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Abstract— We study the problem of secondary frequency
regulation where ancillary services are provided via load-side
participation. In particular, we consider on-off loads that switch
when prescribed frequency thresholds are exceeded in order to
assist existing secondary frequency control mechanisms. We
show that system stability is not compromised despite the
switching nature of the loads. However, such control policies
are prone to Zeno-like behavior, which limits the practicality
of these schemes. As a remedy to this problem, we propose a
hysteresis on-off policy and provide stability guarantees in this
setting. We provide numerical investigations of the results on a
realistic power network.

I. INTRODUCTION

It is anticipated that renewable sources of generation will
increase their penetration in power networks in the near
future [1], [2]. This is expected to introduce intermittency
in the power generated resulting in additional challenges in
the real time operation of power networks that need to be
addressed.

A main objective in the operation of a power system
is to ensure that generation matches demand in real time.
This is achieved by means of primary and secondary fre-
quency control schemes with the latter also ensuring that
the frequency returns to its nominal value (50Hz or 60Hz).
Secondary frequency control is traditionally performed by
having the generation side following demand [3]. However,
a large penetration of renewable sources of generation limits
the controllability of generation and at the same time makes
the system more sensitive to disturbances due to the reduced
system inertia [4]. Controllable loads are considered by
many a promising solution to counterbalance intermittent
generation, being able to adapt their demand based on
frequency deviations, providing fast response at urgencies.
Recently, various research studies focused on the inclusion
of controllable demand to aid both primary control as in
[5]–[9] and secondary control as in [10], [11], [12].

Further from providing ancillary services at urgencies, it
is also desired that controllable loads are non-disruptive, i.e.
their assistance should have a negligible effect on users com-
fort, see e.g. [13]. Non-disruptive load-side control schemes
ensure that loads alter their demand at urgencies but return
to their normal operation when the danger for the network
has been surpassed. Moreover, in many occasions, a realistic
representation of loads involves only a discrete set of possible
demand values, e.g. on and off states. Hence, incorporating
on-off controllable loads that appropriately react to frequency
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deviations in power networks is of particular interest in load-
side participation schemes.

In this paper, we consider controllable on-off loads that
switch when some frequency deviation is reached so that they
assist the network at urgencies (i.e. when large frequency
deviations are experienced) and otherwise return to their
original operation. It will be shown that the inclusion of
such loads does not compromise the stability of the power
network, and result in enhanced frequency performance.
However, it will be observed that such controllable loads may
switch arbitrarily fast within a finite interval of time, or in
other words, exhibit Zeno behavior. To avoid this, we propose
on-off loads with hysteretic dynamics. Stability guarantees
are again provided for this class of loads, and the absence of
the Zeno phenomenon is analytically proven. We provide a
numerical validation of our results through a simulation on
the IEEE New York/ New England 68-bus system.

The structure of the paper is as follows: Section II includes
some basic notation and preliminaries and in section III
we present the power network model. In section IV we
consider controllable demand that switches on/off whenever
certain frequency thresholds are met and present our results
concerning network stability. In section V, we consider
controllable loads with hysteretic patterns and show that
stability results extend to this case. We demonstrate our
results through a simulation on the IEEE New York/ New
England 68-bus system in section VI. Finally, conclusions
are drawn in section VII. The proofs of the results can be
found in [14], which is an extended version of this paper.

II. NOTATION

Real numbers are denoted by R, and the set of n-
dimensional vectors with real entries is denoted by Rn. The
set of natural numbers, including zero, is denoted by N0. We
use 0n to denote n× 1 vector with all elements equal to 0.
For a discrete set Σ, let |Σ| denote its cardinality. For a set
A, let c̄o(A) denote its convex closure. For a point x ∈ Rn
and positive constant δ let B(x, δ) denote the ball of radius
δ around x. Moreover, let B(Rn) denote the collection of
subsets of Rn.

We use the notions of Lebesgue measurable set, zero
measure set and Lebesgue measurable function from [15].
Furthermore, for a Lebesgue measurable set A, let µ(A)
denote its Lebesgue measure. For notation convenience,
Lebesgue measures will be referred as just measures. When
something holds almost everywhere within a measurable set
A, it means that it holds everywhere in A except on sets N
satisfying N ⊂ A : µ(N) = 0. For a set A and scalar b,
A ≤ b denotes that all elements in A are less than or equal
to b. Moreover, the function sgn(x) takes a value of 1 when
x is non-negative and −1 otherwise.
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Within the paper a class of switching systems will be
considered and the notion of Filippov solutions will be
used for their analysis (see e.g. [16]). In particular, for any,
potentially discontinuous, function X : Rn → Rn, the
Filippov set valued map F [X] : Rn → B(Rn) is defined as,

F [X](x) ≡
⋂
δ>0

⋂
µ(S)=0

c̄o(X(B(x, δ) \ S)), x ∈ Rn (1)

where
⋂
µ(S)=0 denotes the intersection over all sets S of

Lebesgue measure zero.
In order to facilitate the analysis of differential equations

with discontinuous vector fields X : Rn → Rn, the
dynamical system below (a differential inclusion) is often
considered

ẋ(t) ∈ F [X](x(t)). (2)

For systems described by (2), a Filippov solution is defined
as an absolutely continuous map x : [0, t1] → Rn that
satisfies (2) for almost all t ∈ [0, t1]. For the system that will
be studied in the paper we will show that Filippov solutions
exist and are unique.

Remark 1: Note that the use of Filippov solutions allows
the study of systems with discontinuous dynamics when there
are infinitely many switches at finite time, a phenomenon
known as Zeno behavior.

III. NETWORK MODEL

We describe the power network model by a connected
graph (N,E) where N = {1, 2, . . . , |N |} is the set of buses
and E ⊆ N × N the set of transmission lines connecting
the buses. Furthermore, we use (i, j) to denote the link
connecting buses i and j and assume that the graph (N,E)
is directed with arbitrary orientation, so that if (i, j) ∈ E
then (j, i) /∈ E. For each j ∈ N , we use i : i → j and
k : j → k to denote the sets of buses that are predecessors
and successors of bus j respectively. It is important to note
that the form of the dynamics in (3)–(4) below is unaltered
by any change in the graph ordering, and all of our results
are independent of the choice of direction. The following
assumptions are made for the network:
1) Bus voltage magnitudes are |Vj | = 1 p.u. for all j ∈ N .
2) Lines (i, j) ∈ E are lossless and characterized by their
susceptances Bij = Bji > 0.
3) Reactive power flows do not affect bus voltage phase
angles and frequencies.

We use swing equations to describe the rate of change
of frequency at generation buses, while power must be
conserved at each of the load buses. This motivates the
following system dynamics (e.g. [17]),

η̇ij = ωi − ωj , (i, j) ∈ E, (3a)

Mjω̇j = −pLj +pMj −(dcj+d
u
j )−

∑
k:j→k

pjk+
∑
i:i→j

pij , j ∈ N,

(3b)
pij = Bij sin ηij − pnomij , (i, j) ∈ E. (3c)

In system (3) the time-dependent variables pMj , ωj and
dcj represent, respectively, deviations from a nominal value1

1A nominal value is defined as an equilibrium of (3) with frequency equal
to 50Hz (or 60Hz).

of the mechanical power injection, and the frequency and
controllable load present at bus j. The quantity duj is also
a time-dependent variable that represents the uncontrollable
frequency-dependent load and generation damping present
at bus j. Furthermore, the quantities ηij and pij are time-
dependent variables that represent, respectively, the power
angle difference, and the deviation from the nominal value,
pnomij , of the power transmitted from bus i to bus j. The
constant Mj > 0 denotes the generator inertia. We study the
response of system (3) at a step change in the uncontrollable
demand pLj at each bus j.

A. Generation and uncontrollable demand dynamics

We shall consider generation and uncontrollable demand
dynamics described by

ṗMj = −αjωj , j ∈ N, (4a)
duj = Ajωj , j ∈ N, (4b)

where Aj > 0 and αj ≥ 0 for all j ∈ N . We assume
that there exists at least one bus equipped with the integral
controller above, i.e, maxj∈N (αj) > 0. In case αj = 0, the
generation output is equal to a constant, namely pMj = pM,∗

j .
Remark 2: The restriction to the class of PI controllers (4)

with turbine governor dynamics omited is merely for the sake
of simplicity. The extension to high order generation/demand
dynamics is reported in [14].

Next, we will consider two classes of decentralized control
schemes for discrete loads that provide ancillary services to
the power network in the secondary control time-frame and
investigate their performance and stability properties. As it
will be discussed within the paper, the discrete character of
the loads leads to discontinuous system dynamics that can
introduce additional complications that need to be explicitly
addressed.

IV. LOADS WITH SWITCHING

A. Problem formulation

In this section, we consider frequency dependent on-off
loads that respond to frequency deviations by switching to
an appropriate state in order to aid the network at urgencies.
As the network returns to its normal operating conditions,
the loads return to their initial state as well, hence affecting
users comfort for short periods only. In particular, for each2

j ∈ N , we consider the following switching dynamics for
the controllable loads:

dcj(ωj) =


dj , ωj > ωj ,

0, ωj < ωj ≤ ωj ,
dj , ωj ≤ ωj ,

(5)

where −∞ < dj ≤ 0 ≤ dj < +∞, and ωj > 0 > ωj . The
dynamics in (5) are depicted on Figure 1. Note that these
dynamics can be trivially extended to include more discrete
values, that would possibly respond to higher frequency
deviations.

2This can be trivially relaxed to any subset of N .
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Fig. 1. Switch dynamics for controllable loads as described by (5).

To cope with the switching dynamics of the loads, and to
have well-defined solutions to system (5) for all time, we
first define a Filippov set valued map as follows:

F [dcj ] =



{dj}, ωj > ωj ,

[0, dj ], ωj = ωj

{0}, ωj < ωj < ωj ,

[dj , 0], ωj = ωj ,

{dj}, ωj < ωj ,

j ∈ N. (6)

The state of the interconnected system (3)–(5) is denoted
by x = (ηT , ωT , (pM )T )T , where any variable without
subscript represents a vector with all respective components.
For a compact representation of the system, we consider
the Filippov set valued map Q : Rn → B(Rn), with
n = |E| + 2|N |, and write the system dynamics as the
following differential inclusion:

ẋ ∈ Q(x) (7)

where

Q(x) =



{ωi − ωj}, (i, j) ∈ E,{
1
Mj

(−pLj + pMj −Ajωj − vj −
∑
k:j→k pjk

+
∑
i:i→j pij) : vj ∈ F [dcj ]

}
, j ∈ N,

{−αjωj}, j ∈ N.

Remark 3: As a result of the switching dynamics in (5),
the vector field in (3b) will become discontinuous. This
discontinuity limits the applicability of classical solutions to
the ordinary differential equations (3), and asks for an appro-
priate notion of solutions. The most suitable notion depends
on the objective and the problem at hand. Among several
solution notions, see [18], we opt for Filippov solutions [14]
which amounts to the relaxation of the differential equation
to a differential inclusion, see (7). The idea behind Filippov
solutions is to study the behavior of the vector field around
a point of discontinuity, and consequently allow the vector
field to take any value within an admissible set. As will
be observed in Lemma 2, this does not spoil uniqueness of
solutions for the dynamics considered in this paper.

B. Equilibria, existence and uniqueness of solutions
The discontinuous dynamics (5) introduce additional com-

plexity in the analysis of the behavior of (7). First, we study

equilibria of the system, and then investigate existence and
uniqueness of Filippov solutions. An equilibrium of (7) is
defined as follows:

Definition 1: The point x∗ = (η∗, ω∗, pM,∗) defines an
equilibrium of the system (7) if 0n ∈ Q(x∗).

For an equilibrium of the system, the controllable demand
takes its value from a set that depends on ω∗j , i.e., dc,∗j ∈
F [dcj ](ω

∗
j ), j ∈ N . Lemma 1 below, proven in [14], shows

that this set is singleton, namely Q(x∗) = {0n}, and ω∗ =
0|N | = dc,∗j .

Lemma 1: For any equilibrium point x∗ = (η∗, ω∗, pM,∗)
of (7), we have ω∗ = 0|N | and Q(x∗) = {0n}.

It should further be noted that within the rest of the paper
the existence of some equilibrium of (7) is assumed. As
evident from Lemma 1, the conditions for existence of an
equilibrium can be studied independent of the switching
loads, see e.g. [19].

In addition, we impose a constraint on the differences
of the phase angles at the equilibrium. This assumption,
stated below, is ubiquitous in power network literature, and
is treated as a security constraint.

Assumption 1: |η∗ij | < π
2 for all (i, j) ∈ E.

The following lemma, proven in [14], establishes existence
and uniqueness of solutions to (3)–(5).

Lemma 2: There exists a unique Filippov solution
of (3)–(5) starting from any initial condition x0 =
(η(0), ω(0), pM (0)) ∈ Rn.

C. Stability
We now state the main result of this section. Its proof can

be found in [14].
Theorem 1: Suppose that there exists an equilibrium

(η∗, ω∗, pM,∗) of (7) for which Assumption 1 is satisfied.
Then there exists an open neighborhood Ξ of this equilibrium
such that Filippov solutions (η, ω, pM ) of (7) starting in this
region asymptotically converge to the set of equilibria of the
system. In particular, the frequency vector ω converges to
ω∗ = 0|N |.

The theorem above establishes stability of the power
network (3)-(4) with on-off load side control (5), and shows
that frequency is restored to its nominal value after a transient
load-side participation.

D. Zeno behavior
A possible feature of switching and hybrid systems is the

occurrence of infinitely many switches within some finite
time, a phenomenon known as Zeno behavior (e.g. [20]).
Such behavior is often undesirable and impedes practical
implementations.

In our setting, Zeno behavior may occur in on-off loads as
shown numerically in Section VI. The reason such behavior
may occur is that the frequency derivative may change sign
when passing a discontinuity, causing the vector field to
point towards the discontinuity. For instance, suppose that
0 < ω̇j(t1) < dj for some time instant t1 > 0, and
that the threshold ωj is met at this time. Then, the load
dcj switches on, causing a sign change in the value of ω̇j .
Hence, the frequency vector field will point at a direction
of frequency decrease that will force the load to switch
off. These on/off switches occur infinitely many times in a
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Fig. 2. Hysteresis dynamics for controllable loads as described by (8).

finite time, resulting in the aforementioned Zeno behavior.
Note that this phenomenon is only observed here during
the transient response of the loads, as the mechanical power
injection (4) will eventually dictate the sign of the vector field
and regulate the frequency to its nominal value as shown in
Theorem 1.

V. HYSTERESIS ON CONTROLLABLE LOADS

A. Problem formulation
In this section, we propose the use of hysteretic dynamics

in on-off controllable loads, which means that a controllable
load switches on and off at different frequency thresholds.
As will be observed, this modification will ensure that
the system does not exhibit Zeno behavior. For relevant
applications of hysteric dynamics in ruling out chattering,
Zeno behavior, and other undisered features, see. e.g. [21]–
[23].

We consider the following hysteretic dynamics for con-
trollable loads:

dcj = djσj (8a)

σj(t
+) =


sgn(ωj), |ωj | ≥ ω1

j

0, |ωj | ≤ ω0
j

σj(t), otherwise

(8b)

where j ∈ N , t+ = limε→0(t + ε), and the frequency
thresholds ω0

j , ω
1
j , satisfy ω1

j > ω0
j > 0.

The dynamics described in (8) are depicted in Figure 2.
Note that σj takes its value from the set P = {−1, 0, 1}.

Now the behavior of the system (3),(4),(8), can be de-
scribed by the states z = (x, σ), where x = (η, ω, pM ) ∈ Rn
is the continuous state, and σ ∈ P |N | the discrete state. The
domain of solution is then equal to Rn × P |N |, which we
denote in short by Λ.

The continuous part of the dynamics (3),(4),(8), is given by

η̇ij = ωi − ωj , (i, j) ∈ E, (9a)

Mjω̇j = −pLj + pMj − (djσj +Ajωj)

−
∑
k:j→k

pjk +
∑
i:i→j

pij , j ∈ N, (9b)

pij = Bij sin ηij − pnomij , (i, j) ∈ E, (9c)

ṗMj = −αjωj , j ∈ N, (9d)

σ̇j = 0, j ∈ N. (9e)

This is valid when z belong to the set
C = {z ∈ Λ : σj ∈ Ij(ωj), ∀j ∈ N} (10)

where

Ij(ωj) =


{sgn(ωj)}, |ωj | ≥ ω1

j ,

{0}, |ωj | ≤ ω0,

{0, sgn(ωj)}, ω0 < |ωj | < ω1.

Alternatively, when z ∈ Λ\C, the system dynamics evolve
according to the following discrete update rule:

x+ = x

σj(t
+) =

{
sgn(ωj), |ωj | ≥ ω1

j

0, |ωj | ≤ ω0
j

(11)

where the latter is in agreement with (8b). We can now
provide the following compact representation for the hybrid
system (3),(4),(8),

ż = f(z), z ∈ C, (12a)
z+ = g(z), z ∈ D, (12b)

where C is given by (10), D = Λ \ C, and z+ = z(t+).
The maps f(z) : C → Λ and g(z) : D → C are given by
(9) and (11), respectively. Note that z+ = g(z) represents
a discrete dynamical system where z+ is determined by the
current value of the state z and the update rule given by g.

We assume that the initial conditions are compatible with
(12), or essentially with the transition map in (8b). This
means that, for each j ∈ N , σj(0) ∈ Ij(ωj(0)) where

Ij(ωj) =


{sgn(ωj)}, |ωj | > ω1

j

{0}, |ωj | < ω0

{0, sgn(ωj)}, ω0 ≤ |ωj | ≤ ω1.

We write the condition above in vector form as σ(0) ∈
I(ω(0)), and we denote the set of compatible initial con-
ditions by Λ0 ⊆ Λ.

B. Analysis of equilibria and solutions
Before investigating stability of the hybrid system in (12),

we characterize its equilibria, and establish existence and
uniqueness of solutions.

Note that we call a point z∗ = (x∗, σ∗) an equilibrium of
(12) if f(z∗) = 0, z∗ ∈ C or z∗ = g(z∗), z∗ ∈ D. Now, we
state the following lemma:

Lemma 3: For any equilibrium point z∗ = (x∗, σ∗) of
(12), we have ω∗ = σ∗ = 0|N |. Moreover, z∗ ∈ C.

To proceed further, we need to assume existence of some
equilibrium of (12). As evident from Lemma 3, the feasibility
of this assumption is independent of the on-off loads and has
been studied in literature (e.g. [19]).

We shall borrow the definitions of a hybrid time domain
and solution to a hybrid system from [20], [23].

Definition 2: A hybrid time domain is a subset of R≥0×
N0 consisting of, potentially infinite, time intervals of the
form [t`, t`+1]×{`}, where 0 = t0 ≤ t1 ≤ . . . , or of finitely
many such intervals with the last one possibly of the form
[t`, t`+1] × {`}, [t`, t`+1) × {`} or [t`,∞) × {`}. Consider



a function z(t, `) defined on a hybrid time domain K such
that for every fixed `, t → z(t, `) is a locally absolutely
continuous function on the interval T` = {t : (t, `) ∈ K).
The function z(t, `) is a solution to (12) if z(0, 0) ∈ Λ0 and
for each ` it holds that

ż(t, `) = f(z(t, `)), for almost all t ∈ T`,
z(t, `) ∈ C, for all t ∈ [min T`, sup T`),

z(t, `+ 1) = g(z(t, `)), z(t, `) ∈ D
for all (t, `) ∈ K such that (t, `+ 1) ∈ K.

A solution z(t, `) is complete if K is unbounded. A solution
is maximal if it cannot be extended3.

For convenience in the presentation we will refer to maxi-
mal solutions by just solutions. Existence and uniqueness of
solutions to (12) are established in the following lemma.

Lemma 4: There exists a complete unique solution z =
(x, σ) to (12), starting from any initial condition z(0, 0) ∈
Λ0.

Furthermore, the following proposition shows the exis-
tence of some finite dwell time between switches of states
σj for any bounded solution. Within it, we denote the time-
instants where the value of σj changes by t`,j , ` ∈ N0,j ∈ N .

Proposition 1: For any complete bounded solution of
(12), there exists τj > 0 such that min`≥1(t`+1,j−t`,j) ≥ τj
for any j ∈ N .

Remark 4: The importance of Proposition 1 is that it
shows that no Zeno behavior will occur for any complete
bounded solution of system (12). This is because for any
finite time interval τ = minj τj , j ∈ N , the vector σ changes
at most |N | times. This highlights the practical advantage
of (12) compared to (7). This analytic result is verified
by numerical simulations in a realistic power network, as
discussed in section VI.

C. Stability of hysteresis system

Now, we are at the position to state the stability result
concerning the system (12).

Theorem 2: Let z∗ = (x∗, σ∗), with ω∗ = σ∗ = 0|N |,
be an equilibrium of (12) for which Assumption 1 holds.
Then there exists an open neighborhood S of x∗ such that
solutions z = (x, σ), with x(0) ∈ S and σ(0) ∈ I(ω(0)),
asymptotically converge to the set of equilibria of (12). In
particular, the vectors ω and σ converge to the vector 0|N |.

Theorem 2 shows that the hysteretic dynamics in (8) do
not compromise the stability of the system. This, together
with the absence of Zeno behavior shown in Proposition
1, promotes the use of hysteretic dynamics as a means to
provide practical and non-disruptive on-off load side control
to the power network.

VI. SIMULATION ON THE IEEE 68-BUS SYSTEM

In this section we simulate the IEEE New York/ New
England 68-bus interconnection system using the Power
System Toolbox [24] to numerically verify our analytic
results. The simulated model is more detailed and realistic

3That is, there is no other solution z̃ with time domain K̃ such that K
is a proper subset of K̃ and z̃ agrees with z on K.
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Fig. 3. Frequency at bus 103 with controllable load dynamics as in the
following two cases: i) Switching case, ii) Hysteresis case.

than our analytical one, including line resistances, a DC12
exciter model and power system stabiliser4.

The considered system consists of 52 load buses and 16
generation buses and has a total real power of 16.41GW. For
our simulation, we added five uncontrollable loads on units
2, 8, 9, 16 and 17, each having a step increase of magnitude
1 p.u. (base 100MVA) at t = 1 second.

Within the simulations, we considered generators with
dynamics as described by (4a) at all generation buses and
also controllable demand on 30 load buses, with loads
controlled every 10ms.

The system was tested at two different cases. In case (i),
we considered on-off controllable loads on 30 load buses
with dynamics as in (5). The values for ωj were selected
from a uniform distribution within the range [0.02 0.07] and
those of ωj by ωj = −ωj . For case (ii) controllable loads
were also included on 30 load buses, but with dynamics
described by (8). We used the same frequency thresholds
for both cases for a fair comparison, with ω1

j = ωj and
ω0
j = ω1

j /4. Also, d = −d = 0.2p.u. was used for both
cases. Cases (i) and (ii) will be referred as the ’switching’
and ’hysteresis’ cases respectively.

The frequency at bus 63 for the two cases considered is
depicted in Fig. 3 which demonstrates that frequency returns
to its nominal value for both cases, as suggested in Theorems
1 and 2. Moreover, Fig. 4 shows that on-off loads are able
to cause significant reduction in the maximum frequency
overshoot, by comparing the largest deviation in frequency
with and without on-off controllable loads at all buses. Figure
5 demonstrates very fast switches of controllable loads at 4
buses for case (i), indicating Zeno behaviour. In comparison,
such behaviour is not observed when case (ii) is considered,
as shown in Figure 6 which verifies that hysteresis eliminates
Zeno behavior at controllable loads, as suggested by the
analysis in this paper. The 4 selected buses on Figures 5 and
6 were those with the minimum time between consecutive
switches in the hysteretic loads of case (ii). Moreover, both
figures depict times up to 25s since all loads remain switched
off afterwards. Note that the fact that all loads return to their
nominal demand after a brief period demonstrates the non-
disruptive nature of the two schemes.

4The details of the simulation models can be found in the Power System
Toolbox data file datanp48.
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Fig. 5. Controllable demand deviations at 4 buses with Switching on-off
loads.
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Fig. 6. Controllable demand deviations at 4 buses with Hysteresis on-off
loads.

VII. CONCLUSION

We have considered the problem of secondary frequency
control where controllable on-off loads provide ancillary
services. We first considered loads that switch on when some
frequency threshold is reached and off otherwise. Stability
guarantees are provided for such loads. Furthermore, it is
discussed that such schemes might exhibit arbitrarily fast
switching, which might limit their practicality. To cope with
this issue, on-off loads with hysteretic dynamics were con-
sidered. It has been shown that such loads do not exhibit any
Zeno behavior and that their inclusion does not compromise
power network stability. Hence, such schemes are usable for
practical implementations. Both schemes ensure that control-
lable loads return to their nominal behavior at equilibrium
and hence that disruptions occur for brief periods only. Our
analytic results have been verified with numerical simulations

on the IEEE 68-bus New York/New England system where
it was shown that the presence of on-off loads reduces
the frequency overshoot and that hysteresis schemes resolve
issues caused by Zeno-like behavior. Interesting potential
extensions in the analysis include more advanced on-off load
dynamics as well as incorporating voltage dynamics.
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