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Abstract

Many structures in Nature and Engineering are dominated by the influence

of folds. A very narrow fold is a crease, which may be treated with infinite-

simal width for a relatively simple geometry; commensurately, it operates as

a singular hinge line with torsional elastic properties. However, real creases

have a finite width and thus continuous structural properties. We there-

fore consider the influence of the crease geometry on the large-displacement

flexural behaviour of a thin creased strip. First, we model the crease as a

shallow cylindrical segment connected to initially flat side panels. We deve-

lop a theoretical model of their coupled flexural behaviour and, by adjusting

the relative panel size, we capture responses from a nearly singular crease up

to a full tape-spring. Precise experiments show good agreement compared to

predictions.
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1. Introduction

We investigate the flexural behaviour of a thin creased strip. A crease

is the sharp ridge which forms between flat, inclined side panels when a

flat strip is folded along its length. Their bending provides insight into the

mechanics of more elaborate sheets with patterns of folds and creases, such

as insect wings [1, 2], pleated fabric [3], and Origami metamaterials [4].

Creasing increases the structural depth of the original strip without ad-

ding extra material, in the same way that distributed curving performs in

a regular carpenter’s tape, or “tape-spring” [5, 6, 7, 8]. The cross-sections

of very thin strips, however, begin to flatten during moderate bending along

their length, which subtracts from their initial bending stiffness.

During so-called “equal-sense” bending [9] the outside edges of the strip

become compressed and buckle asymmetrically, leading to twisting along the

strip. Eventually the buckles coalesce into a single cylindrical fold region

connected to virtually undistorted parts on both sides, see Fig. 1. More of

the folded strip becomes enveloped longitudinally when the ends are rotated

further and vice versa.

The same type of performance and shape of fold is also observed when

ordinary tape-springs are bent similarly. The cross-section of the folded

creased strip, however, is not entirely smooth. A cross-sectional profile in

Fig. 1 shows the horizontal side panels connected in the middle by a visible

remnant of the original crease.

When the direction of bending is reversed to give “opposite-sense” beha-

viour, the strip collapses into a pronounced vertex, Fig. 2. This is a quite

different localised response: the shape of the vertex remains the same when
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Figure 1: Equal-sense bending of a creased strip. A cross-section through the crease is
made by setting the folded strip in resin, sawing in half and then polishing to reveal the
persistence of the original crease as a small but distinguishable raised central feature.

Figure 2: Opposite-sense bending of creased strip, leading to a bistable vertex.

the end rotations are increased, and it may remain in place after unloading

to give bistable behaviour [9]. It is also different from opposite-sense bending

of tape-springs, which produces another folded cylindrical region.

A large-displacement analysis must therefore treat the creased strip as a

shell structure. The challenge is then how to model the strip entirely, for the

crease is concentrated in width compared to the panel size. In the limit, the

crease may be conferred as an elastic line separating deformable panels. Any

opening or closing across the crease itself is achieved by a relative rotation

of the side panels, with resistance provided by a torsional spring (per unit

length of crease).
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This simplifies any potential kinematical specification but, paradoxically,

prevents any theoretical determination of stiffness. Careful experiments must

be performed, for example, by pulling the crease apart via the side panels

and converting the measured force and transverse displacement into an elastic

torque-rotation characteristic in this direction [10, 11, 12, 13].

Other techniques in a range of materials are described by [13, 14, 15, 16],

where the panel deformation has to be subtracted from overall levels, to

quantify the crease alone. From analysis of the relative contributions from

the panels and crease, Lechenault et al. [12] also identify an upper limit

on the size of panel with negligible deformations: any panel with smaller

proportions behaves as if it were rigid compared to the crease. Origami

sheets, for example, which comply with the same limit on spacing between

fold-lines, behave kinematically as rigid-folded mechanisms.

The same torsional spring characteristic applies to opening (and closing)

of a crease during longitudinal bending, where the dominant in-plane forces

are now longitudinal. The nature of deformation and thence the coupling

between the crease and panels now changes compared to the qualifying ex-

periments.

Very thin panels may respond in a developablemanner. In-plane forces can

be neglected altogether, and the coupled structural response relies on finding

compatible conical displacement fields with the crease line performance; for

example, Dias et al. [17, 18] present a general methodology which includes

creased strips with a curved centreline.

We do not ordain the crease as a singular spring but are inspired by its

remnant in Fig. 1 being a small tape-spring element, which can bend and
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stretch longitudinally. The equilibrium response of the side panels is the

same, with matching shear forces and bending moments at the connecting

edges, where compatible deformations must also be observed. Each panel

width is no more than one tenth of strip length, in order to exclude transverse

in-plane forces altogether.

Uniform changes in longitudinal curvature are assumed for tractability,

reducing the analysis to the mechanics of a cross-section of unit length, as

per ordinary tape-spring analysis [19] and Brazier’s analysis of the ovalisa-

tion of bent tubes [20]. This precludes knowledge of the transition between

localised flattened and undeformed regions and consequently the correspon-

ding end rotations. The transitional behaviour of deformed thin shells has

been investigated for simpler geometries [21, 22]; a comparable analysis for

creased strips, and tape-springs, is a formidable challenge which we do not

tackle here. The general uniform curvature solution, nonetheless, allows us

to examine mechanical behaviour of the strip and the nature of an equivalent

torsional spring furnished by the crease region.

Our large-displacement analysis does not capture directly any localised

behaviour because of the uniform curvature specification. However, the pro-

gression of localised deformation in Fig. 1 mirrors a propagating instability of

fixed shape, which has been used to classify the folded behaviour in ordinary

tape-springs [23]. Submitting the uniform large-displacement response to the

so-called Maxwell construction reveals the exact folded properties provided

the response path has an “up-down-up” character i.e. the moment resistance

peaks, then softens, before rising again with increasing end rotation.

The propagating shape of the folded region has a fixed longitudinal cur-
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vature and changing arc-length. The opposite-sense concentrated shape of

Fig. 2 does not conform and thus cannot be classified using Maxwell’s scheme.

Better alternatives assume a developable shape around the vertex [9, 13], so

we focus on equal-sense behaviour alone.

Given that our tape-spring elements are very small compared to the over-

all width of the strip, the sensitivity of any Maxwell conformity to the size of

tape is thus interesting to study. We therefore allow the tape to become rela-

tively large, even removing the panels altogether so that we confirm ordinary

tape-spring behaviour at the end of our assessment range.

For consistency, we make strips with these “distributed” creases and ob-

serve whether or not longitudinal folding behaves in a propagating manner;

we also simulate their bending using finite element analysis and compare re-

sults. Even though quantifying the equivalent torsional spring is a primary

aim, this is only strictly true for very small tape-spring elements: how the

spring develops for larger tape elements is merely instructive but interesting.

Other features worth studying are the initial stiffness, the peak moment, the

curvature of the folded region, and so forth. The layout is as follows:

In the following section, we derive a model of the coupled flexural response

for large displacements. Most of the analysis is presented in closed form

although some of the final expressions have many terms and cannot be. A

range of response predictions is given for strips of a fixed arc-width and

differently sized tape-spring elements.

We consider first the transverse curvature change on the centre-line of the

crease for a sense of how much it opens. Peak axial strains are then calculated

in view of material yielding. The non-linear moment-curvature response and

6



β
Lr

W

H

w

x

z

Figure 3: Idealised cross-section of a creased strip. L is the panel length, r is the tape-
spring element radius, β is the initial strip sector angle, H is the apex height and W is
the edge-to-edge width.

opening angle are computed before quantifying the spring characteristic.

We then formally consider the localised folded region as a propagating

instability. Simple predictions of propagating moment and curvature are

calculated and compared in Section 5 to experiments described in Section 3

and to finite element analysis laid out in Section 4. This study then concludes.

2. Analysis

Consider a tape-spring joined smoothly to identical flat panels on its

edges, forming the cross-section shown in Fig. 3, with initial transverse radius

r, panel width L, and sector angle β. A global coordinate system (x, z, w)

is specified, where x lies along the unit length of the strip, z is transverse,

and w is normal and vertical to the tape-spring centre-line. The strip has a

uniform thickness t.

End effects are neglected, there are no applied surface loads, nor residual

stresses. Uniform longitudinal curvature, denoted by κx, is assumed. We also

neglect torsional deformations by assuming symmetrical deformation about

the centre-line of the strip; they do not affect the shape and properties of the

localised folded region that forms later.
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Figure 4: Analytical cross-section. Dotted lines show the initial geometry; points A and
A′ indicate the locations where the tape-spring and panel geometry are connected.

We now separate the tape-spring crease, Fig. 4a, from the side panels,

Fig. 4b, which are connected at points A and A′ by compatible deformations.

Their coupled deformation is described by two degrees of freedom, κx, and

the opening angle, φ, across the tape-spring.

The equilibrium cross-sectional shape of the strip due to the imposed

uniform longitudinal curvature κx is found using a variational approach. We

write a general expression for the strain energy density per unit length of the

strip, whose first variation is zero at equilibrium. The governing differential

equations for the deformation of the crease and panel regions are then solved

subject to compatibility constraints at the crease-panel interface.

The strain energy density due to bending is

uB =
D

2

[

(κ1 + κ2)
2 − 2 (1− ν)κ1κ2

]

(1)

where κ1 and κ2 are the changes in principal curvatures [24], D = Et3/12(1−
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ν2) is the flexural rigidity, E is Young’s modulus, and ν is Poisson’s ratio.

The strain energy density due to stretching in terms of principal in-plane

stress resultants, N1 and N2, is written as

uS =
1

2Et

[

(N1 +N2)
2 − 2 (1 + ν)N1N2

]

(2)

Since we assume zero transverse stress (N2 = 0), the above depends only

on the longitudinal stress resultant in both the tape and the panels, N1 =

Nx = Etκxy, with y measuring the vertical distance of a point on the strip

cross-section from the neutral axis.

The initial cross-section of the tape-spring element is shallow and approx-

imately parabolic [19] with w0 = −z2/2r, see Fig. 4a. The deformed cross-

section is specified by w = −κxx
2/2 + W (z), where W (z) is an unknown

symmetrical function defining the crease shape relative to the strip neutral

axis in the vertical direction: thus W (z) is equivalent to y. The bending and

stretching energies of the crease are therefore:

(uB)C =
D

2

[

(

∂2W

∂z2
+ κx −

1

r

)2

− 2κx(1− ν)

(

∂2W

∂z2
−

1

r

)

]

(3)

(uS)C =
Etκx

2

2
W 2 (4)

The intrinsic panel (η, ζ) coordinate system is initially aligned tangen-

tially to the tape-spring edge at A (and reflected vertically for A′). During

deformation, the ζ axis rotates by an angle θ from the tape-spring edge tan-

gent, shown dotted in Fig. 4b, to an angle φ/2 from vertical. The angle φ is

thus the asymptotic opening angle of the strip since it measures the axis in-
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clination and not the local deformation of the panel. When the cross-section

has flattened, φ will approximately equal π.

We assume the panel region deforms by η(ζ) relative to the ζ axis with

a longitudinal curvature equal to the projection of the strip curvature, κx,

onto the same axis. The panel edge at A (and A′) is rotated by θ to ensure

gradient compatibility with the tape-spring crease. Assuming zero in-plane

stress in the ζ direction, the panel deformation energy is:

(uB)P =
D

2

[

(

d2η

dζ2

)2

+

(

κx sin
φ

2

)2

+ 2ν
d2η

dζ2
κx sin

φ

2

]

(5)

(uS)P =
Etκ2

x

2

(

η sin
φ

2
+ ζ cos

φ

2
+W (A)

)2

(6)

The squared term in Eqn 6 is the panel deformation transformed to the

strip coordinate system and W (A) is the crease deformation evaluated at the

crease-panel interface, A.

The total strain energy per unit length of the strip is therefore

U = 2

∫ r sin
β

2

0

[

(uS)C + (uB)C

]

dz + 2

∫ L

0

[

(uB)P + (uS)P

]

dζ (7)

This is subject to the cross-section equilibrium conditions:

∫

width

Nxz dz = 0

∫

width

Nx dz = 0 (8)

The first of these conditions is satisfied since we have assumed symmetric

deformations about the strip centreline. These deformations must also sa-

tisfy the second equilibrium constraint in Eqns 8, which is enforced using a

Lagrange multiplier, λ. Forming the Lagrangian using Eqn 7 and the second
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of Eqns 8:

L = U + λEtκx

[

∫ r sin
β

2

0

Wdz +

∫ L

0

(

η sin
φ

2
+ ζ cos

φ

2
+W (A)

)

dζ

]

(9)

The governing differential equations for the crease, W , and panel, η, defor-

mation are now obtained by setting the first variation of Eqn 9 to zero:

1

4γ4

∂4W

∂z4
+W = −

λ

κx

(10)

1

4γ4

∂4η

∂ζ4
+ η sin2 φ

2
= −

ζ

2
sinφ−W (A) sin

φ

2
−

λ

κx

sin
φ

2
(11)

where γ4 = 3κ2
x (1− ν2) /t2. Solving Eqns 10 and 11 the deformed shapes of

the crease and panel are obtained:

W = C1 cos γz cosh γz + C2 sin γz sinh γz + C3 (12)

η =
θ

γ∗
e−ζγ∗

sin (ζγ∗) (13)

where

C3 = −
λ

κx

=
κx

2(γL+ Ω)

[

θ

γ
e−γ∗L

(

sin (γ∗L) + cos (γ∗L)

)

−
θ

γ
− L2γ cos

φ

2

− coshΩ

(

(C1 + C2) sinΩ + 2γC1L cosΩ

)

+ sinhΩ

(

(C2 − C1) cosΩ− 2γC2L sinΩ

)]

with Ω = γr sin (β/2) and γ∗ = γ
√

sin (φ/2). Constants C1 and C2, and

the panel edge rotation θ, are determined from compatibility of gradient,

bending moments, and out-of-plane shear forces at the tape-panel interface.

Compatibility of shear forces provides an expression for the panel edge

rotation, θ:
∂3W

∂z3
=

∂3η

∂ζ3
1

sin φ

2

−→ θ =
1

2γ2

(

∂3W

∂z3

)

(14)
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The gradient and bending moment compatibility equations are

∂W

∂z
= tan

(

π

2
−

φ

2
+ θ

)

≈ cot
φ

2
+ θ

(

1 + cot2
φ

2

)

(15)

∂2W

∂z2
−

1

r
+ νκx =

∂2η

∂ζ2
1

sin φ

2

+ νκx sin
φ

2
(16)

where Eqn 15 uses the Maclaurin series in θ and neglects higher-order terms.

Substituting Eqn 14 into Eqns 15 and 16, we arrive at

γ∗

(

∂2W

∂z2
−

1

r

)

+
∂3W

∂z3
+ νκxγ

∗

(

1− sin
φ

2

)

= 0 (17)

2γ2 sin
φ

2

(

sin
φ

2

∂W

∂z
− cos

φ

2

)

−
∂3W

∂z3
= 0 (18)

which provide the boundary conditions to solve for the unknown constants

C1 and C2. After some lengthy calculation, we find

C1G = −2 cosΩ sinhΩ cos2
φ

2

(

κxν sin
φ

2
− κxν +

1

r

)

+ 4γ∗ cos
φ

2
(sinΩ coshΩ− cosΩ sinhΩ)

− coshΩ

(

sinΩ(3− cosφ)

(

κxν sin
φ

2
− κxν +

1

r

)

− 2γ cosΩ sinφ

)

(19)

C2G = −2 sinΩ coshΩ cos2
φ

2

(

κxν sin
φ

2
− κxν +

1

r

)

− 4γ∗ cos
φ

2
(cosΩ sinhΩ + sinΩ coshΩ)

+ sinhΩ

[

cosΩ(cosφ− 3)

(

κxν sin
φ

2
− κxν +

1

r

)

− 2γ sinΩ sinφ

]

(20)

where

G = γ2

[

4 cos 2Ω sin
3

2

φ

2
− 4 cosh 2Ω sin

3

2

φ

2
− sin 2Ω

(

cosφ+ 1

)

+ sinh 2Ω

(

cosφ− 3

)]

As these confirm, W (z) and the panel displacement, η (ζ), only depend on
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the initial strip geometry, the longitudinal curvature, κx, and the asymptotic

opening angle, φ.

Due to the lengthy closed-form solution of Eqn 7, it is minimised for a

particular value of κx to obtain φ using a numerical scheme in Mathematica

[25]. The corresponding cross-sectional shape of strip is obtained by substi-

tuting κx and φ into Eqns 12 and 13, which is repeated for the range of values

of κx. The end moments applied to the strip are obtained by differentiating

Eqn 7 with respect to the strip curvature κx [24] and then substituting the

opening angle φ.

2.1. Model predictions

Certain predictions are shown in Fig. 5. All strips have a width of cross-

section equal to βr+2L = 41t, a sector angle β = 60◦, and initial tape-spring

radii, r, ranging from 4t to 39t, with the last value corresponding to a full

tape-spring (L = 0). While the smaller crease radii are outside the normally

accepted range for thin-shell theory, this ultimately has little effect on the

results since the crease does not open significantly when the radius is small

[26, 27]. The strip curvature, κx, and radius, r, are made dimensionless using

the strip thickness, t, and bending moments by the shell rigidity, D.

Because the transverse curvature changes within the tape-spring are not

uniform, we use the value at the centre of the strip (z = 0). From Eqn 12,

κz = ∂2W/∂z2|z=0 = 2C2γ
2. The ratio of this transverse curvature to the

initial tape curvature is plotted in Fig. 5a for increasing values of strip cur-

vature.

When the initial tape radius is reduced, the change in its curvature be-

comes smaller, indicating that smaller creases open less. Because the tape-

13



0.00 0.02 0.04 0.06 0.08 0.10

0.0

0.2

0.4

0.6

0.8

1.0

κxt

r κy

r
t

4

10

20
39

(a) Curvature at tape-spring centre (z =
0)

0.00 0.02 0.04 0.06 0.08 0.10

0.000

0.005

0.010

0.015

κxt

ϵx

r
t

4

10

20

39

(b) Longitudinal strain at tape-spring
centre (z = 0)

0.00 0.02 0.04 0.06 0.08 0.10
0

1

2

3

4

5

κxt

M

D r
t
4

10
20

39

(c) Applied end moment vs curvature

0.00 0.02 0.04 0.06 0.08 0.10

2.2

2.4

2.6

2.8

3.0

3.2

κxt

ϕ

r
t

4
10

20

(d) Asymptotic opening angle vs curva-
ture

0.0 0.2 0.4 0.6 0.8
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Δϕcr (β/2)

mt

D
4

10

20

r
t

/

(e) Equivalent crease spring opening be-
haviour

Figure 5: Theoretical behaviour. Each strip has a total arc-width rβ +2L = 41t, β = 60◦

and ν = 0.3. As the tape-spring radius is reduced, the strip opens less and the bending
resistance increases. Note that the r/t = 39 curve corresponds to a full tape-spring
(L = 0).
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spring can deform non-uniformly, the curvature oscillates about zero over the

width of tape for larger r, resulting in locally negative curvatures, seen for

r/t = 10, r/t = 20, and r/t = 39.

The longitudinal strain, ǫx, at the centre of the strip (z = 0) is shown

in Fig. 5b. For larger r/t, the strain peaks as the strip flattens, before

decreasing. For smaller r/t, this peak disappears and the strain increases

monotonically as a result of the larger structural depth due to the prominence

of the crease. The peak strain attained by the strips shown in Fig. 5b can

be larger than the yield strain of typical metals, leading to local damage.

The moment-curvature behaviour is shown in Fig. 5c, which repeatedly

shows an up-down-up shape, even for the smallest tape-spring element—

as we surmised for a propagating instability behaviour. Each strip has a

different initial stiffness because they have the same arc-width but different

second moments of area. For very large strip curvatures, the slope of the

moment-curvature curve approaches the same value as a plate of width equal

to the arc-width (βr + 2L). For smaller r/t, there is less opening and hence

flattening of the tape-spring element even though the overall cross-section

becomes largely flat, c.f. Fig. 1. The reduction in the initial structural depth

is limited, setting a higher moment profile in general. By focusing the tape

into a smaller region, the bending resistance is increased while keeping the

same cross-sectional width.

The asymptotic opening angle, φ, is shown in Fig. 5d. Initially, when

κx = 0, φ = 2.2 ≈ 126◦ despite β = 60◦, which should set φ = π − β = 120◦.

This initial difference is caused by the original cross-section of the tape-spring

element not being sufficiently shallow, but which decreases as β is reduced.
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In Fig. 5d, however, the cross-section quickly flattens with increasing strip

curvature, but more slowly as the crease radius is decreased.

2.2. Torsional spring

In other studies, the specified torsional spring applies an edge moment

to the panel as a function of the crease opening angle. In order to obtain

an equivalent torsional spring, we extract the moment and corresponding

rotation at the tape-panel interface as the strip bends. Using the right-hand

side of the curvature compatibility statement, Eqn 16

mt

D
=

−2γ∗θ

sin (φ/2)
+ κxν sin

φ

2
(21)

Similarly, the angle of inclination at the interface can be obtained from the

slope compatibility equation

tanφcr = cot
φ

2
+ θ

(

1 + cot2
φ

2

)

(22)

The change in crease angle is ∆φcr = φcr (κx)−φcr (0) and thus, the equivalent

torsional spring response is set by m = keff∆φcr, where keff is the opening

stiffness. The effect of shear at the crease-panel interface is neglected since

it is small for shallow creases.

The crease opening behaviour is shown in Fig. 5e. Generally, the opening

resistance increases as the initial radius is decreased; it is also non-linear,

with the stiffness gradually decreasing as ∆φcr increases.

An approximate expression for the opening behaviour of the crease can

be obtained by assuming a constant curvature response of the tape-spring
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α

Figure 6: Contours of constant longitudinal curvature for increasing end rotations of strip
from finite element analysis, Section 4. The angle α indicates the sector angle of the
central folded region.

element [27]:
mt

D
=

2∆φcr

βr
(23)

This is shown as dashed lines in Fig. 5e. These match the opening resis-

tance from the analytical model well for small crease opening angles (∆φcr)

but over-estimate the opening resistance at large angles. Equation 23 there-

fore provides a reasonable linear spring approximation for small-to-moderate

crease opening angles.

2.3. Propagation of deformation

Experiments presented later show that the folded deformation of a highly

bent strip proceeds without a significant change in bending resistance. The

series of simulated shapes from finite element analysis in Fig. 6 clearly show

the folded region growing in length along the strip but not changing its radius

of curvature.

This propagating form of deformation has been studied for various struc-

tures including the collapse of undersea pipelines [28, 29] and long shallow

panels [30], the deformation of beams on non-linear elastic foundations [31],
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this line is the propagation curvature, κ∗

x
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the inflation of elastic tubes [28], and the collapse of buildings [32]. Kyriaki-

des [33] provides a detailed discussion of the analysis of this phenomenon.

The load-deformation behaviour exhibited by such structures must fea-

ture an intermediate reversal of gradient—the up-down-up (or alternatively

down-up-down) shape. This is clearly exhibited in the moment-curvature re-

sponses in Fig. 5c, and the applied end moments required to sustain this are

obtained using Maxwell’s construction. This is an energy argument based on

the path independence of strain energy [28, 23], which implies:

∫ α∗

α0

Mdα−M∗ (α∗ − α0) = 0 (24)

where α is the longitudinal sector angle of the flattened region in Fig. 6, and

α0 and α∗ are the first and third intersections respectively of the horizontal

line M∗ and the M(α) curve. The constants M∗ and α∗ correspond to the

unknown propagating equilibrium configuration which solves Eqn 24.

Since our model assumes uniform curvature, κx, along the length of the
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strip, then α = κxs for an arbitrary length s, and M(α) differs from M(κx)

only by a scale factor [23]. Setting s equal to unity, the propagating moment,

M∗, is found by equating the areas above and below the horizontal line,

M = M∗, shown shaded in Fig. 7. The curvature (viz. rotation) associated

with this propagation, α∗ = κ∗

x(1), is obtained from the third intersection

point by numerical integration.

Approximate values for M∗ and κ∗

x can be found by assuming that the

crease flattens completely to give a purely cylindrical longitudinal fold. The

change in transverse curvature in the tape-spring is then 1/r, with none in

the side panels; both experience a change in longitudinal curvature of κx.

Since there is no stretching, only bending strain energy has to be consi-

dered, which is minimised at κx = κ∗

x for the propagating case. The total

bending strain energy multiplies the bending energy density, Eqn 1, by the

surface area of the folded tape-spring, βrα/κx, and the panels, Lα/κx:

U = Dα

[

β

2

(

rκx +
1

rκx

− 2ν

)

+ Lκx

]

(25)

Thus

1

κ∗

x

= r

√

2L

βr
+ 1 (26)

The equivalent propagating moment is obtained by differentiating Eqn 25

with respect to α and substituting Eqn 26

M∗

D
= β

(
√

2L

βr
+ 1− ν

)

(27)

When L is set to zero, M∗ and κ∗

x equal the well-known propagating moment

and curvature for ordinary tape-springs under equal-sense bending [23].
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Equations 26 and 27 can also be combined into a single expression using

2L = S − βr, where S is the arc-width of the strip. Eliminating r between

them, we find

M∗ = D(κ∗

xS − βν) (28)

The ranges of validity of Eqns 26 and 27 are considered in Section 5.

3. Experimental set-up

Creased metallic strips were made from 0.12 mm thick copper beryllium

sheet with a Young’s modulus of 131 GPa and Poisson’s ratio of 0.3. Strips

with a width of 50 mm and length of 350 mm were clamped and thus bent

into a creased shape in a heavy mould. The mould had four serrated ridges

all subtending 60◦ but with different radii, from 1 mm to 10 mm.

The clamped strips were age-hardened at 330◦C in a commercial oven

for five hours. They opened slightly after removal from the mould due to

precipitate migration through the thickness during heat treatment; this is

similar to well-known elastic spring-back. To determine their formed geome-

tries accurately, their external edge-to-edge widths, W , and apex heights, H,

were measured (Fig. 3). Parameters r, L, β, in Table 1 were then calculated

by solving

βr + 2L = 50 mm L sin
β

2
+ r

(

1− cos
β

2

)

= H 2L cos
β

2
+ 2r sin

β

2
= W

(29)

The ends of the cooled strips were cast in polyurethane resin blocks, for

later connection to the bending test apparatus shown in Fig. 8 and described

in detail in [26]. The block proportions were precisely made so that the
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Table 1: Test specimen geometry. Each
was formed from a 50 mm wide strip of
0.12 mm thick age-hardened copper beryl-
lium. The cross-sectional arc-width was
βr + 2L = 50 mm.

Specimen β(◦) r (mm) L (mm)

SR5 69.9 4.8 22.1
SR7 68.8 6.8 20.9
SR8 69.4 7.7 20.3
SR10 69.5 10.1 18.9

Table 2: Finite element model geometry.
Each model had an arc-width of 20.5 mm
and a thickness of 0.5 mm.

Model β(◦) r (mm) L (mm)

FEA1 60 1 9.71
FEA5 60 5 7.62
FEA10 60 10 5.00
FEA20 60 20 0.00

neutral axis of bending for each strip end was aligned with the rotation axes

of the apparatus.

Each end rotation was controlled by manually adjusting dials on the input

shafts of the gearboxes, and measured using a vernier scale attached between

the torsion gauge and the gearbox. One end of the test apparatus is attached

to a carriage, which is free to translate along a low friction track, and the

other is fixed against movement.

The strips were bent by increasing the end rotation in increments of 1◦

and recording the reaction torque. The loading sequence for strip SR5 is

shown in Fig. 8 where early torsional buckling is evident. The deformation

eventually localised into a central folded region by an end rotation of around

30◦. This region clearly propagates outwards from the centre of the strip for

larger end rotations. Unloading of the strip was achieved by reversing the

direction of rotations to zero again.
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Ψ=0o Ψ=5o Ψ=10o

Ψ=20o Ψ=40o Ψ=70o

Figure 8: Bending of SR5 creased strip in the forward loading direction. The strip first
buckles in a torsional mode before localising into a central folded region around Ψ = 30◦.
Further end rotation is accommodated by propagation of the flattened region outwards
from the centre.

4. Finite element analysis

A finite element study over a greater range of geometries was performed

using the commercial package ABAQUS [34]. The tested geometries listed

in Table 1 used the same linear elastic copper beryllium material properties

described in Section 3. Additionally, the geometries shown in Table 2 were

modelled with a linear elastic material model with a Young’s modulus of

200 GPa, a Poisson’s ratio of 0.3, a thickness of 0.5 mm, and a length of

100 mm.

Each strip was rendered as a quarter model, with nodal lines of symmetry

along the centreline of the strip and transversely at mid-length. This pre-

cludes any torsional deformation but considerably speeds up the simulation;

our end point is a localised folded region whose properties, recall, are not

affected by the torsional phase.
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Figure 9: Comparison of the initial elastic response of the analytical and FEA models for
a strip with arc-width of 50 mm, r = 4.8 mm, and thickness of 0.1 mm. As the sector
angle, β, increases the difference between the models also increases due to the shallow
curvature assumption for the tape-spring region.

The cross-section at each end was constrained using a rigid-body con-

straint, with the reference node positioned at the strip centroid. Quadratic,

reduced integration, thin shell elements (S8R5) were used to capture the

deformation of the crease region more accurately with fewer elements.

A geometrically non-linear static analysis was performed under end-rotation

control of the reference nodes, and the reaction moment was recorded. The

strip cross-section initially begins to flatten but only in the middle because of

the presence of fixed ends. The compressed middle edges are free to buckle

locally, which localises the deformation quickly under continued end rota-

tions; much of the remaining strip reverts to the undeformed cross-section

connected by transition region. Due to the rapid shape change during this

process, an adaptive automatic stabilization scheme was used [34]. The smal-

lest dissipated energy fraction which allowed the analysis to proceed was ap-

plied but did not exceed 0.002; the longitudinal radius of curvature at the

mid-length was obtained by fitting a circle to five nodes along the deformed

centreline of the strip.
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A comparison of the initial elastic moment-end rotation behaviour of the

FEA and analytical models is shown in Fig. 9. For small end-rotations, and

before buckling occurs, the strip deforms to a constant curvature κ = 2Ψ/l,

where Ψ is the end rotation and l is the strip length. Due to the shallow initial

curvature assumption for the tape-spring element, the initial stiffness matches

closely for small sector angles (< 30◦) but, as β increases, the difference

between the FEA and analytical model increases. This does not have a

significant effect on the behaviour in the locally flattened state.

5. Comparison to Experiments

Experiments and finite element analysis are compared in Fig. 10 for the

geometries listed in Table 1. There is first a rapid increase in applied moment

before torsional buckling occurs, with a good correlation between initial stif-

fness measurements. Each strip appears to buckle between an end moment

of 0.20 and 0.25 Nm at an end rotation in the range 5◦ to 10◦.

The corresponding peak moment from finite element analysis is always

larger than the experimentally measured value. This is due to a range of

factors, including imposition of symmetry in the finite element model, and

the deformation resolution and imperfection sensitivity of the experiments.

Recall that predicting the buckling moment of the strip is not a goal of this

study.

Continued end rotation leads to the localised folded region and the end

moment dropping to an approximately constant value—our proposed propa-

gation moment. From Fig. 8 the localised flattened region has clearly formed

by an end rotation of 30◦, which is confirmed in Fig. 10. The analytical model
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0 20 40 60
0.00

0.05

0.10

0.15

0.20

0.25

0.30

End Rotation (o)

E
n
d
M
o
m
e
n
t
(N
m
)

FEA

Test

Forward

Reverse

Model

2
0
.9

6.8

68.8°

(b) SR7 bending test
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(c) SR8 bending test
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(d) SR10 bending test

Figure 10: Bending test results compared to model predictions. Each strip has a total
arc-width rβ + 2L = 50 mm.
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(a) Propagation moment variation with
tape-spring r/t ratio.
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(b) The propagation curvature varia-
tion with tape-spring r/t ratio.

Figure 11: Propagation behaviour of creased strips via analytical model, finite element
analysis, and experiments. Experiment and finite element results use the geometry in
Tables 1 (βr + 2L = 50) and 2 (βr + 2L = 20.5); the analytical results use an average
sector angle β = 69.4◦ for the βr + 2L = 50 mm strips. The approximate expressions for
the propagation moment and curvature, given by Eqns 27 and 26 respectively, are shown
dashed.

predictions made using Maxwell’s construction are also included in Fig. 10,

which match the experiments and finite element analysis results well.

During unloading, the moment-end rotation behaviour follows a similar

path to the forward direction, with the propagation moment the same as in

the forward direction. The peak moment in reverse is however always lower,

leading to hysteretic behaviour similar to tape-springs unloading [23].

For larger r/t, the propagation moment, Fig. 11a, and the propagation

curvature, Fig. 11b, both decrease. The propagation moments for the finite

element and experimental results were obtained by averaging the reaction

moment between an end rotation of 30◦ and 80◦. The analytical predictions

and finite element model results are in good agreement but the decreasing

trend is not as clear in the experimental results. This is due to a combina-

tion of factors: there is variability in the cross-sectional geometry, and the
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measuring process described in Section 3 results in an approximation of the

real cross-section. As shown in Table 1, each test specimen had a different

β but the analytical model and finite element results are for β = 69.4◦. The

horizontal error bars in Fig. 11a show, for example, a variation of ±1 mm

in the crease radius. Finally, the measurement of the bending moment has

some noise, and to obtain the propagation moment, the results were averaged

in the plateau region; the vertical error bars show one standard deviation of

the data in the plateau region.

The simplified model prediction from Eqn 27 matches the analytical and

finite element results well for large tape-spring radii. For smaller radii, howe-

ver, the simplified model over-predicts the propagation moment, becoming

unfeasibly large as the tape radius is reduced to zero: similarly, Eqn 26

increasingly over-predicts the propagation curvature.

The propagation curvature is only compared to finite element analysis

in Fig. 11b since the strip curvature could be obtained more reliably. The

analytical predictions and finite element results again match very closely.

6. Discussion and conclusions

We have analysed equal-sense bending behaviour of creased strips. As-

suming a uniform longitudinal strip curvature, a variational approach was

used to obtain the strip deformation as a function of the asymptotic opening

angle of its cross-section. The equilibrium cross-sectional shape for a parti-

cular strip curvature was obtained by minimising the strip strain energy per

unit length with respect to this angle. The model was then interrogated to

predict the mechanical behaviour.
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As the tape-spring radius is reduced towards the singular limit, the ben-

ding resistance increases since smaller creases open less and remain more

prominent, thereby increasing the structural depth. Under large deforma-

tions, the strip locally flattens to give a cylindrical shape perpendicular to

the crease line whose bending resistance and curvature remain approxima-

tely constant over a wide range of end rotations. This is relatively insensitive

to imperfections and was used to compare the analytical model predictions

from Maxwell’s construction to experiments and finite element analysis. Very

good agreement between all methods has been found, which also validates

our assumption of a propagating instability.

A crease is often idealised as a singular torsional spring with a linear

stiffness. We have shown that the opening behaviour of a finite-width crease

is non-linear but can be reasonably approximated by a singular torsional

spring with a linear stiffness of 2D/βr, where D is the flexural rigidity, β is

the angle subtended across the crease, and r is the initial crease radius.

Our model provides analysis techniques to enable the use of creased strips

where constant curvature tape-springs are commonly used, for example, in

deployable structures. Creased strips provide more versatility compared to

them because the presence of side panels introduces extra design parameters.
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