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Abstract

A new theory for describing grain structure evolution during discontinuous dynamic

recrystallisation in nickel–based superalloys is presented. The evolution of the average

and recrystallised grain size is determined during dynamic straining and at steady state

by computing the variation in the number of grains with strain. The initial grain size

distribution is combined with a size distribution function containing recrystallised grains

only; subsequent evolution depends on their respective average values. This allows

us to deconvolute the recrystallised and deformed grain distributions to obtain the

recrystallised volume fraction. Precipitation pinning and solute drag are incorporated in

the model by measuring the fractional loss of stored energy when a boundary encounters

such defects depending on how they accumulate at the boundary. The model results are

validated against data from eleven polycrystalline superalloys, covering a wide range in

composition, initial microstructure and deformation regime.

Keywords: Recrystallization; grain growth; grain refinement; nickel based superalloys; plas-

ticity; forging
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1 Introduction

Polycrystalline Ni-based superalloys are widely employed in industries such as aerospace,

energy, nuclear, maritime and petrochemical, due to their excellent mechanical properties

combined with good corrosion resistance at high temperatures [1]. A number of precipitation

strengthening mechanisms are introduced to produce this high performance during in-service

conditions. However, crucial mechanical properties such as tensile strength, creep resistance

and low-cycle fatigue remain highly sensitive to the alloy grain structure via both the average

and the distribution of grain size [2]. The latter is manipulated during thermomechanical

processing at high temperatures, by hot-forging and annealing treatments [1].

Dynamic recrystallisation (DRX) is the principal mechanism for tailoring specific grain

structures during hot forming: it can be controlled by modifying both the deformation con-

ditions and the initial microstructure. A number of coarser precipitates are introduced, such

as carbides, cubic coherent γ’ (Ni3(Al-Ti)) and the orthorhombic incoherent δ (Ni3Nb) in-

termetallics, to obtain a finer grain size by inhibiting recrystallisation and grain growth.

Moreover, solute drag from the many alloying elements, affects both the flow stress of the

material and the recrystallisation, increasing the complexity of unraveling the individual ele-

mental contributions to grain refinement. The focus on experimental characterisation during

the hot deformation of polycrystalline superalloys[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]

is perhaps indicative of the lack of physics-based theoretical descriptions able to predict

grain structure evolution as a function of wide variations in composition and deformation

conditions [17]. For the most part technologists rely on semi-empirical or phenomenological

algorithms, where properties are related to a limited number of parameters representing spe-

cific deformation conditions and composition. This impedes extending their application to

novel scenarios. Thus, deriving a fundamental approach that quantifies individual contribu-

tions to grain refinement under a wide process window serves not only to optimise current

alloy performance, but can also aid our understanding of the underlying mechanisms and
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assist in developing new alloys and synergistic processing regimes.

The objective of this work is to introduce a novel modelling approach for describing grain

structure evolution during dynamic recrystallisation and to validate this in eleven polycrys-

talline superalloys. A number of features are described: 1) the average (D) and recrystallised

(DDRX) grain size during straining and at steady state, where grain nucleation and growth

effects are considered, 2) the grain size distribution, 3) grain number density, and 4) re-

crystallised volume fraction evolution during straining. It is demonstrated that the previous

features can be fully characterised by describing the evolution of D and DDRX only. The ef-

fects of solute drag, particle pinning and processing condition are incorporated in this model.

Grain size has previously been modelled for Ni–binary alloys (Item 1), including solute drag

effects [18]; this work extends this to multicomponent alloys containing seven substitutional

and one interstitial elements. An alternative approach for particle pinning effects on grain

growth is proposed and is shown to depend on the average particle spacing, volume fraction,

average size and morphology.

2 Materials and deformation conditions

Table 1 shows the chemical composition of the commercial alloys referred to in this work.

They cover a wide compositional range in seven of the substitutional elements and interstitial

carbon; contributions from other substitutional elements are neglected.
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Table 1: Materials employed in this work. Chemical composition is displayed in wt%.

No. Alloy Cr Fe Nb Co Mo Al Ti C

1 AllVac 718 17.65 20.98 5.7 0.25 2.9 0.52 0.94 0.019

2 Inconel 625 21.32 0.11 3.73 0 8.58 0.18 0.16 0.053

3 Inconel Age 625 21.1 5.08 3.39 0 8.06 0.2 1.35 0.007

4 Pyromet 625 21.9 2.38 3.96 0 8.84 0.18 0.25 0.042

5 Inconel 690 28.88 10.05 0 0 0 0.18 0.29 0.038

6 Inconel 718 18.1 18.3 5.5 0.37 3.05 0.49 0.98 0.03

7 Inconel 740H 25 0 2 20 0.5 1.5 1.5 0.03

8 Nimonic 75 19.5 0 0 16.5 0 1.5 2.5 0.027

9 Nimonic 80A 19.54 0.21 0 0 0 1.5 2.4 0.07

10 Nimonic 90 19.5 0 0 16.5 0 1.5 2.5 0.07

11 Nimonic 105 15 0 0 0 5 4.7 1.2 0.13

Table 2 shows the deformation conditions and initial microstructure for these alloys, where

D0 is the initial grain size, ε and ε̇ are the axial strain and strain rate, respectively; the ex-

perimental measurements were obtained from the literature. In most cases, the average or

recrystallised grain size was reported at large strains only. For Nimonic 75, 90 and 105, no

initial grain size was reported and the measured values were assumed to have reached steady

state (Dss). The effect of precipitates such as M23C6 and δ are considered in this work. Table

2 shows the M23C6 and δ equilibrium volume fraction Fp variation for the test temperatures,

as no experimental volume fractions were reported (except for δ in two cases); the equilib-

rium volume fraction values were obtained from Thermocalc. Guo et al. [6] experimentally

confirmed the presence of M23C6 carbides in IN 690. Carbides were experimentally observed

in IN 625 and Pyromet 625, although their type was not identified; the transformation–time-
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temperature diagram suggests that M23C6 carbides should be preserved for the duration of

the test [19]. For IN 740H, the carbide volume fraction is very low and M23C6 only was

considered to be present [13]. Although additional M7C3 carbides may be formed at high

temperatures (≥1353 K [20]) in the Nimonic series, Tian et al. [21] have pointed out that

M23C6 particles are preserved at high temperatures for moderate deformation times; hence

only M23C6 particles are analysed; this also implies that FM23C6 at high temperatures is ap-

proximated by the volume fraction of M7C3 (from Thermocalc). Chaudhury and Zhao [3]

measured a precipitate volume fraction less than 1% and a particle size in the range 1–15

µm in AllVac 718; however, they did not characterise the phase fraction of these particles

(the heat treatment schedule was performed in the γ′+ γ′′+ δ region [22]). To overcome this

limitation, particle pinning effects are neglected in this alloy due to the low volume fraction

and large particle size, resulting in very limited pinning [23]. For δ in Inconel 718, the re-

ported heat treatment routines were compared against the time-transformation-temperature

diagram [7] to confirm whether δ is present during deformation. Only two data sets con-

tain δ precipitates [7, 8]; other experiments do not report the presence of δ particles during

deformation, consistent with the forging temperature being above the δ solvus. Moreover,

experimental Fδ values are close to those prescribed by Thermocalc at equilibrium: 4% (at

1253 K) and 7% (at 1173 K), from [7] and [8] respectively, whereas from Thermocalc, the re-

spective equilibrium fraction is 4.7% and 7.7%; hence, using the equilibrium particle volume

fraction represents a good approximation. For the 625 series, no δ particles were reported in

the experimental observations [5, 4].
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Table 2: Deformation conditions and microstructure observation in the tested alloys.

Alloy T (K) ε̇ (s−1) D0 (µm) ε FM23C6 (%) Fδ (%) Ref.

AllVac 718 1173-1423 0.001-5 54 0.6 - - [3]

Inconel 625 1223-1473 0.1 81 0.7 0-1.1 - [4]

Inconel Age 625 1223-1423 0.001-1 62 0.8 - - [5]

Pyromet 625 1223-1423 0.001-1 12 0.8 0.16-0.88 - [5]

Inconel 690 1323-1473 0.01-1 42 0.7 0-0.67 - [6]

Inconel 718 1253-1313 0.01-1.1 20 0-0.81 - 0-4.7 [7]

Inconel 718 1173-1413 0.001-1 81 0.8 - 0-7.7 [8]

Inconel 718 1273-1313 0.001-1 30-190 0.1-1.2 - - [9]

Inconel 718 1223-1373 0.001-0.1 176 0.7 - - [10]

Inconel 718 1273-1423 0.01-1.3 23-54 0.6 - - [11]

Inconel 718 1273-1348 0.005-0.1 114 0.7 - - [12]

Inconel 740H 1323-1473 0.1-1 20 0.6 0-0.12 - [13]

Nimonic 75 1273-1473 0.1 - 0.6 0.7-1.2 - [14]

Nimonic 80A 1223-1393 0.01-1 90 0.9 0.9-1 - [15]

Nimonic 90 1273-1473 0.1 - 0.6 - - [14]

Nimonic 105 1273-1473 0.1 - 0.6 1.4-1.5 - [14]

3 Previous theory

This section presents previous results on the nucleation of dynamic recrystallisation, grain

size evolution and solute drag effects in binary Ni alloys; these concepts are further extended

to polycrystalline Ni–based superalloys in the following sections.
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3.1 Dynamic recrystallisation nucleation

During the hot deformation of polycrystalline alloys with low/medium stacking fault energy,

new grains are formed by strain–induced grain boundary motion; this occurs once a critical

shear strain γ∗DRX is reached, and sufficient localised strain energy (from dislocation stor-

age) is accummulated; further growth continues as the strain increases. A thermodynamic

framework has been defined to obtain γ∗DRX in terms of the deformation conditions [18, 24]:

γ∗DRX = 1−
(

1 +
1

κc

)
T∆S
1
2
µb3

, (1)

where µ is the shear modulus, b is the Burgers vector, κc is a constant relating the dislocation

density ρ to the average subgrain size [25]: dc = κc√
ρ

= 12π(1−ν)
(2+ν)

(
1 + T∆S

µb3

)
1√
ρ
, where ν is the

Poisson’s ratio, and ∆S is the entropy accounting for dissipation effects when grain boundary

bulging occurs; ∆S is associated with the possible dislocation migration paths if subgrain

boundaries are formed by a dislocation arrangement [26, 24]. When γ∗DRX ≤ 0, then γ∗DRX is

fixed null. The entropy equals:

∆S = kB ln

(
ε̇0 + ϑ

ε̇

)
, (2)

where ε̇0 is a constant related to the critical resolved shear stress to trigger slip and the speed

of sound, and it is in the range of 107 − 108 s−1 [26, 25, 24]; ϑ = 1013 exp
(
− Em

RT

)
s−1 is the

vacancy atomic jump frequency, and Em is the vacancy migration energy. Details on ∆S

applications can be found elsewhere [26, 27, 24, 25, 28].

The second term in equation 1 accounts for the effective stored boundary energy (1
2
µb3)

available to trigger grain boundary motion (T∆S); this ratio also accounts for dynamic

recovery effects prior to recrystallisation [24]. Following this result, the activation energy

for grain nucleation Qnuc during DRX is obtained by subtracting the stored energy from the
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grain boundary motion energy [18]:

Qnuc =
1

8

(
1

2
µb3 −

(
1 +

1

κc

)
T∆S

)
, (3)

where 8 is a geometric factor that accounts for the effective boundary sites where grain

bulging occurs. This formulation has been applied to describe the macroscopic flow stress

and the average grain size evolution during DRX in pure FCC materials and binary alloys

[24, 18]. Further applications are presented in this work.

These results have also been employed to predict the stress–strain evolution of pure and

multicomponent FCC materials [24, 29, 30]; this is based on describing the dislocation density

once γ∗DRX has been reached and dynamic recovery and recrystallisation are present. The

dislocation annihilation term due to grain growth is expressed as a function of the stored

boundary energy and the entropy. However, no grain size evolution or its effects on dislocation

evolution were included in the analysis.

3.2 Dynamic grain size

The average grain size D at a given shear strain (γ) is computed by adding the size of each

grain Di over the total number of grains N for a sufficiently large region [18]:

D =
1

N

N∑
i=1

Di, (4)

where N depends on the nucleation of additional grains and {Di} includes both recrystallised

and deformed grains. The average recrystallised grain size DDRX can also be obtained when

the previous summation is divided into the number N0 of deformed grains Ddef
j prior to

recrystallisation and the number N −N0 of new recrystallised grains DRex
k during straining

(
∑N

i=1Di =
∑N0

j=1D
Def
j +

∑N
k=N0+1D

Rex
k ). The first term equals the average deformed grain
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size, whereas the second equals DDRX ; the mean values are with respect to the total grain

population.

The evolution of the average grain size D with strain is described by differentiating the

previous expression with respect to γ, and neglecting spatial contraction or expansion at the

microstructural scale [31]. The evolution equation equals [18]:

dD

dγ
=

1

N

dN

dγ

(
Dss

(
1− N0

N

)
−D

)
, (5)

where Dss is the steady state grain size and dN
dγ

is the grain nucleation rate. This equation is

valid for γ ≥ γ∗DRX ; below this value D = D0. Once Dss and dN
dγ

are obtained, the dynamic

grain size evolution follows. The former accounts for grain growth effects (see Section 3.3),

whereas the latter links grain nucleation effects to the average grain size evolution.

3.3 Steady state grain size

The steady state grain size Dss is reached when the net driving pressure P for grain boundary

bulging disappears [32]. This is due to the fact that the grain boundary velocity of recrys-

tallised grains is the product of the mobility and the driving pressure, where the former is

always positive. Dss determines the limiting condition for grain growth. In a polycrystalline

superalloy, P is composed of contributions from:

1. The reduction in stored energy P1 =
(

1
2
µb2ρ

)(
340 d2c

D
2 exp

(
− Qnuc

kBT

))
where the second

term represents the effective area consumed by the new grains (grain nucleation effects)

[18].

2. A capillary pressure term −P2 from the variation in grain boundary curvature P2 =(
χGB
D

)(
DDRX
D

)
, where χGB is the grain boundary energy and the second term accounts

for the effective length where capillary effects take place, on the recrystallised grains

only (grain nucleation effects).
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3. A solute drag pressure term −P3, resulting from solute atoms segregated around grain

boundaries, reducing the stored energy available for additional motion.

4. A particle pinning term −P4, stemming from small particles hindering grain growth

and reducing the stored energy available for further motion.

These factors are added:

P = P1 − P2 − P3 − P4, (6)

and Dss = D = DDRX is achieved once P = 0. Expressions for P3 and P4 in Ni–based

superalloys are explored in the following section; the particle pinning term (P4) was not

introduced previously.

4 Grain structure evolution in superalloys

4.1 Solute drag

The conventional approach to solute drag in alloys [33, 32, 23] is modelled on a dilute solute

atmosphere which migrates with, or breaks away from the grain boundary. In highly alloyed

materials this approach is not supported by the migration rate data [34]. An alternative

approach considers a binding energy between the boundary and the solute which allows a

build-up of the solute on the boundary plane where it changes not only the rate of migration,

but also the mechanism (as exhibited by the activation enthalpy for migration). In this way

it is possible to define areas of the boundary over which the solute atoms are adsorbed onto

the boundary exerting a disproportionate effect on the migration rate [32]. This approach

has been proposed previously to describe solute drag P3 during dynamic recrystallisation [18].

The drag pressure is dealt with simply as a reduction in the boundary area experiencing the

full driving force and hence is set equal to a fraction ps of the stored energy (P3 = psP1)

required by boundaries to continue moving once solute atoms segregate around them. The

10



dimensionless parameter ps < 1 is related to the frequency of grain boundaries encountering

xs solute atoms during recrystallisation, the distance over which they are retained in the

boundary and the solute atom fraction xs of element S. It corresponds to an exponential

distribution [35]: ps = 1 − exp(−αsolbΛ−1
s ) = 1 − exp(−αsolx1/3

s ), where αsolb is the drag

atmosphere and Λs = b/x
1/3
s is the average solute spacing [36]; αsol is a dimensionless constant

linearly scaling with the atomic radius rs of element S. For binary Ni alloys, αsol equals [18]:

αsol = 562.6rs − 67.15, where 562.6 (in nm−1) and 67.15 are related to the boundary–solute

atom binding energy in Ni. For the case of interstitial carbon atoms, αC = 3 was found to fit

experimental measurements with good accuracy [18]. This formulation is further extended

in this work to multicomponent superalloys.

In a multicomponent system containing up to seven substitutional elements and carbon

(Table 1), P3 increases as it encounters more atoms. Additional drag contributions are

included in ps:

ps = 1− exp

(
−

7∑
s=1

αsbΛ
−1
s − αCbΛ−1

C

)
= 1− exp

(
−

7∑
s=1

αsx
1/3
s − 3x

1/3
C

)
, (7)

where αs is the effective drag atmosphere of element S (S=Cr, Fe, Nb, Co, Mo, Al or Ti)

when other elements are also present; carbon as an interstitial is considered separately. αs

differs from αsol as the presence of other elements cause variations in the solute–boundary

binding energy [37, 38]. As a first approximation, αs (in element S) is estimated by adding a

correction term in the drag atmosphere of the Ni–S binary system; this correction represents

the relative drag contribution of element S to the total solute concentration (xs/
∑7

l=1 xl):

αs =
xs∑7
l=1 xl

αsol =
xs∑7
l=1 xl

(562.6rs − 67.15). (8)

Additional substitutional elements can be considered. A similar decomposition has been

employed to describe solute effects on the Hall–Petch relation in multicomponent Mg alloys
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[39]. This modification does not include effects from solute–solute interactions, but this can

be explored in further work.

4.2 Particle pinning

The presence of small particles inhibits grain boundary motion by inducing a pinning pressure

on the moving boundaries [23]; the stored energy driving grain growth is thus reduced as

the particle–boundary contact region is removed from the boundaries [33, 32]. The pinning

pressure depends on several parameters such as particle geometry, average spacing, coherency

and volume fraction [32]. This behaviour has been extensively described by the Zener pinning

mechanism [23]. Although physics–based models for grain growth, including particle pinning

in polycrystalline superalloys, are available [17, 40, 41, 42], their implementation during DRX

is limited, as the effects of multiple distributions of particle size and the dragging of smaller

particles increases the complexity considerably. Moreover, during DRX, the driving pressure

stemming from the strain energy can be up to three orders of magnitude higher than the

pressure due to boundary curvature [32], and up to one order of magnitude higher than the

particle drag pressure [32, 33].

An alternative approach to describing particle pinning during DRX in Ni superalloys is

presented: as with solute drag, the pinning term P4 (equation 6) represents the fraction

pp of the stored energy reduced when the boundary encounters small particles randomly

distributed in the material; this assumption could, in principle, also include precipitates

formed at mobile grain boundaries. However, here, no specific pinning mechanism is described

and only existing precipitates are considered. The fractional loss of area is determined by

the particle–boundary encounter frequency, which can be approximated by an exponential

distribution similar that used for solutes [35]. Let Λp be the average particle spacing, then
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the fraction for a moving boundary to encounter a particle is:

pp = 1− exp(−βpΛ−1
p ), (9)

where βp is an equivalent constant length reduction in the boundary displacement when it

encounters a particle. Pinning effects from M23C6 carbides and δ particles are considered.

The particle shape of carbides is usually spherical [21, 1, 15], whereas in the δ phase often

has a plate–like shape [1, 8]; this affects the average particle spacing.

The average spacing of a spherical particle (M23C6) is simply related to its radius rM23C6

and volume fraction FM23C6 [23]: Λ−1
M23C6

= 1
rM23C6

(
3

4π
FM23C6

)1/3
. For δ particles, approxi-

mated by a square plate–like shape, an aspect ratio hδ = lδ/rδ is defined between the length

lδ and thickness rδ, and the average δ spacing becomes [33]: Λ−1
δ = 1

lδ

(
hδFδ

)1/3
. From the

definition of pp, P4 increases if the particle size is reduced or if the volume fraction is in-

creased; this result is consistent with Zener theory [23]; however, rather than considering

the loss of grain boundary energy, the continuous variation in the stored energy (P1) driving

grain growth is examined.

To capture the pinning effects fully the particle size and morphology need to be char-

acterised for the test conditions. For example, the form of the δ phase in IN 718 has been

extracted from Guest’s work [7]: an average particle thickness of ∼1 µm with average length

6 µm has been found when the alloy is heat treated at 1000 ◦C for 3 hours. Assuming that no

coarsening or additional particle nucleation takes place during deformation, an optimal value

of βδ = 7.6 µm was fitted, resulting in βδΛ
−1
δ ≈ 2.3F

1/3
δ for these conditions. In other work,

Bombac et al. [15] have observed M23C6 particles with radius ∼ 0.3 µm in Nimonic 80A heat

treated at 1473 K for 180 s; for this alloy an optimal value of βM23C6 = 0.72 µm was fitted.

However, the M23C6 average size was not experimentally characterised in other alloys, and

this value is assumed to remain constant throughout this study: βM23C6Λ
−1
M23C6

≈ 1.5F
1/3
M23C6

.
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By fixing the particle size a direct comparison between δ and M23C6 can be made; δ displays

a stronger pinning effect than M23C6, as βδ > βM23C6 . Further refinement of these parameters

would require additional experimental characterisation.

The parameters ps (equation 7) and pp (equation 9) respectively embody the individual

effects hindering grain growth. Both mechanisms compete simultaneously to reduce the

overall stored energy, hence pp and ps should be coupled into the same distribution [43]:

ps+p = 1− exp(−
∑

s αsx
1/3
s − 3x

1/3
C − 1.5F

1/3
M23C6

− 2.3F
1/3
δ ). This also implies that P3 and P4

in equation 6 are coupled, leading to the expression:

P3 + P4 = ps+pP1 =

[
1− exp

(
−

7∑
s=1

αsx
1/3
s − 3x

1/3
C︸ ︷︷ ︸

Solute drag

−1.5F
1/3
M23C6

− 2.3F
1/3
δ

)
︸ ︷︷ ︸

Particle pinning

]
P1. (10)

Finally, the steady state grain size is obtained when equation 6 is null and D = DDRX = Dss,

resulting in [18]:

Dss = 170
κcµb

3

χGB
exp

(
−

7∑
s=1

αsx
1/3
s − 3x

1/3
C

)
︸ ︷︷ ︸

(a)

exp

(
− 1.5F

1/3
M23C6

− 2.3F
1/3
δ

)
︸ ︷︷ ︸

(b)

exp

(
− Qnuc

RT

)
︸ ︷︷ ︸

(c)

.

(11)

This expression explicitly includes (a) solute drag, (b) particle pinning and (c) temperature

and strain rate (equation 3) effects on the steady state grain size evolution (and consequently

in D and DDRX) in polycrystalline superalloys. It is worth noting that equation 11 is valid for

the experimental conditions considered in this work, as the constants 1.5 and 2.3 in item (b)

are related to the average size and aspect ratio of δ and M23C6 estimated for the alloys tested.

In the general case, item (b) should be replaced by exp
(
− 0.72

rM23C6

(
3

4π
FM23C6

)1/3− 7.6
lδ
h

1/3
δ F

1/3
δ

)
.

The effect of particle size and shape on the recrystallised grain size are explored in the Results

section.
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4.3 Grain nucleation rate and dynamic grain size

The grain nucleation rate during DRX dN
dγ

depends on the grain population as strain evolves

[44, 23]; for static recrystallisation, this value is usually fixed at a constant value [23]. How-

ever, during DRX new grains are nucleated from a continuous strain energy source, increasing

the potential nucleation sites as the number of grains N increases. Following classical nucle-

ation theory, this can be represented by an Arrhenius equation [32]:

dN

dγ
= N exp

(
− Qnuc

kBT

)
, (12)

where Qnuc is the activation energy for grain nucleation (equation 3), The nucleation rate

constant of 1 (strain)−1 was fixed, and N accounts for the additional nucleation sites during

straining at grain boundaries. Particle stimulated nucleation is not considered in this work

[33]; however, this can be explored in a future study by incorporating an additional nucleation

term, depending on the particle–boundary interactions. The average grain size evolution is

finally obtained by solving the previous equation with an initial grain population N0 and

inserting this expression into equation 5. The solution is:

D = D0 exp
(
− aD(γ − γ∗DRX)

)︸ ︷︷ ︸
(A)

+Dss(1− (1 + aD(γ − γ∗DRX)) exp
(
− aD(γ − γ∗DRX)

)
)︸ ︷︷ ︸

(B)

,

(13)

where aD = exp
(
− Qnuc

kBT

)
; D = D0 for γ ≤ γ∗DRX . Term (A) in equation 13 decreases

with strain, eventually vanishing, whereas term (B) is initially null and increases with strain

tending to Dss. The average recrystallised grain size DDRX has been found to equal term

(B) [18]:

DDRX = Dss(1− (1 + aD(γ − γ∗DRX)) exp
(
− aD(γ − γ∗DRX)

)
). (14)
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An interesting aspect of this result is that the evolution of D and DDRX is controlled by the

activation energy for grain nucleation Qnuc and the steady state grain size Dss only. Initial

grain size effects are shown in D.

4.4 Grain size distribution evolution

Grain size statistics during normal grain growth have been well characterised [43, 32]; the

resulting distributions are usually represented by standard probability distributions such as

Lognormal, Weibull or Rayleigh functions [33]. However, characterising size distributions

during discontinuous dynamic recrystallisation requires additional considerations [33, 7]: 1)

the continuous nucleation of new grains modifies the shape of the initial distribution as

the strain increases; 2) recrystallised grains grow, eventually fully consuming the deformed

regions, decreasing the size of deformed grains and shifting the initial distribution towards

lower values; 3) the relative contribution of the deformed grains to the statistics also decreases

and eventually vanishes; 4) the significant number of small grains can give rise to an additional

mode in the distribution function, leading to a bimodal function [45].

Taking these features into consideration as the strain increases, a model describing the

grain size distribution p[D]∗ during DRX is proposed:

1. An initial size distribution is defined pDef [D] with average size D (equation 13); pDef

remains constant until DRX occurs (γ ≤ γ∗DRX);

2. once DRX begins, an additional size distribution pRex[D] is introduced, containing

freshly recrystallised grains only. The average size of this subset is DDRX (equation

14).

3. Both distributions are mixed by a factor f ≤ 1 that accounts for the relative number

fraction of recrystallised grains being introduced into the distribution; 1− f represents

∗[D] denotes the functional dependence of D in p, pDef and pRex.
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the fraction of deformed grains remaining in the material at a given strain. f = 1 is

reached once the material is fully recrystallised and f = 0 if γ ≤ γ∗DRX .

4. pDef (1−f) decreases, eventually vanishing, whereas pRexf increases, reaching a constant

distribution at steady state.

The grain size distribution p during deformation is mathematically expressed as:

p = pDef (1− f) + pRexf. (15)

The fraction f reflects the continuous nucleation of new grains during straining, whereas

pRex describes the growth behaviour; pRexf represents the fractional number of recrystallised

grains in the total size distribution. This allows us to deconvolute the grain size distribution

into recrystallised and deformed regions, as the nucleation and growth effects are isolated.

Hence, pRex can be individually represented by a normal–growth distribution function, and f

can be expressed in terms of the increase in the number of recrystallised grains. Lognormal

distributions are adopted in D and DDRX to simplify the calculations:

pDef [D] =
1

D
√

2πσ1

exp

(
−
(

ln(D/D)
)2

2σ2
1

)
pRex[D] =

1

D
√

2πσ2

exp

(
−
(

ln(D/DDRX)
)2

2σ2
2

)
, (16)

where σi are in the range of 0.4 ≤ σi ≤ 1 [43]; optimal constant values were respectively found

to be σ1 = 0.4 and σ2 = 0.6 for the tested alloys. The use of similar distributions (Weibull,

or Rayleigh) leads to equivalent results [43]. For the case of pDef , adopting a Lognormal

distribution implies that normal growth occurred during the previous heat treatment. The

initial distribution can differ depending on the thermomechanical processing routines. This

can be introduced in pDef .

As a first approximation, the number fraction f of recrystallised grains can be approx-
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imated by the ratio between the total recrystallised grain size length and the total grain

length, as the microstructure evolution is usually characterised by the linear intercept method:

f =
∑N
k=N0+1Dk,Rex∑N

i=1Di
≈ DDRX

D
This is due to the lack of microstructural characterisation on the

relative grain number for the materials tested. f is fixed for a given strain. Combining this

result with equations 15 and 16, the grain size distribution becomes:

p[D] = pDef [D]

(
1− DDRX

D

)
+ pRex[D]

(
DDRX

D

)
. (17)

p evolution depends on D and DDRX , allowing full characterisation of the grain size distri-

bution evolution during DRX with three equations only (13, 14 and 17). However, strong

particle pinning may also cause variations in σi [43].

4.5 Recrystallised volume fraction

The recrystallised volume (area) fraction† is defined as the ratio between the area covered by

recrystallised grains and the total grain area:

Vf =

∑N
k=N0+1 D

2
k,Rex∑N

i=1D
2
i

. (18)

The previous equation can be expressed in terms of p[D] and pRex[D]f by computing the

second moment of the respective distribution [35]. If the continuum distributions in equation

16 are discretised, the volume fraction equals:

Vf =

∑N
k=N0+1D

2
k,Rex∑N

i=1D
2
i

≈
∫∞

0
D2pRex[D]fdD∫∞
0
D2p[D]dD

≈
∑Ng

i=1 D
2
kpRex[Di]f∆Di∑Ng

i=1 D
2
i p[Di]∆Di

, (19)

†Microstructure characterisation is estimated from two dimensional micrographs, hence the experimental
volume fraction describes the total recrystallised area fraction.
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where ∆Di is the grain size interval from the distribution discretisation [35], and Ng is the

number of grain intervals from the discretisation. This expression allows us to estimate the

recrystallised volume fraction without the introduction of additional constitutive relations,

as it only depends on the grain size distribution. This also implies that Vf only depends on

D and DDRX .

4.6 Grain number density

The grain number density N̂ is obtained by computing the ratio between the total grain

number N and grain area. If circular grains are assumed, the grain area equals π
4

∑
iD

2
i . As

with Vf , the previous summation can be expressed in terms of p[D]; N̂ becomes:

N̂ =
π

2

N
π
4

∑
iD

2
i

≈ 2∑Ng
i=1 D

2
i p[Di]∆Di

, (20)

where π
2

is a stereological correction factor from grain size measurements by the linear inter-

cept method [46].

5 Results

The model results are tested against experimental measurements in 11 superalloys (Table 1).

Where physical parameters employed in the model were not available for the specific alloys

they were taken equal to those for pure Ni: χGB=0.8 J m−2 [33], b = 0.249 nm [47], Em = 1.1

eV [24], and ν = 0.32 [47]. ε̇0 = 5 × 107 s−1 is considered constant for all alloys [24]. Table

3 shows the shear modulus values for the alloys tested; these values were obtained from [48]

and converted to analytical expressions to capture their temperature variation and simplify

calculation. In the case of the 625 series, µ was taken equal to IN 625, as their individual

temperature variations were not found in the literature; the shear modulus of AllVac718 was
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also considered equal to Inconel 718, as the chemical composition of these alloys is almost

identical. For the 4 Nimonic alloys µ showed similar values in.[48].

Table 3: Shear modulus variation with temperature (in K) for the tested superalloys.

Alloy µ (GPa)

AllVac 718 82.38− 0.015T − 5.5× 10−6T 2

IN 625, Age 625, Pyromet 625 83.52− 0.017T − 5× 10−6T 2

IN 690 82.76− 0.0085T − 1.4× 10−5T 2

IN 718 82.38− 0.015T − 5.5× 10−6T 2

IN 740H 87.39− 0.009T − 1.42× 10−5T 2

Nimonic 75, 80A, 90, 105 57.947 + 0.0.6T − 4.7× 10−5T 2

Figures 1(a),(b) show the average grain size predictions when solute drag alone is present

in AllVac 718, IN Age 625, 718, 740H and Nimonic 90; the deformation temperatures in IN

740H are above the solvus temperature. In all cases, the results are expressed in terms of

the axial strain ε = γ/M , where M is the Taylor orientation factor in FCC alloys and has

a value of 3 [24]. Figure 1(a) shows the comparison between the model and experimental

measurements at various deformation conditions (Table 2), and Figure 1(b) shows the com-

parison at various temperatures; the data sets for IN 718 in Figure 1(a) and (b) were obtained

from [11, 10] and [12], respectively. The model predictions and experimental measurements

display similar values in most cases. However, in Figure 1(a) there are considerable varia-

tions in fine–grained Allvac 718, IN Age 625 and coarser grained IN 718 with D0=54 µm;

these discrepancies could be due to metadynamic recrystallisation occurring during cooling

to room temperature, as the model predicts finer grains in all cases. Figures 1(c),(d) compare

the average grain size predictions with experimental measurements when additional M23C6

pinning is introduced. Figure 1(c) shows IN 740H and Nimonic 80A at various deformation
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conditions outlined in (Table 2); Figure 1(d) shows D variations with temperature for IN

690 and Nimonic 75 and 105. These figures also show drag effects for deformation conditions

above the M23C6 solvus temperatures. The atom fraction of elements forming M23C6 (as is

the case for δ in the following results) was subtracted to estimate the effective solute drag

rate; this fraction was obtained from Thermocalc. The model shows good agreement with

most experimental measurements. However, 3 measurements in Nimonic 80A display lower

values with respect to the model predictions, these correspond to specimen deformation at

1223 K [15], and a coarser grain size predicted for IN 690 at 1473 K. These discrepancies

could be due to particle size variations between testing conditions since this was not reported

and single size was assumed in the model.
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Figure 1: Average grain size variation when solute drag effects are included (a),(b) and
additionally with M23C6 pinning (c),(d). Tsolvus for IN 740H and 690 are ≈1380 and 1440 K,
respectively.
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Figures 2(a),(b) show the variations in D with strain (ε = 0.1, 0.5 and 1.2) for various

deformation conditions and these results are compared against experimental measurements

for IN 718; no precipitates were present [9]. Figure 2(a) shows the measured data for various

temperatures and at strain rates 0.001, 0.01, 0.1 and 1 s−1; Figure 2(b) shows the variation

in D with strain at different temperatures and a strain rate of 1 s−1. As no initial grain sizes

were provided, these were fitted to match the first experimental measurement at ε = 0.1 [9].

The model shows good agreement for the conditions tested. Figures 2(c),(d) show the grain

number density predictions compared with the experimental measurements in IN 718; the

experimental data were extracted from [7]. These results are inversely related to the average

grain size (equation 20). Data displayed in Figures 2(c),(d), 3 and 4(a),(b) corresponds to the

same set of experiments; a complete characterisation linking the grain density (grain size),

size distribution and recrystallised volume fraction is available from these results. Figure

2(c) and (d) show the model results when δ pinning (c) and when solute drag alone (d) are

present at higher temperatures (Table 2). In both cases, the model shows good agreement

at low strain rates, however, considerable discrepancies are apparent at higher strain rates

and ε = 0.8 in (c), and at 1.1 s−1 and ε > 0.4 in (d). Such variations could be due to a

lower recrystallised volume fraction leading to localised variations in the grain size, whereas

at lower strain rates, a more homogeneous microstructure is expected.
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Figure 2: (a),(b) Average grain size variation, and (c), (d) grain number density variation
with strain in IN 718 at various deformation conditions.

Figure 3 shows the grain size distributions in IN 718 at various strains when the specimen

is deformed at 1313 K and 0.45 s−1 [7]; only solute drag is present at these conditions; D and

DDRX in equation 17 are computed with the grain size predictions (equations 13 and 14).

The dashed (red) and dotted (blue) lines represent the recrystallised and deformed grain size

distributions, respectively. The model shows good agreement in (a), (c) and (d); however

in (b), a higher contribution is predicted from the deformed grains (hence, a lower recrys-

tallised volume fraction). Figure 3(a) displays a bimodal distribution due to the high number

of recrystallised grains; as strain increases, the contribution from deformed grains (pDef ) de-

creases, eventually being overtaken by dislocation–free grains (b),(c),(d) and vanishing once

the material has fully recrystallised. This result confirms that it is possible to deconvolute

the contributions from recrystallised and deformed grains in the grain size distribution.
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Figure 3: Grain size distribution evolution in IN 718 deformed at 1313 K and 0.45 s−1.

Figures 4(a-c) show the predictions for recrystallised volume fraction (equation 19) com-

pared with experimental measurements in IN 718 for various conditions; δ pinning is present

below the solvus temperature (dashed line in (c)); experimental data in (a),(b) and (c) were

extracted from [7] and [8], respectively. The same δ size (βδ value) is assumed in (c), as no

mean particle size was provided; additionally, 0.04 (wt%) of carbon is added to this alloy in

(c). The minimum and maximum grain sizes for computing the summations in the volume

fraction, equation 19, were 0.001 and 200 µm, respectively; a very fine grain size interval

∆Di = 0.001 µm was fixed, giving the number of intervals Ng = 200, 000; these parameters

were considered to ensure minimum errors during the numerical integration. In (a) and (b),

the model shows good agreement at 1313 K, and at 1253 K at lower strain rates (0.01 s−1).

However, at 1253 K a lower recrystallised volume fraction is predicted at higher strain rates

(except at ε = 0.8). This discrepancy could be due the omission of the σi variation (σi char-
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acterises the dispersion in the size distribution functions in equation 17) when precipitates

are present and modify the size distribution shape. The model also shows good agreement

for all conditions in (c), except for 1293 K at 0.01 s−1 and 1350 K at 1 s−1; in the former,

a higher δ volume fraction or finer particle size could be present in the experiments (despite

T being close to Tsolvus [21]), whereas in the latter, metadynamic recrystallisation following

deformation could be occurring. Figure 4(d) shows the model predictions for the average

recrystallised grain size DDRX and its respective volume fraction variation in IN 625 for

various temperatures. The model shows good agreement, capturing the recrystallised grain

size and volume fraction evolution, except for DDRX at temperatures above 1400 K; again

these discrepancies could be due to possible metadynamic recrystallisation occurring after

deformation, as higher boundary migration rates occur at higher temperatures.
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Figure 4: (a), (b), (c) Volume fraction variation in a IN 718 superalloy for various deformation
conditions. (d) Recrystallised grain size and volume fraction variation in IN 625.
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To illustrate how this model can be employed to predict microstructure evolution under

different processing routines we focus on IN718. Figure 5 shows the recrystallised volume

fraction and recrystallised grain size evolution using the same data as Figure 4(c), but here

Figures 5(a) and (b) respectively show Vf and DDRX variations when particle pinning is

present from a previous heat treatment (solid lines), and when only solute drag is present

(dotted lines). At 1213 K and 0.001 s−1, the volume fraction increases by ∼30 % when δ is

inhibited, whereas at 1293 K, Vf increases by ∼ 2 % only; in both cases, the recrystallised

grain size also increases from 5 to 10 µm at 1213 K, and from 20 to 30 µm at 1293 K.
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Figure 5: (a),(b) Comparison between particle pinning and pure solute drag in IN 718 at
various deformation conditions. (c) Steady state grain size variation with particle size and
shape. (d) Solute drag atmosphere in several substitutional elements.

Extending the analysis to the general cases when the δ size and aspect ratio are no longer

fixed, Figure 5(c) shows the influence of δ size (solid line) and shape (dashed line) on the
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steady state grain size at 1253 K (Section 4.2); material conditions are taken from Guest’s

results; δ volume fraction is fixed for the given temperature (Table 2). The size variation

is estimated by fixing the particle aspect ratio (hδ = 6) for different δ lengths (lδ), whereas

the shape variation is computed with a fixed particle size (lδ = 6 µm) for different hδ; both

variations are possible under different treatments. The model schematically predicts a strong

variation in size, a finer grain size is achieved as the δ size is decreased; on the other hand,

the influence of aspect ratio variation is weaker, a finer grain size is predicted as the aspect

ratio increases. These results are in agreement with classical particle pinning approaches [33];

however more detailed experimental characterisation is required to validate these predictions.

Finally, the solute drag atmosphere is compared for the various elements commonly added

to polycrystalline superalloys; elements with high αsol values induce a higher drag effect

(equation 8). Figure 5(d) shows αsol values in 13 substitutional elements; the horizontal axis

is shown in terms of solute atomic number. Hf and Zr display the highest drag atmosphere,

hence a finer grain structure can be achieved when these elements are added, whereas Fe, Cr

and Co have the weakest influence on grain refinement. Al, Ti, Nb and Ta display similar

intermediate drag effects. These results can be used to optimise material processing routes

during alloy development.

6 Discussion

This work presents a novel approach to describe grain structure evolution during dynamic

recrystallisation in Ni–based superalloys; it predicts average and recrystallised grain size,

grain size distribution, number density and volume fraction variations with strain. Evolution

equations for the average grain size D and recrystallised grain size DDRX were obtained in

previous work; they both depend on the grain nucleation rate and steady state grain size. A

nucleation rate depending on the grain population was postulated in Ni–based superalloys.
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The steady state grain size was obtained when the net driving pressure for grain growth was

null; this included contributions from the stored energy, grain curvature, solute drag and

particle pinning. It was proposed that the grain size distribution p during deformation was

formed by a mixed distribution of dislocation–free grains pRex and the initial size distribution

pDef ; in both cases, lognormal distributions were adopted. This approach was corroborated

with experimental observations of bimodal distributions. The recrystallised volume fraction

Vf was estimated by deconvoluting the size distribution into the area covered by recrystallised

grains (pDef ). Both p and Vf depend on D and DDRX .

An alternative approach describing the combined effects of solute drag and particle pin-

ning on grain growth has been introduced; this is based on estimating the encounter frequency

of moving boundaries with the respective mechanisms; the drag pressure is computed as the

fraction (depending on the encounter frequency) of the stored energy required to overcome

such obstacles. In the case of particle pinning, this is shown to depend on the average pre-

cipitate spacing, volume fraction and size. This result was simplified by fixing a constant

particle size. For solutes Figure 5(d) depicts the drag intensity of each alloying element. Zr

and Hf display the highest drag atmosphere. However, experimental validation is required to

corroborate these results. Also, the model may be modified for materials containing particles

with higher volume fraction.

The model results are applied to predict grain structure behaviour in 11 superalloys

during dynamic recrystallisation, spanning wide ranges in chemistry, deformation conditions

and initial microstructure. It is not only able to describe the trends, but the model also

reproduces the experimental values with good accuracy. Seven substitutional elements and

carbon effects were considered for solute drag refinement, and M23C6 and δ pinning were

studied in different superalloys. Additional substitutional elements and precipitates could

readily be included in this model. Moreover, the model features are not restricted to Ni

alloys and could be applied to other FCC alloys such as Al, Cu and Fe (in austenitic phase),
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by identifying the respective solute drag and particle pinning parameters [18].

A number of assumptions introduced in the model were required as full microstructure

characterisation was not reported, such as lacking initial grain size or particle volume frac-

tion measurements. The model discrepancies can be mainly caused by not including other

mechanisms being present in the experiments. A better version of the model would require

further experimental characterisation in the particular cases where the grain size is over pre-

dicted, due to the lack of particle size and localised volume fraction characterisation, and

when it is under predicted due to possible metadynamic recrystallisation. For instance, the

number fraction of recrystallised grains f was approximated by the ratio between the mean

recrystallised grain and the mean grain size (DDRX/D); this accommodates characterisation

of recrystallised grain fraction by a linear intercept method; however, in some cases, the grain

diameter is derived from the mean root square area, in which case f could be approximated

by
(
DDRX/D

)2
. Another issue that arises is the method used to distinguish recrystallised

grains during characterisation: in several cases this relies upon the size and location of the

grains rather than any measure of the degree of deformation. Recent advances, for instance

in the use of EBSD to characterise datasets, allow for a more objective approach.

The necessary assumptions of a fixed particle size and ignoring volume fraction variations

other than with temperature, appears to have been a reasonable approximation. As detailed

information on M23C6 and δ morphology in the recrystallised microstructure is limited, ad-

ditional experimental characterisation would be needed to overcome these simplifications.

Nevertheless, the validation of the model in IN 718 using Guest’s work [7] shows a good

correlation for δ. This is demonstrated in Figures 2(c)(d), 3 and 4(a),(b). In addition, it

is shown in Figure 5(c) how δ size and aspect ratio variations are expected to influence the

recrystallised grain size: a finer structure is achieved as δ is refined or the particle aspect

ratio is increased. However these predictions need validation. Furthermore, this methodology

could be combined with precipitation kinetics models to incorporate continuous precipitation
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during superalloy hot forming.

An important result from this work is that the recrystallised volume fraction is shown to

depend on the mean grain size once the size distribution function is identified; no additional

constitutive relations are required. Moreover, this methodology can potentially be applied to

describe the volume fraction evolution in metadynamic and static recrystallisation if normal

growth laws are considered instead; classical approaches such as the Avrami equation [33],

and its respective parameter identification would not be needed. This will be considered in

future work.

Several authors have derived power–law empirical equations estimating DDRX in terms of

the Zener–Hollomon parameter Z = ε̇ exp
(
QZ
RT

)
, where QZ is an apparent activation energy,

depending on alloy’s composition:

DDRX = AZ−n = A(ε̇)−n exp

(
− nQZ

RT

)
, (21)

where A is a constant. Table 4 shows the reported values of A, n and QZ in three superalloys,

the original reference, and the respective deformation conditions. A in Inconel 690 and

Nimonic 80A was chosen to fit the experimental grain size in [6] and [15], respectively, as this

value was not reported; it is worth noting that M23C6 carbides are present in Nimonic 80A.

Figure 6 shows our model predictions (equation 14) and DDRX values employing equation

21 for these alloys. Our model predicts values very close to those from these empirical

expressions; (comparison with experimental measurements is shown in Figures 1(c) and (d)).

A key limitation for empirical models is that the fitting parameters can differ with the

deformation range. Moreover, parameter variations, such as the recrystallised volume fraction

Vf , are also reflected in the microstructure predictions. For instance, Shen et al. [49] have

found in Waspaloy that n in equation 21 can change dramatically under the influence of

particle pinning, obtaining n values of 0.16 and 0.0456 for temperatures above and below γ′–
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solvus, respectively. In addition, by expressing the recrystallised volume fraction evolution

in terms of an Avrami–type equation [49]: Vf = 1− exp
(
− ln(2)

(
ε
εc

)m)
, where εc = Dn1

0 Zn2

is a reference strain and m is a constant, they have also identified that n1, n2 and m display

three set of values: 1) at temperatures above γ′–solvus, 2) at temperatures below and close to

γ′–solvus, where small pinning occurs, and 3) at low temperatures where γ′ pinning is strong

[49]. This is not necessary in our model, as this transition is inherited by Vf via DDRX and

D (equation 19). Another example relates to the parameter n, this controls variations in the

DDRX with ε̇ in equation 21, giving values in the range 0.22–0.28 (at high strains). In our

model, by combining the activation energy for grain nucleation (equation 3) with the steady

state grain size Dss (equation 11), and neglecting the 1/κc term in T∆S (κc ≥ 20), it can

be shown that the steady state grain size scales with ε̇ as: Dss ∝ (ε̇)−n, giving n = 0.25,

our model can successfully recover the power–law dependence of ε̇ on the steady state grain

size. A similar analysis can be performed to relate QZ with alloy composition, deformation

temperature and initial microstructure.

Table 4: A, QZ and n values for three superalloys and their application range.

Alloy Ref. A (µm) QZ (kJ/mol) n T (K) ε̇ (s−1) D0 (µm) ε

Inconel 718 [10] 3× 105 443 0.27 1223-1373 10−3-0.1 176 0.7

Inconel 690 [6] 2.6× 104 380 0.22 1323-1473 0.1-1 42 0.7

Nimonic 80A [15] 5× 104 379 0.28 1223-1393 0.1-5 90 0.9
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 I n c o n e l  6 9 0  -  P r e s e n t  m o d e l
 I n c o n e l  6 9 0  -  E m p i r i c a l  m o d e l
 N i m o n i c  8 0 A  -  P r e s e n t  m o d e l
 N i m o n i c  8 0 A  -  E m p i r i c a l  m o d e l
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Figure 6: Grain size predictions employing the present model and by empirical fitting in IN
718, 690 and Nimonic 80A.

7 Conclusions

A new theory has been defined to predict a number of microstructure characteristics during

discontinuous dynamic recrystallisation and has been validated with results from 11 Ni–based

superalloys:

• dynamic, recrystallised and steady state grain size, including grain density;

• grain size distribution evolution with strain;

• and dynamic recrystallised volume fraction evolution with strain.

It has been demonstrated that the grain structure can be fully controlled by the average and

recrystallised grain size values once the size distribution functions have been identified; it

was also confirmed that individual contributions of the recrystallised and deformed grains
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can be isolated from the overall grain behaviour during DRX. Solute drag and particle pin-

ning (M23C6 carbides and intermetallic δ) effects on grain growth have been simultaneously

described for a wide range of deformation conditions and composition. In principle, the

model is able to capture particle size and shape effects during recrystallisation.
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