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Abstract
We outline recent progress exploiting neutron reflectivity for structural and compositional 
investigations of the solid-liquid interface. There has been extensive activity in this area, with 
key areas of development: (i) an increased range of accessible substrates (e.g. metals and 
minerals), (ii) novel liquid phases, and (iii) strong themes in electrochemistry (e.g. batteries), 
corrosion, polymers and increasing application of extreme conditions.

1 Introduction

This review focusses on studies of the solid-liquid interface using neutron reflectometry 
(NR), with a particular emphasis on new developments and applications. While concentrating 
on work in the last 3-4 years alone, we acknowledge that much excellent work cannot be 
included and in many cases the references given are only representative examples. We also 
do not attempt to cover the extensive work on biological membranes. Other related reviews 
can be found [1–4], as well as other articles in this special edition.

The behaviour of molecular species at the solid-liquid interface is central to a wide range of 
systems relevant to both academic and commercial uses, including lubrication, corrosion, 
biomedical implants, renewable energy storage and enhanced oil recovery. In many cases the 
overall performance is determined by the structure at the interface. NR is able to investigate 
these adsorbed interfacial structures, non-invasively, in-situ and under conditions 
representative of their commercial use; particularly exploiting the high penetration, surface 
specific nature of the reflection and the ability to change contrast to observe the species of 
interest.

The details of the NR technique can be found elsewhere (e.g. [1,5]). In short, the neutron 
beam impinges onto the interface of interest at low angle, , as schematically illustrated in 
Figure 1 and is reflected at the same angle (‘specular’ reflection). In this geometry the 
experiment is sensitive to structure normal to the plane of the interface. The beam is usually 
incident through the solid phase to minimise attenuation.  A solid-liquid interface is generally 
produced by clamping a ‘trough’ to one side of the solid (Figure 1).  

For neutrons, the scattering power does not vary in a systematic fashion with atomic number 
and different isotopes of the same element can give very different scattering strengths 
(referred to as the scattering length and the related variable of the scattering length density 
(SLD)). Most importantly, hydrogen (H) and deuterium (D) can be readily distinguished. By 
varying the H/D ratio it can be possible to ‘contrast match’ components so they are not 
‘seen’, all without altering the chemical behaviour of the system. This approach can be used 
to highlight particular components and/or greatly simplify the structural analysis. For 
example, it is common to exploit D2O to determine the location of water in interfacial 
structures such as swollen polymer films and surfactant adsorbed phases.
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Examples of typical NR data and the relevant SLD profiles are illustrated in Figure 2 with 
reflected intensity as a function of Qz, the momentum transfer perpendicular to the plane of 
the interface,

𝑄𝑧 =
4𝜋
𝜆 sin 𝜃

where , is the radiation wavelength. Figure 2 shows the critical Q (Qcrit) below which there 
is total reflection and above which the reflectivity falls quickly. It also shows how a layer at 
the interface, of thickness d will produce interference fringes in the data (Kiessig fringes), 
with the amplitude dependent on the relative contrasts (difference in SLD) and the frequency 
inversely proportional to the thickness. This is equivalent to the formalisms used in thin film 
optics. Generally, the experimental data are interpreted by fitting structural models where the 
interface is considered to be made of a series of layers, each with a thickness, SLD and 
roughness. There are a number of available codes, including GenX[6], Motofit[7] and Rascal 
(A. Hughes, ISIS). Where possible, several contrasts are measured and simultaneously fitted 
to help constrain the fit.

Figure 1: Annotated photograph of a ‘typical’ solid-liquid cell for NR and a schematic of the specular NR geometry from a 
solid-liquid interface showing transmission through the solid to the interface, with a surface layer of thickness ‘d’.

2 Systems of interest

We have broadly divided the material into the following categories: (i) substrates, (ii) liquids 
and (iii) adsorbed systems, which includes some details on sample environment advances, 
with the aim to highlight trends and important developments.

2.1 Solid Substrates
For studies of the solid-liquid interface, there must be good transmission through the solid 
substrate, to a highly polished, very flat surface. High transmission generally requires a 
crystalline substrate to minimise scatter within the block. Therefore, most work uses silicon, 
sapphire (Al2O3) or quartz – which have the required transparency but different chemistry, 
with a few studies using natural calcite crystals(e.g.[8]). There is an interesting study of 
several anionic surfactants on the cationic alumina substrate, where a maximum in the 
adsorption is observed, which is accounted for using the changing activities of the surfactants 
and ions.[9]

Substrates can be modified using thermal or chemical treatments for example, to create 
hydrophobic surfaces. This often involves octadecylsilane (OTS) coated silica, with some 



studies using fluorocarbon or hydrophobic polymer treatments e.g [10,11]. The reduction in 
the density of water at the hydrophobic interface continues to attract interest, along with 
studies of biomaterials on hydrophobic surfaces arising from challenges of protein storage 
and delivery and adsorption of surfactants e.g. [10,12]. Work addressing differences in 
adsorption on ‘hard’ or ‘soft’ hydrophobic surfaces has also been reported.[13] 

Figure 2: Examples of neutron reflectivity profiles and corresponding scattering length density (SLD) profiles, showing the 
changes with an adsorbed layer on the surface of thickness ‘d’ and different contrast (Δρlayer). The critical edge (Qcrit) is 
determined by the difference in bulk SLD (Δρbulk). Blue = Si-D2O interface (typical bare solid-liquid); purple = 15nm layer 
at the solid-liquid interface; green = 15nm layer of lower contrast.

An alternative approach to study surfaces which are not transparent to neutrons, is to support 
a thin film of the material on a transparent substrate. This has been reported for an increasing 
number of metal systems including Fe[14,15], Ti[16–18], Cu[19–25], Ni[26–28], Al[29,30] 
and Au[31–34]. Steel[35] remains a challenge with the overall deposited composition 
replicated, but the metallurgical aspects are not necessarily typical of bulk steel (see section 
2.3 below). Metal films have also been used as magnetic contrast layers for biological studies 
but will not be covered here.

Other ‘supported thin layer’ systems include mica and graphene. Clay mineral interfaces are 
important for commercial applications such as enhanced oil recovery. A recent highlight in 
this area has come with breakthroughs in the study of mica surfaces: by Speranza et al.[36] 
for x-rays and Browning et al.[37] for neutrons. Interestingly, these non-invasive reflection 
methods identify different surface structures to those observed by AFM.  A variety of studies 
of adsorption and desorption on mica have recently been presented. A particular highlight has 
been the role of ions e.g. [38–41]. 

Surfaces that mimic the properties of hair, skin and fabrics for commercial products have also 
been addressed.[1,12] Cellulose is a model for cotton or fabrics and bio-diagnostic devices, as 
well as other functional surfaces which exploit its regular polysaccharide surface and well-
defined composition.[12,42,43] It has also been prepared as a perdeuterated film ideal for 
NR.[44] 

2.2  Liquids 
Unlike the solid component, a wide range of liquids, solutions and dispersions can be used 
for NR with selection based on particular chemistry, the amount and cost of material 



available and the neutron contrast. Perdeuterated solvents and/or additives are often used to 
provide enhanced contrast. The majority of studies use water and aqueous solutions which are 
relevant for biomedical, detergency and related applications. There is also substantial interest 
in non-aqueous systems, relevant to engineering applications in friction, wear and corrosion.  
In addition, there have been studies into magnetic particle dispersions, as well as more 
unusual liquid phases.

A number of papers have used colloidal dispersions of magnetic nanoparticles (NP), mainly 
magnetite, adsorbed on a silicon substrate e.g. [45–47]. The principle interest here is in bio-
medical applications, such as contrast agents for NMR. A particular attraction of NR is that 
both the chemical and magnetic structures can be deduced, from both aqueous and non-
aqueous solvents.[45,46] In general, they report an adsorbed organic layer of the stabiliser, 
used to keep the NPs colloidally stable, with a layer of NPs on top. The effects of a magnetic 
field and shear are also reported.[47]

Liquid crystalline nanoparticles (LCNP), usually made of a polymer stabiliser with lipids 
and/or surfactants, are particularly attractive for their ability to encapsulate and solubilise 
other species in drug delivery systems e.g. [48]. Related liquid crystalline phases deposited 
by spin coating and then rehydrated in contact with water have also been studied, including 
using off-specular scattering to measure the lateral structure e.g. [49].

The interfacial structural of ionic liquids has been addressed; both the adsorption of pure 
ionic liquid onto a charged surface, and adsorption of ionic liquid molecules from another 
solvent e.g. [33,50,51]. These are reported to have good conductivity and lubricating 
properties due to their layered structure. Their static behaviour has been recently 
characterised at the oil-silica interface,[50] mica surface[51] and Au electrode surface,[33] 
with more detail in section 2.3.

Finally, deep eutectic solvents (DES), which have a range of interesting potential 
applications, have been investigated by NR to determine molecular volumes[52], as well as a 
solvent for the electrodeposition of Au, Cu and Sn.[31,32]

2.3 Adsorbed systems
This section presents several principle themes evident in the recent literature: 
electrochemistry, corrosion and metals, polymers and application of extreme conditions, with 
a focus on the role NR has to play.

2.3.1 Electrochemistry
It is important to measure the electrode-electrolyte interface in-operando due to complex 
time- and potential-dependent behaviour. Techniques such as AFM and QCM-d have been 
used but are not able to give the same level of structural information that NR can provide for 
electroactive films, which has long been of interest[53]. For NR, adapted solid-liquid cells are 
required which enable 2- or 3-electrode configurations for electrochemistry measurements 
(e.g. CV or EIS), sometimes in combination with other techniques.

There is significant interest in energy storage and battery technology in NR literature. Li-ion 
batteries (LIBs) have been widely studied due to the unique insight which NR can offer. 
Light elements (e.g. Li and H) can be difficult to measure by other techniques, but both are 
readily characterised by NR and exploiting the very different scattering of 6Li and 7Li. The 
NR experimental setup can also be optimised to make kinetic measurements accessible on the 



NR time-scale (e.g. control of reaction rate using the current density, or stroboscopic 
measurements if the changes are independent of cycle number) - Figure 3.

A ‘solid electrolyte interphase’, or SEI, layer is reported to form on LIBs affecting the 
function of the battery, including cyclability and safety. However, the exact layer formation 
process is unclear and depends on several factors, including electrode, electrolyte, charge-
status and cycle number, with this area receiving significant attention and review e.g.[54–56]. 
Recent studies have investigated several different electrolytes and identified that the first 
changes are generally seen at open circuit voltage (OCV) with further irreversible changes 
during the first charging stage. Other, smaller changes are then seen through the rest of the 
cycling process.

NR has been used to identify a number of characteristics of the SEI including irreversible Li 
incorporation,[25] formation of a “skin”,[57]  the report of a “breathing” mode [24] and the 
important role of additives[23], with precise details depending on the electrode and 
electrolyte used. Importantly there are discrepancies between these in-situ NR measurements 
and complementary ex-situ XPS data. Significantly,  in-operando studies (vs. in-situ with 
equilibration), have been reported where the time- and potential-dependence of the SEI can 
be observed.[57] Figure 3 shows the development of an enriched surface phase, surface layer 
and deeper lithiation during the first cycle of a Si crystal. This shows the clear contrast 
between Si and Li (SLD difference), as well as the accessible temporal resolution of the 
process (in this case 300 s/run).

(a) (b)

Figure 3: Example changes of the SLD profile for Li incorporation into Si using in-operando measurements to show the time 
dependence, with 300 s/run. (a) shows the SLD progression with time from the virgin state to the end of the first lithiation; 
(b) colour plot of the same changes, highlighting the composition changes, with the potential of the working electrode vs. 
Li/Li+ given on the right hand side. Reprinted with permission from [57]. Copyright (2016) American Chemical Society.]

Kawaura et al.[16] (also in-operando approach) reveal the growth of the SEI and composition 
change onto an amorphous carbon electrode using a time-slicing approach. This complements 
another study using crystalline C and an interesting combination of NR and AFM.[58] This 
provides a comparison between localised surface-structure and the structure at greater depth, 
which enables a growth model to be proposed.

A couple of other interesting electrode surfaces studies look at the plating of Li onto a Cu 
electrode[22] and the use of an alumina capping layer on Si as a pseudo-SEI.[29] This 
protects the Si film from the electrolyte, whilst allowing Li inclusion with a pore collapse and 
regrowth mechanism. 



More recently, in-situ electrochemistry has been applied to the study of electrodeposition of 
Ag, Cu and Sn onto Au from a deep eutectic solution.[31,32] This work used fine time-
slicing and ‘event mode’ of the NR data (500 s/run in this case) alongside simultaneous 
thickness electrochemical potential (STEP) and QCM measurements to understand the kinetic 
behaviour in coating and stripping mono- and bimetallic films. This brings NR onto a similar 
temporal resolution to the other techniques used in this area and is a likely growth area for 
future studies.

Specialist electrochemical NR cells are also used for the study of potential-sensitive 
polymers, which can have a wide range of applications, such as ion-selective electrodes for 
sensors[59] or organic electronics[34]. In these cases, the data reveal that only thin layers are 
needed for effective sensors as the reaction only happens in the surface region, and that the 
swelling of grafted electronic organic films can be controlled with potential.

McCree-Grey et al.[17] have measured the dye in dye-sensitised solar cells in a redox 
electrolyte under “working conditions” of the cell, although without an applied potential. This 
highlighted the importance of measuring in-situ, with the electrolyte influencing the dye-
surface structure. Parker et al.[21] have used an interesting combination of NR, CV, SERS, 
contact angle and XRR to understand how the adsorption of n-octanohydroxamate on Cu is 
altered with potential. This is a molecule used in metal ore extraction and corrosion 
inhibition. This powerful range of techniques allows the authors to link changes in the Cu 
oxidation state with the enol vs. keto forms of the additive and the passivation of the surface.

Pilkington et al.[33] have used NR to monitor changes in the structure of ionic-liquids (IL) 
under applied potential. They consider both the pure IL as well as in a solvent mixture, and 
find a potential-dependent boundary layer of different IL structure at the Au electrode 
interface.

Supercapacitors are a close-relation to batteries but there have only been a couple of NR 
studies in this area. Vezvaie et al.[60] measured the structural changes of a Co3O4 thin-film 
pseudo-capacitor and found that the whole film changes reversibly with applied potential. 
The combination of EIS and NR gives contrasting sensitivity to the different parts of the 
system. They also employed a similar approach to understanding hydrogen incorporation into 
Ti films, with four distinct regions of the cathodic polarisation process.[18] More recently, Li 
et al.[26] considered the changes in a Ni/NiOx film with cycling, which are known to have 
good supercapacitor stability. Here, they make use of the additional contrast available for 
magnetic materials using polarised-NR (PNR) and suggest a porous network develops, which 
alters the capacitance (supported by SEM).

2.3.2 Corrosion and Metals
Corrosion is a very expensive industrial problem and there has been a growing number of 
articles using NR to investigate this, with recent review articles discussing developments in 
the field e.g. [61,62]. NR has been applied to an increasing range of metal surfaces including 
Fe,[14,15] Ni,[27,28] Cu,[19] Ti,[18] and steel.[35] In general, the changes in metal films 
within a corrosive environment are followed, with additives present to protect the film.

Ha et al.[27] have looked at the changes in Ni oxide with potential under alkaline conditions, 
but with an emphasis on understanding the passive film formation and protection from 



corrosion. They also look at whether there is an isotopic effect between 1H and 2H (D). This 
is particularly important for NR given the role of H/D substitution in contrast variation. It has 
been shown that the charge of the additive is important in protected Ni in acidic 
conditions.[28]

Similar behaviour was observed for Fe in seawater, where the initial surface treatment was 
also found to be important.[15] Corrosion of materials in oil has also been measured, with the 
inhibition of Cu from S-based corrosion tested. Interestingly, the additive which forms the 
most densely packed layer did not provide the best protection, implying that blocking specific 
surface sites are more important rather than a “blanket” coverage of the surface.[19] In a 
study of the importance of unsaturation of fatty acid on adsorption from oil, Wood et al.[14] 
combine the PNR data with SFG and depletion isotherms to understand the structural changes 
on the Fe surface, again highlighting the use of multiple techniques to address these complex 
problems. This is not just limited to experimental techniques, with simulations becoming an 
increasingly important complement to NR.[63]

Polymers can be used to form a barrier film, or protective coating. Payra et al. have used NR 
to provide structural information of a bioinspired anticorrosion coating, which can be tied to 
the observed protection.[64] Water penetration is a common theme in this area; Zhou et al. 
have looked at water penetration into plasma polymerised coatings, using hydrophilic and 
hydrophobic systems.[65] A combination of NR, SFG, XPS and ATR-FTIR are used to 
deduce the chemical and physical structure. No water gets through the hydrophobic film to 
the substrate in the time of the measurements which implies an effective barrier.

The use of NR to study corrosion, although a relatively small field, is an area we believe 
there can be significant further development.

2.3.3 Polymers
There are a wide variety of experiments exploiting NR to investigate polymers and their 
behaviour at the solid-liquid interface. The polymer films can be prepared in a variety of 
ways: spin-coating, grafted ‘brushes’ or layer-by-layer (LbL) deposition, depending on the 
required architecture and chemistry. Many studies are concerned with responsive polymers, 
where behaviour is controlled by changing the external conditions: added salt, pH, 
temperature or pressure. Salt and pH are generally used for charged polymers 
(polyelectrolytes – PE) and temperature for non-ionic polymers (e.g. [66]). Polymers have 
been used in combination with electrochemistry (see section 2.3.1 above), pressure and shear 
(see section 2.3.4 below), as well as for corrosion inhibition (see section 2.3.2 above).

Spin-coated PMMA films are of interest for biocompatible modification of surfaces, due to 
its suitability use in for humans (e.g. lenses or dentures). They can also be used to support 
new graphene films, with the PMMA dissolved away during the preparation. However, it has 
been found using NR that a significant fraction of the PMMA still remains after this process 
e.g.[67].

Polymer ‘brushes’ of tethered chains are often used as models of colloidal stabilisers or to 
provide surface modification. NR experiments can be used to establish the segment density 
distribution on swelling with various solvents, usually exploiting H/D labelling. An 
interesting application of this is in the capture of Uranium on PE brushes.[68,69] The 
polymers are generally bound to the surface through covalent interactions, however Tanoue 
et al.[70] have investigated a di-block co-polymer bound to the surface by adsorption 



chemistry of one block, with the other block allowed to penetrate and create the crosslinking. 
The brush attains a surprisingly high surface density, with the hydration energy of the 
hydrophilic block supporting the extension of the brush during swelling.

There has also been a great deal of work on layer-by-layer (LbL) deposition of PEs and 
related materials, including the formation and characterisation of PE multilayers (PEMs), 
considering chain mobility, inter-diffusion, inclusion of barrier components or ionic strength. 
Closely related is the preparation of hydrogels in LbL deposited films that are cross-linked 
after deposition (e.g. [71]).

Some recent work highlighted the combination of responsive PEs with the useful optical 
properties of nanoparticles (e.g. for sensors).[72,73] These show the strength of H/D contrast 
variation to extract the locations of the different components, alongside combining x-ray and 
neutron scattering. Figure 4 shows an example of how the different distributions of polymer 
and nanoparticles can be determined using NR, with a clear pH dependence on the 
structure.[72]

Polymers can also be combined with dendrimers and surfactants,(e.g. [74]) enabling some 
very complex architectures.[75] PEs have been combined with lipids to help understand bio-
lubrication in human joints, with additional details given in section 2.3.4 below.[76,77] It has 
also been shown that polystyrene particles can be ‘glued’ onto a silica surface (both 
negatively charged) using adsorption of an albumin protein (cationic polymer).[78]

Rotaxanes are formed when a ring molecule threads onto a linear molecule and is held in 
place with ‘stoppers’ on the chain with potential applications including host-guest complexes 
or protein binding control. Due to the low volume fraction of material, these can be 
challenging to measure using NR but there have been a few studies e.g. [79,80]. This includes 
threading a cyclodextrin (CD) onto PNIPAM to form a pseudorotaxane (no ‘stoppers’), with 
CD binding causing extension of the polymer.

Although most work considers aqueous systems, there has been significant work using CO2 
to swell polymers, particularly in the supercritical regime where there are large density 
fluctuations that lead to significant uptake even for CO2-phobic polymers (e.g. [81,82]).



Figure 4: The distribution of polymer and Au nanoparticles (AuNP) on Si substrates determined by NR, with a schematic of 
each system given below. (a) neat PMETAC brush; (b) PMETAC brush with AuNP at pH4; (c) PMETAC brush with AuNP 
at pH8. This is adapted from Boyaciyan et al.[72], with permission of AIP Publishing.

2.3.4 Extreme conditions
“Extreme conditions” generally encompasses working under particularly high, or low, 
pressure, temperature or shear conditions, often relevant to industrial or biological 
environments. The application of extreme conditions has been of interest for a significant 
length of time, with early work considering shear using flow cells[83,84] and applying 
pressure through SFA-type equipment[85]. Improvements in NR (instrumentation, flux and 
data analysis) have allowed significant progress to be made in sample environment 
development in order to measure in-situ under these conditions. This is an exciting area of 
growth, with many future opportunities.

In order to apply high pressures, a couple of approaches have been used. Hirayama et al. use 
Ar gas introduced into a liquid reservoir to control the pressure of a lubricant additive 
mixture against a Cu surface.[20] This is a similar approach to work of Koga et al. looking at 
swelling of polymers using supercritical CO2, (section 2.3.3 above).[81,82] One limitation of 
this approach is the purity and solubility of the gas used.

To overcome this, Kreuzer et al. designed a hydrostatic cell which keeps the sample liquid 
and the pressurising fluid separate, via a separation piston cell, up to 1 kbar and 60oC. More 
recently, this cell has been used in an interesting study looking at the antagonistic relationship 
of pressure and temperature on polymer brush structure.[86] Within this work, they use a 
combination of NR measurements and DFT theory to hypothesise a general relationship for 
the P-T effects on hydrophobically associated homopolymers at pressures <1 kbar. They find 
that ~100 bar can be considered equivalent to 1 K temperature rise (see Figure 5). They have 
preliminary results suggesting that hydrophilic polymers that show little change with 
temperature, also show little change under these pressures.



Figure 5: NR data with fits for a grafted PDMAEMA brush as a function of temperature and pressure, alongside the volume 
fraction profiles of the polymer associated with these fits. The data for 30oC, 1000 bar and 20oC, 1 bar match, as do the 
40oC, 1000 bar and 30oC, 1 bar, showing the 1000 bar/10 K equivalence effect. Reprinted with permission from [86]. 
Copyright (2013) American Chemical Society.

The main limitation of this pressure cell is the large solution reservoir and limit of ~1 kbar. A 
further development of Jeworrek et al. has enabled pressures up to 2.5 kbar using only small 
volumes of solution. The pressurising and sample fluids are separated by a thin polymer 
membrane, which has enabled the study of a biological system, where large sample volumes 
are often prohibitive.[87] The effect of pressure on an enzyme in a polyelectrolyte brush 
environment up to 2 kbar is investigated with NR used to measure the structural changes, 
ATR-FTIR to determine changes in the secondary structure of the enzyme and fluorescence 
to show the enzymatic activity. This combines to give a thermodynamic model for the 
changes based on activation volumes.

Elevated pressure is particularly relevant for industrial applications and Junghans et al. have 
used NR to improve understanding in the corrosion of Al for deep-sea infrastructure.[30] By 
applying 0.6 kbar to a saline solution, they observe changes in the passive layer on an Al film 
towards a more hydrated form, which is thought to be more susceptible to localised corrosion.

Adsorption can also be affected by physical confinement as measured by surface force 
apparatus or atomic force microscopy, relevant for boundary lubrication and tribological 
contacts. This buried structure is incredibly difficult to directly measure by other methods, 
however, it is also non-trivial to achieve close confinement over the area required for NR. A 
recent review, has considered this in more detail,[88] so only the most recent work since will 
be covered here. Most of the measurements have measured the confinement effects on 
polymeric layers using specialist cells. One approach by the group of Richardson is to use a 
flexible Melinex® sheet as the opposing surface in a parallel-plate geometry. This flexibility 
allows accommodation of any waviness or entrained dust. They are able to control the 
interpenetration of two polymer brushes with either no charge or asymmetric charge by 
altering the pH.[89]

An alternative method to confine polymers used two coated interfaces separated by a thin, 
controllable layer of water, which has been applied to the solid-water and the air-water 
interfaces[90,91]. The water layer thickness was controlled using relative humidity. The data 
presented showed decreasing thickness of the interacting-brush region with dehydration 
(increasing confinement), for both neutral and polyelectrolyte brushes.

The effect of lower pressures (up to 0.45 bar) on the adhesion between a polymer brush and a 
PE gel has also been measured, with NR providing information on the structure of the two 
components and what happens when this interface fails. The thickness of the brush is found 
to have a significant effect.[92]



When considering extreme conditions of boundary lubrication, both pressure and shear are 
significant. Ideally, studies under shear would also be in-situ due to the non-equilibrium 
nature of these conditions. One of the more straightforward experimental setups for this is to 
use an in-line pump to create Pouseiulle flow within the solid-liquid cell. However, care is 
needed to optimise the surface shear stresses and avoid pulsed flow. Singh et al. used a 
custom laminar flow cell to measure changes in layered polymeric systems under shear rates 
of ~53000s-1.[93] They see some loss of water with shear rate and some dependence on pH, 
which are explained through an osmotic pressure model. Lower shear rates of ~300s-1 have 
been applied to layers of magnetic nanoparticles (NPs).[47] Here they find a static layer of 
NPs on the surface with a depletion layer to the moving ferrofluid above, which is not seen in 
the static case.

One can also apply shear using a rheometer in-operando giving simultaneous measurement of 
the bulk rheology and surface structure. Generally, the NR substrate is the plate in a “cone-
plate” geometry, which provides a constant shear rate over the neutron footprint (rheo-NR). 
This has recently been applied to polymer brushes of varying length and grafting density.[94] 
They find a reversible collapse of the brushes with shear, which is dependent on shear rate. 
This is combined with coarse-grained computer simulations to further understand the 
observed changes, which are predominantly in the brush-bulk region rather than the inner 
brush. The simulation is able to identify slight deformation and tilt of the polymer, which is 
not possible in the NR measurement – another example of the strength in combining 
techniques.

Although the application of shear has been dominated by polymer systems, Welbourn et al. 
have applied rheo-NR to a multi-layered surfactant system.[95] Under the shear rates applied, 
the ordered outer bilayers are removed from the surface, with the layer closest to the substrate 
remaining. This is dependent on the type of shear applied, with complete loss of the 
surfactant multilayers dependent on strain amplitude for steady shear and incomplete loss 
under oscillatory fields.

Surface-active lipid linings as mimics for cartilage coatings [77] are another multi-layered 
systems, which shows shear-dependent changes and a “buckling-like deformation”. This very 
interesting paper uses a complex, custom setup combining shear with in-situ NR and ATR-
FTIR, to understand lubrication in mammalian joints. By comparing the lipid behaviour with 
and without a hyaluronic acid analogue they are able to highlight structural (NR) and 
chemical (FTIR) changes, which improves understanding of these important systems.

Temperature is an important control parameter affecting adsorption and surface structure. 
Relatively modest elevations in temperature have been investigated for some time and there 
are several examples above. However, many engineering applications require access to much 
higher temperatures, which creates technical challenges over sample cell design. Therefore, 
to date, most of the extreme high (or low) temperature NR studies have focussed on the solid-
air interface while several studies have used pressure to assess changes under related extreme 
conditions. Hence we identify that this is an area for future development.

3 Summary

It is clear that neutron reflectometry studies of the solid-liquid interface are in fine health, 
although we are only able to give representative examples here. Recent developments in this 
area cover a very wide range of topics: particularly an increased range of substrates (e.g. 
metals and minerals) and liquids, solutions and dispersions, with key themes emerging in 



electrochemistry (batteries and supercapacitors), corrosion, polymers and increasing 
application of extreme conditions. NR is providing information about these systems that is 
unobtainable by other means, and, when combined with complementary experimental and 
simulation techniques this can provide substantial insight. The simulation results can greatly 
improve detailed understanding of these systems and aid in data analysis. In a growing 
number of cases, novel sample environments are being developed which allow simultaneous 
complementary measurements. We believe that these developments are likely to continue, 
opening up an even wider range of possibilities. 

The expected future upgrades to neutron sources and instrumentation is likely to enable faster 
measurements and/or smaller samples for NR. This is already seen in some of the time-
dependent studies discussed above. With these improvements, we see the ability to measure 
smaller samples as a particularly important development, which will open up science fields 
which are currently unobtainable. This is particularly the case with more ‘industrial’ samples, 
where it may be difficult to deposit films of larger size, or where the liquids used are 
particularly precious. The expected increase in temporal resolution will also be important in 
providing further insight into structural changes at the solid-liquid interface; enabling greater 
information to be gathered from dynamic systems of applied potential, pressure and shear. 
We also look forward to seeing how, as yet untested (or unknown), opportunities will unfold 
with NR.
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