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The UK summer heatwave of 2018 led to changes in consumer behaviour, including large 
increases in electricity demand due to increased use and intensity of refrigeration and air-
condition devices (1, 2). While the UK experienced its equal hottest summer on record, the 
extreme temperatures were concentrated in the south and east of England (3). We exploit the 
regional variation to test for the effect of experiencing extreme temperatures on resource security 
perceptions and related pro-environmental behaviour. We analyse data from 2,189 individuals 
across the UK over a seven-day period and employ a difference-in-differences type estimation to 
compare individuals’ responses in regions subjected to extreme temperatures with individuals’ 
responses in regions that were not subjected to extreme temperatures (4). We show evidence that 
suggests exposure to extreme temperatures had a large and statistically significant effect on 
perceptions of energy security but not on stated pro-environmental behaviour. We find less 
evidence that extreme temperatures had an effect on perceptions of food and water security.  

A changing climate and the increased frequency of weather extremes is exacerbating the stresses 
on natural resource availability (5, 6). To meet these challenges, we need to understand the 
degree and extent to which exposure to extreme weather affects individuals’ perceptions of 
resource security and related consumption behaviour.  This is needed for two reasons.  The first 
relates to measuring the potential for autonomous adaptation; where exposure to extreme 
whether events could change individual perceptions and consequently behaviour.  The second, 
related reason, concerns better understanding the relationship between experience of extreme 
weather events and the public acceptability of environmental taxes and policies.  These often 
continue to face widespread public opposition despite increased acceptance of anthropocentric 
climate change.      
In the context of incomplete information, extreme weather events may change perceptions and/or 
behaviour through two potential channels. The first channel is through a Bayesian updating 
process, whereby extreme weather events can provide tangible evidence of a changing climate 
that is likely to affect resource use and availability (7). The second channel is via a salience 
effect, whereby actually experiencing extreme weather events may make climate-related 
considerations more prominent (7-9). We can expect Bayesian updating to lead to more stable 
and lasting perceptions, whereas salience effects are likely to generate more ephemeral 
perceptions that are heavily influenced by contemporaneous (or recent) temperatures (7). We 
build on a growing literature examining how extreme weather events can affect environmental 
risk perceptions (10–15) by tracking perceptions and stated behaviour on a daily basis and 
matching it with daily localised temperature data using a difference-in-differences approach. 
Such a set-up enables us to aim to measure the effects of heat exposure itself and to control for 
possible UK-wide variations during this period (e.g. London-based nationwide media coverage).  
This is important because, as at the time, the heatwave received widespread media coverage. 
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We define a region to have experienced extreme temperatures when the maximum daily 
temperature is equal to or exceeds 29 degrees Celsius. This is an established figure for measuring 
extreme temperatures (16, 17). Six of the 11 regions in the study experienced extreme 
temperatures during the survey period, with all six regions first experiencing temperatures of at 
least 29 degrees Celsius on 23 July (see Supplementary Figures 1 and 2). We use this regional 
variation to generate treatment and control groups. 
Figure 1 provides context for the 2018 heatwave and our sample period of 18 to 25 July by 
plotting the daily average maximum temperature for June and July for our treatment and control 
regions. Both groups began to experience warmer weather from late June. During our sample 
period, while there are fluctuations, both groups had relatively mild temperature to begin with. 
While the temperature stayed relatively mild in our control regions (with a maximum average of 
24 degrees) in the sample period, the treatment group experienced much hotter temperatures. It is 
also noteworthy that while temperatures peaked beyond our sample period (26 July), 23 July 
seemed to mark a perceptible period of extreme heat, with web searches for the term ‘heatwave’ 
peaking on this day for the UK (see Supplementary Figure 3).  
 
Given the marked differences in localised temperatures over our sample period, we are able to 
test for the effect of being exposed to extreme temperatures; where those individuals who were 
sampled in the regions that experienced extreme temperatures form the treatment group and 
those who were sampled in regions that did not experience extreme temperatures form the 
control group. We then evaluate the difference in mean responses between those sampled before 
the onset of extreme temperatures with those sampled on or after for both treatment and control 
groups. We take the difference of these two measures while controlling for demographics, and 
day and region fixed effects. We also control for environmental preferences and attitudes 
towards government regulation of the environment (12). 

This provides us with our difference-in-differences estimator, Post.Treatment, where the post 
period is 23 – 25 July and the treatment group are those individuals in regions who experienced 
temperatures of at least 29 degrees Celsius during our sample period. In employing this method, 
we acknowledge that the control group also experienced an unusually warm summer, albeit not 
as extreme as the treatment group.  

Table 1 shows descriptive statistics generated from a survey of individuals across the UK in 
aggregate and by group. The number of survey respondents per day and pre- and post-treatment 
are provided in Supplementary Tables 2 and 3. There are approximately one-third more 
individuals within the treatment regions than in the non-treatment regions. We provide a balance 
test between our treatment and control groups in terms of demographic characteristics and other 
control variables. The two groups are broadly similar, however the treatment group is notably 
younger (see Supplementary Table 4). Importantly, we control for age and other observable 
characteristics in our econometric estimation.  We conducted a number of further robustness 
tests, including a parallel trends test, estimations using wild bootstrapped standard errors and an 
alternative specification of extreme temperature (see Methods). 

Respondents were asked to report their level of agreement with a set of three statements on 
perceptions of water, energy, and food-security (measured by future shortages) and a set of three 
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statements concerning water, energy and food consumption behaviour along a 100-point scale. A 
value of 0 indicated that the respondent strongly disagreed with the statement. A value of 50 
indicated that the respondent neither agreed nor disagreed. A value of 100 indicated that the 
respondent strongly agreed with the statement. In terms of the aggregate data, respondents were 
generally concerned with water, energy and food-security with average scores ranging from 
53.85 to 62.54. Respondents were similarly concerned with stated pro-environmental behaviour, 
with average scores ranging from 58.83 to 63.75.  

Tables 2 and 3 report our main results using time and regional fixed effects and clustered 
standard errors for perceptions of energy security and stated energy consumption (pro-
environmental) behaviour. Corresponding tables for water and food are presented in 
Supplementary Tables 5–8). For both Tables 2 and 3, column (1) does not include any control 
variables and does not include region and time fixed effects. Column (2) includes region and 
time fixed effects. Column (3) includes a range of demographic controls: age, income, gender 
and education. Column (4) includes demographic controls, as well as our variables representing 
environmental preferences (measured by stated pro-environmental behaviour) and stance toward 
environmental regulation (measured by support for a tax on packaging).  

Starting with Table 2, the key variable of interest is our difference-in-differences estimator 
(Post.Treatment) and its coefficient that aims to capture the treatment effect. That is, the impact 
of extreme temperatures by measuring the change in the perceptions of energy security of 
individuals who experienced extreme temperatures relative to the control group of individuals 
who did not experience extreme temperatures over the sample period. In our preferred 
specification (column 4), our coefficient is positive (5.147 percentage points) and significant at 
the 5% level (p=0.023). This suggests that individuals who were subjected to extreme 
temperatures were more likely to perceive future energy shortages. As shown in Supplementary 
Tables 9-14, similar results were obtained when using wild cluster bootstrapped standard errors 
and an alternative measure of extreme temperatures. We find less evidence for the impact of 
extreme temperatures on perceptions of water and food security (4.018 percentage points and 
4.673 percentage points, respectively) with our difference-in-differences estimator only being 
statistically significant at the 10% level (p=0.096 and p=0.091, respectively) when using our 
alternative measure of extreme temperatures (see Supplementary Tables 13 and 14).  

Table 3 reports the effect of extreme temperatures on stated energy consumption (pro-
environmental) behaviour. While our coefficients are positive suggesting that individuals who 
were subject to extreme temperatures were more likely to consider environmental impacts in 
their energy consumption decisions, our coefficient (2.73 percentage points) for our preferred 
specification (column 4) is not statistically significant (p=0.158). We find similar results for 
stated water and food consumption behaviour (see Supplementary Tables 7 and 8). As shown in 
Supplementary Tables 15-20, similar results were obtained when using wild cluster bootstrapped 
standard errors and an alternative measure of extreme temperatures 

By matching daily temperature data with individual-level survey data and exploiting regional 
variations in the recent UK summer heatwave, we have aimed to measure the effect of localised 
exposure to extreme temperatures on resource security perceptions and stated pro-environmental 
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behaviour by way of a natural experiment. We find evidence that suggests exposure to extreme 
temperatures has a large and statistically significant effect on perceptions of energy security. To 
contextualise our results, we know that the heatwave led to a spike in electricity consumption 
and highlighted the long-term viability of the UK’s fuel mix, which is still heavily reliant on 
fossil fuels (18). We found less evidence that exposure to extreme temperatures led to changes in 
perceptions of water and food security despite relatively low levels of rainfall and several high-
profile food shortages occurring during this period (1-3). This may be partly explained by the 
fact that temperature and precipitation are only partially correlated (19), that the UK imports a 
large proportion (approximately half) of its food (20) and that climate change is predicted to 
have an ambiguous effect on UK food production (21). Additionally, there is evidence 
suggesting that individuals in the UK associate energy-related issues with climate change more 
than they do water- or food-related issues (22, 23). 

While we are unable to formally test the channel through which perceptions of energy security 
have changed, we provide some evidence suggesting that it is likely due to salience effects (7). 
We do this by re-estimating our difference-in-differences estimation, this time using two waves 
of respondent data. Our second wave of data were collected during 3-14 December 2018. If 
perceptions changed through a process of Bayesian updating, we would expect the effect of the 
summer heatwave on perceptions to be relatively stable over time. If perceptions changed 
through salience effects, we would expect no systematic difference between the effect of the 
summer heatwave on perceptions of our treatment and control groups in the second wave given 
the lack of climate extremes after the summer heatwave (see Supplementary Figures 4 and 5). As 
shown in Table 4, our difference-in-differences estimator is now close to zero (-0.165 percentage 
points) and non-significant (p=0.913). This suggests that the UK heatwave may have affected 
preferences through the salience of extreme temperatures rather than through a Bayesian process 
of updating.  

Despite finding evidence that suggests exposure to extreme temperatures during the UK summer 
heatwave did change people’s immediate perceptions of energy security, it did not necessary 
seem to last or lead to a change in people’s intentions to change their resource consumption 
behaviour. While it is possible that exposure to multiple extreme weather events as opposed to a 
single extreme weather event may lead to stable changes in perception and behaviour, our 
findings provide an important insight for policy makers as they may highlight the limitations of 
relying on individuals to autonomously adapt to climate change despite being exposed to a 
highly salient extreme weather event. Instead, it is likely that governments (and other 
organisations) will need to play a coordinating role and provide individuals with the incentives 
needed to move closer toward sustainable resource management. 

The second key insight from our analysis builds on our first. In doing so, it contributes to the 
climate change attribution and public policy literature, both in terms of methodology and scope 
(24, 25). Despite the need for increased government action to align the incentives of individuals 
with society to limit climate change, we know that such measures are difficult to introduce, and 
when they are, they often face largescale public disapproval. The gilet jaunes movement 
(multifaceted as it is) is the latest in a long line of popular anti-environmental tax protests, often 
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despite increasing public acceptance of anthropogenic climate change (26). Our results suggest 
that experiencing extreme temperatures may lead to a marked and immediate increase in concern 
for energy security. This suggests that the salience effects generated by a heatwave may create a 
window of opportunity for policies focusing on energy security in the context of climate change 
to be enacted.  
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Total        Treatment         Control        
  Mean  SD  Min  Max  Mean  SD  Min  Max  Mean  SD  Min  Max  
Perceptions of water security  62.54  25.81  0  100  63.56  25.54  0  100  61.04  26.13  0  100  
Perceptions of energy security  61.74  25.75  0  100  62.19  25.71  0  100  61.07  25.81  0  100  
Perceptions of food security  53.84  27.97  0  100  54.53  28.04  0  100  52.80  27.85  0  100  
Pro-environmental behaviour (water)  63.75  26.37  0  100  64.52  25.63  0  100  62.59  27.41  0  100  
Pro-environmental behaviour (energy)  62.95  25.88  0  100  63.64  25.30  0  100  61.92  26.69  0  100  
Pro-environmental behaviour (food)  58.83  26.98  0  100  59.69  26.35  0  100  57.55  27.87  0  100  
Age  4.59  1.62  2  7  4.50  1.62  2  7  4.72  1.60  2  7  
Income  3.88  2.28  1  8  3.95  2.28  1  8  3.78  2.29  1  8  
Gender  1.50  0.50  1  2  1.49  0.50  1  2  1.51  0.50  1  2  
Education  2.89  1.02  1  5  2.92  1.04  1  5  2.85  0.98  1  5  
Environmental regulation 47.96 32.66 0 100 48.92 32.47 0 100 46.52 32.90 0 100 
  n = 2189        n = 1310        n = 879        
*Note. Descriptive statistics are for data collected during the heatwave (Wave 1). Descriptive statistics for data collected after the heatwave (Wave 2) are 
presented in Supplementary Table 1. 
 

Table 1. Descriptive statistics 
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 (1) (2) (3) (4) 
Post.Treatment 2.951* 6.126** 6.585** 5.147** 
 (1.420) (2.361) (2.176) (1.912) 
Age   -0.687 -0.477 
   (0.408) (0.351) 
Income   0.541 0.199 
   (0.436) (0.379) 
Gender   1.340 0.537 
   (1.486) (1.320) 
Education   4.214*** 2.054*** 
   (0.518) (0.513) 
Environmental regulation    0.0514** 
    (0.018) 
Pro-environmental behaviour (Energy)    0.428*** 
    (0.016) 
Constant 60.37*** 57.65*** 44.70*** 23.75*** 
 (1.108) (0.996) (4.600) (3.329) 
Region fixed effects  No Yes Yes Yes 
Time fixed effects No Yes Yes Yes 
Observations 2434 2434 2189 2189 
R2 0.003 0.017 0.059 0.233 

Notes: Post.Treatment is our difference-in-differences estimator. Standard errors are in parentheses and clustered at 
the regional level. * p < 0.10, ** p < 0.05, *** p < 0.01. 
 

Table 2. Perceptions of energy security during the heatwave 
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 (1) (2) (3) (4) 
Post.Treatment 2.728 3.518* 2.753 2.730 
 (1.931) (1.829) (1.767) (1.787) 
Age   -0.0661 -0.0500 
   (0.462) (0.413) 
Income   0.625* 0.619* 
   (0.339) (0.336) 
Gender   2.799 2.834 
   (1.861) (1.771) 
Education   5.013*** 5.012*** 
   (0.571) (0.568) 
Environmental Regulation    0.00456 
    (0.030) 
Constant 61.66*** 60.64*** 40.80*** 40.49*** 
 (1.404) (1.008) (4.361) (3.674) 
Region fixed effects  No Yes Yes Yes 
Time fixed effects No Yes Yes Yes 
Observations 2434 2434 2189 2189 
R2 0.003 0.028 0.080 0.080 

Note: Post.Treatment is our difference-in-differences estimator. Standard errors are in parentheses and clustered at 
the regional level. * p < 0.10, ** p < 0.05, *** p < 0.01. 
 
Table 3. Stated energy consumption behaviour during the heatwave 
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 (1) (2) (3) 
Post.Treatment -0.165 -0.285 -0.165 
 (1.473) (1.449) (1.473) 
Age 0.0907 0.0200 0.0907 
 (0.163) (0.114) (0.163) 
Income 0.249 0.198 0.249 
 (0.291) (0.297) (0.291) 
Gender 0.645 0.734 0.645 
 (0.886) (0.807) (0.886) 
Education 2.073*** 2.086*** 2.073*** 
 (0.418) (0.428) (0.418) 
Environmental Regulation 0.0580*** 0.0579*** 0.0580*** 
 (0.015) (0.015) (0.015) 
Pro-environmental behaviour (Energy) 0.446*** 0.444*** 0.446*** 
 (0.013) (0.013) (0.013) 
Constant 18.10*** 21.51*** 22.94*** 
 (4.257) (1.924) (4.329) 
Region fixed effects  Yes Yes Yes 
Day fixed effects Yes No Yes 
Wave fixed effects No Yes Yes 
Observations 4311 4311 4311 
R2 0.230 0.225 0.230 

Note: Post.Treatment is our difference-in-differences estimator. The number of observations  
pre-treatment is 3001 and the number of observations post-treatment is 1310. Standard errors are in parentheses  
and clustered at the regional level. * p < 0.10, ** p < 0.05, *** p < 0.01. 
 
 

Table 4. Perceptions of energy security after the heatwave. 

 

 

 

FIGURES 

Figure 1. Average maximum daily temperatures. Average maximum daily temperatures for 
treatment (red line) and control (blue line) regions. The shaded area represents our sample period 
of 15 to 25 July. Error bars denote standard error of the mean. 
Data source: Met Office (2018).
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METHODS 

Data 

Individual-level data were collected through a survey instrument enumerated by an established 
research company (ResearchNow) over two periods: 18 to 25 July 2018 (Wave 1) and 3 to 14 
December 2018 (Wave 2). The company’s UK panel contains over 350,000 respondents varying 
widely by age, gender, education and income. To obtain a nationally representative sample, a 
quota-sampling strategy was used for the survey period as a whole. This approach set quotas for 
age, gender, education, income and regional distribution of the population to match UK 
characteristics. The NUTS1 regional grouping was used to classify respondents by region. In 
addition to demographic and other questions, the questionnaire included six statements relating 
to water, energy and food. Three statements were designed to capture stated perceptions of 
water, energy and food security and three statements were designed to capture stated pro-
environmental behaviours. Respondents were asked to assign a value to each statement along a 
100-point scale. A value of 0 indicated that the respondent strongly disagreed with the statement. 
A value of 50 indicated that the respondent neither agreed nor disagreed. A value of 100 
indicated that the respondent strongly agreed with the statement. The survey questionnaire also 
included data on a number of control variables, including respondent age, gender, education, 
income, environmental preferences and stance toward environmental regulation. Survey 
questionnaires were time stamped allowing for the day during which the respondent undertook 
the survey to be identified.  

Daily maximum temperature data from 1988 to 2018 were obtained from the UK Met Office’s 
Areal dataset. The Areal dataset is based on 1km grid-point datasets derived from climate station 
data and averaged at the ITV regional level. To assign daily maximum temperatures to individual 
respondents, we overlayed the Areal dataset with the NUTS1 regional groupings and calculated 
weighted spatial averages. For example, the NUTS1 region South West overlaps with four ITV 
regions: Central (7.6% overlap), Meridian (12.5% overlap), HTV West (34.1% overlap, West 
County (45.8% overlap). We calculated the daily maximum temperature as a weighted 
geographic average of maximum temperatures according to the proportion of overlap (27). A full 
data glossary is presented in Supplementary Table 21. 

Data analysis 

The partial nature of the UK heatwave over the study period leaves us with treated and non-
treated groups of individuals. This enables us to estimate a difference-in-differences regression 
of the form: 
 

𝜌𝜌𝑖𝑖,𝑡𝑡,𝑠𝑠 = 𝛼𝛼0 + 𝛽𝛽𝛷𝛷𝑖𝑖,𝑡𝑡,𝑠𝑠 +  𝜁𝜁�𝑑𝑑𝑖𝑖,𝑡𝑡
𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡.𝑑𝑑𝑖𝑖,𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� + 𝜔𝜔𝑖𝑖,𝑡𝑡 + 𝜑𝜑𝑖𝑖,𝑠𝑠 + 𝜀𝜀𝑖𝑖,𝑡𝑡,𝑠𝑠    (1) 

 
where 𝜌𝜌𝑖𝑖,𝑡𝑡,𝑠𝑠 denotes perceptions of future water, energy, and food security, and pro-
environmental behavior (on a scale from 0 to 100), for individual 𝑖𝑖, at time 𝑡𝑡, in region 𝑠𝑠. 𝛷𝛷𝑖𝑖,𝑡𝑡,𝑠𝑠 
represents a vector of characteristics (age, income, gender, education, and preferences) of 
individual respondent 𝑖𝑖, at time 𝑡𝑡, in region 𝑠𝑠. The coefficient 𝜁𝜁 of the interaction term 
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(𝑑𝑑𝑖𝑖,𝑡𝑡
𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡.𝑑𝑑𝑖𝑖,𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) measures the treatment effect (or the difference-in-differences estimator).  This 

captures the impact of the extreme temperatures, measuring the change in perceptions and 
environmental motivated behaviour of those exposed to extreme temperatures relative to the 
control group who were not exposed to extreme temperatures.  Importantly this enables us to 
separate out the effect of other potential factors that influence changed perceptions and pro-
environmental behaviour, including national media coverage. We estimate the above equation 
using time (day) fixed effects 𝜔𝜔𝑖𝑖,𝑡𝑡  and region fixed effects 𝜑𝜑𝑖𝑖,𝑠𝑠 for individual respondent 𝑖𝑖. We 
estimate our difference-in-differences model using standard errors clustered at the regional level. 

 
The two-wave difference-in-differences estimation follows the same format as above.  However, 
in this case, we have two time periods: Wave 1 (18 to 25 July) and Wave 2 (3 to 14 December). 
We define the treatment group as those who live in regions that experienced extreme weather 
during our first sample period (that is, East of England, East Midlands, London, South East, 
West Midlands, and Yorkshire and the Humber).  Those who live in the other regions are defined 
as the control group.  In terms of time, we have the heatwave period (Wave 1) and the non-
heatwave period (Wave 2).  The key variable of interest is  (𝑑𝑑𝑖𝑖,𝑡𝑡

𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡.𝑑𝑑𝑖𝑖,𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡), where it represents 
those in the treatment group from Wave 2.  If the results from within Wave 1 persist, this 
estimator should be positive and significant.  If they do not hold, the coefficient should be close 
to zero and insignificant.       
 
Robustness checks 
 
Balance test 
 
Supplementary Table 4 presents the results of our balance test between our control and treatment 
groups. As can be seen, the two groups are broadly similar. The two groups differ with respect to 
age, and to a lesser extent income. Importantly, we control for these observable differences in 
our preferred estimations. 
 
Testing for common/parallel trends 
 
Supplementary Figures 6 – 11 present an overview of water, energy and food security 
perceptions and stated pro-environmental behaviour over the survey period. In addition to 
providing a visualization of perceptions over the survey period, Supplementary Figures 6 – 11 
are useful for investigating whether the common trends assumption between the control and 
treatment group holds. Starting first with perceptions of water, energy and food security, 
Supplementary Figures 6 – 8 show that perceptions tend to trend closely together pre-treatment. 
This is particularly stark for perceptions of energy security, where perceptions trend closely 
before clearly diverging in the post-treatment period. Similarly, Supplementary Figures 10 and 
11 show that pro-environmental behaviour tends to trend closely together pre-treatment with 
respect to water and food consumption. The only exception seems to be stated pro-environmental 
behaviour relating to energy consumption (Supplementary Figure 9). 

In Supplementary Table 22 we provide output from a common trends/placebo test.  This 
estimation takes the following form: 



13 
 

𝜌𝜌𝑖𝑖,𝑡𝑡,𝑠𝑠 = 𝛼𝛼0 + 𝛽𝛽𝛷𝛷𝑖𝑖,𝑡𝑡,𝑠𝑠 + �  𝜁𝜁�𝑑𝑑𝑖𝑖,𝑡𝑡
𝑑𝑑𝑡𝑡𝑑𝑑 .𝑑𝑑𝑖𝑖,𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�

𝑑𝑑25

𝑑𝑑=𝑑𝑑20

 + 𝜔𝜔𝑖𝑖,𝑡𝑡 + 𝜑𝜑𝑖𝑖,𝑠𝑠 + 𝜀𝜀𝑖𝑖,𝑡𝑡,𝑠𝑠 

    

As can be seen, this equation is equivalent to our main DID estimation, apart from the term 
∑  𝜁𝜁�𝑑𝑑𝑖𝑖,𝑡𝑡

𝑑𝑑𝑡𝑡𝑑𝑑 .𝑑𝑑𝑖𝑖,𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�𝑑𝑑25
𝑑𝑑=𝑑𝑑20 .  This term describes a series of six dummy variables that take the value 

of 1 for individuals from within the treatment group regions who were surveyed on a given day 
from the 20th to the 25th of July, and zero otherwise.  Owing to the fact that most of the responses 
were collected on two days (see Supplementary Table 2); one before the heatwave (18 July with 
622 observations) and one during the heatwave (23 July with 1089 observations), we choose 18 
July as our pre-control basecase. As can be seen, and consistent with the parallel trends 
assumption, the day.treatment dummies are not-significant in the pre-period but are in the post 
period.  Consistent with our main results, we also find 23rd and 25th of July to have positive and 
significant coefficients for energy security perceptions.   

Estimation using wild cluster bootstrapped standard errors 
 
Recognising that we have a small number of regions (11 regions) to cluster our standard errors, 
we also estimate our model using wild cluster bootstrapping (lower-bound) (28). To generate our 
wild cluster bootstrapped standard errors, we set the initial value of the random-number seed to 
100 and specify 1000 iterations. We find our results to be robust to the calculation of standard 
errors using wild cluster bootstrapping.  
 

Estimation using an alternative measure of treatment 
 
To account for the possibility that the same high temperature may have different effects 
depending on the region’s average temperature (for instance, Scotland is on average cooler than 
southern England), we also employ an anomaly measure that defines extreme temperature as the 
maximum daily temperature being at least 2 standard deviations greater than the 30-year mean 
value of maximum daily temperature (29, 30). Our anomaly measure defines extreme 
temperatures using the following formula: 
 

𝑇𝑇𝑠𝑠,𝑡𝑡 = 𝑋𝑋𝑠𝑠,𝑡𝑡− 𝜇𝜇𝑠𝑠
𝜎𝜎𝑠𝑠

   (2) 

 
where 𝑇𝑇𝑠𝑠,𝑡𝑡 indicates extreme temperatures in region 𝑠𝑠 on day 𝑡𝑡, 𝑋𝑋𝑠𝑠,𝑡𝑡 represents the maximum 
temperature for region 𝑠𝑠 on day 𝑡𝑡 and 𝜇𝜇𝑠𝑠 represents the long-term mean maximum temperature in 
July for region 𝑠𝑠 over the period 1988 to 2018. 𝜎𝜎𝑠𝑠 is the standard deviation of the maximum 
temperature in July in region 𝑠𝑠 over the period 1988 to 2018. We define extreme temperatures as 
occurring when a region experiences a temperature that is at least 2 standard deviations greater 
than the long-term mean maximum temperature. The same 6 treatment regions experienced 
temperatures that were at least 2 standard deviations higher than the long-term mean value of 
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maximum daily temperature. However, the day regions first experienced extreme temperatures 
varied (see Supplementary Figure 12).  

 

Ethical approval and consent: Ethical approval was granted by the Departmental Research 
Ethics Committee Chair (Director of Research) under due process and all survey participants are 
drawn from ResearchNow’s panel using their processes for establishing informed consent.  
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