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1. Introduction

We congratulate the authors on this interesting paper that tackles the difficult problem of extending the
work of Candès et al. (2018) to structured predictors possessing a particular type of dependence. Motivated
by the aim of making the knockoff construction applicable to genome-wide association studies, Sesia et al.
(2019) propose using a hidden Markov model to generate knockoffs that capture patterns of DNA variation,
following the work of Scheet & Stephens (2006).

The principle underlying the knockoff method is to generate mock predictors X̃ , which should be
representative of, and exchangeable with, the true X but, by construction, not linked to the response
Y . In order to claim robustness with respect to the conditional model of Y | X , the knockoff prin-
ciple moves the goal post for false discovery rate-controlling variable selection to that of generating
mock X̃ . The framework thus strongly hinges on how plausible and computationally feasible it is to
generate such X̃ for each particular class of problem and predictor structure. Generating faithful pat-
terns of DNA variation has been at the heart of genetic research aimed at devising computer simulation
programs to reproduce realistic DNA sequence data under complex demographic patterns and genetic
features such as population bottleneck and expansion, natural selection, mutation and recombination
(Peng et al., 2015).

Ideas derived from the coalescent theory have been used in a series of papers by Stephens and colleagues
(Stephens et al., 2001; Stephens & Scheet, 2005) to develop methods that can perform haplotype inference
and imputation of missing values in a population of unrelated individuals. Unfortunately, these methods
only allowed analysis of short DNA sequences since they were very computationally intensive, especially
for large numbers of individuals. A breakthrough came from Scheet & Stephens (2006), who, instead
of using the computationally expensive coalescent-based product of approximate conditionals likelihood
(Li & Stephens, 2003; Stephens & Scheet, 2005), assumed that haplotypes are generated from a cluster
model where each cluster consists of a group of closely related haplotypes and the component membership
changes continuously along the genome. However, their work was restricted to estimation of the haplotype
phase in a homogeneous population, or with known subpopulations, an important point to which we will
return later.
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2. General strategies for calibrating test statistics and false discoveries

Genetic X generated by computer simulation programs have commonly been used to assess the suitability
of new methods in a variety of demographic and genetic contexts. However, the jump to using simulators to
create mock X̃ that are assumed to be exchangeable with observed X had, up to now, not been made. Instead,
statistical genetic analysis turned to using permutation tests (Good, 2013), where the predictors X are kept
fixed and a suitable permutation is applied to the response Y , effectively breaking the genotype-phenotype
relationship of the dataset. A permutation-based approach has also been advocated in the Bayesian analysis
of genome-wide association studies by Stephens & Balding (2009), and was used in Bottolo et al. (2013)
to evaluate decision rules and calibrate cut-offs for Bayes factors.

Furthermore, in the context of sparse genome-wide association studies, where very few associations are
expected with regard to the vast number of features, even without permutation, it can be assumed that most
of the test statistics come from the null and hence a mixture distribution can be used for the purpose of
false discovery rate control (Müller et al., 2006). Control of the false discovery rate via permutation-based
methods is not yet fully understood, but some solutions have been proposed (Xie et al., 2005).

It is surprising that no connection has been made by Sesia et al. (2019) to either the literature on
permutation-based methods in genome-wide association studies or the literature on false discovery rate
control through mixture distributions. We would be interested to see what the authors think of the pros and
cons of these approaches with respect to implementing the knockoffs in terms of efficiency and empirical
control of the false discovery rate.

3. Confounders in genetic association studies

The method of Scheet & Stephens (2006) is suitable for haplotype inference and imputation of missing
values in a homogeneous population of nominally unrelated individuals, or with known subpopulations.
It cannot be used for more complex demographic patterns, in particular for admixed populations (Falush
et al., 2003) or for explicitly related samples (O’Connell et al., 2014).

Sesia et al. (2019) claim that their knockoff method provides a new tool for making more discoveries
in genome-wide association studies. However, one important point that they seem to have overlooked is
the presence of population structure. This has been recognized as one of the main confounding effects that
needs to be accounted for in any association study (Pritchard et al., 2000). It is not clear to us how the
proposed hidden Markov model generating framework could be extended in an easy way, since the estimated
parameters and the generative hidden Markov model have to be conditioned on the latent population
structure. The same problem arises in the presence of another important type of genetic confounding,
cryptic relatedness (Astle & Balding, 2009). In their real data analysis Sesia et al. (2019) removed the
effect of strong population stratification on the responses by using the first five principal components, but
they did not account for it in the generation of the knockoffs, casting doubts on the crucial assumption of
exchangeability, which is at the heart of their approach to false discovery rate control. It would be interesting
to read their thoughts on how the proposed generative hidden Markov model should be modified to account
for the near-ubiquitous presence of confounding factors in genome-wide association studies.

4. Computational efficiency and dimension reduction

There is clearly a cost in generating the mock X̃ , and the procedure would be more efficient if a
single pass were enough. Nevertheless, Sesia et al. (2019) recommend multiple passes, since the knockoff
method is intrinsically stochastic, but then the difficulty arises of not knowing how to combine the results
of the multiple passes and thus losing the theoretical guarantees (Candès et al., 2018). Hence the strong
theoretical guarantees which motivated the work are ultimately lost for the recommended procedure,
somewhat defeating the purpose. Moreover, the implementation of the method might be computationally
infeasible for a large population such as the UK Biobank (Sudlow et al., 2015). We therefore feel that the
scope of the hidden Markov model’s extension to gene hunting is more limited than the authors claim, and
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not yet extendable to realistic large-scale genome-wide association studies analysis on cohorts such as the
UK Biobank where cryptic relatedness is also present (O’Connell et al., 2016).

Finally, the prefiltering strategy seems a shortcut to decrease the computational cost of any multivariate
learning procedure that needs to be performed on the augmented predictor space (X , X̃ ), with the number
of models growing exponentially as 22p. The chosen prefiltering cut-off of 0.5 is usually not recommended
since an expensive downstream fine-mapping analysis is then required to identify putative causal variants.
A higher tagging value of 0.8 is the standard rule, which achieves a good compromise between narrowing
down the number of genetic markers and identifying important associations with sufficient precision.
Irrespective of the pruning strategy, with the availability of large cohorts that have millions of genotyped
and imputed variants (Nelson et al., 2017), performing any kind of multivariate analysis on the augmented
predictor space (X , X̃ ) might not be computationally feasible.

5. Generalizability to other -omics datasets

Our final comments express some concern regarding the generalizability of generating knockoffs for
false discovery rate control to the analysis of a range of -omics datasets. Each particular data type will have
its own dependence structure inherited from a succession of complex biological processes, and reproducing
such structure faithfully will require an involved modelling effort (Chen et al., 2015), which will be difficult
to check. Permutation-based false discovery rate control does not require such generative models and seems
a promising alternative.
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