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Withdrawal from escalated cocaine self-administration impairs
reversal learning by disrupting the effects of negative feedback
on reward exploitation: a behavioral and computational
analysis
Peter Zhukovsky1,2, Mickael Puaud1,2, Bianca Jupp1,2, Júlia Sala-Bayo1,2, Johan Alsiö1,2, Jing Xia1,2, Lydia Searle1,2, Zoe Morris1,2,
Aryan Sabir1,2, Chiara Giuliano1,2, Barry J. Everitt1,2, David Belin 1,2, Trevor W. Robbins1,2 and Jeffrey W. Dalley1,2,3

Addiction is regarded as a disorder of inflexible choice with behavior dominated by immediate positive rewards over longer-term
negative outcomes. However, the psychological mechanisms underlying the effects of self-administered drugs on behavioral
flexibility are not well understood. To investigate whether drug exposure causes asymmetric effects on positive and negative
outcomes we used a reversal learning procedure to assess how reward contingencies are utilized to guide behavior in rats
previously exposed to intravenous cocaine self-administration (SA). Twenty-four rats were screened for anxiety in an open field
prior to acquisition of cocaine SA over six daily sessions with subsequent long-access cocaine SA for 7 days. Control rats (n= 24)
were trained to lever-press for food under a yoked schedule of reinforcement. Higher rates of cocaine SA were predicted by
increased anxiety and preceded impaired reversal learning, expressed by a decrease in lose-shift as opposed to win-stay probability.
A model-free reinforcement learning algorithm revealed that rats with high, but not low cocaine escalation failed to exploit
previous reward learning and were more likely to repeat the same response as the previous trial. Eight-day withdrawal from high
cocaine escalation was associated, respectively, with increased and decreased dopamine receptor D2 (DRD2) and serotonin
receptor 2C (HTR2C) expression in the ventral striatum compared with controls. Dopamine receptor D1 (DRD1) expression was also
significantly reduced in the orbitofrontal cortex of high cocaine-escalating rats. These findings indicate that withdrawal from
escalated cocaine SA disrupts how negative feedback is used to guide goal-directed behavior for natural reinforcers and that trait
anxiety may be a latent variable underlying this interaction.
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INTRODUCTION
Despite considerable research, the psychological mechanisms
underlying the maladaptive behavior of individuals addicted to
drugs remain poorly understood, in particular the propensity of
such individuals to continue taking drugs despite mounting
negative impacts. A disregard for harmful consequences implies
an innate or acquired imbalance in how positive and rewarding
outcomes are perceived and processed relative to punishment
signals. Consistent with this view, rats exposed to cocaine fail
to utilize outcome value to guide behavior [1] and continue to
seek drugs despite their devaluation [2–4] or the risk of punish-
ment [5–7]. The neural mechanisms underlying this maladaptive
behavior are not well understood but may underlie compulsive
forms of drug seeking [8].
Neural activity in the orbitofrontal cortex (OFC) is broadly

acknowledged to represent outcome value and expectation used
to guide value-based decision-making [9–15]. The OFC also plays
a key role in behavioral flexibility, the capacity to rapidly track
changing stimulus-response contingencies in reversal learning
procedures [16–19], and structural and functional changes in the

OFC are present in individuals addicted to drugs [20–26].
Consistent with these findings, reversal learning is impaired in
rats and monkeys exposed to cocaine [17, 27–29]. Thus, drug-
induced abnormalities in OFC networks that include the amygdala
and striatum [11] may underlie the inflexibility and insensitivity
to outcomes associated with drug exposure [1].
The ability to respond flexibly to changing stimulus-

response contingencies requires an animal to learn about the
prospective values of the responses using both positive and
negative feedback. Reversal learning tasks require animals to
optimize their choice strategy to maximize the rewards they
obtain, while at the same time occasionally exploring alternate
reward options. Using the representation of predictive relation-
ships in the environment, acquired through trial and error, reversal
learning requires animals to switch responding to a now correct
stimulus while ignoring the interference of a recently rewarded,
but now no-longer-correct stimulus. Reinforcement learning has
been proposed as a tractable computational process underlying
trial-and-error learning [30, 31] with utility in modelling aspects of
addiction [32, 33] and stimulant administration in rodents [34, 35].
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Indeed, computational psychiatry has become an increasingly
popular translational methodology to investigate mental health
[36, 37], especially if the computational models are constrained by
neurobiological data [38].
In this study we therefore used behavioral and computational

methods to define the nature of reversal learning deficits in rats
with a history of escalated cocaine self-administration, compared
with food-reinforced, cocaine-naïve rats. We hypothesized that
cocaine-exposed rats would be less sensitive to negative feedback
in a spatial-discrimination reversal learning task than drug-free
controls. We further evaluated possible modulatory effects of
trait anxiety given that this predicts the individual propensity to
escalate cocaine SA under long-access conditions [39–41], as well
as response perseveration in a spatial reversal learning task [42].
Finally, we measured ex vivo gene transcript levels of dopamine
(DA) and serotonin (5-HT) receptors in the OFC and striatum as
neural correlates of cocaine-induced impairments in reversal
learning.

MATERIALS AND METHODS
Subjects
Subjects were male Lister-hooded rats (n= 48) weighing 280–300
g at the beginning of the experiments (Charles River, Kent, UK).
Rats were maintained at 85–95% of free-feeding weights. Each
animal received 18 g of food chow once a day within 2 h after
behavioral testing and had ad libitum access to water. When no
behavioral training or testing took place, rats received 20 g of
chow per day. Rats were either housed in groups of four or singly
after catheter implantation and during the cocaine self-
administration experiment under a reversed 12 h light/dark cycle
(lights off 07:00 h until 19:00 h). Two cohorts of rats were trained
and tested on a spatial-discrimination serial reversal learning
task [42, 43] prior to the assessment of anxiety on an open field
test (Fig. 1a). Rats in cohort 1 (n= 24) were trained to self-
administer intravenous (i.v) cocaine (six daily short-access
sessions; seven daily long-access sessions) whereas cohort 2 rats
(n= 24) were trained to lever-press for food pellets (Noyes
dustless pellets, 45 mg, Sandown Scientific, UK) over an equivalent
period of days. Rats from both cohorts were re-tested on the
reversal learning task 8 days after cocaine or food self-
administration. All experiments complied with the statutory
requirements of the Animals (Scientific Procedures) Act 1986
following local ethical review by the University of Cambridge
Animal Welfare and Ethical Review Body (PPL 70/8072).

Behavioral assessment
Reversal learning. Spatial-discrimination reversal learning was
assessed using 12 5-choice operant chambers placed in ventilated,
sound-attenuating cubicles (Med Associates, Georgia, VT), as
previously described [42, 43]. Subjects were initially habituated
to the apparatus over 2 days, with each session lasting 20min.
They were then trained to enter the magazine to trigger the
illumination of a single stimulus light (left or right) and to respond
in one of the two illuminated apertures for food delivery under a
fixed-ratio (FR) 1 schedule of reinforcement. Once rats had
achieved 50 correct responses, food reward was successively
delivered under FR2 and FR3 schedules to the same criterion
within a 30 sec limited hold period. Failure to respond within
the 30 sec period resulted in a 5 sec time-out. Once rats were able
to achieve criterion under a 5 sec inter-trial interval, they were
tested for spatial discrimination followed the next day by a
reversal of the stimulus-reward contingency. Firstly, rats were
given a maximum of 1 h to complete the discrimination task by
achieving nine correct trials across the previous 10 trials. Once
rats achieved this criterion and consistently responded at the
rewarded (left or right) aperture, the session ended. On
the following day, rats were given a retention test of the

discrimination learned on the previous day, in which the same
aperture was rewarded. Once rats achieved criterion (9/10 correct),
they then completed three reversals (Fig. 3g). This test session
lasted for ~1 h. Following each contingency reversal, responses
in the previously incorrect aperture were signaled as correct
(and reinforced with a food pellet) whereas responses in the
previously correct aperture were signaled as incorrect (and not
reinforced with food). Two rats (one in the cocaine and one in the
control group) who failed to achieve the criterion of three
successful reversals were excluded from the analysis. In addition,
five rats in the cocaine group were excluded from the study due
to suspected catheter failure. Following cocaine or food self-
administration, rats were re-trained over five sessions to respond
for food on the spatial-discrimination task under a FR3 schedule of
reinforcement. On the test day, rats were given a retention test
prior to completing three reversals, identical to the procedure
described above.

Anxiety assessment. A black, matte arena of 150 cm diameter and
50 cm high walls was used to assess behavior in the open field [44]
under white lights (70 lux). The central area of the arena was
defined as a circle with a diameter of 75 cm. Exploratory behavior
in the maze was recorded and monitored on a ceiling-mounted
Yi Action Camera (Xiaomi, Japan) connected to a computer via
Wi-Fi and analyzed using Icarus V2.09 (University of Manchester,
UK 2002–2003) software. Rats were placed in the center of the
arena with behavior recorded for 8 min. The arena was cleaned
with water between each animal. An anxiety score was calculated
as the proportion of time spent in the center of the arena in the
total time of 8 min.

Intravenous cocaine self-administration. Twenty-four operant
chambers (31.8 cm long × 25.4 cm width × 34.3 cm high), con-
structed of Plexiglas and a metal grid floor, were each placed in
ventilated, sound-attenuating cubicles (Med Associates, Georgia
VT). Whisker Control software (Second Order, Cardinal and Aitken,
2010) controlled the apparatus. Two retractable levers and a white
light emitting diode located above each lever were placed along
one wall of the chamber, with a house-light positioned on top of
the opposite wall. Cocaine infusions were delivered via implanted
intravenous-dwelling catheters connected to a syringe-driven
infusion pump (Semat Technical, Herts, UK) and Tygon tubing.
Infusions were delivered at a rate of 20 μl/sec. Each infusion
contained 0.25 mg cocaine hydrochloride.
A single-lumen catheter (CamCath®, Cambridge, UK, inner

diameter 0.28 mm; outer diameter 0.61 mm; dead volume 12 μl)
was implanted in the right jugular vein under ketamine
hydrochloride (100 mg/kg, intraperitoneal, Ketaset) and xylazine
(9 mg/kg, i.p., Rompun) anesthesia. The proximal end of the silastic
catheter was inserted in the right atrium and the distal end was
sutured subcutaneously between the scapulae. To prevent
infection, rats were treated with a subcutaneous injection of 10
mg/kg Baytril® (Genus Express, Bury St. Edmunds, UK) on the day
before surgery and were then given 10mg/kg Baytril in mashed
pellets for 5 days post-surgery. Following surgery, catheters were
flushed daily with saline-heparin (100 IU/ml), with a recovery
period of 10 days.
Rats acquired cocaine SA during six daily 1 h long sessions

(short-access; ShA), under a fixed-ratio (FR)-1 schedule of
reinforcement, and each 0.05 ml infusion containing 0.25 mg
cocaine hydrochloride (MacFarlan, UK) was delivered over 5.7 s.
Thereafter, rats were given long-access (LgA) exposure to cocaine
over seven daily 6 h long sessions. Catheters were flushed with
saline-heparin before and after each session. Each session started
with the chamber being illuminated and the 2 levers inserted.
Active lever presses resulted in a cocaine infusion and a white cue
light cue for 5 sec followed by a 20 sec time-out period, during
which both levers were retracted. Inactive lever presses had no
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scheduled consequences. Active and inactive levers were ran-
domly assigned to the 24 rats.

Food reinforcement. Twelve operant chambers of the same
configuration and manufacturer as the cocaine SA chambers
were used. These only differed by the presence of food pellet
dispenser and magazine. Rats (n= 24) were trained to make a
lever-press response for a single food pellet (Noyes dustless
pellets, 45 mg, Sandown Scientific, UK) under an FR-1 schedule for
the first 6 daily 1 h sessions. Thereafter, rats responded under an
FR5 schedule for the remaining 7 days. Rats in this group did not
have a surgically-implanted i.v. catheter. In order to maximize
the time spent in the testing context, and in accordance with the
cocaine SA experiment, the post-reinforcement time-out period
was set to 60 sec. Inactive lever responses were recorded but
had no programmed consequences. The maximum number of
pellets available was adjusted to match the number of lever-
press responses made by the cocaine SA rats. Since rats consumed
the food pellets whenever they became available, the maximum
number of pellets determined the session duration.

Computational modeling
Several learning models were used to simulate the reversal
learning data, including three variants of the Q-learning model
[45], defined below and the three parameters: α, β, and κ.
Model parameters were fitted to each animal’s reversal data
individually and then compared using analysis of variance
(ANOVA). The learning rate α determines how quickly the model
adjusts to the expected value of a response following positive
or negative feedback. High α values allow the agent to increase

(or decrease) the expected Q-value placed on that response if the
response is followed by a reward (or not). The inverse temperature
parameter β regulates how much an agent explores by respond-
ing randomly or exploits what the agent learned about the
responses to date. A low β value would lead an agent to rely
on the expected Q-values of the responses and hence exploit
what they have learnt about the responses already. A high β value
would lead to exploration that under some circumstances may
lead to higher rewarded outcomes. However, in the present
reversal task, with deterministic outcomes, a high β value would
result in fewer rewards. Finally, the choice autocorrelation
parameter κ is a measure of “stickiness”, or how likely an animal
will perform the same response again regardless of reward
outcome. Values of κ close to 1 reflects an agent “sticking” to
the previous response while κ values close to −1 reflects choice
alternation.

Model-free Q-learning: model 1. Simple Q-learning is equivalent
to Rescorla-Wagner learning [30] whereby an agent assigns an
expected Q-value to each choice available; presently a left or right
response (L or R) at each trial t. The expected Q-value is updated
on each trial according to the following:

Qtþ1 ctð Þ ¼ Qt ctð Þ þ α � r � Qt ctð Þð Þ
where 0 ≤ α ≤ 1 is a learning parameter, Qt(ct) is the value of the
choice ct at trial t and r takes the value of 1 if the choice was
rewarded and a value of 0 if not. A large α implies faster updating
of the expected Q-values of a response after a trial is completed.
The probability of making the choice ct at trial t was calculated

Fig. 1 a Experimental timeline. Two cohorts of rats (each n= 24) were assessed for open field activity as a measure of anxiety followed by
spatial-discrimination reversal learning. Rats in cohort 1 were trained to intravenously self-administer cocaine under short- and long-access
schedules (ShA; LgA) while rats in cohort 2 (control group) responded for food reinforcement under identical schedules. Finally, rats in both
cohorts were re-assessed for reversal learning prior to sacrifice and post mortem qRT-PCR. b, c Frequency distribution plots of ‘total trials to
criterion’ for the cocaine and control rats. d qRT-PCR was used to assess gene expression in the OFC, dorsal and ventral striatum
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using the softmax rule:

P ct¼L Qt Lð Þ;Qt Rð Þjð Þ ¼ exp β � Qt Lð Þð Þ
exp β � Qt Lð Þð Þþ exp β � Qt Rð Þð Þ

where β is the inverse temperature parameter, with larger β values
leading to more exploration of the responses with lower Q-values.
On the other hand, smaller β values result in exploitation of the
response with higher Q-values.

Model-free Q-learning: model 2. Model 1 was extended to include
a separate α for learning from rewards and losses, αREWARD and αNO
REWARD, depending on whether the animal received a reward on
trial t. The decision probability was updated in the same way as in
Model 1.

Model-free Q-learning: model 3. A different variation of Model 1
included only one learning parameter α as in Model 1, but an
additional autocorrelation parameter in the observational part of
the model:

P ct ¼ L Qt Lð Þ; Qt Rð Þ; Lt�1; Rt�1jð Þ

¼ exp β � Qt Lð Þ þ κ � Lt�1ð Þ
exp β � Qt Lð Þ þ κ � Lt�1ð Þ þ exp β � Qt Rð Þ þ κ � Rt�1ð Þ

whereby a larger κ results in greater probability of the choice
ct at trial t being the same as the choice ct at trial t−1. The
same approach was applied to the right sided choice.

Model fitting. The probability of Data D (a sequence of choices
and rewards) is the product of the individual probabilities of
making a choice ct at trial t:

P DataD ModelM; parameters θjð Þ ¼ P D M; θjð Þ¼
Y

P ctjQt Lð Þ; Qt Rð Þð Þ

Model space was treated as discrete, using the following
range of parameters: 0.001 ≤ α ≤ 1 with a step size of 0.08;
0.005 ≤ β ≤ 5 with a step size of 0.08 and −1 ≤ κ ≤ 1 with a step
size of 0.08. Parameter range was chosen based on the
a priori expectations regarding α and κ, as well as empirical
information about best fit β parameters. Best fit parameters
(bθM) were chosen to maximize the log-likelihood of the
observed data for each participant over all parameter sets (θ) by
finding the maximum of the probability density function,
argmax

θ
P D M; θjð Þ.

Model comparison. Nested models were compared using the
likelihood ratio test that contrasts the log-likelihood of the data

Fig. 2 a Active and inactive lever-press responses of rats trained to self-administer cocaine. Data shown are means ± SEM. Since rats
responded on a fixed-ratio 1 schedule, the number of lever presses was equivalent to the number of infusions received. Rats were divided into
two groups: high escalation (HE) and low escalation (LE), based on a median split of escalation ratios. The escalation ratio was calculated as the
ratio of the average number of active lever responses on days 12 and 13 to the number of lever responses on day 7 (D7—the first long-access
session). During the first 6 days rats were given short-access to cocaine (1 h daily sessions) under a fixed-ratio-1 (FR-1) schedule of
reinforcement. On days 7–13 inclusive, access to cocaine was increased to 6 h under an FR-1 schedule. b Escalation ratios for each animal
in the high and low escalation groups, based on a median split (independent samples t17= 4.2, p= 0.0006). c Individual reversal learning
scores (total trials to criterion) before and after cocaine exposure in LE and HE rats compared with control rats. Data are means ± SEM.
*p < 0.05. **p < 0.01. Relationships between anxiety and escalation of intravenous cocaine self-administration are shown in plots (d, e),
including a line of best of fit with 95% confidence intervals in dotted lines. A lower anxiety score equates to increased anxiety in the open
field arena. d Significant positive relationship between escalation ratio during the first hour of cocaine self-administration and anxiety scores
(r2= 0.29, p < 0.05), consistent with significant group differences in anxiety scores between LE and HE rats (e)
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given the best fit parameters (bθM):

d¼2 � log P D M2; bθM2

���
� �

� log log P D M1j ;bθM1

� �h i

As d follows the χ-square distribution, the difference in data
likelihood associated with increasing the number of parameters
from two (α, β) to three (αREWARD, αNO REWARD, β or α, β, κ) is
significant at p= 0.05 for d > 3.842. An example of model
predicted probability of choosing left or right (for bθM) together
with the sequence of observed responses and rewards is shown in
Fig. 3g. A biased measure of model fit, pseudo r2, was computed as
follows:

pseudo r2¼
log P D M; bθM

���
� �

� 0:5n

0:5n

where n represents the number of trials and the probability of
observing the data when the best fit parameters are contrasted
against the probability of observing the data at random (0.5n).
Although pseudo r2 will increase with the number of parameters
fitted and does not penalize overfitting, it can be useful in linking
the modelling results to more traditional statistical methods such
as linear regression. Finally, the Bayesian Information Criterion
(BIC) provided an alternative measure of model fit:

BIC¼log P D Mjð Þð Þ � log P D M;bθM
���

� �� �
� n

2
logm

where n= number of free parameters and m= number of
observations. We implemented this analysis using in-house
Matlab scripts (R2016a), which can be found in the following link:
https://github.com/peterzhukovsky/reversal_learning).

Postmortem gene expression
Aliquots of brain tissue (diameter 1.0 mm) were extracted from
150 μm frozen slices. Their location is shown in Fig. 1d. miRNeasy
Mini kit (Qiagen, UK) with additional DNAse digestion was used to
extract RNA from the frozen samples. RNA yields were quantified
using a Nanodrop 2000 spectrophotometer (Thermo Fisher, UK).
First-strand cDNA was synthesized from 5 ng total RNA using
random hexamer primers from the RevertAid First-Strand cDNA
Synthesis Kit (Thermo Scientific, UK) and diluted to 2.5 ng per μl.
SYBR green-based quantitative real-time polymerase chain reac-
tion (qRT-PCR) was performed on the CFX96 Touch Thermal Cycler
(Bio-Rad, UK). PCR on duplicates was performed using 0.25 mM of
each primer. Efficiencies were calculated using linregPCR and the
ΔΔCt method [46], normalizing against two reference genes
(Tubulin and Β-Actin) and the mean of the food control group.
Primer pairs were purchased from Sigma–Aldrich, as detailed
previously [43]. PCR runs were set up as follows: 95 °C for 5 min; 40
cycles at 95 °C for 10 s; 60 °C for 10 s, and 72 °C for 1 min.

Statistical analyses
All statistical analyses were carried out using SPSS (IBM version
23). Rats assigned to the cocaine SA experiment were segregated
into two groups (n1= 9; n2= 10) using a median split based on
the escalation ratio, defined as the proportion of infusions taken
on the last 2 days of LgA to the infusions taken on the first day of
LgA. A mixed-effects ANOVA with session (13 levels) and cocaine
escalation group (High vs Low) as within- and between-subject
factors, respectively, was used to confirm the different cocaine
self-administration profiles. Further, two-way ANOVAs were used
to assess the effect of group (controls vs high vs low cocaine
escalation) on reversal performance, including the total number of
trials to reach criterion, the number of perseverative errors (7/10
incorrect) to criterion; lose-shift and win-stay probabilities; alpha,
beta and kappa model parameters. While group was used as a
between-subject factor, time of testing (at baseline or post-

cocaine/food SA) was used as within-subject factor. A mixed-
effects two-way ANOVA was used to test for the between-subject
effects of group (controls, HE, and LE) and the within-subject
effect of region (OFC, VS, and DMS) on mRNA expression of each
mRNA receptor subtype (DRD2, DRD1, HT2AR, and HT2CR). LSD
tests were chosen for post hoc comparisons due to the increased
power. If sphericity was violated as indicated by Mauchly’s test, a
Greenhouse-Geisser correction was used. Linear regressions were
used to test for associations between reversal learning, cocaine
escalation, and anxiety scores. Statistical significance threshold
was set at p < 0.05.

RESULTS
High escalation of cocaine SA impairs reversal learning following
8 days of withdrawal
Following the assessment of reversal learning and anxiety, rats
acquired i.v. cocaine SA over 6 consecutive days (D1-D6), as shown
in Fig. 2a. Over the 13 days of cocaine SA rats responded
differentially on the active and inactive levers and in response to
increased cocaine availability (D7-D13) increased their responding
for cocaine as shown by a significant increase in the number of
active lever-press responses during this period (F2.93,132= 5.0, p=
0.004, η2= 0.19). Two groups of rats were subsequently formed—
low escalation (LE) and high escalation (HE)—based on a median
split of escalation ratio, calculated as the mean number of
infusions during days 12 and 13 divided by the number of
infusions on day 7 (i.e., the first day of long-access exposure). The
mean (±1SEM) escalation ratio for LE and HE rats was 1.2 ± 0.04
and 2.1 ± 0.19, respectively (Fig. 2b). However, the groups did not
differ in terms of the total amount of cocaine taken during the LgA
sessions (total of 165.4 mg/kg/rat and 176.4 mg/kg/rat for LE and
HE rats, respectively, p > 0.6). A separate group of control rats (n=
23) responded for food reinforcement and were matched to the
cocaine group in terms of the maximum number of lever-press
responses they could make.
We next assessed whether variation in reversal learning

predicted cocaine escalation and, in turn, what effect long-
access cocaine exposure had on reversal learning itself, measured
8 days after the end of self-administration. As shown in Fig. 2c, rats
were generally faster to reverse when assessed for the second
time on the reversal learning task (i.e., made fewer trials to
criterion). Thus, a mixed-effects ANOVA with exposure time (pre-
versus post-food/cocaine) and group (control, LE, and HE) as
within- and between subjects factors, respectively, revealed a
significant main effect of exposure time (F1,38= 7.74, p= 0.008)
and a trend for an interaction between group and exposure time
(F2,38= 3.1, p= 0.056). Post-hoc LSD tests revealed that while the
number of trials to criterion significantly decreased during the
second (‘post’) assessment in control and LE rats, this was not the
case in HE rats. No significant differences between the three
groups were found at baseline or post-cocaine (post hoc LSD, p >
0.05).
An analysis of perseverative errors revealed an interaction

between time and group (F2,38= 3.3, p= 0.047). The low
escalation group improved over time (LSD, p= 0.007), resulting
in significant group differences between LE and HE (LSD, p=
0.035) and LE and controls (LSD, p= 0.049) during the second
assessment. However, baseline (i.e., ‘pre’) levels of perseverative
responding were not significantly different between control, LE,
and HE rats. These findings indicate that rats with a history of
escalated cocaine intake (HE) failed to show the expected
improvement in behavioral flexibility after repeated testing on
the reversal learning task.

Anxiety but not reversal learning predicts cocaine escalation
Figure 2 summarizes the dimensional relationships of anxiety with
cocaine escalation. Anxiety was positively related to the escalation
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of cocaine SA (F1,17= 9.3, r2= 0.354, p= 0.007, Fig. 2d). Thus,
anxiety scores were significantly different between future LE and
HE rats (Fig. 2e). However, using linear regression models, we
found neither a relationship between baseline behavioral
flexibility (total trials to criterion) and escalation ratio (r2= 0.01,
p > 0.05, supplementary fig. 1A) nor a significant relationship
between anxiety and behavioral flexibility (r2 < 0.06, p > 0.05,
supplementary fig. 1B).

High cocaine escalation decreases exploitation of previously learnt
choice values and increases choice autocorrelation
Adding a third parameter in models 2 and 3 significantly improved
the model fit compared with model 1. Model 3 provided a better
fit of the data derived from the cocaine group than model 2
(average pseudo r2= 0.16 compared to pseudo r2= 0.14, and
average BIC= 66.2 compared to average BIC= 67.6, respectively)
while model 2 provided a better fit of the data derived from the
control group than model 3 (pseudo r2= 0.20 compared to pseudo
r2= 0.21, and average BIC= 69.8 compared to average BIC= 70.3,
respectively). Model 3 was therefore chosen as the preferred

model given its superiority in modeling the post-cocaine data, the
main dataset of interest, and as a means to assess choice
autocorrelation. A fourth model was also tested that included four
parameters: a reward learning rate, a non-reward learning rate,
beta, and kappa. This model failed to improve upon the fit of
model 3 and hence was not included in the analysis (Supplemen-
tary Table 1).
Figure 3 reports individual modeled parameters for control, LE,

and HE rats before and after cocaine SA. In addition to a significant
main effect of time (F1,38= 9.5, p= 0.004) and group (F1,38= 4.7, p
= 0.015), a significant interactive effect of group (controls vs LE vs
HE) and time (pre vs post-cocaine) was found on beta (F2,38= 3.3,
p= 0.048) but not on alpha and kappa (F2,38= 1.2, p= 0.33, F2, 38
= 2.2, p= 0.13). Post hoc comparisons revealed no significant
group differences in α, β, or κ prior to cocaine exposure (all p > 0.3,
Fig. 3a–c). However, following cocaine self-administration, HE rats
showed a significantly increased β value (lower exploitation,
Fig. 3e) compared with controls (LSD, p= 0.0002) and LE rats (p=
0.024) together with a significantly increased κ value (an increased
tendency to repeat the last response, Fig. 3f) compared with

Fig. 3 Modelling variables of learning and response flexibility on the spatial reversal learning task before and after intravenous cocaine self-
administration compared with control rats. Data are means ± 1SEM. No significant differences in α, β and κ were observed in future LE and HE
rats compared with control rats (a–c, respectively). Whereas the rate of learning of a response after the completion of each trial (α) was not
significantly affected by cocaine exposure (d), a significant increase in β (e) and κ (f) was observed in HE rats (*p < 0.05; **p < 0.01). Thus, HE
rats failed to exploit what they had previously learnt (increased β) and showed an increased tendency to make the same response as the
previous trial (increased κ). An example of the model fit is shown in the lower panel (g) with individual left and right responses in the upper
yellow traces alongside the rewarded side (violet trace) and in the lower trace the modelled probabilities of the same animal making a left
or right response using the modelled values of α, β and κ
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control and LE rats (p= 0.049). Importantly, neither LE nor HE rats
differed from controls in the rate of learning parameter, α, after
cocaine SA (p > 0.1, Fig. 3d).

Cocaine exposure has differential effects on lose-shift and win-stay
behavior
A mixed effect ANOVA revealed a significant interactive effect of
time (‘pre’ vs ‘post’) and group (controls vs LE vs HE) on lose-shift
probability (F2,38= 5.2, p= 0.01, Fig. 4), but not on win-stay
probability. Post hoc LSD tests revealed that this effect was driven
by a significant decrease in lose-shift probability in HE rats (LSD,
p= 0.014) compared with control and LE groups (LSD, p= 0.004,
Fig. 4b) and notably was not present before the rats were exposed
to cocaine (Fig. 4a). In contrast, win-stay probability was
unaffected by cocaine exposure (Fig. 4e) and was no different
between control, LE, and HE rats prior to cocaine SA (Fig. 4d).
Using linear models, we found no significant relationship between
escalation ratio, assessed over 6 h sessions, and incorrect response
latencies, defined as time to initiate a new trial after the end of the
previous trial, (r2= 0.13, p= 0.14, Fig. 4c) or correct response
latencies (r2= 0.06, p= 0.8, Fig. 4f).

Differential effects of cocaine on the expression of genes
encoding DA and 5-HT receptors
Figure 5 shows gene transcription levels of candidate DA and 5-HT
receptors in the OFC, ventral striatum (VS), and dorsomedial
striatum (DMS). Two-way ANOVA with group (control, LE, and HE)
and region (OFC, VS, and DMS) revealed significant interactions
between region and group for DRD2 (F4,113= 4.6, p= 0.002,
Fig. 5a) and HT2CR (F4,113= 3.2, p= 0.017, Fig. 5d), but not
DRD1 (F4,82= 2.3, p= 0.06, Fig. 5b) and HT2AR (F4,82= 1.5, p=

0.20, Fig. 5c). Post hoc LSD contrasts revealed significant increases
in DRD2 expression in the VS of the HE group and in the DMS of LE
and HE groups compared with the control group. DRD1 expression

in the OFC significantly decreased in the HE groups compared
with the control group, whereas HTR2A expression increased
significantly in both escalation groups in the OFC compared with
controls. HTR2C expression was significantly decreased in the VS
of HE rats compared with controls.

DISCUSSION
Our findings demonstrate several features and consequences
of long-access cocaine self-administration that selectively affect
how negative and positive feedback signals are processed to
guide behavior in a reversal learning task. In agreement with our
previous findings [41], we found that rats exhibiting high baseline
trait anxiety showed greater escalation of cocaine. These rats
were also more likely to perseverate with their previous response
regardless of whether the outcome was rewarded or not.
Importantly, high cocaine escalation rats learned as quickly as
control and low cocaine escalation rats from the outcome of
each trial but were unable to exploit this information flexibility
to adjust behavior when the stimulus-reward contingencies were
reversed. These findings support and extend previous findings
that cocaine impairs insight and makes actions less sensitive to
response outcomes [1, 47] by showing that high rates of cocaine
self-administration, associated with trait anxiety, cause a selective
disruption in the way negative feedback is used to guide behavior
to a food incentive.
Substantial evidence suggests that anxiety can be both a

precursor and consequence of drug abuse [48–51], with the
perpetuation of drug use possibly reflecting the self-medication of
chronic anxiety states [52]. Increased anxiety in rats predicts the
propensity to develop a conditioned place preference for cocaine
[53], increased oral and intravenous cocaine escalation [40, 41],
and increased motivation to self-administer cocaine [39]. These
findings were supported by the present study with increased

Fig. 4 Lose-shift and win-stay probabilities on the spatial reversal learning task before and after intravenous cocaine self-administration
compared with control rats. Data are means ± SEM. Prior to cocaine exposure there were no significant differences in lose-shift and win-stay
probabilities between any of the groups (a, d). However, in rats exhibiting high escalation, lose-shift probabilities significantly decreased
compared with low escalation and control rats (b) unlike win-stay probabilities (e). Escalation ratios did not significantly correlate with
incorrect (c) or correct (f) response latencies. Shown are the lines of best fit (solid lines) and 95% confidence intervals (dotted lines)
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cocaine escalation rates in highly anxious rats particularly during
the first hour of each session. However, unlike our previous study
[42], where anxiety was assessed using an elevated plus maze
rather than an open field, we found no relationship between trait
anxiety and behavioral flexibility. This discrepancy may reflect the
different measures of anxiety used in each case and that only 15%
of the variance in perseverative errors was explained by trait
anxiety in our earlier study. Whereas trait anxiety in humans has
long been associated with a preferential bias toward negative
external cues [54, 55], and impaired set shifting [56, 57], deficits in
task-switching reportedly only clearly manifest when attentional
control is challenged in highly anxious individuals [58–60]. Thus,
the low attentional load of serial spatial reversal learning involving
intra-dimensional rather than extra-dimensional shifting [61] may
have impeded the expected relationship between trait anxiety
and behavioral flexibility to have been reliably detected in the
present study.
An important objective of this research was to investigate the

nature of the widely reported impairing effects of cocaine on the
flexibility of goal-directed behavior [17, 28, 62–65]. Our finding
that lose-shift behavior is decreased in HE rats who had some
reversal experience is consistent with findings in rats exposed to
methamphetamine [34, 35] and in human addicts [66–68]. Rats
self-administering methamphetamine have also been reported to
show impaired learning from unrewarded outcomes, resulting in
reduced model-free learning after stimulant treatment [34] and
after non-contingent methamphetamine administration [35]. In
addition, model-based impairments have been reported in rats
during reversal [34] and habitual behavior on reinforced learning
tasks has been reported in humans [67]. In the present study we
used a model-free learning algorithm to explain performance on a
spatial serial reversal task. By assessing reversal learning before
and after response-contingent cocaine administration and using
the reinforcement learning framework of Q-learning [45], we were
able to define the effects of prior history of escalated cocaine
intake on behavioral flexibility measured 8 days after the end of
cocaine treatment. Our results demonstrate that rats in the

control, low, and high cocaine escalation groups learnt from
negative and positive feedback on any given trial and appro-
priately updated internal representations of choice values, as
revealed by no significant change in the alpha modelling
parameter, both before and after food or cocaine exposure.
Nevertheless, important differences became evident in the way
the different groups of rats exploited the value assigned to each
choice. This was particularly the case for HE rats, which were more
likely to perseverate with their previous choice regardless of the
received outcomes. As this deficit was not present prior to drug
exposure it was likely the consequence of cocaine itself.
Our analysis of lose-shift and win-stay probabilities revealed

that those rats more prone to escalate cocaine self-administration
subsequently were less likely to switch behavior on trials that were
not rewarded in the reversal learning task. This deficit was clearly
the consequence of prior cocaine exposure and did not extend
to trials with rewarded outcomes. Maladaptive exploration, as
indexed by increased beta and kappa values in HE rats, was also
significantly associated with decreased lose-shift probabilities (see
supplementary table 2), providing a behavioral validation of the
modeling parameters. The relationship between lose-shift prob-
abilities and kappa in cocaine and control rats (supplementary
table 3) is mathematically plausible since both measures attempt
to capture the association between an agent’s choice on a given
trial with their choice on the previous trial. These findings reveal a
hitherto unreported deficit in behavioral flexibility caused by
cocaine that was restricted to rats with a greater propensity
to escalate cocaine intake. Notably, this deficit was present 8 days
after the last cocaine session, suggesting it may be caused by
relatively long-lasting neural changes, consistent with other
studies [28, 62, 69].
Previous research has shown that stimulant addiction in

humans is associated with increased perseveration on reversal
learning tasks [70, 71]. The present findings go some way to
explaining the nature of this deficit whilst building on the earlier
finding that cocaine affects the utilization of expected reward
value to guide behavior [1], possibly due to impaired executive

Fig. 5 mRNA expression of DRD2 (a) DRD1 (b), HTR2A (c), and HTR2C (d) in the orbitofrontal cortex (OFC), ventral striatum (VS), and
dorsomedial striatum (DMS) of control (n= 23), LE (n= 9), and HE (n= 10) rats. *p < 0.05 versus controls. Data are means ± 95% CIs
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control over action selection. Specifically, our computational
analysis revealed that rewarded and non-rewarded trials were
differentially exploited in rats with a history of high-escalation
cocaine self-administration. The finding that rats that more readily
escalate cocaine self-administration do so because they become
insensitive to the anxiogenic properties of cocaine is consistent
with this account [72–74]. However, it should be noted that whilst
anxiety predicted increased rates of cocaine self-administration,
anxiety per se did not predict the failure of HE rats to exploit
negative feedback to guide behavior. Our findings suggest
therefore that interactive effects between trait anxiety and
cocaine exposure were somehow responsible for the inability of
HE rats to exploit reward value during the reversal session.
Reversal learning has been widely shown to depend on

monoaminergic mechanisms in the OFC and striatum [75–80]
with substantial evidence implicating D2 receptors in the striatal
indirect pathway [81–85]. However, rather than decreasing DRD2
expression in the striatum, as predicted from prior positron
emission tomography imaging studies in humans and other rats,
[86–88], striatal DRD2 expression increased significantly in the
DMS after 8 days of abstinence from cocaine in LE and HE rats.
This effect has been reported before after-cocaine exposure and
may reflect a delayed compensatory rebound in D2 receptor
regulation [89–91]. Since DRD2 expression in the DMS increased
in both HE and LE rats, this was presumably the consequence
of prior cocaine exposure rather than a contributing factor to the
failure of HE rats to utilize outcome value during reversal.
However, without additional studies to measure protein levels it
is unclear whether increased DRD2 expression resulted in
increased D2 receptor density. By contrast, HE rats exhibited
increased DRD2 and decreased HTR2C expression in the ventral
striatum, with a corresponding reduction in DRD1 expression in
the OFC. However, one should be cautious about linking these
differentially-expressed genes for OFC-striatal circuit function and
specifically whether they contributed to the failure of HE rats
to exploit previously learnt outcome value, especially as qualita-
tively similar but statistically non-significant effects were also
observed in LE rats. Nevertheless, highly-impulsive rats that
subsequently developed persistent cocaine-taking in the face of
aversive outcomes [92] also exhibited reduced HTR2C expression
in the ventral striatum after long-access cocaine SA [93]. Since
the 5-HT2C receptor has been shown to modulate learning from
negative feedback in the context of reversal learning [94, 95],
impaired 5-HT2C receptor transmission may have contributed
to the failure of HE rats to process negative feedback in the
present study.

Synthesis and conclusions
The present findings add to the growing body of evidence that
cocaine impairs how negative feedback is used to guide behavior.
Using traditional and computational methods of analysis, we
report that rats exposed to response-contingent cocaine, and
which more rapidly escalate intake, were able to learn the value of
changing reward contingencies but were compromised in
exploiting this knowledge to guide appropriate actions on a serial
reversal task. Previous research has shown that the encoding of
expected outcomes to acquired values depends on interactions
between the OFC and basolateral amygdala [96] and that cocaine
disrupts insight into the consequences of behavior by OFC-
dependent mechanisms [47]. Abnormalities within this circuitry
may thus be relevant to understanding why individuals addicted
to drugs persist with drug consumption despite adverse
consequences of continued drug use.
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