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Abstract 

Structure-guided drug discovery emerged in the 1970s and 1980s, stimulated by the 3D-structures of 

protein targets that became available, mainly through X-ray crystal structure analysis, assisted by 

development of synchrotron radiation sources. Structures of known drugs or inhibitors were used to 

guide the development of leads.   The growth of high-throughput screening during the late 1980s and 

the early 1990s in the pharmaceutical industry of chemical libraries of hundreds of thousands of 

compounds of molecular weight of ~500 Da was impressive, but still explored only a tiny fraction of 

the chemical space of the predicted 1040 drug-like compounds.  The use of fragments with molecular 

weights less than 300 Da in drug discovery, not only decreased the chemical space needing exploration 

but also increased promiscuity in binding targets. Here we discuss advances in X-ray fragment 

screening and the challenge of identifying sites where fragments not only bind but can be chemically 

elaborated while retaining their positions and binding modes. We first describe the analysis of fragment 

binding using conventional X-ray difference Fourier techniques, using M. abscessus SAICAR 

synthetase (PurC) as an example. We observe that all fragments occupy positions predicted by 

computational hotspot mapping. We compare this with fragment screening at Diamond Synchrotron 

Light Source XChem facility using PanDDA software, which identifies many more fragment hits, only 
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some of which bind to the predicted hotspots. Many low occupancy sites identified may not support 

elaboration to give adequate ligand affinity, although they will likely be useful in drug discovery as 

“warm spots” for guiding elaboration of fragments bound at hotspots.  We discuss the implications of 

these observations for fragment screening at the synchrotron sources. 
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Abbreviations 
ATP: adenosine 5’-triphosphate; 
CAIR: 5-amino-1-(5-phospho-D-ribosyl) imidazole-4-carboxylate;  
DSF: differential scanning fluorimetry; 
FBDD: fragment-based drug discovery;  
HTS: high throughput screening; 
Mab: Mycobacterium abscessus;  
NMR: nuclear magnetic resonance; 
PanDDA: Pan-Dataset Density Analysis; 
SAICAR: phosphoribosylaminoimidazole-succinocarboxamide;  
 
Background 

Structure-guided drug discovery has its origins in both academia and the pharmaceutical industry in the 

1970s (for reviews see (1, 2)). The need to modify and elaborate natural compounds and other molecules 

found to inhibit target proteins began to stimulate interest in the crystal structures of proteins that were 

becoming available (3). The structural information of aspartic proteinases such as renin as a target for 

anti-hypertensives (4, 5) and HIV protease in the 1980s for AIDS (6, 7) demonstrated the value of 

detailed knowledge of protein-ligand interactions in the design of new compounds. In parallel in the 

late 1980s and 1990s the development of High Throughput Screening (HTS) led to construction of 

chemical libraries of millions of compounds. However, the huge size and diversity of “chemical space”, 

estimated to be 1040 molecules for drug-like compounds of molecular weights of ~500 Da, began to be 

a focus, as the pharma industry realized that existing large chemical libraries explored only a very small 

part of chemical space. An alternative approach to the challenge was found in decreasing the size of the 

molecules from molecular weight of ~500 Da to less than 300 Da, which not only decreased the size of 

chemical space needing exploration, but at the same time increased their promiscuity in binding targets. 

This laid down the basic principles of fragment-based drug discovery (FBDD) [see (2), for review]. 

 

Early fragment screening approaches included those at Abbott using ligand-based NMR (8) and at 

Astex using X-ray analysis (9), developed initially by exploiting high-throughput analysis of cocktails 

of six to ten fragments soaked into apo-protein crystals (10).  Knowledge of the structure of the complex 
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of the fragment with the target protein allowed the initial use of small, often non-chiral compounds, 

which were optimized using structure-guided approaches to make specific interactions and to introduce 

chirality into the molecules. The fragment hits were capable of achieving high binding efficiency per 

atom and often better physicochemical properties in comparison to those from HTS, which exploits 

much larger libraries of ~105 or even 106 compounds. 

 

With encouragement and funding from the Bill and Melinda Gates Foundation in 2006 the structure-

guided fragment-based drug discovery developed in Cambridge was spun back from Astex into the 

University with an initial focus on targeting Mycobacterium tuberculosis resulting in some success in 

producing lead and candidate molecules (11). Structure-guided fragment-based drug discovery is 

particularly well suited to academia in requiring inexpensive fragment libraries and depending on 

molecular biology, preparative biochemistry, structural, computational and biophysical methods 

available in academic structural-biology laboratories. This encouraged the extension of its use in 

targeting other mycobacterial targets including Mycobacterium abscessus, an increasing problem for 

cystic fibrosis patients, and Mycobacterium leprae where leprosy remains a major challenge in many 

parts of the world, with 211,973 new cases reported globally in 2015 (12). 

 

During the past four decades, synchrotron radiation facilities have played an increasingly central role 

in structure-guided drug discovery.  The pharmaceutical industry was initially sometimes hesitant to 

exploit the facilities, because they concerned crystals involving compounds with large intellectual 

property (IP) value to be sent outside the company. In academia this was less of a challenge, with the 

focus often being on early discovery rather than securing IP and in the study of neglected diseases, 

where the financial returns are unlikely to be great given their prevalence in developing countries or 

small patient populations.  However, pharmaceutical industry has become a major driver for increased 

automation at synchrotrons world-wide, often using beamlines built by individual companies.  Along 

with continuous improvements in beam intensity, detector technology, robotic sample handling and 

data analysis software, the speed and accuracy of the diffraction experiments have been systematically 

transformed (13).  These developments have made it possible to make fragment screening by X-ray 

structure routinely and widely accessible. 

 

 A major advance has been the XChem facility at the Diamond synchrotron (14) which has implemented 

further streamlining of crystal preparation (15). This development has been combined with the new 

Pan-Dataset Density Analysis (PanDDA) tool (16) that increases sensitivity, revealing fragments in 

even partially occupied binding sites by contrasting multiple unbound and ligand-bound-protein X-ray 

data sets to extract signals for bound fragments.  
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Although there has been intense use of XChem (14) and PanDDA software (16, 17) at Diamond and an 

awareness that many more fragment-binding sites tend to be identified, there has been little work on 

specific targets in comparing the new approach with the earlier one using standard difference Fourier 

X-ray analysis, usually assuming full occupancy of ligands on the same target protein. Here we discuss 

the use of an ongoing structure-guided fragment-based drug-discovery programme to compare the two 

approaches. The target selected, PurC, or phosphoribosylaminoimidazole-succinocarboxamide 

(SAICAR synthetase) from M. abscessus, is involved in the biosynthesis of purine nucleotides (18). 

The enzyme catalyzes the eighth step of the de novo purine biosynthesis pathway in bacteria and fungi, 

mediating the ligation of L-aspartate with 5-amino-1-(5-phospho-D-ribosyl) imidazole-4-carboxylate 

(CAIR) in the presence of ATP and Mg2+ to form SAICAR, as shown in Figure 1A . The importance 

of de novo purine biosynthesis in maintaining viability of cells and differences in structural architecture 

of bacterial and human PurC orthologs makes it an ideal target for anti-microbial agents (19-21), as 

further illustrated in the supplementary data and Figure S1. 

In this study, we focus on the fragment binding modes of MabPurC defined by X-ray analysis at the 

synchrotron using the standard difference Fourier approach, following preliminary screening of a 

fragment library using biophysical techniques such as differential scanning fluorimetry (DSF) and 

isothermal titration calorimetry (ITC). We then describe recent experiments on PurC at the Diamond 

light source at the Rutherford Laboratory using the high-throughput and roboticised X-ray screening 

method, XChem, developed by von Delft and colleagues (14). This, together with PanDDA software 

(16, 17), exploits the multiple apo-protein crystal structures from the synchrotron X-ray screening that 

have no fragments bound, resulting in a more accurate description of both the apo-enzyme structure 

and the fragment binding and occupancy in the complex.  

We also compare the experimental fragment-binding sites derived using the two X-ray approaches with 

those predicted by the use of by Fragment Hotspot Maps (22), where hot spots are defined 

computationally by their ability to bind a small molecule fragment. The software exploits experience 

of fragment-binding experiments over many years indicating that binding sites tend to have polar donor 

and/or acceptor binding capability as well as non-polar regions in close proximity. It is assumed that 

this limits not only the translational but also the rotational entropy of water molecules at the sites in the 

apostructures, so making the release of the “unhappy” waters more entropically favorable and their 

replacement by a fragment more favored. The entropic gain in release also tends to be further increased 

by release of fragments from deeper pockets, where rotational freedom is further limited. These features 

were built into Fragment Hotspot Maps, developed by Radoux et al. (22). 

Here the focus is to compare the new developments in fragment-based drug discovery at XChem with 

those used over the past two decades, mainly aided by synchrotron radiation, using MabPurC as an 



                                                                                     	  

	   5	  

example of a drug discovery target. We briefly describe the information about PurC activity and 

structure, which is necessary for understanding the fragment binding using the two experimental 

approaches. We do not discuss the next stages of fragment-linking or chemical elaboration, which are 

being pursued in parallel for PurC as a target for combatting infections by M. abscessus in cystic 

fibrosis.  

Results  

Overall structure of Mycobacterium abscessus PurC & substrate binding 

The apo-structure of MabPurC was solved and refined at 1.5 Å resolution.   The crystals are similar to 

those of a previously determined structure of MabPurC with a monomer in the asymmetric unit (Figure 

1B) (PDB 3R9R, Seattle Structural Genomics Consortium for Infectious Diseases). Mycobacterium 

abscessus PurC (MabPurC), like other PurC orthologues, is a globular protein consisting of two lobes 

spanning a long catalytic cleft.  To investigate further the substrate interactions in the PurC catalytic 

cleft, the crystal structure of Mycobacterium abscessus PurC in complex with ATP was solved at 1.2 Å 

resolution, following co-crystallization of the protein with ATP. The resulting structure shows that ATP 

occupies one end of the active site cleft with the phosphate groups extending towards a positively 

charged pocket towards the middle of cleft. Superposition of the MabPurC: ATP structure  with that of 

E. coli PurC: CAIR bound form (PDB code 2GQS) shows that the catalytic cleft contains sites for ATP 

at one end and CAIR at the other (Figure 2 B). It has been proposed previously that L-aspartate may 

occupy the space between ATP and CAIR (23, 24).  

 
 

Figure 1: A) Schematic depiction of the enzyme reaction catalysed by PurC (SAICAR synthetase) in 

the bacterial Purine biosynthesis pathway. B) Crystal structure of apo form of M. abscessus PurC 

refined at 1.5 Å resolution, coloured by secondary structure. 
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Initial Fragment Screening & Characterization of Hits 

Our initial fragment screening approach used methods developed in Cambridge in Astex and in the 

University (for a review see 11). A library of 960 small molecule fragments was screened by differential 

scanning fluorimetry (DSF), resulting in 43 hits, which were then investigated by X-ray crystallography 

using the standard difference Fourier approach. MabPurC apo-crystals were soaked with each fragment 

in individual experiments. The eight fragment hits identified form the resulting crystal structures were 

all found to occupy the ATP pocket of MabPurC, recapitulating key binding interactions of the adenine 

ring (Figure 2 & Supplementary data Table 1) in the structure of MabPurC. 

 

As illustrated in Figures 2 C & D, the binding modes of fragments 1 and 2 are similar to those of the 

ATP adenine ring in this region. These include H-bond interaction to the His69 side chain and to the 

backbone amide nitrogens of Leu93 and Asp213 and backbone carbonyl of Arg91, and many water-

mediated hydrogen bonds in the active site. π-interactions of the fragments are mainly mediated by the 

side chain of Met95 at the edge of the active site cleft. Many fragments also engage in stacking and 

hydrophobic interactions with the side chains of Leu27 at the top of the cleft. However, marked 

differences were observed in the orientation of the planar ring of the fragments at the adenine pocket 

depending on the ring variant and chemical substitutions. The binding interactions of all the above 

fragment hits with MabPurC were further characterised by ITC and the calculated Kd values ranged 

from 178 – 971 µM (Supplementary data Table 1). 
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Figure 2: M. abscessus PurC in complex with natural ligands and fragment hits. A) Crystal structure 

of Mab PurC in complex with ATP (blue) showing the position of fragments 1 (pink) & 2 (green) with 

respect to ATP adenine ring; B) Crystal structure of Mab PurC in complex with ATP (blue) and the 

inferred position of substrate CAIR (green) in MabPurC derived by superposition with E. coli PurC 

(PDB code 2GQS); C) fragment 1 and D) fragment 2, showing interaction of fragment hits (yellow 

stick) with residues at the ATP site (grey stick). Hydrogen bonding interactions are depicted in blue, π- 

interactions in black and hydrophobic contacts in red dotted lines respectively. The corresponding 2D 

structures of fragments and biophysical data are shown below.  
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Computational hotspot mapping of M. abscessus PurC  

The MabPurC structure was further analysed using Fragment Hotspot Maps	  (22), with the objective of 

investigating the binding propensities of ligands.  Work with M. abscessus, M. leprae and M. 

tuberculosis (Thomas SE, Mendes V, Vedithi SC and Blundell TL, unpublished) indicates that the 

software is able to reproduce natural ligand sites when using contour levels of 17 and above. Contour 

level 14 additionally reveals “warm spots” where a fragment may not bind but where further interactions 

can stabilize a ligand as it is grown from a fragment bound to an adjacent hotspot. 

 

Superposition of the resulting hotspot map, contoured at 17, with the previously defined ATP- and 

CAIR-bound structures show three hotspot regions within the active site cleft (Figure 3A) and an 

additional small hotspot pocket on the distal side (Figure 3B). The first hotspot is in the ATP adenylyl-

binding region, with residues 91RRLDM95 and His 69 providing three H-bond acceptor and one donor 

interactions. Most fragments that bind in this pocket also satisfy the hydrogen bond donor (blue), 

acceptor (red) and hydrophobic (yellow) interactions of hotspot 1.  

 

When the same map is observed at contour 14, an additional “warm spot” (warm spot 

 2) region can be seen adjacent to the flexible loop and β-hairpin at the end of the hotspot 1 with residues 

such as Arg17 binding the ATP phosphate groups (Figure 3C). This region thus provides a potential 

area for developing fragments from hotspot 1 further into the catalytic cleft. At hotspot 3, a possible 

hydrogen bond donor was observed matching the CAIR phosphate bind site, although the hydrophobic 

feature (yellow) of the hotspot is not well defined, unless when observed at contour 14, potentially 

explaining why no fragments were seen to bind in soaking experiments. The hotspot 4 at the edge of 

the catalytic site further beyond the ATP and CAIR binding sites and the additional hotspot 5 on the 

rear of the protein (Figure 3 B & D) could represent an allosteric site, the biological relevance of which 

requires further investigation. 
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Figure 3: Hotspot mapping of PurC. Crystal structure of MabPurC protein (white), shown in surface 

representation, with hotspot maps showing hydrogen bond donor (blue), acceptor (red) and 

hydrophobic (yellow) regions. ATP (blue stick) and CAIR (green stick) are also shown. A) Three hotspot 

regions are observed at the active site cleft at the front, when the maps are contoured at 17 B) A fifth 

hotspot consisting of an acceptor region is seen at the rear of the protein. C) A warm spot (Warm spot 

2) can also be seen in addition to the three hotspots, when the maps are contoured at 14 and the 

hydrophobic patches (yellow) at all the hotspot regions become more prominent at this contour D) the 

fifth hotspot at the rear of the protein when observed at contour 14. The hotspot maps were generated 

as described in (22). 
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Fragment Screening using XChem & PanDDA with a diverse library  

Fragment hits from the in-house fragment library all occupy the ATP indole pocket of MabPurC. To 

identify additional hotspots in PurC we increased the chemical diversity of the library. Two libraries 

were employed. The first, the Leeds 3D collection (25, 26), comprises 125 fragments with fewer planar 

chemical groups and more natural-product-like scaffolds. Fragments from this library have high sp3 

content providing more opportunities for elaboration. The second, the Diamond-SGC-iNext Poised 

Library, comprises 768 chemically diverse fragments with at least one functional group to allow a 

simplified chemical synthesis (27). The hits from our in-house library (see above) were included as a 

positive control in the screening experiments. 

 

The PanDDA method utilizes a collection of related crystallographic data sets to identify regions within 

individual sets that are statistical outliers, for example indicating a changed conformational state due to 

ligand binding. A partial-difference or event map is created to reflect the density for the bound-state 

only. This is done by subtracting a proportion of the apo-structure; the fragment-bound states are 

identified from analysis of density distributions. The ensemble models are then refined with the help of 

standard resolution-dependent refinement procedures (16, 17).  

 

304 crystal structures were solved and 88 event maps identified by the PanDDA program were manually 

verified in Coot (28, 29) and fragments were modelled and refined in 35 of them (Figure 4). Almost 

60% of all the identified hits occupy the first hotspot region of PurC corresponding to ATP adenylyl 

pocket. The positive controls (in-house library hits) were also analysed using the PanDDA method and 

found to adopt binding mode close to those previously determined in our laboratory.  

 

In addition, several new hits and chemical scaffolds were identified at the same site from the more 

diverse fragments in the libraries used in this study. These compounds bound with occupancies ranging 

from 1.0 - 0.7. This includes 3-dimensional fragment XC1, in which the pyridine ring of the fragment 

makes hydrophobic and π-stacking interactions with the side chains of Leu19 and Arg17 respectively. 

Interestingly the flexible chain with a halogen atom binds in the negatively charged sub-pocket, adjacent 

to the ATP adenine site at hotspot 1, where it interacts with side chains of Glu99 and Glu200 as well as 

active-site water molecules (Supplementary Data Figures S2 A & B ). This sub-pocket was not 

identified in previous fragment screening experiments.  
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Figure 4:  Fragment binding modes identified from screening of diverse fragment libraries by 

crystallography and analysis using PanDDA program. Hotspot maps are contoured at 14 and 

MabPurC protein is shown as surface electrostatic representation A) Front view of the protein with 

fragment binding sites 1-5 and representative hits. B) Rear view of the protein having fragments binding 

sites 6-8 with representative hits. The average occupancies and B-factors corresponding to each site 

are also illustrated in blue box.  

 

Apart from numerous fragment hits hotspot 1 (ATP adenylyl site), the only other hotspot with an 

observed hit was number XC2, at the PurC active site cleft edge near the CAIR binding region. This 

fragment exhibits a low occupancy of 0.4 and forms H-bonds from its amino group to the side chain of 

Arg222 and from its sulphur atom to the amide of Gly108 and the hydroxyl group of Thr107 (see 

Supplementary Data Figures S2 C & D). 

 

Interestingly, no fragment hits were observed at predicted warms pot region corresponding to the site 

2- aspartic acid binding region and hotspot 3- substrate (CAIR) site of the PurC protein from either the 

in-house or PanDDA method indicating that these two sites may not be true hotspot regions. Indeed, 

the corresponding maps for the region are less evident when set at a higher cut-off (contour >17), while 

hotspot maps corresponding to site 1 (ATP adenylyl pocket), 4 (edge of the active site cleft) and 5 (at 

the rear of the protein) remain unchanged even at a more stringent cut-off. 

 

The remaining fragment hits identified from the PanDDA analysis do not involve any of the predicted 

hotspot regions but instead form weak interactions in shallow binding pockets, some near 

crystallographic symmetry axes. This is not surprising given that the PanDDA method is sensitive to 

low occupancy fragments resulting in weak density.  
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Discussion 

The aim of screening the essential enzyme M. abscessus SAICAR synthetase (PurC) for fragment 

binding was to assess its usefulness as a target of antimicrobial drug discovery. We compare two 

different approaches to identify fragment binding sites. Screening the enzyme against an in-house 

fragment library of 960 fragments resulted in eight hits that were bound to the adenine pocket of the 

PurC ATP binding site. Interactions of these fragments were investigated by X-ray crystallographic and 

isothermal calorimetry (ITC) analyses. Fragment 2 was found to have a Kd of below 350µM, indicating 

promising starting points for chemical elaboration.  For PurC, we observe that all the fragments 

identified from standard difference maps occupy positions predicted by the computational hotspot 

mapping software (22).  

 

Further fragment screening experiments of PurC were undertaken at the Diamond Light Source XChem 

facility using two chemically diverse fragment libraries. Resulting crystallographic datasets sets were 

density averaged and ensemble-modelled using PanDDA software. Again fragment-binding site 1 

predominated. Of the three interesting hits two occupy a negatively charged sub-pocket adjacent to the 

ATP adenine-binding site as well as site 1, providing starting points for chemical merging or linking 

with previously identified fragments.  A third fragment binds at a small pocket at the edge of the 

catalytic cleft adjacent to substrate CAIR binding region. If this interaction can be replicated, the 

fragment may be amenable for further intervention to develop a non-ATP competitive inhibitor of PurC 

enzyme. Thus, these experiments using diverse chemical libraries with 3D chemical scaffolds together 

with the PanDDA method were able to identify new sub-pockets on which to build a future fragment-

based drug discovery campaign. .  

 

The most challenging aspect of the XChem and PanDDA approach is the identification of many  

fragment hits that bind to protein sites with low occupancies (Figure 4). Are these sites truly hot spots 

unidentified by the default contour level 17 in Fragment Hotspot Maps program (22), or are they weak 

binding sites routinely seen in crystals due to high concentrations of ligand molecules? This could be 

investigated by establishing whether such fragments maintain their binding modes and interactions 

when elaborated into larger chemical entities. This is a challenge, requiring extensive chemistry, which 

we will follow up in the future with PurC and other targets. On the other hand, they may be “warm 

spots” where fragments are not bound with a sufficient gain of entropy to stabilize them when 

elaborated. These fragment hits may nevertheless be useful if sufficiently close to hotspots where a 

fragment is being elaborated to allow design of molecules that exploit further interactions, the price of 

the loss of translational and rotational entropy already having been paid by the original fragment. 
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Materials & Methods 

Crystallization of M. abscessus PurC 

Initial screening of PurC protein for determining appropriate crystallization conditions involved the use 

of following commercially available sparse matrix screens: Drops containing 18 mg/mL of the protein 

in storage buffer (50mM Tris-HCl pH 7.5, 150 mM NaCl) and reservoir at two different drop ratios: 

0.3µL: 0.3µL & 0.6µL: 0.3µL (of protein: reservoir respectively) were set up using a Mosquito 

crystallization robot (TTP Labtech), in 96-well sitting drop (MRC-2) plates. The drops were 

equilibrated against 80 µL of the corresponding reservoir solution at 19°C. The best diffracting crystals 

(1.5 Å resolution) were obtained from JCSG well H9, 0.2M LiSO4, 0.1M Bis-Tris pH 5.5, 25% PEG 

3350 and this crystal condition was used for further experiments. 

 

Co-crystallization of M. abscessus PurC protein with ATP 

2mM-5mM final concentration of compound of ATP in DMSO/water was added to 18 mg/mL of PurC 

protein, mixed and incubated for 2 hrs on ice. Crystals were grown in the following condition: 0.2 M 

Lithium sulphate, 21-28% PEG3350, 0.1M Bis-Tris pH 5.5–6.5. The crystallization drops were set up 

at a protein to reservoir drop ratio of 0.3µL: 0.3µL, in 96-well (MRC2) sitting drop plate, using 

Mosquito crystallization robot (TTP Labtech) and the drops were equilibrated against 70 µL of reservoir 

at 19°C. 

 

Soaking of M. abscessus PurC native crystals with in-house fragment library  

Crystals for this experiment were grown at 19°C in 48-well sitting drop plates (Swiss CDI) in the 

following grid condition: 0.2M Lithium sulphate, 21-28% PEG3350, 0.1 M Bis-Tris pH 5.5–6.5. 

Further, the crystals were picked and allowed to soak in a 4 µL drop containing reservoir solution and 

10 mM fragments which was then equilibrated against 800 µL of the corresponding reservoir solution 

overnight at 19°C in a 24-well hanging drop vapour diffusion set up. 

 

X-ray Data Collection and processing 

The PurC apo- and ligand-bound crystals were flash-cooled in cryo-protectant containing precipitant 

solution and 25% Ethylene glycol. X-ray data sets were collected by the rotation method and pixel array 

detectors at Diamond Light Source in the UK, using beamlines I03, I04, I24 and I04-1 at wavelength 

of 0.979 Å (0.93 Å at I04-1), and at the Soleil French National Synchrotron facility at wavelength 

0.979 Å.  Datasets comprised a total oscillation of 210°-240° and oscillation angles of 0.15-1° per 

image, and total dataset exposure of 105-192 sec at Diamond, and 105-120 sec at Soleil. The diffraction 

images were processed using AutoPROC (30), utilizing  XDS (31) for indexing, integration, followed 

by POINTLESS (32), AIMLESS (33) and TRUNCATE (34) programs from CCP4 Suite (35) for data 

reduction, scaling and calculation of structure factor amplitudes and intensity statistics. All PurC 

crystals belonged to space group P21 and consisted of one promoter in the asymmetric unit. 
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Structure Solution and refinement 

The M. abscessus PurC apo-structure was solved by molecular replacement using PHASER (36) with 

the atomic coordinates of M. abscessus PurC at 1.85 Å (PDB entry: 3R9R, Seattle Structural Genomics 

Consortium for Infectious Diseases) as search model and PurC ligand bound structures were solved by 

molecular replacement with the atomic coordinates of the solved M. abscessus PurC Apo structure as 

search model. Structure refinement was carried out using REFMAC (37) and PHENIX (38). The models 

obtained were manually re-built using COOT interactive graphics program (28) and electron density 

maps were calculated with 2|Fo|- |Fc| and |Fo| - |Fc| coefficients. Position of ligands in the protein active 

site and water molecules were located in difference electron density maps and OMIT difference maps 

|mFo − DFc| (39) were calculated and analysed to further verify positions of fragments and ligands. 

 

Extended fragment library crystallographic screening using of XChem and PanDDA  

The crystals used in this study were grown at 19°C in 348-well 3 drop, sitting drop plates (Swiss CI) in 

the following grid condition: 0.2M Lithium sulphate, 21-28% PEG 3350, 0.1M Bis-Tris pH 5.5–6.5 

using PurC protein at a concentration of 18mg/mL equilibrated against 40µL reservoir. Apo crystals 

were allowed to soak in 30-50 mM fragments for 1 hr. Crystal soaking, harvesting, mounting and data 

collections were performed at the Diamond Light Source I04-1 beamline through the XChem facility 

workflow (14). After molecular replacement and refinement of the initial model, the resulting maps 

were analysed by PanDDa (16) followed by model building using Coot (28). The ensemble models are 

then refined with the help of standard resolution-dependent refinement procedures (16, 17).  
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