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Purpose of review

Diarrhoea is a major global health problem, and recent studies have confirmed Shigella as a major
contributor to this burden. Here, we review recent advances in Shigella research; focusing on their
epidemiology, pathogenesis, antimicrobial resistance, and the role of the gut microbiome during infection.

Recent findings

Enhanced epidemiological data, combined with new generation diagnostics, has highlighted a greater
burden of Shigella disease than was previously estimated, which is not restricted to vulnerable populations
in low-middle income countries. As we gain an ever more detailed insight into the orchestrated mechanisms
that Shigella exploit to trigger infection, we can also begin to appreciate the complex role of the gut
microbiome in preventing and inducing such infections. The use of genomics, in combination with
epidemiological data and laboratory investigations, has unravelled the evolution and spread of various
species. Such measures have identified resistance to antimicrobials as a key contributor to the success of
specific clones.

Summary

We need to apply novel findings towards sustainable approaches for treating and preventing Shigella
infections. Vaccines and alternative treatments are under development and may offer an opportunity to
reduce the burden of Shigella disease and restrict the mobility of antimicrobial resistant clones.
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Diarrhoea is a major global health issue. It accounts
for approximately 1.3 million deaths each year, of
which 500,000 are young children worldwide [1,2].
Despite the impressive reduction in diarrhoea-asso-
ciated mortality over the past decade, there are still
�950 million diarrhoea cases occurring in children
less than 5 years annually [1]. This burden is mainly
felt by low and middle-income countries in Asia
and Africa, where accessibility to clean water, good
nutrition, sustained sanitation, and healthcare is
restricted. Tackling diarrhoea is complicated as the
disease is caused by an array of bacterial, viral, and
parasitic pathogens. Although improved sanitation
has a major impact on lowering the incidence of all
aetiologies, other public health measures, including
appropriate treatment, education, and immuniza-
tion remain crucial in furthering this success. Vac-
cines against rotavirus, the most common childhood
diarrhoeal pathogen, are effectively alleviating diar-
rhoeal burden [3]. However, this global reduction in
rotavirus disease is raising the profile, as well as the
proportional burden, of other pathogens. This is
uthor(s). Published by Wolters Kluwe
as Shigella, for which there is no licensed vaccine
and treatment options become dwindling due to
increasing resistance to key antimicrobials [4].

Recent estimates attribute Shigella to cause
�125 million diarrhoeal episodes annually [5], lead-
ing to around 160 000 deaths, with a third of these
associated with young children [1]. Shigella, along
with enterotoxigenic Escherichia coli (E. coli), were
r Health, Inc. www.co-infectiousdiseases.com
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KEY POINTS

� Shigella are the principal bacterial cause of sustained
endemic diarrhoea.

� Shigella species are becoming increasingly resistant to
antimicrobials; antimicrobial resistance has been the
key driver of recent evolution of all Shigella species.

� Shigella manipulate host defences and new
technologies have enhanced our understanding on the
interaction between immune cells and infecting
organisms.

� The role of the microbiome during Shigella infections is
starting to be elucidated and Shigella sonnei uses a
type six secretion system to compete with commensal
Escherichia coli (E. coli).

� We need to translate new findings and technologies
into approaches to reduce the global burden of
Shigella infections.
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identified as the predominant bacterial diarrhoeal
pathogens in paediatric populations of South Asia
and sub-Saharan Africa [6,7]. This research, the
Global Enteric Multicentre Study (GEMS), also
revealed that Shigella was the most prevalent aetiol-
ogy in children aged 2 to 5 years who experienced
diarrhoea. Reanalysis of the GEMS samples using
quantitative molecular diagnostics suggested that
Shigella-induced burden may actually be twice as
high as previously estimated, ranking it as the most
common detected pathogen [8

&&

]. Therefore, Shigella
are a major contributor to the global diarrhoea
burden and are arguably, given the associated dis-
ease severity and increasing antimicrobial resis-
tance, the principal bacterial cause of sustained
endemic diarrhoea. In the scope of this review, we
highlight recent insights into the biology of Shigella
and the disease that it causes, focusing on its path-
ogenesis, interaction with the microbiome, and the
epidemiology of shigellosis.
SHIGELLA PATHOGENESIS: THE BALANCE
BETWEEN VIRULENCE AND PROTECTION

Shigella is a member of the Gram-negative Enter-
obacteriaceae family, and current classification
divides the genus into four species based on sero-
logical typing: S. dysenteriae, S. boydii, S. flexneri and
S. sonnei. Ingestion of Shigella, which typically has a
low infectious dose, commonly results in an aggres-
sive watery or mucoid/bloody diarrhoea. This clini-
cal presentation is a direct consequence of Shigella
invasion and destruction of the large intestinal
450 www.co-infectiousdiseases.com
epithelium. Briefly, the bacterium crosses the epi-
thelium via M cells, and induces phagocytosis by
macrophages in the submucosa. Shigella quickly
activate macrophage death and interact with the
epithelium’s basolateral surface, triggering its
uptake through the reorganization of host cell cyto-
skeleton [9–11]. Once inside the epithelial cell,
they again lyse the surrounding phagosome and
replicate, before disseminating intracellularly to
adjacent cells using actin polymerization [12,13].
Central to this well-choreographed pathogenesis is
the large virulence plasmid (more than 200 kbp),
which encodes the syringe-like type three secretion
system (T3SS) and an arsenal of effector proteins,
including several invasion plasmid antigens (Ipas)
[14–16]. Various reviews have been dedicated to
detail Shigella’s pathogenesis [17,18] as well as to
elucidate the role of each virulence factor [19

&

].
Survival within host cells poses monumental

challenges unmet by the free-living E. coli cousins,
namely the detection and elimination by the host
immune system. Decades of extensive research has
portrayed Shigella as a master of survival, main-
taining the subtle balance between virulence and
immune protection. A classic example is the modu-
lation of O-antigen (OAg) chain length in S. flexneri.
Chromosomal wzz produces short-chain OAg to
maximize the T3SS machinery’s exposure to host
cells whereas the pHS2 counterpart promotes long-
chain OAg to mask S. flexneri from serum comple-
ment killing [20,21]. S. sonnei utilizes a different
strategy to attain this same effect. It possesses a
unique capsule made of OAg polysaccharides,
decreasing its invasiveness in return for increased
protection [22]. In addition, Shigella is particularly
adept in subversion of the host immune response,
targeting both the innate and adaptive systems
[18,23]. Specifically, it is known to invade T lym-
phocytes via T3SS and arrest their migration in
lymph nodes [24], and B lymphocytes are targeted
for apoptosis via interaction with the T3SS effector
IpaD [25]. These potentially deprive the human host
to mount an effective and prolonged adaptive
immune response. The initial process upon Shigella
infection is the induction of macrophage pyropto-
sis, allowing the release of invading bacteria but
compromising its survival by igniting a proinflam-
matory state [17]. Recently, IpaD was shown to
mediate a noninflammatory macrophage apoptosis,
thus trapping the pathogen within apoptotic bodies
[26

&

]. It is proposed that these parallel pathways are
complementary to balance the trade-off between
infectiousness and immune evasion. This same
theme also underlies the functions of the IpaH
family, a bacterial E3 ubiquitin ligase of research
interest in recent years [27]. This enzyme catalyses
Volume 31 � Number 5 � October 2018
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the ligation of ubiquitin to target eukaryotic host
proteins, usually designating them for degradation
via proteasomes. Shigella carries numerous IpaH
genes (situated both on chromosome and the viru-
lence plasmid), which potentially affect ubiquitina-
tion in differing protein substrates [28]. Indeed,
IpaH7.8 targets glomulin for proteolysis, thus indi-
rectly activating inflammasomes and leading to
macrophage pyroptosis [29]. In contrast, IpaH1.4
and IpaH2.5 were shown to suppress the NF-kB
immune signalling by interfering with the linear
ubiquitin chain assembly complex (LUBAC) machin-
ery [30

&&

]. Immune suppression is also achieved
through the IpaH9.8-mediated destruction of inter-
feron-induced guanylate-binding proteins (GBPs),
and this circumvents the host’s cell-autonomous
defence against intracellular microbes [31

&&

]. In addi-
tion, this same degradation is also essential in pro-
moting cell-to-cell dissemination in Shigella infection
[32

&

]. The maintenance of the large virulence plasmid
comes with a significant metabolic cost, which could
be detrimental to Shigella’s survival in resource-lim-
ited environments outside the host. It may counter-
act this expenditure by integrating pINV into the
chromosome, thus downregulating the expression
of virulence genes. This phenomenon has been
observed in vitro during S. flexneri’s growth at envi-
ronmental temperatures, and reversible pINV exci-
sion restores its virulence at 37oC [33

&

].
NEW FRONTIERS: SHIGELLA’S
INTERACTION WITH THE GUT
MICROBIOME

Until recently, the focus of Shigella pathogenesis
research has been on its interaction with the human
host, and this overlooks the roles of the heteroge-
nous colonic landscape and its coinhabiting micro-
bial communities. Use of innovative 3D fluorescent
imaging and analyses help track S. flexneri journey in
vivo, revealing that the pathogen targets colonic
crypts during the early phase of infection [34]. These
crypts house the intestinal stem cells at their base
and harbour their own crypt-specific core micro-
biota (CSCM) [35]. Though Shigella’s invasive zone
rarely reaches the crypt base to disrupt stem cells
progeniture, its interaction with the CSCM and
indirect consequences on gut health remain unex-
plored. Successful invasion requires Shigella to over-
come two gut-specific barriers: the microbiota and
the mucus layer [36]. Colonic commensals could
prevent pathogen proliferation by either direct com-
petition for space and nutrient, secretion of anti-
microbials, or modulation of immune response.
Additionally, S. sonnei, but not S. flexneri, harbours
an active type VI secretion system (T6SS), which kills
0951-7375 Copyright � 2018 The Author(s). Published by Wolters Kluwe
co-inhabiting E. coli at infecting tissues [37
&&

]. A
defective T6SS phenotype leads to reduced persis-
tence in the colon, indicating that this apparatus is
crucial for S. sonnei to overcome E. coli-established
colonization resistance.

Two interesting questions remained insuffi-
ciently answered regarding Shigella’s relationship
with the gut microbiome: Which microbial commu-
nities are protective of Shigella infection in humans?
And how does the human gut microbiome respond
to a Shigella infection? Breakthroughs in sequenc-
ing, commonly employed as 16S rRNA profiling and
shotgun metagenomics, have allowed an interro-
gation of microbial communities at the molecular
level. In order to investigate the first question, it is
important to evaluate the subjects clinically and
microbiologically, pre and postinfection. However,
data of such resolution is realistic from human
challenge and longitudinal cohort studies, which
are scarce. Previous immunization trials in maca-
ques showed that Prevotella-rich microbiota was
associated with asymptomatic infections upon chal-
lenge with wildtype S. dysenteriae [38]. Nonetheless,
this effect is only apparent in one macaque geno-
type, prompting the contribution of other host
factors. Prevotella are considered biomarkers for
plant-based diets rich in fibre [39], and low fibre
uptake prompts the gut microbiota to digest host’s
mucus glycoprotein [40]. This may result in rapid
degradation of the mucus barrier, ultimately leading
to increased susceptibility to invasion by bacterial
pathogens, such as Shigella. Besides, the abundance
of Prevotella species was shown to be negatively
correlated with the copy number of Shigella/EIEC
specific IpaH in diarrhoeal stools [41]. These studies
suggest that Prevotella-rich microbiota is potentially
protective for Shigella infections, but this will require
further investigations. Regarding the second ques-
tion, an examination on the diarrhoeal microbiome
in Vietnamese young children indicated that the gut
microbiota’s response to Shigella infections is varied
and nonspecific to the pathogen [42

&

]. Instead, fac-
tors such as age, nutritional status, breastfeeding
practice, and type of infection (virus/bacteria) are
more indicative of the initial gut microbiota struc-
tures upon diarrhoea.
CHANGING EPIDEMIOLOGY AND THE
CHALLENGE OF MULTIDRUG RESISTANCE

The four Shigella species and their various serotypes
have differing geographical distribution and epide-
miological significance. S. boydii infections are
uncommon outside the Indian subcontinent, and
there is currently limited epidemiological data
regarding this species. S. dysenteriae, specifically
r Health, Inc. www.co-infectiousdiseases.com 451
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S. dysenteriae 1, was the causative agent of multiple
fatal dysentery epidemics since its first isolation in
1897 [43]. However, this species is rarely being
isolated in current surveillance, and its decline is
likely due to improvements in sanitation and anti-
microbial access [5,44]. The current global epidemi-
ological burden for shigellosis is attributed to two
species, S. flexneri and S. sonnei, which were conven-
tionally associated with developing and developed
regions, respectively. Nevertheless, recent evidence
points to the emergence of S. sonnei in economically
transitional states, effectively replacing S. flexneri to
become the predominant shigellosis aetiology [45].
This species replacement phenomenon is repeatedly
documented in many countries in Asia, such as
Vietnam [46], Thailand [47], and Bangladesh [48].
This shifting epidemiology is again reflected in the
Shigella collection from GEMS, in which the authors
argued that a quadrivalent vaccine targeting S. son-
nei, S. flexneri 2a, S. flexneri 3a, and S. flexneri six is
desired to provide sufficient coverage and protec-
tion against shigellosis in endemic regions [49].

Studies combining epidemiological and high-
resolution pathogen’s genomic data are increasingly
common. This approach has untangled the evolu-
tionary history and ecological dynamic of various
Shigella species. Specifically, phylogenomic analyses
of more than 300 temporally and spatially diverse S.
dysenteriae one sequences proposed its existence as
early as since the 18th century [50

&&

]. Intercontinen-
tal transmissions heightened quickly since the late
19th and throughout the 20th century, and recent
waves of introductions from South Asia to Africa
were responsible for multiple epidemics. Similarly,
existing S. sonnei have been shown to likely descend
from a common ancestor in the 17th century in
Europe, and the expansions of the two main lineages
(II and III) have led to their global dissemination
since the 20th century [51,52

&

]. These studies
emphasize a pattern recognized between many Shi-
gella species, whereby organisms are mobilized glob-
ally and then form localized endemic transmission.
This is exemplified at the genomic scale by S. sonnei’s
introduction and subsequent establishment in Viet-
nam [53] and Latin America [52

&

]. Alternatively, due
to its low infectious dose and human-restricted
nature, Shigella is able to induce sustained trans-
missions in close contact communities. Shigella
causing several outbreaks in Orthodox Jewish com-
munities in the United Kingdom, mainland Europe
and North America are genetically closely related
and clustered with those sampled in Israel, forming
a single population diverging since the late 1980s
[54

&

]. In the United Kingdom, domestic Shigella
transmissions have been exclusively noted in
MSM communities, resulting in at least four discrete
452 www.co-infectiousdiseases.com
S. sonnei transmission chains with low genetic diver-
sity [55].

Shigellosis is a self-limiting disease, with
patients usually fully recovered within 7–10 days.
However, the infection is known to cause potential
complications, most severely encephalopathy [56].
Therefore, antimicrobial treatment is recommended
to prevent further complications, reduce diarrhoeal
output, and limit postsymptomatic faecal shedding
[57,58]. However, the appropriate choice of antimi-
crobials is subject to debate, and no agent emerges
to be superior clinically [59

&

]. Unfortunately, resis-
tance to antimicrobials appears to arise com-
paratively effortlessly in Shigella and may be a
consequence of an unrestricted barrier for hori-
zontal gene transfer between Shigella and other
Enterobacteriaceae. Sulphonamide, tetracycline,
streptomycin, and chloramphenicol were initially
deployed to treat Shigella infections, but organisms
that were nonsusceptible to all four antimicrobials
emerged during the late 1950s. This phenotype was
later determined to be conferred by small plasmids,
such as spA in S. sonnei. Ampicillin, and later co-
trimoxazole were used as alternatives, but these
soon again met resistance in the 1980s [60]. Resis-
tance to these agents could have facilitated the
expansion and global spread of fit clones, exempli-
fied by the integration of Tn7 transposon (encoding
dfrA1 for trimethoprim resistance) in successful S.
sonnei lineage III and S. dysenteriae one lineage IV
[50

&&

,51]. Subsequent use of a quinolone, nalidixic
acid, led to rapid and independent developments of
resistance in endemic areas by 2000. The current
recommended first-line treatment for shigellosis is
fluoroquinolones, such as ciprofloxacin, and these
quickly become the mainstay prescription for shig-
ellosis as well as acute diarrhoea in endemic regions
[58]. Mainly due to its common use, resistance to
ciprofloxacin is widespread among Shigella retrieved
globally since the turn of this century, and Asia
serves as a likely reservoir for the rise and spread
of resistant organisms [61]. Specifically, ciprofloxa-
cin-resistant S. sonnei has evolved as a single clone,
most likely in South Asia, before spreading interna-
tionally to Southeast Asia and Europe [62

&&

]. Such
resistance relies on gradual accumulation of the
triple mutations in chromosomal gyrA and parC.
Additionally, horizontally transferred elements
could help shape and establish emerging resistant
clones. Recent years have witnessed a stark increase
in azithromycin resistant S. flexneri 3a in MSM com-
munities worldwide, which is caused by the propa-
gation of a single sublineage of this species since
1998 [63]. Resistance to azithromycin is induced by
the mobile plasmid pKSR100, which was recently
shown to be acquired in separate S. sonnei and
Volume 31 � Number 5 � October 2018



Recent insights into Shigella Baker and The
S. flexneri 2a populations [64
&&

]. This greatly facili-
tated new transmission chains, creating multiple
co-circulating resistant Shigella epidemics in the
United Kingdom’s MSM community.

The evolutionary pressure created by antimicro-
bial usage fuels new resistances among Shigella, and
globalization has enhanced an unprecedented
mobility of this human restricted pathogen. In
the present and coming age when multidrug resis-
tance (MDR) is becoming the norm, much remains
unanswered on how Shigella’s state-of-resistance
translates to clinical care. A recent study on paedi-
atric diarrhoea in Vietnam found that hospitaliza-
tion length for Shigella infected patients is similar
regardless of the ciprofloxacin susceptibility profile
of the associated organism [65

&

]. Therefore, MDR
likely poses a more significant threat to certain high-
risk cohorts, including the malnourished, the
elderly, and the immunocompromised. The latter
is of increasing concern for MDR Shigella is surging
in HIV-positive MSM, who present more severe
clinical symptoms and require effective antimicro-
bial therapy [66].
CONCLUSION

The combination of larger epidemiological studies,
more sophisticated in-vitro technologies, and geno-
mics have provided unprecedented insights into
the success of the genus Shigella. These could
be invaluable to the development of future vaccines
and alternative therapies. Namely, Shigella vaccines
should account for the pathogen’s numerous
tricks to manipulate the immune response as well
as the rapidly changing epidemiology. Novel ther-
apies could benefit from the detailed portrayal
of Shigella’s pathogenesis and interactions with
the gut microbiota. These tools need to be acceler-
ated to stem the tide of increasingly antimicrobial
resistant Shigella clones. Shigella research has
reached a pivotal state, and we now need to
apply our knowledge, technologies and experience
to reduce the disease burden of this bacterial
pathogen.
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