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Jet noise is a significant contributor to aircraft noise, and on modern aircraft it is

considerably enhanced at low frequencies by a closely-installed wing. Recent research

has shown that this noise increase is due to the scattering of jet instability waves by the

trailing edge of the wing. Experimentalists have recently shown that noise can be reduced

by using wings with swept trailing edges. To understand this mechanism, in this paper,

we develop an analytical model to predict the installed jet noise due to the scattering of

instability waves by a swept wing. The model is based on the Schwarzschild method and

Amiet’s approach is used to obtain the far-field sound. The model can correctly predict

both the reduction in installed jet noise and the change to directivity patterns observed

in experiments due to the use of swept wings. The agreement between the model and

experiment is very good, especially for the directivity at large azimuthal angles. It is

found that the principal physical mechanism of sound reduction is due to destructive

interference. It is concluded that in order to obtain an effective noise reduction, both the

span and the sweep angle of the wing have to be large. Such a model can greatly aid

in the design of quieter swept wings and the physical mechanism identified can provide

significant insight into developing other innovative noise reduction strategies.
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1. Introduction

Aircraft noise has become an urgent issue (Pepper et al. 2003), and jet noise has been a

dominant noise source for the past few decades. Extensive research on reducing jet noise

has led to a reduction of jet noise by more than 20 dBA by using engines of increasingly

large bypass ratios (Casalino et al. 2008). The increase of the bypass ratio and hence the

engine diameter have led to a close coupling between the engine and the aircraft wings.

This close coupling creates a new problem: jet noise is enhanced significantly at low
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frequencies by the wing (Bushell 1975; Fisher et al. 1977; Way & Turner 1980; Shearin

1983). A typical frequency range where this amplification can be observed is 0.03 < St <

0.3, where St is the Strouhal number based on the jet diameter and jet exit velocity.

For example, a noise increase of more than 20 dB has been observed in laboratory.

Note this problem also arises in the engine-over-the-wing configurations, which were

studied extensively in the 1970s, see for example Reshotko et al. (1972a), Reshotko et al.

(1972b), Reshotko & Friedman (1973), Olsen & Friedman (1973) and Glahn et al. (1974).

When the engine is installed at certain locations, this jet-wing interaction noise can be

particularly important for some of advanced future technologies, such as the Blended

Wing Body (BWB) and turbulent boundary-layer injection, where the jet is often very

close to the surface of the aircraft, leading to a significant interaction between the jet

and the aircraft wing (or body).

Due to the urgency of further reducing aircraft noise, jet-wing interaction noise has

gained much attention in the research community in recent years (Mead & Strange

1998; Pastouchenko & Tam 2007; Bondarenko et al. 2012; Brown 2013; Semiletov et al.

2016; Bhat & Blackner 1998; Moore 2004; Vera et al. 2015; Cavalieri et al. 2014;

Piantanida et al. 2016; Lyu & Dowling 2016; Lyu et al. 2017). Recent work shows that

the scattering of wave-packets can be used to model installed jet noise around peak

frequencies. One of the early attempts to use wave-packets as the scattering sources was

made by Papamoschou (2010) to study the jet noise shielding effects. This approach was

exploited by Cavalieri et al. (2014) to model the enhanced low-frequency jet noise using

two approaches, i.e. a tailored Green’s function and Boundary Element Method (BEM).

Good agreement was achieved at St = 0.2, while error grew larger at St = 0.4. It however

remained to be shown how the model can capture the far-field sound at other frequencies

and how the non-axisymmetric azimuthal modes of the wave-packets contribute to the

far-field. The contribution of non-axisymmetric wavepackets to the far-field noise was

studied in the recent work of Nogueira et al. (2017) using a similar Green’s function

approach. It was shown that the non-axisymmetric wavepackets were less efficient in

contributing to the far-field sound than the axisymmetric mode.

In the recent works of the authors (Lyu & Dowling 2016; Lyu et al. 2017), installed

jet noise was modelled as the scattering of both Lighthill’s quadrupoles and near-field jet

instability waves. It was found that the scattering of jet instability waves dominates the

low-frequency enhancement observed in experiments. In particular, it was shown that the

near-field instability waves are scattered only in the local vicinity of the trailing edge,

and hence their axial extent does not play a significant role in the scattering process. The

far-field sound at low frequencies can thus be predicted analytically with the knowledge

of local Power Spectral Density (PSD) of the instability waves (measured at the point

where the scattering occurs most strongly). In contrast, at high frequencies, noise is either

shielded on the shielded side or enhanced by around 3 dB on the reflected side of the plate

in accord with classical acoustic scattering theories. In a subsequent study, the accuracy
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of this hybrid model in the frequency range of interest was successfully validated against

a large array of experimental tests (Lyu & Dowling 2017).

One of the earliest reports on attempting to reduce installed jet noise was due to Wang

(1981). In his study, wing models with different acoustic surface properties were tested

and it was found that using specially treated wing surfaces could substantially reduce

installed jet noise at high frequencies. However, the low-frequency peak was not reduced

significantly. In the worst scenario even a noise increase was observed. In contrast, the

recent experimental study of Piantanida et al. (2016) found that when the trailing edge

of the wing (simplified as a flat plate placed nearby the jet in the experiment) is swept,

the observed low-frequency noise increase due to jet-wing interaction is abated. A wave-

packet scattering model was implemented using the two approaches similar to those used

by Cavalieri et al. (2014). These two models yielded consistent predictions in term of

the change of directivity patterns with the BEM better agreeing with the experimental

results. However, it remained unclear why the reduction of the low-frequency peak occurs

and there is a lack of analytical models to capture this change of scattering characteristics

without finally resorting to numerical techniques.

In this paper, we will develop such an analytical model that can capture the essential

physics of the scattering by an aircraft wing with a swept trailing edge. Moreover, the

input of the model was formulated in such a way that it can be easily measured in

experiment or obtained from appropriate numerical simulations. Only the contribution

from the jet instability wave scattering is considered. Firstly, this is because the sound

reduction observed in experiments by using swept wings is primarily relevant at low

frequencies and we are mainly interested in understanding the physical mechanism of

this reduction. Secondly, this is because the high-frequency installation effects have been

well understood (shielding and reflection) and the acoustic changes due to the use of

swept wings are expected to be readily predicted at high frequencies.

The rest of this paper is structured as follows. The second section presents the detailed

derivation of the model, while the third section discusses the physical mechanism of sound

reduction by using swept wings based on the new model. Section 4 shows some prediction

based on this model. A comparison between the model prediction and experimental

measurements is shown in section 5. The final section briefly concludes the paper and

lists some of our future work.

2. Model formulation

Similar to the simplification introduced in the earlier work of the authors (Lyu et al.

2017), the thickness and camber of the wing are neglected and the wing is therefore

treated as a flat plate, as shown in figure 1. The flat plate has a swept trailing edge, with

a mean chord c and span d, and is placed near a round jet nozzle. The centreline of the

jet nozzle does not necessarily lie in the mid-span plane. However, as we will discuss in
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Figure 1. The schematic illustration of the simplified model problem.

more detail in the rest of this paper, the nozzle does have to be sufficiently far away from

either side edge of the flat plate, such that the side-edge scattering can be neglected. The

bottom surface of the flat plate is H above the jet centreline. The swept trailing edge is

L downstream from the jet nozzle exit, measured in the vertical plane containing the jet

centreline. A Cartesian coordinate system has its origin fixed on the trailing edge in this

vertical plane with x1 in the streamwise, x2 in the spanwise and x3 in the normal to plate

directions. In this coordinate system, the swept trailing edge is specified by x1 = F (x2).

Since the trailing edge is linearly swept,

F (x2) = σx2, (2.1)

where σ ≡ tanα is a parameter specifies the sweep angle α. In this coordinate system the

two side edges are located at x3 = 0, x2 = −l, where 0 < l < d, and x3 = 0, x2 = d− l,
respectively.

As discussed in the earlier study, outside the jet there is a region of near-field pressure

fluctuations, which is primarily induced by the jet’s hydrodynamic instability waves and

decays exponentially in the radial direction (Jordan & Colonius 2013). Because of this

exponential decay, they contribute very weakly to the far-field sound. However, when a

surface with sharp edges is present in the near-field of the jet, the jet instability waves’

previously non-radiating pressure field can be efficiently scattered into sound by the

edges. This is the primary physical mechanism of the observed noise intensification at

low frequencies. Strictly speaking, when a flat plate is placed near the jet, the instability

waves would be different from those of an isolated jet. However, as discussed in earlier

works (Lyu et al. 2017; Bychkov & Faranosov 2014), the influence of the flat plate on the

instability characteristics is not significant provided H is not so small as to significantly

change the jet mean flow. We can therefore use the instability waves of an isolated jet as

the input for the scattering problem considered in this paper. Note that the convection

velocities of the instability waves of an isolated jet are found to be frequency dependent.

For example, by analysing both the LES and experimental data (Lyu et al. 2017; Lyu &
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Dowling 2017) the convection velocity Uc is found to be significantly lower than 0.6Uj at

low frequencies (e.g. St < 0.1), where Uj is the jet exit velocity.

We start to develop the model by assuming that the near-field pressure fluctuation is

dominated by the evanescent wave of the first few azimuthal modes in the cylindrical

coordinate system whose origin is on the jet centreline. As mentioned in section 1, the

scattering mainly occurs in the local vicinity of the edge, we may therefore neglect the

axial growth, saturation and decay behaviour of the instability waves in the scattering

process. The amplitude modulation may also contribute to the far-field sound directly

through the wavenumber leakage (Jordan & Colonius 2013; Tam & Viswanathan 2008),

but this is much weaker than the scattered sound when the flat plate is placed close to the

jet, in which this paper is particularly interested. We can therefore write the instability

wave (omitting eiωt) near the swept edge as (for more detail see Lyu et al. (2017))

p′(ω,x) =

N∑
m=−N

p̂(ω,m)Km(γcr)e
−ik1x1eimθ (2.2)

where p̂(ω,m) denotes the amplitude of the pressure fluctuations of mode m and fre-

quency ω, Km the m-th order modified Bessel function of the second kind, k1 the

streamwise wavenumber of the instability waves and the radius r here is now defined as√
x2

2 + (x3 +H)2. Note that in practice the amplitude p̂(ω,m) can be obtained through

pressure measurements in the near field of an isolated jet. We will discuss this in detail

at the end of this section. The convection velocity Uc (and hence k1) is a function of ω

and m. θ is the azimuthal angle (measured from the x3 axis in the clockwise direction)

and N is a small integer, for example according to the LES data, we find N = 1 is

sufficient (Lyu & Dowling 2016; Lyu et al. 2017). The convective radial decay rate γc, in

the presence of the ambient mean flow of Mach number Ma, is given by (Lyu et al. 2017;

Amiet 1976)

γc =

√
(k1β2 + kMa)2 − k2

β
, (2.3)

where β =
√

1−M2
a and k = ω/c0. We note here that (2.2) can also be written in terms

of Hankel functions with an imaginary argument. But it can be shown these two ways

are equivalent to each other with appropriate choice of branch cut.

The jet instability waves will be scattered by the finite plate. However, when both side

edges are sufficiently far away from the jet centreline, we can neglect the scattering of the

instability waves by them (Lyu et al. 2017). This is possible because the jet instability

waves decay exponentially in the radial direction, and hence the strength of these waves

weaken sufficiently fast. As mentioned in the preceding section, in this study, the jet

centreline does not have to be in the mid-span plane of the plate. But we do require

both l and d− l to be large enough to justify this assumption. Therefore, in the following

derivation, we neglect the contribution of side-edge scattering. A previous study has

shown that the leading-edge back scattering of the trailing-edge noise of an aerofoil can
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be neglected when the frequency is sufficiently high, i.e. when kc > 1 (Roger & Moreau

2005), and this is shown to be suitable for installed jet noise as well (Lyu et al. 2017).

Therefore, in this study, we only take into account the scattering due to the sharp trailing

edge of the swept plate.

When the flat plate is directly above the jet, the hypothetical incident pressure that

would exist on the lower surface of the plate if the plate were absent is

ph(ω, x1, x2) =

N∑
m=−N

p̂(ω,m)Km(γc

√
x2

2 +H2)e−ik1x1

[
|m|
2 ]∑

k=0

C2k
|m|(−1)k

H |m|−2kx2k
2√

x2
2 +H2

|m| + i sgn(m)

[
|m|−1

2 ]∑
k=0

C2k+1
|m| (−1)k

H |m|−2k−1x2k+1
2√

x2
2 +H2

|m|

 , (2.4)

where [x] means taking the nearest integer that is not larger than x, and Cnm is the

binomial coefficient, which results from the use of de Moivre’s theorem. This hypothetical

incident pressure can be decomposed into a superposition of a series of plane waves,

namely

ph(ω, x1, x2) =

N∑
m=−N

∫ ∞
−∞

p̃(ω, k2,m)e−i(k1x1+k2x2)d k2, (2.5)

where

p̃(ω, k2,m) =
1√
2π
p̂(ω,m)

×


[
|m|
2 ]∑

k=0

C2k
|m|H

−2k+ 1
2 γ−|m|c

d2k

dk2k
2

[
(γ2
c + k2

2)
1
2 |m|−

1
4K|m|− 1

2

(
H
√
γ2
c + k2

2

)]
− sgn(m)

×
[
|m|−1

2 ]∑
k=0

C2k+1
|m| H−2k+ 1

2 γ−|m|c

d2k

dk2k
2

[
k2(γ2

c + k2
2)

1
2 |m|−

3
4K|m|− 3

2

(
H
√
γ2
c + k2

2

)] . (2.6)

For a plane-wave-like incident pressure given by p̃(ω, k2,m)e−i(k1x1+k2x2), the scattered

pressure ps is governed by the convective wave equation (with the ambient mean flow of

Mach number Ma)

β2 ∂
2ps
∂x2

1

+
∂2ps
∂x2

2

+
∂2ps
∂x2

3

− 2iMa
∂ps
∂x1

+ k2ps = 0, (2.7)

subject to boundary conditions,

ps = −p̃e−i(k1x1+k2x2), x1 > F (x2) (2.8)
∂ps
∂x3

= 0, x1 < F (x2). (2.9)

With the coordinate transformation x′1 = x1 − F (x2), x′2 = x2 and x′3 =
√
β2 + σ2x3

and the new variable definition φ = pse
ik̄2x

′
2ei(k̄2σ−kMa)/(β2+σ2)x′1 , where k̄2 = k2 + k1σ,



Scattering of jet instability waves by swept wings 7

-1 -0.5 0

x1/c

-1

-0.5

0

0.5

1

x 2/c

-1

-0.5

0

0.5

1

Figure 2. The scattered pressure on the surface of the swept flat plate induced by a

plane-wave-like incident pressure. The contour is obtained from the real part of (2.14) with

p̃ = 1, kc = 10, k2 = 0, Ma = 0, M = 0.5, Uc = 0.6Uj and α = 20◦.

the governing equation reduces to

∂2φ

∂x′1
2 +

∂2φ

∂x′3
2 +K2φ = 0, (2.10)

where

K =

√
k2 − k̄2

2 + (k̄2Ma − kσ)2

β2 + σ2
. (2.11)

The boundary conditions now read

φ = −p̃e−ik1x
′
1ei(k̄2σ−kMa)/(β2+σ2)x′1 , x′1 > 0 (2.12)

∂φ

∂x′3
= 0, x′1 < 0. (2.13)

The solution to (2.10) can be readily found using the Schwartzchild technique (Lyu et al.

2016, 2017). By transforming back to the original coordinate system, one can show that

the scattered pressure is

ps = p̃(ω, k2,m)e−i(k1x1+k2x2) [(1 + i)E0(−µ(x1 − σx2))− 1] , (2.14)

where

µ = k1 +
(kMa − k̄2σ)

β2 + σ2
+

√
k2 − k̄2

2 + (k̄2Ma − kσ)2

β2 + σ2
, E0(x) =

∫ x

0

e−it

√
2πt

d t. (2.15)

Equation (2.14) shows that the scattered surface pressure has a phase variation along

the spanwise (x2) direction even when k2 = 0 due to the x2 dependence in the square

bracket, which does not occur in the case of a straight trailing edge. To show this more

clearly, we have plotted a typical pressure distribution on the surface of a swept flat plate
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according to the real part of (2.14) in figure 2 for a plane-wave-like incident pressure

p̃(ω, k2,m)e−i(k1x1+k2x2) with k2 = 0. The phase variation along the trailing edge of the

flat plate can be clearly observed. The theory of Curle (1955) shows that the scattered

surface pressure acts like a distribution of dipole sources, and the far-field sound can be

obtained by calculating the sound generated from this distribution of dipole sources. The

substantial phase variation exhibited by figure 2 implies that some of these dipole sources

are in anti-phase and would result in destructive (can also be constructive depending on

the position of the observer) interference, which, as will be discussed in detail in the rest

of this paper, is the primary mechanism of installed jet noise reduction observed in the

experiments.

Because of linearity, the far-field sound induced by the incident pressure given by (2.5)

can be readily calculated according to the theory of Kirchhoff and Curle (Lyu et al. 2016;

Lyu & Dowling 2017) to be

pf (ω,x) =(1 + i)
ωx3

πc0S2
0

e
i k
β2

(Max1−S0)

×
N∑

m=−N

∫ ∞
−∞

eiκ(l−d/2) sin [κd/2]

κ

1

µA
Γ (c, µ, µA)p̃(ω, k2,m)d k2, (2.16)

where κ = k̄2− kx2/S0− (k/β2)(x1/S0−Ma)σ, x1, x2 and x3 now denote the Cartesian

coordinates of the far-field observer, and the properly bounded function Γ in (2.16) is

defined as

Γ (x, µ, µA) = eiµAxE0(µx)−
√

µ

µ− µA
E0 [(µ− µA)x] +

1

1 + i
(1− eiµAx), (2.17)

where

S0 =
√
x2

1 + β2(x2
2 + x2

3),

µA = k1 +
k

β2
(Ma −

x1

S0
).

(2.18)

In reaching (2.16), we have made a simplification by assuming that the leading-edge

is also swept by an angle of α. This is permissible, because, as mentioned earlier, the

leading-edge back-scattering is weak enough to be neglected. Consequently, replacing

a straight leading edge with a swept one should cause minimal change to the far-field

sound. It should be noted that (2.16) is due to the contribution of the scattered pressure

only. In order to take the incident wave contribution into consideration, the term 1 in

the last bracket on the right hand side of (2.17) defining the function Γ (x, µ, µA) should

be omitted (Amiet 1978).

Equation (2.16) can be further simplified by noting that normally aircraft wings have

a large span-to-chord ratio, and d can be quite large compared to the sound wavelength

at the frequency of peak noise enhancement in the low frequency regime, therefore we

use

lim
d→∞

sin [κd/2]

πκ
= δ(κ) (2.19)
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to simplify (2.16) to

pf (ω,x) = (1 + i)
ωx3

c0S2
0

e
i k
β2

(Max1−S0)
N∑

m=−N

1

µA
Γ (c, µo, µA)p̃(ω, ko,m), (2.20)

where ko = −k1σ + kx2/S0 + (k/β2)(x1/S0 − Ma)σ and µo = µ|k2=ko . We see that

when the span is large, an effective destructive interference along the span is possible

and (2.20) shows that only the plane wave with a spanwise wavenumber ko can be heard

in the far-field. Plane waves with other values of k2 do not contribute to the far-field

sound due to effective destructive interference (see figure 2 for the example of k2 = 0).

However, the validity of this result hinges on the assumption of a sufficiently long span,

which is used to obtain (2.19) and (2.20). Therefore, it is expected that a longer span is

required for it to be valid at lower frequencies. Note that l does not enter (2.20). This

implies that, provided side-edge scattering can be neglected, the far-field sound is not

sensitive to the spanwise position of the plate relative to the jet nozzle.

The far-field sound power spectrum can be found by formulating the ensemble average

to be

ΦN (ω,x) = 2

[
ωx3

c0S2
0

]2 N∑
m=−N

N∑
m′=−N

Γ (c, µo, µA)

µA

∣∣∣∣
m

Γ ∗(c, µo, µA)

µ∗A

∣∣∣∣
m′

× lim
T→∞

π

T
p̃(ω, ko,m)p̃∗(ω, ko,m′), (2.21)

where 2T (Amiet 1975) is the temporal interval used to perform the Fourier transforma-

tion to obtain pf (ω,x), and the overbar denotes ensemble average. We note that (2.21) is

the result obtained using Amiet’s approach where the interval of Fourier transformation

is finite. When the interval is infinite, we have (Dowling & Williams 1983; Howe 1991)

ΦN (ω,x) =

∫ ∞
−∞

pf (ω,x)p∗f (ω′,x)dω′. (2.22)

The two approaches however yield identical answers for statistically stationary signals,

and we use the former one in this paper.

Substituting (2.6) into the above equation yields

ΦN (ω,x) =
1

π

[
ωx3

c0S2
0

]2 N∑
m=−N

∣∣∣∣Γ (c, µo, µA)

µA

∣∣∣∣2Π(ω,m)

×


[
|m|
2 ]∑

k=0

C2k
|m|H

−2k+ 1
2 γ−|m|c

d2k

dk2k
o

[
(γ2
c + k2

o)
1
2 |m|−

1
4K|m|− 1

2

(
H
√
γ2
c + k2

o

)]
− sgn(m)×

[
|m|−1

2 ]∑
k=0

C2k+1
|m| H−2k+ 1

2 γ−|m|c

d2k

dk2k
o

[
ko(γ

2
c + k2

o)
1
2 |m|−

3
4K|m|− 3

2

(
H
√
γ2
c + k2

o

)]
2

. (2.23)

where Π(ω,m) denotes the power spectrum of mth-order near-field evanescent waves

and is given by Π(ω,m) = limT→∞(π/T )p̂(ω,m)p̂∗(ω,m) with 2T being the temporal

interval of the Fourier transformation used to obtain p̂(ω,m). Similar to (2.22), Π(ω,m)
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can also be formulated as Π(ω,m) =
∫∞
−∞ p̂(ω,m)p̂∗(ω′,m)dω′. Equation (2.23) is the

generic form of near-field scattering model. However, further simplifications can be made

in practical cases. First, if we assume that the fluctuation is symmetric with respect to

m, i.e. Π(ω,m) = Π(ω,−m), (2.23) can be further simplified to

ΦN (ω,x) =
1

π

[
ωx3

c0S2
0

]2 N∑
m=0

∣∣∣∣Γ (c, µo, µA)

µA

∣∣∣∣2Πs(ω,m)

×


[
|m|
2 ]∑

k=0

C2k
|m|H

−2k+ 1
2 γ−|m|c

d2k

dk2k
o

[
(γ2
c + k2

o)
1
2 |m|−

1
4K|m|− 1

2

(
H
√
γ2
c + k2

o

)]2

+

[
|m|−1

2 ]∑
k=0

C2k+1
|m| H−2k+ 1

2 γ−|m|c

d2k

dk2k
o

[
ko(γ

2
c + k2

o)
1
2 |m|−

3
4K|m|− 3

2

(
H
√
γ2
c + k2

o

)]2
.

where Πs(ω,m) is m-th single-sided modal power spectral density, i.e. Πs(ω,m) =

Π(ω,m) + Π(ω,−m) for m 6= 0. If we assume that only the 0 and 1(−1) modes are

significant, we can show the far-field sound spectral density in a simplified form as

ΦN (ω,x) ≈ H0(ω,x)Πs(ω, 0) +H1(ω,x)Πs(ω, 1), (2.24)

where

H0(ω,x) =

[
ωx3

c0S2
0

]2
{∣∣∣∣Γ (c, µo, µA)

µA

∣∣∣∣2 e−2H
√
γ2
c+k2o

2(γ2
c + k2

o)

}
m=0

, (2.25)

H1(ω,x) =

[
ωx3

c0S2
0

]2
{∣∣∣∣Γ (c, µo, µA)

µA

∣∣∣∣2 e−2H
√
γ2
c+k2o

2γ2
c

(
1 +

k2
o

k2
o + γ2

c

)}
m=1

. (2.26)

In the above equations, the near-field pressure spectra Πs(ω,m) need to be known in

order to predict the far-field sound PSD. These spectra could be obtained from simple

models validated by experiments or LES simulations. Let Π0(ω, 0) and Π0(ω, 1) denote

the 0th- and 1st-order single-sided modal power spectral densities measured at a location

of r = r0 in the near field of the jet, then it follows that Πs(ω, 0) = Π0(ω, 0)/K2
0 (γcr0)

and Πs(ω, 1) = Π0(ω, 1)/K2
1 (γcr0). Therefore, the input of this model can be found by

measuring the near-field pressure fluctuations using at least 2 microphones (to resolve

mode 0 and mode 1) at suitable radial locations. To ensure that acoustic fluctuations

are negligible, one must choose r0 to be small such that the microphones are sufficiently

close to the jet. Since near-field pressure spectra vary with axial position, it is desirable

to put the microphones at the position where the trailing edge of the flat plate would be

(in the mid-span plane) if a swept flat plate were to be present, i.e. the place where the

incident wave is to be scattered most strongly.
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3. Discussion

The transfer functions H0(ω,x) and H1(ω,x) determine how the near-field hydro-

dynamic pressure is scattered into sound. To understand the physical mechanism of the

aforementioned sound reduction, it suffices to examine these two transfer functions. Since

the transfer functions also contain the directivity terms, for simplicity one can examine

their behaviour at a fixed observer position. If needed, similar analytical approaches can

be followed for other observer points. For example, one can choose the observer to be at

90◦ directly above the trailing edge in the mid-span plane, i.e. the observer is located at

(0, 0, x3). Then one can see that for fixed frequencies,

H0(ω,x) ∼

{
|Γ (c, µo, µA)|2 e−2H

√
γ2
c+k2o

2(γ2
c + k2

o)

}
m=0

, (3.1)

H1(ω,x) ∼

{
|Γ (c, µo, µA)|2 e−2H

√
γ2
c+k2o

2γ2
c

(
1 +

k2
o

k2
o + γ2

c

)}
m=1

, (3.2)

where

ko = −(k1 +
kMa

β2
)σ, (3.3)

µo = k1 +
kMa

β2
+ k

√
1− (Maσ/β2)2 + (M2

aσ/β
2 + σ)2

β2 + σ2
. (3.4)

From the discussion in the preceding section, we can interpret the scattering process

as a two-step process. First, the swept trailing edge selects the dominant plane-wave

mode (because other plane-wave modes would result in no sound due to destructive

interference). The strength of this selected mode is specified by the second product term

in H0(ω,x) and H1(ω,x). In the second step, the selected plane-wave mode is scattered

into sound by the trailing edge. The scattering efficiency is determined by the first product

term in the transfer functions. Therefore, by evaluating how these two terms differ from

those for a straight trailing edge, the mechanism of the sound reduction can be readily

made evident.

We start from the first selection step. Examining the second product term in H0(ω,x),

we can see that the term contains both an exponential and an algebraic decay as σ

increases. However, since γc ∼ k1 and ko ∼ k1σ, we see that this increase would only

be significant when σ ∼ O(1) (because for σ � 1, the leading order of the exponential

decay is ∼ e−k1Hσ2

). In other words, the sweep angle should be large enough in order to

see a difference caused by this decay. For example, a negligible decay can be expected if

α ∼ 10◦. A similar conclusion can be made for the transfer function H1(ω,x). A slight

difference is that as σ increases, there exists not only an exponential decay but also an

algebraic growth. One can show that the algebraic term is the contribution of the sin θ

mode of the first-order instability wave. When the trailing edge is not swept, ko = 0,

the contribution of the sin θ mode is zero in the mid-span plane. This is to be expected

because the sin θ mode is antisymmetric with respect to the mid-span plane and hence
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induces an antisymmetric scattered pressure field. A swept trailing edge however breaks

this symmetry hence the sin θ mode also contributes to the far-field sound. Nevertheless,

when k1H and σ are sufficient large we expect the exponential decay term to be dominant.

We can verify that when σ → O(1) this is indeed the case for the frequency of range of

interest (for example 0.03 < St < 0.3).

Examining the Γ functions can reveal how the scattering efficiency changes. As σ

changes from 0 to finite values, µo changes from

k1 +
kMa

β2
+

k

β2

to

k1 +
kMa

β2
+ k

√
1− (Maσ/β2)2 + (M2

aσ/β
2 + σ)2

β2 + σ2
.

Since the scattering of instability waves is only relevant at low frequencies, e.g. St < 0.3,

where the convection velocities of the instability waves are significantly lower than 0.6Uj ,

we can show that k1 � k. Hence the change of σ from 0 to O(1) values does not alter the

values of µo significantly. Besides, all the terms contained in the function Γ (c, µo, µA)

have at most algebraic growth or decay. We can therefore expect an insignificant change

to the scattering efficiency.

In summary, we see that most of the sound reduction is due to the selection process.

Since the mechanism of this selection process is due to destructive interference, the prin-

cipal mechanism of sound reduction by using swept trailing edges is therefore destructive

interference.

4. Results

Using (2.24), both the spectra and the directivity patterns of the far-field sound can

be readily plotted. Since the model needs an input of the near-field pressure spectra, in

this paper we use the spectra measured in the experiment carried out by the authors in

an earlier study (Lyu & Dowling 2017, 2018). This experiment was carried out in the

anechoic chamber at the Engineering Department at the University of Cambridge, where

a round, cold, Mach 0.5 jet of diameter 2.54 cm was operated both with and without a

nearby flat plate. For a detailed description of the experimental setup used to measure the

near-field pressure spectra, the readers are referred to the earlier works (Lyu & Dowling

2017, 2018).

In the following, we present the far-field sound spectra first. As a starting point, we

focus on a Mach 0.5 jet, where installed jet noise tends to be more significant than a

jet of higher speed (Lyu et al. 2017). The speed of a Mach 0.5 jet is relevant to the

landing configurations of a modern aircraft, where engines are operated in a low power

mode. It is however worth noting that the model is not restricted by specific jet speeds,

and it would work with any Mach number provided the underlying scattering physics

remains unchanged. As mentioned in Section 1, installed jet noise contains two parts,

one due to the scattering of instability waves, and the other one due to the scattering
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of Lighthill’s quadrupole sources. Although we are primarily interested in the scattering

of the instability waves at low frequencies, it is useful to be able to quantify the relative

contribution of the quadrupole sources, especially for the case of swept edges. To give

an example, we can consider the following case – if the swept edge were to result in a

substantial noise reduction, the far-field sound could be dominated by the quadrupoles’

contribution and the practical noise reduction one can observe in experiment would not

be as large as that predicted by the reduced scattering of instability waves. Hence in the

following figures, we plot the total sound spectra in the far-field by adding the instability-

scattering spectra to that due to the scattering of quadrupole sources by a straight

trailing edge from the earlier work (Lyu & Dowling 2017). Note that the contribution

of the quadrupole sources for the straight-edge case is only added in for reference, and

our primary interest is to evaluate the changes to the instability-scattering spectra due

to the use of swept edges. A more detailed discussion on the difference of quadrupole

scattering by a straight and a swept trailing edge is given at the end of this section.

Figure 3 shows the far-field sound power spectral densities at different observer angles

for a flat plate with a sweep angle of 15◦. The observer is at a distance of 50D from the

centre of the jet nozzle. The plate is placed at H = 1.5D and L = 4D. We choose this

configuration as a starting point, because the experimental results for this configuration

are also available (see section 5). A previous LES study (Lyu et al. 2017) showed that the

plate is still outside the jet plume at this position so the characteristics of the instability

waves are unlikely to be changed significantly compared to an isolated jet. For reference,

the isolated spectra predicted according to the earlier work (Lyu & Dowling 2017) are

also plotted in the figure. Figure 3(a) shows the spectra when the observer is at 90◦ on

the shielded side of the plate. We can see that the installation effects are significant at low

frequencies due to the scattering of instability waves, and a negligible noise reduction

is achieved at these frequencies by using swept edges. The results at high frequencies

are for reference only since we are primarily interested in low frequencies. Figures 3(c)

and 3(e) show the spectra at 60◦ and 30◦ on the shielded sides, respectively. It can be

seen that the advantages of using swept wings predicted by the model diminish as the

observer angle decreases. The trends at low frequencies are similar on the other side

of the plate, as demonstrated by figure 3(b,d,f). The prediction that negligible noise

reduction is achieved by using a slightly swept edge is consistent with our discussion in

the preceding section and the experimental results of Piantanida et al. (2016).

The results when the sweep angle is 30◦ are shown in figure 4. The prediction that a

more effective noise reduction can be achieved in this case is clearly verified. Figure 4(a)

shows that an average 3 dB noise reduction is achieved at low frequencies when the

observer is at 90◦ above the trailing edge in the mid-span plane. The reduction is still

effective at very low frequencies. However, it should be noted that the model assumes

that the span is sufficiently long, and this assumption is less likely to be accurate at lower

frequencies, where a longer span is required. Hence, in practice, we might see that the
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Figure 3. The far-field sound spectra in the mid-span plane at different polar angles for the

sweep angle α = 15◦: a,c,e) 90◦, 60◦, and 30◦ on the shielded side, respectively; b,d,f) 90◦, 60◦

and 30◦ on the reflected side, respectively. The plate is placed at H = 1.5D and L = 4D.

noise reduction becomes less effective at lower frequencies. Figure 4(c) shows the results

for an observer at 60◦. It is clear that the reduction is now much less effective with an

average noise reduction of just 1 dB. When the observer is at 30◦ on the shielded side,

the installation effects are negligible, and so is the reduction due to swept edges. The

trends are again very similar on the other side of the plate.

When the sweep angle is increased to 45◦, figure 5(a) shows that a noise reduction

of 6 − 7 dB can be achieved for an observer at 90◦. A slight less effective reduction is
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Figure 4. The far-field sound spectra in the mid-span plane at different polar angles for the

sweep angle α = 30◦: a,c,e) 90◦, 60◦, and 30◦ on the shielded side, respectively; b,d,f) 90◦, 60◦

and 30◦ on the reflected side, respectively. The plate is placed at H = 1.5D and L = 4D.

observed at 60◦ while both the installation effects and reduction are negligible at 30◦. In

summary, we see that in order to achieve an effective noise reduction, the sweep angle

should be sufficiently large and this is consistent to our discussion in the preceding section

and the experimental results of Piantanida et al. (2016). The principal sound reduction

mechanism is destructive interference.

We can also show the azimuthal directivity patterns and how the swept wing changes

them. In what follows, the azimuthal (θ) directivity patterns for the fixed polar angle
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Figure 5. The far-field sound spectra in the mid-span plane at different polar angles for the

sweep angle α = 45◦: a,c,e) 90◦, 60◦, and 30◦ on the shielded side, respectively; b,d,f) 90◦, 60◦

and 30◦ on the reflected side, respectively. The plate is placed at H = 1.5D and L = 4D.

90◦ are shown. Again we show the total sound spectra with the straight-edge acoustic-

scattering contribution added in for reference. The isolated spectra are also plotted for

extra reference.

When the sweep angle is 15◦, negligible sound reduction can be achieved at St = 0.02,

as shown by figure 6(a). Similar results can be observed for St = 0.05. A slight noise

reduction can be found when St = 0.1 at large azimuthal angles. However, at small

azimuthal angles no sound reduction or even a slight noise increase can be observed.
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This implies that the directivity becomes asymmetric across the mid-span plane. This

tendency can be seen more clearly when the St increases to 0.2, as shown in figure 6(d).

At even higher St numbers, the asymmetry of the azimuthal directivity becomes even

clearer. This change of directivity was observed in the experiment of Piantanida et al.

(2016) and we will see at a later stage that this is the result of destructive interference.

The directivity patterns for the sweep angle α = 30◦ are shown in figure 7. Apart

from a more effective sound reduction and more evident change of directivity patterns at

relatively high frequencies, the results are very similar to those shown in figure 6. One

can also expect the same trends when the sweep angle is increased to α = 45◦, which

is shown in figure 8. It is however worth noting that in spite of similar changes in the

directivity pattern, virtually no sound increase is observed at small azimuthal angles,

which is in contrast to the results shown in figure 6 and 7.

The change of directivity pattern is very interesting. We can show that this is a

consequence of the destructive interference effect. Recall that

ko = −k1σ + kx2/S0 + (k/β2)(x1/S0 −Ma)σ,

which depends on the value of x2. From the discussion in Section 3, we can see that

the sound reduction is due to a sufficiently large non-zero value of |ko|. The larger the

value is, the more effective reduction we can expect. Therefore, when x2 is negative, the

absolute value of ko is larger, hence there is a more effective sound reduction at large

azimuthal angles. On the other hand, when x2 is positive, the value of |ko| becomes

smaller, resulting in less effective sound reduction. However, when σ is sufficiently large,

we can see that even x2/S0 → 1 the value of |ko| is still a sufficiently large non-zero value

and hence no noise increase is found, as shown in figure 8.

In Figures 3 to 8, the contribution of the quadrupoles scattered by a straight edge

is used instead of that by a swept edge for reference. One might wonder how it differs

from the true spectrum when a swept edge is used. We expect the difference to be small,

especially for observers in the mid-span plane. This is due to two reasons. Firstly, the

earlier study (Lyu et al. 2017) found that in the low-frequency regime (e.g St < 0.3) the

acoustic scattering effect of the quadrupole sources is negligible and their contribution to

the far-field sound is virtually identical to that of an isolated jet. Hence one can expect

the same is true even if a swept edge is used and there would be little difference between

the straight- and swept-edge cases in terms of the sound contribution from quadrupole

sources. Secondly, in the high-frequency regime (e.g. St > 0.3), the contribution from

quadrupole sources is dominant and the contribution from instability wave scattering

is negligible. But because we now understand that the physical mechanisms of sound

alteration in this frequency regime are simply the shielding and reflection effects of the

flat plate, we can expect minimal changes to the far-field spectra to occur when we use

a swept trailing edge, apart from the fact that both the shielding and reflection effects

are slightly more effective on the side where the chord of the flat plate is longer and
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Figure 6. The far-field sound azimuthal directivity (PSD in dB with a reference value

4 × 10−10 Pa2/Hz) for the fixed polar angle 90◦ for the sweep angle α = 15◦: a) St = 0.02;

b) St = 0.05; c) St = 0.1; d) St = 0.15; e) St = 0.2; f) St = 0.3. The plate is placed at

H = 1.5D and L = 4D.

less effective on the other. Hence, we can see that using spectra for a straight edge for

reference is reasonable.
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Figure 7. The far-field sound azimuthal directivity (PSD in dB with a reference value

4 × 10−10 Pa2/Hz) for the fixed polar angle 90◦ for the sweep angle α = 30◦: a) St = 0.02;

b) St = 0.05; c) St = 0.1; d) St = 0.15; e) St = 0.2; f) St = 0.3. The plate is placed at

H = 1.5D and L = 4D.

5. Comparison with previous experimental results

The model can now be compared against the experiment carried out by Piantanida

et al. (2016). In the experiment, the jet diameter D was 0.05 m and the jet Mach number

was 0.4. Four flat plates were used, and their trailing edges were tilted by 0◦, 15◦, 30◦
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Figure 8. The far-field sound azimuthal directivity (PSD in dB with a reference value

4 × 10−10 Pa2/Hz) for the fixed polar angle 90◦ for the sweep angle α = 45◦: a) St = 0.02;

b) St = 0.05; c) St = 0.1; d) St = 0.15; e) St = 0.2; f) St = 0.3. The plate is placed at

H = 1.5D and L = 4D.

and 45◦, respectively. All these plates shared the same average chord c = 9D and span

d = 15D. During the experiment, these plates were placed near the jet at H = 1.5D

and L = 4D and the jet centre line was aligned with the middle span of these plates.
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Figure 9. Comparison of the azimuthal noise directivity (PSD in dB with a reference value

4 × 10−10 Pa2/Hz) for a fixed polar angle of 90◦ between the model and experiment when

α = 15◦: blue solid: prediction for straight edge; red dashed: prediction for swept edge; yellow

solid with markers: measurement for straight edge; purple dashed with markers: prediction for

swept edge.

The azimuthal directivity at St = 0.2 was measured at a distance of 14.3D from the jet

centreline, at the axial location x1 = 0.

To compare our model with experimental results, the contribution from the Lighthill

quadrupole sources is first obtained according to the results shown in the earlier

work (Lyu et al. 2017). The validity of doing so has been discussed in section 4. In

fact, the scattering of the quadrupole sources by a semi-infinite flat plate with a swept

trailing-edge can be modelled analytically. But having recognized that it is virtually

the same as that for the straight edge in the frequency range of interest, and that the

primary purpose of this paper is to model the noise due to the scattering of jet instability

waves, such an endeavour seems to be unnecessary. Secondly, the contribution due to

the scattering of the near-field instability waves is obtained from (2.24). The near-field

spectrum at only St = 0.2 (one point on the full spectrum) is needed. Because we do

not yet have an experimental database for such a spectrum for a Mach number 0.4 jet,

the amplitude of such a spectrum at St = 0.2 is chosen such that the far-field sound

for the straight edge matches the corresponding experimental results. This amplitude is

subsequently used to predict the results for swept edges.

Results when the trailing-edge is tilted by 15◦ is shown in figure 9. The experimental

results are shown only on the shielded side of the plate. This is because the scattered

sound on this side is not affected by the refraction effect of the jet plume. As we can see

from the figure, the predicted directivity shape for the straight edge agrees well with the

experimental result. When the straight edge is replaced with a swept edge, the experiment

reveals that a noticeable noise reduction can be achieved. In particular, greater reduction

occurs at large azimuthal angles (close to 180◦). At low azimuthal angles (close to 0◦), a

slight noise increase occurs. This difference in the noise reduction effectively changes the
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Figure 10. Comparison of the azimuthal noise directivity (PSD in dB with a reference value

4 × 10−10 Pa2/Hz) for a fixed polar angle of 90◦ between the model and experiment when

α = 30◦: blue solid: prediction for straight edge; red dashed: prediction for swept edge; yellow

solid with markers: measurement for straight edge; purple dashed with markers: prediction for

swept edge.

directivity pattern from a symmetric to titled shape. Such a change is well captured by

the model, especially at large azimuthal angles. The slight disagreement at low azimuthal

angles, however, could be caused by the side edges of the plates and/or the slow variation

of jet instability spectra along the axial direction (because the trailing edge is swept, so

strictly speaking the scattering occurs locally at different axial locations. But the slow

spectra variation because of this is ignored in the model).

When the sweep angle increases to 30◦, as shown in figure 10, the experimental noise

reduction is more pronounced. The change to the directivity from a symmetric to titled

pattern remains the same, and at low azimuthal angles a slight noise increase still occurs.

The model predicts both behaviours very well. In particular, the predicted noise spectrum

in the large azimuthal angle range has a nearly perfect agreement with the experimental

result. The agreement at low azimuthal angles is not quite as good as that at high

angles, and this might have been caused by the same reasons described in the preceding

paragraph.

Figure 11 shows that the comparison for the largest sweep angle, i.e. 45◦. The maximum

noise reduction, up to 8 dB, occurs at around the azimuthal angle 130◦. The agreement

between the experimental results and the model predictions continues to be good. We note

again that deviation occurs mostly at low azimuthal angles, with possible causes discussed

above. The good agreement shown in this section suggests that the current model can

capture the scattering physics very well, and also demonstrates that the destructive

interference is the main mechanism of sound reduction by using aircraft wings with

swept trailing edges.
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Figure 11. Comparison of the azimuthal noise directivity (PSD in dB with a reference value

4 × 10−10 Pa2/Hz) for a fixed polar angle of 90◦ between the model and experiment when

α = 45◦: blue solid: prediction for straight edge; red dashed: prediction for swept edge; yellow

solid with markers: measurement for straight edge; purple dashed with markers: prediction for

swept edge.

6. Conclusion

This paper develops an analytical model to predict the noise due to the scattering

of instability waves by an aircraft wing with a swept trailing edge. The aircraft wing is

simplified as a flat plate and a uniform ambient mean flow is assumed. The Schwartzchild

method is used to obtain the scattered pressure on the surface while the far-field sound

is obtained via a surface pressure integral.

The model can correctly predict both the magnitude of the sound reduction and

the changes to the directivity patterns. Very good agreement is achieved between the

developed model and a previous experiment. It is found that the principal mechanism of

the sound reduction is due to the destructive interference effect. It is concluded that in

order to obtain an effective sound reduction, both span and the sweep angle of the aircraft

wing have to be large. Such a model can serve as a robust tool in quickly evaluating the

effects of swept trailing edges on the low-frequency installed jet noise at various design

stages. The newly discovered interference mechanism for noise reduction can also provide

significant insight into developing other innovative noise reduction strategies.
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