008 3.00 32 9 ermB �
Hué 49 S. flexneri 2009 4.00 128 6 mphA �
KH 39 S. flexneri 2009 0.75 16 12 mphA �
20094 S. sonnei 2010 1.42 32 9 ermB �
20343 S. sonnei 2010 1.58 512 6 mphA �
30295 S. sonnei 2010 1.75 512 6 mphA �

aAll isolates were MDR.
bESBL, extended spectrum �-lactamase.

TABLE 3 Discrepancy rates of false-susceptible and false-resistant isolates detected using
proposed breakpoint criteria and an error rate-bounding method

Organism (breakpoint [g/liter]) MIC rangea No. of isolates

No. (%) of
discrepancies

Very major Major

S. flexneri (�8) �R � 1 3 0 NAb

R � S 4 0 1 (25)
�S � 1 191 NA 5 (2.6)
Total 198 0 6 (3.0)

S. sonnei (�16) �R � 1 14 0 NA
R � S 2 0 0
�S � 1 292 NA 3 (1.0)
Total 308 0 3 (1.0)

aR, nonsusceptible MIC; S, susceptible MIC; �1, �1 MIC dilution (according to CLSI guidelines).
bNA, not applicable.
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observed (Fig. 2). The largest azithromycin zone of inhibition in the S. sonnei isolates
with a known azithromycin resistance mechanism was 9 mm. We aimed to identify the
largest zone size concordant with a permissible CLSI error rate. We determined that a
cutoff of �11 mm resulted in an acceptable discrepancy rate (Table 3), whereas one of
�12 mm resulted in a 6.5% major error rate.

Plasmid structures and phylogenetic context of azithromycin-resistant Shigella
sonnei. As observed previously, phylogenetic analyses confirmed that all Vietnamese S.
sonnei isolates whose genomes have been sequenced belong to the same clade as
global lineage III (22). Investigation of the accessory genome confirmed that resistance
to azithromycin was mediated by either ermB or mphA in 16 of these sequenced S.
sonnei isolates (Fig. 3). Two of the 16 azithromycin-resistant isolates carried an ermB
gene; the remaining 14 carried an mphA gene. Notably, unlike the phenotypes of
reduced susceptibility to fluoroquinolones and resistance to third-generation cephalo-
sporins (23), these azithromycin resistance genes were not restricted to individual
sublineages or clonal expansions. Indeed, we estimated that between 2001 and 2008
ermB was acquired independently on at least two separate occasions, while mphA was
acquired on at least five separate occasions, forming a small subclade of azithromycin-
resistant organisms in two instances (Fig. 3). However, these azithromycin resistance
genes were transient and appeared not to be maintained within the population.

Additional in silico analysis of the azithromycin resistance plasmids demonstrated
that ermB is associated with two different plasmid structures; S. sonnei 20094 harbored
an IncFI plasmid (p20094), and S. sonnei EG430 carried an IncFII plasmid (pEG430-2). The
IncFI plasmid (p20094) was assembled and found to be approximately 82 kb in size,
sharing 99% DNA sequence identity with pEG356 (GenBank accession no. FN594520.1),
which we previously characterized in Vietnamese S. sonnei isolate EG356 (23). Similar to
plasmid pEG356, p20094 carried a blaCTX-M-24 gene downstream of an ISEcp1 element.
However, this replicon additionally contained an ISCR3 insertion sequence encompass-
ing both the ermB and ermC genes. IncFII plasmid pEG430-2 (GenBank accession no.
LT174531.1) was 68,999 bp, harbored ermB and ermC genes downstream of an IS6
transposase, and had a 33,429-bp DNA transfer region comprised of 37 contiguous
genes (Fig. 4A). Plasmid pEG430-2 shared significant DNA homology to two other
previously sequenced IncFII plasmids, p183660 (GenBank accession no. KX008967;
coverage, 86%; identity, 98%) and pKSR100 (GenBank accession no. LN624486; cover-

FIG 2 Relationship between azithromycin MIC and inhibition zone size in Southeast Asian Shigella spp. The plots show the relationship between inhibition zone
size (x axis) and the MIC (y axis) for azithromycin in S. flexneri (left) and S. sonnei (right). The squares are colored with respect to the number of isolates in each
group, and the number of isolate in each group is additionally provided.
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age, 89%; identity, 98%), which were identified, respectively, in S. sonnei and S. flexneri
serotype 3a isolates associated with disease in MSM.

Despite the erratic distribution of the mphA gene in the S. sonnei isolates recovered
in 2000 and 2010, sequence analysis demonstrated that these isolates likely carried
mphA on a similar IncI plasmid backbone of a comparable size. De novo assembly of S.
sonnei DE105 effectively produced an entire plasmid sequence of 113,548 bp, and the
plasmid was designated pDE105 (GenBank accession no. MG569891) (Fig. 4B). Plasmid
pDE105 was analogous in size and structure to a previously described IncI plasmid,
pHV292, from an Escherichia coli isolate identified in the poultry production system in
Switzerland (GenBank accession no. KM377239.1). The mphA gene was located down-
stream of an IS3/IS911 transposase (orfA-orfB) and several additional AMR genes
associated with a tnpA transposon and conferring resistance to sulfonamides (folP),
streptomycin (strepAB), �-lactams (blaTEM-1), and tetracycline (tetA-tetR). Plasmid
pDE105 also contained a type IV secretion system with traI and traJ genes, responsible
for conjugal transfer, and an operon for pilus biosynthesis (pilI, pilQ, pilM, pilN, pilO, and
pilP).

We lastly performed plasmid isolation and sequencing of an additional S. sonnei
isolate (DE891) which was distantly related to DE105. De novo plasmid assembly
produced seven contiguous sequences of 115 kb that spanned 99.6% of pDE105 and
that had 99% DNA sequence identity. These data confirmed a common IncI plasmid
backbone within the mphA-positive Vietnamese S. sonnei population. Mapping the

FIG 3 Phylogenetic tree of 261 S. sonnei genomes (global lineage III) and an additional 54 genomes of isolates collected during the same
period (1995 to 2011) in Southeast Asia. The tree was constructed through the use of 2,812 chromosomal SNPs. Phylogenetic
reconstruction was performed using multiple-sequence alignments of the SNPs by maximum likelihood-based phylogenetic inference; the
tree was displayed and annotated using the iTOL tool. The year/period of isolation is highlighted in the outer ring, and the organisms with
reduced susceptibility to azithromycin are identified; mphA-positive isolates are highlighted in red, and ermB-positive isolates are
highlighted in blue.

Darton et al. Antimicrobial Agents and Chemotherapy

April 2018 Volume 62 Issue 4 e01748-17 aac.asm.org 6

https://www.ncbi.nlm.nih.gov/nuccore/MG569891
https://www.ncbi.nlm.nih.gov/nuccore/KM377239.1
http://aac.asm.org


remaining mphA plasmid sequences against pDE105, we found that they all shared a
common genetic synteny (�90 kb) which contained the same resistance gene cas-
settes.

DISCUSSION

Azithromycin is commonly thought to be a last-resort drug for the treatment of
dysentery, but the increasing number of reports of decreased susceptibility to azithro-
mycin in Shigella isolates is concerning. This problem has been observed in disparate
populations, including among MSM in affluent areas and children with dysentery in LMICs.
Antimicrobial options for treating infections caused by MDR and/or ciprofloxacin-
resistant Shigella spp. are limited, especially for children or when an oral antimicrobial
is required. In this large set of clinical Shigella species isolates collected over 18 years
in Vietnam and Laos, in both of which Shigella-associated dysentery is endemic, we
found a low proportion (�5%) of Shigella isolates with decreased susceptibility to
azithromycin. This low rate of nonsusceptibility may be associated with the initial low
rates of nalidixic acid and ciprofloxacin resistance and, thus, limited azithromycin usage.
To our knowledge, this is the largest collection of Shigella spp. exhibiting decreased
susceptibility to azithromycin reported from this region. The plasmid-mediated acqui-
sition of mphA and ermB was identified to be the principal mechanism for azithromycin
resistance.

As human-restricted pathogens, Shigella spp. likely acquire resistance from the
colonizing microbiota by plasmid transfer. This phenomenon has previously been
demonstrated with E. coli donating mphA to S. sonnei (24). All of the identified
mphA-associated plasmids have previously been described in E. coli, supporting their
role as a reservoir from which AMR Shigella spp. may emerge. We demonstrate that the
mechanism of azithromycin resistance in Shigella spp. arose sporadically during this
period through at least seven plasmid acquisition events at different time points (from
2000 to 2009). Shigella spp. harboring azithromycin resistance plasmids appear not to
have been maintained within the population, which may be associated with a lack of
antimicrobial selection pressure, heterogeneity in the populations sampled, or simply
the instability of the described resistance plasmids. There was only one example in the
S. sonnei population in which an mphA-harboring plasmid subclade was maintained for
at least 2 years (2000 and 2001).

Given the limited antimicrobial treatment options available for Shigella-associated

FIG 4 Maps of azithromycin resistance plasmids pDE105 (A) and pEG430_2 (B) from Vietnamese S. sonnei isolates. The coding sequences are numbered
consecutively, and notable genes/regions, including DNA transfer, replication, and antimicrobial resistance regions and the azithromycin resistance genes (ermB
and mphA), are highlighted. The size of each plasmid is shown in the center.
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dysentery and the now widespread use of azithromycin, it is critical that laboratories
identify clinical isolates nonsusceptible to azithromycin. We assessed the suitability of
recently published ECVs for use as clinical susceptibility breakpoints. The MIC and disc
zone sizes for S. flexneri in this study were consistent with the ECV guidance proposed
by CLSI for MIC and disc diffusion measurements to identify non-wild-type S. flexneri
isolates, based on the detection of a resistance mechanism (16). In contrast, the
distribution of MICs for azithromycin in S. sonnei was not concordant with the CLSI ECV
guidance, with a skew to the right. Our data support a higher ECV and susceptibility
breakpoint for S. sonnei of �32 mg/liter and suggest that a tentative zone size of �11
mm around a 15-�g azithromycin disc can identify non-wild-type isolates. These
thresholds are supported by confirmatory PCR amplifications and genome sequencing,
which corroborated the presence of an azithromycin resistance gene in these 22
non-wild-type isolates and demonstrated an acceptably small proportion of discrep-
ancies according to CLSI criteria (21).

Limitations to our interpretations include the retrospective nature of the analysis of
the data from the associated collection of organisms and a lack of clinical outcome
data. The clinical impact of reductions in azithromycin susceptibility is uncertain, as
azithromycin achieves a high concentration in intracellular compartments, such as
within macrophages and colonic epithelial cells. The pathogenesis of Shigella spp.
requires colonic epithelial cells for invasion, intracellular survival, and replication (8).
Consequently a positive clinical outcome may be achieved even in the context of
reduced in vitro susceptibility. Additionally, broth or agar dilution methods are the
recognized standard method for MIC determination, and a previous study has demon-
strated potential issues with measuring disc diffusion and Etests to determine azithro-
mycin susceptibility (25). In a small study, Jain et al. demonstrated a double zone
phenomenon for both methods and reported that broth dilution MICs corresponded to
values intermediate to inner and outer zones (25). While zone size interpretation may
be a limitation, we additionally performed genotypic screening of all isolates for
associated resistance genes, with those results confirming our phenotypic testing
results. Despite these limitations, the major strengths of our analyses include the large
data set of clinical isolates, the wide range of azithromycin MICs, and the repeat testing
of all isolates at a single center, thus limiting interlaboratory technical and interpreta-
tion errors.

While azithromycin resistance among Shigella spp. causing dysentery and diarrhea
was not common in the 18-year period between 1994 and 2012 in the sampled
locations, the increasing proportion of MDR, fluoroquinolone-resistant, and third-
generation cephalosporin-resistant isolates will inevitably lead to the increasing use of
azithromycin. During the sampling period, Shigella spp. with decreased susceptibility to
azithromycin emerged on several separate occasions but failed to become established
in the population. Azithromycin is being increasingly used for the treatment of sus-
pected and confirmed Shigella infections in LMICs, despite limited evidence. In this
study, we have developed tentative susceptibility breakpoints that we suggest should
be evaluated in other locations. Correlation with proposed breakpoints and clinical
outcomes in azithromycin-treated patients is a further priority. MIC and disc suscepti-
bility breakpoints are urgently needed for the active global surveillance for
azithromycin-resistant strains of Shigella spp. Assessment of new alternative treatments
are also required to stay ahead of this potential public health problem.

MATERIALS AND METHODS
Ethics statement. The bacterial isolates and data for this investigation originated from clinical

studies approved by the scientific and ethical committees of The Hospital for Tropical Diseases (HTD) in
Ho Chi Minh City, Vietnam, all other participating hospitals, and the Oxford Tropical Research Ethics
Committee (OXTREC) in the United Kingdom. The study also included the characterization of bacterial
isolates submitted for routine diagnostic purposes. Study participants or parents of young participants
were required to provide written informed consent for the collection of samples and subsequent
analyses, except when samples were collected as part of routine care.

Study sites. The majority of fecal specimens from which Shigella spp. were isolated were collected
in a series of pediatric studies performed in Vietnam between 1994 and 2012, as previously described (6).
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Briefly, children presenting with either diarrhea or dysentery were recruited into observational studies (6,
20, 26) or treatment trials (27, 28) performed at The Hospital for Tropical Diseases (HTD), Children’s
Hospital 1, or Children’s Hospital 2 in Ho Chi Minh City, Vietnam. Additional microbiology isolates
collected for routine diagnostic purposes from Hué Central Hospital in Hué, Vietnam, Khanh Hoa General
Hospital in Nha Trang, Vietnam, and Mahosot Hospital in Vientiane, Laos, were also included.

Microbiology methods. Fecal samples were collected and processed as previously described using
standard microbiological methods (6, 29). Briefly, non-lactose-fermenting colonies grown on MacConkey
and/or xylose lysine desoxycholate (XLD) agar (Oxoid) were identified biochemically (API 20E system;
bioMérieux, Vietnam) and by slide agglutination with polyvalent somatic (O) and monovalent serotype-
specific grouping antisera (from Denka Seiken, Japan, in Vietnam and Pro-Lab Diagnostics, UK, in Laos).
Azithromycin susceptibility testing was performed at a single laboratory in Vietnam using the Kirby-Bauer
disc diffusion method (15-�g disc) and by MIC antimicrobial gradient diffusion (Etest; AB Biodisk,
Sweden), both of which were performed on Mueller-Hinton agar (Oxoid).

Molecular methods. Genomic DNA was extracted from S. flexneri and S. sonnei isolates using a
Wizard Genomic DNA extraction kit (Promega) following the manufacturer’s recommendations, with the
quality and quantity being assessed using a Quant-IT kit (Invitrogen) prior to sequencing. PCR amplifi-
cation for the detection of macrolide resistance genes (mphA, mphB, ermA, ermB, ermD, ereA, ereB, mefA,
and mefB) was performed as previously described (24).

In addition, we performed a phylogenetic analysis of 247 existing S. sonnei genomes (global lineage
III) and an additional 68 contemporary genomes of isolates collected during the same period (1995 to
2011) (6) (accession numbers are available in Table S1 in the supplemental material). Briefly, raw Illumina
reads were mapped against an S. sonnei reference genome (the strain Ss046 chromosome [GenBank
accession no. CP000038.1] and the pINV B plasmid [GenBank accession no. CP000039.1]) using the BWA
program, and single nucleotide polymorphisms (SNPs) were called using SAMtools (30, 31). Phylogenetic
reconstruction was performed using multiple-sequence alignment of SNPs by maximum likelihood-
based phylogenetic inference (RAxML, version 8.2.8) (32) with a GTR�GAMMA substitution model.
Bootstrap support for the maximum likelihood phylogeny was assessed by the use of 1,000 pseudorep-
licates. The phylogenetic tree was displayed and annotated using the iTOL tool (33), highlighting the
presence/absence of macrolide resistance genes over the study period among terminal taxa.

Plasmid isolation and sequencing. Bacterial conjugation was performed as described previously by
combining representative isolates carrying ermB (EG430) and mphA (DE891) and E. coli J53 (sodium azide
resistant) (34). E. coli transconjugants were selected on medium containing sodium azide (100 mg/liter)
and azithromycin (24 mg/liter). ermB- and mphA-containing plasmids were extracted using a plasmid
midikit (Qiagen) and sequenced using a MiSeq Illumina platform with 2� 250-bp pair-end reads. De novo
assembly was performed using the SPADES (version 3.6.2) program and annotated using the Prokka
(version 1.11) program (35, 36). The ABACAS program was used to map all the assembled contigs against
a concatenated reference sequence containing the S. sonnei Ss046 chromosome (GenBank accession no.
CP000038.1), virulence plasmid pSs046 (GenBank accession no. CP000039.1), and three small plasmids
commonly found in S. sonnei isolates belonging to global lineage III: spA (GenBank accession no.
CP000641.1), spB (GenBank accession no. CP000642.1), and spC (GenBank accession no. CP000643.1) (37).
The unmapped assembled sequences were presumed to contain plasmids expressing ermB and mphA,
and incompatibility (Inc) groups were then determined using in silico PCR by mapping the primers
described previously to these unmapped sequences using an in-house script at the Sanger Institute (38).
The presence of the plasmid expressing ermB and mphA was confirmed by comparing the plasmid
sequences with the sequences of previously sequenced plasmids in GenBank by use of the BLASTN
program, and comparative analysis was performed and the results were visualized using the ACT tool
(39).

Statistical analysis. Statistical analysis of Shigella species isolates was limited to S. flexneri and S.
sonnei isolates only, as insufficient numbers of isolates of the other species were available (Table 1). For
comparisons of the proportions of nonsusceptible isolates, intermediate and resistant isolates were
grouped together and their proportions were compared with the proportion of susceptible isolates using
Fisher’s exact test. Comparison of MIC measurements from different time periods was performed by
analysis of variance and a subsequent Dunn’s test with the Bonferroni correction for multiple testing,
with a threshold of a P value of �0.05 being considered significant. To determine appropriate azithro-
mycin breakpoints, MIC histograms were constructed and disc zone diameter breakpoints were selected
using the modified error rate-bounding method of Metzler and De Haan, according to CLSI recommen-
dations (21).

Accession number(s). The sequence for plasmid pDE105 has been deposited in GenBank under
accession no. MG569891.
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