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SUMMARY 
 

Impaired cerebral autoregulation following traumatic brain injury (TBI) in adults has been linked to worse global 

outcome.  Continuously updating indices of cerebrovascular reactivity provide a convenient and continuous metric 

regarding an individual patients’ autoregulatory status. To date, the vast majority of the literature has focused on 

pressure reactivity index (PRx), which has emerged as the “gold standard” for continuous monitoring of 

cerebrovascular reactivity in adult TBI, but many questions concerning its clinical utility remain unanswered. The 

focus of this thesis was to address some of these previously unanswered questions, using data from experimental 

models and from multi-modality monitoring (MMM) in adult TBI patients. 

Specific questions addressed in this thesis include: [A] Do other ICP-derived indices to assess cerebrovascular 

reactivity exist? [B] Do ICP-derived indices actually measure autoregulation? [C] What are the inter-index 

relationships between various MMM techniques? [D] Can one estimate/predict the “gold standard” invasive PRx 

using non-invasive means? [E] What are the critical thresholds associated with outcome for ICP derived indices? [F] 

Are any specific ICP derived index/indices superior for outcome prediction? and [G] What role do intra-cranial (IC) 

and extra-cranial (EC) injury burden play in driving autoregulatory function in TBI?   

These studies evaluated a newly described index derived from pulse amplitude of ICP and cerebral perfusion 

pressure (CPP), RAC, which provides information regarding both cerebrovascular reactivity and compensatory 

reserve.  Using experimental models of arterial hypotension and IC hypertension, it was demonstrated that the 

three ICP derived indices (including RAC) of cerebrovascular reactivity measure the lower limit of autoregulation 

(LLA), providing some of the first evidence to validate these indices as measures of autoregulation.  It still remains 

unclear as to whether these indices can measure the upper limit of autoregulation (ULA). 

Indices derived from MMM display reproducible inter-index relationships between various populations of adult TBI 

patients.  Transcranial Doppler (TCD) based systolic flow index is most closely associated with ICP indices, while 

cortical autoregulation (measured using laser Doppler) is more closely linked to mean flow index. Given these 

relationships and the potential for non-invasive measurement of systolic flow index, attempts at modelling the 

“gold standard” PRx were made. From this, it is possible to both estimate and predict PRx using non-invasive 

systolic flow index, employing complex time-series techniques. 

Outcome analysis showed that RAC provides superior outcome prediction, with more stable critical thresholds, 

compared to all other ICP derived indices. Furthermore, IC injury markers (subarachnoid hemorrhage thickness, 

diffuse axonal injury, and presence of subdural hematoma) were associated with impaired cerebral autoregulation 

as measured by ICP derived indices, implicating diffuse cerebral injury as a driver of impaired reactivity.  The data 

also suggest that EC injury burden may play a role in impairment of cerebrovascular reactivity.  
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CHAPTER 1: INTRODUCTION 
 

Cerebral autoregulation (CA) is defined as the innate ability of the cerebrovascular system to maintain 

relatively constant cerebral blood flow (CBF) despite changes in systemic mean arterial pressure (MAP) 

or cerebral perfusion pressure (CPP).1  Our current understanding of normal CA capacity stems from the 

work of Fog2 and Lassen,1 who identified that autoregulation was preserved in normal humans between 

approximately 50 mm Hg (referred to as the lower limit of autoregulation - LLA) and 150 mm Hg 

(referred to as the upper limit of autoregulation - ULA) of MAP.  Systemic MAP, or CPP, below the LLA 

may lead to impaired CBF, hypoperfusion, metabolic failure, cytotoxic edema and potentially ischemia or 

infarction, while CPP or MAP above the ULA could result in hyperaemia, vasogenic oedema and 

haemorrhage.1,3,4 

It is well understood that various neuropathologic states impact CA capacity, potentially leading to 

deleterious outcomes.3,5–7  Traumatic brain injury (TBI) is one pathologic state in which CA capacity has 

been thoroughly studied and linked to morbidity and mortality in the adult population.3,4,8,9  Various 

methods have been designed to measure CA in adult TBI, including both intermittent and continuous 

techniques,4,10 and patients displaying “impaired” autoregulatory capacity have been shown to be at 

higher risk of secondary neurological insult and increased morbidity/mortality.   

The most commonly employed methods of CA monitoring in TBI within the neuro-intensive care unit 

(NICU) involve continuously updating indices of autoregulation, which have received support through 

international consensus statements and recently published multi-modal monitoring guidelines in TBI.11,12 

These indices are derived on the premise that the correlation between slow-wave fluctuations in 

surrogate measures of pulsatile cerebral arterial blood volume (CBV), such as intracranial pressure (ICP), 

and slow-wave fluctuations in a driving pressure for CBF, such as MAP or CPP, providing insight into the 

autoregulatory function in any given patient.3,13  Based on this concept, various indices of CA have been 

developed based on signals derived from multi-modal monitoring (MMM) devices.4,10  

However, despite many options for continuous monitoring of autoregulatory capacity in adult TBI, and 

literature supporting an association with patient global outcome, there are some important questions 

which remain unanswered:   

1. Are there any relationships between commonly measured physiologic variables which may 

better approximate autoregulation/cerebrovascular reactivity in TBI patients? 
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2. Do these indices actually measure cerebral autoregulation? 

3. What are the inter-index relationships between these continuous CA indices derived from 

various multi-modal monitoring metrics? Are all indices the same or related to one another? 

4. Can one estimate indices of cerebrovascular reactivity using non-invasive surrogates, which 

correlate with more classical measures derived from invasive measures? 

5. How well do ICP derived indices predict outcome in adult TBI?  Is one superior? Are there 

critical thresholds? 

6. Does injury burden drive impaired cerebrovascular reactivity in adult TBI? 

Having answers to these questions is of great importance to:  the validity in clinical monitoring of CA in 

TBI, detection of failed CA and prediction of CA impairment.  Answers to these questions would also 

provide a validated and robust platform for future investigation of biologic drivers of impaired reactivity, 

understanding the long-term tissue consequences to impaired CA post-TBI, and potentially leading to 

therapeutic targets for the avoidance/treatment of CA dysfunction.  Thus, the goal of this dissertation is 

to shed light on these above defined questions. 

 

1.1 Aims and Hypothesis 
 

1.1.1 Defining a New Continuous Index 
 

Current continuous monitoring of cerebrovascular reactivity/autoregulation in adult TBI focus mainly on 

the use of the pressure reactivity index (PRx).4,11,12  This index is the defined as the moving Pearson 

correlation coefficient between slow-wave fluctuations in ICP and MAP.  PRx has emerged as the “gold 

standard” for continuous monitoring of vascular reactivity, with strong links to 6-month outcome and 

defined critical thresholds in adult TBI.3,9  Furthermore, this index has been validated as a measure of the 

LLA in an experimental model of arterial hypotension.14  Despite this, there exists a potential for other 

continuous indices to be derived from ICP and MAP monitoring.15 The first step within this thesis was to 

explore a new index of cerebrovascular reactivity in adult TBI, RAC: the correlation between pulse 

amplitude of ICP (AMP) and CPP. RAC stands for:  R = Pearson correlation coefficient, A = pulse 

amplitude of ICP, C = cerebral perfusion pressure.   
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Hypothesis I: The moving correlation coefficient between slow-wave fluctuations in AMP and CPP, 

defined as RAC, will provide information regarding cerebrovascular reactivity, and may be used in 

place of existing ICP based reactivity indices in adult TBI patients. 

 

1.1.2 Experimental Validation of ICP Derived Indices 
 

Within the current literature on continuous indices of cerebrovascular reactivity measurement, very few 

indices have been validated experimentally to measure autoregulation.14  The baseline assumption 

surrounding all MMM based continuous indices of vascular reactivity is based on the concept that the 

relationship between slow-wave fluctuations in a driving pressure (ie. MAP or CPP) and a surrogate 

measure of pulsatile CBV or CBF, is a measure of autoregulation.13  Unfortunately, only three indices to 

date have been validated experimentally to measure the LLA. These include PRx and two near infrared 

spectroscopy (NIRS) derived indices.14  Furthermore, validation against the ULA has not been clearly 

demonstrated within the literature.  Finally, the current validation studies focused on a model of arterial 

hypotension for assessing the LLA, with no literature to support that the assessed indices (ie. PRx) 

measure the LLA during intra-cranial (IC) hypertension.  This is an important aspect in TBI, given many 

patients suffer from ICP control issues during their acute phase of care.  Such preliminary validation with 

respect to the LLA would require:  A. demonstration of cerebrovascular reactivity indices to trend 

towards progressively more positive values at CPP levels below the LLA, and B. statistically significant 

logistic regression analysis for each cerebrovascular reactivity index in the prediction of having CPP 

values above or below the cohort defined LLA; similar to the previous existing experimental work.14  

Simiarly, preliminary validation work into the ULA would require:  A. demonstration of cerebrovascular 

reactivity indices to trend towards progressively more positive values at CPP levels above the ULA, and 

B. logistic regression analysis confirming statistically significant ability of cerebrovascular reactivity 

indices to predict CPP being above or below the ULA. Therefore, the second step of this thesis was to 

explore the LLA and ULA in data that were available in various pre-clinical experimental models, in order 

to provide validation for all ICP derived indices of cerebrovascular reactivity:  PRx, PAx (correlation 

between AMP and MAP), and RAC. 

 

Hypothesis II: PRx, PAx and RAC will measure the LLA in an experimental piglet model of arterial 

hypotension, displaying trends towards progressively more positive values below the LLA and logistic 

regression techniques demonstrating the ability to accurately predict CPP values about this threshold. 
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Hypothesis III: PRx, PAx and RAC will measure the LLA in an experimental rabbit model of sustained 

intracranial hypertension, displaying trends towards progressively more positive values below the LLA 

and logistic regression techniques demonstrating the ability to accurately predict CPP values about 

this threshold. 

 

Hypothesis IV: PRx, PAx and RAC will measure the ULA in an experimental piglet model of arterial 

hypertension, displaying trends towards progressively more positive values above the ULA and logistic 

regression techniques demonstrating the ability to accurately predict CPP values about this threshold. 

 

 

1.1.3 Multi-Model Index Relationships 

 

Various continuous indices of cerebrovascular reactivity exist in adult TBI.4  These measures are based 

on various invasive and non-invasive MMM devices commonly employed within the intensive care unit 

(ICU) in the treatment of TBI patients. Such monitoring includes: ICP,3,15 brain tissue oxygen (PbtO2),16–18 

transcranial Doppler (TCD)8 and NIRS.19,20 Numerous small studies exist providing some basic statistical 

links between individual indices.  However, one question remains:  Are all of these indices the same?  To 

date, there has not been an in-depth exploration of the inter-index relationships between multiple 

MMM devices simultaneously.  This approach could potentially shed light on which indices closely co-

vary and which may be used as a surrogate measure for the other.  The third step of this thesis involves 

exploring the inter-index relationships of MMM derived continuous indices of cerebrovascular reactivity 

across multiple adult TBI populations. 

 

Hypothesis V: Continuous indices derived from MMM are not all the same, and display specific 

covariance structure between monitoring devices used, which is reproducible across populations. 

 

1.1.4 Non-Invasive Modelling of Pressure Reactivity 

 

The literature supports a strong association between PRx and 6-month outcome in adult TBI.  Further, as 

aluded to above, PRx has emerged as the “gold standard” for continuous monitoring of cerebrovascular 
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reactivity in adult TBI.  The main limitation to PRx is that is requires invasive ICP monitoring.  Given this 

limitation, some important questions arise:  Is it possible to model PRx using non-invasive surrogates?  

Can PRx be accurately estimated non-invasively?  Can we forecast (ie. predict) PRx via non-invasive 

means?  The fourth part of this thesis attempts to answer these questions.  

 

Hypothesis VI: PRx can be accurately estimated via non-invasive TCD alternatives, systolic flow index 

(Sx_a) and mean flow index (Mx_a). 

 

Hypothesis VII: PRx can be predicted via the non-invasive TCD based alternative Sx_a. 

 

1.1.5 Critical Thresholds Associated with Outcome 
 

Thresholds associated with 6-month outcome in adult TBI have been defined for PRx9 and the TCD based 

Mx (correlation between mean flow velocity (FVm) and CPP).8  These thresholds have been defined for 

two dichotomized 6-month outcomes: A. mortality and B. favourable/unfavourable functional status (as 

per Glasgow Outcome Score (GOS)). Aside from these two indices, critical thresholds for other indices 

are unknown.  

 

Importantly, PRx isn’t the only ICP derived index, with PAx and RAC potentially providing similar (or 

superior) outcome prediction capacity.15,21 Furthermore, the previous study which defined PRx 

thresholds in adult TBI was based on grand mean PRx values from a large heterogeneous patient 

population, including those with decompressive craniectomy (DC) and those without.9  It is known that 

craniectomy in TBI impacts both ICP and PRx,22 leading to uncertainty in the assessment of 

cerebrovascular reactivity using PRx during the post-craniectomy phase of care. Thus, the current 

defined thresholds for PRx9 are difficult to apply to all TBI patients, with thresholds for non-DC patients 

(ie. the majority of critically ill TBI patients) currently unknown.  Determining which ICP index is superior 

for outcome prediction, and what the critical thresholds for these indices are in non-DC patients, would 

prove valuable for continued application of this monitoring within the ICU. The fifth part of the thesis 

addresses this. 

 

Hypothesis VIII: Outcome prediction with ICP indices are not equal, with RAC providing superior 

predictive capabilities for 6-month patient outcomes. 
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Hypothesis IX: Critical thresholds for 6-month outcome in adult TBI for ICP derived reactivity indices 

are not all the same, with some indices displaying more “stable” thresholds over time. 

 

Aside from invasive ICP derived indices for monitoring cerebrovascular reactivity, TCD provides a 

convenient and potentially completely non-invasive means of measuring CA. To date, Mx (correlation 

between TCD mean flow velocity (FVm) and CPP) and Mx_a (correlation between FVm and MAP) are the 

only TCD indices with defined critical thresholds in adult TBI.8 Given strong associations between ICP 

derived indices and those from TCD, particularly with Sx/Sx_a, determining the critical thresholds for 

other TCD indices may prove valuable for future work in the non-invasive assessment of cerebrovascular 

reactivity. This is also addressed within the fifth part of this thesis. 

 

Hypothesis X: Both Sx and Sx_a have well defined critical thresholds associated with 6-month outcome 

in adult TBI. 

 

 

1.1.6 Injury Burden as a Driver of Impaired Reactivity 
 

Finally, despite being able to monitor cerebrovascular reactivity in adult TBI with confidence, which 

would be provided through the previously mentioned aims/hypothesis of this thesis, understanding 

what drives impaired reactivity is also crucial.  Specifically, does injury pattern/burden play a role in 

developing impaired cerebrovascular reactivity?  What role does IC injury burden play?  What about 

extra-cranial (EC) injury burden?  Currently, these questions remain unanswered in the literature.  The 

sixth part of this thesis addresses and answers these questions.   

 

Hypothesis XI: Specific patterns of IC injury are associated with impaired cerebrovascular reactivity in 

TBI. 

 

Hypothesis XII: EC injury burden will be associated with cerebral vascular reactivity in polytrauma 

patients. 
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1.2 Overview of Thesis 
 

Chapter 2 provides an extensive review of the pertinent literature surrounding continuous monitoring of 

cerebrovascular reactivity in adult TBI.  This review includes both narrative and systematically conducted 

components.  The chapter will overview the concept of cerebral autoregulation and theorized 

mechanisms of control.  Subsequent sub-sections will highlight systematic reviews of the literature 

conducted as part of the review of literature for this thesis,4,10 including overviewing monitoring 

techniques for autoregulation and any existing literature documenting the association between 

autoregulation monitoring and injury burden. 

 

Chapter 3 provides an overview of general methodology for the studies conducted within the 

subsequent chapters.  This chapter covers the experimental models used, including experimental 

procedures. It also reviews the adult TBI patient populations studied and general treatment received 

while within the ICU.  General signal acquisition, processing, ethical considerations and statistics are also 

covered. 

 

Chapters 4 through 9 report the results from the studies performed in this thesis. Chapter 4 presents 

results from the description of a “new” physiologic index of cerebrovascular reactivity, RAC, in an adult 

TBI population (addressing hypothesis I).  Chapter 5 presents the results of experimental validation of 

ICP derived indices for measuring the LLA and ULA (addressing hypotheses II, III and IV).  Chapter 6 

presents the results of the assessment of inter-index relationships between MMM derived continuous 

measures of cerebrovascular reactivity, across various adult TBI populations (addressing hypothesis V).  

Chapter 7 presents the results of non-invasive modelling of PRx using TCD based surrogates (addressing 

hypotheses VI and VII).  Chapter 8 presents the results of the studies exploring of outcome prediction of 

ICP and TCD derived indices of cerebrovascular reactivity, with the assessment of critical thresholds 

(addressing hypotheses VIII, IX, and X). Finally, Chapter 9 presents the results of the analysis of injury 

burden and its association with impaired cerebrovascular reactivity in adult TBI (addressing hypotheses 

XI and XII).  

 

Chapter 10 summarizes the results of this thesis, providing an overall conclusion.  Chapter 11 overviews 

potential future directions of research regarding continuous cerebrovascular reactivity monitoring in 

adult TBI. 



 

28 
 

CHAPTER 2: REVIEW OF LITERATURE 
 

2.1 Cerebral Autoregulation 
 

2.1.1 Concept 
 

Cerebral autoregulation (CA) is defined as the cerebral vessel’s innate ability to regulate and maintain 

constant CBF across a wide range of MAP or CPP.1  First defined by Lassen, and outlined in his seminal 

work in 1959, CA in humans is characterized by the relationship between MAP and CBF seen in Figure 2.1.  

Lassen’s original description of this phenomenon consisted of a small heterogenous group of patients, in 

which measures of cerebral blood flow were conducted during manipulations in MAP and partial pressure 

of carbon dioxide (pCO2).1 Similar relationships between MAP and CBF were observed in Lassen’s 

observations, regardless of the physiologic manipulation undertaken.   

 

Figure 2.1:  Classical Representation of Cerebral Autoregulatory Curve in Humans  

 

CBF = cerebral blood flow, gm = gram, MAP = mean arterial pressure, min = minute, mL = milliliter, mmHg = millimetres of Mercury. 
Vertical dashed black lines represent the lower limit of autoregulation (ie. ~50 mm Hg) and the upper limit of autoregulation (ie. 
~150 mm Hg) seen within healthy subjects.  Vessel diameter changes can be seen along the top of the graph, indicating that at 
lower MAP values the vessel dilates allowing maintained CBF, while at high MAP the vessel constricts.  Beyond the lower and upper 
limits, CBF becomes pressure passive as the cerebral vessels are unable to regulate constant flow. Since its first appearance, the 
general understanding of autoregulation has been modified. First, x-axis has been scaled in cerebral perfusion pressure (CPP), 
acknowledging that not only variations in MAP may modify CBF outside limits of autoregulation, but variations of ICP may also 
contribute. Second, not only an inner diameter of flow regulating arteries changes, but outer diameter changes as well, with inner 
diameter (ie. luminal) changes leading to modulation of arterial cerebral blood volume. 
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This description, which has been validated in animal models and human studies, describes a range of 

“normal” cerebral autoregulation across MAP ranges of 50 to 150 mm Hg (ie. the “lower” and “upper” 

limits of autoregulation), allowing for a relatively constant CBF, near or around ~55 mL/100gm/min.1,3  

MAP outside of this range, exceeds the ability of cerebral vessels to regulate CBF, leading to deleterious 

consequences.  Below the LLA, MAP is low, and CBF cannot be maintained, leading to hypoperfusion, 

ischemia, and potentially infarction.  Above the ULA, the cerebral vessels are unable to regulate flow, 

leading to a hyperperfusion state.23  This quickly overwhelms the capillary bed, via elevated capillary filling 

pressures, leading to cerebral edema, impaired nutrient transport, and potentially intra-cerebral 

hemorrhage. 

The mechanism involved in cerebral autoregulation is believed to be related to variations in the cerebral 

vessel caliber in response to the driving pressure seen.23  While the caliber of vessels involved in this 

cerebral autoregulatory process is debated, pre-capillary arterioles, measuring up to a few hundred 

microns in diameter, remain the most likely candidates.24–26  The response of the cerebral vessels to 

changes in MAP are believed to occur in the frequency range of 0.005 to 0.05 Hertz (Hz), implicating “slow-

wave” responses of these vessels to alterations in MAP.13,27   

 

2.1.2 Theorized Regulatory Mechanisms 
 

The exact mechanisms involved cerebral autoregulation and the innate ability of cerebral vessels to 

regulate CBF through changes in tone and caliber are not clear.  Current theories include: myogenic, 

metabolic, neurotransmitter and endothelial based concepts.23,28 The myogenic theory focuses on the 

direct mechanical reflex of vascular smooth muscle in response to variations in cerebral perfusion 

pressure mediated via vascular stretch experienced by the cerebral vessels.  As perfusion pressure 

increases, there is an increase in stretch experienced by the tunica media, leading to a reflex 

vasoconstriction, ensuring constant CBF.  Conversely, low cerebral perfusion pressure leads to relaxation 

of the cerebral vessels consequent to decreased stretch of the tunica media.  This theory, however, fails 

to explain biochemically driven cerebrovascular responses seen in vitro. The metabolic theory states 

that byproducts of cerebral metabolism can impact or dictate cerebral vessel caliber. For example, in 

states of hypoperfusion, cerebral metabolism quickly shifts to anaerobic metabolism, generating lactate, 

amongst other metabolic products.  It is believed these products may impact vessel caliber, in an 

attempt to restore adequate CBF.  The downside to this theory is that it fails to explain the relatively 
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rapid temporal response of cerebral vessels, as it takes time to produce metabolic byproducts in 

significant concentrations such that the cerebral vasoreactivity would be impacted. The 

neurotransmitter theory implies that all cerebrovascular reactivity is driven via direct neural input to the 

smooth muscle.  This theory would account for the rapidity of cerebral vascular response, but does not 

fully explain other biochemical or endothelial responses.  Finally, the endothelial response implies that 

changes in perfusion pressure drive direct endothelial responses which regulate vessel caliber.  Such 

endothelial based mediators include nitric oxide (NO) produced by by nitric oxide synthase (NOS), 

eicosanoid release, and endothelin production.    

 

Aside from these mechanisms which apply in health, aspects of the injury response may modulate 

cerebrovascular reactivity in disease.  For example, the inflammatory response appears to play a role in 

outcome within TBI29 and SAH.30,31 The potential exists that the inflammatory response to both the 

primary and secondary injury may drive autoregulatory dysfunction.  Autonomic response via 

catecholamine action on cerebral vasculature, may directly modulate vascular tone and regulate 

autoregulatory capacity post-TBI.32 Other evidence suggests a role for abnormal cerebral 

electrophysiologic responses to injury. Spreading cortical depression (SCD) has recently emerged as 

potential player in cerebrovascular reactivity in animal models.33–36 The presence, or increased 

frequency, of such electrophysiologic patterns may also drive autoregulatory dysfunction post injury.37 

Furthermore, recent literature in humans supports an association CBF dysfunction and vascular 

reactivity dysfunction in adult TBI.38,39 Such SCD episodes have been demonstrated to occur frequently in 

moderate and severe TBI patients.38,39 In corollary, dynamic temporal links between SCD and impaired 

CBF has been demonstrated in small cohorts of adult TBI patients.38 Similarly, data suggests the 

temporal link between SCD and both excitotoxicity and metabolic crisis, as defined by elevated cerebral 

microdialysis glutamate and lactate:pyruvate ratio.40  Finally, disruption of solute/nutrient transport 

across the blood brain barrier (BBB) may play a role in the potentiation of autoregulatory dysfunction.   
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2.2  Review of Literature on Cerebrovascular Reactivity in Adult TBI 
 

In order to gain a comprehensive understanding of the available literature on:   intermittent/semi-

intermittent autoregulation measurement techniques,10 continuous methods of autoregulation 

measures in adult TBI,4 and association between injury burden and vascular reactivity, various 

systematic reviews (SR’s) were conducted.  

 

All SR’s were conducted independently for the review of literature component of this thesis, with the 

involvement of a second literature filterer only for the purpose of abiding by standard SR guidelines as 

outlined by the Cochrane Handbook of Systematic Reviews.41  For the SR’s presented in the sections to 

follow, Dr. Eric P. Thelin (Karolinska Institute) was the second reviewer. The summation of results, 

analysis and presentation were all conducted independently by the author of this thesis. 

 

The systematic reviews were conducted to outline the literature body in the following areas:   

 

A. Intermittent/semi-intermitent techniques for cerebrovascular reactivity measurement in adult TBI, 

evaluating the link between these measures and both:  other cerebral physiology measures and patient 

global outcome. The following intermittent/semi-intermitent techniques were evaluated:  computed 

tomographic perfusion (CTP)/Xenon-CT (Xe-CT), positron emission tomography (PET), magnetic 

resonance imaging (MRI), arterio-venous difference in oxygen (AVDO2) technique, thigh cuff deflation 

technique (TCDT), transient hyperemic response test (THRT), orthostatic hypotension test (OHT), mean 

flow index (Mx) and transfer function autoregulation index (TF-ARI). 

 

 B. Continuous techniques for cerebrovascular reactivity measurement in adult TBI, evaluating the link 

between these measures and both:  other cerebral physiologic measures and global patient outcome.  

The following continuous techniques were evaluated:  PRx, laser Doppler flowmetry (LDF), NIRS 

techniques, PbtO2, and thermal diffusion (TD) techniques. 

 

C. Evaluation of any link between systemic or intra-cranial injury burden and impaired cerebrovascular 

reactivity in adult TBI patients.  
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Each systematic review was conducted in a robust format, adhering to standard methodological 

processes for SR’s.  All methodological principles employed for the SR, including: search strategies, 

inclusion/exclusion criteria, article filtering processes, data curation and summary techniques can be 

found in the individual published manuscripts. The results of these SR’s conducted for this thesis, 

detailed in the subsections to follow, can be found in the various separate publications.4,10,29,31,42 

 

 

2.2.1  Methods of Measurement and Associations with Outcome  
 

 2.2.1.1 Intermittent/Semi-Intermittent Methods 

 

A systematic, scoping review of commonly described intermittent/semi-intermittent autoregulation 

measurement techniques in adult TBI was performed.  Techniques were defined as intermittent if they 

produced a single point measure of autoregulatory capacity.  Further, some TCD based techniques were 

defined as semi-intermittent, given the labor-intensive nature of TCD and limited duration of recordings 

obtainable in clinical practice, mostly due to unstable fixation of ultrasound probes. A detailed account 

of the results can be seen in the publication Zeiler et al.10 

Nine separate systematic searches were conducted for each intermittent technique: CTP/Xe-CT, PET, 

MRI, AVDO2 technique, TCDT, THRT, OHT, Mx and TF-ARI.  MEDLINE, BIOSIS, EMBASE, Global Health, 

Scopus, Cochrane Library (inception to December 2016) and reference lists of relevant articles were 

searched.     

The total number of articles utilizing each of the 9 searched techniques for intermittent/semi-

intermittent autoregulation techniques in adult TBI were:  CTP/Xe-CT (10),43–52 PET (6),53–58 MRI (0), 

AVDO2 (10),55,59–67 autoregulation index (ARI) based TCDT (9),47,68–75 THRT (6),62,76–80 OHT (3),79,81,82 Mx 

(17)3,8,54,83–96 and TF-ARI (6).94,97–101 Studies focusing on Mx were limited to those with 50 or more 

patients, assessing the association to patient outcome.  The premise behind all of the intermittent 

techniques is manipulation of systemic blood pressure/blood volume via either chemical (such as 

vasopressors) or mechanical (such as thigh cuffs or carotid compression) means. Exceptionally, Mx97 and 

TF-ARI94 are based on spontaneous fluctuations of CPP or MAP.  The method for assessing the cerebral 

circulation during these manipulations varies, with both imaging-based techniques and TCD utilized.   
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Despite the limited literature for intermittent/semi-intermittent techniques in adult TBI (apart from Mx), 

it is important to acknowledge the availability of such tests. They have provided fundamental insight into 

human autoregulatory capacity, leading to the development of continuous and more commonly applied 

techniques in the ICU.  Numerous methods of intermittent/semi-intermittent pressure autoregulation 

assessment in adult TBI exist, including: CTP/Xe-CT, PET, AVDO2 technique, TCDT based ARI, THRT, OHT, 

Mx and TF-ARI.  MRI based techniques in adult TBI are yet to be described, with the main focus of MRI 

techniques on metabolic based vascular reactivity and not pressure-based autoregulation.  A complete 

and detailed assessment of each intermittent/semi-intermittent measurement technique in adult TBI 

can be found in the Zeiler et al article.10 

Semi-intermittent measures deserve further mention, as they include TCD-derived continuously 

updating indices (such as Mx), and have been utilized in the studies conducted within this thesis.  Mx is 

derived from a moving Pearson correlation coefficient between two continuously measured signals, 

mean cerebral blood flow velocity (FVm) and CPP.97  In this context, cerebral blood flow velocity (CBFV) 

is obtained through TCD insonation of the middle cerebral artery (MCA). Given the need for continuous 

TCD monitoring to calculate this updating index, the duration of recording is typically limited to 60 

minutes or less.  Thus, this technique is referred to as a “semi-intermittent” autoregulatory 

measurement technique. 

The concept of this autoregulatory measure is that the slow wave responses in FVm to slow waves in 

CPP are believed to be governed by autoregulatory capacity. TCD ultrasound is used to capture the MCA 

velocity.  As with all the other TCD based measures the signal can be acquired either unilaterally or 

bilaterally, thus providing insight into the symmetry of cerebral autoregulation. In addition, continuous 

recording of MAP (via either invasive arterial line or continuous non-invasive techniques) and ICP are 

required for determination of CPP (based on:  CPP = MAP – ICP).  The signals are recorded and stored, 

with the option of both off-line and real-time calculation of Mx.  Both FVm and CPP are processed via a 

10-second moving average filter and sampling frequency decimated to 0.1 Hz (in other words replacing 

original FVm and CPP by times series composed of their non-overlapping 10s averages).  The correlation 

coefficient is then calculated based on 30 consecutive 10-second mean values (ie. 5 minutes), with the 

coefficient updated every 10 or 60 seconds.  This produces an Mx time series with the similar sampling 

rate as mean FVm/CPP. Variations in the correlation window length have been described, though the 

above-mentioned parameters are the most commonly cited, particularly in more recently. Similar to 
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pressure reactivity index (PRx – derived from invasive ICP and MAP), Mx in routine autoregulation 

monitoring should be averaged for a minimum period of 30 minutes to reduce its inherent variance. 

Some variations in the technique have been described.  The use of MAP instead of CPP has been 

explored (termed Mx_a) as this renders the technique potentially non-invasive.84  However, by using 

MAP and not CPP, the impact of ICP on FVm is not considered during the calculation of the correlation 

coefficient.  Literature comparing standard Mx to Mx_a has demonstrated that Mx is superior in terms 

of outcome prediction in TBI, hence Mx_a is limited to these cases when ICP is not directly monitored.84  

Similarly, instead of using FVm in the correlation, there has been investigation into utilizing either only 

systolic or diastolic flow velocities (FVs or FVd), creating two alternate indices (Sx and Dx, respectively; 

and their “non-invasive” versions Sx_a and Dx_a).84 Again, as with Mx_a, Sx/Sx_a and Dx/Dx_a have not 

been found to be grossly superior to Mx. Thus, Mx is most commonly quoted.10   

The metric generated by calculating these TCD indices ranges from -1 to +1, as it is a correlation 

coefficient.  A value that is highly positive indicates potentially “impaired” autoregulation, as it signifies a 

passive, linear relationship between CPP and FVm/FVs/FVd.  Similarly, a zero or negative index value 

indicates that fluctuations in CPP are heavily attenuated and phase shifted in recorded FV (FVm, FVs, or 

FVd), thus suggesting “intact” autoregulation.  The exact index value at which autoregulation is 

“impaired” and pathologic is not clear.  Sorrentino et al evaluated thresholds of Mx as they related to 

mortality and GOS at 6 months post-TBI.8  A double peaked threshold was found for Mx with threshold 

of +0.3 and +0.05 discriminating between both life versus death, and good versus poor outcome.  Both 

thresholds are utilized within the literature to denote “impaired” autoregulation. 

The search of the adult TBI literature yielded 17 studies, with 50 or more subjects, describing the 

association between Mx and patient outcome. 3,8,54,83–96  The patients suffered from moderate to severe 

TBI, with an average of 212 patients per study.  Of note, all of these papers originated from 

Addenbrooke’s hospital in Cambridge, as part of either retrospective reviews of a prospectively 

maintained database on TCD in TBI, or as prospective cohort studies. Thus, the actual number of unique 

patients overall across all of the studies is much lower, since there is overlap in patient inclusion across 

the multiple studies.  Despite this, across these 17 papers, Mx is noted to be strongly associated with 

patient outcome.  Furthermore, given the ability to obtain MCA velocities bilateral, asymmetry in 

autoregulatory capacity has been documented, with the greater right-left difference in Mx being 

associated with worse outcome.  The incidence of “impaired” autoregulation, as defined by Mx, was not 

clear in most of the included studies, as the search for TCD based Mx studies focused on those 
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documenting an association to patient functional outcome.  In addition, “impaired” autoregulation 

detection using Mx is difficult, given the lack of an exact threshold for this physiologic event, and only 

thresholds for morbidity and mortality that have been well defined.   

 

 2.2.1.2 Continuous Methods 

 

A systematic scoping review of the literature on commonly described continuous autoregulation 

measurement techniques in adult TBI was conducted.  The goal was to provide an overview of 

methodology for each technique.  This review is detailed in Zeiler et al.4 

Five separate systematic reviews were conducted for each of the continuous techniques: PRx, LDF, NIRS 

techniques, PbtO2, and TD techniques.  Articles from MEDLINE, BIOSIS, EMBASE, Global Health, Scopus, 

Cochrane Library (inception to December 2016) and reference lists of relevant articles were searched.  

The literature base identified from the individual searches was limited, except for PRx.   

The total number of articles utilizing each of the 5 searched techniques for continuous autoregulation in 

adult TBI were:  PRx (28),3,9,15,27,58,83,85,91,102–121 LDF (4),122–125 NIRS (9),20,126–133 PbtO2 (10),116,127,128,130,134–139 

and TD (8).38,64,128,135,140–143  Studies focusing on PRx were limited to those assessing the association to 

patient outcome. All continuous techniques described in adult TBI are based on moving correlation 

coefficients.  The premise behind the calculation of these moving correlation coefficients focuses on the 

impact of slow fluctuations in either MAP or CPP on some indirect measure of CBF or CBV, such as: ICP, 

LDF, NIRS signals, PbtO2 or TD CBF.  The conceptual basis for such measures is that the correlation 

between a hemodynamic driving factor (such as MAP or CPP), and a surrogate for CBF or CBV, sheds 

insight on the state of cerebral autoregulation.  Both PRx and NIRS indices were validated experimentally 

against the ‘gold standard’ static autoregulatory curve at least around the lower threshold of 

autoregulation.14 PRx has the largest literature base supporting the association with patient outcome.   

Various methods of continuous autoregulation assessment are described within the adult TBI literature.  

Many studies exist on these various indices, and suggest an association between their values and patient 

morbidity/mortality. Given these multi-modal monitoring (MMM) derived techniques are the main focus 

of this thesis, further details on each continuous technique can be found below: 
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1. Pressure Reactivity Index (PRx) 

The use of continuously updating PRx monitoring was first described in the mid to late 1990’s, and this 

technique is currently one of the most common methods for continuous assessment of autoregulation  

employed within the ICU.3  Furthermore, this index is one of the only continuous cerebrovascular 

reactivity indices that has been experimentally validated to measure the LLA.14 The concept behind this 

index of autoregulatory capacity is that the continuous relationship between slow-wave (ie. 0.005 to 

0.05 Hz) vasogenic fluctuations in ICP and MAP are an indirect measure of the cerebrovascular response. 

The correlation between slow-wave changes in a surrogate measure of fluctuating CBV (ie. ICP) and MAP 

provides information regarding signal phase-shift and autoregulatory status.  In order to obtain this 

value, a moving correlation coefficient is calculated between slow-waves ICP and MAP.  First, 

continuous, full waveform quality, signals of MAP (typically from a radial artery line) and ICP (typically 

from any invasive ICP monitoring device) are recorded.  Processing these signals to determine PRx may 

be conducted off-line or in real-time.  Next, a 10 second moving average is calculated for both ICP and 

MAP and decimated to 0.1Hz, using 10 second non-overlapping data windows averages (to remove the 

influence of cardiac cycle and respiration).  The Pearson correlation coefficient is then calculated using 

30 consecutive average ICP and MAP values, spanning 5 minutes of data.  This calculation is then 

repeated every 60 seconds (thus introducing 80% overlap, 4 min), producing a minute-by-minute update 

to the PRx value.  The concept behind PRx is that changes in ICP within the 5-minute window in this 

calculation represent a surrogate for changes in intracerebral blood volume which in turn represent 

most likely arteriolar vasodilation or constriction. Thus, PRx can be considered a measure of vascular 

reactivity.  A single value of PRx is difficult to interpret.  Averaging over a minimal period of 30 minutes is 

suggested, unless transient responses of PRx to deep and sudden events are being explored (such as a 

change in ICP during plateau waves, response to change in PaCO2, etc).  Other calculation window 

lengths have been described. 

PRx values produced from the above described calculation range from -1 to +1, given that they are 

correlation coefficients.  A positive value indicates a strong positive correlation between MAP and ICP 

such that any increase in MAP leads to an increase in ICP (ie. no phase shift between the ICP and MAP 

waveforms), and thus represents “impaired” autoregulation.  Conversely, a negative PRx indicates a 

negative correlation between MAP and ICP, indicating “intact” autoregulation.  The model which 

assumes MAP slow variations are an input to which responses in ICP can be observed, is not always 

relevant. For example, when ICP is already high, MAP responds in-phase to changes in ICP as a Cushing’s 
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response, which makes PRx continuously close to +1. While the physiological significance of these 

extreme PRx values are self-evident, the threshold value of PRx that represents a transition from 

functioning autoregulation to “impaired” autoregulation is, as yet, not clear.  Various thresholds of PRx 

have been identified within the literature.9 The most commonly quoted are those by Sorrentino et al.9  

Within this study, various thresholds of PRx (mean value over the entire monitoring period) were 

assessed by their association with mortality and good vs. poor functional outcome as assessed by the 

Glasgow Outcome Scale (GOS) at 6 months post-TBI.  Two thresholds were identified:  1. PRx of 0 or 

lower was associated with better 6-month GOS, 2. PRx >0.25 was associated with mortality. 9 Thus, to 

date, the threshold of 0.25 for PRx is the value many clinicians use to identify those patients with 

“impaired” autoregulation.  When PRx is negative, autoregulation is good.  The “intermediate” range of 

0 to 0.25 for PRx, based on the two thresholds identified by Sorrentino, may provide warning of 

imperfect autoregulation or impending autoregulatory dysfunction, or may signify the rare state that 

power of slow waves of ICP and AMP is too low, to contain any useful information about cerebral 

pressure reactivity.  

 The use of PRx has led to the development of patient tailored therapy for CPP targets.  By plotting PRx 

versus CPP, one can identify the CPP with the lowest PRx values (ie. “best” autoregulatory state).  A 

recent systematic review of CPP optimum, as derived from PRx, displayed trends to improved outcomes 

when CPP was within the “optimum range”.144  This has sparked some interest in a trial of CPP optimum 

guided therapy, versus conventional CPP targets in TBI, which is now being conducted in three European 

centres.  

The search strategy identified 28 papers which described the association of PRx to patient outcome in 

adult TBI. 3,9,15,27,58,83,85,91,102–121  Eighteen of these studies had 50 or more patients, with an average of 243 

patients per study.  The remaining 10 studies had less than 50 patients per study. The patients studied 

had moderate – severe TBI, with almost all patients within the included studies being of adult age.  A 

small number of pediatric patients (age <18 years) were embedded within the large data sets, making it 

impossible to extract the pediatric information.  Thus, the number of pediatric patients is quite small. 

The majority of the studies report strong associations between PRx and outcomes at various time points, 

regardless of study size.  PRx is also noted to correlate with the individual TCD based intermittently 

monitored indices of autoregulation.  Furthermore, correlation with individual NIRS based indices has 

also been confirmed.  
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2. LDF Based Techniques 

The use of LDF monitoring in TBI has ceased in the clinical setting, with only a few studies documenting 

its use. 122–125 This technique was included in order to be thorough and describe a technique based on 

the assessment of cortical small arteriolar/microvasculature.  

The LDF probe is placed in the subdural space, overlying the cortical surface of the brain. A low power 

solid-state laser diode emits infrared light onto the cortical surface.  The reflected photons are Doppler 

shifted in frequency, with the shift being a function of the velocity of moving blood in the area.  The 

reflected infrared signal is detected by the probe, with CBF reported in arbitrary units and recorded as a 

continuous signal.  To derive an index of autoregulatory capacity, the similar technique of calculation of 

moving a Pearson correlation coefficient (as with PRx) can be used. 10 second mean values for CBF and 

CPP (updated every 10 seconds), with the correlation coefficient based on 30 consecutive values from a 

moving window are computed.  This autoregulatory index based on LDF is called Lx. The premise here is 

that the impact of slow changes in CPP on LDF derived CBF are an indirect measure of autoregulatory 

capacity.  

Given the small literature base on LDF in TBI, the exact values of Lx which denote “intact” versus 

“impaired” autoregulatory capacity are unclear. Values above a Lx of 0 likely indicated some degree of 

impairment of autoregulatory capacity, while those less than 0 likely indicated intact autoregulation.   

The search of the adult TBI literature produced only 4 studies on the use of LDF for autoregulatory 

assessment. 122–125  The populations studied were moderate to severe TBI patients.  Conclusions 

regarding the technique are limited given small patient numbers. However, persistently positive Lx 

values were associated with poor GOS at 6 months.    

 

3. NIRS Techniques 

The use of NIRS has generated numerous new indices of cerebral autoregulatory capacity.  NIRS involves 

placing optodes on the patient’s scalp (typically with a bifrontal distribution, since optodes requires 

placement on a hairless area).  The NIRS device, depending on the manufacturer, uses two or more 

wavelengths of infrared light via typically a single emitter, with 2-4 detector photodiodes placed in line 

with the emitter at the distance of min 2.5 cm.20  Based on the diffusion characteristics of infrared light, 

various measures can be mathematically derived from the signal using the modified Beer Lambert law.  
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Typically indices measured include uncalibrated changes in oxyhemoglobin (HbO or Co2Hb), 

deoxyhemoglobin (HHb or CHb) and total hemoglobin concentration (HbT = HbO + Hb), hemoglobin 

difference (Hbdiff  = HbO – HHb).  Different indices (total hemoglobin – THI or HVI and and total 

oxygenation index - TOI, sometimes branded CO or rSO2, nomencleature depending on manufacturer) 

are derived from the spatially resolved spectroscopy, a technique designed to overcome the problem of 

calibration due to unknown scattering coefficient, absorption path length and partition coefficient, and 

at the same time attempt to minimize the influence of scalp blood flow on NIRS based measures.  Hb 

and HbO are believed to represent venous and predominantly arterial compartments respectively.  

Indices derived from both the oxygenated and deoxygenated NIRS measures are believed to represent 

blood transit from arterial to venous systems.  In addition to the NIRS monitoring, continuous MAP or 

CPP are required for continuous autoregulatory assessment. The change in NIRS based measures with 

respect to CPP is believed to represent autoregulatory function. 

Autoregulatory assessment with NIRS applied in TBI patients is all based on moving Pearson correlation 

coefficients between the various NIRS measures (HbO, HHb, HbT, TOI, THI and Hbdiff) and CPP or MAP.   

The method of calculation is the same as that for PRx or Mx.  The indices introduced in the literature 

include, TOx (or COx), based on TOI (or rSO2) and THx (also known as HVx), based on THI, or HbT 

respectively. Thresholds for autoregulatory “impairment” have not been determined, given a small 

number of studies available in adult TBI, evaluating a small number of patients.  Similar to PRx, positive 

index values may represent “impaired’ autoregulation, while negative values may denote “intact” status. 

The literature search identified 9 manuscripts describing NIRS bases autoregulatory indices in adult TBI. 

20,126–133 A total of 187 TBI patients were described across the 9 studies, with an average of 21 patients 

per study.  Within these studies various NIRS based autoregulatory indices were compared to existing 

indices (such as PRx and Mx) and patient outcomes. THx and TOx were found to be correlated to PRx and 

Mx.  

 

4. Brain Tissue Oxygen Monitoring (PbtO2) based ORx  

Brain tissue oxygen monitoring (PbtO2) can be utilized to derive a continuous index of autoregulation 

(ORx). The PbtO2 probe is typically a Clark electrode situated within the brain parenchyma, where 

diffusible oxygen is measured by the catheter tip continuously. This generates a value for the partial 

pressure of brain tissue oxygen (PbtO2). With continuous MAP and ICP recording, one can calculate a 
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moving Pearson correlation coefficient between CPP and PbtO2.  The thought is that the slow wave 

correlation between CPP and PbtO2 provides an indirect measure of autoregulatory function.  However, 

caution is needed in interpreting results, given that PbtO2 levels can fluctuate in response to many local 

and systemic factors.  The Pearson correlation coefficient is calculated in a similar manner to PRx, but 

over much longer windows (over 30 or 60 minutes in duration).  However, ORx has also been described 

using 5-minute moving windows as well. 

As with the less common indices (ie. Lx and NIRS), threshold-based studies do not exist for ORx. Thus, 

the exact point where autoregulation becomes “impaired” is unclear currently.  However, positive ORx 

values are believed to represent an impairment of the autoregulatory capacity, while negative ORx 

values are believed to represent an “intact” state. Although this point is controversial. Some authors 

think that positive ORx signifies that PbtO2 can be improved by rising CPP, and zero ORx informs that the 

range of PbtO2 regulation has been exhausted. 

The search of the adult TBI literature produced 10 studies on ORx. 14,125,126,128,132–137 A total of 159 

patients were described across these studies, with an average of 17 patients per study.  The main 

purpose of the individual studies was quite variable, with some reporting correlations with other indices 

(such as NIRS or PRx), while other were reporting CPP optimal based targets derived from ORx.  ORx 

displayed some correlation to NIRS based HHbx and PRx.  Furthermore, some agreement between CPP 

optimum derived from ORx and that from PRx has been noted.  To date, this index is not routinely 

utilized for autoregulatory assessment, given the PbtO2 signals propensity to be influence by various 

factors unrelated to the central nervous system.   

 

5. Thermal Diffusion (TD) Technique 

The use of thermal diffusion (TD) probes affords the ability to estimate regional cerebral blood flow and 

perfusion.  This device consists of a dual thermistor probe which is inserted directly into the brain 

parenchyma.  The distal thermistor generates heat at ~2 degrees Celsius above tissue temperature, 

while the proximal thermosensor (5 mm proximal) records the brain temperature outside of the distal 

thermistor’s heat field.134 Thus, the relative changes in brain temperature related to blood transit 

regionally can be measured and correlated with CBF.  The device regularly re-calibrates, interrupting 

continuity of the data stream, and the values it generates can be influenced by systemic factors, such as 

pyrexia,141 with a reduction in the reliability of CBF measurement using the device.  
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Regardless of limitations of the device, autoregulation measurement has been conducted with the TD 

catheter. Two methods have been described.  The first is intermittent and will be mentioned only in 

passing.  It involves the measurement of CBF via the catheter during active manipulation of the MAP 

using vasopressor agents.  Only, 2 studies to date have described this approach in adult TBI, and are 

included here for completeness on TD based autoregulation.64,142   

The second technique of autoregulation measurement is continuously updating, assuming an 

uninterrupted TD based CBF signal.  This technique is again based on a moving Pearson correlation 

coefficient between CBF and CPP, called CBFx.  The method of calculation is similar to PRx, Mx and Lx.  

The premise behind its association with autoregulation is similar to the concept for LDF based Lx 

measurement.  As with the other less utilized indices, there are no guidelines as to thresholds for CBFx 

during particular states of autoregulatory capacity.  Thus, positive CBFx values are believed to denote 

impairment of autoregulation, while negative CBFx values are believe to represent intact states. 

The search of the adult TBI literature yielded 8 papers on TD based autoregulatory assessment. 

38,64,128,135,140–143  As mentioned, 2 studies were intermittent, and only mentioned here for completeness. 

64,142   These were not included within the intermittent part of this manuscript series, as they it is not a 

“commonly” described technique of intermittent autoregulation assessment.  The remaining 6 studies, 

focused on CBFx calculation in adult TBI. Various physiologic outcomes were described in relation to 

CBFx.  Optimal CPP was derived from CBFx in one study.128 Very small patient numbers were found in 

these studies, so the conclusions drawn are limited.  

 

2.2.2  Potential Drivers of Impairment 
 

 2.2.2.1 Injury Burden 

 

To date, the available literature linking IC and EC injury burden to the development of impaired 

cerebrovascular reactivity in adult TBI is scarce.  Only one study by Hiler et al attempted to evaluate this 

association.107  This study focused on a heterogeneous group of 126 adult TBI patients, both with and 

without DC.  They evaluated whether the Marshall computed tomography (CT) grade on admission was 

associated with impaired cerebrovascular reactivity during the ICU stay, as defined by a grand mean PRx 

value greater than zero.  The results failed to demonstrate a strong link between IC injury burden and 

vascular reactivity post-TBI.  A few limitations existed, mainly:  including both DC and non-DC patients, 
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taking a grand mean over the entire recording period, and using a basic CT grading system (ie. Marshall 

CT grade).  Furthermore, no attempts to date have been made to assess the link between EC injury 

burden and host response, as they both relate to cerebrovascular reactivity post-TBI. 

 

2.2.3 Concepts Lacking Literature Support 
 

Considering the aims and hypotheses of this thesis, outlined in Chapter 1, it is important to highlight the 

areas where literature is lacking on cerebrovascular reactivity in TBI, all of which were identified by the 

results of the above outlined systematic review of literature.  First, currently the majority of literature on 

cerebrovascular reactivity monitoring in TBI focuses on PRx, as previously mentioned.  It is unclear as to 

whether a different correlation index would provide similar information, superior outcome prediction 

and more temporally stable critical thresholds.  Second, only PRx, TOx and HVx have been validated to 

measure the LLA in an experimental study of arterial hypotension.14  It is currently unclear as to whether 

PRx measures the LLA during IC hypertension.  Furthermore, it is unclear as to whether other ICP derived 

continuous indices measure the LLA during both arterial hypotension and IC hypertension.  Finally, for all 

continuous indices, it is unclear whether they can measure the ULA.  Third, the majority of studies 

evaluating indices derived from different MMM devices only investigated individual associations, failing 

to assess multi-variate co-variance structures.  Thus, the true inter-index associations are currently 

poorly understood.  Fourth, given difficulties with complex time-series analysis, there are currently a lack 

of robust attempts at modelling PRx using non-invasive surrogates.  Finally, as highlighted in 2.3.2.1, the 

literature on IC injury burden and cerebrovascular reactivity is limited.  The only available preliminary 

study failed to document an association using basic neuroimaging measures.107  EC injury burden and its 

links to cerebrovascular reactivity post-TBI has yet to be explored.   

Thus, based on the above-mentioned lack of literature, there exists the need to explore the hypotheses 

listed in Chapter 1.  The chapters to follow will outline the methodology and results of various studies 

conducted to address these hypotheses. 
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CHAPTER 3: GENERAL METHODS 
 

The experiments and results that comprise this thesis were, in some instances, conceptually complex, and 

the data required integrated analyses and a complex data-analysis approach.  Consequently, some of the 

initial concepts, methods and experiments are provided in several contexts.  This aim to provide relevant 

information close to sites where data and interpretation are being described has inevitably led to some 

repetition, but this has been retained to improve readability without having to move between chapters 

or sections of chapters. 

The methods outlined below provide a general overview of the analyzed populations described within the 

various studies conducted as a part of this thesis, both experimental models and human adult TBI. In 

addition, information regarding physiologic signal acquisition and processing is provided.  The statistics 

section provides a brief overview of methodology, however is not a detailed account of the techniques 

applied in individual studies.  Given the complexity of the statistical techniques employed as a part of this 

thesis, each subsequent chapter will contain the detailed explanation of the applied statistical 

methodologies.   

 

3.1 Experimental Model Management 
 

*Note:  Raw data from experimental studies was collected previously and retrospectively analyzed for the 

purpose of this thesis.  The data from New Zealand rabbits for evaluation of the LLA during IC hypertension 

was collected in the 1990’s at the University of Cambridge, with the raw data made available for this thesis 

by Prof Marek Czosnyka.  Similarly, raw data from an animal model (piglet model), collected in the late 

2000’s, were provided graciously by Dr. Jennifer Lee (John’s Hopkins) and Dr. Ken Brady (Baylor) for 

analysis of the LLA and ULA, using paradigms of arterial hypotension and arterial hypertension 

respectively.  None of the previous results reported using these experimental models have been included 

within this thesis.14,145–148  All analysis and results from these models reported in this thesis were 

conducted independently, addressing different questions from those posed in other publications from the 

above-mentioned investigators.  Table 3.1 summarizes the experimental models that were retrospectively 

analyzed for this thesis. 
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Table 3.1 - Experimental Models 

Population Source (lead 
investigator 
and institution) 

Number of Subjects Years Raw 
Physiologic Data 
Collected 

Chapters 

Piglets Jennifer Lee 
(Hopkins) and 
Ken Brady 
(Baylor) 

22 
 
*Model of pure 
arterial hypotension 
using IVC balloon 
inflation. 
 

2006 - 2011 5.1 

Piglets Jennifer Lee 
(Hopkins) and 
Ken Brady 
(Baylor) 

6 
 
*Model of pure 
arterial 
hypertension using 
aortic balloon 
inflation and 
vasopressors. 
 

2006 - 2011 5.3 

New Zealand White 
Rabbits 

Marek 
Czosnyka 
(Cambridge) 

12 
 
*Model of sustained 
IC hypertension 
using CSF infusion. 

1995 - 1996 5.2 

CSF = cerebrospinal fluid, IC = intra-cranial, IVC = inferior vena cava. 

 

 

3.1.1 New Zealand Rabbits 
 

Data from New Zealand (NZ) white rabbits were utilized for the study validating the ICP derived indices 

against the LLA during IC hypertension, Chapter 5.2. The animals described within this study have in part 

been described in previous studies related the physiologic response to intra-cranial hypertension.145,146  

Archived data from a subset of 12 animals from these previous studies was utilized for the analysis in this 

thesis.  The initial experiments were conducted between 1995 and 1996, in accordance with the standards 

of the UK Animals Scientific Procedures act of 1986, under a UK home office license and with permission 

form the institutional animal care and use committee at the University of Cambridge.   

Twenty-eight white New Zealand (NZ) rabbits (7 female, 21 male; weight 2.7 – 3.7 kg) were subjected to 

cerebrospinal fluid (CSF) infusions. No adverse events were recorded within this animal cohort. As with 
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previous publications on this animal cohort, experiments are reported in compliance with the ARRIVE 

guidelines for the reporting of animal experiments.149 

Animals were placed under general anesthetic via alphalaxone/alphadalone induction, with 1-3% 

halothane in 3:1 nitrous oxide/oxygen maintenance. Each animal subsequently had ligation of the 

common carotid arteries, leaving the brain entirely basilar artery dependent and allowing for TCD 

assessment of global blood flow. Once 2 weeks had passed, the animals were placed under general 

anesthestic again, with cannulation of the jugular vein and placement of a tracheostomy. Arterial blood 

pressure (ABP) was measured through in the dorsal aorta after catheter insertion in the femoral artery 

(GaelTec, Dunvegan, UK). Cerebral blood flow velocity was measured using an 8MHz Doppler ultrasound 

probe (PCDop 842, SciMed, Bristol, UK) positioned over the basilar artery (accessed through a 7 mm burr-

hole at the bregma). ICP was monitored using an intraparenchymal microsensor (Codman and Shurtleff, 

Raynham, MA, USA) inserted through a right frontal burr-hole, and an LDF probe was placed subdurally 

through a further right frontal burr-hole (Moor Instruments, Axbridge, Devon, UK).  

A lumbar laminectomy was performed to allow the positioning of a permanent catheter (sealed with 

cyanoacrylate after introduction) into the lumbar subarachnoid space. This facilitated the controlled 

infusion of artificial cerebrospinal fluid during the experimental protocol. Rectal temperature was 

monitored and the animals were placed on a padded warming blanket. The rabbits were given an 

intravenous infusion of pancuronium (pavulon, 0.5 mg/kg/h) and ventilation was controlled according to 

arterial pCO2 via periodic arterial blood gas analyses. The animals were supported in the Sphinx position 

using a purpose-built head frame with three-point skull fixation. All experiments were performed in an 

animal laboratory at the same time of day. 

The protocol for CSF infusion is identical to that previously reported. After completion of the lumbar 

laminectomy, the animals were allowed to rest for 20 minutes, with 5 minutes of baseline data 

recorded. Subsequently, the animals were subjected to raised ICP secondary to CSF infusion with 

Hartmanns solution into the lumbar cistern. Infusion rates were initially 0.1 mL/min, allowing ICP 

increase to reach a plateau of around 40 mm Hg after approximately 10 min. Thereafter the infusion 

rate was increased to rates between 0.2 and 2 mL/min to produce severe intracranial hypertension. ICP 

was increased until the point where diastolic flow velocity approached zero, which corresponded to an 

ICP of between 60 and 100 mm Hg (mean 75 mm Hg) at the termination of the experiment. Rabbits 

were euthanized with thiopental at the conclusion of the test.  No pCO2 manipulations occurred during 
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this experiment. Further details can be found in the previous studies reporting these experiments. ICP, 

ABP, LDF-CBF and TCD CBFV (from basilar artery) were recorded during this experiment. 

 

3.1.2 Piglets 
 

To explore the LLA during arterial hypotension and the ULA during arterial hypertension, a piglet model 

was utilized. The raw physiologic signal data were retrospectively analyzed for the purpose of this thesis. 

The neonatal piglet data described within this thesis were retrospectively amalgamated from 3 separate 

experiments.14,147,148 Inclusion criteria for the current study were normothermic, sham control piglets 

that had complete and time synchronized data for arterial blood pressure, laser Doppler flowmetry, and 

ICP from previously published studies. Twenty-two piglets met the inclusion criteria for the arterial 

hypotension LLA study:   

A. control animals from a study on LLA (n=8; age 5 to 10 days; weight 2.2 – 3.9 kg).   

B. sham controls for a model of cardiac arrest (n=7; age 3 to 5 days; weight 1 – 2.5 kg), and  

C. sham normothermic controls for a model of cardiac arrest with hypothermic therapy (n=7; age 3 to 5 

days; weight 1 – 2.5 kg).   

For the arterial hypertension ULA study, only 6 sham animals were included (n=6; age 5 to 10 days). All 

animals were male in both the LLA and ULA studies. All procedures were approved by the Animal Care 

and Use Committee at Johns Hopkins University and complied with the United States Public Health 

Service Policy on Human Care and Use of Laboratory Animals and the Guide for the Care and Use of 

Laboratory Animals.  Furthermore, animal care was in accord with National Institutes of Health 

Guidelines and ensured the animals’ comfort.   

Of note, a few limitations regarding these piglet models deserve mentioning. These piglet models and 

experiments were designed for investigation into cerebrovascular physiology with potential translation 

to neonatal care.  They were not intended to be translatable to adult cerebrovascular physiology.  As 

such, the prematurity of the cerebral vasculature in these models may have impacted the LLA and ULA 

values determined, and the behaviour of the derived cerebrovascular reactivity indices across the LLA 

and ULA with subsequent manipulation in CPP in the respective experiments.  Further to this, the skulls 

of these piglets were unfused given the neonatal age of the models employed.  As such, in the absence 
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of a fixed cranial vault, the measurement of ICP and derived vascular reactivity indices may have been 

impacted by this.  

 

LLA – Arterial Hypotension 

The male piglets were intubated and mechanically ventilated to maintain normocapnea. General 

anesthesia was provided with isoflurane in a 50%/50% nitrous oxide/oxygen mixture, fentanyl infusion 

and as needed boluses, and pancuronium or vecuronium infusions. Fentanyl and neuromuscular 

blockade were given through a femoral venous catheter. The isoflurane dose was held constant for the 

duration of the experiment. Arterial blood pressure was continuously monitored by an indwelling 

femoral artery catheter. A 5F esophageal balloon catheter (Cooper Surgical, Trundall Conn) was placed 

into the contralateral femoral vein and advanced into the inferior vena cava for later induction of 

hypotension. A ventricular ICP monitor and a cortical LDF probe (Moor Instruments, Devon, UK; model 

DRT4; 60Hz) to measure CBF were placed through small cranial burr holes. ICP and LDF were monitored 

in the same cerebral hemisphere.  ICP, ABP and cortical LDF-CBF were recorded during the experiment.  

The balloon catheter was slowly inflated in the inferior vena cava using a saline syringe pump. 

Hypotension was induced from baseline to near-zero blood pressure over 2 to 3 hours. This slow 

induction of hypotension permitted capture of slow wave intracranial pressure fluctuations for analysis 

of cerebrovascular reactivity. 

 

ULA – Arterial Hypertension 

The male piglets underwent a similar anesthetic as those for the LLA arterial hypotension study.  The 

only major variation is that the esophageal balloon catheter was placed in the femoral artery, and 

advanced towards the distal aorta.  This catheter was used to slowly increase systemic blood pressure to 

death of the animal. In addition, phenylephrine infusions were administered in attempt to push the MAP 

to maximal values. ICP, ABP and cortical LDF-CBF were recorded during the experiment.  
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3.2 Adult TBI Management 
 

Throughout the analysis presented in this thesis (Chapter 4, Chapters 6 through 9), various different 

populations of adult TBI patients were studied.  Table 3.2 provides a summary of those different 

populations.  

Table 3.2 - Adult TBI Populations 

Population Number of Subjects Years Raw 
Physiologic Data 
Collected 

Chapters 

Adult TBI with all MMM 37 
 
*TBI with ICP, PbtO2, 
NIRS and TCD 
monitoring. 
 

2008 - 2009 6.1 

Adult TBI with LDF 40 
 
*TBI with LDF, ICP and 
TCD monitoring. 
 

1994 - 1998 6.2 

Adult TBI with TCD 347 
 
*TBI with ICP and TCD 
monitoring. 
 

1992 - 2011 6.3, 7.1, 8.2 

Adult TBI with Long TCD 20 
 
*Prospectively collected 
with new robotic TCD for 
extended duration 
monitoring. ICP and NIRS 
signals also collected. 
 

2017 – 2018 7.2, 7.3 

Adult TBI without DC 358 
 
*TBI without DC and 
available admission 
neuroimaging. 
 

2005 – 2016 4, 8.1, 9  

DC = decompressive craniectomy, ICP = intra-cranial pressure, LDF = laser Doppler flowmetry, MMM = multi-modal monitoring, 
NIRS = near infrared spectroscopy, PbtO2 = brain tissue oxygen monitoring, TBI = traumatic brain injury, TCD = transcranial 
Doppler. 
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The management received by these patients within the NCCU at Addenbrooke’s Hospital (Cambridge 

University Hospitals NHS Foundation Trust (CUH)) was similar across all patient populations.  Patients 

were predominantly moderate or severe TBI patients, with moderate defined as a GCS of 9 to 12, and 

severe defined as a GCS or 8 or less.  These patients were admitted to the NCCU for purposes of critical 

care during the acute phase of their illness.  All patients had invasive ICP monitoring conducted as per 

Brain Trauma Foundation (BTF) guidelines.150  Some mild TBI patients, defined as GCS 13 to 15, 

subsequently deteriorated clinically after admission to hospital, warranting transfer to the NCCU for 

invasive monitoring and therapy.  Other monitoring modalities, such as PbtO2, NIRS and TCD are 

conducted as part of standard monitoring practices within the NCCU at Addenbrooke’s Hospital. All 

patients had ABP monitored during their NCCU stay.  ABP was zeroed at the level of the right atrium for 

all patients in the NCCU prior to 2015.151 Both ICP and ABP were zero referenced at the level of the 

tragus for all patients from 2015 onwards.151  

One important limitation of the information available in the retrospective database of TBI patients is 

related to this concept of arterial line zeroing.  Given data was not available on each and every patient as 

to where the arterial line was zero referenced, for the purpose of the analysis using this data set (ie. for 

Chapters 4, 6, 7, 8, and 9) it was assumed that most would have had the arterial line zeroed at the level 

of the tragus.151  This zero reference for the arterial line does not impact the sign or magnitude of 

derived cerebrovascular reactivity indices, given these indices are correlation coefficients, dependent on 

the co-variation in the correlated signals, not the magnitude of the raw physiological readings. As such, 

regardless of the level of arterial line zero reference, the calculated cerebrovascular reactivity indices are 

unimpacted.21,151,152  

General ICP and CPP directed therapy was provided to the patients as per the BTF guidelines,150 with an 

ICP goal of less than 20 mm Hg and CPP goal of 60 to 70 mm Hg.  ICP was controlled with various 

positioning techniques, mild hyperventilation (to ~33 mm Hg), bolus osmotic therapies (using mannitol 

or hypertonic saline), continuous sedation (typically with propofol and/or fentanyl) and CSF venting 

(when ventricular drain present for ICP monitoring).  Therapeutic hypothermia (to a lowest of 33 

degrees Celsius), neuromuscular blockade, barbiturate coma and decompressive craniectomy were used 

for refractory cases.  CPP was maintained using intra-venous vasopressor agents to maintain goal values.  

Seizures, electrolyte imbalances and blood glucose were treated as standard management in the NCCU. 

All physiologic signals were recorded and anonymized. Data on age, injury severity, and clinical status at 

hospital discharge were recorded at the time of monitoring in this database, and no attempt was made 
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to re-access clinical records for additional information. Since all data was extracted from the hospital 

records and fully anonymized, no data on patient identifiers were available, and formal patient or proxy 

consent was not required.  Section 3.6 overviews the ethical considerations for access and use of such 

human clinical data. 

 

 

3.3 Monitoring 
 

3.3.1 Invasive Cerebral Monitoring 
 

3.3.1.1 Intra-cranial Pressure (ICP) 

 

ICP was acquired via an intra-parenchymal strain gauge probe (Codman ICP MicroSensor; Codman & 

Shurtleff Inc., Raynham, MA).  This was conducted in both the experimental models and human adult TBI 

populations.   

 

3.3.1.2 Brain Tissue Oxygen (PbtO2) 

 

PbtO2 monitoring occurred via invasive parenchymal monitoring (Licox probe; Integra, Licox Brain 

Oxygen Monitoring System, Plainboro, NJ), typically placed in the right frontal lobe via a triple lumen 

bolt (Technicam Ltd).   

 

3.3.1.3 Cortical Laser Doppler Flowmetry (LDF) 

 

This invasive monitoring modality for adult TBI patients was only in place for a short period within the 

NCCU in the mid 1990’s. LDF based CBF was obtained via placement of a MBF3D dual channel laser LDF 

(Moor Instrument Ltd, Devon UK) in the subdural space, ipsilateral to the ICP monitor.  The LDF probe 

employed a low energy laser (0.5 to 1.5 mW) with light generated in the near infrared spectrum (780 to 

820 nm).  LDF signals were recorded at a frequency of 14.6 kHz.  All probes were pre-calibrated prior to 

insertion.  Details on the insertion technique and calibration method can be found in the 1994 study by 
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Kirkpatrick et al.122 A similar probe, from the same manufacturer, was utilized within the experimental 

studies described within this thesis. 

 

 

3.3.2 Non-Invasive Cerebral Monitoring 
 

3.3.2.1 Transcranial Doppler (TCD) 

 

Various different TCD devices were employed over the decades for measuring CBFV from the MCA.  TCD 

assessment was conducted via Doppler Box (DWL Compumedics, Singen, Germany) or Neuroguard 

(Medasonic, Fremont, CA, USA), for the patient populations described in Chapters 6, 7.1 and 8.2.  Finally, 

a new robotic TCD unit was employed for the purpose of this thesis, the Delica EMS 9D (Delica EMS 9D 

System, Shenzen Delica Medical Equipment Co. Ltd., China; http://www.delicasz/com).  This newer 

robotic system will be described in detail in Chapters 7.2 and 7.3. 

 

3.3.2.2 Near Infrared Spectroscopy (NIRS) 

 

NIRS signals were recorded bilaterally over the frontal lobes utilizing the NIRO-200 or NIRO-200NX 

monitoring (Hamamatsu Photonics, Hamamatsu City, Shizuoka, Japan, www.hamamatsu.com).  The 

following NIRS signals were recorded: oxygenated hemoglobin (HbO), deoxygenated hemoglobin (HHb), 

total oxygenation index (TOI), total hemoglobin index (THI) and total hemoglobin concentration (Hb). 

 

3.3.3 Systemic Monitoring 
 

3.3.3.1 Arterial Blood Pressure (ABP) 

 

ABP was obtained through either radial or femoral arterial lines connected to pressure transducers 

(Baxter Healthcare Corp. CardioVascular Group, Irvine, CA). 
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3.4 Signal Capture and Processing 
 

3.4.1 Signal Capture 
 

All physiologic signals from the various MMM devices (ie. ICP, ABP, PbtO2, NIRS, TCD and LDF) in both 

the experimental and human adult TBI studies were recorded in high frequency waveform (50 Hz or 

higher) using ICM+ software (Cambridge Enterprise Ltd, Cambridge, UK, 

http://icmplus.neurosurg.cam.ac.uk).  Digital signals were directly recorded by ICM+.  While analogue 

signals were digitized via analogue to digital converters (ADC) (DT300 for experimental studies, DT9801 

or DT9803 for human studies; Data Translation, Marlboro, MA). All signals were linked in time-series 

automatically by ICM+. 

 

 

3.4.2 Signal Processing 
 

Post-acquisition processing of the above signals was conducted using ICM+.  Signal artifact was cleared 

through a combination of manual and automated techniques. Pulse amplitude of ICP (AMP) was 

determined by calculating the fundamental Fourier amplitude of the ICP pulse waveforms over a 10 

second window, updated every 10 seconds.  For TCD CBFV, further processing was conducted to 

produce FVm, FVs and FVd. Systolic flow velocity (FVs) was determined by calculating the maximum flow 

velocity (FV) over a 1.5 second window, updated every second.  Diastolic flow velocity (FVd) was 

calculated using the minimum FV over a 1.5 second window, updated every second. Mean flow velocity 

(FVm) was calculated using average FV over a 10 second window, updated every 10 seconds (ie. without 

data overlap).  

A ten second moving average filter (updated every 10 seconds to avoid data overlap) was applied to all 

recorded signals:  ICP, ABP (which produced MAP), AMP, CPP, PbtO2, TCD CBFV, NIRS signals, and LDF-

CBF. This decimated the signal frequency to ~0.1Hz, focusing on slow-waves of the various MMM 

variables:  ICP, CPP, ABP, AMP, FVm, FVs, FVd, TOI, THI, PbtO2, and LDF-CBF. Details regarding derived 

variables (ie. CPP and continuous indices of cerebrovascular reactivity) will be covered in the section to 

follow.   

http://icmplus.neurosurg.cam.ac.uk/
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All variables, including derived entities, were output into comma separated variable (CSV) files for future 

statistical analysis.  The update frequency for the time-series data that was output into the CSV files was 

minute-by-minute averages for all variables.  The only exceptions to this were the data from Chapters 

5.2 and 6.2, where the data was output in 10-second-by-10-second averages, due to short duration of 

these recordings. 

 

3.4.3 Derived Physiologic Measures 
 

3.4.3.1 Cerebral Perfusion Pressure (CPP) 

 

CPP was derived via the difference between MAP and ICP signals:  

 CPP = MAP – ICP      (3.1) 

Where CPP, MAP and ICP are measured in mm Hg. 

3.4.3.2 Continuous Indices of Cerebrovascular Reactivity 

 

All continuous indices of cerebrovascular reactivity were calculated via a similar moving Pearson 

correlation coefficient method, correlating slow wave fluctuations in a surrogate marker for pulsatile 

CBV (ie. ICP, AMP, TOI, THI, PbtO2) or CBF (ie. FVm, FVs, FVd, LDF-CBF) with that of a driving pressure (ie. 

MAP or CPP).  The following example is for PRx, with identical calculation methods utilized for the other 

indices.  PRx is calculated as the moving correlation coefficient between slow wave fluctuations of ICP 

and MAP.  This is calculated using 30 consecutive 10 second windows of ICP and MAP (ie. five minutes of 

data), with the PRx index updated every minute (ie. having 80% data overlap between each PRx 

measure), unless otherwise specified in the individual Chapters.  Table 3.3 displays all of the calculated 

continuous indices of cerebrovascular reactivity. These indices were calculated identically in both the 

experimental and human adult studies. 
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Table 3.3 – Continuous Indices of Cerebrovascular Reactivity Calculated 

Index Signals Correlated Signal 
Averaging (sec) 

Pearson 
Correlation 
Coefficient 
Calculation 

Window (min) 

Index Calculation 
Update Frequency 

(sec)* 

PRx ICP and MAP 10 5 60 
PAx AMP and MAP 10 5 60 
RAC AMP and CPP 10 5 60 
Mx FVm and CPP 10 5 60 
Mx_a FVm and MAP 10 5 60 
Sx FVs and CPP 10 5 60 
Sx_a FVs and MAP 10 5 60 
Dx FVd and CPP 10 5 60 
Dx_a FVd and MAP 10 5 60 
TOx TOI and CPP 10 5 60 
TOx_a TOI and MAP 10 5 60 
THx THI and CPP 10 5 60 
THx_a THI and MAP 10 5 60 
ORx-5 PbtO2 and CPP 30 5 60 
ORx-30 PbtO2 and CPP 30 30 60 
ORx-60 PbtO2 and CPP 30 60 60 
Lx LDF-CBF and CPP 10 5 60 
Lx_a LDF-CBF and MAP 10 5 60 

CPP = cerebral perfusion pressure, FVd = diastolic flow velocity, FVm = mean flow velocity, FVs = systolic flow velocity, ICP = 
intracranial pressure, LDF-CBF = laser Doppler flowmetry cerebral blood flow, MAP = mean arterial pressure, min = minute, 
PbtO2 = brain tissue oxygenation, sec = second, THI = total hemoglobin index, TOI = total oxygenated hemoglobin index. *Note: 
update frequency of the indices varied within the studies presented in this thesis, as a consequence of recording duration.  Each 
subsequent chapter will mention the update frequency within the respective Methods sections.  

 

3.5 Neuroimaging 
 

3.5.1 Computed Tomography (CT) 
 

Chapter 9 deals with the study of IC injury burden as it relates to cerebrovascular reactivity in adult TBI.  

For this, all admission CT scans of the brain were manually collected from the electronic imaging 

repository at Addenbrooke’s Hospital for adult TBI patients with archived ICM+ raw physiologic data.  

Each of these scans were downloaded and stored anonymously in DICOM format for future injury 

pattern or burden analysis.  Only patients from March 2005 to December 2016 had their imaging 

collected, given digital imaging was not available prior to March 2005.   
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Each CT scan had a detailed assessment of IC injury, as measured by standard CT scoring systems 

(Marshall,153 Rotterdam,154 Helsinki155 and Stockholm156). The CT scoring systems consist of the following: 

 

1. Marshall CT Score153 

a. A categorical/ordinal scoring system (range: 1 to 6) 

i. I = no visible injury on CT 

ii. II = diffuse injury; <5 milimeters (mm) midline shift (MLS); basal cisterns visible; 

no lesion >25 mililiters (mL) 

iii. III = diffuse injury; <5 mm MLS; basal cisterns compressed or absent; no lesion 

>25 mL 

iv. IV = MLS >5 mm; basal cisterns compressed or absent; no lesion >25 mL 

v. V = any MLS; any basal cistern status; mass lesion >25 mL that is surgically 

evacuated 

vi. VI = any mass lesions >25 mL that is NOT surgically evacuated 

 

2. Rotterdam CT Score154 

a. A summative scoring system consisting of the following point-based sytem (range:1 to 6) 

i. Basal Cisterns 

1. 0 = normal 

2. 1 = compressed 

3. 2 = absent 

ii. MLS 

1. 0 = no shift or <=5 mm 

2. 1 = Shift >5 mm 

iii. Epidural Mass Lesion 

1. 0 = present 

2. 1 = absent 

iv. Intraventricular Blood or Traumatic Subarachnoid Hemorrahge (tSAH) 

1. 0 = absent 

2. 1 = present 

v. Then total sum + 1 for final score 
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3. Helsinki CT Score155 

a. A summative scoring system consisting of the following point-based system (range: -3 to 

14) 

i. Mass Lesion Type 

1. 2 = Subdural Hematoma (SDH) 

2. 2 = Intracerebral Hemorrhage 

3. -3 = Epidural Hematoma (EDH) 

ii. Mass Lesion Size 

1. 2 = > 25 mL  

iii. Intraventricular Hemorrhage (IVH) 

1. 3 = Yes 

iv. Suprasellar Cisterns 

1. 0 = normal 

2. 1 = compressed 

3. 5 = obliterated 

 

4. Stockholm CT Score156 

a. A formula-based calculated scoring system based on the following formula: 

i. Score = (MLS/10) + (tSAH-IVH subscore/2) – 1(if EDH present) + 1 (if DAI present) 

+ 1 (if dual-sided SDH present) + 1 

ii. Where: 

1. MLS is in mm 

2. tSAH-IVH subscore is a summed score: 

a. subscore = convexity tSAH score + basal cistern tSAH score + 

(IVH score*2) 

b. Where: 

i. Convexity tSAH 

1. 0 = none 

2. 1 = vivisble in gyri 

3. 2 = extensive bilateral (ie. >90% filled convexity) 

ii. Basal cistern tSAH 
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1. 0 = none 

2. 1 = visible blood 

3. 2 = filled cisterns 

iii. IVH 

1. 0 = none 

2. 1 = visible blood 

 

The Stockholm score was also assessed as an ordinal score using the following system:  0 to 1 = 1; 1.1 to 

2 = 2; 2.1 to 3 = 3; 3.1 to 4 = 4; 4.1 to 5 = 5; 5.1 to 6 = 6, which displayed a strong correlation with the 

continuous Stockholm CT score (r=0.947). 

Next, a comprehensive CT lesion/characteristic database was constructed for each admission CT scan. 

This IC injury database consisted of: 

 

1. Continuous variables:  MLS – in mm, largest lesion volume – in mL, number of contusions, 

number of diffuse axonal injury (DAI) lesions, total contusion volume – in mL.  

MLS was measured on the admission CT using the distance of the septum pellucidum from 

bony midline (derived from the line connecting the crista gallae to the inion), at the level of 

the foramen of Monro. Volumes were calculated using the AxBxC/2 method for contusions 

and extra-axial hemotomas from the admission CT scans, where: A = maximal antero-

posterior length in centimeters (cm), B = maximal thickness in cm, and C = # of 1 cm CT slices 

(where slices with ≥75% Area of Hemorrhage: Counts as 1 slice; slices with 25-75% Area of 

Hemorrhage: Counts as 0.5 slices; slices with <25% Area of Hemorrhage: Counts as 0 

slices).157  Volumes for each contusion were calculated individually. 

 

2. Ordinal characteristics:  A. basal cistern compression (none, compressed, complete), B. 

lateral ventricle compression (none, compressed, complete), C. convexity gyral compression 

(none, compressed, complete), D. 4th ventricle compression (none, compression, complete), 

E. convexity tSAH extent (none, visible in gyri, >90% of bilateral hemispheric coverage), F. 
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convexity tSAH maximal thickness (none, 1-5 mm, >5 mm), G. cisternal tSAH extent (none, 

visible, completely filled). 

 

3. Binary characteristics:   

 

A. basal cistern compression (none, any 

compression amount) 

B. extreme basal cistern compression 

(none, complete effacement) 

 C. lateral ventricle compression (none, 

any compression) 

D. extreme lateral ventricle 

compression (none, complete 

effacement) 

E. 4th ventricle compression (none, any 

compression) 

F. extreme 4th ventricle compression 

(none, complete effacement) 

G. convexity gyri compression (none, 

any compression) 

H. extreme convexity gyri compression 

(none, complete effacement) 

I. tonsillar decent (no, yes), J. any lesion 

>25 mL (no, yes) 

K. evacuated mass lesion (no, yes) 

L. non-evacuated mass >25 mL (no, yes) 

M. convexity subdural hematoma (SDH) 

(no, yes) 

N. tentorial SDH (no, yes) 

O. falcine SDH (no, yes) 

P. bilateral convexity SDH (no, yes) 

Q. convexity EDH (no, yes) 

R. bilateral convexity EDH (no, yes) 

S. contusion present (no, yes) 

T. bilateral contusions (no, yes) 

U. IVH (no, yes) 

V. convexity tSAH (no, yes) 

W. convexity tSAH >90% of 

hemispheres (no, yes) 

Y. convexity tSAH >5mm thick (no, yes) 

 Z. cisternal tSAH (no, yes) 

AA. cisternal tSAH completely filled (no, 

yes) 

AB. DAI – subcortical (SC) (no, yes) 

AC. DAI – corpus callosum (CC) (no, yes) 

AD. DAI – basal ganglia (BG) (no, yes) 

AE. DAI – brainstem (BS) (no, yes) 

AF. Post-fossa SDH (no, yes) 

AG. Post-fossa (EDH) (no, yes) 

AH. Post-fossa contusion (no, yes) 
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3.6 Human Ethical Considerations 
 

For Chapters 4, 6, 7, 8 and 9, all studies on human data were conducted as a retrospective analysis of a 

prospectively maintained database cohort, in which high frequency clinical neuromonitoring data had 

been archived. Monitoring of brain modalities was conducted as a part of standard NCCU patient care 

using an anonymized database of physiological monitoring variables in neurocritical care. Data on age, 

injury severity, and clinical status at hospital discharge were recorded at the time of monitoring on this 

database, and no attempt was made to re-access clinical records for additional information. Since all 

data was extracted from the hospital records and fully anonymized, no data on patient identifiers were 

available, and need for formal patient or proxy consent was waived. Within this institution, patient data 

may be collected with waiver of formal consent, as long as it remains fully anonymized, with no method 

of tracing this back to an individual patient. Patient physiologic, demographic and outcome data was 

collected by the clinicians involved with patient care, and subsequently recorded in an anonymous 

format. This anonymous data is then provided for future research purposes. Such data curation remains 

within compliance for research integrity as outlined in the UK Department of Health - Governance 

Arrangements for Research Ethics Committees (GAfREC), September 2011 guidelines, section 6.0.158 

 

3.7 Statistical Analysis 
 

The statistical analysis utilized for the studies in this thesis varied significantly from study to study, and 

were complex.  Thus, a detailed account of each statistical method used is beyond the scope of this 

general section.  Detailed account of the statistical methods utilized in each study can be found in the 

respective chapter methodology sections for each individual study. All statistics were performed with 

either XLSTAT (Addinsoft, New York, United States; https://www.xlstat.com/en/) add-on package to 

Microsoft Excel (Microsoft Office 15, Version 16.0.7369.1323) or R statistical software (R Core Team 

(2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, 

Vienna, Austria. URL https://www.R-project.org/).159  For all statistical tests described, alpha was set at 

0.05 for significance. In general, no correction for multiple comparisons was undertaken, unless explicitly 
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stated in the specific chapter and section of this thesis.  Given the majority of the work presented is 

exploratory in nature, avoiding correction for multiple comparisons was acceptable. 

In general, continuous variables were described using means and standard deviations, with ordinal data 

described via median and inter-quartile range (IQR). Normality was confirmed in continuous variables 

using Shapiro-Wilks test.  Various x-y plots were produced within the studies, employing simple linear 

models and error bar plots. 

Comparison between parametric variables employed t-tests and analysis of variance (ANOVA), while 

non-parametric data was compared via Mann-Whitney-U test, Kruskal-Wallis test, Friedman test and 

Jonckheere-Terpstra test.  Correlation between variables was assessed via Pearson and Spearman 

ranked correlation coefficient, depending on the individual study. 

Multi-variate assessment of inter-index co-variance occurred via principal component analysis (PCA),159–

161 agglomerative hierarchal clustering (AHC)159,162 and k-means cluster analysis (KMCA).159,160 AHC results 

were quantified using Cophenetic correlation coefficients,162 while KMCA clustering was validated via the 

“elbow method”.159 

Linear modelling employed in the estimation and forecasting of PRx using non-invasive surrogates 

(Chapter 7.1, 7.2) utilized complex time-series techniques in R.159,163–166  Autoregressive integrative 

moving average (ARIMA) time-series models were used to model PRx over time, and subsequently 

embedded in linear mixed effects (LME) models in order to build models that accurately estimated PRx 

using non-invasive TCD surrogate.  Models were compared via autocorrelation function (ACF) plots, 

partial autocorrelation function (PACF) plots, Akaike Information Criterion (AIC), Bayesian Information 

Criterion (BIC), log likelihood (LL) and ANOVA. Further details can be found in Chapter 7.  

Logistic regression models, both univariate and multi-variable, were built under the principal of 

parsimony for the assessment of relationships to binary outcomes.  Models were compared via area 

under the receiver operating curve (AUC), chi-square testing, and Delong’s test. 
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CHAPTER 4: DEFINING A “NEW” CONTINUOUS INDEX OF 

CEREBROVASCULAR REACTIVITY IN ADULT TBI - RAC 
 

*The results of this study are also detailed in the publication:  Zeiler et al., J Neurotrauma. 2017; Dec 6. 

doi: 10.1089/neu.2017.5241. [Epub ahead of print].21 

 

4.1 Introduction 
 

Continuous indices of autoregulatory capacity have been implemented within ICU’s as a means of 

monitoring the pressure reactivity of the cerebrovascular system.  The TBI patient population has 

provided the substrate for most publications on the use of these indices,11,12 with data supporting an 

association between “poor” autoregulatory status, as assessed by these indices, with outcome.8,9  Such 

use of autoregulatory monitoring has been supported by recent authoritative statements on multi-

modal monitoring in TBI.12 

These continuous indices are typically derived as moving Pearson correlation coefficients between slow 

wave fluctuations in: surrogates of pulsatile CBV (e.g. ICP or AMP) and the driving pressure for CBF (ie. 

MAP or CPP).3 Two ICP derived indices of autoregulation have been described:  PRx (correlation between 

ICP and MAP)3 and PAx (correlation between AMP and MAP).15   

The majority of literature has focused on PRx and its association with outcome, and PRx values above 

+0.25 have been associated with mortality at 6 months.9   PRx has also been validated experimentally: 

CPP reduction below the LLA, defined using the gold standard of reductions in cerebral blood flow, is 

associated with an increase in PRx from negative to positive values.14  PRx has been utilized clinically to 

determine the individual optimal CPP in TBI, and is likely to be the basis for planned studies that assess 

the benefit of CPP targets that are associated with best autoregulation – optimum CPP (CPPopt).144 In 

contrast to this substantial literature on PRx, PAx is a relatively newly described autoregulatory index.  

However, preliminary data indicating potential superiority of PAx over PRx in outcome prediction in 

those with normal or low ICP.15  

Despite this substantial literature supporting the use of these ICP derived autoregulation indices, there 

still exists room for the exploration of new indices of physiologic measure.  In this chapter, a new 
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continuous index of cerebral physiology in a population of adult TBI patients without DC is defined.21  

This index is derived as the moving Pearson correlation between AMP and CPP, which is abbreviated as 

RAC (R for correlation coefficient, A for AMP and C for CPP). Given the potential added predictive 

capacity of the AMP-based index PAx over PRx in adult TBI,15 the fact that all current ICP-derived indices 

were based on MAP as the driver for CBF,3,15 and that the majority of non-ICP derived cerebrovascular 

reactivity indices (ie. TCD, NIRS, TD and PbtO2 based indices) are based on the correlation with CPP as 

the driver for pulsatile changes in CBV or CBF, it was only natural to explore the correlation between 

AMP and CPP as a potential metric of cerebrovascular reactivity. RAC is  potentially related to the 

general shape of the relationship between AMP and CPP observed clinically and also experimentally.145  

Given the correlation between CPP and AMP, it is possible that RAC combines information regarding 

cerebral compensatory reserve, similar to RAP (correlation coefficient between AMP and ICP), and 

cerebrovascular responsiveness, similar to PRx or PAx. 

 

4.2 Methods 
 

Patient Population 

 Extreme Physiology Examples 

Time trends of ICP, CPP, AMP, RAP, PRx, PAx and RAC in 2 individual patient examples of “extreme” 

physiology in adult TBI are described.  One patient displayed an episode of sustained intra-cranial 

hypertension (ICP >50 mm Hg for at least 1 hour), without return to baseline - Figure 4.1.  The second 

patient displays systemic arterial hypotension in the presence of relatively normal ICP’s - Figure 4.2.  

Both of these patients were chosen as examples in order to provide a large range of ICP and CPP 

variation during the recordings, allowing to display the AMP and RAC response in time over these 

ranges. 

 

 Non-DC Adult TBI Cohort 

In order to display the relationships between AMP/RAP/PRx/PAx and RAC with ICP and CPP in a wider 

population of patients, all non-DC adult TBI patients (n=358) were utilized. None of the patients, at any 

point during their hospital stay, underwent DC, even for refractory ICP. Those with mass lesions 
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identified upon admission, had subsequent evacuation immediately upon admission. For those with 

mass lesion evacuation, all follow-up CT scans were assessed to confirm that the bone flap was replaced 

post-operatively and that all follow-up scans confirmed that the bone flap was not removed at any point 

during their hospital stay. Any patient undergoing mass lesion evacuation without replacement of the 

bone flap were excluded. All patients were admitted to the NCCU at Addenbrooke’s Hospital, 

Cambridge, during the period of March 2005 to December 2016.  In addition, only patients with at least 

6 hours of recorded signals were included in this study. All patients suffered mild to severe TBI (defined 

as GCS of 8 or less).  Those small number of patients with mild TBI (defined as GCS 13 or higher on 

admission) had subsequent clinical deterioration requiring admission to the NCCU and invasive 

monitoring.  Treatment received during the recording periods included standard ICP-directed therapy, 

with an ICP goal of less than 20 mm Hg and CPP goal of greater than 60 mm Hg.   

Only patients without DC were selected in order to prevent the introduction of confounding ICP 

measurements post removal of the bone flap.22  It is known, that post-DC, PRx values are impacted.  This 

stems from the fact that PRx is dependent on CBV-driven changes in ICP, and these are are severely 

attenuated in the highly compliant intracranial cavity post-DC.  Thus, in order to prevent any impact 

from DC in assessing the relationship between all of the physiologic variables (ie. ICP, AMP, CPP) and the 

ICP derived indices (ie. RAC, PRx, PAx, RAP) these patients were excluded. 

 

Signal Acquisition and Processing 

Both ICP and ABP were recorded in all patients described within the manuscript.  ABP was obtained 

through either radial or femoral arterial lines connected to pressure transducers (Baxter Healthcare 

Corp. CardioVascular Group, Irvine, CA), zeroed at the right atrium, or tragus, depending on when the 

patient was admitted to hospital.  ICP was acquired via an intra-parenchymal strain gauge probe 

(Codman ICP MicroSensor; Codman & Shurtleff Inc., Raynham, MA).  Mathematically, such variance in 

ABP zero level does not impact the derived correlation values, sign or magnitude, between slow-wave 

changes in ICP, ABP, AMP or CPP. 

All signal acquisition and processing occurred as described with in Chapter 3.3 and 3.4.  Minute-by-

minute data for ICP, MAP, AMP, PRx, PAx and RAC were derived using ICM+, and utilized in further 

statistical analysis. RAP, the correlation coefficient between AMP and ICP (a measure of cerebral 
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compensatory reserve)167–169 was also derived for comparison with the indices of cerebrovascular 

reactivity (PRx, PAx, and RAC). 

 

Statistics 

Statistics were performed utilizing XLSTAT (Addinsoft, New York, United States; 

https://www.xlstat.com/en/) add-on package to Microsoft Excel (Microsoft Office 15, Version 

16.0.7369.1323) and R statistical software (R Core Team (2016). R: A language and environment for 

statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-

project.org/).   

As the purpose of this study was to define a new physiologic index and provide a time series description 

of RAC, PRx, PAx, RAP and AMP in a large, non-DC, cohort of adult TBI, very limited inferential statistical 

results are presented.  A variety of plots were produced: 

 

1. Plots of ICP, MAP, CPP, AMP, RAP, PRx, PAx and RAC over time for the 2 patient examples of 

extreme physiology.   

 

2. Plots of the number of minute-by-minute observations per 5 mm Hg bins of ICP and CPP for the 

entire non-DC cohort. 

 

3. Plots of AMP vs. ICP, AMP vs. CPP, RAP vs. ICP, RAP vs. CPP, PRx vs. ICP, PRx vs. CPP, PAx vs. ICP, 

PAx vs. CPP, RAC vs. ICP, and RAC vs. CPP for the entire non-DC cohort.  Plots utilizing 5 mm Hg bins of 

ICP or CPP against the mean AMP, RAP, PRx, PAx or RAC for observations within those bins were 

produced. 

 

4. CPPopt plots of PRx vs. CPP, PAx vs. CPP, and RAC vs. CPP (using 5 mm Hg CPP bins and mean 

PRx, PAx or RAC for observations in those bins) for the entire non-DC population. 
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Plots were created using R statistical software.  Plots described in #3 and #4 above, display mean values 

for AMP, RAP, PRx, PAx and RAC per 5 mm Hg bin of ICP or CPP, with standard error bars.  Values for CPP 

below 35 mm Hg were collated into 1 bin, given the small number of observations in a small number of 

patients.  Thus, the mean values and standard error bars for values in this CPP range must be interpreted 

with caution. Similarly, for ICP values above 90 mm Hg, all of these observations were collated into one 

bin, called “>90 mm Hg”, given the small number of patients and observations within this ICP range.  

Thus, the mean values and standard error bars in this ICP range must be interpreted with caution 

Finally, the inter-index Pearson correlation coefficients between RAC and PRx, PAx and RAP, using grand 

mean data for the patient population (ie. one mean value per patient) were assessed.  Linear regression 

analysis between RAC vs PRx, RAC vs. PAx and RAC vs. RAP was also performed. 

 

 

4.2 Results 
 

AMP and RAC During “Extremes” of ICP and CPP 

Figure 4.1 displays one patient with sustained intra-cranial hypertension.  Of note, there is substantial 

sustained increase in ICP, with subsequent decrease in CPP.  Furthermore, it is noted that AMP gradually 

increases with ICP increase until at break point at ~60 mm Hg of ICP.  This has been described previously 

as a probable effect caused by a collapse of cerebral arterial bed.91,145,170  RAP remains elevated, near 

+1.0 as AMP progressively increases to its break-point, after which is decreases to negative numbers. 

The RAP response indicates severely impaired cerebral compensatory reserve with values decreasing to 

negative range in the last 2 hours of recording. Finally, RAC gradually becomes more positive (ie. 

increasing positive correlation between AMP and CPP) as ICP continues to increase, and as CPP 

decreases.  This increase in RAC was initially gradual, but then appeared to sharply increase around the 

ICP range for the break point of AMP, with CPP falling below ~50 mm Hg.  This increase in RAC may 

reflect progressive decrease in cerebral compensatory reserve in line with steady increase in both PRx 

and PAx, indicating autoregulatory dysfunction.  

Figure 4.2 displays a patient with progressive arterial hypotension, in the setting of low ICP (<20 mm Hg).  

As MAP decreases, both ICP and CPP decrease.  Of note, AMP increases with MAP less than 80 mm Hg.  

RAP starts close to zero, indicating relatively good cerebrospinal compensatory reserve, followed by a 
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subsequent decrease with progressive decrease in MAP.  PRx, PAx and RAC progressively become more 

positive with decreases in MAP, potentially indicating impaired autoregulation with profound systemic 

hypotension.  

 

Figure 4.1:  Sustained Intra-Cranial Hypertension Patient Example – ICP, MAP, CPP, AMP, RAP, PRx and RAC Over Time 

 

AMP = pulse amplitude of ICP, a.u. = arbitrary units, CPP = cerebral perfusion pressure, ICP = intra-cranial pressure, mm Hg = 
millimeters of Mercury, abp = MAP = mean arterial pressure, PAx = pulse amplitude index (correlation between AMP and MAP), 
PRx = pressure reactivity index (correlation between ICP and MAP), RAC = correlation coefficient between AMP and CPP, RAP = 
correlation coefficient between AMP and ICP.  Panel A: ICP over time, Panel B: MAP over time, Panel C: CPP over time, Panel D: 
AMP over time, Panel E: RAP over time, Panel F: PRx over time, Panel G:  PAx over time, Panel H: RAC over time. 
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Figure 4.2:  Arterial Hypotension Patient Example – ICP, MAP, CPP, AMP, RAP, PRx and RAC Over Time 

 

AMP = pulse amplitude of ICP, a.u. = arbitrary units, CPP = cerebral perfusion pressure, ICP = intra-cranial pressure, mm Hg = 
millimeters of Mercury, abp = MAP = mean arterial pressure, PAx = pulse amplitude index (correlation between AMP and MAP), 
PRx = pressure reactivity index (correlation between ICP and MAP), RAC = correlation coefficient between AMP and CPP, RAP = 
correlation coefficient between AMP and ICP.  Panel A: ICP over time, Panel B: MAP over time, Panel C: CPP over time, Panel D: 
AMP over time, Panel E: RAP over time, Panel F: PRx over time, Panel G: PAx over time, Panel H: RAC over time. 
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AMP, RAP, PRx, PAx and RAC versus ICP and CPP in the Non-DC Cohort 

 

Non-DC Cohort Patient Demographics 

In total, there were 358 patients included for analysis.  All patients suffered moderate to severe TBI, or 

mild TBI with secondary deterioration requiring sedation and mechanical ventilation for intracranial 

hypertension.  In addition, all patients had at least 6 hours of high frequency signals recorded.  The mean 

age was 40.6 +/-17.2 years (range: 16 to 89), with a median (range) Glasgow Coma Scale score of 7 (3 to 

13).  There were 272 males (76.0%), and the mean length of signal recording was 189.1 +/-151.1 hours 

(range: 8.5 to 1033.0 hours; median = 152.7 hours).  The mean ICP, MAP, CPP, AMP, RAP, PRx, PAx and 

RAC were:  14.057 +/-7.6 mm Hg, 91.3 +/- 7.9 mm Hg, 77.5 +/- 8.5 mm Hg, 2.3 +/- 1.4 mm Hg, 0.638 +/- 

0.208, 0.046 +/-0.173, -0.057 +/- 0.195, and -0.350 +/- 0.254; respectively. 

 

Number of Data Points 

In total, there were 2,780,930 minute-by-minute observations for each physiologic variable and index 

(RAP, PRx, PAx and RAC) across the 358 non-DC TBI patients included for analysis.  Overall, 99.9% of the 

data points fell between ICP values of 0 and 65 mm Hg, and CPP values of 40 to 140 mm Hg. 

 

 Relationship Between AMP vs. ICP and AMP vs. CPP 

Using 5 mm Hg bins for ICP and CPP, the mean AMP, RAP, PRx, PAx and RAC values for those bins were 

calculated and a range of plots were produced.  Figure 4.3 displays the following relationships:  CPP vs. 

ICP, (Figure 4.3A), AMP vs. ICP (Figure 4.3B), RAP vs. ICP (Figure 4.3C), PRx vs. ICP (Figure 4.3D), PAx vs. 

ICP (Figure 4.3E) and RAC vs. ICP (Figure 4.3F).  Figure 4.4 displays:  ICP vs. CPP (Figure 4.4A), AMP vs. 

CPP (Figure 4.4B), RAP vs. CPP (Figure 4.4C), PRx vs. CPP (Figure 4.4D), PAx vs. CPP (Figure 4.4E) and RAC 

vs. CPP (Figure 4.4F).  Of note is the increase in AMP, as ICP increases, to a peak at an ICP of ~50-60 

(Figure 4.3B), followed by sharp decline in AMP with increasing ICP value.   

Similarly, as CPP decrease towards 50 mm Hg, AMP gradually increases and peaks at a CPP of ~40 mm 

Hg.  This is followed by a sharp decrease in AMP with progressive decrease in CPP below 40 mm Hg 
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(Figure 4.4B).  These two relations have both been previously described,145 with the current data 

supporting the previous literature.  

 

 Relationship Between RAP vs. ICP and RAP vs. CPP 

At low ICP, RAP starts at small positive values, indicating little correlation between AMP and ICP, thought 

to signify “good” cerebral compensatory reserve.  RAP subsequently trends towards +1.0 as ICP 

increases towards the “break-point” in AMP (ie. ICP of 50 to 60 mm Hg – Can be seen in Figure 4.3B).  

This signifies a direct positive correlation between ICP and AMP, thus low cerebral compensatory 

reserve.  Once ICP increases beyond 50-60 mm Hg (ie. the averaged AMP “break-point”), RAP rapidly 

declines towards zero.  This is believed to reflect exhaustion of cerebrovascular reserve and vascular 

transmural pressure approaching the critical closing pressure of the cerebral vessels. All of this can be 

seen in Figure 4.3C.   

Similarly, as CPP declines towards the LLA, we see a steep increase in RAP towards more positive values, 

implying poor cerebral compensatory reserve (Figure 4.4C).  As CPP increases, RAP decreases towards 

zero, with relative stability in RAP (ie. become more positive) with CPP values above the ULA (Figure 

4.4B).  However, it must be acknowledged that the number of data points above a CPP of 130-140 mm 

Hg is much less, as seen by the error bar plots in this range. 

 

 Relationship Between PRx vs. ICP and PRx vs. CPP 

PRx versus ICP plots display a consistent trend, with low PRx values during episodes of low ICP, and 

progressively more positive PRx values (ie. more impaired autoregulation) as ICP increases above 20 mm 

Hg (Figure 4.3D). The PRx versus CPP plots displays the classic parabolic distribution, with low PRx values 

(ie. intact autoregulation) within the CPP range of ~50 mm Hg to 130 mm Hg.  Outside of these two 

limits of CPP, PRx subsequently trends toward positive values (indicating potentially impaired 

autoregulation) (Figure 4.4D). 
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Relationship Between PAx vs. ICP and PAx vs. CPP 

Similar to PRx, PAx versus ICP plots display a consistent trend, with low PAx values during episodes of 

low ICP, and progressively more positive PAx values (ie. more impaired autoregulation) as ICP increases 

above 20 mm Hg (Figure 4.3E). The PAx versus CPP plots displays the classic parabolic distribution, with 

low PAx values (ie. intact autoregulation) within the CPP range of ~50 mm Hg to 130 mm Hg.  Outside of 

these two limits of CPP, PAx subsequently trends toward positive values (indicating potentially impaired 

autoregulation) (Figure 4.4E). 

 

 Relationship Between RAC vs. ICP and RAC vs. CPP 

Finally, interesting relationships were observed between RAC and both ICP and CPP.  As ICP increases, 

RAC becomes progressively more positive (Figure 4.3F).  This is similar to what was seen in the PRx vs. 

CPP plot (Figure 4.3D) and the PAx vs. CPP plot (Figure 4.3E). Thus, RAC may carry similar information 

regarding the cerebrovascular system as PRx and/or PAx.  However, given the nature of the RAC 

coefficient, this may also represent physiologic processes related closely to alterations in cerebral 

compensatory reserve:  

A. At low ICP (less than 20 mm Hg), RAC displays negative values, indicating a negative correlation 

between CPP and AMP (Figure 4.3F).  This potentially represents states of good cerebral compensatory 

reserve (as seen with RAP values closer to zero; Figure 4.3C) and preserved autoregulation (as seen with 

PRx and PAx at low values; Figure 4.3D and 4.3E), in which changes in MAP do not lead to direct changes 

in ICP, nor AMP.  Thus, the phase of slow wave fluctuations in both AMP and MAP (or CPP – since CPP is 

predominantly composed of MAP contribution at low ICP) are close to completely opposite in nature, 

hence the negative correlation coefficient generated by RAC.  Furthermore, it may also be reflected in 

the decrease in AMP (Figure 4.3B) and increasing CPP (Figure 4.3A), as ICP decreases. 

 

B. As ICP increases, above 20 mm Hg towards 60 mm Hg, we see a gradual increase in RAC towards 

zero (Figure 4.3F). During this ICP increase, cerebral compensatory reserve worsens, as seen with RAP 

approaching +1.0 (Figure 4.3B) and the increase in AMP (Figure 4.3B). However, this occurs during a 

progressive decrease in CPP, secondary to an increase in ICP (Figure 4.3A).  This CPP decrease leads to a 
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decreased amplitude of slow wave fluctuations in CPP, and thus little to no correlation between slow 

wave phase of CPP and AMP (generating RAC values close to zero). 

 

C. Finally, at further extreme levels of ICP (ie. above ~60 mm Hg), we see a gradual increase in RAC 

towards positive values (Figure 4.3F).  At this point, cerebral compensatory reserve is believed to be at 

its worst.  This is reflected in the “break-point” in the ICP versus AMP relationship (Figure 4.3A), and the 

progressive decrease in RAP towards zero (Figure 4.3C).  CPP continues to trend low (Figure 4.3A), 

however given severely impaired compensatory reserve and pressure reactivity (highly positive PRx and 

PAx), any slow wave fluctuations in MAP are potentially amplified in ICP (and thus AMP, but this time 

with negative relationship, Fig 4.4B) leading to slow waves of CPP and AMP becoming progressively 

more “in phase” and thus producing the positive RAC value observed in this ICP range.  Furthermore, 

AMP continues to decrease after this “break-point”, while CPP drops secondary to extreme ICP values, 

also reflected in the positive index value for RAC. (Figure 4.3D, 4.3E and 4.3F). 

 

The RAC vs. CPP plots also mimicked the PRx vs. CPP and PAx vs. CPP plots, displaying a parabolic 

relationship, with a minimum in the curve at a CPP of approximately 65 to 70 mm Hg for all three 

relationships.  This minimum corresponded to the “most negative” value for each index: PRx, PAx and 

RAC.  Thus, again, RAC may carry similar information regarding the cerebrovascular system as PRx 

and/or PAx.  However, again, given the nature of the RAC index, it may carry some additional 

information about cerebral compensatory reserve during changes in CPP:  

A. As CPP approaches the LLA (ie. ~50 mm Hg), RAC begins to gradually increase, with sharp 

increases towards more positive values as CPP continues to decrease below 50 mm Hg (Figure 4.4F).  

This corresponds to a steep increase in RAP towards +1.0, indicating progressing deterioration in 

cerebral compensatory reserve (Figure 4.4C) as it is associated with increases in ICP (Figure 4.4A). Thus, 

given impaired compensatory reserve, any slow wave fluctuations in MAP (and thus CPP) may be directly 

transmitted to ICP (and thus AMP), implying they become progressively more “in phase”, producing the 

positive RAC coefficient.  

Of more interest, is what happens as CPP progressively decreases below ~50 to 60 mm Hg.  RAC 

continues toward more positive values, similar to PRx.  However, RAP reaches its peak and subsequently 

decreases towards zero, reflective of the “break-point” in AMP and what is believed to be severely 
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impaired cerebral compensatory reserve. This may represent the point where cerebrovascular 

transmural pressure approaches critical closing pressure of the vessels, though this hasn’t been proven.  

Thus, RAC values below this point in CPP may strictly carry cerebrovascular physiologic information, and 

not both: cerebrovascular and compensatory reserve information, as seen during CPP ranges above this 

critical point.  However, it must be acknowledged that the majority the observations (ie. millions of data 

points) were in CPP ranges of 50 to 100 mm Hg, so interpretation of the relationships with CPP below 50 

mm Hg must be interpreted with caution. 

 

B. RAC reaches a minimum around CPP values of 65 to 70 mm Hg, similar to PRx.  Outside of this 

CPP range, both RAC and CPP increase towards positive values.  During this CPP range, there is a 

negative correlation between CPP and AMP.  Thus, the phase of slow wave fluctuations in AMP and MAP 

(or CPP – since CPP is predominantly composed of MAP contribution at the low ICP values seen in this 

range for CPP; Figure 4.4A) may be closer to completely opposite in nature, hence the negative 

correlation coefficient generated by RAC.   

 

C. Similarly, as CPP increases towards the ULA (ie. ~150 mm Hg), RAC gradually becomes more 

positive as well (Figure 4.4F), as seen with PRx (Figure 4.4D).  This is in states with low ICP (Figure 4.4A).  

Cerebral compensatory reserve improves with CPP values up to ~130 to 140 mm Hg, as indicated by the 

decrease in RAP towards zero (Figure 4.4C) and AMP progressively decreasing (Figure 4.4B).  With CPP 

values above ~140 mm Hg, RAP appears to remain low (Figure 4.4C), though we have a relatively low 

number of data points in this range (as previously mentioned), so this much be interpreted with caution 

given the error bar range.  RAC continues to increase towards zero as CPP increases up to and beyond 

the ULA (Figure 4.4F), despite decreasing AMP during this process (Figure 4.4B).  Thus, in this state of 

“good compensatory reserve”, and deceasing AMP with increasing CPP, the trend towards more positive 

RAC values may represent a purely cerebrovascular phenomenon, similar to PRx and PAx in this CPP 

range.  This could represent autoregulatory dysfunction at and beyond the ULA, as seen with both the 

PRx vs. CPP and PAx vs. CPP plots (Figure 4.4D and 4.4E), though this requires much further validation 

and again should be interpreted with caution given the limited data points beyond CPP values of ~130 to 

140 mm Hg. 
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Figure 4.3: Non-DC Cohort – CPP vs. ICP, AMP vs. ICP, RAP vs. ICP, PRx vs. ICP, PAx vs. ICP and RAC vs. ICP Plots 

 

AMP = pulse amplitude of ICP, a.u. = arbitrary units, CPP = cerebral perfusion pressure, ICP = intra-cranial pressure, mm Hg = 
millimeters of Mercury, PAx = pulse amplitude index (correlation between AMP and MAP), PRx = pressure reactivity index, RAC = 
correlation coefficient between AMP and CPP, RAP = correlation coefficient between AMP and ICP. Panel A:  CPP vs. ICP plot, 
Panel B: AMP vs. ICP plot, Panel C: RAP vs. ICP plot, Panel D: PRx vs. ICP plot, Panel E: PAx vs. ICP plot, Panel F: RAC vs. ICP plot. 
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Figure 4.4: Non-DC Cohort – ICP vs. CPP, AMP vs. CPP, RAP vs. CPP, PRx vs. CPP, PAx vs. CPP, and RAC vs CPP Plots 

 

AMP = pulse amplitude of ICP, a.u. = arbitrary units, CPP = cerebral perfusion pressure, ICP = intra-cranial pressure, mm Hg = 

millimeters of Mercury, PAx = pulse amplitude index (correlation between AMP and MAP), PRx = pressure reactivity index, RAC = 

correlation coefficient between AMP and CPP, RAP = correlation coefficient between AMP and ICP. Panel A:  CPP vs. ICP plot, 

Panel B: AMP vs. ICP plot, Panel C: RAP vs. ICP plot, Panel D: PRx vs. ICP plot, Panel E: PAx vs. ICP plot, Panel F: RAC vs. ICP plot 
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RAC and RAP/PRx/PAx – Inter-index Correlation  

 

Using grand mean data for the non-DC cohort of patients (ie. one data point per variable, per patient) 

we calculated the Pearson correlation coefficients to be:  0.718 for RAC and PRx (p<0.0001), with a linear 

relationship (Figure 4.5A).  The correlation between RAC and PAx was 0.816 (p<0.0001), with a linear 

relationship (Figure 4.5B).  Finally, the correlation between RAC and RAP was -0.594 (p<0.0001), with a 

negative linear relationship (Figure 4.5C). 

 

 

“Optimal CPP” Curves  

Given the interest in optimal CPP (CPPopt), and the application of PRx for this purpose, we plotted both:  

RAC vs. CPP (Figure 4.4F), PRx vs. CPP (Figure 4.4D) and PAx vs. CPP (Figure 4.4E); using 5 mm Hg bins of 

CPP and mean values for RAC and PRx for observations within those bins, using the minute-by-minute 

data for the entire non-DC cohort.  The optimal CPP is subsequently determined by finding the CPP 

values with the corresponding lowest PRx, PAx or RAC value (ie. the minimum of the parabola). The CPP 

optimum values from each of:  PRx vs. CPP, PAx vs. CPP and RAC vs. CPP, are similar (ie. ~65 to 70 mm 

Hg). In addition, of interest is the improved parabolic shape of the RAC vs. CPP curve, compared to both 

the PRx vs. CPP and PAx vs. CPP curves.  This is increasingly true for high values of CPP, where the PRx vs. 

CPP and PAx vs. CPP parabola appear to degenerate in shape, with this relationship appearing more 

preserved in the RAC vs. CPP curve.  Thus, for CPP optimum determination, RAC may prove to be 

applicable in this instance.  Further analysis of CPP optimum employing RAC is required. 
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Figure 4.5: Non-DC Cohort – RAC vs. PRx Plot, RAC vs. PAx Plot, and RAC vs. RAP Plot 

 

AMP = pulse amplitude of ICP, a.u. = arbitrary units, CPP = cerebral perfusion pressure, mm Hg = millimeters of Mercury, PAx = pulse amplitude index (correlation between AMP 
and MAP), PRx = pressure reactivity index (correlation between ICP and MAP), RAC = correlation coefficient between AMP and CPP, RAP = correlation between AMP and ICP. 
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4.4 Discussion 
 

Through the analysis of both the individual examples and the large non-DC TBI cohort, some interesting 

features have been identified regarding a new physiologic RAC index that describes the relationship 

between cerebral perfusion pressure and ICP pulse amplitude.  Several issues merit discussion. 

First, being derived from the correlation between CPP and AMP, RAC appears to represent physiologic 

information pertaining to both: the cerebrovascular system (similar to PRx and PAx) and cerebral 

compensatory reserve (similar to RAP).  This makes this index potentially unique and of importance.  It is 

unlike other indices in that it carries information regarding multiple aspects of cerebral physiology.  This 

aspect of RAC contributes to its potential usefulness clinically.  However, it also contributes to the 

complexity of its interpretation.  As outlined in the results section, the interpretation of RAC requires the 

assessment of not just RAC, but AMP, RAP and PRx/PAx.  Only through this comprehensive analysis of 

multiple aspects of cerebral physiology can RAC be properly interpreted, allowing for an assessment of 

both cerebrovascular responsiveness and cerebral compensatory reserve. RAC requires much further 

investigation regarding its relation to cerebral compensatory reserve and autoregulation.  It is too early 

to know the exact relationship between RAC with both cerebral autoregulation and cerebral 

compensatory reserve. 

Second, based on the examples of extreme physiology (Figures 4.1, and 4.2), RAC appears to be 

temporally responsive to changes in both ICP and CPP, as seen in data obtained from patients 

experiencing varied insults:  sustained intra-cranial hypertension and arterial hypotension.  As ICP 

increase (or CPP decreases), there is a gradual increase in RAC to more positive values.  An example of 

this is within the intracranial hypertension patients (Figure 4.1), where increased ICP and AMP (with 

corresponding decreases in CPP), results in increased RAC.  This indicates an increasing direct positive 

correlation between AMP and CPP.  Furthermore, in the patient with sustained intra-cranial 

hypertension (Figure 4.1), as ICP progressively increased towards ~60 mm Hg, AMP reaches a peak and 

subsequent break point, which has been previously described and is believed to potentially represent 

“exhaustion of cerebrovascular reserve” associated hypothetically with collapse of arterial bed.91,145  

After this break point in AMP is reached, and ICP remains elevated, RAC dramatically increases to values 

above +0.50, even approaching +1.0 in one example (Figure 4.1).  Thus, it appears that the dramatic 

change in the rate of increase of RAC may denote this area of “exhaustion of cerebrovascular reserve”.  

These changes occurred in concert with impaired cerebral compensatory reserve, as represented by RAP 
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values near +1.0.  RAP responded with a rapid decrease towards negative values after the break-point in 

AMP, indicating severely impaired cerebral compensatory reserve.  We must acknowledge that these 

observations are based on only case examples, and thus need further validation. However, both of these 

examples display RAC’s ability to display information regarding cerebral compensatory reserve.  Finally, 

the arterial hypotension case (Figure 4.2) displayed a progressive increase in PRx, PAx and RAC, during 

low ICP and “good” compensatory reserve (as per RAP).  This supports the concept that RAC may carry 

some similar information to PRx or PAx, regarding cerebrovascular responsiveness. 

Third, based on the non-DC TBI cohort, there is an increase in AMP, as ICP increases, to a peak at an ICP 

of ~50-60 (Figure 4.3B).  Similarly, as CPP decreases towards 50 mm Hg, AMP gradually increases and 

peaks at a CPP of ~40 mm Hg.  This is followed by a sharp decrease in AMP with further decreases in CPP 

(Figure 4.4B).  These two relations have both been previously described,145 with the current data 

supporting the previous literature.  However, of interest is the RAC response at these two points.  As ICP 

reaches ~50 to 60 mm Hg, and AMP peaks (Figure 4.3B), RAC begins to dramatically increase towards 

more positive values with further increases in ICP (Figure 4.3F).  Similarly, as CPP decreases towards 40 

mm Hg, RAC also increases dramatically towards more positive values (Figure 4.4F).  However, these 

inferences are limited given the limited data for ICP above 50 mm Hg, and CPP below 40 mm Hg, 

compared the large volume of data for ICP and CPP values within the “normal” range.  Within the results 

section the preliminary interpretation of these changes in RAC, with respect to AMP, RAP, PRx and PAx 

have been outlined.  It is likely that RAC represents both aspects of changing cerebral compensatory 

reserve and cerebrovascular responsiveness, yielding uniqueness and complexity in this new index.  

Interpretation of RAC requires the evaluation of AMP, RAP and PRx/PAx. 

Fourth, within the large non-DC TBI cohort, RAC appeared to respect the classic limits of the Lassen 

curve, with a trend to more positive RAC values when CPP was both below the LLA and above the ULA.  

As displayed in Figure 4.4F, RAC remains negative within the CPP range of ~50 to 140 mm Hg, with a 

trend to more positive RAC values as CPP approaches both thresholds (and in the case of the LLA, drops 

below it).   This relationship is based on the ~2.7 million data points from the non-DC TBI cohort of 358 

patients.  However, it must be acknowledged that the number of data points for CPP values less than 50 

mm Hg and close to/above the ULA were much less (ie. 1000’s), compared to CPP values between 50 to 

100 mm Hg (ie. 100,000’s).  Thus, strong conclusions on RAC’s ability to delineate the LLA and ULA 

cannot be made at this time.  It is unknown if RAC represents autoregulation at this time, though it 

appears to carry some similar information to PRx or PAx.  Ideally this would be confirmed in a well-
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controlled animal model, similar to PRx. As with extremes in ICP, RAC interpretation in relation to CPP 

changes requires evaluating response in AMP, RAP and PRx/PAx; given it seems to carry information 

regarding compensatory reserve and cerebrovascular responsiveness. 

Fifth, based on a Pearson correlation coefficient:  

A. RAC and PRx are strongly correlated (r=0.718, p<0.0001) with a linear relationship,  

B. RAC and PAx are strongly correlated (r=0.817, p<0.0001) with a linear relationship.  

In addition, comparing the mean RAC and PRx values across the entire non-DC TBI cohort, RAC is on 

average ~0.30 to 0.40 lower than PRx.  This is also seen in Figure 4.4.  It is clear that RAC carries similar 

information to both PRx and PAx (Figure 4.3D, 4.3E and 4.3F; Figure 4.4D, 4.4E and 4.4F), though we 

cannot confirm that the information regarding autoregulation in PRx or PAx is equally represented in 

RAC.  This requires further investigation.  It appears that RAC represents both cerebral compensatory 

reserve and cerebrovascular responsiveness. 

Finally, when comparing the RAC vs. CPP (Figure 4.4F), PRx vs. CPP (Figure 4.4D) and PAx vs. CPP (Figure 

4.4E) curves, using 5 mm Hg bins of CPP, some important features were seen.  The RAC vs. CPP plot 

appeared to display a similar parabolic relationship to both the PRx vs. CPP and PAx vs. CPP curves, with 

the minimum at ~65 to 70 mm Hg in all instances.  However, comparing the shape of the parabolic 

distributions, the RAC vs. CPP plot appears to retain the parabolic shape better at high CPP values, 

where both the PRx vs. CPP and PAx vs. CPP plots appear to degenerate.  Thus, given these observations, 

RAC could potentially be utilized for CPP optimum determination.  Furthermore, given the stronger 

parabolic relation displayed by CPP vs. RAC, RAC may prove superior for CPP optimum determination.  

However, substantial additional investigation of these issues is required before the RAC can be used to 

determine CPPopt. 

 

Limitations 

Despite the interesting results, there are some significant limitations which should be mentioned.   

The patient examples of extreme physiology and the non-DC cohort are retrospective patient 

populations.  Thus, within this population of patients, there is potential for significant heterogeneity in 

injury burden/pattern, co-morbidity and treatment.  Furthermore, all of these patients were admitted to 
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the NCCU at Addenbrooke’s Hospital, receiving therapies directed at maintaining ICP below 20 mm Hg 

and CPP greater than 60 mm Hg.  Thus, strong conclusions from this data set must be cautioned, given 

the constant manipulation of ICP and CPP during the recording of this data.  In addition, the impact of 

various vasopressor agents on the cerebrovascular pressure autoregulatory response is not well 

understood, and could potentially further impact the results seen. 

All of the relationships and conclusions regarding RAC and its response to changes in ICP and CPP are 

preliminary, requiring much further work and investigation.  As previously alluded to, the strength of 

conclusions related to RAC at CPP levels both below the LLA and above the ULAR must be tempered by 

the fact that the majority of data points are within the “normal” CPP range secondary to continuous CPP 

manipulation within the NCCU.   Similarly, inferences regarding the response of RAC to ICP values above 

30 mm Hg need to be cautious, given the relatively small number of data points for ICP’s above this 

threshold.  This is likely a consequence of ICP directed therapies within the NCCU, which may also 

account for the relative “discontinuity” in the RAC vs. CPP, PRx vs. CPP and PAx vs. CPP curves at CPP 

values below 30 mm Hg.  With this said, the “small” number of data points outside of the normal CPP 

and ICP range, number in the thousands.  Thus, despite hundreds of thousands of data points within the 

normal range for CPP and ICP, inferences drawn from thousands of data points recorded during extreme 

CPP and ICP values provide useful data regarding interesting trends in RAC, and allow to set hypotheses 

that can be tested in larger datasets. 

Finally, even though the results described above for RAC are promising, they do not clearly demarcate 

the potential role, if any, for RAC monitoring within moderate and severe TBI patients.  This important 

aspect has yet to be shown.  Future plans exist to analyze the potential clinical relevance of RAC, 

compared to the existing indices PRx and PAx.  Further to this, none of the patients included within this 

study underwent DC at any point during their hospital course, even for refractory ICP issues.  Thus, no 

comments can be made on the temporal changes in RAC, or other indices, as a result of the DC 

procedure in TBI patients.  Subsequent analysis of the value of monitoring RAC, among other physiologic 

indices, in patients undergoing DC is required.  Future plans exist to pursue such analysis.  In addition, 

the current population is unable to provide any information regarding the utility of RAC in predicting the 

need for subsequent craniotomy due to lesion progression, or new lesion development.  This also 

requires further investigation. 

 



 

81 
 

4.1 Conclusions 
 

A new continuous index of physiologic assessment in TBI is described, RAC, based on the moving 

Pearson correlation coefficient between AMP and CPP.  Based on both examples of extreme physiology, 

and in a large non-DC cohort, RAC appears to be responsive to changes in ICP and CPP, at the expected 

limits of normal autoregulation.  RAC appears to carry information regarding both:  cerebral 

compensatory reserve and cerebrovascular responsiveness. This contributes RAC’s uniqueness and 

complexity of interpretation. Validation of RAC as a means of potential autoregulation assessment is 

required. Further analysis of RAC in outcome prediction and CPP optimum estimation in TBI are 

required. 
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CHAPTER 5:   EXPERIMENTAL VALIDATION OF ICP DERIVED INDICES OF 

VASCULAR REACTIVITY 
 

*The studies described in Chapter 5.1 and 5.2 can also be found detailed in the following respective 

publications: 

1. Zeiler et al., J Neurotrauma. 2018; 35(23):2812-2819. doi: 10.1089/neu.2017.5604.171 

2. Zeiler et al., J Neurotrauma. 2018; 35(23):2803-2811. doi: 10.1089/neu.2017.5603.172 

 

5.1 Lower Limit of Autoregulation in Piglet Model of Arterial Hypotension 
 

5.1.1 Introduction 
 

To date, numerous indices of cerebrovascular reactivity have been derived.4  Given ICP monitoring is 

common in critically ill neurological patients, ICP-derived indices have received the most attention.  PRx 

is the most widely cited index, and is the correlation between slow waves recorded in ICP and MAP.3  

Numerous studies link PRx to patient outcome in TBI, with critical thresholds associated with morbidity 

and mortality defined within the literature.9  Furthermore, PRx has been validated in a piglet model 

against the LLA during arterial hypotension, one of only three indices to be validated in this type of 

model (the other being NIRS derived COx and HVx).14   

Aside from PRx, two other ICP-derived indices of cerebrovascular reactivity exist.  PAx, the correlation 

between AMP and MAP, has been demonstrated to be comparable to PRx in outcome prediction for TBI 

patients.15 In cases with low ICP (like for example after decompressive craniectomy) PAx is probably 

more useful than PRx. However, limited literature exists in the application of PAx clinically.  Similarly, 

RAC, the correlation (R) between AMP (A) and CPP (C), has been recently described within the TBI 

population and was highlighted in Chapter 4 of this thesis.21  It remains currently unknown whether PAx 

or RAC measure the LLA. 

This study was conducted to determine if PAx and RAC discriminate the LLA during arterial hypotension, 

as well as to provide validation for the previous PRx study14 in a larger cohort of animals. 
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5.1.2 Methods 
 

Animal Model 

The data from studies in neonatal piglets described here were retrospectively amalgamated from 3 

separate experiments. 14,147,148  Details regarding these models, including experimental treatment, has 

been outline in the general methodology section in Chapter 3.1. In brief, this cohort consisted of 3 

separate sham animal populations, totaling 22 piglets, where no cerebral insult had occurred (ie. ICP 

elevations, cardiac arrest or hypothermia).  All of these animals underwent similar anesthetic (see 

Chapter 3.1), and subsequently had an esophageal balloon within the IVC inflated to induce arterial 

hypotension over the course of 2 to 3 hours.  ICP, ABP and LDF-CBF were recorded continuously 

throughout the experiment using ICM+. 

 

Signal Acquisition and Processing 

All signals from the combined monitoring modalities described above were recorded and archived for 

subsequent retrospective use. All recorded signals were digitized via an A/D converter (DT9804, Data 

Translation, Marlboro, MA), sampled at frequency of 50 Hertz (Hz) or higher, using ICM+ software 

(Cambridge Enterprise Ltd, Cambridge, UK, http://icmplus.neurosurg.cam.ac.uk).  Signal artifacts, such 

as transducer adjustments, were removed prior to further processing or analysis using tools available in 

ICM+. 

CPP was determined as: MAP – ICP.  AMP was determined by calculating the fundamental Fourier 

amplitude of the ICP signal over a 10 second window, updated every 10 seconds.  This was done over 

the range consistent with the normal range for piglet heart rate (ie. 100 – 350 bpm).  Finally, 10 second 

moving averages (without data overlap) were calculated for all recorded signals:  ICP, AMP, ABP (ie. 

producing MAP), CPP, and LDF-CBF. The piglets’ archived signals were retrospectively interrogated and 

analyzed.   

The following continuous indices of cerebrovascular reactivity were derived: PRx, PAx, RAC and LDF 

derived Lx.  All indices were derived via moving Pearson correlation coefficients between 30 consecutive 

10 second average values of relevant signals and their parameters (ie. 5 minute of data), updated every 

minute. 
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Statistics 

All statistical analysis was conducted utilizing R statistical software (R Core Team (2016). R: A language 

and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL 

https://www.R-project.org/).  The following packages were employed:  ggplot2, dplyr, tidyverse, 

lubridate, segmented, and pROC. Where significance is reported, alpha was set at 0.05.  The following 

analysis described is similar to that performed within previous studies on the LLA. This was done so as to 

allow comparison between the results, and potentially provide validation of the results seen within that 

study.14 

 

 Finding the LLA 

In order to determine the LLA of autoregulation in the 22 animals, piecewise linear regression of the CPP 

versus LDF-CBF plots was employed.  The LDF-CBF signal was standardized against the individual animal’s 

baseline LDF-CBF signal, producing “% change of LDF-CBF from baseline”.  This is similar to other studies 

evaluating LDF-CBF. 

The piecewise regression process employed a starting point for estimation of the break-point in LDF-CBF. 

This starting point was visually estimated from the ICM+ plots of CPP versus LDF-CBF.  The breakpoint 

identified by the piece wise regression process is one in which minimized the sum residual square error 

(SSE) of the two linear segments, above and below this point.  This was conducted for each animal, with 

piecewise regression plots produced denoting the 95% confidence interval (CI) for each fitted linear 

segment.  Finally, the mean LLA for the cohort of 22 piglets was determined by averaging all 22 LLA 

values obtained. 

 

 Binned Cohort Data and Plot 

After delineating the mean LLA for the cohort, cohort wide plots were produced to inspect the 

population trend of various physiologic measures against the LLA.  All data was binned across 5 mm Hg 

bins of CPP, using R statistical software.  The following error bar plots were then produced:  % change in 

LDF-CBF From Baseline vs. CPP, PRx vs. CPP, PAx vs. CPP, and RAC vs. CPP.   
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 Comparing CPP for Various Clinical Thresholds of PRx, PAx and RAC to LLA 

To conduct a rough comparison of the CPP for clinically defined thresholds of PRx, PAx and RAC to the 

CPP at the LLA, piecewise regression was performed in each animal.  To do so, a simplified piecewise 

linear regression was performed for PRx vs. CPP and PAx vs. CPP, using these models to determine the 

CPP in each animal for the following thresholds of PRx and PAx defined in TBI patients.9,152 For PRx, the 

thresholds of 0, +0.25 and +0.35 were tested, based on previous work in TBI. For PAx, the thresholds of 0 

and +0.25 were tested. Finally, for RAC, the thresholds of -0.10 and -0.05 were tested. CPP values at 

each threshold for PRx, PAx and RAC were compared with the CPP values at the LLA using a Pearson 

correlation coefficient and Bland-Altman analysis.  The Bland-Altman analysis was only conducted for 

those thresholds reaching statistically significant correlations with the LLA (ie. PRx 0, PRx +0.25, and PRx 

+0.35). 

 

 Prediction of Impaired Autoregulation using Continuous Indices  

As done in previous studies, receiver operating curve (ROC) analysis of PRx, PAx, RAC and Lx were 

performed across the cohort defined LLA.  This was conducted in order to determine the ability of these 

indices to predict being either above or below the LLA.  For each piglet, one mean value for each variable 

was obtained at each 5 mm Hg bin of CPP (ie. CPP = 40 mm Hg, 45 mm Hg, etc.).  Five mm Hg bins of CPP 

were used for the ROC analysis, given this was what was conducted within the previous study by Brady 

et al.14 

This data was then given the binary designation of being above the LLA, or below the LLA, based on the 

LLA defined previously.  The data from all 22 piglets was then used for the ROC analysis.  AUC for the 

ROC’s was reported and 95% CI reported via Delong method. Significance values (ie. p-values) for the 

AUC’s were derived from univariate logistic regression analysis. Comparison between AUC’s was 

conducted using Delong’s test. 

 

 Criteria for Measures of the LLA 

In order to be able to say that a specific index provides a measure of the LLA in this particular model, the 

following criteria needed to be met: 
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1. Demonstration of cerebrovascular reactivity indices to trend towards progressively more 

positive values at CPP levels below the LLA. 

2. Statistically significant logistic regression analysis for each cerebrovascular reactivity index in the 

prediction of having CPP values above or below the cohort defined LLA. 

 

 

5.1.3 Results 
 

Defining the LLA 

Through piecewise linear regression analysis of each piglet, the LLA was obtained for each animal.  

Figure 5.1 displays an example of the recorded MAP, ICP, CPP and LDF-CBF signal during the hypotension 

experiment.  While Figure 5.2 displays two examples of piecewise linear regression analysis of the LLA.  

The mean LLA was 36.2 +/- 10.5 mm Hg.   
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Figure 5.1: Example of Physiologic Signal Changes During Hypotension 

 

a.u. = arbitrary units, CPP = cerebral perfusion pressure, ICP = intracranial pressure, LDF-CBF = laser Doppler flowmetry cerebral blood flow, MAP = mean arterial pressure, mm Hg 
= millimeters of Mercury. 
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Figure 5.2: Examples of Piecewise Linear Regression Analysis of LLA 

 

CPP = cerebral perfusion pressure, LDF-CBF = laser Doppler flowmetry cerebral blood flow, mm Hg = millimeters of Mercury. Panel A + B = Piecewise linear regression and scatter 
plot for one piglet.  Panel C + D = piecewise linear regression and scatter plot for one piglet. NOTE: dashed line on piecewise linear regression plots represents the 95% confidence 
intervals for the fitted lines. 
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 Population-Wide Trends 

In order to provide a population-wide assessment of % change in LDF-CBF and the ICP derived indices 

during changes in CPP, various error bar plots were produced.  Figure 5.3 displays the plot of CPP versus 

% change in LDF-CBF from baseline, with the vertical dashed line indicating the approximate mean LLA, 

derived above.  This demonstrates that there is a precipitous drop in LDF-CBF below the LLA. 

Similarly, the ICP indices were plotted across 5 mm Hg bins of CPP, producing error bar plots.  Figure 5.4 

displays these plots.  It can be seen that PRx, PAx and RAC all correlated with the LLA, denoted by the 

vertical dashed line. 

 

Figure 5.3: Population-Wide – % Change in LDF From Baseline vs. CPP 

 

CPP = cerebral perfusion pressure, LDF = laser Doppler flowmetry, mm Hg = millimeters of Mercury. NOTE: vertical dashed line 
represents the approximate mean LLA for the population defined through piecewise linear regression in each animal. 
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Figure 5.4: Population-Wide Error Bar Plots – PRx vs. CPP, PAx vs. CPP and RAC vs. CPP 

 

AMP = pulse amplitude of ICP, a.u. = arbitrary unite, CPP = cerebral perfusion pressure, ICP = intra-cranial pressure, PAx = pulse amplitude index (correlation between AMP and 
MAP), PRx = pressure reactivity index (correlation between ICP and MAP), RAC = correlation between AMP and CPP. NOTE: vertical dashed line represents the approximate mean 
LLA for the population, derived through piecewise linear regression in each animal. 
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Comparing CPP for Various Clinical Thresholds of PRx and PAx to LLA  

For each animal, the CPP at each threshold for PRx, PAx and RAC was roughly derived through a 

simplified piecewise linear model of PRx vs. CPP, PAx vs. CPP, and RAC vs. CPP in each individual animal.  

These CPP values were compared to the CPP for the LLA derived in each animal, as described above.  

Table 5.1 displays the results for Pearson correlation between the CPP at TBI defined critical thresholds 

and the LLA within the cohort of piglets. Only the PRx thresholds appeared to produce statistically 

significant correlations, though they are weak in strength.  Bland-Altman analysis comparing the CPP 

values at these PRx thresholds, and the CPP at the LLA, displayed poor agreement between the 

threshold CPP values and the CPP at the LLA. 

 

Table 5.1: Comparison of CPP at Index Threshold to LLA – Pearson Correlation and T-test 

Index Threshold Tested Against 
LLA 

Pearson Correlation Coefficient 
with LLA 

p-value for Pearson Correlation 
Coefficient 

PRx = 0 0.538 0.014 

PRx = +0.25 0.571 0.008 

PRx = +0.35 0.512 0.021 

PAx = 0 -0.078 0.745 

PAx = +0.25 0.294 0.208 

RAC = -0.10 0.394 0.077 

RAC = -0.05 0.350 0.120 
AMP = pulse amplitude of ICP, CPP = cerebral perfusion pressure, ICP = intracranial pressure, LLA = lower limit of autoregulation, 
PAx = pulse amplitude index (correlation between AMP and MAP), PRx = pressure reactivity index (correlation between ICP and 
MAP), RAC = correlation between AMP and CPP. *Note: Bolded values are those which reached statistical significance. 

 

LLA ROC Analysis 

Through ROC analysis across the LLA, using the data from the 22 piglets, the AUC’s for each continuous 

index were calculated.  The AUC for PRx, PAx and RAC was:  0.806 (95% CI: 0.750 – 0.863, p<0.0001), 

0.726 (95% CI: 0.664 – 0.789, p<0.0001), and 0.710 (95% CI: 0.646 – 0.775, p<0.0001), respectively.  

Finally, the AUC for Lx was 0.809 (95% CI: 0.754 – 0.863, p<0.0001).  Comparing AUC’s via Delong’s test, 

there was a statistically significant difference between the AUC’s generated, when comparing PRx to PAx 
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(p=0.0004), and PRx to RAC (p<0.0001). However, the AUC’s for PAx and RAC were not statistically 

different (p=0.214).  

 

5.1.4 Discussion 
 

Through retrospective analysis of archived experimental piglet data, a cohort of animals subjected to 

pure arterial hypotension, this allowed for the assessment of ICP derived continuous indices against the 

LLA.  A few important points deserve highlighting. 

First, for the first time, insight has been provided some evidence validating PAx and RAC against the LLA 

within a model of hypotension.  This suggests that both indices provide information regarding cerebral 

autoregulatory capacity with a moderate accuracy. However, inconclusive evidence exists to support 

that the index threshold values, as defined in a TBI population,152 measure the LLA within this current 

model.  The Pearson correlations between the LLA and the CPP at these thresholds were poor and not 

statistically significant.  It remains uncertain as to whether the TBI defined critical thresholds for PAx and 

RAC can be applied outside of the TBI population, given the poor performance of these thresholds within 

this model of arterial hypotension.  Further, it remains unclear as to whether these thresholds represent 

relevant aspects of cerebral autoregulation, aside from associations with patient outcome in TBI.  It is 

also likely that threshold values for reactivity indices may vary by individual. It must be acknowledged 

these results are preliminary. 

Finally, confirmatory evidence has been provided that PRx correlates with the LLA within a model of 

hypotension.  This was conducted using both the animal data from the initial publication documenting 

this relationship,14 plus another 14 sham control animals from other experiments.  A similar AUC (0.806, 

p<0.0001) in the prediction of the LLA using PRx was demonstrated.  Finally, evaluating clinically relevant 

thresholds for PRx, all thresholds fail to produce strong correlations with the LLA within a model of 

arterial hypotension.  This was confirmed via poor agreement with the LLA on Bland-Altman analysis for 

all PRx clinical thresholds tested. This is likely because these thresholds have been defined within adult 

TBI populations,9,152 and thus the underlying disease and influence of ICP elevation post-injury may 

produce these thresholds that are disease specific.  It is therefore not surprising that these thresholds do 

not necessarily respect the LLA in a model of pure hypotension.  As with PAx and RAC, it must be stated 

that given the small numbers of animals within the current study, strong conclusions regarding these 

clinical thresholds cannot be made at this time.  This work remains preliminary. 
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 Limitations 

Despite the interesting and promising results, a few limitations deserve emphasis.  First, this is a 

retrospective analysis of an amalgamated cohort of piglets from 3 separate experiments.  Though the 

anesthetic, procedures and experimental hypotension techniques were similar for all animals, the 

cohorts were not exactly identical.  For example, 8 of the animals were slightly older (ie. 5 to 10 days, 

versus 3 to 5 days), with higher weights.  This could influence the cerebrovascular response slightly.  

Second, despite have a sizable cohort of piglets for this retrospective analysis, it is still a relatively small 

number of animals, thus the conclusions drawn must be taken with caution.  Third, the clinically defined 

thresholds for PRx, PAx, and RAC tested are defined within a TBI population.9,152 Thus, exploring how 

they relate to the LLA in a model of arterial hypotension may explain why many of the thresholds for 

PRx, PAx and RAC don’t appear to be related to the LLA.  As mentioned above, the results of this analysis 

are preliminary and thus strong conclusions about the relationship between the clinical thresholds and 

the LLA cannot be made.  Further validation is required.  Further to this, even though the CPP at some of 

the clinically defined index thresholds appeared to be related to the LLA within this piglet model, one 

must interpret this with caution.  As the LLA represents the point at which cerebral autoregulation 

becomes impaired (ie. not the point at which vascular reactivity is completely lost), the lack of strong 

associations with CPP at thresholds defined by clinical outcome is not surprising.  These thresholds for 

the ICP defined indices were derived from TBI patient outcome at 6 months post injury.  As a result, 

these index thresholds may represent the severe end of the autoregulation spectrum, the point of 

complete failure of vascular reactivity. Hence, the relationship between the CPP at thresholds and the 

LLA may not be robust, as they could be representing different aspects of impaired cerebrovascular 

reactivity.  As well, one must assume that there are individual animal-based differences in vascular 

reactivity, introducing the influence of potential random effects. Much further interrogation of these 

clinically defined index thresholds is required, with the current analysis providing some preliminary 

insight. 
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5.1.5 Conclusions 
 

The three ICP derived continuous indices of cerebrovascular reactivity, PRx, PAx and RAC were evaluated 

against the LLA within this experimental model of arterial hypotension.  All three indices appear to 

respect the LLA within this model of pure arterial hypotension, with PRx being superior. 
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5.2 Lower Limit of Autoregulation in Rabbit Model of Intra-Cranial Hypertension 
 

5.2.1 Introduction 
 

Aside from literature supporting an association between continuous measures of cerebrovascular 

reactivity and patient outcome, there is a paucity of data to support the concept that these indices 

measure the limits of autoregulation (ie. become progressively more positive when CPP decreased 

below the LLA).14  To date, only PRx and two NIRS derived indices (COx and HVx) have been validated 

against the lower LLA in an animal model of arterial hypotension.14,173 Chapter 5.1 provides evidence to 

validate all ICP derived indices against the LLA in a piglet model of arterial hypotension. 

However, these continuous indices have never been validated against the LLA in a model of sustained 

intra-cranial hypertension. Thus, this study will explore the correlation between PRx, PAx and RAC with 

the LLA in a rabbit model of sustained IC hypertension. 

 

5.2.2 Methods 
 

Animals 

The animals described within this study have in part been described in previous studies related the 

physiologic response to intra-cranial hypertension.145,146 The details surrounding this NZ rabbit model of 

IC hypertension have been provided in Chapter 3.1 of the general methods, including anesthetic 

administered and CSF infusion protocol for the IC hypertension experiment.  In brief, all animals were 

placed under general anesthesia, with an isolated basilar artery fed circulation created two weeks prior 

to the experiment by ligation of common carotid arteries.  IC hypertension was induced through an 

infusion of Hartmann’s solution into the lumbar cistern, via intra-thecal catheter.  ICP was elevated until 

cessation of diastolic flow on TCD.  ICP, ABP, TCD CBFV from the basilar artery, and cortical LDF-CBF were 

recorded and linked in time-series. Arterial blood pressure (ABP) was measured through in the dorsal 

aorta after catheter insertion in the femoral artery (GaelTec, Dunvegan, UK). Cerebral blood velocity was 

measured using an 8MHz Doppler ultrasound probe (PCDop 842, SciMed, Bristol, UK) positioned over 

the basilar artery (accessed through a 7mm burr-hole at the bregma). ICP was monitored using an 

intraparenchymal microsensor (Codman and Shurtleff, Raynham, MA, USA) inserted through a right 
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frontal burr-hole, and a laser Doppler flowmetry (LDF) probe was placed epidurally through a further 

right frontal burr-hole (Moor Instruments, Axbridge, Devon, UK). The digitally recorded raw physiologic 

data from 12 animals from this experiment were accessed for the purpose of this study. Only 12 animals 

were used for this study, given the quality of the recorded LDF and TCD signals from the remaining 

animals were deemed unsuitable for derivation of piece-wise regression models to evaluate the LLA.  

Given technique related limitations for LDF and TCD during these experiments the recorded signals for 

animals, other than the selected 12, were:  noisy, non-continuous and contained various degrees of 

signal artefact.  As such, only the data from 12 animals were utilized.  

 

Data Acquisition 

All signals from the combined above invasive and non-invasive monitoring modalities were recorded and 

archived for future retrospective use. All recorded signals were digitized via A/D converters (DT300; Data 

Translation, Marlboro, MA), sampled at frequency of 100 Hertz (Hz), using WREC software (Warsaw 

University of Technology) and subsequently processed using ICM+ software (Cambridge Enterprise Ltd, 

Cambridge, UK, http://icmplus.neurosurg.cam.ac.uk).  Signal artifacts were removed prior to further 

processing or analysis using tools available in ICM+. 

 

Signal Analysis 

CPP was determined as: MAP – ICP.  FVs was derived by calculated the maximum FV over a 0.5 second 

window, updated every 0.25 seconds.  FVm was calculated using the average FV over a 10 second 

window, updated every 10 seconds without data overlap. AMP was determined by calculating the 

fundamental Fourier amplitude of the ICP signal over a 10 second window, updated every 10 seconds.  

This was done over the frequency range consistent with the rabbits HR (ie. 100 – 400 bpm).  Finally, 10 

second moving averages (without data overlap) were calculated for all recorded signals:  ICP, AMP, ABP 

(ie. producing MAP), CPP, FVm, FVs, LDF based CBF (LDF-CBF).  Continuous indices of cerebrovascular 

reactivity were generated in a fashion consistent with that described in Chapter 3, deriving:  PRx, PAx, 

RAC, and Lx.  Update frequency for all physiologic variables was 10-seconds-by-10-seconds, given the 

short duration of recordings during the experiment. 
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The archived signals for all 28 of the animals were retrospectively interrogated and analyzed.  Utilizing 

ICM+ software, plots for LDF versus CPP and FVm/FVs versus CPP were constructed.  These were 

inspected visually for overall trend and the presence of a visible “break point” in LDF/FVm/FVs where 

future piecewise linear regression analysis would potentially be able to identify an accurate LLA. It was 

found that only 12 of the animals had sufficient recordings to allow for the accurate assessment of the 

LLA (given insufficient data after artifact removal to clearly identify an LLA), and thus only 12 animals 

were utilized for the remainder of the study. 

 

Statistics 

All statistical analysis was conducted utilizing R statistical software (R Core Team (2016). R: A language 

and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL 

https://www.R-project.org/).  The following packages were employed:  ggplot2, dplyr, tidyverse, 

lubridate, segmented, and pROC. Where significance is reported, alpha was set at 0.05.  The following 

analysis described is identical to that performed by Brady et al., the only study in existence validating 

PRx against the LLA.14  This was done so as to remain as to allow comparison between the results, and 

potentially provide validation of the results seen within that study. 

 

 Finding the LLA 

In order to determine the LLA of autoregulation in the 12 animals, piecewise linear regression of either 

LDF-CBF versus CPP plots, or FVs versus CPP plots, was employed.  In 3 of the 12 animals, the LDF-CBF 

signals were not adequate for piecewise regression, and thus CPP versus FVs plots were utilized to find 

the LLA.  The LDF-CBF signal was standardized against the individual animal’s baseline LDF-CBF signal, 

producing “% change of LDF-CBF from baseline”.  This is similar to other studies evaluating LDF-CBF. 

The piecewise regression process employed a starting point for estimation of the break-point in either 

LDF-CBF or FVs. This starting point was visually estimated from the ICM+ plots of LDF-CBF versus CPP or 

FVs versus CPP, described above.  The breakpoint identified by the piece wise regression process is one 

in which minimized the SSE of the two linear segments, above and below this point.  This was conducted 

for each animal, with piecewise regression plots produced denoting the 95% CI for each fitted linear 
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segment.  Finally, the mean LLA for the cohort of 12 rabbits was determined by averaging all 12 LLA 

values obtained. 

 

 Finding the “Cushing’s Response Point” 

Given this animal model involved sustained intra-cranial hypertension, the profound sympathetic surge 

seen during herniation could influence the relationship between MAP and ICP or AMP, leading to 

overwhelming positive trends in PRx, PAx and RAC below the LLA.145  Thus, it was important to see if 

there was a distinct separation between the LLA and when the Cushing’s response was seen.  A separate 

piecewise linear regression analysis of CPP versus MAP plots was performed, looking for a break point 

where as CPP continues to decrease, a dramatic increase in MAP is seen, corresponding the point where 

the Cushing’s response takes effect. The breakpoint identified by the piecewise regression process is one 

in which minimized the SSE of the two linear segments, above and below this point.  This was conducted 

for each animal, with piecewise regression plots produced denoting the 95% CI for each fitted linear 

segment.  Finally, the mean “Cushing’s Point” for the cohort of 12 rabbits was determined by averaging 

all 12 breakpoint values of MAP versus CPP.  The mean LLA was compared to the mean “Cushing’s Point” 

via student t-test, to assess statistical significance. 

 

 Binned Cohort Data and Plot 

After delineating the mean LLA for the cohort, cohort wide plots were produced to inspect the 

population trend of various physiologic measures against the LLA.  First all data was binned across 2.5 

mm Hg bins of CPP, using R statistical software.  The following error bar plots were then produced:  LDF-

CBF vs. CPP, FVs vs. CPP, PRx vs. CPP, PAx vs. CPP, RAC vs. CPP and AMP vs. CPP.   

 

 Comparing CPP for Various Clinical Thresholds of PRx and PAx to LLA 

A rough comparison of CPP for clinically defined thresholds of PRx and PAx to CPP at the LLA, defined via 

piecewise regression in each animal, was performed.  To do so, a simplified piecewise linear regression 

was performed of PRx vs. CPP and PAx vs. CPP, using these models to determine CPP in each animal for 

the following thresholds of PRx and PAx defined in TBI patients. For PRx, the thresholds of 0, +0.25 and 
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+0.35 were tested. For PAx, the thresholds of 0 and +0.25 were tests.  CPP values at each threshold for 

PRx and PAx were compared with the CPP values at the LLA, using a Bland-Altman analysis.  The Bland-

Altman analysis was only conducted for those index thresholds which displayed statistically significant 

correlation coefficients with the LLA. 

 Prediction of Continuous Indices for Impaired Autoregulation 

As done in Brady et al., ROC analysis of PRx, PAx and Lx across the cohort defined LLA was performed.  

This was conducted in order to determine the ability of these indices to predict being either above or 

below the LLA.  For each rabbit, 1 mean value for each variable was obtained at each 2.5 mm Hg bin of 

CPP (ie. CPP = 40 mm Hg, 45 mm Hg, etc.).  We utilized 2.5 mm Hg bins of CPP for the ROC analysis, to 

improve ROC prediction, given the short duration of experiments and noisy data recording available in 

this experiment. This is in contrast to the 5 mm Hg binned data utilized within the previous study by 

Brady et al.,14 where long duration of controlled induced experimental hypotension and data recording 

allowed for using such data binning.  

This data was then given the binary designation of being above the LLA, or below the LLA, based on the 

LLA defined previously.  The data from all 12 rabbits was then utilized for the ROC analysis.  AUC for the 

ROC’s was reported and 95% CI reported via Delong method. Significance values (ie. p-values) for the 

AUC’s were derived from univariate logistic regression analysis. Comparison between AUC’s was 

conducted utilizing Delong’s test. 

 Criteria for Measures of the LLA 

In order to be able to say that a specific index provides a measure of the LLA in this particular model, the 

following criteria needed to be met: 

3. Demonstration of cerebrovascular reactivity indices to trend towards progressively more 

positive values at CPP levels below the LLA. 

4. Statistically significant logistic regression analysis for each cerebrovascular reactivity index in the 

prediction of having CPP values above or below the cohort defined LLA. 
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5.2.3 Results 
 

Defining the LLA 

Piecewise linear regression was conducted in each rabbit.  Nine of the rabbits had this analysis 

conducted on the LDF-CBF vs. CPP plots, while in 3 animals it was conducted on the FVs plots vs. CPP.  

Across all rabbits, the mean LLA was determined to be 51.5 +/- 8.2 mm Hg. Figure 5.5 displays the 

piecewise linear regression for two animals, with their corresponding scatter plots.  Panel A displays and 

example of the plots for ICP, MAP, CPP, LDF and FVs over time during the experiment.  Panel B and C 

denote an example of piecewise regression using the LDF-CBF vs. CPP plot, and Panel D and E denote the 

same using the FVs vs. CPP plot.  Figure 5.6, displays the LDF-CBF vs. CPP error bar plot for the entire 

rabbit cohort, demonstrating a dramatic drop in LDF signal below the defined LLA (ie. ~50 mm Hg).   

 

 

 

Defining the “Cushing’s Point” 

Piecewise linear regression of MAP vs. CPP was conducted for each rabbit.  Across all rabbits the mean 

“Cushing’s Point”, where with further decrease in CPP we saw dramatic increases in MAP, was 42.4 +/- 

9.8 mm Hg.  Figure 5.7 displays an example of the piecewise regression between CPP and MAP, 

identifying the “Cushing’s Point”.  Comparing the LLA and the Cushing’s point across all animals, via the 

student’s t-test, the LLA and Cushing’s point were noted to be statistically different (t=2.396, p=0.027). 
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Figure 5.5: Examples of Piecewise Linear Regression Analysis 

 

a.u. = arbitrary units, cm = centimeters, CPP = cerebral perfusion pressure, FVs = systolic flow velocity, ICP = intra-cranial 
pressure, LDF-CBF = laser Doppler flowmetry cerebral blood flow, MAP = mean arterial pressure, mm Hg = millimeters of 
Mercury, sec = second. Panel A = example of ICP, MAP, CPP, LDF-CBF and FVs over time during the experiment. Panel B = 
piecewise regression using the LDF-CBF vs. CPP plot, Panel C = scatterplot of LDF-CBF vs.CPP, Panel D = piecewise regression 
using FVs vs. CPP plot, Panel E = scatterplot of FVs vs. CPP. Note: in piecewise regression plots, the hashed lines along the x-axis 
denote data point density. 
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Figure 5.6: Error Bar Plots – % Change in LDF-CBF vs. CPP – Entire Rabbit Cohort 

 

a.u. = arbitrary units, cm = centimeters, CPP = cerebral perfusion pressure, LDF-CBF = laser Doppler flowmetry cerebral blood 
flow, mm Hg = millimeters of Mercury. Vertical dashed line represents the approximate LLA for the entire cohort. Vertical solid 
line represents the approximate “Cushing’s Point” for the entire cohort. 
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Figure 5.7: Piecewise Linear Regression Identifying Cushing’s Point – Example 

 

CPP = cerebral perfusion pressure, ICP = intra-cranial pressure, MAP = mean arterial pressure, mm Hg = millimeters of Mercury. Panel A = example of ICP, MAP and CPP over time 
during the experiment, Panel B = piecewise linear regression of MAP vs. CPP, Panel C = scatter plot of MAP vs. CPP. 
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Autoregulation/Cerebrovascular Reactivity across the LLA 

Various cohort-wide plots of continuous indices of autoregulation/cerebrovascular reactivity across the 

LLA were produced.  Figure 5.8 displays PRx and PAx error bar plots against binned CPP.  It can be seen 

that, as reported in Brady et al.,14 PRx correlates with the LLA, becoming progressively more positive 

(denoting “impaired” autoregulation) below the LLA of ~50 mm Hg (Panel A).  Similarly, we are able to 

demonstrate the PAx also correlates with the LLA within this model (Panel B).  Finally, given the LLA was 

mainly defined using LDF-CBF signal across a range of CPP, the LDF derived Lx also correlated with the 

LLA.  Of note for all of the above relationships, these trends can be seen between the LLA (vertical 

dashed line) and the Cushing’s point (vertical solid line), indicating that indeed these relationships to the 

LLA are seen before the Cushing’s response develops.   

RAC failed to produce reliable data within this model of intra-cranial hypertension to either confirm or 

refute their association with the LLA. This may be secondary to failure within this subset of animals to 

surpass the break-point in AMP, described in the adult TBI population of Chapter 4. Figure 5.9 displays 

the RAC and AMP vs. CPP error bar plots, panel B displays the failure to reach the AMP breakpoint. 
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Figure 5.8:  Cohort Based Error Bar Plots of ICP Derived Indices across the LLA 

 

AMP = pulse amplitude of ICP, a.u. = arbitrary units, CPP = cerebral perfusion pressure, LLA = lower limit of autoregulation, MAP = mean arterial pressure, mm Hg = 
millimeters of Mercury, ICP = intracranial pressure, PAx = pulse amplitude index (correlation between AMP and MAP), PRx = pressure reactivity index (correlation 
between ICP and MAP). Panel A = PRx vs. CPP error bar plot, Panel B = PAx vs. CPP error bar plot. Note:  vertical hashed line denotes the approximate LLA, while the 
vertical solid line represents the approximate Cushing’s point. 
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Figure 5.9:  Cohort Based Error Bar Plots of RAC and AMP across the LLA 

 

AMP = pulse amplitude of ICP, a.u. = arbitrary units, CPP = cerebral perfusion pressure, LLA = lower limit of autoregulation, mm Hg = millimeters of Mercury, ICP = intracranial 
pressure, RAC = correlation between AMP and CPP. Panel A = RAC vs. CPP error bar plot, Panel B = AMP vs. CPP error bar plot. Note:  vertical hashed line denotes the approximate 
LLA, while the vertical solid line represents the approximate Cushing’s point. 
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Comparing CPP for Various Clinical Thresholds of PRx and PAx to LLA  

For each animal, the CPP at each threshold for PRx and PAx was roughly derived through a simplified 

piecewise linear model of PRx vs. CPP and PAx vs. CPP in each individual animal.  These CPP values were 

compared to the CPP for the LLA derived in each animal, as described above.  They were compared via 

Pearson correlation coefficient.  Table 5.2 displays these results.  RAC was not interrogated given its 

poor performance in the above analysis and inability to produce reliable piecewise models for RAC vs 

CPP.  

 

Table 5.2: Comparison of CPP at Index Threshold to LLA – Pearson Correlation  

Index Threshold Tested Against 
LLA 

Pearson Correlation Coefficient 
with LLA 

p-value for Pearson Correlation 
Coefficient 

PRx = 0 0.037 0.9121 

PRx = +0.25 0.429 0.1881 

PRx = +0.35 0.600 0.0507 

PAx = 0 0.612 0.0454 

PAx = +0.25 0.689 0.0190 
AMP = pulse amplitude of ICP, CPP = cerebral perfusion pressure, ICP = intracranial pressure, LLA = lower limit of autoregulation, 
PAx = pulse amplitude index (correlation between AMP and MAP), PRx = pressure reactivity index (correlation between ICP and 
MAP). Note: bolded values indicate those which reached statistical significance. 

 

The Pearson correlation between the CPP values at a PRx threshold of +0.35, with the CPP at the LLA, 

demonstrates that this clinical threshold may represent the LLA.  Similarly, the Pearson correlation 

between the CPP values at PAx thresholds of 0 and +0.25, with the CPP at the LLA, demonstrate that 

these clinical thresholds may also represent the LLA. Bland-Altman analysis for the 3 statistically 

significant index thresholds (ie. PRx +0.35, PAx 0, and PAx +0.25) demonstrated poor agreement with 

bias, when comparing the CPP at each index thresholds to the CPP at the LLA.   
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LLA ROC Analysis 

Through ROC analysis across the LLA, using the data from the 12 rabbits, AUC’s for each continuous 

index were identified.  The AUC for PRx, PAx and RAC was:  0.795 (95% CI: 0.731 – 0.857, p<0.0001), 

0.703 (95% CI: 0.631 – 0.775, p<0.0001), and 0.558 (95% CI: 0.478 – 0.637, p=0.325), respectively.  

Finally, the AUC for Lx was 0.740 (95% CI: 0.668 – 0.812, p<0.0001).  Comparing AUC’s via Delong’s test, 

there was no significant difference between the AUC generated for PRx, PAx and Lx (all p>0.05). 

 

 

5.2.4 Discussion 
 

Through retrospective analysis of this experimental model data, validation has been provided for the 

previously described claims that PRx discriminates the LLA.  The previous study to provide the initial data 

for PRx and the LLA, was by Brady et al.14  This study focused on a piglet model of arterial hypotension, 

during both states of normal and slightly elevated ICP.  Within this previous model, it was clearly 

demonstrated that PRx identified the LLA (found to be between 30 and 40 mm Hg in this animal model).  

Further, it was demonstrated, that PRx was superior to all other indices in the ROC analysis for detecting 

the LLA.  This was replicated in Chapter 5.1 of this thesis. The above described study has been able to 

reproduce all of these results in a white NZ rabbit model of intra-cranial hypertension, which has not 

been described previously.  Thus, further evidence has been provided to support the use of PRx in 

monitoring autoregulatory capacity, particularly during instances of ICP elevation.  Finally, evaluation of 

the CPP at various clinically relevant thresholds of PRx, defined in TBI patients,9,152 was roughly 

conducted.  Interestingly, some preliminary results to support that the PRx threshold of +0.35 correlates 

with the LLA within this model of intra-cranial hypertension, though agreement on Bland-Altman was 

poor. 

Furthermore, validating evidence has been provided to support that the ICP index PAx, also correlates 

with the LLA, allowing for confidence in its application as a measure of autoregulatory 

capacity/cerebrovascular reactivity.  Thus, given the results of section 5.1 and 5.2 of this thesis, PAx 

measures the LLA during both arterial hypotension and IC hypertension. This has never been described 

previously for this index.  In addition, similar to PRx, some preliminary results are provided to support 

that the clinically relevant PAx thresholds152 of 0 and +0.25 correlate with the LLA within this model of 
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intra-cranial hypertension, though as with the PRx threshold of +0.35, the agreement on Bland-Altman 

analysis was poor. 

Of additional interest, the ICP derived index RAC failed to demonstrate any reliable evidence that it 

correlated with the LLA within this model of sustained intra-cranial hypertension, where the other ICP 

derived indices performed well.  RAC is derived from the correlation between AMP and CPP.  During this 

intra-cranial hypertension experiment, AMP was constantly increasing, with CPP decreasing secondary 

to elevated ICP (ie. not a drop in MAP).  Thus, the correlation derived between AMP and CPP during such 

a physiologic event will be negative in nature.  This was seen in the persistently negative values for RAC 

derived in every animal.  Thus, it isn’t that surprising that we didn’t see a dramatic response in RAC 

below the LLA.  It may be that the failure of RAC to display a significant relationship to the LLA is a 

function of the particular model used, not the index.  Furthermore, an upper break-point in AMP was 

not seen in this subpopulation of rabbits (n=12), as has been described in other animal and clinical 

studies.145  This is likely secondary to the Cushing’s sympathetic response seen within the animals during 

this experiment, which has been previously described.145 This Cushing’s response led to a preservation 

of, and increase in, MAP during elevation of ICP.  It is possible that if this break-point in AMP were 

observed it may lead to a rapid rise in RAC to more positive values.  Whether or not this potential 

physiologic event would have led to RAC correlating with the LLA is unknown, and requires further 

investigation. 

Finally, through the use of linear piecewise regression of CPP versus MAP, the point at which the 

sympathetic driven Cushing’s response occurred was identified, at a mean CPP of 42.4 +/- 9.8 mm Hg.  

This point was statistically below the mean LLA of 51.5 +/-8.2 mm Hg (p=0.027).  Thus, between the LLA 

and the Cushing’s point, the ICP derived indices were uninfluenced by the sympathetic response seen 

during a Cushing’s response.  Hence, the trend towards progressively more positive index values seen for 

PRx and PAx confirms that these indices respect the LLA in this model of IC hypertension. 

 

 Limitations 

Despite the interesting results found within this study, there are some important limitations which 

should be highlighted.  First, this study is a retrospective assessment of archived experimental data.  

Second, this rabbit model of IC hyptertension involved ligation of the common carotids bilaterally to 

produce an isolated basilar artery fed intra-cranial circulation.  Despite a 2 week rest period between 
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this arterial ligation and the IC hypertension experiments, the isolated circulation may have had an 

impact on cerebral autoregulatory function.  By ligating the common carotids, this left the entire 

anterior circulation dependant of posterior circulation flow and both the presence of adequate anterio-

posterior communicating vessels and collarteral flow.  Furthermore, the New Zealand white rabbit is also 

known to have significant variations in intra-cranial circulatory anatomy, with less than 30% of these 

rabbit cohorts displaying a normal circle of Willis.174 As such, much of the anterior circulation may have 

been exhausted in terms of autoregulatory capacity at the time of the IC hypertension experiements, 

leading to ischemia and/or infarction in the anterior territories, and have impacted the recorded signals 

and derived cerebrovascular reactivity indices. However, with that said, the relationship between 

frontally recorded LDF and CPP displayed a clearly identifiable LLA, with both PRx and PAx 

demonstrating trend towards progressively positive value at CPP levels below the LLA, with significan 

logistic regression analysis. Third, out of the 28 rabbits included in the original experiment, only 12 had 

sufficient quality archived signals for defining and interrogating the LLA.  Fourth, RAC, described within 

Chapter 4, failed to produce reliable data within this model of intra-cranial hypertension to either 

confirm or refute its association with the LLA.  This particular model of intra-cranial hypertension may be 

why the other index tested (RAC) failed to produce reliable data to confirm or refute their association 

with the LLA. Fourth, the rate of rise in ICP was fairly rapid within this model (ie. ~30 min), this may have 

played a part in the relatively noisy data and fluctuations seen within the error bar plots provided.  It is 

unknown if a longer period of rise in ICP would have led to “cleaner” data, and the ability to provide 

validation for the other indices.  There is much further work required to confirm these results during 

other physiologic conditions. Finally, even though the CPP at some of the clinically defined thresholds for 

PRx and PAx appeared to be related to the LLA within this rabbit model, one must interpret this with 

caution.  As the LLA represents the point at which cerebral autoregulation becomes impaired (ie. not the 

point at which vascular reactivity is completely lost), the lack of strong associations with CPP at 

thresholds defined by clinical outcome9,152 is not surprising.  These thresholds for the ICP defined indices 

were derived from TBI patient outcome at 6 months post injury.  As a result, these index thresholds may 

represent the severe end of the autoregulation spectrum, the point of complete failure of vascular 

reactivity. Hence, the relationship between the CPP at thresholds and the LLA may not be robust, as they 

could be representing different aspects of impaired cerebrovascular reactivity.  As well, one must 

assume that there are individual animal-based differences in vascular reactivity, introducing the 

influence of potential random effects. Much further interrogation of these clinically defined index 

thresholds is required, with the current analysis providing some preliminary insight.  These cautions are 
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in corollary with the lack of association between the TBI defined clinical thresholds and the LLA seen in 

the piglet model of arterial hypotension in Chapter 5.1. 

 

5.2.4 Conclusions 
 

Validation for the ICP derived indices, PRx and PAx, against the LLA within this experimental model of 

intracranial hypertension has been provided.  Given model limitations, it is unclear if RAC measures the 

LLA during extreme IC hypertension. 
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5.3 Upper Limit of Autoregulation in Piglet Model of Arterial Hypertension 
 

5.3.1 Introduction 
 

Chapter 5, subsection 5.1 and 5.2, highlight the ability of ICP derived indices of cerebrovascular reactivity 

to measure the LLA, during arterial hypotension and IC hypertension.  However, within the current 

literature surrounding these indices, there lacks data to support their ability to measure the ULA.  This 

likely stems from the fact that these physiologic indices are typically measured in adult TBI patients, 

where the main concern is ICP elevation with concomitant reductions in CPP, leading to hypoperfusion.  

Thus, the LLA has been the main interest in experimental validations studies using these indices. The 

focus of this study was to assess the ability of the ICP derived indices of cerebrovascular reactivity to 

measure the ULA, in a piglet model of arterial hypertension. 

 

5.3.2 Methods 
 

Animals 

The neonatal piglet data described within were retrospectively amalgamated from previous 

experiments.  Details regarding these models, including experimental treatment, has been outline in the 

general methodology section in Chapter 3.1. In brief, this cohort consisted of 6 sham piglets, where no 

cerebral insult had occurred (ie. ICP elevations, cardiac arrest or hypothermia).  All of these animals 

underwent similar anesthetic (see Chapter 3.1), and subsequently had an esophageal balloon within the 

distal aorta, inflated to induce arterial hypertension until fatality.  MAP increases were also supported 

with continuous infusions of intra-venous phenylephrine. ICP, ABP and LDF-CBF were recorded 

continuously throughout the experiment using ICM+. 

 

Signal Acquisition and Processing 

All signals from the combined above monitoring modalities were recorded and archived for future 

retrospective use. All recorded signals were digitized via A/D converter (DT9804, Data Translation, 

Marlboro, MA), sampled at frequency of 50 Hertz (Hz) or higher, using ICM+ software (Cambridge 
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Enterprise Ltd, Cambridge, UK, http://icmplus.neurosurg.cam.ac.uk).  Signal artifacts, such as transducer 

adjustments, were removed prior to further processing or analysis using tools available in ICM+. 

CPP was determined as: MAP – ICP. AMP was determined by calculating the fundamental Fourier 

amplitude of the ICP signal over a 10 second window, updated every 10 seconds.  This was done over 

the range consistent with the normal range for piglet heart rate (ie. 100 – 350 bpm).  Finally, 10 second 

moving averages (without data overlap) were calculated for all recorded signals:  ICP, AMP, ABP (ie. 

producing MAP), CPP, and LDF-CBF. The piglets’ archived signals were retrospectively interrogated and 

analyzed.   

The following continuous indices of cerebrovascular reactivity were derived: PRx (correlation between 

ICP and MAP), PAx (correlation between AMP and MAP), RAC (correlation between AMP and CPP) and 

LDF derived Lx (correlation between LDF-CBF and CPP).  All indices were derived via moving Pearson 

correlation coefficients between 30 consecutive 10 second average values of relevant signals and their 

parameters (ie. 5 minute of data), updated every minute. 

 

Statistics 

All statistical analysis was conducted utilizing R statistical software (R Core Team (2016). R: A language 

and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL 

https://www.R-project.org/).  The following packages were employed:  ggplot2, dplyr, tidyverse, 

lubridate, segmented, and pROC. Where significance is reported, alpha was set at 0.05.  The following 

analysis described is similar to that performed within previous studies on the LLA. This was done so as to 

allow comparison between the results. 

 

 Finding the ULA 

In order to determine the ULA of autoregulation in the 6 animals, piecewise linear regression of the LDF-

CBF vs. CPP plots was employed.  The LDF-CBF signal was standardized against the individual animal’s 

baseline LDF-CBF signal, producing “% change of LDF-CBF from baseline”.  This is similar to other studies 

evaluating LDF-CBF, and that analysis conducted in Chapter 5, subsections 5.1 and 5.2. 
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The piecewise regression process employed a starting point for estimation of the break-point in LDF-CBF. 

This starting point was visually estimated from the ICM+ plots of LDF-CBF vs. CPP.  The breakpoint 

identified by the piece wise regression process is one in which minimized the SSE of the two linear 

segments, above and below this point.  This was conducted for each animal, with piecewise regression 

plots produced denoting the 95% CI for each fitted linear segment.  Finally, the mean ULA for the cohort 

of 6 piglets was determined by averaging all 6 ULA values obtained. 

 

 Binned Cohort Data and Plot 

After delineating the mean ULA for the cohort, cohort wide plots were produced to inspect the 

population trend of various physiologic measures against the ULA.  First all data was binned across 2.5 

mm Hg bins of CPP, using R statistical software.  The following error bar plots were then produced:  % 

change in LDF-CBF From Baseline vs. CPP, PRx vs. CPP, PAx vs. CPP, and RAC vs. CPP.   

 

 Prediction ability of Continuous Indices for Impaired Autoregulation 

As done in previous studies, ROC analysis of PRx, PAx, RAC and Lx were performed across the cohort 

defined ULA.  This was conducted in order to determine the ability of these indices to predict being 

either above or below the ULA.  For each piglet, 1 mean value for each variable was obtained at each 2.5 

mm Hg bin of CPP (ie. CPP = 40 mm Hg, 45 mm Hg, etc.).  Five mm Hg bins of CPP were used for the ROC 

analysis, given this was what was conducted within the previous study by Brady et al. 

This data was then given the binary designation of being above the ULA, or below the ULA, based on the 

ULA defined previously.  The data from all 6 piglets was then used for the ROC analysis.  AUC for the 

ROC’s was reported and 95% CI reported via Delong method. Significance values (ie. p-values) for the 

AUC’s were derived from univariate logistic regression analysis.  

 

 Criteria for Measures of the ULA 

In order to be able to say that a specific index provides a measure of the ULA in this particular model, 

the following criteria needed to be met: 
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3. Demonstration of cerebrovascular reactivity indices to trend towards progressively more 

positive values at CPP levels above the ULA. 

4. Statistically significant logistic regression analysis for each cerebrovascular reactivity index in the 

prediction of having CPP values above or below the cohort defined ULA. 

 

 

5.3.3 Results 
 

Defining the ULA 

Through piecewise linear regression analysis of each piglet, the ULA was obtained for each animal.  The 

mean ULA was 83.1 +/- 17.8 mm Hg, with a wide inter-piglet variation in individual ULA values seen 

(range: 63.4 to 109.3 mm Hg).  Figure 5.10 displays the piece-wise linear regression of the % Change in 

LDF from baseline versus CPP, attempting to identify the ULA. All animals died secondary to heart failure 

during the aggressive increases in MAP using the aortic balloon and intra-venous phenylephrine. 

 

Population-Wide Trends 

In order to provide a population-wide assessment of % change in LDF-CBF and the ICP derived indices 

during changes in CPP, various error bar plots were produced.  Figure 5.11 displays the plot of CPP 

versus % change in LDF-CBF from baseline, with the vertical dashed line indicating the approximate 

mean ULA, derived above.  This demonstrates that there is initially a precipitous rise in LDF-CBF above 

the ULA. However, this signal subsequently saturates, failing to display the classic characteristics of 

pressure, or flow, passivity to increases in CPP when above the ULA.  

Similarly, the ICP indices were plotted across 5 mm Hg bins of CPP, producing error bar plots.  Figure 

5.12 displays these plots.  It can be seen that PRx, PAx and RAC initially display a trend to more positive 

values above the ULA (denoted by the vertical dashed line), with subsequent rapid tapering of this 

increase at the point of LDF-CBF saturation. 
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ULA ROC Analysis 

Through ROC analysis across the ULA, using the data from the 6 piglets, the AUC’s for each continuous 

index were calculated.  The AUC for PRx, PAx and RAC was:  0.575 (95% CI: 0.500 – 0.651, p=0.164), 

0.580 (95% CI: 0.507 – 0.653, p=0.035), and 0.716 (95% CI: 0.651 – 0.782, p<0.0001), respectively.  

Comparing AUC’s via Delong’s test, there was no statistically significant difference between the AUC’s 

generated, when comparing PRx to PAx (p=0.877). However, the AUC for RAC was statistically different 

than both PRx (p<0.0001) and PAx (p<0.0001). 
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Figure 5.10: Piecewise Linear Regression Analysis of ULA for 6 Piglets 

 

The above 6 panels depict the piecewise linear regression analysis of % LDF Change from Baseline versus CPP, attempting to 
determine the inflection point in LDF CBF signifying the ULA. As can be seen, there was significant heterogeneity in the identified 
ULA, with varying shapes and slope to the piecewise regression, highlighting the difficulting in accurately determining the ULA in 
this particular model of arterial hypertension.  
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Figure 5.11: Error Bar Plots – % Change in LDF-CBF vs. CPP – Entire Cohort 

 

a.u. = arbitrary units, cm = centimeters, CPP = cerebral perfusion pressure, LDF-CBF = laser Doppler flowmetry cerebral blood 
flow, mm Hg = millimeters of Mercury. Vertical dashed line represents the approximate ULA for the entire cohort.  
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Figure 5.12: Cohort Based Error Bar Plots of ICP Derived Indices across the ULA 

 

AMP = pulse amplitude of ICP, a.u. = arbitrary unite, CPP = cerebral perfusion pressure, ICP = intra-cranial pressure, PAx = pulse amplitude index (correlation between AMP and 
MAP), PRx = pressure reactivity index (correlation between ICP and MAP), RAC = correlation between AMP and CPP. NOTE: vertical dashed line represents the approximate mean 
ULA for the population, derived through piecewise linear regression in each animal. 
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5.3.4 Discussion 
 

Through the retrospective analysis of the raw physiologic data from 6 piglets during induced arterial 

hypertension, some interesting comments/limitations should be highlighted.  First, the data from this 

model provides no strong conclusions regarding the ability of ICP derived indices to measure the ULA.  It 

was difficult to clearly identify the ULA in the 6 piglets for which data was available. As seen in the piece-

wise regression plots, there was significant heterogeneity in the LDF response to increases in CPP, 

leading to a large range in ULA values determined through this regression technique (range: 63.4 to 

109.3 mm Hg).  Given the saturation of the LDF-CBF signal at CPP levels just past the ULA, this suggests 

the breakpoint in % LDF-CBF signal identified through piecewise linear regression was not the ULA.  One 

would expect pressure/flow passivity to progressively increasing CPP values, however, this was not the 

case in these 6 animals.  This failure to identify the ULA could be secondary to these specific animals not 

having a readily identifiable ULA, or inability to reach high enough MAP values to identify the ULA. This 

difficulty with identifying the ULA has been noted by other researchers investigating piglet CBF.  Under 

the setting of normal ICP, it appears difficult to delineate the ULA despite aggressive increases with 

MAP, as most animals perish secondary to heart failure. However, sustained ICP elevations during 

arterial hypertension appear to shift the ULA to lower CPP values, thus allowing to identify the ULA.175,176  

Future studies of the ULA may benefit from this technique. Second, all ICP derived indices also seem to 

plateau during this saturation phase in LDF-CBF signal, also suggesting that this point was not the ULA.  

However, even if this is not the ULA, it is reasonable to accept that we use this threshold as a point at 

which there is a change in physiological behavior of the cerebral circulation.  If so, the ROC analysis 

showed that both PRx and PAx were extremely poor at predicting this threshold for altered physiological 

response, regardless of whether it represents the ULA or not.  This is in contrast to their strong 

performance at predicting the LLA seen in Chapter 5.1 and 5.2 of this thesis.  This may indicate that 

these indices are poor at assessing the ULA, or just confirming that this threshold of ~83 mm Hg was not 

the ULA. Finally, RAC displayed the most uniform association with this threshold of 83 mm Hg.  The error 

bar plots displayed a clear trend towards more positive index values, and the ROC analysis provided the 

strongest statistical significance with this index.  It still remains unclear based on this small study as to 

whether RAC can measure the ULA, despite it showing promise over both PRx and PAx.  Further 

experimental models for interrogating these indices with respect to the ULA are required. 

One final aspect of all of the experimental models outlined in Chapters 5.1, 5.2 and 5.3 is related to the 

anesthetic administered.  All animals were administered volatile inhalational anesthestic agents during 



 

121 
 

the induction, and also during maintanence. The rabbit models were exposed to halothane, while the 

piglet models were exposed to isoflurane. Both of these inhalational anesthetics have a well-

documented literature body related to alteration of CBF control, leading to either hypoperfusion or 

hyperperfusion states.177–179  It is unknown as to the impact that these agents had on the recorded 

physiology during the respective experiments, or the impact on the derived cerebrovascular reactivity 

indices.  Such an impact related to halothane or isoflurane may have led to alterations in the observed 

LLA or ULA in the animal models, and thus impacted the results of the analysis related to individual 

cerebrovascular reactivity indices and their ability to measure the LLA or ULA. As such, future 

experimental models in this area will need to pay particular attention to the anesthetic agents 

employed, so as to avoid this potential confounding factor in the assessment of the LLA or ULA.  

 

 

5.3.5 Conclusions 
 

It is currently unclear as to whether the ICP derived indices of cerebrovascular reactivity can measure 

the ULA, based on this experimental model of arterial hypertension. Further investigation is required. 
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CHAPTER 6: MULTI-MODAL MONITORING INTER-INDEX RELATIONSHIPS IN 

ADULT TBI 
*The information presented within this chapter can also be found detailed within the following 

publications: 

1. Zeiler et al., J Neurotrauma. 2017; 34(22):3070-3080. doi: 10.1089/neu.2017.5129.180 

2. Zeiler et al., Neurocrit Care. 2018; 28(2):194-202. doi: 10.1007/s12028-017-0472-x.181 

3. Zeiler et al., J Neurotrauma. 2018; 35(2):314-322. doi: 10.1089/neu.2017.5364.182 

 

6.1 Multi-Modal Monitoring Cohort 
 

6.1.1 Introduction 
 

Numerous continuous indices of cerebrovascular reactivity exist, and are derived from the different 

MMM devices employed for cranial monitoring within the ICU.4,10  These devices include, but are not 

limited to:  ICP, PbtO2, TCD and NIRS.  As alluded to within previous sections of this thesis, the majority 

of current literature on these continuous indices focuses on the ICP derived index PRx, with limited 

information on others.  Furthermore, inter-index association studies currently are limited to the 

assessment of individual indices, using Pearson correlation coefficients and basic linear regression.20,83  

Thus, it can be confusing to the treating clinician as to which indices are related, and which co-vary.  This 

information is crucial, as understanding which indices are closely associated provides the potential for 

future modelling of invasive indices using non-invasive surrogates.  This chapter focuses on assessing the 

inter-index relationships between various MMM derived continuous indices of cerebrovascular 

reactivity, with subsection 6.1 focusing on an adult TBI population with the highest number of different 

monitoring devices simultaneously recording.  
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6.1.2 Methods 
 

Patient Population 

The patients included in this study represent a sub-population of a cohort that provide the substrate for 

previous publications which assessed specific NIRS based autoregulatory indices and their association 

with PRx.19,20  A review of this dataset revealed that it contained raw monitoring signals which permitted 

the measurement of additional indices of cerebrovascular reactivity.  The majority of patients in this 

cohort had the following monitoring:  ICP, CPP, ABP, NIRS, bilateral TCD of the MCA, and PbtO2. Thus, 

this population provided us the largest number of monitoring devices, and hence allowed assessment of 

relationships between the largest range of autoregulatory indices. This study was conducted as a 

retrospective analysis of a prospectively maintained database cohort.  

 All patients suffered mild to severe TBI and were admitted to the NCCU at Addenbrooke’s Hospital, 

Cambridge.  Those with mild and moderate TBI, displayed progressive deterioration in clinical status, 

necessitating multi-modal monitoring via a combination of invasive and non-invasive techniques. 

Treatment received during the recording periods included standard ICP-directed therapy, with an ICP 

goal of less than 20 mm Hg and CPP goal of greater than 60 mm Hg.   

 

Signal Acquisition 

ABP was measured through either radial or femoral arterial lines connected to pressure transducers 

(Baxter Healthcare Corp. CardioVascular Group, Irvine, CA).  ICP was acquired via an intra-parenchymal 

strain gauge probe (Codman ICP MicroSensor; Codman & Shurtleff Inc., Raynham, MA).  NIRS signals 

were recorded bilaterally over the frontal lobes utilizing the NIRO 200 monitoring.  The following NIRS 

signals were recorded: HbO, HHb, TOI, THI and Hb. 

PbtO2 monitoring occurred via invasive parenchymal monitoring (Licox probe; Integra, Licox Brain 

Oxygen Monitoring System, Plainboro, NJ), typically placed in the right frontal lobe via a triple lumen 

bolt (Technicam Ltd).   

TCD assessment of MCA CBFV was conducted via Doppler Box (DWL Compumedics, Singen, Germany).  

Two separate recording sessions were obtained for each patient with TCD, lasting ~60 minutes each.  

Bilateral MCA recordings were obtained in every patient during these sessions.   
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Signal Processing 

All recorded signals were recorded using digital data transfer or digitized via A/D converters (DT9801; 

Data Translation, Marlboro, MA), where appropriate, sampled at frequency of 50 Hz or higher, using 

ICM+ software (Cambridge Enterprise Ltd, Cambridge, UK, http://www.neurosurg.cam.ac.uk/icmplus).  

Signal artifact were removed manually prior to further processing or analysis. 

Post-acquisition processing of the above signals was conducted using ICM+ software.  CPP was 

determined using the formula:  CPP = MAP – ICP.  Of note, the data recorded from the left TCD probe 

had a large amount of artifact, impeding the ability to include it in the majority of patients.  

Consequently, signals from the left TCD probe were excluded, and only right sided NIRS based indices 

are reported.   

FVs was determined by calculating the maximum FV over a 1.5 second window, updated every second.  

FVd was calculated using the minimum FV over a 1.5 second window, updated every second. FVm was 

calculated using average FV over a 10 second window, updated every 10 seconds (ie. without data 

overlap).  AMP was determined by calculating the fundamental Fourier amplitude of the ICP pulse 

waveforms over a 10 second window, updated every 10 seconds. 

Ten second moving averages (updated every 10 seconds to avoid data overlap) were calculated for all 

recorded signals:  ICP, ABP (which produced MAP), CPP, FVm, FVs, FVd, TOI, and THI.  For the PbtO2 

signal, 30 second means were calculated, as previously described by Jaeger et al.   

Autoregulation indices were derived in a similar fashion across modalities, as detailed in Chapter 3, table 

3.3.  The following continuous indices were derived:  PRx, PAx, RAC, Mx, Mx_a, Sx, Sx_a, Dx, Dx_a, TOx, 

TOx_a, THx, THx_a, ORx-5, ORx-30 and ORx-60.   

Data for this analysis were provided in the form of a minute by minute time trends of the parameters of 

interest for each patient.  This was extracted from ICM+ in to CSV datasets, which were collated into one 

continuous data sheet (compiled from all patients). Thirty-minute moving averages (non-overlapping) 

for every index, and individual patient grand means for each index, were determined.  The statistical 

analysis was performed on all 3 data sheets for each data sheet:  minute-by-minute, 30 minute moving 

averaged, and grand means. Three separate data sheets were employed given the currently unknown 

autocorrelative structure within each of these physiologic indices.  Furthermore, given PbtO2 based 

indices are typically calculated over varying window lengths (such as 30 minutes or longer), which are 
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longer than all other ICP/TCD/NIRS based indices, multiple data sheets were utlizedto ensure that there 

was no difference in the results based on the calculation windows and averaging process of the data. 

  

Statistics 

 General Statistics 

Statistics were performed utilizing XLSTAT (Addinsoft, New York, United States; 

https://www.xlstat.com/en/) add-on package to Microsoft Excel (Microsoft Office 15, Version 

16.0.7369.1323) and R statistical software (R Core Team (2016). R: A language and environment for 

statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-

project.org/).   

Tests for normality were performed using the Shapiro-Wilks test for all indices and measured variables.  

All indices and variables were determined to be non-parametric in nature.  Alpha was set at 0.05 for all 

results describing a p-value.   All statistical tests were performed on each of these data sheets, resulting 

in three sets of results.   

We employed a Pearson correlation coefficient matrix to assess correlation between the various indices, 

which was conducted after performing a Fisher transformation (formula 6.1) to the data set (which 

normalizes the correlation coefficient distribution).  This was the only test in which transformed data 

was utilized within the analysis. 

Grouped variance between different combinations of indices was assessed using the Friedman test with 

and without multiple sampling, to account for within subject variation. The main assumption for the use 

of this test was that all indices were measuring the same physiologic variable (ie. autoregulation). The 

Friedman test was performed on the following combinations of data:  all indices, ICP derived indices 

(PRx, PAx, RAC), PbtO2 derived indices (ORx-5, ORx-30, ORx-60), NIRS derived indices (THx, TOx, THx_a, 

TOx_a), and TCD derived indices (Mx, Sx, Dx, Mx_a, Sx_a, Dx_a).  The results for both the with and 

without multiple comparisons were identical, hence only the Friedman test with multiple sampling is 

mentioned within the results section. 
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 Multivariate Clustering and Assessment of Co-variance 

Finally, multivariate statistics were performed to delineate further the associations between the various 

indices.  Currently, it is unclear as to which multivariate clustering technique is superior in the 

exploration of time series based physiologic variables.  Consequently, an array of testing techniques 

were chosen.  Three different multi-variate methods were employed in order to assess the co-variance 

within various combinations of indices.  This was done, so as to be comprehensive and to provide 

confirmation of the potential clustering seen in any individual given test.   

First, Principal Component Analysis (PCA) was performed using a Spearman type PCA, chosen to account 

for the non-parametric data distribution in the dataset (with significance set at p<0.05).  PCA has been 

described in detail in other publications, and is ideally suited as an “exploratory” statistic for small 

patient cohorts with large numbers of variables.  The purpose of PCA is to highlight which combinations 

of variables explain the overall variance within the entire dataset, and thus which variables may be 

related and of further interest to study via other methods. 159–161  

Second and third, agglomerative hierarchal clustering (AHC) and k-means based cluster analysis (KMCA) 

(using Euclidean distance) were also performed.159 These tests provide an overall assessment of the 

similarity between variables, grouping them into clusters (or stems on a dendrogram, as seen within 

AHC) based on the mean distance away from one another, as assessed by Euclidean distance.   

For the AHC, the statistical strength of the correlation between the clusters produced in the 

dendrograms was quantified using cophenetic correlation coefficients.  Cophenetic correlations 

coefficients were produced by the Spearman correlation between the original Euclidean distance matrix 

calculated for the ACH, and the cophenetic distance matrix.  The cophenetic distance is defined as the 

distance between two clusters that contain two indices individually and the point where both clusters 

are merged (ie. it represents the height on the dendrogram at which the branch points occur).  The 

cophenetic correlation coefficient is believe to be an estimate of how well the AHC dendrogram 

maintains pairwise distances when compared with the original data set (ie. the baseline distance matrix 

between variables).162 

With the KMCA, the number of clusters can be set by the investigator.  The “Elbow method” of KMCA 

was utilized in order to determine the appropriate number of clusters for the final analysis.159  The Elbow 

method consists of computing all possible k-means clusters.  Subsequently, a plot of the within-group 

sum of squares versus cluster number, allowed selection of an inflection point (or “elbow”) at which the 
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plot showed the most dramatic slope change.  This is deemed the “most appropriate” cluster number for 

the final analysis. 

 

6.1.3 Results 
 

Patient Demographics 

 The median age of the patients within this retrospective TBI cohort was 33 years (range: 16 to 76 years), 

with a median admission GCS of 7 (range: 3 to 14).  Three patients underwent surgical evacuation of 

mass lesions upon admission to hospital.  There were a total of 37 patients included in the final analysis.   

 

Inter-Index Correlation 

 The Pearson correlation coefficient matrix for the grand mean data set can be seen in Table 6.1.  The 

Pearson correlation matrices for the 30-minute average and minute-by-minute data sheets provided 

very similar results and are hence not shown.  In the grand mean data set, PRx was noted to display 

strong correlations with PAx, RAC and Sx/Sx_a.  PRx displayed weak correlations with the remaining 

indices, with r-values less than 0.3 (p<0.0001 for all).  PAx and RAC displayed similar correlation patterns 

to PRx. 

PbtO2 based indices (ORx-5/ORx-30/ORx-60) failed to display strong correlations with any of the other 

indices of autoregulatory assessment within the grand mean data set.  However, strong correlations 

were seen between ORx-30 and ORx-60. All r-values were 0.250 or less, with most failing to reach 

statistical significance.  The only exception to this was with the correlation between ORx-60 and THx (r= -

0.341, p=0.039). This raises the question as to whether ORx-30 or ORx-60 can safely be utilized as a 

surrogate for cerebrovascular reactivity assessment. 

The TCD based indices (Mx, Sx and Dx) displayed interesting correlation patterns within the grand mean 

data set.  Robust correlations were observed for Mx vs. Dx (r=0.911, p<0.0001), and Mx vs Sx (r=0.726, 

p<0.0001) were seen.  Furthermore, the TCD indices derived using correlations against CPP (Mx, Sx, and 

Dx) were strongly correlated with those derived using MAP (Mx_a, Sx_a, and Dx_a). Mx displayed a 

moderate correlation with the ICP derived indices (PRx, PAx, and RAC) with r-values ranging from 0.3 to 

0.4.  Mx was strongly correlated with the spatially resolved NIRS indices (TOx and THx):  TOx (r=0.618, 
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p<0.0001) and THx (r=0.487, p=0.002).   Sx and Sx_a were correlated with the ICP derived indices, Mx 

and Dx (as previously mentioned), with the remaining correlations being weak.  Finally, Dx and Dx_a only 

displayed strong correlations between Mx and Sx, with the remaining index correlations being weak. 

The NIRS based spatially resolved indices displayed strong intra-technique correlations.  Only the 

statistically significant strong correlations are reported, with the remaining displaying weak correlations 

(r-values <0.3) (the exact r-values can be seen in Table 6.1).  TOx displayed moderate-to-strong 

correlations with THx, PRx, Mx, Sx and Dx.  THx displayed moderate-to-strong correlations with TOx, 

RAC, Mx, Sx and Dx.  Of note, most NIRS based autoregulatory indices displayed weak, or absent, 

correlation to ICP derived indices (such as PRx, PAx or RAC).  Importantly, NIRS based indices displayed 

moderate-to-weak correlation with PRx, with most r-values around 0.3 or less. 
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Table 6.1:  Pearson Correlation Coefficient Matrix – Grand Mean Data Set 

 

The described indices are Pearson correlation coefficients between various variables:  PRx (between ICP and MAP), PAx (between AMP and MAP), RAC (between AMP and CPP), 
ORx (between PbtO2 and CPP; 5 = 5 minutes calculation window, 30 = 30 minute calculation window, 60 = 60 minute calculation window),  Mx (between FVm and CPP), Mx_a 
(between FVm and MAP), Sx (between FVs and CPP), Sx_a (between FVs and MAP), Dx (between FVd and CPP), Dx_a (between FVd and MP), TOx (between TOI and CPP), TOx_a 
(between TOI and MAP), THx (between THI and CPP) and THx_a (between THI and MAP).  *Values in bold typeface are those which reached statistical significance (p<0.05). 

Variables PRx PAx RAC Mx Mx_a Sx Sx_a Dx Dx_a TOx TOx_a THx THx_a ORx_5 ORx_30 ORx_60

PRx 1 0.682 0.677 0.356 0.412 0.531 0.538 0.119 0.168 0.393 0.217 0.257 0.058 -0.013 -0.135 -0.054

PAx 0.682 1 0.825 0.296 0.479 0.554 0.668 0.014 0.160 0.255 0.227 0.159 0.025 0.188 0.038 0.111

RAC 0.677 0.825 1 0.368 0.349 0.584 0.507 0.133 0.110 0.288 0.183 0.342 0.150 0.164 -0.009 0.031

Mx 0.356 0.296 0.368 1 0.723 0.726 0.373 0.911 0.695 0.618 0.460 0.487 0.434 0.316 0.085 0.053

Mx_a 0.412 0.479 0.349 0.723 1 0.490 0.552 0.531 0.825 0.551 0.524 0.332 0.326 0.322 0.089 0.148

Sx 0.531 0.554 0.584 0.726 0.490 1 0.791 0.626 0.426 0.558 0.346 0.284 0.158 0.253 -0.024 0.012

Sx_a 0.538 0.668 0.507 0.373 0.552 0.791 1 0.242 0.422 0.347 0.221 -0.015 -0.139 0.196 -0.026 0.115

Dx 0.119 0.014 0.133 0.911 0.531 0.626 0.242 1 0.732 0.518 0.303 0.421 0.389 0.275 0.154 0.100

Dx_a 0.168 0.160 0.110 0.695 0.825 0.426 0.422 0.732 1 0.454 0.352 0.289 0.326 0.348 0.277 0.306

TOx 0.393 0.255 0.288 0.618 0.551 0.558 0.347 0.518 0.454 1 0.863 0.516 0.456 0.172 -0.096 -0.140

TOx_a 0.217 0.227 0.183 0.460 0.524 0.346 0.221 0.303 0.352 0.863 1 0.412 0.473 0.133 -0.085 -0.088

THx 0.257 0.159 0.342 0.487 0.332 0.284 -0.015 0.421 0.289 0.516 0.412 1 0.885 0.009 -0.264 -0.341

THx_a 0.058 0.025 0.150 0.434 0.326 0.158 -0.139 0.389 0.326 0.456 0.473 0.885 1 -0.012 -0.216 -0.260

ORx_5 -0.013 0.188 0.164 0.316 0.322 0.253 0.196 0.275 0.348 0.172 0.133 0.009 -0.012 1 0.654 0.529

ORx_30 -0.135 0.038 -0.009 0.085 0.089 -0.024 -0.026 0.154 0.277 -0.096 -0.085 -0.264 -0.216 0.654 1 0.920

ORx_60 -0.054 0.111 0.031 0.053 0.148 0.012 0.115 0.100 0.306 -0.140 -0.088 -0.341 -0.260 0.529 0.920 1
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Friedman Test (with multiple sampling) for Grouped Similarity Between Indices 

A Friedman test, with multiple sampling, was conducted on different groups of indices, in order to assess 

if similar variance existed between the means in each group.  The main assumption made for this 

statistical test was that each index measured the same physiologic parameter (ie. cerebrovascular 

reactivity) with the same range of measurement.   

In the grand mean sheet, the Friedman test on the whole group of indices (ie. 16 variables in total), 

indicated that these indices were dissimilar (p<0.0001, Q = 249.797).  Testing of clusters of indices based 

on the modality they were derived from showed that, even within clusters, there was clear lack of 

similarity between the ICP based indices (ie. PRx, PAx and RAC; p<0.0001, Q = 48.054), the TCD based 

indices (ie. Mx, Mxa, Sx, Sxa, Dx and Dxa; p<0.0001, Q = 141.046), and the NIRS-based indices (p<0.0001, 

Q = 38.849). However, the PbtO2 based indices (ORx-5, ORx-30 and ORx-60) were found to share 

substantial commonality based on the Friedman test (p=0.155, Q = 3.722). Similar results were found for 

the 30-minute mean and minute-by-minute data sheets. 

 

Inter-Index Relationships - Multivariate Tests (PCA, AHC and KMCA) 

 Principal Component Analaysis (PCA) 

For the grand mean data, the PCA test was performed utilizing a Spearman type PCA (given the non-

parametric nature of the dataset).  Twenty principal components (PC) (also referred to as factors (F)) 

were identified, with the first 8 PC’s composing ~90% of the overall variance in the dataset.  PC 

eigenvalue data, Scree plots, and variable specific loadings can be seen in Appendix A.   

A loading biplot for PC1 (denoted F1) and PC2 (denoted F2) can be seen in Figure 6.1. As can be seen in 

Figure 6.1, the ICP derived indices (PRx, PAx and RAC) are clustered in the same quadrant of the biplot, 

contributing to the overall variance of both PC’s.  Furthermore, PRx/PAx/RAC appeared to be associated 

with TCD based Sx and Sx_a, in terms of their contributions to the variance of the whole data set.  

Similarly, the TCD based indices (Mx, Mx_a, Dx and Dx_a) were co-located within the area of the biplot 

most associated with PC1.  NIRS based spatially resolved THx, THx_a, TOx and TOx_a were co-located 

with the Sx/Sx_a TCD indices.  Of note, ORx-/ORx-30/ORx-60 were all co-located, but separated from the 

other variables, indicating they are essentially unrelated to all the other indices.  Furthermore, ORx-

5/ORx-30/ORx-60 were located close to the origin of the biplot, indicating that they contribute little 
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variance to the two main principal components of the data sheet.  The 30-minute mean and minute-by-

minute data sets displayed similar results, and can be found in Appendix A. 

 

Figure 6.1: PCA Loading Biplot of F1 (PC1) vs. F2 (PC2) – Minute-by-Minute Data Set 

 

PCA = principal component analysis, F = factor, PC = principal component, F1 = PC1 = principal component #1, F2 = PC2 = 
principal component #2. PC1 and PC2 are the two components which contribute the largest amount of variance to the entire 
data set.  The above biplot of PC1 vs. PC2 displays which variables contribute variance to PC1 and PC2.  The longer the arm 
connecting (0,0) to the variable (such as PRx), the larger the contribution of that variable.  Similarly, the quadrant on the biplot 
in which the variable falls correlates to its contribution to a particular PC. The upper left quadrant is primarily PC2; lower left 
quadrant is neither PC1 or PC2; the upper right quadrant is PC1 and PC2; the lower right quadrant is primarily PC1.  
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Agglomerative Hierarchal Clustering (AHC) 

To further assess the inter-index relationships, AHC was applied to see if different associations 

appeared.  Figure 6.2 displays the hierarchal dendrogram generated from this analysis on the minute-by-

minute data.  As can be seen within the dendrogram, the TCD based indices, ICP based indices, PbtO2 

based indices and NIRS based indices seem to co-cluster under similar branches.  Another relation of 

interest is that of Sx/Sxa with PRx/PAx/RAC, where these indices arise from the same limb of the 

dendrogram.  This is concordant with the results of the Pearson correlation matrix and the PCA.  In 

addition, the spatially resolved NIRS indices (THx, THx_a, TOx and TOx_a) appear to co-localize with the 

Sx/Sx_a TCD indices on the dendrogram (similar to the Pearson correlation testing and PCA).    

An interesting association was observed between the NIRS indices and PRx and PAx.  This was seen in 

the PCA (and KMCA; see next section), but was not robustly demonstrated by the Pearson correlation 

coefficients.  Finally, ORx-5/ORx-30/ORx-60 clustered on a separate limb of the dendrogram, having little 

association with the other indices.  The cophenetic correlation coefficient derived for the AHC 

dendrogram displayed in Figure 6.2 was 0.822, indicating a statistically robust clustering.  Applying AHC 

to the 30 minute and grand mean data sets resulted in similar hierarchical dendrograms with similar 

clustering of indices (cophenetic correlation coefficients of r=0.812 and r=0.746 respectively), confirming 

the relations/clustering seen in the minute-by-minute data set



 

133 
 

Figure 6.2: AHC Dendrogram - Minute by Minute Data 

 

AHC = agglomerative hierarchal clustering;  The described indices are Pearson correlation coefficients between various variables:  
PRx (between ICP and MAP), PAx (between AMP and MAP), RAC (between AMP and CPP), ORx (between PbtO2 and CPP; 5 = 5 
minutes calculation window, 30 = 30 minute calculation window, 60 = 60 minute calculation window),  Mx (between FVm and 
CPP), Mx_a (between FVm and MAP), Sx (between FVs and CPP), Sx_a (between FVs and MAP), Dx (between FVd and CPP), Dx_a 
(between FVd and MAP), TOx (between TOI and CPP), TOx_a (between TOI and MAP), THx (between THI and CPP) and THx_a 
(between THI and MAP).  

 

 

 K-Mean Cluster Analysis (KMCA) 

KMCA was employed, using seven centers of cluster (based on Euclidean distance and the Elbow method 

of cluster number determination).  Table 6.2 displays the KMCA cluster groupings based on 

cerebrovascular reactivity index from the grand mean data sheet, with the clusters displaying similar 

patterns to the AHC described above.  Figure 6.3 displays the “elbow method” plot confirming the 

selection of 7 centroids within the KMCA. Identical findings were seen with the 30-minute mean and 

minute-by-minute data sheets. 
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Table 6.2: KMCA Clusters – Grand Mean Data Set 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 

PRx RAC Mx Mx_a TOx THx ORx-5 
PAx  Dx Dx_a TOx_a THx_a ORx-30 
Sx      ORx-60 
Sx_a       
       
       

KMCA = k-means cluster analysis, PRx (between ICP and MAP), PAx (between AMP and MAP), RAC (between AMP and CPP), ORx 
(between PbtO2 and CPP; 5 = 5 minutes calculation window, 30 = 30 minute calculation window, 60 = 60 minute calculation 
window),  Mx (between FVm and CPP), Mx_a (between FVm and MAP), Sx (between FVs and CPP), Sx_a (between FVs and MAP), 
Dx (between FVd and CPP), Dx_a (between FVd and MAP), TOx (between TOI and CPP), TOx_a (between TOI and MAP), THx 
(between THI and CPP) and THx_a (between THI and MAP). 

 

 

Figure 6.3:  KMCA “Elbow Method” Plot for Centroid Confirmation – Grand Mean Data Set 

 

Plot denotes sequential KMCA performed on grand mean data set.  For each number of centroids/clusters, the within group sum 
of square distance is calculated.  The “elbow method” involves evaluating this plot and selecting the centroid/cluster number 
where there is an “elbow”, transitioning to a relative plateau in the within group sum of square distance.  Hence in this figure, 
centroid/cluster number of 7 fits these criteria, and is subsequently the most appropriate cluster number for final KMCA. 
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6.1.4 Discussion 
 

This retrospective analysis of a small cohort of adult TBI patients with ICP, MAP, TCD, NIRS and PbtO2 

monitoring provides interesting insights into these inter-index associations, with concordant results 

across three distinct data sheets.  A few important relationships are highlighted below. 

First, and most importantly, these indices are not all related.  This is clear based on all forms of analysis 

performed:  Pearson correlation test, Friedman test (with and without multiple sampling), PCA, AHC and 

KMCA. Thus, for the treating clinician, it is critical to understand that these indices are derived from 

different invasive/non-invasive cranial and systemic monitoring metrics and may measure different 

aspects of physiology.  One cannot simply substitute a less commonly described index for one that has 

been well defined, such as PRx.  With that said, the analysis produced some interesting relationships 

which could drive further study.   

Second, PRx displayed strong correlations with PAx and RAC across Pearson correlation test, PCA, AHC 

and KMCA.  It is not surprising that these indices are related, since they are all derived from ICP or AMP.  

Of note, PRx was not found to be strongly correlated to Mx (r=0.356, p<0.0001), a finding confirmed in 

all three data sheets across the short recordings.  This is in contradiction to a previously defined 

moderate correlations between PRx and Mx.83  The reason for this may be related to the small patient 

numbers, short monitoring duration and impact of injury/treatment heterogeneity.   

Third, TCD based indices (regardless if calculated via CPP or MAP) are associated and co-cluster during 

formal cluster analysis.  This is unsurprising, and has been previously described in larger cohorts.83 What 

was interesting was the strong association of Sx/Sx_a with the ICP derived indices across all of the 

analyses.  This strong relationship with PRx/PAx/RAC may stem from the contribution of systolic peaks in 

CBF to ICP and its derivatives (ie. AMP), suggesting Sx/Sx_a may be closely associated with PRx/PAx/RAC.  

This is in contrast to Mx/Dx (and their MAP derivatives), which may more closely relate to CBV, and 

therefore do not strongly associate with PRx/PAx/RAC on Pearson test, PCA, AHC and KMCA.  These 

relationships require further investigation and physiologic validation.  However, the strong association 

between Sx/Sx_a with PRx/PAx/RAC may imply that Sx/Sx_a might be the best surrogate for 

PRx/PAx/RAC, compared to the other invasive/non-invasive indices. 

Fourth, PbtO2 based indices (ORx-5/ORx-30/ORx-60) all failed to display strong correlations with any of 

the other indices, as assessed through Pearson correlation, KW, PCA, AHC and KMCA.  This was 

confirmed across the minute-by-minute, 30 minute, and grand mean data.  Notably, but not surprisingly, 
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ORx-5, ORx-30, and ORx-60 were found to be co-related on Pearson correlation, PCA, ACH and KMCA 

across all data sheets and recording lengths.  The divergence of ORx from the other indices measured 

likely stems from the fact the PbtO2 is a slowly changing parameter, at a frequency that is lower than 

most slow waves. Taking all of this into consideration, ORx may be a questionable tool for assessment of 

autoregulatory capacity, and should be utilized with caution in the clinical setting.  Derivation of patient 

specific CPP optimal values based on ORx, as described in some studies,128,183 should be interpreted with 

caution, as PbtO2 can be greatly influenced by many systemic factors, and since these indices do not 

appear to be associated strongly with any of the other indices, including the thoroughly studied PRx/Mx.  

Moreover, using thresholds defined by other indices (ie. PRx or Mx)8,9 with ORx should be avoided 

entirely, since it appears that this index is not the same as PRx or Mx.   

Finally, NIRS based indices displayed variable correlation with indices derived from ICP, PbtO2 and TCD 

signals, especially PRx and Mx.  The NIRS indices display intra-modality correlation of varying degrees 

(increasing in the 30 minute and grand mean data sets).  Further, these NIRS indices seem to co-cluster 

on PCA, AHC and KMCA.  Of interest, with both PCA and AHC, TOx/THx (and their MAP based 

equivalents) appear to cluster with the ICP derived indices.  Based on the animal studies validating PRx 

and TOx against the lower limit of the Lassen curve, the association between ICP derived indices and 

TOx/TOx_a is not that surprising.  The cluster of THx and THx_a with the ICP derived indices has not been 

well documented.  It is possible that the spatially resolved NIRS indices, with parent signals designed to 

exclude the contamination of extracranial blood flow, may represent frontal lobe pulsatile cortical blood 

flow through the small arteries/arterioles.  This may explain the clustering and association with 

PRx/PAx/RAC/Sx/Sx_a, and not Mx/Dx which are potentially more representative of CBV.  In addition, 

the 'classic' clustering of these indices has been to group TOx/Mx group together (CBF effects) and 

THx/PRx together (CBV effects).  The multi-technique analysis performed in this study provides inference 

that are not concordant with these classical views, and suggest that the NIRS based spatially resolved 

indices are more closely related to ICP (for both THx and TOx).  These NIRS indices may therefore both 

be metrics of CBV (perhaps oxygenated and deoxygenated versions).  This relation was confirmed on 

every test (PCA, ACH and KMCA) across all data sheets.  Further to this, the relationships described 

within the manuscript are statistically robust.  The ACH dendrogram, for example, is a statistically 

significant and robust outcome based on a strong cophenetic correlation coefficient (r=0.822).  This 

indicates a quite strong AHC intra-cluster association, and essentially means the clusters on this test are 

not by chance.  This was of course confirmed with the grouped variances within PCA and grouped 

clustering on KMCA testing.  However, despite these results, further exploration of these relationships is 
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required in order to better understand the physiology and associations between indices of 

autoregulation.   

 

Limitations 

Despite these interesting results, some critical limitations within this study must be addressed.  First, this 

is a retrospective cohort study.  The patient population is composed of those with heterogenous injury 

patterns, ICU/hospital courses and potentially varied ICU therapies during the recorded signals.  This 

impacts the inter-patient signal variability and potentially the results of the analysis.  This may be 

exemplified by the lack of “strong” correlation between PRx and Mx, which has been previously seen in 

larger cohorts of TBI patients with TCD recordings.83  Therefore, the results are only hypothesis 

generating and by no means definitive in terms of the relationships between the various autoregulatory 

indices.  

Second, the population was small, consisting of only 37 patients.  Third, the duration of signal recording 

was quite limited for each patient within the short recording cohort, with typically only two sessions 

lasting one hour each in duration.  Thus, depending on the individual patient events (ie. suctioning, ICP 

therapies, etc.) during these period, various segments of data were either too artefactual to include in 

the final analysis (such as during suctioning or turning), or significantly impacted by administered 

therapies (such as hypertonic saline boluses). Furthermore, weaker correlation was demonstrated 

between THx_a and PRx, than in a previously published study, based on similar recordings. The reason 

for the weaker correlation coefficient stems from the fact that the population of this current study is 

only a sub-population the original group (i.e. those with all the monitoring modalities available).  Also, 

we only used the short (1-2 hour) recordings, given these were the only recordings available with TCD.   

Third, the instability of spontaneous slow waves may be the main driving factor as to why some indices 

failed to produce reproducible relationships. It may be that in the continuous measure of these indices 

within the ICU, we should apply filters related to slow wave power,129 focusing only on those periods in 

which power and signal coherence meet a certain threshold.  This could potentially improve some of the 

relationships seen.  Longer recording sessions would be required for this, ideally throughout the entirety 

of the patient’s ICU stay.  

Fourth, even the metric of cerebrovascular reactivity provided by individual indices are dissimilar, it is 

important to highlight that this does not indicate that CPP-optimum derived from these indices is 
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divergent as well.  This would need to be explored in patients with all of the above monitoring 

modalities, across much longer recording intervals.   

Fifth, the use of multivariate statistical tests, such as PCA, are meant as “exploratory” methods of 

analyzing small patient cohorts with many recorded variables.  PCA, AHA and KMCA are not definitive 

tests, in that they do not indicate statistically significant associations or correlations between various 

combinations of variables.  These tests are merely designed to provide some idea on groupings of 

variables across the entire data set and serve only to drive further directed studies of specific 

relationships identified. Thus, the associations of Sx/Sx_a and the NIRS indices with PRx/PAx/RAC require 

further investigation in order to better understand the physiologic link between these indices. 

 

6.1.5 Conclusions 
 

Continuously indices of cerebrovascular reactivity, derived from various MMM devices, are different, 

and can be poorly correlated with one another.  However, these indices cluster in several groupings, 

which provide insights regarding the pathophysiology that underlies their production.  Caution must be 

advised when utilizing less commonly described autoregulation indices (such as ORx) for the clinical 

assessment of autoregulatory capacity, as they appear to not be related to commonly 

measured/establish indices, such as PRx.   
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6.2 Laser Doppler, ICP and Transcranial Doppler Indices 
 

6.2.1 Introduction 
 

PRx and Mx are the two most commonly quoted continuous indices of cerebrovascular reactivity in TBI, 

with moderate inter-index correlation (r values quoted up to 0.58).83  Given the different monitoring 

techniques utilized to produce these indices, these carry different physiologic information, and may not 

provide similar information regarding cerebral autoregulation/vessel reactivity (as demonstrated in the 

previous study, section 6.1).180 

Though no longer employed clinically, cortical LDF affords the ability to obtain continuous direct 

measure of small vessel/microvascular CBF.  This device requires insertion of a fibreoptic probe into the 

subdural space, and uses the Doppler shift in the reflected light signal to calculate cortical CBF in the 

region of the probe.122  Given the availability of this direct measure of cerebral cortical microvascular 

flow, it becomes possible to ask a key question:  How do Mx and other TCD derived indices of 

cerebrovascular reactivity relate to cortical microvascular autoregulatory capacity?  

A previous study displayed interesting differences between Lx and Mx,125 but did not address 

relationships with other TCD- based indices (such as Sx or Dx). Further, the existing data provide no 

guidance on how PRx (and other ICP derived indices of cerebrovascular reactivity based on “global” ICP), 

relate to cortical microvascular autoregulatory capacity?  While focal continuous measurement of 

microvascular cerebral blood flow is possible with thermal diffusion catheters, their use in the 

assessment of microvascular behavior over extended periods is limited, given the need for repeated re-

calibration and moderate noise in the parent signal.142  However, given that, of all the continuous 

bedside monitors available, the microvascular flow best approximates nutritive perfusion, such 

relationships are critically important in helping validate and interpret less direct metrics of vascular 

biology in the injured brain. 

The goal of this study was to explore the relationship between various commonly used bedside 

autoregulatory/cerebrovascular reactivity indices in order to determine which indices best approximate 

cortical small-vessel/microvascular autoregulatory capacity.  Various tests of multi-variate assessment of 

co-variance were employed in order to assess these relationships, identical to the previous study in 

section 6.1.  

 



 

140 
 

6.2.2 Methods 
 

Patient Population 

The patient population included in this study is a sub-population of a cohort that has been previously 

described.122,125  This patient cohort was one in which the main goal of the initial prospective study was 

to assess regional CBF via LDF in TBI patients, where local Cambridge Health Authority research ethics 

committee approval was obtained.  Through retrospective analysis of this cohort, it was identified that 

the raw monitoring signals included data that would allow the determination of various indices of 

cerebrovascular reactivity, assessing the relationship between those derived from different monitoring 

devices.  All recording sessions included in this study had the following monitors:  ICP, MAP, CPP, LDF-

CBF and TCD based CBFV of the MCA ipsilateral to the ICP and LDF monitors.   

This study was conducted as a retrospective analysis of a prospectively maintained database cohort, in 

which 61 separate recordings were analyzed. Most recordings were approximately 30 minutes to 1 hour 

in duration. All patients in both cohorts suffered moderate-severe TBI, or deteriorated after an initial 

admission with mild TBI and required sedation and mechanical ventilation for clinical care in the NCCU at 

Addenbrooke’s Hospital, Cambridge.  Treatment received during the recording periods included 

standard ICP-directed therapy, with an ICP goal of less than 20 mm Hg and CPP goal of greater than 60 

mm Hg.   

 

Signal Acquisition 

Various signals were obtained through a combination of invasive and non-invasive methods.  ABP was 

obtained through either radial or femoral arterial lines connected to pressure transducers (Baxter 

Healthcare Corp. CardioVascular Group, Irvine, CA).  ICP was acquired via an intra-parenchymal strain 

gauge probe (Codman ICP MicroSensor; Codman & Shurtleff Inc., Raynham, MA).   

LDF based CBF was obtained via placement of a MBF3D dual channel laser LDF (Moor Instrument Ltd, 

Devon UK) in the subdual space, ipsilateral to the ICP monitor.  The LDF probe employed a low energy 

laser (0.5 to 1.5 mW) with light generated in the near infrared spectrum (780 to 820 nm).  LDF signals 

were recorded at a frequency of 14.6 kHz.  All probes were pre-calibrated prior to insertion.    
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Finally, TCD assessment of MCA CBFV was conducted via Doppler Box (DWL Compumedics, Singen, 

Germany) or Neuroguard (Medasonic, Fremont, CA, USA).  Unilateral MCA recordings (ipsilateral to the 

ICP and LDF monitors) were obtained in every patient during these sessions.   

All recorded signals were digitized via A/D converters (DT9801; Data Translation, Marlboro, MA), 

sampled at frequency of 50 Hz or higher and recorded using WREC software (Warsaw University of 

Technology) and analyzed retrospectively using ICM+ software (Cambridge Enterprise Ltd, Cambridge, 

UK, http://www.neurosurg.cam.ac.uk/icmplus).  All signal artifacts were removed prior to further 

processing or analysis. 

 

Signal Processing 

Post-acquisition processing of the above described signals was conducted utilizing ICM+ software.  CPP 

was determined utilizing the virtual signals by:  CPP = MAP – ICP.  FVs was determined by calculating the 

maximum FV over a 1.5 second window, updated every second.  FVd was calculated using the minimum 

FV over a 1.5 second window, updated every second. FVm was calculated using average FV over a 10 

second window, updated every 10 seconds (ie. without data overlap).  AMP was determined by 

calculating the fundamental amplitude of the ICP signal over a 10 second window, updated every 10 

seconds.  Ten second moving averages (updated every 10 seconds to avoid data overlap) were 

calculated for all recorded signals:  ICP, ABP (which produced MAP), CPP, FVm, FVs, FVd, and LDF-CBF.  

 

Cerebrovascular Reactivity Indices 

The cerebrovascular reactivity indices were derived in an identical fashion to the description in Chapter 

3, and in the previous study (section 6.1.2). The following cerebrovascular reactivity indices were 

derived: PRx, PAx, RAC, Mx, Mx_a, Sx, Sx_a, Dx, Dx_a, Lx, and Lx_a.  A 10 second update period was 

chosen given the short duration of the recordings.  

 

Statistics 

The analysis conducted is identical to that performed in the previous study, outlined in section 6.1.2.  

The only difference for this study is that there are slightly larger patient/recording numbers, no PbtO2 or 
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NIRS monitoring, and the availability of LDF signal.  As well, given the short recording duration, instead 

of 3 data sheets utilized in chapter 6.1, only 2 were employed (ie. grand mean data, and 10-second-by-

10-second data). For more details on the statistical methods please see 6.1.2 “Statistics” section. 

 

6.2.3 Results 
 

Patient Demographics 

A total of 40 patients, with 61 recordings, were included within this study.  The average age was 31.1 +/- 

15.3 years, with a median admission GCS of 5 (IQR: 4 to 7). The median 6-month Glasgow Outcome 

Score (GOS) for these patients was 2 (range: 1 to 5).   

 

Cerebrovascular Reactivity Index Analysis 

 Inter-Index Correlation 

We compared the inter-index correlation via a Pearson correlation matrix, for both the 10 second-by-10 

second data and the grand mean data.  Of note, the ICP derived indices (PRx, PAx and RAC) display 

moderate to strong inter-technique correlation (r~ >0.5 in all, p<0.05 in all).  A similar trend was noted 

with the TCD derived indices (Mx, Mx_a, Dx, Dx_a, Sx, Sx_a).  Mx and PRx were not strongly correlated 

(r=0.346, p=0.006).  Sx and Sx_a were moderately correlated with the ICP derived indices.  Finally, the 

LDF derived indices were correlated more with TCD indices (Mx: r=0.561, p<0.0001; Dx: r=0.492, 

p<0.0001).  Thus, it appears that cortical small-vessel/microvascular autoregulatory capacity may be 

better approximated by TCD derived Mx/Mx_a and Dx/Dx_a, then other indices.  These relationships 

were confirmed in both data sheets. Table 6.3 displays the grand mean Pearson correlation matrix. 
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Table 6.3:  Pearson Correlation Coefficient Matrix for Autoregulatory Indices – Grand Mean Data 

 

AMP = fundamental amplitude of ICP, CPP = cerebral perfusion pressure, Dx = diastolic flow index (between FVd and CPP), Dx_a = arterial diastolic flow index (between FVd and 
MAP), FVd = diastolic flow velocity, FVm = mean flow velocity, FVs = systolic flow velocity, ICP = intracranial pressure, Lx = laser Doppler flow index (between LDF-CBF and CPP), 
Lx_a = arterial laser Doppler flow index (between LDF-CBF and MAP), Mx = mean flow index (between FVm and CPP), Mx_a = arterial mean flow index (between FVm and MAP), 
PAx = between AMP and MAP, PRx = pressure reactivity index (between ICP and MAP), RAC = between AMP and CPP. *Note: all values in bold type face are those which reached 
statistical significance (ie. p<0.05). 

Variables PRx PAx RAC Mx Mx_a Sx Sx_a Dx Dx_a Lx Lx_a

PRx 1 0.496 0.600 0.356 0.433 0.382 0.393 -0.203 -0.204 0.139 0.189

PAx 0.496 1 0.644 0.077 0.379 0.279 0.612 -0.161 0.076 -0.067 0.182

RAC 0.600 0.644 1 0.119 0.319 0.352 0.369 -0.230 -0.017 0.051 0.167

Mx 0.356 0.077 0.119 1 0.707 0.670 0.398 0.753 0.473 0.561 0.171

Mx_a 0.433 0.379 0.319 0.707 1 0.469 0.717 0.486 0.713 0.400 0.250

Sx 0.382 0.279 0.352 0.670 0.469 1 0.646 0.301 0.178 0.255 0.062

Sx_a 0.393 0.612 0.369 0.398 0.717 0.646 1 0.158 0.417 0.095 0.107

Dx -0.203 -0.161 -0.230 0.753 0.486 0.301 0.158 1 0.739 0.492 0.095

Dx_a -0.204 0.076 -0.017 0.473 0.713 0.178 0.417 0.739 1 0.329 0.165

Lx 0.139 -0.067 0.051 0.561 0.400 0.255 0.095 0.492 0.329 1 0.556

Lx_a 0.189 0.182 0.167 0.171 0.250 0.062 0.107 0.095 0.165 0.556 1
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Grouped Variance Analysis – Friedman Test 

Similarity between various groups of autoregulatory indices was assessed by the Friedman test (with and 

without multiple sampling), with the pre-test assumption that each index was assessing the same aspect 

of physiology, autoregulation.  In both the 10 second-by-10 second and grand mean data sheets, 

Friedman testing confirmed that the indices were not all the same (p<0.0001, Q = 301.204).  Further 

Friedman tests were applied to groups of monitor specific indices (ie. derived indices were grouped 

based on their monitoring signal source: ICP, TCD, etc).  The within monitor Friedman testing also 

confirmed each index was in fact demonstrably different.   

 

 Principal Component Analysis (PCA) 

Spearman PCA was conducted on both data sheets, with similar results.  Eleven principal components 

(PC) (also referred to as factors (F)) were identified, with the first 5 PC’s composing ~90% of the overall 

variance in the dataset.  PC eigenvalue data, Scree plots, and variable specific loadings can be seen in 

Appendix B of the supplementary materials.   

A loading biplot for PC1 (denoted F1) and PC2 (denoted F2) can be seen in Figure 6.4. As can be seen 

within the biplot, the ICP derived indices (PRx, PAx and RAC) are clustered in the same quadrant of the 

biplot, contributing to the overall variance of both PC1 and PC2.  Furthermore, PRx/PAx/RAC appeared 

to be associated with TCD based Sx and Sx_a, in terms of their contributions to the variance of the whole 

data set.  Similarly, the TCD based indices (Mx, Mx_a, Dx and Dx_a) were co-located within the area of 

the biplot most associated with PC1.  LDF indices (Lx, Lx_a) co-varied with TCD derived 

Mx/Mx_a/Dx/Dx_a, confirming the correlations seen in the Pearson test analysis. 
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Figure 6.4: Spearman Type Principal Component Analysis of Autoregulatory Indices – Biplot of PC1 vs. PC2 (Grand Mean Data) 

 

PCA = principal component analysis, F = factor, PC = principal component, F1 = PC1 = principal component #1, F2 = PC2 = 
principal component #2. PC1 and PC2 are the two components which contribute the largest amount of variance to the entire 
data set.  The above biplot of PC1 vs. PC2 displays which variables contribute variance to PC1 and PC2.  The longer the arm 
connecting (0,0) to the variable (such as PRx), the larger the contribution of that variable.  Similarly, the quadrant on the biplot 
in which the variable falls correlates to its contribution to a particular PC. The upper left quadrant is primarily PC2; lower left 
quadrant is neither PC1 or PC2; the upper right quadrant is PC1 and PC2; the lower right quadrant is primarily PC1.  
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Agglomerative Hierarchal Clustering (AHC) 

AHC was performed on both data sheets, yielding identical results.  Figure 6.5 demonstrates the 

dendrogram produced.  Of note is the clustering of ICP, TCD and LDF based indices.  ICP indices co-

cluster with Sx and Sx_a, as displayed in both Pearson and PCA testing.  Similarly, TCD based Mx/Mx_a 

and Dx/Dx_a co-cluster with Lx/Lx_a, as seen in the Pearson and PCA testing.  The cophenetic correlation 

coefficient for the grand mean AHC was 0.77, indicating moderate-to-strong significance of the 

clustering.   

 

Figure 6.5:  AHC Dendrogram of Cerebrovascular Reactivity Indices – Grand Mean Data 

 

AHC = agglomerative hierarchal clustering, AMP = fundamental amplitude of ICP, CPP = cerebral perfusion pressure, Dx = 
diastolic flow index (between FVd and CPP), Dx_a = arterial diastolic flow index (between FVd and MAP), FVd = diastolic flow 
velocity, FVm = mean flow velocity, FVs = systolic flow velocity, ICP = intracranial pressure, Lx = laser Doppler flow index 
(between LDF-CBF and CPP), Lx_a = arterial laser Doppler flow index (between LDF-CBF and MAP), Mx = mean flow index 
(between FVm and CPP), Mx_a = arterial mean flow index (between FVm and MAP), PAx = between AMP and MAP, PRx = 
pressure reactivity index (between ICP and MAP), RAC = between AMP and CPP. 
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 K-Means Cluster Analysis (KMCA) 

KMCA was performed on both data sheets, producing identical clustering results.  Based on the “Elbow 

Method”, the optimal number of centroids for the KMCA was determined to be 4.  The clustering of the 

indices was similar to that seen in the AHC, PCA and Pearson correlation testing and hence not discussed 

further. 

 

6.2.4 Discussion 
 

Through the analysis of this TBI LDF data set, the relationships between various ICP/TCD/LDF 

cerebrovascular reactivity indices in humans have been better defined.    First, intra-technique 

correlations were seen for ICP, TCD and LDF-CBF derived indices across a using a range of statistical 

approaches, including the Pearson correlation test, PCA, ACH and KMCA.  This result isn’t surprising, 

given indices derived from the same signals would be expected to be inter-related.  Second, LDF-CBF 

based Lx and Lx_a were found to be more closely associated with TCD based Mx/Mx_a and Dx/Dx_a, 

than with Sx/Sx_a or the ICP derived indices.  This was confirmed on all forms of the analysis.  This 

suggests that TCD “vascular” based measures (Mx/Mx_a and Dx/Dx_a) are a better approximation of 

cortical small-vessel/microcirculatory autoregulation. Further to this, Lx and Lx_a were not correlated 

with ICP-derived indices of cerebrovascular reactivity (ie. including PRx) in any of the analyses 

conducted.  This is another important finding as it suggests that that ICP-derived indices may not 

measure cortical pial/microcirculatory vascular reactivity. This lack of association with metrics derived 

from continuously measured CBF requires further evaluation. Third, Sx/Sx_a appear to be more closely 

associated with the ICP derived indices (PRx, PAx and RAC), as confirmed on all forms of the analysis. 

This was also seen in the study in section 6.1. This likely stems from the peak pulsatile systolic 

component of CBFV yielding a stronger contribution to the ICP signal, than mean or diastolic CBFV’s.  

Further, it isn’t surprising that by the time that CBF reaches the small cortical vessels, that the peak 

systolic pulsatile component has less of an impact on regional LDF-CBF signal, where it is more likely to 

be dependent on mean flow or diastolic flow parameters.  This requires confirmation however. 
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 Limitations 

Some important limitations should be highlighted.  First, this is a small retrospective cohort of patients 

that were studied.  The patients had heterogeneous injury patterns and were subject to variations in ICU 

therapies/treatments during the short recording sessions.  This could have impacted signal 

heterogeneity and quality, leading to a direct influence on both the results of the slow wave and 

autoregulatory index analysis.  Therefore, the strength of conclusions that can be drawn from the 

analysis is limited.  However, with that said, the analysis conducted provides more than anecdotal 

insight into the co-variance and inter-index relationship, providing valuable information all involved in 

the critical care management of moderate/severe TBI patients.  

Second, LDF-CBF probes are no longer in clinical use in humans.  Consequently, despite interesting 

results in this chapter, it will be difficult to confirm the analysis with newer and larger patient cohorts.  

Therefore, unfortunately, only retrospective data sets exist to analyze relationships between LDF based 

cortical/small-vessel CBF and common monitors in current use.  The decline in the use of LDF stemmed 

from cost, maintenance, invasive placement and focality of measure, as well as the relatively noisy signal 

generated from red blood cell flux measurements.  With that said, the technique provided useful and 

unique information on cortical cerebral blood flow, and subsequent cerebrovascular reactivity.  

Finally, the statistics utilized within the autoregulatory index analysis are mainly exploratory and not 

confirmatory of the relationships described.  The use of PCA, AHC and KMCA are exploratory multi-

variate statistical techniques designed to highlight potential relationships of interest within an entire 

dataset, which would then drive further prospective focused assessment of the individual relationships 

identified.  Given the limitations mentioned around the clinical use of LDF, the analysis will have to 

remain “exploratory” for human data.  With that said, the relationships were all confirmed across 

Pearson correlation test, PCA, AHC and KMCA, potentially indicating that the various 

clustering/correlations are more than just by chance within an individual multi-variate test.  Further to 

this, future prospective evaluation of the index relations can be carried out within controlled animal 

studies, given the continued application of LDF within this setting.   
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6.2.5 Conclusions 
 

Mx is most closely related to LDF derived measures of microvascular flow (Lx/Lx_a).  Both Sx/Sx_a and 

the ICP derived indices appear to be dissociated from LDF based cortical small vessel cerebrovascular 

reactivity, leaving Mx/Mx_a/Dx/Dx_a as a better surrogate for the assessment of cortical small 

vessel/microvascular cerebrovascular reactivity.  Sx/Sx_a co-cluster/co-vary with ICP derived indices, as 

seen in previous work described in this thesis. 
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6.3 Relationships between ICP and Transcranial Doppler Indices 
 

6.3.1 Introduction 
 

Based on the results of the studies detailed in sections 6.1 and 6.2,180,181 it is apparent within these small 

patient cohorts that Sx/Sx_a preferentially co-vary with the ICP derived indices of cerebrovascular 

reactivity.  Confirming that Sx/Sx_a do indeed co-cluster with the ICP derived indices would provide 

confidence in utilizing them as a potential surrogate for the more invasive ICP indices.  Furthermore, 

given Sx_a can be derived through entirely non-invasive means (ie. with MAP recording by non-invasive 

finger-cuff techniques), ICP indices (such as PRx), could be estimated or even forecasted (ie. predicted) if 

this relationship with Sx/Sx_a is validated.  Thus, the goal of this study was to provide validation for the 

ICP and TCD derived inter-index relationships seen in sections 6.1 and 6.2, using a substantially larger 

adult TBI cohort with both continuous high-frequency ICP and TCD recordings. 

 

6.3.2 Methods 
 

Patient Population and Demographic Data Acquisition 

A large retrospective database cohort of TBI patients with simultaneous TCD and ICP recording was 

utilized.  TCD signal acquisition in TBI patients was conducted intermittently within the NCCU at 

Addenbrooke’s Hospital, Cambridge between the period from January 1992 up to and including 

September 2011.  The timing to application of TCD based monitoring varied from patient to patient, 

typically initiated between 24 hours to 10 days post-TBI.  The duration of recording also varied between 

patients, subject to the technical limitations of long-term TCD monitoring. 

TCD based CBFV, ICP and ABP were all linked in time series and prospectively stored.   We performed a 

retrospective analysis of this prospectively maintained database. A large portion of this population was 

previously utilized in the determination of critical thresholds for Mx and Mx_a.8 

Most patients included in this analysis had sustained moderate/severe TBI, but also included a few 

patients who were initially classified as mild TBI (as defined by the admission GCS), but experienced 

subsequent clinical deterioration leading to invasive monitoring and admission to the NCCU.  Treatment 
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received during the recording periods included standard ICP-directed therapy, with an ICP goal of less 

than 20 mm Hg and CPP goal of greater than 60 mm Hg.   

 

For the purpose of confirming the co-variance and co-clustering relationships previously discovered, 

minimum recording lengths of 30 minutes were utilized for analysis.  A total of 347 patients were 

included, with 410 recordings of 30 minutes or greater in duration. The following patient demographic 

data was obtained from the database:  age, sex, admission GCS, and patient outcome at 6 months.   

 

 

Signal Acquisition 

Various signals were obtained through a combination of invasive and non-invasive methods.  ABP was 

obtained through either radial or femoral arterial lines connected to pressure transducers (Baxter 

Healthcare Corp. CardioVascular Group, Irvine, CA).  ICP was acquired via an intra-parenchymal strain 

gauge probe (Codman ICP MicroSensor; Codman & Shurtleff Inc., Raynham, MA).  Finally, TCD 

assessment of MCA CBFV was conducted via Doppler Box (DWL Compumedics, Singen, Germany) or 

Neuroguard (Medasonic, Fremont, CA, USA).   

All recorded signals were digitized via A/D converters (DT9801; Data Translation, Marlboro, MA), 

sampled at frequency of 50 Hz or higher, using ICM+ software (Cambridge Enterprise Ltd, Cambridge, 

UK, http://www.neurosurg.cam.ac.uk/icmplus).  All signal artifact was removed prior to further 

processing or analysis. 

 

Signal Processing 

Post-acquisition processing of the above described signals was conducted utilizing ICM+ software.  CPP 

was determined as:  CPP = MAP – ICP.  FVs was determined by calculating the maximum FV over a 1.5 

second window, updated every second.  FVd was calculated using the minimum FV over a 1.5 second 

window, updated every second. FVm was calculated using average FV over a 10 second window, 

updated every 10 seconds (ie. not data overlap).  AMP was determined by calculating the fundamental 

Fourier amplitude of the ICP signal over a 10 second window, updated every 10 seconds.  Ten second 
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moving averages (updated every 10 seconds to avoid data overlap) were calculated for all recorded 

signals:  ICP, ABP (which produced MAP), CPP, FVm, FVs, and FVd.  

 

Cerebrovascular Reactivity Indices 

The autoregulation/cerebrovascular reactivity indices were derived in a similar fashion, as highlighted in 

Chapter 3.  The following indices of cerebrovascular reactivity were derived:  PRx, PAx, RAC, Mx, Mx_a, 

Sx, Sx_a, Dx, and Dx_a.   

 

Statistics 

The analysis conducted is identical to that performed in the previous studies, outlined in section 6.1.2.  

The only difference for this study is that there are larger patient/recording numbers, with ICP and TCD 

signals.  Three data sheets were employed for the analysis (ie. grand mean, 30-minute mean and 

minute-by-minute data). For more details on the statistical methods please see 6.1.2 “Statistics” section. 

 

6.3.3 Results 
 

Patient Demographics 

A total of 347 patients, with 410 recordings, constituting 419.6 hours of monitoring, were included for 

the co-variance/cluster analysis.  The mean age was 33.7 +/- 16.4 years, with 250 males.  The median 

admission GCS was 6 (IQR: 4 to 8). The mean length of recording was 1.02 hours (range: 0.50 to 3.26 

hours).  

 

Cerebrovascular Index Co-Variance/Clustering Analysis 

Inter-index correlation was compared via a Pearson correlation matrix, for all three data sheets: grand 

mean, 30-minute mean and minute-by-minute data.  Table 6.4 displays the Pearson correlation matrix 

for the grand mean data sheet.  Of note is the strong inter-index correlation of the ICP indices.  In 
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addition, Sx and Sx_a display stronger correlation with the ICP indices, compared to Mx/Mx_a/Dx/Dx_a.  

This was confirmed across all 3 data sheets.   

 

Table 6.4: Pearson Correlation Coefficient Matrix for Autoregulatory/Cerebrovascular Reactivity Indices – Entire TBI TCD Cohort – 
Grand Mean Data 

Variables PRx PAx RAC Mx Mx_a Dx Dx_a Sx Sx_a 

PRx 1 0.665 0.490 0.434 0.440 0.303 0.365 0.448 0.488 

PAx 0.665 1 0.631 0.234 0.357 0.085 0.197 0.368 0.562 

RAC 0.490 0.631 1 0.332 0.277 0.176 0.156 0.544 0.344 

Mx 0.434 0.234 0.332 1 0.777 0.934 0.732 0.738 0.479 

Mx_a 0.440 0.357 0.277 0.777 1 0.728 0.898 0.599 0.695 

Dx 0.303 0.085 0.176 0.934 0.728 1 0.805 0.580 0.340 

Dx_a 0.365 0.197 0.156 0.732 0.898 0.805 1 0.446 0.487 

Sx 0.448 0.368 0.544 0.738 0.599 0.580 0.446 1 0.754 

Sx_a 0.488 0.562 0.344 0.479 0.695 0.340 0.487 0.754 1 
AMP = fundamental amplitude of ICP, CPP = cerebral perfusion pressure, Dx = diastolic flow index (between FVd and CPP), Dx_a 
= arterial diastolic flow index (between FVd and MAP), FVd = diastolic flow velocity, FVm = mean flow velocity, FVs = systolic flow 
velocity, ICP = intracranial pressure, Mx = mean flow index (between FVm and CPP), Mx_a = arterial mean flow index (between 
FVm and MAP), PAx = between AMP and MAP, PRx = pressure reactivity index (between ICP and MAP), RAC = between AMP and 
CPP. *all values in bold type face are those which reached statistical significance (ie. p<0.05) 

 

Grouped Variance Analysis – Friedman Test  

Similarity between various groups of indices was assessed by the Friedman test (with and without 

multiple sampling), with the pre-test assumption that each index was assessing the same aspect of 

physiology, cerebrovascular reactivity.  Friedman testing showed significant inter-index differences, 

indicating that these indices were non-identical.  Further Friedman tests were applied to groups of 

monitor specific indices (ie. Separately within the two clusters of ICP- and TCD-derived indices).  This 

within-modality Friedman testing also confirmed that each index was in fact different.   

 

 

Principal Component Analysis (PCA) – Entire TBI TCD Cohort 

Spearman PCA was conducted on all three data sheets, all with similar results. Nine principal 

components (PC) (also referred to as factors (F)) were identified, with the first 5 PC’s composing ~96% of 
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the overall variance in the dataset.  PC eigenvalue data, Scree plots, and variable specific loadings can be 

seen in Appendix C of the supplementary materials.  A loading biplot for PC1 (denoted F1) and PC2 

(denoted F2) can be seen in Figure 6.6, based on the grand mean data. The ICP derived indices (PRx, PAx 

and RAC) are clustered in the same quadrant of the biplot, contributing to the overall variance of both 

PC1 and PC2.  Furthermore, PRx/PAx/RAC appeared to be associated with TCD based Sx and Sx_a, in 

terms of their contributions to the variance of the whole data set.  Similarly, the TCD based indices (Mx, 

Mx_a, Dx and Dx_a) were co-located within the area of the biplot most associated with PC1.  This was 

confirmed on all 3 data sheets.   

 

Agglomerative Hierarchal Clustering (AHC) – Entire TBI TCD Cohort 

AHC was performed on all three data sheets, yielding similar results.  Figure 6.7 demonstrates the AHC 

dendrogram for the grand mean data from the entire TBI TCD cohort. As was seen in the two previous 

sections, Sx/Sx_a co-clustered with the ICP derived indices. The cophenetic correlation coefficient for the 

grand mean data AHC analysis was 0.76, indicating a moderate-to-strong significance of the clustering. 

 

K-Means Cluster Analysis (KMCA)  

KMCA was performed on all data sheets for both cohorts, producing identical clustering results.  For the 

entire TBI TCD cohort, based on the “Elbow Method”, the optimal number of centroids for the KMCA 

was determined to be 3. This was also similar to that seen in the AHC, PCA and Pearson correlation 

testing.  
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Figure 6.6: Spearman Type Principal Component Analysis of Autoregulatory/Cerebrovascular Reactivity Indices – Biplot of PC1 vs. 
PC2 (Entire TBI TCD Cohort - Grand Mean Data) 

 

 

PCA = principal component analysis, F = factor, PC = principal component, F1 = PC1 = principal component #1, F2 = PC2 = 
principal component #2. PC1 and PC2 are the two components which contribute the largest amount of variance to the entire 
data set.  The above biplot of PC1 vs. PC2 displays which variables contribute variance to PC1 and PC2.  The longer the arm 
connecting (0,0) to the variable (such as PRx), the larger the contribution of that variable.  Similarly, the quadrant on the biplot 
in which the variable falls correlates to its contribution to a particular PC. The upper left quadrant is primarily PC2; lower left 
quadrant is neither PC1 or PC2; the upper right quadrant is PC1 and PC2; the lower right quadrant is primarily PC1.  
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Figure 6.7:  Entire TBI TCD Cohort – AHC Dendrogram – Grand Mean Data 

 

AHC = agglomerative hierarchal clustering, AMP = fundamental amplitude of ICP, CPP = cerebral perfusion pressure, Dx = 
diastolic flow index (between FVd and CPP), Dx_a = arterial diastolic flow index (between FVd and MAP), FVd = diastolic flow 
velocity, FVm = mean flow velocity, FVs = systolic flow velocity, ICP = intracranial pressure,, Mx = mean flow index (between FVm 
and CPP), Mx_a = arterial mean flow index (between FVm and MAP), PAx = between AMP and MAP, PRx = pressure reactivity 
index (between ICP and MAP), RAC = between AMP and CPP. 

 

6.3.4 Discussion 
 

These results replicate the previously described multi-variate clustering analysis of continuous 

autoregulation indices in a larger cohort of TBI patients with TCD, providing confirmatory evidence for 

the co-clustering/co-variance of Sx/Sx_a with the ICP derived indices (PRx, PAx, RAC).  The current 

results based on 410 recordings of at least 30 minutes duration, provide this confirmatory evidence.  

Thus, it appears that Sx/Sx_a may be more representative of the ICP derived indices, compared to 

Mx/Mx_a/Dx/Dx_a.  This was confirmed with the Pearson correlation test, PCA, AHC and KMCA in all 

three data sheets analyzed.  This may stem from the peak pulsatile systolic component of CBFV yielding 

a stronger contribution to the ICP signal, than mean or diastolic CBFV’s.  This concept requires 

confirmation.  
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It is important to identify which TCD-based indices are associated with ICP derived indices, in particular 

PRx.  Only a few indices have been validated in animal models with respect to the lower limit of 

autoregulation (such as PRx). Thus, strong co-variance and association between “non-validated” indices 

with PRx potentially allow for the use of these indices as a “surrogate” measure for the validated PRx.  Sx 

and Sx_a may be these surrogate measures, with Sx_a potentially derived through entirely non-invasive 

means.   

 

Limitations 

Despite the interesting results, some important limitations should be highlighted.  First, a retrospective 

cohort of patients were studied.  The patients had heterogeneous injury patterns and were subject to 

variations in ICU therapies/treatments during the short recording sessions.  This could have impacted 

signal heterogeneity and quality, leading to a direct influence on both the results of the slow wave and 

autoregulatory/cerebrovascular reactivity index analysis.  Further, these varying treatments may have 

impacted patient outcomes seen at 6 months.  Adding to this, given the varied time frame to application 

of TCD monitoring within this population, it limits the ability to make definitive comments regarding the 

“time-dependent” change in predictive power for these indices with respect to 6-month outcome.  This 

aspect would definitively benefit from a prospective study, analyzing the application of TCD recording 

throughout the course of the patient’s ICU stay, leading to standardized and longer recording periods.  

With this type of data, one would be able to comment on the whether there exists a variation in the 

predictive power of the TCD based indices, based on the time frame post-injury from which the 

recordings were obtained. 

Second, given this was a retrospective analysis of a database, data was limited to that recorded at the 

time of entry.  Details regarding patient co-morbidities and CT based injury patterns/burden were not 

recorded in these patients.  These details may prove important in terms of an individual patient’s 

cerebrovascular response to injury and the development of impaired autoregulatory capacity.  Further 

prospective studies would benefit from a detailed account of these variables in order to determine their 

impact on cerebrovascular reactivity post-TBI. 

Third, the statistics utilized within the index co-variance/cluster analysis are mainly exploratory and not 

100% confirmatory of the relationships described.  The use of PCA, AHC and KMCA are exploratory 

multi-variate statistical techniques designed to highlight potential relationships of interest within an 
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entire dataset, which would then drive further prospective focused assessment of the individual 

relationships identified.  With that said, the relationships were all confirmed across Pearson correlation 

test, PCA, AHC and KMCA, potentially indicating that the various clustering/correlations are more than 

just by chance within an individual multi-variate test.   

Finally, as mentioned in previous studies (6.1 and 6.2), the erratic nature of spontaneous slow waves 

may impact the strength of the relationships seen.  Thus, future prospective analysis will require longer 

recording sessions to allow for the application of slow wave power filters.  Ideally this would take place 

over the course of a patient’s ICU stay, in order to confirm that these relationships hold true throughout 

the acute phase of illness. 

 

6.3.5 Conclusions 
 

TCD based Sx, and Sx_a, are both more closely associated with the ICP derived indices (PRx, PAx and 

RAC), compared to Mx (or Mx_a) and Dx (or Dx_a).  Thus, Sx and Sx_a likely provide a better 

approximation of PRx and other ICP derived indices, compared to Mx/Mx_a/Dx/Dx_a. 
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CHAPTER 7: NON-INVASIVE MODELLING OF PRESSURE REACTIVITY USING 

TCD IN ADULT TBI 
*The results of the studies detailed in section 7.1, 7.2 and 7.3 can also be found detailed in the following 

publications: 

1. Zeiler et al., J Neurotrauma. 2018; 35(14):1559-1568. doi: 10.1089/neu.2017.5596.184 

2. Zeiler et al., Crit Ultrasound J. 2018; 10(1):16. doi: 10.1186/s13089-018-0097-0.185 

3. Zeiler et al., Acta Neurochir (Wein). 2018; 60(11):2149-2157. doi: 10.1007/s00701-018-3687-5.186 

4. Zeiler et al., J Neurotrauma. 2018 Sep 27. doi: 10.1089/neu.2018.5987. [Epub ahead of print]187 

 

7.1 Estimation of Pressure Reactivity Index Using TCD 
 

7.1.1 Introduction 
 

PRx is the one continuous measure of autoregulatory capacity that has received the most attention in 

the TBI population.3,11  Numerous studies have been published linking abnormal PRx values to poor 

outcome in TBI.  Further to this, thresholds associated with 6-month outcomes have been defined for 

PRx in the TBI population.9,152  Finally, PRx is one of few indices that have been validated in an animal 

model against the LLA.14 

Despite the promising nature of PRx, the major limitation in its acquisition is the need for invasive 

measure of ICP.  Non-invasive autoregulatory indices based on transcranial Doppler (TCD) exist, 

including: Mx_a and Sx_a.  These TCD-derived indices display a positive linear relationship with PRx.  In 

addition, based on the studies performed in Chapter 6 in three separate patient populations, robust 

statistical co-variance and co-clustering of the non-invasively derived Sx_a with the invasively derived 

PRx has been demonstrated.180–182  Thus, the question remains:  Can we estimate PRx using non-invasive 

TCD based autoregulatory indices? 

The main issues with modelling PRx are the fact that the high frequency data used are autocorrelated 

violating the assumption of statistical independence implicit in simple linear regression techniques and 

limiting the literature in this area to date. The goal of this study was to provide for the first time, a non-

invasive method of estimating PRx using formal time series analysis and linear mixed effects modelling. 



 

160 
 

7.1.2 Methods 
 

Patient Population 

A large retrospective database of TBI patients with simultaneous TCD and ICP recording were studied.  

All high frequency signals from monitoring devices were archived prospectively between the periods for 

January 1992 up to and including September 2011, with all patients being admitted to the neurosciences 

critical care unit (NCCU) at Addenbrooke’s Hospital, Cambridge.  This was the identical TCD cohort 

described in section 6.3.182 For further details refer to section 6.3.2. 

Similar to the previous study on co-variance (Chapter 6.3), we were only interested in continuous 

recording lengths of 30 minutes or longer, for use in linear mixed effects (LME) modelling of PRx.  A total 

of 410 recordings from 347 patients were included.  Details of the study population are provided in the 

results section. 

 

Signal Acquisition, Processing and Definitions of Cerebrovascular Reactivity Indices 

This was conducted identically to the methods described in section 6.3.2. 

 

Statistics 

Minute-by-minute time series data were utilized for the entirety of the analysis described below.  

Statistical significance was set at an alpha of less than 0.05.  All statistical analysis was conducted using R 

statistical software (R Core Team (2016). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/). The following 

packages were utilized during the analysis: dplyr, ggplot2, ggthemes, tseries, forecast, lubridate and 

lme4. 

The statistical methods sections to follow will outline the techniques employed to:  A. estimate the 

autocorrelative structure of PRx in time series, B. estimate PRx using non-invasive TCD indices of 

cerebrovascular reactivity via application of linear mixed effects (LME) modelling (with embedded PRx 

ARIMA error structure) to, and C. assess the correlation and agreement between model based estimated 

PRx and the observed PRx values. 
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Autocorrelative Structure of PRx 

Prior to being able to model PRx using TCD based indices, it was necessary to determine the 

autocorrelation structure of PRx.  We used autoregressive integrative moving average (ARIMA) 

modelling PRx to determine:  the autoregressive structure of order “p”, the differencing factor or order 

“d”, and the moving average component of order “q”; commonly denoted “(p,d,q)”.163,164,166  The 

autoregressive structure refers to the dependence of PRx at time t (denoted PRxt) on previous measures 

of PRx (ie. called “lags”), say at time t-1 (ie. PRxt-1), and so forth (ie. say to PRxt-p), with the order “p” 

indicating how many previous PRx measures PRxt is dependent on.  The differencing component refers 

to the need to make a non-stationary signal stationary, with seasonal or trending structure within a time 

series indicating non-stationary character.  Stationarity is defined as the presence of a stable variance, 

autocorrelative structure and mean over time.  Stationarity can be introduced by differencing previous 

PRx measures from current measures, thus removing seasonality or trending structure to a time series 

and allowing further modelling to occur.  The differencing order “d” refers to how many previous terms 

should be included in the differencing process.  Finally, the moving average term refers to the need to 

include the error in the model at time “t” (ie. et) based on its association in previous measured error 

terms (ie. et-q).  The order “q” for the moving average component refers to how many previous error 

terms are to be included within the ARIMA model.  Assuming stationarity (ie. no “d” order), a general 

ARMA model can be represented by the following formula: 

 

PRxt = c + εt +  ∑ 𝜑𝑃𝑅𝑥
𝑝
𝑖=1 t-i + ∑ 𝜃𝜀

𝑞
𝑖=1 t-i   (7.1) 

 

Where:  PRxt = PRx at time t, PRxt-i = PRx at time t-i, εt = error at time t, εt-i = error at time t-i, c = constant, 

φ and θ are coefficient parameters at time t, p = autoregressive order, and q = moving average order. 

Initially, the following process was conducted on 10 representative patient recordings (I.e. the longest 

continuous recordings), in order to derive the optimal ARIMA structure for PRx time series. The following 

process was only conducted on the 10 longest representative patient recordings, so as to provide insight 

into the approximate best ARMA structure for future population wide LME models. 
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 First, data had already been artifact cleared and had a 10-second moving average filter applied to the 

data, leading to some data smoothing (as described above in the signal processing section).  Thus, the 

initial step for the ARIMA modelling focused on determining stationarity of the signal.  This was 

assessed, and confirmed, using 3 methods.  First, the autocorrelation function (ACF) correlogram for PRx 

was assessed, looking for a rapid decline in significant lags, indicating a stationary signal.  Second, the 

Augmented Dickey Fuller (ADF) test was applied to assess for stationarity.  Finally, the auto.arima 

function in R was employed to see if the automated process confirmed the results of the above two 

steps.  All above process confirmed stationarity within the patient examples.159,163,164 

Second, the autoregressive structure of PRx was assessed using the ACF correlograms and partial 

autocorrelation function (PACF) correlograms.  ACF correlograms were assessed to see how many 

previous consecutive terms (ie. “lags”) PRx may be dependent upon.  Similarly, the PACF correlograms 

were assessed to see how many non-consecutive previous lags, PRx may be dependent upon. Significant 

level on ACF/PACF correlograms is set at a correlation level of +/-(2/N1/2), where N = sample size. 

Sequential ARMA models were run for PRx by varying the order “p” from 0 to 3, while also varying the 

moving average order “q” from 0 to 3.  Given the analysis for stationarity confirming a stationary signal 

within the 10 patient examples, the differencing order “d” was fixed at 0. In doing so 16 separate ARMA 

models for PRx were generated within the 10 patient examples.  Model superiority was assessed by 

Akaike Information Criterion (AIC) and Log-Likelihood (LL), with the lowest AIC and highest LL indicating 

the best ARMA model for PRx.  In addition, model superiority was assessed via residuals, model ACF and 

PACF correlograms, with an adequate model represented by random residuals, and ACF/PACF failing to 

display any lags reaching significance.  Finally, the auto.arima function was employed to assess if there 

would be a difference in the automated ARIMA structure process from the manual process.  The 

auto.arima algorithm within R produced the same final ARIMA model for PRx as identified by the manual 

iterative process. 

 

LME Modelling of PRx Using TCD Derived Indices 

LME modelling was conducted in a step-wise fashion on the entire patient population.159,163,165  Initially 

LME modelling involved a fixed linear model represented by PRx ~ Sx_a, and a random component 

introduced into the intercept only (based on individual patient).  The PRx ARIMA structure was 

embedded within the LME model.  This model (ie. PRx ~ Sx_a) was used to confirm the ARMA model 
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structure identified in the 10 patient examples.  Iterative LME models were run with various 

permutations of embedded ARIMA structure for PRx.  Again, 16 separate models were run, varying 

autoregressive order “p” from 0 to 3, and the moving average order “q” from 0 to 3.  Given stationarity 

of signal identified within the patient examples, no differencing order “d” was introduced. 

Having confirmed that the LME model residuals structure follows the PRx ARIMA model, this model was 

used in the subsequent search for a parsimonious model of the relationship between various TCD 

derived parameters and PRx.  This analysis was done on the full data set, deriving LME models for each 

patient as well as for the entire population. The following LME models were assessed, initially with 

random intercept only (stratified by patient), as above:  PRx ~ Sx_a, PRx ~ Mx_a, PRx ~ Dx_a, PRx ~ Sx_a 

+ Mx_a, PRx ~ Sx _a + Dx_a, PRx ~ Sx_a + Mx_a + Dx_a.  Finally, these LME models were run again, 

introducing random effects into the slope parameters for each of the included independent variables: 

Sx_a, Mx_a and Dx_a.  All models were corrected using maximum likelihood estimation method.  

Adequacy of the LME model was assessed via QQ plots and the residuals distribution plot, with linear 

shape to the QQ plots and normally distributed residuals confirming validity of the model.   

Models were compared using AIC, Bayesian Information Criterion (BIC), LL and ANOVA testing.  Superior 

models were attributed to the lowest AIC, lowest BIC and highest LL.  Significance between models as 

assessed by ANOVA testing was set at a p < 0.05. The top two LME models were reported in detail, with 

a final assessment of model adequacy through ACF/PACF plots of the model residuals, observing for a 

minimal number of significant lags which decay rapidly.159,163   

Generalized fixed effect model versions of the two superior LME models were evaluated by removing 

the random components of the LME model. This was conducted via generating models for each patient, 

with the ARMA structure coefficients determined per patient.  Finally, a generalized model was also 

determined for population. Generalized fixed effects models were compared to their LME versions via 

AIC, BIC, LL and ANOVA testing. 

 

Observed versus Estimated PRx 

Finally, the correlation between the observed (minute-by-minute) PRx values in the population versus 

those estimated from the optimal two LME models were evaluated using Pearson correlation coefficient.  

Linear regression plots were then produced between observed and estimated PRx for the best two LME 

models, using grand mean data (ie. mean value per patient).  Finally, Bland-Altman plots were produced 
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to assess agreement between the observed and estimated PRx values, using grand mean Fisher 

transformed data (ie. Fisher transform applied to both observed and estimated PRx). Bland-Altman 

determination was conducted via the following method:  estimated PRx – observed PRx. 

Generalized fixed effects model estimated PRx was compared against the observed PRx in a similar 

fashion, however are not reported given the results were poor. 

 

7.1.3 Results 
 

The results are described in three sections.  The first of these ([A]) characterizes the study population, 

the second ([B]) the building blocks used for developing TCD based PRx modelling, and the third ([C]) 

addressing the development and testing of the accuracy of modelled PRx. 

 

A. Study Population 

Patient Demographics  

As in section 6.3, there were 347 patients with 410 recordings analyzed.  The mean age was 33.7 +/- 16.4 

years, 250 male subjects.  Median admission GCS was 6 (IQR: 4 to 8).  Mean recording length was 1.02 

hours (range: 0.50 to 3.26 hours).   

 

B. Building the Model to Estimate PRx 

The initial step was to confirm the expected relationship between TCD flow indices and PRx in the data, 

understand the autocorrelative structure of PRx time series data in order to provide a rigorous 

framework for modelling PRx from TCD data, and then confirm that the models for PRx time series data 

were generalizable across the populations of study.  These results are addressed in the next three 

sections of results 
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 Linear Relation between PRx, Sx_a and Mx_a – Population Level 

In order to confirm the linear relationship between PRx, Sx_a and Mx_a, simple linear regression was 

employed using grand mean data (ie. one average value for each index per patient over the entire 

recording period), allowing the use of linear principals (ie. ensuring independence of measures).  Figure 

7.1 displays the linear relationship between PRx versus Sx_a (panel A) and PRx versus Mx_a (panel B). 
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Figure 7.1: Linear Relationship between PRx vs. Sx_a and PRx vs. Mx_a – Grand Mean Population Data 

 

a.u. = arbitrary units, FVm = mean velocity, FVs = systolic flow velocity, ICP = intra-cranial pressure, MAP = mean arterial pressure, Mx_a = mean flow index (correlation between 
FVm and MAP), p = p-value, PRx = pressure reactivity index (correlation between ICP and MAP), R = Pearson correlation coefficient, Sx_a = systolic flow index (correlation between 
FVs and MAP). 
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ARIMA Modelling of PRx – Patient Example 

Ten patients, with the longest continuous recordings, were initially analyzed to determine the ARIMA 

structure of PRx.  All patients were deemed to display stationary signals for PRx, as assessed by ACF 

correlograms, ADF testing and auto.arima algorithmic testing.  Thus, no differencing factor was 

employed.  Figure 7.2 displays a patient example of the ACF and PACF correlograms on the raw PRx data, 

indicating rapid decay of significant lags on the ACF (panel A) and PACF (panel B) correlograms, 

confirming stationarity (ADF test = -4.456, p-value = 0.01).   

Running sequential iterative ARIMA models for PRx within the patient examples, the appropriate 

autoregressive order “p” and moving average order “q” for the PRx ARIMA model were assessed.  

Autoregressive order, “p”, varied from 0 to 3, and moving average order, “q”, varied from 0 to 3, 

assessing 16 separate ARIMA models for PRx.  All models and their AIC’s and LL can be seen in Appendix 

D. The most robust ARIMA structure for PRx, across the 10 patient examples, was deemed to be (2,0,2), 

with p = 2, d = 0, and q = 2.  This model had the lowest AIC of -69.3, and amongst the highest LL of 39.65.  

Furthermore, the residuals for this PRx ARIMA model appear random, with ACF/PACF correlograms 

indicating a lack of significant lags (Figure 7.3).  This ARIMA structure was confirmed with the auto.arima 

algorithm in R across all patient examples. 
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Figure 7.2: PRx ACF and PACF Correlograms - Patient Example 

 

ACF = autocorrelation function, a.u. = arbitrary units, ICP = intracranial pressure, MAP = mean arterial pressure, PACF = partial autocorrelation function, PRx = pressure reactivity 
index (correlation between ICP and MAP). Panel A = ACF correlogram, Panel B = PACF correlogram.  Confidence intervals on correlograms (dotted lines) = +/-(2/N1/2), where N = 
sample size. 



 

169 
 

Figure 7.3:  PRx ARIMA Model (2,0,2) Residual Plot, ACF and PACF Correlograms – Patient Example 

 

ACF = autocorrelation function, a.u. = arbitrary units, ARIMA = autoregressive integrative moving average, MAP = mean arterial 
pressure, PACF = partial autocorrelation function, PRx = pressure reactivity index (correlation between ICP and MAP) 

 

 

 Confirmation of PRx ARIMA Structure Via Sequential LME Modelling 

In order to confirm that the PRx (2,0,2) ARIMA model structure was adequate for the modeling across 

the entire dataset, sequential LME models were employed based on the fixed effects PRx ~ Sx_a, and 

random effects within the intercept (based on patient), with varied embedded PRx ARIMA structures.  

The same 16 ARIMA model structures utilized within the patient examples were then run, assessing the 

AIC, BIC and LL of the LME models, with the goal of parsimony in the ARIMA structure.  The data for AIC, 

BIC and LL in each LME with the varied embedded PRx ARIMA error structures can be found in Appendix 

D. The best model was again deemed to be that with a PRx ARIMA error structure of (2,0,2), with an AIC 

of -9797.294, BIC of -9735.699 and LL of 4906.647.  The residual density for this model was normally 

distributed. 
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C. Model Development and Accuracy Assessment 

 

Modelling of PRx using TCD derived variables was conducted in two stages.  First, modelling of PRx using 

the optimal autocorrelative structure that we identified in the previous section of results was conducted. 

Then measured (ie. observed) and estimated PRx were compared to determine how well te observed 

PRx values correlated with estimates from the top two models.  

 

 LME Modelling of PRx Using TCD Indices 

After confirming that ARIMA (2,0,2) error structure was adequate for continued LME modelling of PRx of 

the population, several different LME models were fitted to the whole data set, first varying the fixed 

effects model structure and then the random effects, as described within the methods section.  The AIC, 

BIC and LL values for each LME model tested is presented in Table 7.1.  The two best models, based on 

lowest AIC/BIC values, highest LL, and normally distributed residuals were:  PRx ~ Sx_a, and PRx ~ Sx_a + 

Mx_a, with random effects (based on patient) introduced into both the independent variables and 

intercept.  In addition, ANOVA testing indicated these two models were superior, with the multi-variable 

model (with Sx_a and Mx_a) performing significantly better.  The QQ plots and residual density plots for 

both models can be seen in Figure 7.4, indicating adequacy of the model.  ACF and PACF plots of the 

residuals form each of these models displayed a number of significant lags each LME model (ie. ~10).   

To evaluate further the impact of patient-by-patient variation on the LME model, random effects were 

removed from these models.  Doing so produced inferior models, with larger AIC and BIC values.  

Furthermore, comparing these population wide generalized fixed effects models to the LME models via 

ANOVA, the LME models described above were statistically superior.   
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Figure 7.4: QQ Plot and Residual Density Plot for Two Superior LME Models 

 

QQ = quantile quantile. Panel A = QQ plot for LME model PRx ~ Sx_a, Panel B = residual density plot for LME PRx ~ Sx_a, Panel C = QQ plot for LME PRx ~ Sx_a + Mx_a, Panel D = 
residual density plot for LME PRx ~ Sx_a + Mx_a. QQ and Density plots for both models indicate normally distributed residuals, and thus model adequacy. 
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Table 7.1:  LME Models with PRx (2,0,2) ARIMA Structure – Entire Population 

LME Model  PRx ARIMA Structure AIC BIC  LL 

Fixed Effects Random Effects p q 

PRx ~ Sx_a intercept 2 2 -9797.294 -9735.699 4906.647 

PRx ~ Mx_a intercept 2 2 -8530.042 -8468.447 4273.021 

PRx ~ Dx_a intercept 2 2 -7865.311 -7803.716 3940.655 

PRx ~ Sx_a + Mx_a intercept 2 2 -9821.206 -9751.912 4919.603 

PRx ~ Sx_a + Dx_a intercept 2 2 -9804.395 -9735.101 4911.198 

PRx ~ Sx_a + Mx_a + Dx_a intercept 2 2 -9822.731 -9745.737 4921.365 

PRx ~ Sx_a Intercept + Sx_a 2 2 -10806.43 -10729.44 5413.404 

PRx ~ Mx_a Intercept + Mx_a 2 2 -9928.451 -9851.458 4974.226 

PRx ~ Dx_a Intercept + Dx_a 2 2 -9239.414 -9162.420 4629.707 

PRx ~ Sx_a + Mx_a Intercept + Sx_a + Mx_a 2 2 -11798.81 -11691.02 5913.404 

PRx ~ Sx_a + Dx_a Intercept + Sx_a + Dx_a 2 2 FTC FTC FTC 

PRx ~ Sx_a + Mx_a + Dx_a Intercept + Sx_a + Mx_a + Dx_a 2 2 FTC FTC FTC 
AIC = Akaike Information Criterion, ARIMA = auto-regressive integrative moving average, BIC = Bayesian Information Criterion, Dx_a = diastolic flow velocity (correlation between 
TCD based FVd and MAP), FTC = “failure to converge” for the model, FVd = TCD based diastolic flow velocity, FVm = mean TCD flow velocity, FVs = TCD based systolic flow velocity, 
ICP = intra-cranial pressure, LL = log likelihood, LME = linear mixed effects model, p = auto-regression parameter for ARIMA model, MAP = mean arterial pressure, PRx = pressure 
reactivity index (correlation between ICP and MAP), q = moving average parameter for ARIMA model, Sx_a = systolic flow index (correlation between TCD based FVs and MAP), 
TCD = transcranial Doppler. *Note: bolded value represents the most appropriate ARIMA structure and LME model for the patient population tested, based on principal of 
parsimony, lowest AIC and BIC.   There was no integrative parameter (ie. “d” parameter) included within the ARIMA models, given stationarity testing during patient examples 
(see appendix A and Methodology section of manuscript). 
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Population Based Estimation of PRx Using Sx_a and Mx_a 

Assessing the correlation between observed PRx and estimated PRx using the various models, it 

confirmed that the above-mentioned superior LME models, with embedded PRx ARIMA structure of 

(2,0,2), displayed the best correlation between observed and estimated values.  The model based on 

fixed effects of PRx ~ Sx_a (with random effects in the slope and intercept based on patient) had a 

correlation of 0.794 (p<0.0001, CI = 0.788 to 0.799).  The model based on fixed effects of PRx ~ Sx_a + 

Mx_a (with the same random effects) displayed a correlation of 0.814 (p<0.0001, CI = 0.809 to 0.819).  

All correlations between observed and estimated PRx for the LME models tested can be seen in Table 

7.2.  

 

Table 7.2: Correlation Between Observed PRx and LME Model Based Predicted PRx 

LME Model  Correlation Between 
Observed PRx and Model 
Predicted PRx 

Fixed Effects Random Effects 

PRx ~ Sx_a intercept 0.770 

PRx ~ Sx_a + Mx_a intercept 0.770 

PRx ~ Sx_a + Dx_a intercept 0.770 

PRx ~ Sx_a + Mx_a + Dx_a intercept 0.770 

PRx ~ Sx_a Intercept + Sx_a 0.794 

PRx ~ Sx_a + Mx_a Intercept + Sx_a + Mx_a 0.814 

PRx ~ Sx_a + Dx_a Intercept + Sx_a + Dx_a NA 

PRx ~ Sx_a + Mx_a + Dx_a Intercept + Sx_a + Mx_a + Dx_a NA 
Dx_a = diastolic flow velocity (correlation between TCD based FVd and MAP), FTC = “failure to converge” for the model, FVd = 
TCD based diastolic flow velocity, FVm = mean TCD flow velocity, FVs = TCD based systolic flow velocity, ICP = intra-cranial 
pressure, LL = log likelihood, LME = linear mixed effects model, p = auto-regression parameter for ARIMA model, MAP = mean 
arterial pressure, PRx = pressure reactivity index (correlation between ICP and MAP), q = moving average parameter for ARIMA 
model, Sx_a = systolic flow index (correlation between TCD based FVs and MAP), TCD = transcranial Doppler. *Note: bolded 
value represents the most appropriate ARIMA structure and LME model for the patient population tested, based on principal of 
parsimony, lowest AIC and BIC.    

 

Figure 7.5 displays the linear relationship between observed and estimated grand mean PRx (ie. average 

per patient) from the two optimal models:  PRx ~ Sx_a (Figure 7.5A), and PRx ~ Sx_a + Mx_a (Figure 

7.5B).  As can be seen, each model shows a strong linear correlation between observed PRx and model 

estimated PRx, with a slope almost equal to that of line “y = x” (dotted straight line in Figure 7.5A and 

7.5B). 
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Figure 7.5: Linear Regression Between Observed and Estimated PRx – Using Estimated PRx From Two Best LME Models 

 

a.u. = arbitrary units, ICP = intracranial pressure, LME = linear mixed effects, MAP = mean arterial pressure, PRx = pressure reactivity index (correlation between ICP and MAP). 
Panel A: LME model – PRx ~ Sx_a (random effects with intercept and Sx_a), Panel B: LME model – PRx ~ Sx_a + Mx_a (random effects with intercept, Sx_a and Mx_a).  Coef = 
coefficients, form linear model between observed PRx and model estimated PRx.  Dotted straight line – represents the relationship “y = x”, for comparison the two models. 
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Finally, Figure 7.6 displays the Bland-Altman plots for Fisher transformed grand mean data (ie. average 

per patient), assessing the difference between observed and estimated PRx for each model (Figure 7.6A 

and Figure 7.6B). Both plots display good agreement between the observed and estimated PRx values 

for each model, within limits.  Of note, that the model estimates PRx well for values between +0.50 and -

0.50 (approximately +0.46 and -0.46 in un-transformed data; the common clinical range), where outside 

of that the agreement deteriorates. 
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Figure 7.6: Bland-Altman Plots – Top Two LME Models – Observed versus Estimated PRx (FT Grand Mean Data) 

 

FT = Fisher transformed, LME = linear mixed effects. Panel A: Bland-Altman plot comparing observed versus estimated PRx for LME model – PRx ~ Sx_a (random effects in 
intercept and Sx_a), Panel B: Bland-Altman plot comparing observed versus estimated PRx for LME model – PRx ~ Sx_a + Mx_a (random effects in intercept, Sx_a and Mx_a). 
Horizontal bold dotted lines represent +/- 2 standard deviations in difference. Arrows denote margins of acceptable agreement between observed and estimated PRx, where 
outside of this range the agreement deteriorates.  *NOTE:  These values are FT values, where a transformed value of 0.5 is ~0.46 in un-transformed data. 
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7.1.4 Discussion 
 

Through the application of linear mixed effects modelling and accounting for the autocorrelative 

structure of PRx, via employing ARIMA modeling, models were produced which theoretically estimated 

PRx using non-invasive TCD autoregulation indices in TBI patients, Sx_a and Mx_a.  Furthermore, PRx 

was estimated with a correlation between observed and estimated of ~0.80, with acceptable agreement 

on linear regression and Bland-Altman analysis.  This is the first attempt at applying time series and 

linear mixed effects modelling of PRx, and has laid the ground for further exploration of complex time 

series analysis of high frequency data in TBI patients.   

Some important points should be highlighted in this study.  First, this is the first attempt at estimating an 

invasive autoregulation index, PRx, using non-invasive TCD measures, Sx_a and Mx_a.  This is preliminary 

attempt at incorporating the complexities of time series analysis in the modelling of PRx.  Models have 

been produced for estimating PRx, however, these are very preliminary and should be interpreted with 

caution. These results are promising for the future ability to estimate the “gold standard” PRx via non-

invasive means. Further, a strong relationship between non-invasive TCD derived measures of 

cerebrovascular reactivity and the invasive derived “gold-standard” PRx has been displayed, 

demonstrating that in fact PRx may be expressed in terms of these non-invasive measures.  As well, this 

paper identifies the strong link between two aspects of cerebral autoregulation, measures of cerebral 

blood flow (ie. TCD based CBFV) and measures of cerebral blood volume (ie. ICP).  Previous literature has 

displayed variable correlation between these measures. This study provides a highly important evidence 

of a strong link between the two and offers explanation of that relatively poor correlation. Second, the 

complexity of these models displays the difficulties in incorporating time series “real-time” analysis of 

high frequency physiological data from ICU monitoring.  The application of ARIMA modelling is complex 

and labor intensive to find the most parsimonious model for the variable of interest, PRx.  In order to 

ensure the appropriate modeling was applied, various iterative techniques were employed in both 

representative patient examples and a basic LME in the entire dataset.  Third, given the poor 

performance of the generalized fixed effects versions of the models, it is clear that there exists patient-

by-patient variability that impacts the ability to model PRx, supporting the application of LME modelling.  

This cannot be ignored, as see within the analysis.  This was confirmed via AIC, BIC, LL, ANOVA and 

correlation with observed PRx values. An important point for those wishing to employ generalized fixed 

effects models.  Thus, the application of a generalized fixed effects model is limited, based on the results 

from this dataset. Fourth, the BA analysis provided further confirmation that the estimated PRx from the 
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top 2 models, were in good agreement with the observed PRx values in the patients.  However, there is 

some bias evident within the BA plots (ie. the negative linear pattern seen), despite being within 

agreement throughout the normal range of PRx values typically encountered within the clinical setting 

(ie. -0.5 to +0.5). This particular bias indicates that the models slightly underestimate PRx. Thus, the 

model is not perfect, but still closely estimates PRx within acceptable degrees of agreement. Finally, 

again this is preliminary work and these models should not be employed clinically at this time to 

estimate PRx using non-invasive TCD measures.  Further analysis of these models and improvements 

need to occur before the reliability of their estimation can be determined. 

 

Limitations 

Some important limitations need to be highlighted.  First, this is a retrospective analysis of a 

heterogeneous patient cohort.  Thus, patient co-morbidity, injury pattern/burden and treatment 

heterogeneity may have impacted the recorded and archived high frequency signals utilized in the 

derivation of these autoregulation indices.   

Second, the ARIMA structure identified for PRx is only valid in this TBI patient sample.  The (2,0,2) ARIMA 

structure may not apply to other cohorts of TBI patients, or even other, perhaps longer recordings in the 

same patients.  It is possible that the autoregressive order “p” as well as the moving average order “q” 

may be much higher in other cohorts, depending on dynamical composition of time series.  

Furthermore, the ARIMA structure of PRx based on different update periods, averaging process and 

grouped averages (ie. mean hourly values, mean daily values, etc.) has not been explored within this 

study.   

Third, this cohort the signals appeared to fulfill the criteria for stationarity, based on various aspects of 

assessment.  Thus, a differencing order “d” was not applied in the ARIMA structure for PRx.  However, 

stationarity was only assessed within the 10 longest patient recordings, generalizing the results of the 

stationarity assessment to the rest of the patient dataset.  Thus, the short recordings not assessed could 

potentially have seasonality/trend which we did not account for.  Futhermore, it is possible that 

different populations of TBI patients, different methods of acquiring PRx and different averaging of the 

PRx data may introduce seasonality and trend to the data such that the signals become non-stationary.  

As well, the recordings were short, it may be that seasonality and trend were not appreciated in such 

short duration recordings, and longer recordings may display the need for a differencing order within 
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the ARIMA structure for PRx.  Much further evaluation of the autocorrelative structure for PRx and other 

high frequency physiologic variables in TBI is required.   

Fourth, the inclusion of PRx ARIMA structure within the LME modelling adds significant complexity to 

the final models derived for the general population.  This is a significant limitation to the application of 

these models broadly at this time.  If further studies confirm and improve upon the preliminary results 

displayed here, there is potential to automate this modelling and PRx estimation so that it is may 

become more accessible.  

Fifth, one could argue that the top 2 LME models displaying approximately 10 significant residual lags on 

the ACF plot indicates the model isn’t perfect.  This is correct, and possible a consequence of the short 

nature of the TCD recordings.  However, with p-values less than 1 X10-16, there exists confidence that 10 

residual lags would not inflate the p-values so much that statistical significance could be questioned 

within the LME models. 

Finally, the fact the generalized fixed effects models fail to display superiority to the LME models is a 

major limitation.  This indicates that there is substantial patient-to-patient variability, limiting the ability 

to apply these models to other patients and datasets.  Thus, at the current time, no general model can 

be offered for widespread use.  

 

7.1.5 Conclusions 
 

Through employing linear mixed effects modelling and accounting for the autocorrelative structure of 

PRx with ARIMA modelling, one can theoretically estimate PRx using non-invasive TCD based indices of 

cerebrovascular reactivity.  
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7.2 Application of New Robotic Doppler Technology 
 

Introduction 

The results of the studies detailed in 6.1, 6.2 and 6.3 provide a comprehensive assessment of the inter-

index relationships between cerebrovascular reactivity indices derived from MMM. Importantly, the 

association between Sx/Sx_a and the invasive ICP derived indices (PRx, PAx, and RAC) was highlighted in 

the relevant chapters.180–182  Furthermore, the results of 7.1 further confirm the strong relationship 

between PRx and Sx_a.184 

Based on these results, the only major limitation regarding this identified relationship is that the TCD 

recordings were short in nature, limited by the technique.  One potential last aspect to explore is the 

relationship between ICP and TCD derived indices in longer recordings, in order to assess the impact of 

recording length on the co-variance and improve our models of PRx estimation using non-invasive TCD 

indices.  Finally, such data could allow for prediction of PRx using non-invasive TCD measures.   

Recent advances in robotics have led to the development of robotically driven TCD probes for extended 

duration recordings, integrated with automated algorithms for MCA CBFV detection and optimization of 

recorded signal intensity.  To date, these devices have not been applied the neurocritically ill. To obtain 

longer recordings, this technology was applied in moderate/severe TBI patients within the NCCU at 

Addenbrooke’s Hospital for the purpose of this thesis.  This section highlights this newly applied 

technology, with the results of the prospective validation study of PRx and Sx_a inter-index 

relationships/modelling found in the section to follow, section 7.3. 

 

Methods: 

From of November 2017 to April 2018, in place of the regular TCD devices (Doppler Box (DWL 

Compumedics, Singen, Germany) or Neuroguard (Medasonic, Fremont, CA, USA)), the Delica EMS 9D 

robotic TCD (Delica EMS 9D System, Shenzen Delica Medical Equipment Co. Ltd., China; 

http://www.delicasz/com) system was applied for bilateral MCA CBFV recording in moderate and severe 

TBI patients within the NCCU at Addenbrooke’s Hospital, University of Cambridge.  TCD monitoring is 

considered part of standard NCCU patient care, as such formal patient or proxy consent was not 

required. The timing to application of TCD based monitoring varied from patient to patient, typically 



 

181 
 

initiated between 24 hours to 10 days post-TBI. A total of 20 patients were able to be recorded with the 

device during the 6-month trial period. 

All patients were intubated and sedated given the severity of their TBI, with ICP target of less than 20 

mm Hg, and CPP greater than 60 mm Hg. ABP was obtained through radial arterial lines connected to 

pressure transducers (Baxter Healthcare Corp. CardioVascular Group, Irvine, CA).  All patients had a 

frontally situated cranial bolt (Technicam Ltd, Newton Abbot, UK), for parenchymal ICP monitoring 

(Codman ICP MicroSensor; Codman & Shurtleff Inc., Raynham, MA), and cerebral microdialysis (M 

Dialysis AB, Stockholm, Sweden).  Finally, bifrontal near infrared spectroscopy was also applied (NIRO-

200 or NIRO-200NX, Hamamatsu Photonics Ltd, Japan). 

We recorded all physiologic signals in digital high frequency format (50 Hertz (Hz) or higher) using ICM+ 

software (Cambridge Enterprise Ltd, Cambridge, UK, http://icmplus.neurosurg.cam.ac.uk). This was 

installed and run directly off the Delica monitor. 

The following sections will describe the device and outline the advantages/disadvantages of the system 

within the moderate/severe TBI population.  Finally, summary conclusion regarding the device are 

made. 

 

The Device – An Overview: 

 The Probes/Robotic Drive 

The Delica EMS 9D robotic TCD system is a portable TCD system allowing for bilateral simultaneous MCA 

insonation.  The standard probes available with the system are 1-2 MHz Doppler ultrasound probes, 

each attached to a separate robotic drive.  The entire drive/probe construct is encased within a tough 

plastic shell and supported using a head-band type frame (Figure 7.7A).  An option exists for the probes 

to be surrounded by a small rubber ring around its periphery, which is designed to hold ultrasound gel 

for longer, allowing for preserved signal quality. Figure 7.7 displays various pictures of the Delica EMS 9D 

system.  
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Figure 7.7: Delica EMS 9D Robotic TCD Probe and Headband 

 

TCD = transcranial Doppler. Panel A: TCD probe (black circular object) held with robotic drive as one construct within plastic 
casing.  Medial view – where probe contacts patient for transtemporal insonation of the middle cerebral artery. Neoprene pad is 
also seen on medial aspect of head-band. Panel B: Lateral view of robotic drive/TCD probe construct. Displays wing-nut 
attachment to head-band holder, via “inverted U-shaped” plastic bracket.  Panel C: Anterior view of head-band displaying plastic 
component and wheel ratchet system for tightening.  Panel D: Full view of head-band with bilateral robotic drive/TCD probes 
attached.   
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The head-band frame is a composite of plastic and Velcro straps with fabric (Figure 6.8C and 6.8D).  The 

diameter of the head-band may be adjusted using either the Velcro straps, or the ratcheting wheel 

located on the front of the head band (Figure 7.7C).  Ideal location of the band is just above the orbital 

margins.  Near the temporal windows, the head-band frame contains plastic inverted “U-shaped” pieces 

following the course of the superior temporal line, meant for mounting the robotic drive/TCD probe 

construct (Figure 7.7B).  The is accomplished using wing-nut fasteners.  The entire head-band is padded 

with exchangeable Neoprene inserts, for comfort (Figure 7.7A). 

 

 The Delica TCD Software 

The Delica EMS 9D comes with its own specially design software for recording TCD signal.  This provides 

both an easy to use interface with the robotic drive system, and continuously updating CBFV waveforms 

and M-mode signals.  Furthermore, the left side of the screen provides both simultaneous left and right 

CBFV waveforms at various depths of insonation, allowing for selection of the optimal depth for 

recording.  Various other more complex functions are available within the software, such as microemboli 

detection, however focus will not be on these, given the goal was to assess the basic ability to record in 

critically ill TBI patients.  Figure 7.8 Displays the software interface. 
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Figure 7.8: Delica EMS 9D TCD Software Interface 

 

TCD = transcranial Doppler. Panel A: Displays right middle cerebra artery real time blood flow velocity waveform.  Panel B: 
Displays sequential “look ahead” view of right middle cerebral artery, providing sequential real time cerebral blood flow velocity 
waveforms at various depths of insonation.  Panel C: Search robotic signal acquisition function window, displaying the pattern at 
which the TCD probe is automatically moved.  Panel D: Directional robotic signal acquisition function window, displaying the 
patter which the TCD probe is moved, changing the angle of insonation.  Note: panel C and D, the various points of insonation 
are color coded to represent strength of signal, this can be appreciated via different shadings in this greyscale picture. 
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Finally, the robotic drive system carries 4 main functions:  scan, search, direction, and track. Scan is an 

automated algorithm which moves the TCD probe position in a square grid pattern, insonating at each 

spot, assessing for MCA CBFV signal intensity and providing a color code for its findings (black = poor/no 

signal found, red = good; with colors ranging from blue, to green, to yellow, to orange, to red).  It must 

be acknowledged that the amount that the probe can change in position is limited, so large position 

corrections still required manual manipulation. After completion of the grid, the proprietary automated 

algorithm then chooses the best position.  The search function provides an automated circular search 

pattern around the initial starting point, changing both probe position and insonation angle.  As with the 

scan function, it insonates each spot, finding the optimal signal intensity for a final position.  The 

directional function alters the TCD probe angle, using an automated algorithm, with the goal of finding 

the optimal insonation angle. It should be noted, at any point, the operator can manually change the 

probe position using the direction touch pad on the screen.  

Finally, the track function is enabled after the user selects the optimal position of insonation.  This 

function is designed to automatically detect any deterioration in signal quality/intensity, and then 

automatically adjust the TCD probe (both via position and angle), using a proprietary algorithm, to 

restore optimal signal.  Figure 7.9, demonstrates TCD CBFV signal recorded over a 4-hour period, 

displaying continuous uninterrupted acquisition of maximum envelope flow velocity signal which 

retained good quality without the need of any manual adjustments over the whole duration of 

recording. 
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Figure 7.9: TCD CBFV Signal – Over 4 Hour Recording Session 

 

CBFV = cerebral blood flow velocity, cm = centimeter, FV = flow velocity, sec = seconds, TCD = transcranial Doppler.  *Diagram 
depicts continuous uninterrupted FV signal over 4+ hours of recording.  Two windows on bottom of image depict signal 
waveforms from beginning (bottom left) and end (bottom right) of the recording, demonstrating preserved high-quality signal 
throughout the duration of the lengthy recording period. 

 

Application in Moderate/Severe TBI – Initial Impression - Advantages and Disadvantages 

The Delica EMS 9D system was applied in moderate/severe TBI patients who were intubated, sedated 

and had other multi-modal monitoring in situ (ie. both invasive and non-invasive).  The typical patient 

set-up can be seen in Figure 7.10, including a triple-bolt (ICP, Licox, and microdialysis) with bifrontal 

NIRS.  
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Figure 7.10: Application of Robotic TCD System in TBI Patient with Multi-modal monitoring 

 

Patient has triple bolt located in left frontal area, with bifrontal NIRS pads applied (all images).  Delica TCD head-band can be 
seen crossing the forehead, just above the orbital rims.  Wheel for ratchet tightening of headband can be seem (both upper left 
and right images).  Robotic drive/TCD probe can be seen over transtemporal window, insonating the MCA (upper right and lower 
left images). 
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Advantages 

With above described set-up, extended length recordings were possible, with non-interrupted, good 

quality TCD signals.  The TCD probe held ultrasound gel for 4 hours without any drying issues or need for 

re-application. Both the recording length and gel integrity duration are far longer than most standard 

TCD systems can provide.  Furthermore, bilateral MCA TCD was captured, in the presence of all other 

multi-modal monitoring devices described, confirming its applicability in the multi-monitoring 

moderate/severe TBI patient.     

The head-band appeared to be comfortable, with the padding protecting surgical wounds from injury, 

and rarely moving once secured.  Once in situ, the head-band, with attached robotic drive/TCD probes 

tolerated patient turning in each patient, without loss of CBFV waveform or intensity.  Furthermore, two 

patients underwent portable chest x-ray while recording, with no change in signal intensity throughout 

this procedure.  Finally, one patient underwent a bedside chest-tube insertion without change in signal 

quality. 

The robotic drive system worked well, with the search and directional functions aiding with set-up and 

re-acquisition of signal if it needed to be optimized.  The algorithms for these two functions appeared to 

work well, finding the optimal angle and position of insonation.   

 

Disadvantages 

The system suffered from a few important initial issues/limitations, which require highlighting.  The main 

issues stemmed from initial poor real-time functioning of certain aspects of the robotic drive system.  As 

mentioned above, the search and direction functions appear to work satisfactorily.  However, the two 

other functions (scan and track), within the initial version of the system, were less useful.  The scan 

function, within all patients recorded, failed to select automatically the appropriate optimal position for 

insonation.  This occurred during repeated attempts.  As a result, it was elected to manually position the 

probe using the CBFV waveform and M-mode, selecting an appropriate starting position and depth for 

insonation.  The search and direction functions were then applied, which provided improvement and 

overall optimization of the signal acquired.  This issue was raised with the manufacturer, who responded 

promptly with a software update, leading to a remedy to the scan function. This was subsequently 

trialed on additional patients, confirming its functionality and fix to the previous issues.  
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As well, with the initial software version, the track function rarely appeared to work.  This was a 

disappointment, as the hope with this function is that the drive would automatically correct for any shift 

in the probe during recording.  There were two issues we found with this function in the initial software 

version.  First, despite being enabled, it was rarely triggered, even in the rare case when the 

headframe/probe shifted and lost signal.  Second, when the track function was triggered, one could 

audibly identify that the robotic drive was attempting to move the TCD probe, however it never 

appeared to accurately correct the probe for signal loss.  Both issues were likely a result of inefficiencies 

in the embedded algorithm for the track function.  As with the scan function, concerns were raised with 

the manufacturer and resolved with a subsequent, more recent version of the software.  Trialing this 

updated software version on additional patients, the track function was correctly engaged during shift of 

the probe, and corrected the probe position/angle, optimizing the CBFV signal. 

Finally, as observed that in one patient with scalp soft tissue bruising, the ratcheting head-band 

triggered a sustained intra-cranial pressure elevation above 20 mm Hg lasting 5 minutes, with an initial 

baseline ICP of 10 to 15 mm Hg. This was promptly resolved by re-adjusting the head-band.  In this one 

patient however, the sedation was relatively light, and thus the ICP elevation was likely secondary to 

pain experienced during the head-band tightening. Nevertheless, this is an important potential 

complication to highlight. 

 

Summary of Experience: 

The current Delica EMS 9D robotic TCD system provides the ability to obtain 4+ hours of continuous, 

uninterrupted bilateral TCD recordings in critically ill TBI patients, undergoing other various 

invasive/non-invasive multi-modal monitoring.  Further, the automated algorithms aid in TCD set-up and 

optimization of signal intensity.   
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7.3 Predicting Pressure Reactivity Index Using TCD 
 

7.3.1 Introduction 
 

Given the results of section 7.1 of this thesis,184 the next natural step is to explore the ability to predict 

PRx using non-invasive TCD measures, such as Sx_a and/or Mx_a. This has never been attempted before, 

given complexity of analysis and limitations surrounding acquisition of continuous longer uninterrupted 

TCD recordings.  The goal of this study was to outline the first experience at predicting PRx using non-

invasive Sx_a, derived from extended duration robotic TCD recordings (see section 7.2 for description of 

set-up). 

 

7.3.2 Methods 
 

Patient Population 

The data utilized in study consisted of part of a prospective observational study conducted over a 6-

month period.  All patients suffered from moderate to severe TBI and were admitted to the 

neurosciences critical care unit (NCCU) at Addenbrooke’s Hospital, Cambridge, during the period of 

November 2017 to May 2018.  Patients were intubated and sedated given the severity of their TBI.  

Invasive ICP monitoring was conducted in accordance with the BTF guidelines.150  Therapeutic measures 

were directed at maintaining ICP less than 20 mm Hg and CPP greater than 60 mm Hg.   

 

Ethics 

TCD monitoring is a part of standard intermittent cerebral monitoring within the NCCU.  The application 

of the newer robotic TCD device (see description below) was therefore in alignment with usual care, 

negating the need for formal direct or proxy consent.  All data related to patient admission 

demographics and high frequency digital signals from monitoring devices were collected in an entirely 

anonymous format, negating the need for formal consent, as in accordance with institutional research 

committee policies.  
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Signal Acquisition 

This was conducted identically to the methods described in section 6.3.2.  TCD assessment of MCA CBFV 

was conducted via a robotic TCD system, the Delica EMS 9D (Delica, Shenzhen, China, 

www.delicasz.com). This system allows for continuous extended duration recording of MCA CBFV, using 

robotically controlled TCD probes, with automated correction algorithms for probe shift.   

The goal of the initial study from which this data was analyzed was to obtain extended duration 

recording of ICP, near infrared spectroscopy (NIRS) and TCD.  This study aimed to record 3 to 4 hours of 

continuous data from all devices simultaneously, given the previous work on inter-index relationships 

focused on recording durations of only 0.5 to 1-hour duration due to limitation of conventional TCD.  As 

such, this data set also proved to be ideal for complex time series modelling and forecasting analysis.  

Only patients with 3 or more hours of continuous, uninterrupted, ICP and TCD recordings were utilized 

for this study.  Thus, only a sub-population of the group from the original study were utilized for this 

analysis. 

 

Signal Processing 

This was conducted identically to the methods described in section 6.3.2. 

 

Cerebrovascular Reactivity Indices 

This was conducted identically to the methods described in section 6.3.2.  Diastolic flow index (Dx_a) 

was not derived in this study, given the previous work documenting poor time series and linear mixed 

effects (LME) model performance in relation to PRx (section 7.1.3).  Data for this analysis were provided 

in the form of a minute by minute time trends of the parameters of interest for each patient.  This was 

extracted from ICM+ in to comma separated values (CSV) datasets, which were collated into one 

continuous data sheet (compiled from all patients).   
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Statistical Analysis 

Similar statistical modelling approach as seen in the previous work for time series data and LME model 

creation were followed with this data set (section 7.1.2), and almost identical statistical description to 

this work will be found below.184  Minute-by-minute time series data was utilized for the entirety of the 

analysis described below.  Statistical significance was set at an alpha of less than 0.05.  All statistical 

analysis was conducted using R statistical software (R Core Team (2016). R: A language and environment 

for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-

project.org/). The following packages were utilized during the analysis: dplyr, ggplot2, ggthemes, tseries, 

forecast, lubridate and lme4. 

The statistical methods sections to follow will outline the techniques employed to:  A. estimate the 

autocorrelative structure of PRx in time series, B. create an accurate model estimating PRx using non-

invasive TCD indices of cerebrovascular reactivity via application of linear mixed effects (LME) modelling 

(with embedded PRx autocorrelative error structure) , C. assess the correlation and agreement between 

model based estimated PRx and the observed PRx values, and D. forecast PRx using the derived LME 

models and estimated PRx time series data.  For LME model creation/training the 1st 80% of the data 

was utilized for each patient, with the remaining 20% utilized for the prediction of PRx using the LME 

models. 

 

 Autocorrelative Structure of PRx 

Prior to being able to model PRx using TCD based indices, it was necessary to determine the 

autocorrelation structure of PRx.  Box-Jenkin’s autoregressive integrative moving average (ARIMA) 

modelling was employed for PRx  to determine:  the autoregressive structure of order “p”, the 

differencing factor or order “d”, and the moving average component of order “q”; commonly denoted 

“(p,d,q)”.163,164  The autoregressive structure refers to the dependence of PRx at time t (denoted PRxt) on 

previous measures of PRx (ie. called “lags”), say at time t-1 (ie. PRxt-1), and so forth (ie. say to PRxt-p), 

with the order “p” indicating how many previous PRx measures PRxt is dependent on.  The differencing 

component refers to the need to make a non-stationary signal stationary, with seasonal or trending 

structure within a time series indicating non-stationary character.  Stationarity is defined as the presence 

of a stable variance, autocorrelative structure and mean over time.  Stationarity can be introduced by 

differencing previous PRx measures from current measures, thus removing seasonality or trending 
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structure to a time series, and allowing further modelling to occur.  The differencing order “d” refers to 

how many previous terms should be included in the differencing process.  Finally, the moving average 

term refers to the need to include the error in the model at time t (ie. εt) based on its association in 

previous measured error terms (ie. εt-q).  The order “q” for the moving average component refers to how 

many previous error terms are to be included within the ARIMA model.  Assuming stationarity (ie. no “d” 

order), a general ARMA model can be represented by the following formula: 

 

PRxt = c + εt +  ∑ 𝜑
𝑝
𝑖=1 𝑃𝑅𝑥t-i + ∑ 𝜃𝜀

𝑞
𝑖=1 t-i     (7.1) 

Where:  PRxt = PRx at time t, PRxt-i = PRx at time t-i, εt = error at time t, εt-i = error at time t-i, c = 

constant, φ and θ are parameters at time t-i, p = autoregressive order, and q = moving average order. 

The following process was conducted on all patient recordings, in order to derive the optimal ARIMA 

structure for PRx time series. This would provide insight into the approximate best ARMA structure for 

future LME models. 

 First, data had already been artifact cleared and had a 10-second moving average filter applied to the 

data, leading to some data smoothing (as described above in the signal processing section).  Thus, the 

initial step for the ARIMA modelling focused on determining stationarity of the signal.  This was 

assessed, and confirmed, using 3 methods.  First, the autocorrelation function (ACF) correlogram was 

assessed for PRx, looking for a rapid decline in significant lags, indicating a stationary signal.  Second, the 

Augmented Dickey Fuller (ADF) test was employed to assess for stationarity. Third, seasonal 

decomposition was employed using the like-named function in R for each PRx time series, which 

employs locally weighted scatterplot smoothing (LOESS) to identify seasonal and trend components to a 

time series. All above processes confirmed stationarity within the patient examples. 

Second, the autoregressive structure of PRx was assessed using the ACF correlograms and partial 

autocorrelation function (PACF) correlograms.  ACF correlograms were assessed to see how many 

previous consecutive terms (ie. “lags”) PRx may be dependent upon.  Similarly, the PACF correlograms 

were assessed to see how many non-consecutive previous lags, PRx may be dependent upon. Significant 

level on ACF/PACF correlograms is set at a correlation level of +/-(2/N1/2),163 where N = sample size. 

Sequential ARMA models for PRx we run, by varying the order “p” from 0 to 3, while also varying the 

moving average order “q” from 0 to 3.  Given the analysis for stationarity confirmed a stationary signal 
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within the 10 patient examples, we fixed the differencing order “d” at 0. In doing so, 16 separate ARMA 

models were generated for PRx within each patient.  Model superiority was assessed by Akaike 

Information Criterion (AIC) and Log-Likelihood (LL), with the lowest AIC and highest LL indicating the best 

ARMA model for PRx.159,163,164,166,188  In addition, model superiority was assessed via residuals, model ACF 

and PACF correlograms, with an adequate model represented by random residuals, and ACF/PACF failing 

to display any lags reaching significance.   

 

LME Modelling of PRx Using TCD Derived Indices 

LME modelling was conducted on the entire patient population. LME modelling involved various fixed 

linear models, and a random component introduced into the intercept and independent variable 

coefficient (based on individual patient).  The PRx ARIMA structure was embedded within the LME 

models (ie. (2,0,2)).  This analysis was done on the full data set, deriving LME models for each patient as 

well as for the entire population. The following LME models were assessed, initially with random 

intercept only (stratified by patient), as above:  PRx ~ Sx_a, PRx ~ Mx_a, and PRx ~ Sx_a + Mx_a.  All 

models were corrected using maximum likelihood estimation method.  Adequacy of the LME model was 

assessed via QQ plots and the residuals distribution plot, with linear shape to the QQ plots and normally 

distributed residuals confirming validity of the model.   

Models were compared using AIC, Bayesian Information Criterion (BIC), LL and analysis of variance 

(ANOVA) testing.  Superior models were attributed to the lowest AIC, lowest BIC and highest LL.  

Significance between models as assessed by ANOVA testing was set at a p < 0.05. The top 2 superior LME 

models were reported in detail, with a final assessment of model adequacy through ACF/PACF plots of 

the model residuals, observing for a minimal number of significant lags which decay rapidly.163,164,166   

Generalized fixed effects models were also created based on the top two LME models. However, these 

models performed poorly, with substantially inferior AIC, BIC and LL values.  In addition, these general 

fixed effects models maintained continuous significant lags in the residuals, further indicating poor 

modelling of PRx.  Hence, these models will not be discussed further.  
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Observed versus Estimated PRx 

The correlation between the observed (minute-by-minute) PRx values in the population versus those 

estimated from our optimal two LME models was assessed using Pearson correlation coefficient.  Linear 

regression plots were then produced between observed and estimated PRx for the best two LME 

models, using grand mean data (ie. mean value per patient).  Finally, Bland-Altman plots were produced 

to assess agreement between the observed and estimated PRx values, using grand mean Fisher 

transformed data (ie. Fisher transform applied to both observed and estimated PRx). Bland-Altman 

determination was conducted via the following method:  estimated PRx – observed PRx. 

 

Predicting PRx  

PRx was then predicted based on the top two LME models from the above discussed methods. Using the 

LME models themselves and the remaining 20% patient data not used in LME creation, predicted PRx 

(pPRx) values were derived from observed Sx_a and Mx_a values within this data subset. The predicted 

values were then compared to the actual observed PRx values during this period using Pearson 

correlation, linear modelling and Bland-Altman analysis. Bland- Altman determination was conducted via 

the following method:  pPRx – observed PRx. 

 

 

7.3.3 Results 
 

a. Patient Demographics 

A total of 10 patients with moderate/severe TBI had sufficient quality TCD signals (ie. at least 3 – 4 hours 

duration and uninterrupted).  The mean age for this population was 34.5 +/- 17.0 years, with 8 patients 

being male.  The median admission GCS was 7 (IQR 4 to 8), with median admission GCS motor score of 4 

(IQR 2 to 5). The mean duration of ICP/TCD recording was 223.2 +/- 38.4 minutes. Only 80% of the total 

recording duration for each patient was utilized for model formation and training, with the remaining 

20% reserved for predictive testing. 
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b. Building the Model to Estimate PRx 

 

ARIMA Modelling of PRx  

In all 10 patients the ARIMA structure of PRx was investigated in order to determine the appropriate 

structure for future LME modelling of the entire population.  Upon inspection of the ACF/PACF plots, 

ADF test results and seasonal decomposition techniques, it was determined that no significant trend or 

seasonality were present in any of the 10 patient recordings. Thus, no differencing order “d” was 

introduced.  Next, sequential ARMA models were produced for each patient, varying the autoregressive 

order “p” and moving average order “q”, from 0 to 3.  Across all patients the optimal ARMA model for 

PRx was deemed to be a p of 2 and q or 2 (ie. (2,0,2)), based on the principal of parsimony, and the 

lowest AIC and highest LL. Figure 7.11 displays the ACF and PACF plots of PRx for one patient with 4 

hours of continuous recording, demonstrating a rapid decay in significant lags (implying stationarity). 

Figure 7.12 demonstrates the ARMA model for PRx in the same patient, with an ARMA structure of 

(2,0,2).  This figure demonstrates a lack of significant lags on ACF and PACF plots, with randomly 

distributed residuals, confirming adequacy of the model.  
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Figure 7.11: ACF and PACF for PRx – Patient Example 

 

ACF = autocorrelation function, a.u. = arbitrary units, PACF = autocorrelation function, PRx = pressure reactivity index (correlation between intracranial pressure and mean arterial 

pressure). Panel A: ACF plot displaying a rapid decay of significant PRx lag, suggesting stationarity. Panel B: PACF plot, also displaying rapid decay of significant PRx lags.  



 

198 
 

 

 

 

 

Figure 7.12: ACF, PACF and Residual Plots for PRx (2,0,2) ARIMA Model – Patient Example 

 

ACF = autocorrelation function, PACF = autocorrelation function, PRx = pressure reactivity index (correlation between 

intracranial pressure and mean arterial pressure). Panel A: displays the residual plot for the ARIMA model in this patient 

example. Panel B: ACF plot displaying no significant lags with (2,0,2) ARIMA model for PRx. Panel C: PACF plot, also no significant 

lags with (2,0,2) ARIMA model for PRx.  
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c. Model Development and Accuracy Assessment 

LME Modelling of PRx Using TCD Indices 

Using the (2,0,2) PRx ARMA structure identified within the individual patients, various LME models 

were produced, embedding the PRx ARMA structure within. Table 7.3 displays the model 

characteristics for those LME models derived from Sx_a and Mx_a, introducing random effects by 

patient into the intercept and coefficients. Model superiority was confirmed via ANOVA testing, with 

the lowest AIC/BIC and highest LL, indicating superiority. The top two LME models were:  PRx ~ Sx_a 

(AIC = -1564.957, BIC = -1510.159, LL = 792.4786) and PRx ~ Sx_a + Mx_a (AIC = -1597.345, BIC = -

1520.627, LL = 812.6726); with random effects by patient introduced into both the coefficients and 

intercept.  The QQ and residual density plots for these top two LME models can be seen in Appendix 

E, displaying normally distributed residuals, indicating model adequacy. The ACF and PACF plots for 

these two models can also be found in Appendix E, displaying acceptable rapid decay of significant 

lags.  

 

Population Based Estimation of PRx Using Sx_a and Mx_a 

Using the top two LME models described above, PRx was estimated using the available Sx_a and 

Mx_a measures in the training data set. Grand mean values were calculated per patient and plotted 

against the observed PRx values from the data.  A strong linear relationship was seen between 

estimated and observed PRx using both LME models.  Figure 7.13 displays estimated versus 

observed PRx plots for each model. The PRx ~ Sx_a model displayed a correlation between 

estimated and observed values of 0.998 (95% CI = 0.990 – 0.999; p<0.0001), while the PRx ~ Sx_a + 

Mx_a model had a correlation between estimated and observed PRx values of 0.997 (95% CI = 0.988 

– 0.999; p<0.0001).  Bland-Altman analysis on Fisher transformed results displayed acceptable 

agreement, with slight underestimation bias in the estimated PRx for both models.  This bias in the 

Bland-Altman plots was seen in our previous work as well.  Appendix E contains the results of the 

Bland-Altman analysis comparing the estimated to observed PRx for both LME models. 
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Table 7.3:  LME Models with PRx (2,0,2) ARIMA Structure – Entire Population 

LME Model  PRx ARIMA Structure AIC BIC  LL 

Fixed Effects Random Effects P q 

PRx ~ Sx_a intercept 2 2 -1543.672 -1499.833 779.8362 

PRx ~ Mx_a intercept 2 2 -1502.348 -1458.509 759.1738 

PRx ~ Sx_a + Mx_a intercept 2 2 -1550.704 -1501.385 784.3520 

PRx ~ Sx_a Intercept + Sx_a 2 2 -1564.957 -1510.159 792.4768 

PRx ~ Mx_a Intercept + Mx_a 2 2 -1516.367 -1461.569 768.1836 

PRx ~ Sx_a + Mx_a Intercept + Sx_a + Mx_a 2 2 -1597.345 -1520.627 812.6726 
AIC = Akaike Information Criterion, ARIMA = auto-regressive integrative moving average, BIC = Bayesian Information Criterion,  FVm = mean TCD flow velocity, FVs = TCD based 
systolic flow velocity, ICP = intra-cranial pressure, LL = log likelihood, LME = linear mixed effects model, p = auto-regression parameter for ARIMA model, MAP = mean arterial 
pressure, PRx = pressure reactivity index (correlation between ICP and MAP), q = moving average parameter for ARIMA model, Sx_a = systolic flow index (correlation between TCD 
based FVs and MAP), TCD = transcranial Doppler. *Note: bolded value represents the most appropriate ARIMA structure and LME model for the patient population tested, based 
on principal of parsimony, lowest AIC and BIC.   There was no integrative parameter (ie. “d” parameter) included within the ARIMA models, given stationarity testing during 
patient examples (see appendix A and Methodology section of manuscript). 
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Figure 7.13: Linear Regression Between Observed and Estimated PRx – Using Estimated PRx From Two Best LME Models 

 

 

a.u. = arbitrary units, ICP = intracranial pressure, LME = linear mixed effects, MAP = mean arterial pressure, PRx = pressure reactivity index (correlation between ICP and MAP). 
Panel A: LME model – PRx ~ Sx_a (random effects with intercept and Sx_a), Panel B: LME model – PRx ~ Sx_a + Mx_a (random effects with intercept, Sx_a and Mx_a).  Coef = 
coefficients, form linear model between observed PRx and model estimated PRx.  Dotted straight line – represents the relationship “y = x”, for comparison to our two models. 
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d. Predicting PRx Using Non-Invasive TCD Parameters 

Using the top two LME models derived above, predicted PRx (pPRx) was derived via the 20% of data not 

used in model construction/training.  Each patient had 20% of their recording data excluded from the 

prior model formation/training, each with ICP and TCD derived variables, amounting to ~30 to 60 

minutes of minute-by-minute data per patient. For each LME model, the Sx_a and Mx_a values from this 

new data were entered into the models to derive pPRx. Grand mean values were then calculated per 

patient.  For the model PRx ~ Sx_a, the correlation between predicted and observed PRx values was 

0.797 (95% CI = 0.336 – 0.949; p=0.006). Similarly, for the model PRx ~ Sx_a + Mx_a, the correlation 

between predicted and observed PRx was 0.763 (95% CI = 0.258 – 0.941; p=0.011). Predicted and 

observed PRx values displayed a linear association, though not 1:1.  Figure 7.14 displays the predicted 

versus observed PRx plots for the top two LME models. Bland-Altman analysis of Fisher transformed 

data demonstrated acceptable agreement between predicted and observed PRx values, with similar 

underestimation of the predicted PRx values as seen in the training data previously. All Bland-Altman 

test results for comparing pPRx to observed PRx can be found in Appendix E.  
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Figure 7.14: Linear Regression Between Observed and Predicted PRx – Using Predicted PRx From Two Best LME Models 

 

 

a.u. = arbitrary units, ICP = intracranial pressure, LME = linear mixed effects, MAP = mean arterial pressure, PRx = pressure reactivity index (correlation between ICP and MAP). 
Panel A: LME model – PRx ~ Sx_a (random effects with intercept and Sx_a), Panel B: LME model – PRx ~ Sx_a + Mx_a (random effects with intercept, Sx_a and Mx_a).  Coef = 
coefficients, form linear model between observed PRx and model estimated PRx.   
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7.2.4 Discussion 
 

Through the application of time-series ARMA and LME modelling in this pilot study, for the first time the 

prediction of PRx using non-invasive TCD measures (ie. Sx_a and Mx_a) has been described.  Some 

important aspects of this preliminary pilot work require highlighting. 

First, through the application of ARMA modelling of PRx, and LME modelling of PRx using TCD measures, 

in this unique cohort of patients with extended duration continuous TCD recordings, LME models that 

accurately estimate observed PRx can be produced.  This is similar to prior retrospective work in a large 

TB population with TCD.184  Further, the superior two models from this current cohort were of similar 

ARMA and mixed-effects structure to those discovered in the prior work, as confirmed through the 

principal of parsimony.  This provides some validation of the previous work, and also provides some 

evidence to support these models regardless of the duration of TCD recording analyzed. In addition, the 

bias on Bland-Altman analysis comparing observed to estimated PRx displayed the same 

underestimation bias seen in the previous work, with acceptable agreement. Finally, is provides 

prospective confirmatory evidence of the strong relationship between PRx and Sx_a in longer duration 

recordings. 

Second, as with the previous work,184 the general fixed effects versions of the top two models performed 

poorly in estimating PRx, with continuous significant autocorrelation in the model residuals. As 

mentioned within the methods section, these models were subsequently not reported further. This 

again confirms patient-by-patient heterogeneity, limiting the extrapolation of this work to other general 

TBI populations.  

Third, for the first time in the literature the ability to predict PRx using non-invasive TCD surrogates has 

been demonstrated.  Comparing pPRx to the observed PRx values in the top two models, the correlation 

is of moderate strength with a linear relationship between the two and acceptable agreement on Bland-

Altman analysis. However, a similar underestimation bias for pPRx is present on Bland-Altman analysis. 

Further, the relationship between pPRx and the observed PRx was not 1:1, indicating the prediction is 

not perfect.  Further work is required to optimize the prediction models. 

Finally, this work is based on only 10 patients and is entirely preliminary with results that are not 

generalizable at this time. Thus, this type of modelling and prediction of PRx should not be conducted 

outside of a research setting.  Much further work is required for validation.  
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Limitations 

Despite the interesting results of this analysis, there are some important limitations which require 

highlighting. 

First, as with the previous work in this area, the patient population was heterogeneous in terms of age, 

intra-cranial injury patterns and therapies directed at ICP/CPP goals.  These heterogeneities could impact 

signal fluctuations and the results obtained for the time series modelling conducted.  Though in 

comparison to the larger time series work in TBI, the results of the modelling within this preliminary pilot 

study were similar, as described above.184 

Second, patient numbers were small, at only 10.  For the purpose of this type of analysis the desire was 

to only look at patients with 3 to 4 hours of completely uninterrupted ICP and TCD recordings.  This 

limited the size of this unique patient population, given technical limitations around TCD.  Thus, the 

results here are quite preliminary and should be considered experimental at this point.  This 

requirement for interrupted continuous TCD is a significant limitation with the described modelling and 

forecasting processes, as conventional TCD is currently heavily limited by artifact and signal loss. The 

application of robotic TCD mitigated this in the study, however this technology is relatively new and not 

without limitations, including patient eligibility (ie. no decompressive craniectomy, no cervical spine 

immobilisation collars, etc.) and substantial cost. Furthermore, even with the application of robotic TCD, 

it still posed difficult to obtain continuous extended duration recordings.  As robotic and automatic TCD 

technology improves, it is expected to be able to obtain extended duration uninterrupted recordings 

throughout a patient’s ICU stay.  Thus, even though the current results are limited given patient 

numbers, they provide the platform for future applications once technology catches up with the 

demands of this type of modelling/prediction. 

Third, the ARIMA structure highlighted for PRx, and the LME models within this study may not be widely 

applied outside this population.  This was also mentioned in the previous publication on this topic.184  

There exists the potential for patient specific ARIMA structures, and thus the models described in these 

studies should not be applied clinically. Furthermore, as mentioned above, the general fixed effects 

versions of the top two models performed poorly in the estimation of PRx, with continuous significant 

residual lags.  This also suggests significant patient-by-patient heterogeneity, negating the extrapolation 

of these results to other general TBI populations at this time. Much further work on PRx, amongst other 
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physiologic measures in TBI, is required in larger patient populations in order to determine the exact 

high frequency time series behavior.  This is a work in progress for us currently.  

Finally, the statistical methodology employed within this study is quite complex, requiring numerous 

steps, and is fraught with difficulties. Thus, the wide spread applicability of these techniques is currently 

limited.  However, based on the results of this work with time series data in TBI, the plan is to develop 

custom functions for ICM+ software, allowing for a much more user-friendly application of such 

modelling and forecasting/prediction techniques.  Such functions will automate much of the analysis 

described in these works on time series (ie. sections 7.1 and 7.3), requiring limited user input.  This will 

hopefully bring this type of work to the wider clinical world for future multi-center validation studies.  

 

7.2.5 Conclusions 
 

Through the application of ARMA and LME modelling, it is possible to predict PRx using non-invasive TCD 

measures, such as Sx_a and Mx_a.  This is the first preliminary attempts at doing so.  Much further work 

is required prior to application within a clinical setting, as this the current work should be considered 

experimental at this time. 
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CHAPTER 8: CRITICAL THRESHOLDS FOR CEREBROVASCULAR REACTIVITY 

INDICES AND OUTCOME PREDICTION IN ADULT TBI 
 

*The study results described in sections 8.1 and 8.2 can also be found detailed in the following 

respective publications: 

1. Zeiler et al., J Neurotrauma. 2018; 35(10):1107-1115. doi: 10.1089/neu.2017.5472.152 

2. Zeiler et al., J Neurotrauma. 2018; 35(2):314-322. doi: 10.1089/neu.2017.5364.182 

 

8.1 ICP Derived Indices of Cerebrovascular Reactivity 
 

8.1.1 Introduction 
 

ICP derived continuous indices of cerebrovascular autoregulation are currently employed in some ICU’s, 

particularly in the MMM of TBI patients.11,12  The two most quoted ICP derived indices are PRx3 and 

PAx.15 As well, within Chapter 4 of this thesis, a new index of cerebrovascular reactivity, RAC, was 

explored.21  All three of these ICP based indices have been interrogated in experimental models, as 

described in Chapter 5 of this thesis, with some preliminary evidence to suggest they provide some 

measure of the LLA. 

To date, PRx has received most attention, both in terms of published literature and clinical application.  

PRx has displayed strong associations with patient outcome, with published thresholds of PRx associated 

with mortality and morbidity at 6 months in a mixed TBI population.9  The use of PRx as a surrogate 

assessment of cerebral autoregulatory status has received support from recent multi-modal monitoring 

consensus statements,11 and has been applied in the estimation of individual patient “optimal” CPP.144  

However, the basis for such use of PRx leaves some issues unanswered.  The PRx thresholds for poor 

functional outcome at 6-months (ie. PRx > 0) and mortality (ie. PRx > +0.25) were derived from a large 

cohort or heterogenous TBI patients, including some who were post-DC.9  PRx calculation is known to be 

impacted by craniectomy in TBI, making its reliability uncertain, at least initially, after removal of the 

calvarium.22  Furthermore, recent literature supports a potential superior capability of PAx over PRx in 

the prediction of patient outcome, within the subgroup of patients with “low” ICP (defined as less than 
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15 mm Hg).15  However, the literature addressing PAx in TBI is limited, with few studies suggesting an 

association with outcome, and no definition of clear threshold values that predict outcome. Finally, 

based on the results from Chapters 4 and 5 of this thesis, RAC shows promise as an index of 

cerebrovascular reactivity.21  

Most critically for clinical use, there is no documented comparison of these three ICP-derived indices as 

they relate to mortality and functional outcome at 6 months, and the critical thresholds of each of these 

indices which are associated with poor outcome.  Furthermore, all descriptions of outcome associations 

and threshold values for these indices is confounded inclusion of patients following DC, and their 

performance has not been described in a purely non-DC TBI patient population, potentially mitigating 

the poorly understood impact of craniectomy on these continuous indices of cerebrovascular reactivity.   

The goal of this study in non-DC TBI patients was to:  A. compare the association to outcome of all three 

ICP derived indices (PRx, PAx and RAC), B. compare the thresholds of each index which are most 

associated with morbidity and mortality, C. conduct both outcome and threshold analysis for these 

indices across various timeframes/lengths of signal recording. 

 

8.1.2 Methods 
 

Patient Population and Demographic Data Acquisition 

This population is identical to the one described in Chapter 4.21 All patients (n=358) were admitted to 

the NCCU at Addenbrooke’s Hospital, Cambridge, during the period of March 2005 to December 2016.  

In addition, only patients with at least 6 hours of recorded signals were included in this study. Patients 

suffered either moderate to severe TBI, or mild TBI and subsequently deteriorated to a point where they 

required ICP monitoring and sedation and mechanical ventilation as part of ICP management.  

Treatment received during the recording periods included standard ICP-directed therapy, with an ICP 

goal of less than 20 mm Hg and CPP goal of greater than 60 mm Hg.   

The following patient demographic data was obtained from the database:  age, sex, admission Glasgow 

Coma Scale (GCS), and patient outcome at 6 months.  Patient outcome was assessed via the Glasgow 

Outcome Score (GOS) at 6 months and stored prospectively within the database.  For purpose of the 

outcome and threshold analysis, we dichotomized the GOS into two binary outcomes of interest: A. 

Favourable (GOS of 4 or 5) vs. Unfavourable (GOS of 3 or less), and B. Alive vs. Dead. 
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Signal Acquisition 

See Chapter 4.2 for details on signal acquisition. 

 

Signal Processing 

See Chapter 4.2 for details on signal processing.  The following variables were derived: ICP, MAP, AMP, 

PRx, PAx, RAC and RAP.  

Finally, data for this analysis were provided in the form of a minute by minute time trends of the 

parameters of interest for each patient.  This was extracted from ICM+ in to CSV datasets, which were 

collated into one continuous data sheet (compiled from all patients).  From this, separate data sheets 

for:  entire recording period for each patient (n=358), 1st 24 hours of recording (n= 340), 1st 72 hours of 

recording (n=277), 1st 5 days of recording (n=217), 1st 7 days of recording (n=163), and 1st 10 days of 

recording (n=101) were produced in order to assess the association to outcome, and thresholds, across 

various durations of recording.  The difference in patient numbers between time periods of analysis is 

secondary to both death and discontinuation of high-resolution physiologic recording.  

This staged analysis was conducted in order to determine if the outcome relationships and thresholds 

seen in the total recording period (as used in previous works on PRx and PAx), continue to hold true 

within various recording periods after TBI. Within these separate data sheets, a grand mean per patient 

was calculated for each index across the duration of that recording period and subsequently utilized for 

the final statistical analysis. 

 

Statistics 

Statistics were performed utilizing XLSTAT (Addinsoft, New York, United States; 

https://www.xlstat.com/en/) add-on package to Microsoft Excel (Microsoft Office 15, Version 

16.0.7369.1323) and R statistical software (R Core Team (2016). R: A language and environment for 

statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-

project.org/).  For all statistical tests described, alpha was set at 0.05 for significance. 
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General Statistics 

Simple descriptive statistics for the non-DC cohort were utilized to summarize the patient demographics. 

Outcome Analysis 

First, a univariate binary logistic regression (ULR) analysis was performed utilizing the three indices (PRx, 

PAx, and RAC) and two binary outcomes of interest:  A. Favourable vs. Unfavourable, and B. Alive versus 

Dead; both at 6 months post-TBI.  

Second, multi-variate binary logistic regression (MLR) was performed using a “baseline” model, 

including: age, sex, admission GCS, mean ICP, mean AMP, MAP and mean CPP.  This “all inclusive” 

baseline model was selected in order to include all physiologic variables monitored during the patient’s 

ICU stay.  This multi-variate analysis was exploratory only, designed to determine which ICP derived 

cerebrovascular reactivity index was superior in outcome prediction when all other physiologic variables 

were taken into account.  Database records did not contain information regarding pupillary response, 

GCS motor response, extra-cranial injury burden or admission CT scan injury characteristics.  Thus, in the 

absence of this data, used in current TBI prognostic models, we focused on the demographic data 

available to us (ie. Age, cumulative GCS and Sex) in addition to the physiologic variables. The goal was 

not to produce the most significant model for overall outcome prediction, with the minimum number of 

variables. The goal was, based on the available data, determine which ICP derived index of 

cerebrovascular reactivity was superior, taking into account as much demographic and physiologic 

information available.  Subsequently, each index was added individually to the baseline model in order 

to see the difference in both outcomes of interest.  Then all indices were added to the baseline model in 

order to determine which indices remained statistically significant. Finally, PAx and RAP were added to 

the baseline model, to allow for comparison with the RAC based model – given it is believed that RAC 

contains both information pertaining to cerebrovascular reactivity and compensatory reserve, based on 

the results from Chapter 4. 

Both of ULR and MLR techniques described above were performed for each recording period:  entire 

recording, 1st 24 hours, 1st 72 hours, 1st 5 days, 1st 7days and 1st 10 days.  Strength of relationship to 

the outcomes of interest were reported via AUC, with bold AUC’s reaching a p<0.05.    For ULR, 

statistically significant differences in AUC’s between PRx, PAx and RAC were tested via Delong’s test. 
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Threshold Analysis 

A sequential chi-square method of thresholding was conducted.  This technique for threshold analysis 

has been described in detail within other publications on continuous autoregulation/cerebrovascular 

reactivity indices in TBI, including PRx.  Sequential 2 by 2 binary outcome contingency tables were 

constructed for each outcome:  6-month dichotomized Favourable vs. Unfavourable GOS, and 6 month 

Alive vs. Dead.  Patients were grouped by Favourable vs. Unfavourable GOS, and Alive vs. dead status 

based on PRx, PAx or RAC index values above or below sequential thresholds (in 0.05-point steps in the 

index value).  Pearson chi-square was then determined for each 2 by 2 table.   

The chi-square test statistic value was then plotted against index threshold (PRx, PAx or RAC).  The index 

threshold value with the largest statistically significant (p<0.05) Chi-square value was then deemed the 

threshold for that outcome of interest (ie. 6-month Favourable vs. Unfavourable outcome, or 6-month 

mortality).  Patients with index values above these thresholds are at highest risk of worse outcome 

(Unfavourable GOS or mortality).  

This entire process was repeated for each index (PRx, PAx and RAC) during each monitoring period:  

entire recording period, 1st 24hours, 1st 72 hours, 1st 5 days, 1st 7 days and 1st 10 days.  This was done 

to determine the potential variation in PRx, PAx and RAC thresholds associated with different lengths of 

recording. 

 

8.1.3 Results 
 

Patient Demographics 

In total, there were 358 patients included for analysis.  All patients suffered mild to severe TBI.  In 

addition, all patients had at least 6 hours of high frequency signals recorded.  The mean age was 40.6 +/-

17.2 years (range: 16 to 89) with a median admission Glasgow Coma Scale score of 7 (IQR = 3 to 9; range: 

3 to 13).  There were 272 males (76.0%), and the mean length of signal recording was 189.1 +/-151.1 

hours (range: 8.5 to 1033.0 hours; median = 152.7 hours).  The mean ICP, MAP, CPP, AMP, PRx and RAC 

were:  14.057 +/-7.6 mm Hg, 91.3 +/- 7.9 mm Hg, 77.5 +/- 8.5 mm Hg, 2.3 +/- 1.4 mm Hg, 0.046 +/-0.173, 

and -0.350 +/- 0.254; respectively.  A further breakdown of patient demographics can be seen in Table 

8.1, based on the recording period analyzed. 
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Table 8.1:  Patient Demographics by Recording Length Analyzed 

 Recording Period 

 Total  1st 24hr 1st 72hr 1st 5d 1st 7d 1st 10d 

N 358 340 277 217 163 101 

Mean Age 
(yrs) 

40.6 +/- 
17.2 

40.6 +/- 
17.2 

40.2 +/- 
17.0 

38.78 +/- 
15.8 

39.2 +/- 
15.1 

38.4 +/- 
14.0 

Number of 
Males 

272 258 212 169 124 83 

Median 
Admission 
GCS (IQR) 

7.0 (3 to 9) 7.0 (3 to 10) 7.0 (3 to 9) 6.0 (3 to 9) 7.0 (3 to 
9.5) 

7.0 (3 to 9) 

Mean ICP 
(mm Hg) 

14.1 +/-7.6 15.6 +/- 8.6 14.9 +/- 7.4 15.1 +/- 6.2 15.4 +/- 4.5 15.9 +/- 4.2 

Mean AMP 
(mm Hg) 

2.34 +/- 
1.39 

2.63 +/- 
1.67 

2.68 +/- 
1.43 

2.44 +/- 
1.15 

2.48 +/- 
1.12 

2.41 +/- 
0.96 

Mean CPP 
(mm Hg) 

77.5 +/- 8.5 75.2 +/- 9.0 76.3 +/- 7.4 77.4 +/- 7.3 78.8 +/- 5.9 80.2 +/- 5.8 

MAP (mm 
Hg) 

91.2 +/- 7.9 90.5 +/- 9.3 91.2 +/- 1.4 92.5 +/- 7.7 94.2 +/- 7.4 96.1 +/- 7.2 

Mean PRx 0.05 +/- 
0.17 

0.01 +/- 
0.22 

0.00 +/- 
0.19 

0.00 +/- 
0.16 

0.01 +/- 
0.15 

0.00 +/- 
0.12 

Mean PAx -0.06 +/-
0.20 

-0.07 +/- 
0.24 

-0.07 +/- 
0.20 

-0.08 +/- 
0.18 

-0.07 +/- 
0.16 

-0.07 +/- 
0.14 

Mean RAC -0.35 +/- 
0.25 

-0.36 +/- 
0.29 

-0.38 +/- 
0.26 

-0.38 +/- 
0.23 

-0.38 +/- 
0.20 

-0.40 +/- 
0.18 

AMP = pulse amplitude of ICP, CPP = cerebral perfusion pressure, d = day, GCS = Glasgow Coma Scale, hr = hours, ICP = intra-
cranial pressure, MAP = mean arterial pressure, mm Hg = millimeters of Mercury, N = number, yrs = years, PAx = pulse amplitude 
index (correlation between AMP and MAP), PRx = pressure reactivity index (correlation between ICP and MAP), RAC = correlation 
between AMP and CPP. 

 

 

Association with 6-Month Outcome – PRx, PAx and RAC 

 Univariate Binary Logistic Regression (ULR) 

A summary of the ULR AUC’s for each index, during each recording period can be seen in Table 8.2 

(bolded AUC’s indicate a p<0.05).  In summary, RAC demonstrated superior AUC’s for prediction of both 

unfavourable outcome and for mortality; across all periods of recording analyzed.  In analyzing the entire 

recording period, the AUC’s for prediction of unfavourable outcome were:  PRx (0.573, p<0.0001), PAx 

(0.606, p<0.0001), and RAC (0.655, p<0.0001).  Similarly, the AUC’s for mortality were:  PRx (0.651, 

p<0.0001), PAx (0.705, p<0.0001), and RAC (0.722, p<0.0001).  The AUC differences between RAC vs. 
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PRx, and PAx vs. PRx reached statistical significance (ie. p<0.05) in all recording periods (except the “1st 

10 days” recording group) tested, using Delong’s test.  However, the difference in AUC between RAC and 

PAx, failed to reach statistical significance, regardless of the recording period analyzed. The “1st 10 days” 

recording group failed to display statistically significant relationships between the indices and the two 

binary outcomes. 

 

Multivariate Binary Logistic Regression (MLR) 

Table 8.3 displays the AUC’s for the various prognostic models tested: baseline model, baseline + PRx, 

baseline + PAx, baseline + RAC and baseline + “All Indices”; across all time periods of recording that were 

analyzed (bold AUC’s indicate p<0.05).  In summary, the baseline model demonstrated significance for 

ICP, Age and admission GCS for both binary outcomes, across the majority of the recording periods 

analyzed.  This also held true in the majority of the models in which one or more of the cerebrovascular 

reactivity indices was added, across all time periods. Only the “1st 10 days” recording group failed to 

reach statistical significance between any of the models and the binary outcomes analyzed. 
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Table 8.2:  Univariate Binary Logistic Regression – A/D and F/U AUC’s Based on Various Recording Periods 

Recording 

Period 

PRx PAx RAC 

A/D 

AUC 

p-value F/U 

AUC 

p-

value 

A/D 

AUC 

p-value F/U 

AUC 

p-value A/D 

AUC 

p-value F/U 

AUC 

p-value 

Total  0.651 <0.0001 0.573 0.002 0.705 <0.0001 0.606 0.0001 0.722 <0.0001 0.655 <0.0001 

1st 24hr 0.650 <0.0001 0.580 0.002 0.688 <0.0001 0.612 0.0001 0.677 <0.0001 0.632 <0.0001 

1st 72hr 0.613 0.0001 0.517 0.144 0.671 <0.0001 0.579 0.011 0.693 <0.0001 0.603 0.001 

1st 5d 0.596 0.003 0.508 0.279 0.667 0.001 0.591 0.007 0.700 <0.0001 0.621 0.001 

1st 7d 0.583 0.038 0.550 0.221 0.660 0.009 0.621 0.006 0.704 0.0001 0.660 0.0001 

1st 10d 0.546 0.643 0.519 0.793 0.585 0.265 0.548 0.186 0.630 0.086 0.612 0.050 

A/D = alive/dead, AMP = pulse amplitude of ICP, AUC = area under the receiver operating curve, CPP = cerebral perfusion pressure, d = day, F/U = favourable/unfavourable GOS 
(Favourable = 4 or 5; Unfavourable = 3 or less), hr = hour, ICP = intracranial pressure, MAP = mean arterial pressure, PAx = pulse amplitude index (moving correlation coefficient 
between AMP and MAP), PRx = pressure reactivity index (moving correlation coefficient between ICP and MAP), RAC = moving correlation coefficient between AMP and CPP. 
*NOTE:  bold values are those p-values which reached the threshold of statistical significance (p<0.05). 
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Table 8.3:  Multivariate Logistic Regression – A/D and F/U AUC’s Based on Various Recording Periods 

MODEL Recording Period 

Total (n=358) 1st 24hr (n=340) 1st 72hr (n=277) 1st 5d (n=217) 1st 7d (n=163) 1st 10d (n=101) 

A/D AUC F/U AUC A/D 

AUC 

F/U 

AUC 

A/D 

AUC 

F/U 

AUC 

A/D 

AUC 

F/U 

AUC 

A/D 

ACU 

F/U 

AUC 

A/D 

AUC 

F/U 

AUC 

Baseline  0.802 0.718 0.765 0.716 0.759 0.710 0.780 0.720 0.755 0.730 0.741 0.743 

+ PRx 0.822 0.727 0.804 0.732 0.802 0.717 0.807 0.718 0.803 0.734 0.741 0.752 

+ PAx 0.836 0.728 0.798 0.728 0.797 0.720 0.796 0.723 0.790 0.740 0.739 0.744 

+ RAC 0.863 0.745 0.811 0.742 0.821 0.725 0.820 0.733 0.817 0.764 0.744 0.740 

+ All 

Indices 

Included 

0.862 0.748 0.816 0.738 0.823 0.723 0.825 0.735 0.819 0.763 0.751 0.761 

+PAx 

and RAP 

0.847 0.741 0.806 0.739 0.819 0.722 0.803 0.727 0.803 0.760 0.743 0.743 

A/D = alive/dead, AMP = pulse amplitude of ICP, AUC = area under the receiver operating curve, CPP = cerebral perfusion pressure, d = day, F/U = favourable/unfavourable GOS 
(Favourable = 4 or 5; Unfavourable = 3 or less), hr = hour, ICP = intracranial pressure, MAP = mean arterial pressure, n= number, PAx = pulse amplitude index (moving correlation 
coefficient between AMP and MAP), PRx = pressure reactivity index (moving correlation coefficient between ICP and MAP), RAC = moving correlation coefficient between AMP 
and CPP, RAP = moving correlation coefficient between AMP and ICP. *NOTE:  bold values are those p-values which reached the threshold of statistical significance (p<0.05). **All 
“MODEL’s” contained:  Age, Sex, admission Glasgow Coma Scale (GCS), mean ICP, mean CPP, MAP, mean AMP. ***All Indices Included model – despite including PRx, PAx and 
RAC, RAC was the only index to reach statistical significance in the model across all recording periods (except 1st 10d – given nothing reached significance secondary to patient 
numbers in this cohort), with PRx and PAx both dropping out of the model. 
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In evaluating the baseline model with the addition of PRx, PAx or RAC, RAC displayed superior AUC’s for 

both binary outcomes, across all periods analyzed.  Furthermore, when all indices were added into the 

MLR, both PRx and PAx failed to reach significance, with RAC being the only ICP derived cerebrovascular 

reactivity index that remained significant.  Finally, the RAC multivariate model also outperformed the 

PAx + RAP multivariate model across all time periods analyzed. This held true across all time periods 

analyzed.  

 

Critical Thresholds Associated with Morbidity and Mortality – PRx, PAx and RAC 

 

The sequential chi-square thresholding was conducted for each index with each binary outcome, across 

all recording periods.  Appendix F displays the chi-square versus index threshold plots for each index, in 

each recording period.  In summary, using the entire recording period, PRx displayed a threshold of 

+0.35 for both unfavourable outcome (p=0.0001) and mortality (p<0.0001). This is contradictory to the 

previous thresholding study (which included DC patients), displaying thresholds of +0.05 and +0.25, 

respectively.9   For the same recording period, PAx displayed a threshold of +0.05 for unfavourable 

outcome (p<0.0001) and +0.25 for mortality (p<0.0001).  Finally, for the same recording period, RAC 

displayed a threshold of -0.10 for unfavourable outcome (p<0.0001), and -0.05 for mortality (p<0.0001).  

Figure 8.1 displays the chi-square value vs. index threshold plots for PRx, PAx and RAC, using data from 

the entire recording period. 
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Figure 8.1:  Threshold Plots for PRx, PAx and RAC – Entire Recording Period 

 

A/D = Alive/Dead outcome (black line), AMP = pulse amplitude of ICP, CPP = cerebral perfusion pressure, F/U = favourable/unfavourable outcome (grey line), ICP = intra-cranial 
pressure, MAP = mean arterial pressure, P = p-value, PAx = pulse amplitude index (correlation between AMP and MAP), PRx = pressure reactivity index (correlation between ICP 
and MAP), RAC = correlation between AMP and CPP. 
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Critical Thresholds of PRx, PAx and RAC Based on Length of Recording Analyzed 

 

Given that the duration of signal recording varies significantly between patients, we were interested to 

explore differences in critical thresholds of PRx, PAx and RAC across various durations of recording.  

Figure 8.2 displays the critical thresholds for PRx, PAx and RAC (for both binary outcomes) plotted 

against the duration of recording used for analysis.  Of interest is the significant variation in thresholds of 

both PRx (Figure 8.2A) and PAx (Figure 8.2B), with loss of significance of some threshold values using 7 

and 10 days of recording.  In contrast, RAC (Figure 8.2C) displayed more consistent and stable critical 

thresholds, for both binary outcomes, regardless of the length of recording period utilized within the 

analysis. 
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Figure 8.2:  Critical Thresholds of PRx, PAx and RAC – Based on Length of Recording Analyzed 

 

A/D = Alive/Dead outcome, AMP = pulse amplitude of ICP, CPP = cerebral perfusion pressure, F/U = favourable/unfavourable 
outcome, ICP = intra-cranial pressure, MAP = mean arterial pressure, P = p-value, PAx = pulse amplitude index (correlation 
between AMP and MAP), PRx = pressure reactivity index (correlation between ICP and MAP), RAC = correlation between AMP 
and CPP. *NS = not statistically significant threshold value for this period of recording analyzed. Number of patients in each time 
period analyzed:  Total = 358, 1st 24 hours = 340, 1st 72 hours = 277, 1st 5 days = 217, 1st 7 days = 163, 1st 10 days = 101. 
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8.1.4 Discussion 
 

Using both univariate logistic regression and multi-variate logistic regression, and critical threshold 

analysis of PRx, PAx and RAC in a solely non-DC TBI cohort, some important relationships have been 

identified which need to be emphasized.   

First, RAC, explored in Chapter 4, displays the highest AUC for prediction of both mortality and 

unfavourable outcome, when compared to PRx and PAx.  This was replicated across all periods of 

recording that were analyzed. This finding is critical, given that PRx is the most commonly quoted 

continuous autoregulation index in TBI.  The fact that RAC may be superior to PRx for outcome 

prediction warrants its consideration for further evaluation in terms of clinical application.   

Second, RAC also displayed superior AUC’s for both binary outcomes using MLR, compared to the 

models including PRx or PAx.  This was again replicated across all recording periods analyzed.  

Furthermore, when all three indices were added into the MLR modelling, RAC was the only one to 

remain statistically significantly associated with both mortality and unfavourable outcome, across all 

recording periods analyzed.  Finally, the RAC model also outperformed the PAx + RAP model across all 

time periods analyzed.  RAP is the moving correlation coefficient between AMP and ICP, and is believed 

to represent pure compensatory reserve and not cerebrovascular reactivity.  RAC is believed to 

represent an index which carries information regarding both cerebrovascular reactivity and cerebral 

compensatory reserve, as demonstrated in Chapter 4.  Thus, the multivariate model including PAx (an 

index of cerebrovascular reactivity) and RAP (an index of compensatory reserve) should theoretically 

carry similar or superior outcome prediction capacity compared to a multivariate model with RAC alone.  

The MLR model with RAC alone outperformed all other multi-variate models tested, including the model 

with PAx and RAP, indicating that RAC appears superior and carries additional outcome predictive 

capabilities.  These models with RAP alone are not discussed in detail given they do not focus on 

cerebrovascular reactivity/autoregulation, as the goal of this study was to explore the outcome 

predictive capabilities of ICP derived indices of cerebrovascular reactivity/autoregulation. 

Third, critical thresholds of cerebrovascular reactivity indices for both mortality and unfavourable 

outcome vary depending on the length of recording utilized.  This holds true for all three indices.  Using 

the entire recording period (which has been described in previous autoregulation index thresholding 

studies), the thresholds for both Favourable/Unfavourable and Alive/Dead were: +0.35/+0.35 for PRx, 

0/+0.25 for PAx, and -0.10/0 for RAC.  The ~0.34 to 0.45 lower value for the threshold of RAC, compared 
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to PRx, is not surprising given previous literature demonstrating this approximate relationship across 

~2.7 million data points.  

Fourth, the important point of these thresholds, regardless of which time period is utilized, is the fact 

that DC patients were excluded.  The literature supporting aberrations in PRx post-craniectomy22 raise 

concerns around the previously defined critical thresholds.9  Thus, these new thresholds may be more 

reliable for outcome prediction in those patients not undergoing a decompressive craniectomy.  For DC 

patients, it still remains unclear the utility of PRx, at least in the initial phases, post-craniectomy and the 

reliability of the critical thresholds in this population. 

Fifth, the chi-square critical threshold analysis indicated that RAC had more consistent and stable critical 

thresholds for favourable/unfavourable and Alive/Dead binary outcomes at 6 months.  Compared to PRx 

and PAx, which display greater variation in critical threshold values based on the duration of recordings 

analyzed, RAC may prove to be more stable, at least in the non-DC TBI population, for the application of 

critical thresholds for mortality and unfavourable outcome.  In addition, PRx and PAx had issues with 

statistical significance of their critical thresholds for recording lengths of 7 and 10 days, while RAC did 

not.  Thus, for critical threshold analysis of long recording periods (ie. greater than 7 days), RAC may be 

superior.  However, it must be acknowledged that the number patients who had at least 7 days or 10 

days of recording, in order to be included in those analysis groups, were much less than the “all comers” 

entire recording, or 1st 24 hours of recording, groups.  Thus, it is possible that we were underpowered 

to reach significance in these specific recording periods. 

Finally, the “grey” zone of PRx, as defined by previous thresholding analysis as the index value range 

between the two critical thresholds of +0.05 and +0.25, was not identified within this cohort of 358 non-

DC patients.  This raises suspicion of the potential influence that the DC patients had on the previous 

critical threshold analysis.9  Thus, the thresholds identified for PRx within this current study, may 

represent the true thresholds for non-DC patients.   

  

Limitations 

Despite the interesting results, there are some important limitations to highlight.  First, this study was 

conducted retrospectively on a prospectively collected database of mild to severe TBI patients, with 

archived high frequency signal data.  Thus, there exists significant heterogeneity in injury pattern, 

systemic injury, co-morbidities and treatment within the NCCU, all of which could significantly impact 
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the outcome and threshold analysis.  Furthermore, while on the NCCU, patients were actively 

undergoing ICP and CPP directed therapies which would influence both the parent recorded signals, and 

the subsequently derived autoregulatory indices.   

Second, the results of both the outcome and threshold analysis for the “1st 10 days” recording period 

should be interpreted with caution.  This analysis was underpowered in this sub-group of patients, with 

only 101 included.  This would account for the failure to reach statistical significance in the ULR, MLR 

and thresholding studies described.   

Third, the study presents promising results related to RAC in both ULR/MLR outcome prediction and 

consistency/stability in critical thresholds, with better prognostic associations in the cohort.  However, 

the exploration of RAC in this context is very limited, and the definitive superiority of RAC over either 

PRx or PAx remains unproven and requires further confirmation.  Similarly, while the data suggest that 

RAC may have benefits for measurement of optimum CPP, its performance needs to be formally 

compared to PRx.  

Fourth, the use of the sequential chi-square technique for critical threshold analysis could be considered 

controversial.  It was elected to proceed with this method for two main reasons.  First, sharply defined 

thresholds for the indices were desired, which is not afforded through standard ROC analysis.  Second, 

given the previous work on critical thresholds for continuous autoregulation indices in TBI, similar 

threshold analysis was conducted to allow for comparison with prior results. 

 

8.1.5 Conclusions 
 

In this cohort of non-DC TBI patients, RAC appears to be superior to PRx and PAx in 6-month outcome 

prediction, using both univariate and multivariate logistic regression; across all time periods of recording 

analyzed.  Further, RAC displayed more consistent and stable critical thresholds associated with 

mortality and unfavourable outcomes at 6 months, compared to PRx and PAx.   
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8.2 TCD Systolic Flow Index  
 

8.2.1 Introduction 
 

Chapters 6 and 7 detailed the strong association between TCD based Sx/Sx_a and the ICP derived indices 

of cerebrovascular reactivity.180–182,184 Regardless of the ability to model the “gold standard” PRx via 

Sx_a, there still exists the potential to utilize Sx/Sx_a as a primary measure of cerebrovascular reactivity.  

Currently, the only TCD index with defined critical thresholds is Mx, despite previous literature 

suggesting Sx has a stronger association with 6-month outcome in adult TBI.  Thus, the aim of this study 

was to explore and provide critical thresholds for 6-month outcomes in adult TBI patients. 

 

8.2.2 Methods 
 

Patient Population and Demographic Data Acquisition 

The identical patient cohort described in sections 6.3 and 7.1 was utilized for this study.182,184  Details 

surrounding this cohort can be found in these sections.  Only 281 patients had outcome information 

available for this study. The following patient demographic data was obtained from the database:  age, 

sex, admission GCS, and patient outcome at 6 months.  Patient outcome was assessed using the GOS at 

6 months, and stored prospectively within the database.   For purpose of the outcome and threshold 

analysis, we dichotomized the GOS into two binary outcomes of interest: A. Favourable (GOS of 4 or 5) 

vs. Unfavourable (GOS of 3 or less), and B. Alive vs. Dead. 

 

Signal Acquisition 

Refer to section 6.3 and 7.1 for details. 

 

Signal Processing 

Refer to section 6.3 and 7.1 for details.   
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Cerebrovascular Reactivity Indices 

The cerebrovascular reactivity indices were derived in a similar fashion, as described in Chapter 3. The 

following indices were used for this outcome analysis:  PRx, PAx, RAC, Mx, Mx_a, Sx, Sx_a, Dx and Dx_a.  

 

Statistics 

General Statistics 

Data were provided on a minute-by-minute basis for the duration of the recordings, for each recording.  

Data was also extracted into CSV documents.  We then produced individual recording grand means for 

each index. Statistical analyses were performed in XLSTAT (Addinsoft, New York, United States; 

https://www.xlstat.com/en/) add-on package to Microsoft Excel (Microsoft Office 15, Version 

16.0.7369.1323) and R statistical software (R Core Team (2016). R: A language and environment for 

statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-

project.org/).  Tests for normality were performed using the Shapiro-Wilks test for all indices and 

measured variables.  All indices and variables were determined to be non-parametric in nature.  Alpha 

was set at 0.05 for all results describing a p-value.    

 

Outcome Analysis and Critical Thresholds 

To assess the association with patient 6-month outcome, two binary outcomes were of interest:  A. 

Favourable (GOS 4 or 5) vs. Unfavourable (3 or less), and B. Alive vs. Dead.  Initially simple univariate 

logistic regression was performed, comparing each of the ICP indices (PRx, PAx, RAC) and the TCD indices 

(Mx, Mx_a, Sx, Sx_a, Dx, and Dx_a) to both binary outcomes. We reported area under the receiver 

operating curve (AUC) and p-values for each. 

Next, to define critical thresholds for Sx and Sx_a, a sequential chi-square method of thresholding was 

conducted.  This technique for threshold analysis has been described in detail within other publications 

on continuous autoregulation indices in TBI, including PRx and Mx.  It was conducted identical to that 

described in section 8.1.2.  
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8.2.3 Results 
Univariate Logistic Regression 

A univariate logistic regression analysis was performed for each index with both binary outcomes.  A 

summary of the AUC’s and p-values for each index and binary outcome can be seen in Table 8.4.  

These results support previously described univariate logistic regression analysis results for TCD based 

indices.   Sx displayed AUC’s of 0.630 (p=0.005) and 0.646 (p=0.001) for its association with alive/dead 

and favourable/unfavourable outcomes at 6 months, respectively.  Sx_a displayed AUC’s of 0.582 

(p=0.068) and 0.632 (p=0.001) for its association with alive/dead and favourable/unfavourable outcomes 

at 6 months.  Thus, Sx is superior to Mx and Dx, and Sx_a is superior to Mx_a and Dx_a. Further, Sx_a 

appears worse at outcome prediction, compared to Sx.  Finally, Sx displayed broadly similar AUC 

magnitude to the ICP derived indices for both binary outcomes. 

Dx displayed an AUC of 0.592 (p=0.012) for unfavourable outcome at 6 months. Dx failed to reach 

significance in univariate logistic regression for its association with 6-month mortality (AUC = 0.560, p = 

0.215).  Similarly, Dx_a failed to reach significance in logistic regression for both 6-month mortality and 

unfavourable outcome (AUC = 0.494, p = 0.792; AUC = 0.563, p = 0.116, respectively). 

Table 8.4:  Binary Univariate Logistic Analysis – Comparing Indices of Autoregulation to Dichotomized Outcomes 

 “Favourable” vs. 
“Unfavourable” 
Outcome – AUC 

“Favourable” vs. 
“Unfavourable” 
Outcome – p value 

“Alive” vs. 
“Dead” 
Outcome – AUC 

“Alive” vs. 
“Dead” 
Outcome – p 
value 

“Invasive” 
Indices 

    

PRx 0.560 0.035 0.593 0.004 
PAx 0.613 0.002 0.648 0.001 
RAC 0.579 0.028 0.640 0.002 
Mx 0.640 0.001 0.614 0.010 
Sx 0.646 0.001 0.630 0.005 
Dx 0.592 0.013 0.560 0.216 

“Non-invasive” 
Indices 

    

Mx_a 0.617 0.001 0.559 0.213 
Sx_a 0.632 0.001 0.582 0.068 
Dx_a 0.563 0.118 0.494 0.792 

AUC = area under the receiver operating curve, The described indices are Pearson correlation coefficients between various 
variables:  PRx (between ICP and MAP), PAx (between AMP and MAP), RAC (between AMP and CPP Mx (between FVm and CPP), 
Mx_a (between FVm and MAP), Sx (between FVs and CPP), Sx_a (between FVs and MAP), Dx (between FVd and CPP), Dx_a 
(between FVd and MP). 
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Critical Thresholds for Sx and Sx_a 

The sequential chi-square thresholding was conducted for both Sx and Sx_a, with each binary outcome.  

Using the entire recording period, Sx displayed a threshold of -0.15 for unfavourable outcome 

(p<0.0001) and -0.20 for mortality (p<0.0001). This is a much lower threshold compared to those 

described for Mx/Mx_a in previous publications. Figure 8.3 displays the chi-square vs. threshold plot for 

Sx. 

Similarly, Sx_a displayed thresholds of +0.05 (p=0.019) and -0.10 (p=0.0001) for alive/dead and 

favourable/unfavourable outcomes, respectively.   Of note, the chi-square test statistic and p-values for 

Sx_a were much worse across the entire sequential threshold analysis for Sx_a, compared to Sx.  This 

indicates that the strength of relationships for the thresholds defined for Sx_a are much less than those 

described for Sx. Figure 8.4 displays the chi-square value vs. index threshold plot for Sx_a, using data 

from the entire recording period. 

 

Figure 8.3:  6 Month Outcome Thresholds – Sx 

 

A/D = Alive/Dead outcome, CPP = cerebral perfusion pressure, FVs = systolic flow velocity, F/U = favourable/unfavourable 
outcome, MAP = mean arterial pressure, P = p-value, Sx = systolic flow index (correlation between FVs and CPP). 
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Figure 8.4: 6 Month Outcome Thresholds – Sx_a 

 

A/D = Alive/Dead outcome, CPP = cerebral perfusion pressure, FVs = systolic flow velocity, F/U = favourable/unfavourable 
outcome, MAP = mean arterial pressure, P = p-value, Sx_a = systolic flow index based on MAP (correlation between FVs and 
MAP). 

 

8.2.4 Discussion 
 

Univariate Logistic Regression Outcome Analysis 

Univariate logistic regression analysis displayed that Sx is superior to Mx and Dx in its association with 

both binary 6-month outcomes.  Similarly, Sx_a displayed superiority to Mx_a and Dx_a in its association 

with both binary 6-month outcomes.  This confirms previously described results.84,180  Of further interest, 

Sx displayed similar AUC’s to the ICP derived indices (PRx, PAx, and RAC) for both binary 6 month 

outcomes.  This univariate regression analysis confirms similarity in outcome prediction between Sx and 

the ICP derived indices, PRx/PAx/RAC. 
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Critical Thresholds Analysis 

Critical thresholds associated with 6-month outcome have been defined for both Sx and Sx_a. Some 

important points require highlighting. First, the thresholds for mortality and unfavourable outcome with 

Sx is -0.20 and -0.15 respectively.  These are lower than those previously describe for Mx, with mortality 

and unfavourable outcome thresholds defined at +0.05 and +0.30, using an identical process.  Thus, one 

cannot apply the same Mx based thresholds8 to other TCD based autoregulation indices. Furthermore, 

the threshold for worse outcomes with Sx are not located near zero or in positive values, meaning 

disrupted autoregulatory capacity of a magnitude likely to impact outcome may be present even with 

negative values for Sx. This is not seen in the two commonly quoted indices, PRx and Mx, where negative 

values are believed to denote “preserved autoregulation”, and thresholds for outcome association are 

always at or above zero. This emphasizes that “intact” cerebral autoregulation in TBI is a spectrum, not a 

binary phenomenon, with varying degrees of “intact” and “impared” autoregulation which may be 

detected differently via different MMM based measures.  

Second, there is a difference between the thresholds for Sx and Sx_a, with Sx_a displaying thresholds for 

mortality and unfavourable outcome at +0.05 and -0.10, respectively.  It appears the use of MAP during 

the calculation of Sx_a, shifts the thresholds for 6-month outcome towards more positive index values.  

Thus, even within Sx and Sx_a, we cannot assume that the thresholds associated with 6-month outcome 

are interchangeable.  However, it must be acknowledged that the chi-square test statistic and p-values 

for the Sx_a threshold analysis were less significant for all thresholds tested, compared to Sx.  Thus, the 

strength of the relationship with respect to the Sx_a thresholds is not as robust as those described for 

Sx.  This difference between Sx and Sx_a was mirrored within the univariate logistic regression analysis, 

which revealed that Sx was superior in both mortality and unfavourable outcome prediction at 6 

months.  The results from the logistic regression analysis for Sx and Sx_a mirror those previously 

published.84,180 

 

Limitations 

Despite having 281 patients included for the outcome and critical threshold analysis, the length of TCD 

recordings are relatively short.  “Short” recordings, defined as less than 30 minutes duration, were 

removed from the analysis in order to prevent limited recording periods from confounding the outcome 

and threshold analysis. Thus, the grand mean calculations for all indices were based on recordings 
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ranging from 30 minutes up to 2 or 3 hours in maximum duration.  However, despite using only the 

“longer” recordings, they only provide a “snap-shot” into autoregulation/cerebrovascular reactivity.  

Thus, using these limited recordings for outcome association studies is fraught with issues since the 

global outcomes used for threshold analysis reflect the constellation of physiologic and pathologic 

events suffered during the patient’s entire hospital course. 

 

 

8.2.5 Conclusions 
 

Sx and Sx_a provide superior 6-month outcome prediction, compared to Mx and Mx_a, with defined 

critical thresholds different than those described for Mx. Both systolic indices better differentiate 

between favourable-unfavourable outcome than alive-deead. 
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CHAPTER 9: INJURY BURDEN AS A DRIVER OF IMPAIRED 

CEREBROVASCULAR REACTIVITY IN ADULT TBI 
 

*The results of this study can also be found detailed in the publication:  Zeiler et al., J Neurotrauma. 

2018, 35(14):1569-1577. doi: 10.1089/neu.2017.5595..189 

9.1 Introduction 
 

Chapter 8 focuses on the association between various MMM derived cerebrovascular reactivity indices 

and thresholds with patient outcome in adult TBI.152,182 These thresholds may therefore characterize 

critical points in the loss of autoregulatory capacity/cerebrovascular reactivity, beyond which the burden 

of abnormal physiology impacts outcome.  However, despite a growing body of literature on these 

continuous ICP derived indices of cerebrovascular reactivity, very little is understood with regards to 

what drives impaired vascular reactivity after TBI.  Potential drivers of such a relationship include the 

severity and type of IC injury, the severity of EC injury, and/or the physiological response to injury.   

As mentioned in Chapter 2, one past study from Cambridge evaluated the association between 

intracranial injury burden and autoregulatory function in 126 patients post-TBI, and showed that PRx 

was more commonly abnormal in patients with Diffuse Injury Grade III, as compared to other diffuse and 

focal injury classifications, on the Marshall Scale.107 However, the Marshall grading system is just one of 

many available, and its summary descriptions do not provide a full characterization of the type, extent 

and severity of intracranial injury.  Further, the PRx outcome threshold of >0 used in this analysis may 

have been non-optimal, since a recent re-analysis suggests that its derivation may have been heavily 

confounded by inclusion of patients with decompressive craniectomy where different intracranial 

conditions apply. Consequently, there exists an imperfect understanding of how intracranial injury 

impacts on autoregulation following TBI, and there are no publications relating the severity of 

extracranial injury or post-injury physiology to the incidence of abnormal cerebral autoregulation.   

Understanding such relationships is important, since their elucidation could allow early patient 

stratification, and potentially reveal mechanistic targets for therapy.  Therefore, this study details 

exploration of these relationships in a large non-DC TBI patient population with archived high frequency 

digital ICU signals.  There were two main goals of this study:   
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1. Determine the association between admission IC injury burden (assessed by recognized CT 

scoring systems in TBI and an extensive CT based IC lesion database) and impaired cerebrovascular 

reactivity. 

2. Determine how the burden of EC injury relates to impaired cerebrovascular reactivity. 

 

9.2 Methods 
 

Patient Population and Demographic Data Acquisition 

This population is identical to that described in Chapters 4 and 8.1.21,152  Details regarding the population 

specifics can be found there. 

 

Intra-Cranial (IC) Injury Burden Data Acquisition 

All admission CT-head scans were accessed and archived retrospectively.  These scans were assessed by 

a qualified specialist neurosurgeon (the author of this thesis) for a variety of injury characteristics.  There 

was a vast amount of admission CT scoring systems and injury scales determined from the admission CT 

scans.  As such, this study was designed to be a very preliminary analysis into admission injury 

characteristics associated with impaired vascular reactivity, with the described associations to be 

considered exploratory in nature. This image analysis will be assessed in future prospective studies as 

part of CENTER-TBI.190 This IC CT injury database has been described in detail within Chapter 3.4 of the 

general methods. 

 

Extra-Cranial (EC) Injury Burden Data Acquisition 

As part of standard trauma and NCCU care, the admission total Injury Severity Score (ISS)191 and Acute 

Physiology And Chronic Health Evaluation II (APACHE II)192 score were determined for each patient as 

part of national audit requirements and were retrospectively available for this study. 

 

 



 

232 
 

Signal Acquisition 

See Chapter 4.2 for details on signal acquisition. 

 

Signal Processing 

See Chapter 4.2 for details on signal processing. PRx, PAx and RAC were derived for every patient. 

Finally, data for this analysis were provided in the form of a minute by minute time trends of the 

parameters of interest for each patient.  From this, data was extracted for; entire recording period for 

each patient (n=358), 1st 24 hours of recording (n= 340), and 1st 72 hours of recording (n=277) were 

produced in order to assess the association between IC and EC injury burden and cerebrovascular 

reactivity, across various durations of recording.  Within these separate datasets, a grand mean was 

calculated per patient for each index across the duration of that recording period and subsequently 

utilized for the final statistical analysis.  Furthermore, in each of these sheets we evaluated the following 

binary thresholds for PRx, PAx and RAC:  A. PRx: >0, >0.25, >0.35; B. PAx: >0, >0.25; and C. RAC: > -0.05, > 

-0.10.  These are the critical thresholds associated with patient outcome previously defined in the 

literature and within Chapter 8.1. Finally, for the entire recording dataset, we calculated the percentage 

of recording time (% time) spent above each threshold for every patient. 

 

Statistics 

Statistics were performed utilizing XLSTAT (Addinsoft, New York, United States; 

https://www.xlstat.com/en/) add-on package to Microsoft Excel (Microsoft Office 15, Version 

16.0.7369.1323) and R statistical software (R Core Team (2016). R: A language and environment for 

statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-

project.org/).  For all statistical tests described, alpha was set at 0.05 for significance, with correction for 

multiple comparisons. 

 

General Statistics 

Simple descriptive statistics were utilized to summarize the patient demographics.  Box plots were also 

employed to summarize the cerebrovascular reactivity indices, with respect to IC and EC injury scoring 
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systems.  A Shapiro Wilks test found significant non-normality in the distributions of all continuous 

variables of interest and non-parametric tests were used. 

 

The burden of IC and EC injury, quantified using widely accepted scoring systems,153–156 were related to 

differences in PRx, PAx and RAC based on category of injury burden.  All scoring systems are summarized 

in Chapter 3, section 3.5.1. Using the entire recording period datasets, first correlations between ICP 

derived indices (PRx, PAx and RAC) and the IC and EC injury scores were examined using Spearman’s 

test.  Similarly, the % time spent above index threshold was correlated with IC and EC injury scores. 

Finally, mean PRx, PAx and RAC values across each category of IC injury scoring system were compared 

for:  Marshall,153 Rotterdam,154 Helsinki155 and ordinal Stockholm156 scores; using the Kruskal-Wallis (KW) 

test for the Marshall CT grade, and a one-way Jonckheere-Terpstra (JT) test for the ordinal Rotterdam, 

Helsinki and Stockholm (converted from continuous) scores. This was repeated for % time above 

thresholds of PRx, PAx and RAC.  The KW test was chosen for the Marshall system, given this system is 

not an ordinally arranged grading system.  The JT test was chosen for the Rotterdam, Helsinki and 

ordinal Stockholm graded, given these systems are ordinal in nature and we wished to test if there was 

statistically significant increase in mean values as the ordinal IC CT score increased.  The JT test was 

performed in a one-way method, testing for increasing mean values, running 1000 permutations, 

yielding a p-value.  

Next, the difference between individual patient demographics and injury characteristics for those 

patients above and below various thresholds in PRx, PAx and RAC (using above defined thresholds) were 

evaluated.  Using the entire recording period data sheet, continuous variables were compared using the 

Mann-Whitney U test, while categorical variables were compared via chi-square testing. 

 

Injury Burden Association with Impaired Cerebrovascular Reactivity 

Impaired cerebrovascular reactivity was defined using the above-mentioned critical thresholds for PRx, 

PAx, and RAC.  Each threshold was tested, for every demographic and injury variable.   

First, a univariate binary logistic regression (ULR) analysis was performed utilizing the three datasets; 

evaluating all patient demographics and injury characteristics, comparing to the following binary 
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outcomes of interest:  A. PRx Above 0, B. PRx above +0.24, C. PRx above +0.35, D. PAx above 0, E. PAx 

above +0.25, F. RAC above -0.05, and G. RAC above -0.10.  

Second, multivariable binary logistic regression (MLR) was performed using the above thresholds for 

PRx, PAx and RAC as binary outcomes.  Any variables reaching statistical significance (or close to it:  p-

values <=0.100) in the ULR were entered into the initial MLR model, yielding unique multivariable 

models for each index threshold tested. Running sequential multivariable models, through a backward 

elimination method, deleting those variables which were grossly insignificant (ie. p>0.100), the best 

potential model was derived (based on highest AUC, statistical significance p<0.05, and individual 

component variables reaching p<0.100 within the model).  This was conducted for each index threshold 

tested. 

Both of ULR and MLR techniques described above were performed for each recording period:  entire 

recording, 1st 24 hours, and 1st 72 hours. Only the results of the entire recording period are reported, 

given the other two periods displayed confirmatory results.  Strength of relationship to the outcomes of 

interest were reported via AUC, with bold AUC’s reaching a p<0.05.     

 

9.3 Results 
 

Patient Demographics 

Patient demographics for each of the 3 data sheets are summarized in Table 9.1.  A total of 358 patients 

were included in the entire recording period cohort, with a mean recording period length of 189.1 +/- 

151.1 hour (range: 8.5 to 1033.0 hours duration).  There were 340 and 277 patients in the 1st 24 hours 

of recording and 1st 72 hours of recording cohorts, respectively.  Injury data are summarized in 

Appendix G for the entire cohort. 
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Table 9.1:  Patient Demographics by Recording Length Analyzed 

 Total  1st 24hr 1st 72hr 

N 358 340 277 

Mean Age (yrs) 40.6 +/- 17.2 40.6 +/- 17.2 40.2 +/- 17.0 

Number of Males 272 258 212 

Median Admission GCS 
(IQR) 

7.0 (3 to 9) 7.0 (3 to 10) 7.0 (3 to 9) 

Mean ICP (mm Hg) 14.1 +/-7.6 15.6 +/- 8.6 14.9 +/- 7.4 

Mean AMP (mm Hg) 2.34 +/- 1.39 2.63 +/- 1.67 2.68 +/- 1.43 

Mean CPP (mm Hg) 77.5 +/- 8.5 75.2 +/- 9.0 76.3 +/- 7.4 

MAP (mm Hg) 91.2 +/- 7.9 90.5 +/- 9.3 91.2 +/- 1.4 

Mean PRx 0.05 +/- 0.17 0.01 +/- 0.22 0.00 +/- 0.19 

Mean PAx -0.06 +/-0.20 -0.07 +/- 0.24 -0.07 +/- 0.20 

Mean RAC -0.35 +/- 0.25 -0.36 +/- 0.29 -0.38 +/- 0.26 
AMP = pulse amplitude of ICP, CPP = cerebral perfusion pressure, d = day, GCS = Glasgow Coma Scale, hr = hours, ICP = intra-
cranial pressure, MAP = mean arterial pressure, mm Hg = millimeters of Mercury, N = number, yrs = years, PAx = pulse amplitude 
index (correlation between AMP and MAP), PRx = pressure reactivity index (correlation between ICP and MAP), RAC = correlation 
between AMP and CPP. 
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IC Injury Scores and Cerebrovascular Reactivity  

No significant correlation was detected between any of the ICP indices (PRx, PAx and RAC) and any of 

the IC injury burden scores (Spearman’s correlation).  Comparing the indices to the IC injury scores, all 

coefficients were positive, however failed to reach r-values greater than 0.250 (however with most 

reaching p<0.05).  When comparing the % time spent above threshold for PRx, PAx and RAC with the IC 

injury scores, we found identical trends.   

Given the non-ordinal nature of the Marshall CT grading system, Kruskal Wallis (KW) test was used to 

compare the mean PRx, PAx and RAC values across individual IC score categories.  For the Rotterdam, 

Helsinki and ordinal Stockholm score we compared the mean PRx, PAx and RAC values across each 

ordinal category using a one-way JT test.  Marshall CT grade displayed no statistically significant 

association with the mean PRx, PAx or RAC on KW testing.  Similarly, the Marshall CT grade was not 

significantly associated with % time above thresholds for PRx, PAx and RAC, with the only exception 

being the percentage of time spent with a PRx threshold above 0. 

The Rotterdam CT score displayed some statistically significant association with mean PRx (p=0.001), PAx 

(p=0.001) and RAC (p=0.001).  Similar results were seen for the % time spent above threshold, with most 

PRx and RAC % times above threshold reaching significance. The JT testing confirmed a statistically 

significant increase in the mean values of the indices and % time above threshold, with increasing 

Rotterdam score. 

The Helsinki CT score displayed the most significant association, comparing mean index values and % 

time above threshold across score categories using the JT test. All mean index values and % times above 

threshold were significantly different between ordinal Helsinki score categories (all p<0.002), with 

increasing mean values seen with increasing Helsinki score values.  The mean PRx, PAx, and RAC vs 

Helsinki CT score can be seen in Figure 9.1.   
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Figure 9.1:  Box Plots of PRx, PAx and RAC versus Helsinki CT Score 

 

a.u. = arbitrary units, CT = computed tomography, PAx = pulse amplitude index (correlation between pulse amplitude of ICP (AMP) and MAP), PRx = pressure reactivity index 
(correlation between ICP and MAP), RAC = correlation between AMP and CPP. Panel A:  PRx vs. Helsinki Score (p=0.01 on JT testing), Panel B:  PAx vs. Helsinki Score (p=0.001 on JT 
testing), Panel C: RAC vs. Helsinki Score (p=0.001 on JT testing).  
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Finally, the ordinally arranged Stockholm score seemed to display significant association between mean 

index values and % time above thresholds for RAC only.  The JT testing confirmed a statistically 

significant increase in the mean values of RAC with increasing ordinal Stockholm score value. All mean 

values for indices and % time above thresholds, for each IC scoring system category can be seen in 

Appendix H of the Supplementary Materials. 

 

EC Injury Scores and Cerebrovascular Reactivity 

We evaluated the EC injury scores (ISS and APACHE) in a similar manner.  As with the majority of the IC 

injury scores, the ISS EC injury score failed to reach any statistically significant relationship with any of 

the ICP indices of cerebrovascular reactivity. Out of all IC and EC injury scores, the APACHE score 

displayed the strongest correlation with PRx (p = 0.016), PAx (p=0.001) and RAC (p=0.001), with r-values 

up to 0.285.  Similar trends were found when comparing the % time spent above threshold for PRx, PAx 

and RAC with the IC and EC injury scores.  Figure 9.2 displays box plots of the PRx, PAx and RAC values 

compared to ISS and APACHE scores.  
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Figure 9.2:  Box Plots of PRx, PAx and RAC versus APACHE and ISS Scores 

 

APACHE = APACHE injury score, a.u. = arbitrary units, ISS = injury severity score, PAx = pulse amplitude index (correlation 
between pulse amplitude of ICP (AMP) and MAP), PRx = pressure reactivity index (correlation between ICP and MAP), RAC = 
correlation between AMP and CPP. Panel A:  PRx vs. APACHE (r=0.130; p=0.016), Panel B:  PRx vs. ISS (r=0.-0.018; p= 0.762), 
Panel C: PAx vs. APACHE (r=0.257; p=0.001), Panel D: PAx vs. ISS (r=-0.064; p=0.264), Panel E: RAC vs. APACHE (r=0.285; 
p=0.001), Panel F: RAC vs. ISS (r=0.027; p=0.644). 
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Patient Demographics and Injury Characteristics – Across Binary Index Thresholds 

Table 9.2 displays the results of the Mann-Whitney U testing for across the various binary outcome 

thresholds for RAC, with similar results found for PRx and PAx (Appendix I).  Various variables displayed 

statistical significance between those below versus above threshold.  Of note, age and APACHE scores 

were the two variables consistently different between those patients below and above the index 

thresholds, with higher age and APACHE scores seen in those above the thresholds.  

The ISS and IC scoring systems were rarely statistically different between those patients below and 

above threshold. Those patients with PRx, PAx, and RAC values above threshold were most likely to 

display significantly higher Helsinki CT score values.   

Patients with PRx values above 0 displayed more contusions, higher largest lesion volume, higher total 

contusion volume and more midline shift. A similar pattern was seen for patients with PAx values above 

0.  The other index thresholds tested rarely displayed a statistically significant difference in the 

continuous variable IC injury characteristics.   
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Table 9.2: RAC Thresholds – Non-Binary Demographics and Injury Characteristics 

 

Demo (Mean and 
Medians with 
Std Dev/IQR) 

RAC p-value RAC p-value 

<-0.05 ≥-0.05 <-0.10 ≥-0.10  

N 314 44 - 302 56 - 

Age 39.2 (16.7) 50.6 
(17.5) 

<0.0001 38.9 (16.7) 49.7 (17.0) <0.0001 

GCS 7 (4-10) 5 (3-8.25) 0.078 7 (4-10) 6 (3-8.25) 0.143 

Marshall 2 (2-3) 3 (2-4) 0.433 2 (2-3) 3 (2-3.25) 0.455 

Rotterdam 2 (2-3) 2 (2-4) 0.252 2 (2-3) 2 (2-4) 0.135 

Helsinki 2 (0-4.75) 4 (2-6.25) 0.016 2 (0-4.75) 4 (2-6) 0.005 

Stockholm 2.06 (0.89) 2.35 (0.95) 0.055 2.05 (0.89) 2.32 (0.91) 0.034 

Stockholm Range 2 (2-3) 3(2-3) 0.088 2 (2-3) 3 (2-3) 0.041 

ISS 32.6 (11.2) 35.2 (12.3) 0.384 32.8 (11.2) 33.9 (12.2) 0.829 

APACHE II 11.7 (5.5) 14.4 (5.7) 0.006 11.6 (5.5) 14.6 (5.6) 0.001 

MLS (mm) 1.6 (3.4) 3.0 (5.2) 0.051 1.6 (3.4) 2.6 (4.7) 0.166 

Largest Lesion 
Volume 

12.3 (22.1) 18.7 (32.1) 0.055 12.4 (22.4) 17.0 (29.2) 0.091 

# Contusions 0.44 (0.87) 0.43 (0.73) 0.684 0.42 (0.85) 0.52 (0.83) 0.204 

# DAI Lesions 1.1 (2.8) 0.5 (1.6) 0.021 1.2 (2.9) 0.43(1.4) 0.005 

Total Contusion 
Volume 

4.0 (8.7) 6.3 (17.2) 0.797 5.9 (17.0) 6.1 (13.3) 0.257 

# = number, N = number of patients, CPP = cerebral perfusion pressure, DAI = diffuse axonal injury, MLS = midline shift, mm = millimeters, ISS = injury severity score, GCS = 
Glasgow Coma Scale, RAC = correlation between pulse amplitude of ICP (AMP) and cerebral perfusion pressure (CPP).
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Univariate Logistic Regression (ULR) Analysis – Prediction of Impaired Cerebrovascular Reactivity 

Further evaluation of the association between all patient demographics, EC injury and IC injury 

characteristics with the development of impaired cerebrovascular reactivity was undertaken.  Using the 

defined thresholds for PRx, PAx and RAC for impaired cerebrovascular reactivity, we employed ULR 

techniques to evaluate each variable in relation to its ability to predict impairment in the entire 

recording period dataset.  Each threshold was evaluated against each variable.  Table 9.3 displays the 

ULR AUC’s and p-values for the patient demographic data and both the IC and EC scoring systems tested, 

while Appendix J displays the ULR AUC’s and p-values for the individual IC injury characteristics tested.  

Similar results were seen for the 1st 24 hours and 1st 72 hours recording datasets. 

Various patterns of statistically significant relationships with impaired cerebrovascular reactivity were 

seen.  Of note, the most commonly seen statistically significant association (with the highest AUC’s and 

lowest p-values) with impaired cerebrovascular reactivity was patient age (AUC = 0.606 to 0.783; 

p<0.025 for all) and the APACHE score (AUC = 0.619 to 0.704; p<0.032 in all except the PRx >0 

threshold).  IC CT scores were mostly not significantly associated with impaired cerebrovascular 

reactivity, although some evidence for association was detected for the Stockholm CT score being the 

most significant scoring system for PAx >0.25, RAC > -0.10 and RAC > -0.05 thresholds.  Of note, for most 

thresholds tested, admission GCS, sex, ISS and pupillary reactivity were not related to impaired 

cerebrovascular reactivity. 

There were some noteworthy patterns from the evaluation of the individual IC CT-based lesions.  

Associations depended on the threshold chosen, but in general, across all index thresholds tested, the 

most commonly seen associations were between markers of diffuse IC injury, rather than macroscopic 

parenchymal damage.  The following injury characteristics were most commonly statistically associated 

with impaired cerebrovascular reactivity:  presence of convexity SDH, presence of falcine SDH, presence 

of bilateral SDH, thickness of tSAH and the presence of SC DAI lesions.  Some important characteristics 

rarely associated with impaired cerebrovascular reactivity: MLS, largest lesion volume, # of contusions, 

total contusion volume, basal cistern compression, lateral ventricle compression, 4th ventricle 

compression and gyral compression.   
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Table 9.3: Univariate Logistic Regression of Admission Demographics and Scores with ICP Index – Grand Mean Data 

 PRx >0 PRx >0.25 PRx >0.35 PAx >0 PAx >0.25 RAC >-0.05 RAC>-0.10 

 AUC P AUC P AUC P AUC P AUC P AUC P AUC P 

Age  0.606 0.001 0.637 0.007 0.655 0.025 0.720 <0.0001 0.783 <0.0001 0.685 <0.0001 0.679 <0.0001 

Sex 0.495 0.850 0.640 0.040 0.663 0.204 0.555 0.526 0.699 0.073 0.586 0.335 0.534 0.621 

Admission 
GCS 

0.592 0.551 0.633 0.983 0.722 0.977 0.621 0.374 0.620 0.994 0.651 0.723 0.625 0.773 

Admission 
Pupil 
Reactivity 

0.564 0.241 0.628 0.012 0.675 0.003 0.558 0.648 0.695 0.013 0.600 0.050 0.577 0.098 

Admission 
Marshall 
CT Grade 

0.584 0.029 0.596 0.537 0.656 0.361 0.581 0.392 0.665 0.192 0.562 0.748 0.531 0.905 

Admission 
Rotterdam 
CT Grade 

0.562 0.157 0.656 0.032 0.689 0.107 0.569 0.443 0.689 0.140 0.628 0.149 0.570 0.332 

Admission 
Helsinki 
CT Score 

0.634 0.335 0.685 0.540 0.773 0.488 0.644 0.213 0.709 0.577 0.661 0.525 0.656 0.396 

Admission 
Stockholm 
CT Score 

0.544 
 

0.072 0.519 0.601 0.650 0.063 0.550 0.147 0.640 0.022 0.594 0.045 0.585 0.030 

Admission 
Stockholm 
CT 
“Range” 

0.556 0.473 0.578 0.754 0.675 0.324 0.557 0.875 0.670 <0.0001 0.642 0.152 0.612 0.192 

ISS 0.518 0.734 0.598 0.027 0.560 0.375 0.545 0.393 0.565 0.521 0.553 0.192 0.514 0.545 

APACHE II 0.526 0.406 0.619 0.032 0.702 0.002 0.652 <0.001 0.704 0.001 0.633 0.004 0.651 0.001 

AUC = area under the receiver operative curve, p = p-value, GCS = Glasgow Coma Scale, CT = computed tomography, ISS = injury severity score, PRx = pressure reactivity index 
(correlation between ICP and MAP), PAx = pulse amplitude index (correlation between pulse amplitude of ICP (AMP) and MAP), RAC = correlation between AMP and CPP. *NOTE: 
bolded values are those which have reached statistical significance (p<0.05). 
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Multivariable Logistic Regression (MLR) Analysis 

Based on the results of the ULR analysis, we created individualized multivariable models for each binary 

threshold outcome, performing a sequential “elimination method” of MLR analysis in order to arrive at 

the best predictive model for each index threshold (see methods section).  For each model, we included 

only those variables reaching statistical significance (or close to it: p<=0.100) in ULR, as highlighted in 

Tables 9.3 and Appendix J. Similar results were seen for the 1st 24 hours and 1st 72 hours recording data 

sheets. 

The MLR models for the binary PRx threshold outcomes displayed similar trends to those mentioned in 

the ULR section, markers of systemic injury and diffuse IC injury seem to predominate over those of IC 

parenchymal damage. For the binary threshold outcome of PRx above 0, the best model was that 

composed of age (p=0.093), presence of bilateral SDH (p=0.009), convexity tSAH thickness over 5mm 

(p=0.049) and the presence of subcortical (SC) DAI lesions (p=0.001); with an AUC for the model of 0.670 

(p<0.0001).  For the binary threshold outcome of PRx above +0.25, the best model was composed of sex 

(p=0.015), APACHE II score (p=0.032), presence of convexity SDH (p=0.016), presence of falcine SDH 

(p=0.051) and the presence of bilateral convexity SDH (p=0.023); with an AUC for the model of 0.758 

(p=<0.0001).  Finally, for the binary threshold outcome of PRx above +0.35, the best model was 

composed of APACHE II score (p=0.003), presence of convexity SDH (p=0.072), presence of bilateral 

convexity SDH (p=0.062) and complete filling of the basal cisterns with tSAH (p=0.025); with an AUC for 

the model of 0.791 (p<0.0001). 

For the binary threshold outcome of PAx above 0, the best model contained age (p<0.0001), presence of 

any basal cistern compression (p=0.011), presence of bilateral contusions (p=0.062) and the presence of 

SC DAI lesions (p=0.019); with an AUC for the model of 0.752 (0<0.0001).  For the binary threshold 

outcome of PAx above +0.25, the best model contained age (p=0.001), presence of convexity SDH 

(p=0.099), presence of falcine SDH (p=0.067) and the presence of bilateral SDH (p=0.015); with an AUC 

for the model of 0.871 (p<0.0001). 

Finally, the multi-variate models for the binary RAC threshold outcomes displayed similar results to 

those of PRx and PAx. For the binary threshold outcome of RAC above -0.05, the best model contained 

age (p=0.016), APACHE II (0.092), presence of tentorial SDH (p=0.048), presence of tSAH filling the basal 

cisterns (p=0.028) and the presence of SC DAI lesions (p=0.051); with an AUC for the model of 0.744 

(p<0.0001). Similarly, for the model with RAC above -0.10 as an outcome, the best model contained age 
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(p=0.027), Stockholm Score (0.062), APACHE II score (p=0.032), any gyral compression (p=0.017), tSAH 

amount in the basal cisterns (p=0.087) and the presence of SC DAI lesions (p=0.009); with an AUC for the 

model of 0.756 (p<0.0001). 

 

9.4 Discussion 
 

Through a detailed analysis of both admission IC and EC injury burden, as it relates to cerebrovascular 

reactivity during the ICU phase of TBI care, some interesting and important trends have been identified 

for the first time. 

First, whilst the admission IC CT scores (Marshall,153 Rotterdam,154 Helsinki,155 Stockholm156) are well 

validated as predictors of outcome, overall, they appear to show little association with impaired 

cerebrovascular reactivity after TBI.  Some statistically significant differences between categories of the 

IC scoring systems for both: A. raw mean values of PRx, PAx and RAC; and B. mean % time spent above 

index threshold; using KW and JT testing were seen.  The Helsinki and Rotterdam scoring systems appear 

to display the strongest relationship to some of the indices of cerebrovascular reactivity.  Similarly, 

through JT testing, it appears that the various scoring categories for the Helsinki score display 

statistically different mean values for the indices and % time above threshold, with increasing values 

seen as the ordinal score increases. Among the CT scoring systems, the Helsinki score provides the 

greatest role for large mass lesions as both basal cistern compression and mass lesions >25 cm3 greatly 

increase the score, suggesting that these space occupying lesions may affect cerebral autoregulation. 

However, when evaluating the ability of the Helsinki score to predict “impairment” of cerebrovascular 

reactivity, ULR and MLR analysis display that the Helsinki score falls out of statistical significance.  This 

was also seen with the Marshall, Rotterdam and Stockholm score in ULR and MLR analysis. The 

Stockholm CT score had the strongest correlations to RAC and PAx. The tSAH burden is the main 

outcome predictor in the Stockholm CT score, as recently shown in comparison to the other CT scoring 

systems. This could indicate that RAC and PAx are more strongly associated with wide spread tSAH which 

presumably is a driver for several secondary injury cascades following TBI.  

Secondly, the EC injury scores (ISS and APACHE) displayed interesting trends.   The ISS failed to be 

associated with either the indices or impaired cerebrovascular reactivity.  Thus, the combined IC and EC 

trauma burden, as assessed by the ISS does not appear to be associated with impairment of 
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autoregulation/cerebrovascular reactivity. In contrast, the APACHE score was the most strongly, out of 

both the IC and EC scoring systems, associated with both raw index values and % time spent above 

thresholds.  Furthermore, the APACHE reaches statistical significance in ULR for its association with all 

thresholds of ICP indices of cerebrovascular reactivity (except for the PRx >0 threshold).   This predictive 

value for impaired reactivity is even maintained in some the multi-variate models tested for the 

thresholds of:  PRx > +0.35 and RAC > -0.10.  Examining the differences between the ISS and APACHE, it 

can be seen that the APACHE provides a much more robust assessment of the patient’s systemic 

response to injury, including accounting for: A. age, B. hemodynamic response, C. core temperature, and 

D. laboratory values.  Thus, the patient’s individual “host response” to injury, appears to be most 

associated with impaired cerebrovascular reactivity, not the tallied gross injury burden.  This raises the 

question of systemic host response to injury, not cumulative injury burden, as a potential driver of 

autoregulatory failure/cerebrovascular dysfunction post-TBI. This requires investigation.  It is possible 

that diffuse IC injury patterns, which were more associated with impaired cerebrovascular reactivity, are 

also more likely to be associated with severe systemic multi-system trauma, and hence worse APACHE 

scores.  Thus, the association between APACHE and impaired autoregulation/cerebrovascular reactivity 

may be reflective of this relationship, and not necessarily the host systemic biochemical/metabolic or 

inflammatory response, driving impaired vascular reactivity.  As discussed in a recent review of 

literature, these relationships may be modulated by host genotype.28,193 Much further work is required 

to explore this relationship. 

Thirdly, diffuse IC injury patterns, not gross macroscopic parenchymal injury, appear to be most 

associated with impaired cerebrovascular reactivity. This was seen in both the ULR and MLR analysis of 

the detailed admission IC injury characteristics.  The presence of a convexity SDH, falcine SDH, bilateral 

convexity SDH, thickness of convexity tSAH, amount of tSAH in the basal cisterns and presence of SC DAI 

lesions, appear to be the most significant predictors of impaired cerebrovascular reactivity, regardless of 

the ICP-related autoregulatory index threshold tested.  All of these markers are those of diffuse injury, 

implicating a mechanism of high energy, with both acceleration/deceleration and angular 

acceleration/shearing forces applied to the parenchyma.  This implies that “diffuse” injury, other than 

what is captured by the CT scoring systems, is more predictive of impaired reactivity. Furthermore, all 

markers of gross macroscopic parenchymal injury failed to be associated with autoregulatory failure. In 

aggregate, this could explain the lack of significance of IC CT scoring systems in predicting impaired 

cerebrovascular reactivity.  Given these results, diffuse microscopic injury burden, not visible on 

admission CT scans, may be a driver of impaired cerebrovascular reactivity.  Magnetic resonance imaging 
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(MRI) based assessment of IC injury in the acute phase may shed light on this injury pattern, and 

requires further investigation. 

Finally, age appears to be robustly associated with both the raw indices and % time spent above index 

thresholds.  In addition, age was a strong predictor of impaired cerebrovascular reactivity in both ULR 

and MLR analysis.  This relationship between advancing age and impairment of autoregulatory capacity 

has been described in part before, and the analysis in this non-DC cohort confirms this variable as a key 

player in an individual patient’s cerebrovascular reactivity post-TBI.  Age is also included within the 

APACHE score calculation, and thus may play a role in why the APACHE scores were statistically 

significant in their associations with impaired cerebrovascular reactivity.  From this data set, it cannot be 

determined if this was that case given the amalgamated single score that was stored within the NCCU 

database.  Age may play a role in the baseline ability of the cerebrovascular tree to autoregulate, and/or 

the host response to injury.  Further investigation into local and global biochemical/metabolic response 

and inflammatory response to TBI is required, in order to fully understand how age impacts 

autoregulatory function/cerebrovascular reactivity post-TBI.   

 

Limitations 

Despite the interesting results, there are some important limitations to highlight.  First, this is a 

retrospective cohort of non-DC patients.  The treatments received during the patient’s ICU phase 

directly influenced the physiologic variables and signals recorded.  Furthermore, this treatment may not 

have been homogenous throughout all patients included in this study.  This could not be taken into 

account within the analysis, given the lack of information available on treatments received.   

Second, this cohort is a non-DC cohort only.  This was chosen specifically to avoid the confounding 

introduced post-DC, during which ICP and ICP derived indices of cerebrovascular reactivity are impacted.  

Thus, the results of this analysis only apply to non-DC patients.  Similar analysis is required for DC 

patients, analyzing the associations while taking into account the influence of craniectomy on the 

physiologic variables measured.  

Thirdly, the ISS included in this study is the total ISS, thus including injury to the body as well as the head 

and brain, not making it an exclusive score for the EC injury burden. Head ISS is based on anatomical 

localization of lesions on admission head CT scans, similar to many of the CT scoring systems included 

and, depending on the presence of polytrauma, will contribute significantly to the total ISS variable used 
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in this study. Moreover, APACHE II contains admission GCS which is commonly used to assess the 

severity of brain injury, similar to the IC CT scoring systems. Thus, the EC injury variables used in this 

study will to different degrees be influenced by the IC injury burden. Future studies may avoid this by 

only using non-head ISS components, unfortunately not available for the current cohort. 

 

9.5 Conclusions 
 

Diffuse IC injury markers (such as thickness of SAH, presence of sub-cortical DAI lesions, and the 

presence of a SDH) and systemic injury response (as assessed via APACHE II) are most associated with 

dysfunction in cerebrovascular reactivity after TBI. Standard IC CT scoring systems and evidence of 

macroscopic parenchymal damage are poor predictors, implicating potentially both microscopic injury 

patterns and host response as drivers of dysfunctional cerebrovascular reactivity.  Age remains a major 

variable associated with cerebrovascular reactivity.
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CHAPTER 10: SUMMARY AND CONCLUSIONS 
 

Through the studies and data presented in Chapters 4 through 9 of this thesis, some important new 

insights into continuous MMM of cerebrovascular reactivity in adult TBI have been made.  The following 

questions were addressed: A. Do other ICP derived indices exist? B. Do ICP derived indices actually 

measure autoregulation? C. What are the inter-index relationships between various MMM techniques? 

D. Can one estimate/predict the “gold standard” invasive PRx using non-invasive means? E. What are the 

critical thresholds associated with outcome for ICP derived indices? F. Which ICP derived index is 

superior for outcome prediction? and G. What role does IC and EC injury burden play in driving 

autoregulatory function in TBI?  These questions were addressed using data from various experimental 

models and populations of adult TBI patients. 

 

The following hypotheses were addressed: 

 

Hypothesis I: The moving correlation coefficient between slow-wave fluctuations in AMP and CPP, 

defined as RAC, will provide information regarding cerebrovascular reactivity, and may be used in 

place of existing ICP based reactivity indices in adult TBI patients. 

Chapter 4 provided the first description of this new index in adult TBI, providing confirmatory evidence 

that it provides information regarding cerebrovascular reactivity.  Furthermore, RAC appears to carry 

additional information regarding cerebral compensatory reserve (similar to RAP).  The interpretation of 

this index is somewhat complex, however it appears to have a clearer parabolic relationship with CPP 

over the range of clinically seen CPP values, compared to PRx and PAx.  Thus, RAC can potentially be 

utilized for monitoring cerebrovascular reactivity. 

 

Hypothesis II: PRx, PAx and RAC will measure the LLA in an experimental piglet model of arterial 

hypotension. 

Chapter 5.1 outlined the experimental validation of PRx, PAx and RAC as a measure of the LLA in a model 

of arterial hypotension.  This study provided very preliminary confirmatory evidence for PRx.  In 
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addition, for the first time in the literature, this study provided a similar validation for PAx and RAC.  

These results provide some degree of confidence in the clinical use of these indices for monitoring 

cerebral autoregulation, though further experimental validation of these indices is required. As such 

Hypothesis II is not fully confirmed. 

 

Hypothesis III: PRx, PAx and RAC will measure the LLA in an experimental rabbit model of sustained IC 

hypertension. 

 

Chapter 5.2 outlined the experimental validation of PRx and PAx as a measure of the LLA in and 

experimental model of IC hypertension.  This study, for the first time, provides preliminary confirmation 

that PRx and PAx measure autoregulation during sustained ICP elevations.  These results provide some 

further confidence in the clinical use of these indices to measure autoregulation, particularly in 

pathologic states prone to elevated ICP, such as TBI.  RAC, however, failed to conclusively measure the 

LLA within this model, which is likely a limitation of the model and failure to reach the break-point in 

AMP within the 12 animals. Despite the promsing results from this analysis, further experimental 

evaluation of these indices as measures of the LLA during IC hypertension is required. As such 

Hypothesis III is not fully confirmed. 

 

Hypothesis IV: PRx, PAx and RAC will measure the ULA in an experimental piglet model of arterial 

hypertension. 

Chapter 5.3 outlined the attempts at experimental validation of the ICP derived indices against the ULA 

in a piglet model of arterial hypertension.  The results of the analysis within the 6 animals were 

inconclusive.  Saturation of LDF-CBF signal, with failure to display pressure/flow passivity with increasing 

CPP, questions the CPP values identified as the ULA via piecewise regression.  Currently it remains 

unclear as to whether these indices can accurately measure the ULA. 

 

Hypothesis V: Continuous indices derived from MMM are not all the same, and display specific 

covariance structure between monitoring devices used, which is reproducible across populations. 

Chapter 6.1, 6.2, and 6.3 outlined the studies into MMM inter-index relationships, explored via 

multivariate clustering and co-variance analysis techniques.  The strong relationships between PRx and 
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Sx_a seen in these sections were echoed in the results from section 7.1 and 7.3. This work, for the first 

time, explores the inter-index relationships of all concomitantly monitored continuous indices of 

cerebrovascular reactivity, across four separate adult TBI populations.  Several specific relationships 

were seen amongst the indices examined.  First, we observed intra-technique clustering, suggesting than 

different metrics provided by a single technique provide shared information.  Second, the results 

demonstrate a strong, and recurrent, association between TCD based Sx/Sx_a and the ICP derived 

indices (PRx, PAx, and RAC).  Third, the data show an association between measures of cortical 

pial/microvascular cerebrovascular reactivity indices and TCD based Mx/Mx_a., implicating Mx/Mx_a as 

potential surrogate measures of cortical vessel reactivity.  Finally, the stong PRx and Sx_a relationships 

also hold up during extended duration recordings, as seen with the modelling in chapter 7.1 and 7.3. 

 

Hypotheses VI and VII: PRx can be accurately estimated and predicted via non-invasive TCD 

alternatives, systolic flow index (Sx_a) and mean flow index (Mx_a). 

 

Chapters 7.1 and 7.3 outlined the studies into the estimation of PRx via non-invasive TCD based 

surrogates (Sx_a and Mx_a).  Employing complex time-series ARMA models and LME modelling, it was 

demonstrated that PRx can be estimated using non-invasive TCD surrogates.  Furthermore, this 

estimation closely follows observed PRx values. Further, even if the data are preliminary, given 

limitations with extended duration TCD recording, using time-series ARMA and LME modelling, it was 

demonstrated in a small pilot cohort that PRx can be predicted non-invasively with an acceptable degree 

of agreement.  Despite these promising results, it must be acknowledged that these analyses are some 

of the first of their type in the literature and require substantial validation. Further, large scale, studies 

need to be conducted to confirm these results. As such, the results should be considered very 

preliminary and exploratory in nature, with Hypotheses VI and VII not fully yet confirmed. 

 

Hypothesis VIII: Outcome prediction with ICP-derived indices are not equal, with RAC providing 

superior predictive capabilities for 6-month patient outcomes. 

 

Chapter 8.1 outlined the studies into outcome prediction and critical thresholds of ICP derived indices of 

cerebrovascular reactivity in adult TBI.  It was demonstrated that RAC provides superior 6-month 

outcome prediction over both PRx and PAx, via both univariate and multivariate models.  This was 
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observed for both mortality and favourable/unfavourable outcomes.  These results confirm the 

superiority of RAC over PRx and PAx for outcome assessment.  

 

Hypothesis IX: Critical thresholds for 6-month outcome in adult TBI in ICP derived reactivity indices are 

not all the same, with some indices displaying more “stable” thresholds over time. 

 

As studied in Chapter 8.1, critical thresholds associated with outcome at 6-months were evaluated for all 

ICP indices in a non-DC cohort.  Thresholds for mortality and unfavourable outcome were provided for 

PRx, PAx and RAC.  It has demonstrated that the PRx thresholds for these outcomeswere substantially 

different compared to previous work on a heterogenous TBI population (which included DC patients), 

suggesting that alterations in post-DC cerebrovascular physiology may have confounded previous 

results.  Furthermore, RAC consistently provided significant predictive thresholds for outcome, 

regardless of time period analyzed, which was not the case for PRx or PAx.  Finally, RAC displayed the 

most stable critical thresholds over time, when compared to those for PRx and PAx. These results 

implicate RAC as a having potentially more reliable critical thresholds for outcome in adult TBI. 

 

Hypothesis X: Both Sx and Sx_a have well defined critical thresholds associated with 6-month outcome 

in adult TBI. 

Chapter 8.2 outlined the studies to determine critical thresholds for Sx/Sx_a.  The results of this analysis 

demonstrate, for the first time, significant thresholds for Sx/Sx_a to predict both 6-month mortality and 

unfavourable outcome, based on GOS.  Furthermore, these thresholds are drastically different 

compared to thresholds previously defined for Mx/Mx_a. These results provide a framework and 

clinically relevant outcome prediction thresholds derived from monitoring of Sx/Sx_a in adult TBI. 

 

Hypothesis XI: Specific patterns of IC injury are associated with impaired cerebrovascular reactivity in 

TBI. 

Chapter 9 outlined the studies conducted to evaluate the link between IC injury pattern/burden and its 

link with impaired cerebrovascular reactivity.  The results, for the first time, suggest that IC markers of 

diffuse injury are linked to impaired reactivity.  These markers included: thickness of SAH, presence of 
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SDH, and presence of DAI.  This implicates acceleration/deceleration or angular forces suffered by the 

brain to be a potential driver of impaired vascular reactivity in adult TBI. 

 

Hypothesis XII: EC injury burden will be associated with cerebral vascular reactivity in polytrauma 

patients. 

 

Chapter 9 also attempted to address the association between EC injury burden and vascular reactivity 

post-TBI.  Given out access to records and data on EC injury was limited, the conclusions are also limited.  

The results did demonstrate a strong link with impaired reactivity and both age and APACHE II.  The link 

with age has been previously documented.  The association with APACHE II has never been described 

previously.  The ISS failed to demonstrate a significant association with impaired reactivity.  This 

implicates systemic host response (ie. APACHE II), and not the tallied systemic injury burden (ie ISS), as a 

potential driver of impaired cerebrovascular reactivity in adult TBI. 

 

Clinical Implications 

 

Clinically, the results of this thesis carry some potentially important implications which may lead to 

changes in future patient care.  First, the results of these studies suggest RAC may:  provide information 

regarding both cerebrovascular reactivity and cerebral compensatory reserve, have some ability of 

measure the LLA and appears to display stronger associations with global patient outcome. This may 

translate to improve prognostic models with the inclusion of such an index.  This index carries some 

complexity in interpretation, as outlined in Chapter 4, which highlights difficulties with its 

implementation as a continuously displayed and interpreted bedside physiologic metric in TBI.  

However, the strong outcome association and stability in critical thresholds supports its promising role in 

the development of next generation prognostic models in moderate and severe TBI, which will be the 

focus of upcoming studies from CENTER-TBI.190  Further to this, RAC appears to have a clearer parabolic 

relationship with CPP at the population level.  This implies that RAC carries potential to be superior in 

the determination of individual patient optimal CPP values, improving percent yield of these CPP 

estimations.  With future work, if such superiority of RAC based optimal CPP estimation is confirmed, 

this will lead to improved continuity in individualized CPP optimum estimation and potential confidence 

in the derived optimal CPP value that is being suggested as a target.   
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Second, the preliminary results of the experimental models, despite requiring much future validation, do 

provide some added confidence that some of these metrics of cerebrovascular reactivity employed 

clinically, do in fact measure aspects of the LLA.  This is important, as previously, there was limited 

literature to suggest metrics such as PRx, do indeed provide surrogate measures for the LLA.14 

 

Third, some further clarity regarding the various MMM derived cerebrovascular reactivity indices has 

been provided.  The previous literature base suffered from small individual index comparisons between 

monitoring modalities.  This was insufficient and led to confusion as to if all of these metrics were 

measuring the same aspect of cerebral physiology.  Through the various analytical techniques applied in 

Chapters 6 and 7, it was demonstrated the certain modalities provide specific information regarding 

cerebrovascular reactivity, which may be carried forward in the future to guide clinical assessment.  ICP, 

NIRS and TCD systolic flow indices appear to carry similar information regarding cerebrovascular 

reactivity.  These were distinct from TCD mean flow-based indices which appear to provide more 

information regarding cortical pial/microcirculatory cerebrovascular reactivity. Finally, uncertainty 

regarding the utility of PbtO2 derived cerebrovascular reactivity indices was provided, suggesting 

extreme caution in the clinical application of such measures. 

 

Fourth, non-invasive estimation and prediction of invasively derived cerebrovascular reactivity measures 

has been demonstrated as feasible.  These are the first preliminary attempts at such work, but provide 

great promise if further validated.  Such non-invasive estimation carries important implications for long-

term follow-up assessment using TCD, and confidence in systolic flow-derived metrics in the non-

invasive assessment of cerebrovascular reactivity.  Further, with the delineation of critical thresholds 

associated with global outcome for these TCD metrics, there now exists defined values of systolic flow 

indices which are associated with negative outcomes.  Overall, though preliminary and exploratory in 

nature, this thesis work provides important implications for the future potential transition to more non-

invasive monitoring modalities in adult TBI, without the sacrifice in critical information related to 

cerebrovascular physiology or prognostication. 

 

Fifth, previous studies on ICP-derived indices of cerebrovascular reactivity may have been clouded by 

included heterogeneous populations consisting of both DC and non-DC TBI patients.  The results of the 

ICP index critical threshold studies in this thesis suggest that DC may have had significant impacts on 

previously defined, and current clinically applied, critical thresholds associated with outcome.9,152  This 
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implies there is a need to re-evaluate our current clinical thresholds and spend time to better 

understand the impact of DC on cerebrovascular physiology, raising questions as to the applicability of 

cerebrovascular reactivity monitoring in the setting of a craniectomy. 

 

Finally, the association between IC and EC admission injury metrics and impaired cerebrovascular 

reactivity is an important finding.  Though preliminary findings, requiring further validation, they suggest 

that specific injury characteristics predispose patients to the development of impaired vascular 

reactivity.  This carries important implications for future ability to predict those at highest risk, and 

stratify them accordingly for any potential future therapies that may be directed at prevention and 

treatment of impaired autoregulation in TBI. 

 

Conclusions 

In conclusion, this thesis provides important results which fill in many current holes in the knowledge 

regarding continuous measures of cerebrovascular reactivity in adult TBI.  The data and results 

presented in this thesis describe a new ICP derived index of cerebrovascular reactivity in adult TBI, 

provide validation for ICP indices as measures of the LLA, highlight important inter-index relationships, 

demonstrate the ability to non-invasively model invasive measures, accurately define critical thresholds 

for 6-month outcome, demonstrate superiority of the new ICP index, and provide the first evidence to 

suggest a link between specific IC injury patterns, and physiological markers of the host response, with 

impaired cerebrovascular reactivity.  These results will provide confidence in the clinical application of 

MMM measures of vascular reactivity in adult TBI, while laying the platform for future exploration into 

drivers of impaired reactivity.  
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CHAPTER 11: FUTURE DIRECTIONS 
 

11.1 Experimental Validation – LLA and ULA 
 

The studies within this thesis provided validation of the ICP indices as measures of the LLA.  However, 

this was conducted using the two extremes of CPP change:  pure arterial hypotension, and pure IC 

hypertension.  There still exists the possibility that these indices fail to measure the LLA when ICP is 

moderately elevated (ie. 20 to 40 mm Hg) – the context in which most clinical care is undertaken.  Thus, 

further models are required to explore physiology when ICP is moderately elevated and/or arterial 

hypotension is present.  

Regarding the ULA, this thesis failed to validate the ICP indices of cerebrovascular reactivity as measures 

of the ULA.  Thus, it remains unclear as to whether these indices actually measure the ULA, despite some 

of them being employed clinically for calculation of the optimal CPP (CPPopt).  Experimental models of 

arterial hypertension are required for to address this question, both in the setting of normal and 

elevated ICP.  One might consider models of sustained ICP elevation during arterial hypertension, so as 

to shift the ULA to lower CPP values, allowing to interrogate these indices across the ULA prior to 

animals succumbing to cardiac failure.175  Further, given the inability to determine the ULA easily within 

piglets suggests the need for a different animal model.  

 

11.2 Validation for RAC 
 

Despite the promising results presented in this thesis, further work is required to validate the findings 

for the newly defined index RAC.  First, the assessment of RAC in experimental models IC hypertension 

requires further evaluation, given the inconclusive results seen from the studies in this thesis.  It is 

possible that the failure to demonstrate that RAC can provide measure of the LLA during IC hypertension 

(as seen in Chapter 5.2) may be secondary to limitations of the model. The rate of increase in ICP was 

precipitous and may have led to the lack of AMP break-point seen in the 12 animals studied. 

Furthermore, the Cushing’s response seen within these animals may have driven AMP to increase 

without an identifiable break point.145  If this break point was reached, RAC would likely have measured 

the LLA within this model.  Hence, further evaluation in this context is required, where ICP is elevated in 

a more controlled and prolonged fashion. 
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Regarding the clinical application of RAC, validation studies are required to confirm the superiority of 

RAC over PRx and PAx.  These studies would require similar univariate and multivariate models 

evaluating 6-month outcomes in adult TBI, as employed in this thesis.  However, added value would be 

found in evaluating the additional variance when each of these indices is added to the IMPACT-core194 

variables.  One would expect the IMPACT + RAC to provide superior outcome prediction capabilities.  

However, this has yet to be demonstrated.   This assessment of IMPACT plus vascular reactivity 

monitoring would also provide much need information regarding the overall additional benefit of 

monitoring cerebrovascular reactivity in adult TBI.  This is currently planned using the CENTER-TBI190 high 

resolution patient cohort. 

Finally, the calculation of CPPopt using PRx, PAx and RAC needs further assessment.  The results from 

this thesis displayed a more symmetric parabolic relationship between RAC vs. CPP, compared to PRx vs. 

CPP or PAx vs. CPP, suggesting RAC may be superior in CPPopt estimation.  This requires investigation.  

Further, evaluating the association between the percentage of time spent outside of CPPopt and 

outcome, requires investigation (comparing PRx, PAx and RAC). This study is also planned using the 

CENTER-TBI190 high resolution patient cohort. 

 

11.3 Time-Series Techniques for Cerebrovascular Reactivity 
 

This thesis provided the first described attempts at modelling cerebrovascular reactivity indices using 

time-series analysis techniques.  Despite being adapted from the financial sector;163,164,166 these 

techniques have wide reaching implications for monitoring in TBI.  Applications exist for based 

forecasting/predictions of physiologic events, and for Bayesian state space models166 of the entire 

patients clinical “state”.  Given the complexity of these forms of statistical modelling, the application of 

artificial neural networks is a natural avenue to explore with this type of modelling.  The implications of 

these techniques could mean accurate future forecasting of events and clinical states for patients. 

 

11.4 Critical Thresholds for DC Populations 
 

Results from this thesis defined critical thresholds for 6-month outcomes in non-DC adult TBI patients.152  

These results provide thresholds for PRx that are substantially different compared to those that have 
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previously been defined, and are currently clinically used.9  It is highly likely that these discrepancies 

arise from the inclusion of physiologic data from DC patients in earlier studies on the outcome 

associations of PRx thresholds.  The physiologic response to DC likely led to the overall thresholds for the 

entire population (DC and non-DC) to be lower than that found in the studies of this thesis.  Thus, future 

work is required to both better understand the changes in PRx, PAx and RAC after DC, and also define 

critical thresholds for DC patients. 

 

11.5 Drivers of Impaired Cerebrovascular Reactivity 
 

Injury Burden 

IC and EC injury burden were explored as drivers of impaired cerebrovascular reactivity in adult TBI.  It 

was demonstrated in this thesis that specific IC injury patterns were associated with impaired reactivity.  

This analysis is the first to explore this relationship, and needs replication.  This is currently planned 

using the CENTER-TBI high resolution cohort.  

EC injury burden was only preliminarily assessed in this thesis, with the results suggesting that the 

burden of abnormal physiology measured by APACHE II (which probably integrates injury severity and 

systemic host response) as a potential diver of impaired reactivity.  This requires much further 

investigation.  Additional assessment of systemic markers of inflammation and biomarkers of injury 

would prove useful.  Similarly, a breakdown of organ system injury burden and its association with 

cerebrovascular reactivity might prove interesting.  These studies are currently planned using the 

CENTER-TBI190 high resolution cohort. 

Understanding the IC and EC injury associations to impaired reactivity will allow us to properly risk 

stratify patients and improve outcome prediction capabilities.  

 

Genetics 

Recent review of literature has outlined the current literature addressing the association between 

genetic variation and impaired reactivity post-TBI.28,193  More specifically, published data suggest a link 

between NOS3 polymorphisms and impaired reactivity,195  and literature outside of TBI has implicated 
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numerous SNP’s associated with systemic vascular reactivity.  A theoretical framework for candidate 

genetic polymorphisms linked to cerebrovascular biology has been outlined in one of the publications 

associated with literature review for this thesis.28  These candidate genes are currently being 

investigated as part of the genome wide association analysis for the CENTER-TBI190 high resolution 

cohort. Potential associations with cerebrovascular reactivity will be analyzed.   

If specific genes are identified, the study will be underpowered to make significant conclusions.  

However, this will provide the platform for future directed genetics studies related to cerebrovascular 

reactivity.  These genetic associations will provide insight into the mechanisms involved in impaired 

vascular reactivity. These analyses will provide insights into potential molecular mechanisms that 

underpin impaired cerebrovascular reactivity, and allow the design of therapeutic interventions aimed at 

improving autoregulation with the aim of reducing mortality and improving patient outcome in TBI. 
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Appendix A – Section 6.1 - PCA Eigenvalues Table, Scree Plot and Factor 

Loadings Table 

 

* PCA = principal component analysis, F = factor, PC = principal component, F1 = PC1 = principal 

component #1, F2 = PC2 = principal component #2. PC1 and PC2 are the two components which 

contribute the largest amount of variance to the entire data set.   

*Biplots of PC1 vs. PC2 display which variables contribute variance to PC1 and PC2.  The longer the 

arm connecting (0,0) to the variable (such as PRx), the larger the contribution of that variable.  

Similarly, the quadrant on the biplot in which the variable fallscorrelates to its contribution to a 

particular PC. The upper left quadrant is primarily PC2; lower left quadrant is neither PC1 or PC2; the 

upper right quadrant is PC1 and PC2; the lower right quadrant is primarily PC1. 

*Eigenvalue tables display the eigenvalue for each principal component (PC) (also denoted F), with the 

% variability and cumulative variability for each factor/principal component. 

*Scree plot displays the same information form the eigenvalue table in a histogram format, with each 

F (or PC) along the x-axis, the eigenvalue along the left side y-axis and the % variability along the right 

y-axis.  Furthermore, the red line on the graph displays the cumulative variability with the addition of 

each F (or PC) moving from F1 to F18. 

*Factor loading tables display the loading of each variable (ie. PRx, etc.) for each principal component.  

Loading varies from -1 to +1, with negative values indicating that particular variable is less likely to 

contribute to the variance in that particular factor (F). Similarly, positive loadings indicate that 

particular variable likely contribute to the variance in that corresponding factor (F). 

*Contribution % of Variables tables displays the % contribution to the variance of each individual 

variable for each individual factor (F). 

 

Summary of 30-minute mean and Minute-by-minute Data - PCA 

Using the 30-minute mean data sheet, PCA analysis displayed similar results for the PC’s and biplot, 

supporting our results described for the minute-by-minute analysis.  Finally, using the grand mean 

data sheet, similar PCA results were displayed with the exception of the PbtO2 based indices (ORx-5, 

ORx-30 and ORx-60).  Within the grand mean PCA, ORx-5/ORx-30/ORx-60 contributed more to the 

variance of the data set, with positive loadings towards PC1 and PC2.  The PbtO2 indices still displayed 

a lack of association with other indices in the minute-by-minute data sheet. These can be seen in 

Appendix B of the supplementary materials. 
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1. Minute-by-Minute Data Set: 

 

 

Eigenvalues Table 

 

 

 

 

 

 

 

Scree Plot 

 

 

 

 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16

Eigenvalue 4.293 2.945 2.055 1.803 1.386 0.863 0.805 0.520 0.360 0.252 0.194 0.180 0.155 0.097 0.077 0.016

Variability (%) 26.833 18.408 12.842 11.269 8.664 5.393 5.032 3.250 2.251 1.578 1.209 1.124 0.966 0.603 0.478 0.099

Cumulative % 26.833 45.241 58.083 69.352 78.016 83.409 88.441 91.691 93.942 95.520 96.730 97.854 98.819 99.423 99.901 100.000
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Factor Loading Table 

 

 

 

 

 

 

 

F1 F2 F3 F4 F5 F6 F7 F8

PRx 0.493 0.660 -0.163 0.040 -0.129 0.112 -0.262 -0.199

PAx 0.438 0.730 -0.234 0.107 -0.156 0.098 -0.276 -0.026

RAC 0.443 0.636 -0.080 0.071 -0.278 0.099 -0.148 0.417

Mx 0.783 -0.492 -0.083 -0.060 -0.033 -0.004 0.025 0.213

Mx_a 0.781 -0.404 -0.123 -0.157 -0.047 0.024 -0.186 -0.220

Sx 0.698 0.143 -0.372 0.163 0.036 -0.156 0.489 0.142

Sx_a 0.641 0.269 -0.443 0.142 0.053 -0.148 0.373 -0.296

Dx 0.668 -0.648 0.018 -0.065 -0.071 -0.003 -0.065 0.211

Dx_a 0.657 -0.593 -0.007 -0.151 -0.102 0.023 -0.270 -0.155

TOx 0.499 0.233 0.447 0.105 0.623 -0.120 -0.082 0.073

TOx_a 0.429 0.258 0.481 0.073 0.646 -0.123 -0.089 -0.019

THx 0.336 0.191 0.737 -0.164 -0.403 0.042 0.229 0.020

THx_a 0.311 0.175 0.755 -0.199 -0.374 0.027 0.180 -0.162

ORx_5 0.142 -0.178 0.059 0.411 0.218 0.831 0.184 -0.036

ORx_30 0.006 -0.190 0.178 0.869 -0.155 -0.105 -0.102 -0.015

ORx_60 -0.027 -0.214 0.179 0.822 -0.255 -0.225 -0.065 -0.046

F9 F10 F11 F12 F13 F14 F15 F16

0.320 -0.047 0.109 0.129 -0.144 0.001 -0.029 -0.001

0.036 -0.068 -0.131 -0.188 0.178 0.029 0.086 -0.002

-0.293 0.075 0.040 0.039 -0.073 -0.025 -0.070 0.002

0.160 -0.088 -0.187 0.101 0.036 0.027 -0.042 0.069

-0.197 0.029 -0.131 0.194 0.036 -0.042 0.034 -0.055

0.066 0.013 0.029 -0.008 -0.086 -0.081 0.149 -0.012

-0.122 0.041 0.037 -0.051 0.063 0.074 -0.137 0.011

0.168 -0.041 0.075 -0.161 -0.008 0.056 -0.073 -0.068

-0.131 0.083 0.191 -0.124 -0.048 -0.020 0.068 0.055

0.050 -0.004 0.130 0.048 0.178 -0.132 -0.034 0.002

-0.095 -0.012 -0.109 -0.052 -0.174 0.131 0.032 -0.001

0.009 0.033 0.112 0.113 0.110 0.147 0.065 -0.002

0.017 -0.018 -0.131 -0.126 -0.080 -0.144 -0.055 0.002

-0.037 -0.038 0.012 -0.008 -0.003 -0.004 0.001 0.000

0.117 0.335 -0.071 0.003 0.009 0.003 -0.004 -0.001

-0.121 -0.325 0.051 0.025 -0.017 -0.005 0.005 0.000
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% Contribution of Variables 

 

 

 

 

 

 

 

F1 F2 F3 F4 F5 F6 F7 F8

PRx 5.666 14.805 1.291 0.090 1.202 1.445 8.535 7.626

PAx 4.462 18.109 2.666 0.641 1.748 1.120 9.440 0.135

RAC 4.568 13.735 0.310 0.280 5.579 1.131 2.738 33.378

Mx 14.272 8.226 0.335 0.198 0.078 0.002 0.075 8.766

Mx_a 14.194 5.555 0.732 1.363 0.162 0.064 4.292 9.284

Sx 11.362 0.690 6.748 1.478 0.093 2.805 29.712 3.885

Sx_a 9.573 2.462 9.532 1.126 0.205 2.549 17.289 16.820

Dx 10.402 14.269 0.015 0.238 0.362 0.001 0.519 8.583

Dx_a 10.056 11.927 0.003 1.257 0.758 0.064 9.043 4.607

TOx 5.797 1.840 9.733 0.616 27.971 1.678 0.837 1.019

TOx_a 4.279 2.259 11.241 0.297 30.143 1.746 0.973 0.067

THx 2.624 1.233 26.412 1.498 11.714 0.203 6.523 0.074

THx_a 2.254 1.042 27.709 2.201 10.113 0.084 4.029 5.049

ORx_5 0.472 1.077 0.169 9.361 3.440 79.974 4.191 0.247

ORx_30 0.001 1.224 1.541 41.886 1.742 1.286 1.280 0.045

ORx_60 0.017 1.548 1.563 37.470 4.693 5.847 0.523 0.416

F9 F10 F11 F12 F13 F14 F15 F16

28.501 0.879 6.138 9.267 13.456 0.001 1.085 0.013

0.352 1.824 8.824 19.693 20.416 0.850 9.691 0.029

23.756 2.201 0.837 0.849 3.477 0.644 6.482 0.034

7.105 3.064 18.132 5.705 0.826 0.764 2.310 30.141

10.807 0.332 8.849 20.883 0.834 1.869 1.553 19.227

1.202 0.063 0.445 0.033 4.776 6.796 28.947 0.964

4.133 0.656 0.703 1.465 2.577 5.624 24.522 0.764

7.797 0.668 2.914 14.468 0.043 3.280 7.054 29.386

4.760 2.755 18.909 8.539 1.478 0.400 6.087 19.358

0.686 0.008 8.679 1.279 20.397 17.957 1.478 0.025

2.515 0.054 6.194 1.506 19.529 17.811 1.375 0.010

0.023 0.439 6.465 7.049 7.835 22.434 5.453 0.023

0.079 0.124 8.876 8.878 4.112 21.515 3.910 0.023

0.380 0.558 0.073 0.033 0.008 0.015 0.002 0.000

3.823 44.475 2.602 0.005 0.058 0.010 0.018 0.002

4.082 41.898 1.359 0.347 0.177 0.029 0.031 0.001
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2. 30 Minute Mean Data Set: 

 

 

Eigenvalue Table 

 

 

 

 

 

 

 

 

 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16

Eigenvalue 4.765 3.083 2.144 1.901 1.294 0.815 0.572 0.457 0.288 0.173 0.145 0.128 0.116 0.064 0.047 0.009

Variability (%) 29.780 19.268 13.402 11.883 8.086 5.093 3.576 2.854 1.798 1.083 0.903 0.800 0.722 0.403 0.295 0.055

Cumulative % 29.780 49.048 62.449 74.332 82.418 87.511 91.087 93.941 95.739 96.822 97.726 98.525 99.248 99.651 99.945 100.000
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Scree Plot 
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Factor Loading 

 

 

 

 

 

 

 

F1 F2 F3 F4 F5 F6 F7 F8

PRx 0.522 0.653 0.001 0.112 -0.116 -0.331 0.085 -0.127

PAx 0.496 0.724 0.130 0.128 -0.165 -0.268 0.039 -0.037

RAC 0.451 0.570 0.013 0.286 -0.440 0.143 0.061 -0.262

Mx 0.796 -0.383 -0.072 -0.287 -0.108 0.203 -0.010 -0.182

Mx_a 0.767 -0.259 -0.044 -0.377 -0.010 -0.334 0.053 0.084

Sx 0.679 0.365 0.246 -0.214 -0.057 0.477 -0.158 0.093

Sx_a 0.569 0.536 0.324 -0.253 0.059 0.039 -0.189 0.396

Dx 0.702 -0.562 -0.084 -0.280 -0.077 0.171 -0.047 -0.176

Dx_a 0.655 -0.502 -0.054 -0.349 -0.046 -0.357 0.008 0.027

TOx 0.651 0.057 -0.059 0.347 0.598 0.104 0.006 -0.144

TOx_a 0.526 0.095 -0.131 0.370 0.704 -0.037 -0.011 0.002

THx 0.406 -0.249 -0.481 0.574 -0.350 0.111 -0.030 0.167

THx_a 0.394 -0.347 -0.515 0.575 -0.189 -0.045 -0.035 0.216

ORx_5 0.288 -0.282 0.631 0.184 -0.039 0.145 0.590 0.168

ORx_30 0.076 -0.428 0.747 0.390 -0.021 -0.091 -0.078 -0.095

ORx_60 0.045 -0.384 0.687 0.390 -0.135 -0.137 -0.371 -0.027

F9 F10 F11 F12 F13 F14 F15 F16

-0.339 -0.085 -0.076 -0.067 -0.099 0.002 -0.015 0.003

0.057 0.263 0.093 0.056 0.069 0.007 0.072 0.001

0.284 -0.131 0.001 0.032 -0.022 -0.024 -0.060 0.001

-0.047 0.140 -0.091 -0.090 0.043 -0.038 -0.032 -0.054

0.160 -0.064 -0.109 -0.132 0.127 0.037 0.007 0.033

-0.023 -0.053 0.046 -0.076 -0.059 0.119 0.079 0.003

-0.024 -0.013 0.013 0.058 0.027 -0.093 -0.090 -0.004

-0.093 0.076 0.057 0.084 -0.071 -0.072 -0.008 0.057

0.054 -0.123 0.129 0.133 -0.087 0.033 0.029 -0.036

-0.086 -0.050 -0.020 0.142 0.145 0.080 -0.036 0.000

0.160 0.010 0.000 -0.097 -0.130 -0.088 0.045 -0.003

-0.098 -0.107 -0.003 0.015 0.105 -0.086 0.091 -0.005

0.023 0.121 0.029 -0.039 -0.086 0.100 -0.090 0.005

-0.002 0.021 -0.061 0.043 -0.038 -0.001 0.009 0.000

-0.062 -0.042 0.211 -0.141 0.071 -0.015 -0.034 0.000

0.043 0.028 -0.195 0.080 -0.053 0.014 0.031 0.000
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% Contribution of Variables 

 

 

 

 

 

 

 

F1 F2 F3 F4 F5 F6 F7 F8

PRx 5.725 13.833 0.000 0.660 1.048 13.413 1.253 3.528

PAx 5.170 17.008 0.787 0.868 2.113 8.783 0.262 0.292

RAC 4.272 10.523 0.007 4.299 14.954 2.506 0.652 15.061

Mx 13.296 4.769 0.244 4.340 0.905 5.047 0.017 7.253

Mx_a 12.360 2.184 0.090 7.490 0.008 13.723 0.483 1.532

Sx 9.669 4.315 2.817 2.403 0.253 27.971 4.362 1.910

Sx_a 6.802 9.319 4.907 3.358 0.265 0.184 6.264 34.361

Dx 10.331 10.254 0.328 4.120 0.453 3.572 0.383 6.761

Dx_a 9.015 8.176 0.136 6.414 0.161 15.617 0.012 0.163

TOx 8.903 0.104 0.162 6.338 27.651 1.331 0.005 4.546

TOx_a 5.817 0.292 0.805 7.212 38.356 0.171 0.023 0.001

THx 3.468 2.006 10.799 17.325 9.491 1.515 0.158 6.079

THx_a 3.264 3.915 12.353 17.367 2.773 0.254 0.216 10.182

ORx_5 1.744 2.575 18.539 1.774 0.117 2.591 60.789 6.205

ORx_30 0.123 5.938 26.043 8.019 0.035 1.012 1.066 1.968

ORx_60 0.042 4.788 21.982 8.013 1.416 2.309 24.056 0.159

F9 F10 F11 F12 F13 F14 F15 F16

39.827 4.149 4.009 3.466 8.500 0.006 0.471 0.112

1.117 39.980 5.927 2.478 4.112 0.083 10.998 0.022

28.100 9.968 0.001 0.819 0.414 0.879 7.535 0.010

0.779 11.334 5.778 6.364 1.626 2.252 2.122 33.875

8.859 2.382 8.287 13.644 14.000 2.086 0.094 12.779

0.179 1.613 1.483 4.530 3.058 22.031 13.276 0.127

0.196 0.097 0.114 2.661 0.644 13.420 17.233 0.175

2.982 3.371 2.254 5.513 4.338 8.040 0.126 37.173

1.027 8.777 11.472 13.923 6.555 1.721 1.806 15.026

2.550 1.420 0.289 15.837 18.225 9.854 2.780 0.002

8.870 0.058 0.000 7.356 14.643 12.032 4.236 0.128

3.354 6.642 0.007 0.172 9.517 11.560 17.632 0.275

0.179 8.487 0.579 1.186 6.432 15.364 17.155 0.293

0.002 0.246 2.578 1.442 1.228 0.000 0.169 0.001

1.337 1.016 30.807 15.565 4.306 0.370 2.395 0.000

0.641 0.457 26.416 5.045 2.402 0.300 1.973 0.001
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3. Grand Mean Data Set: 

 

 

 

Eigenvalue Table 

 

 

 

 

 

 

 

 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16

Eigenvalue 6.062 2.779 2.542 1.294 0.844 0.672 0.561 0.395 0.263 0.180 0.133 0.107 0.088 0.037 0.028 0.015

Variability (%) 37.889 17.366 15.887 8.088 5.277 4.201 3.507 2.468 1.644 1.123 0.833 0.666 0.551 0.232 0.174 0.094

Cumulative % 37.889 55.255 71.142 79.230 84.507 88.708 92.215 94.683 96.327 97.450 98.283 98.949 99.500 99.732 99.906 100.000



 

286 
 

Scree Plot 

 

 

Factor Loadings 

 

 

F1 F2 F3 F4 F5 F6 F7 F8

PRx 0.631 0.131 0.628 0.181 0.050 -0.080 -0.140 0.059

PAx 0.620 0.233 0.636 0.215 0.063 -0.123 0.014 -0.126

RAC 0.602 0.136 0.552 0.388 -0.167 -0.013 -0.008 -0.259

Mx 0.843 -0.020 -0.285 -0.212 -0.257 -0.059 0.144 -0.206

Mx_a 0.798 0.072 -0.079 -0.234 0.406 -0.205 0.029 -0.135

Sx 0.790 0.211 0.165 -0.226 -0.396 0.193 0.032 0.185

Sx_a 0.581 0.451 0.430 -0.323 0.062 0.025 -0.079 0.347

Dx 0.691 0.072 -0.492 -0.260 -0.406 -0.026 0.018 -0.095

Dx_a 0.623 0.161 -0.471 -0.235 0.245 -0.377 -0.202 0.037

TOx 0.821 -0.246 -0.122 0.052 0.221 0.346 0.022 0.003

TOx_a 0.677 -0.373 -0.179 0.004 0.298 0.478 -0.041 -0.055

THx 0.511 -0.615 -0.161 0.438 -0.164 -0.140 -0.056 0.212

THx_a 0.489 -0.558 -0.380 0.422 -0.053 -0.148 -0.157 0.105

ORx_5 0.323 0.514 -0.326 0.380 0.156 -0.068 0.570 0.149

ORx_30 -0.078 0.798 -0.439 0.312 -0.042 0.119 -0.124 -0.013

ORx_60 0.013 0.783 -0.399 0.270 0.001 0.128 -0.319 -0.038
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% Contribution of Variables 

 

 

F9 F10 F11 F12 F13 F14 F15 F16

0.299 0.123 0.057 -0.020 -0.130 -0.020 -0.027 -0.013

-0.055 -0.070 0.196 0.093 0.135 -0.021 0.027 -0.001

-0.093 -0.141 -0.179 -0.072 -0.043 0.038 -0.009 0.004

-0.043 0.127 0.043 -0.013 -0.043 -0.050 -0.005 0.076

-0.118 0.219 -0.067 -0.005 0.026 0.054 0.011 -0.039

-0.022 0.028 -0.067 0.086 -0.031 -0.005 0.096 -0.027

-0.171 -0.036 0.003 -0.045 0.019 0.027 -0.067 0.033

0.088 -0.080 0.081 -0.036 0.042 0.033 -0.069 -0.055

0.116 -0.213 -0.036 -0.015 -0.026 -0.020 0.049 0.017

0.180 -0.012 -0.142 0.085 0.125 -0.038 -0.037 0.014

-0.076 -0.080 0.140 -0.084 -0.089 0.026 0.027 -0.003

0.012 0.078 0.007 -0.170 0.108 0.008 0.033 0.006

-0.158 -0.003 0.009 0.183 -0.083 0.014 -0.038 -0.002

0.001 -0.045 0.006 -0.015 -0.045 -0.023 -0.007 -0.013

0.115 0.058 0.029 0.041 0.027 0.117 0.019 0.037

-0.136 0.060 -0.012 -0.052 0.009 -0.104 -0.009 -0.025

F1 F2 F3 F4 F5 F6 F7 F8

PRx 6.569 0.616 15.491 2.523 0.298 0.961 3.499 0.871

PAx 6.347 1.960 15.931 3.562 0.477 2.249 0.035 3.993

RAC 5.984 0.661 11.966 11.624 3.308 0.026 0.011 17.016

Mx 11.716 0.014 3.197 3.478 7.849 0.522 3.678 10.778

Mx_a 10.503 0.187 0.246 4.214 19.515 6.231 0.151 4.598

Sx 10.287 1.609 1.067 3.940 18.575 5.552 0.177 8.689

Sx_a 5.565 7.314 7.265 8.063 0.453 0.090 1.100 30.498

Dx 7.869 0.188 9.538 5.237 19.505 0.103 0.059 2.284

Dx_a 6.406 0.930 8.744 4.278 7.102 21.096 7.283 0.341

TOx 11.122 2.172 0.590 0.207 5.782 17.818 0.085 0.002

TOx_a 7.567 5.020 1.257 0.001 10.511 33.954 0.295 0.769

THx 4.301 13.632 1.016 14.848 3.187 2.900 0.562 11.355

THx_a 3.942 11.208 5.669 13.732 0.335 3.272 4.416 2.806

ORx_5 1.718 9.515 4.193 11.140 2.894 0.694 57.808 5.601

ORx_30 0.101 22.936 7.579 7.520 0.208 2.113 2.731 0.041

ORx_60 0.003 22.037 6.251 5.631 0.000 2.420 18.109 0.357



 

288 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F9 F10 F11 F12 F13 F14 F15 F16

33.964 8.376 2.399 0.391 19.145 1.075 2.711 1.110

1.166 2.735 28.923 8.110 20.704 1.138 2.657 0.013

3.275 11.020 23.920 4.924 2.096 3.796 0.288 0.083

0.689 8.995 1.387 0.167 2.071 6.613 0.081 38.766

5.253 26.756 3.404 0.028 0.753 7.721 0.430 10.011

0.188 0.440 3.400 6.919 1.088 0.062 33.100 4.905

11.147 0.737 0.005 1.877 0.429 1.999 16.348 7.112

2.940 3.599 4.930 1.200 2.020 2.930 17.287 20.310

5.158 25.270 0.980 0.201 0.788 1.033 8.555 1.835

12.384 0.083 15.149 6.720 17.631 3.980 5.022 1.252

2.215 3.544 14.614 6.655 9.070 1.825 2.629 0.076

0.058 3.422 0.041 27.085 13.233 0.160 3.930 0.269

9.502 0.007 0.067 31.417 7.761 0.552 5.286 0.027

0.000 1.132 0.028 0.211 2.318 1.413 0.162 1.173

5.048 1.863 0.638 1.591 0.801 36.612 1.250 8.969

7.014 2.022 0.115 2.502 0.094 29.091 0.265 4.091
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Appendix B: Section 6.2 - Spearman Principal Component Analysis (PCA) – 

Supplementary Material 

 

* PCA = principal component analysis, F = factor, PC = principal component, F1 = PC1 = principal 

component #1, F2 = PC2 = principal component #2. PC1 and PC2 are the two components which 

contribute the largest amount of variance to the entire data set.   

*Biplots of PC1 vs. PC2 display which variables contribute variance to PC1 and PC2.  The longer the 

arm connecting (0,0) to the variable (such as PRx), the larger the contribution of that variable.  

Similarly, the quadrant on the biplot in which the variable falls correlates to its contribution to a 

particular PC. The upper left quadrant is primarily PC2; lower left quadrant is neither PC1 or PC2; the 

upper right quadrant is PC1 and PC2; the lower right quadrant is primarily PC1. 

*Eigenvalue tables display the eigenvalue for each principal component (PC) (also denoted F), with the 

% variability and cumulative variability for each factor/principal component. 

*Scree plot displays the same information form the eigenvalue table in a histogram format, with each 

F (or PC) along the x-axis, the eigenvalue along the left side y-axis and the % variability along the right 

y-axis.  Furthermore, the red line on the graph displays the cumulative variability with the addition of 

each F (or PC) moving from F1 to F18. 

*Factor loading tables display the loading of each variable (ie. PRx, etc.) for each principal component.  

Loading varies from -1 to +1, with negative values indicating that particular variable is less likely to 

contribute to the variance in that particular factor (F). Similarly, positive loadings indicate that 

particular variable likely contribute to the variance in that corresponding factor (F). 

*Contribution % of Variables tables displays the % contribution to the variance of each individual 

variable for each individual factor (F). 

*Correlation between variables and factor table – denotes the strength of association between 

various autoregulatory indices and the individual factors 
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1. Grand Mean Data Set 

 

Loading Biplot:  PC1 vs. PC2 

Spearman Type Principal Component Analysis of Autoregulatory Indices – Biplot of PC1 vs. PC2 (Grand Mean Data) 

 

PCA = principal component analysis, F = factor, PC = principal component, F1 = PC1 = principal component #1, F2 = PC2 = 
principal component #2. PC1 and PC2 are the two components which contribute the largest amount of variance to the entire 
data set.  The above biplot of PC1 vs. PC2 displays which variables contribute variance to PC1 and PC2.  The longer the arm 
connecting (0,0) to the variable (such as PRx), the larger the contribution of that variable.  Similarly, the quadrant on the biplot 
in which the variable falls correlates to its contribution to a particular PC. The upper left quadrant is primarily PC2; lower left 
quadrant is neither PC1 or PC2; the upper right quadrant is PC1 and PC2; the lower right quadrant is primarily PC1.  
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Spearman Correlation Matrix 

 

 

 

Eigenvalue Table 

 

 

 

 

 

 

 

 

 

 

 

 

Variables PRx PAx RAC Mx Mx_a Sx Sx_a Dx Dx_a Lx Lx_a

PRx 1 0.639 0.595 0.192 0.384 0.334 0.504 -0.145 0.008 -0.143 0.052

PAx 0.639 1 0.706 0.026 0.311 0.264 0.573 -0.186 0.018 -0.139 0.124

RAC 0.595 0.706 1 0.104 0.237 0.310 0.401 -0.119 -0.023 -0.026 0.037

Mx 0.192 0.026 0.104 1 0.676 0.610 0.360 0.746 0.494 0.464 0.408

Mx_a 0.384 0.311 0.237 0.676 1 0.376 0.629 0.501 0.742 0.279 0.433

Sx 0.334 0.264 0.310 0.610 0.376 1 0.668 0.271 0.084 0.113 0.083

Sx_a 0.504 0.573 0.401 0.360 0.629 0.668 1 0.140 0.338 -0.030 0.145

Dx -0.145 -0.186 -0.119 0.746 0.501 0.271 0.140 1 0.778 0.416 0.322

Dx_a 0.008 0.018 -0.023 0.494 0.742 0.084 0.338 0.778 1 0.257 0.360

Lx -0.143 -0.139 -0.026 0.464 0.279 0.113 -0.030 0.416 0.257 1 0.814

Lx_a 0.052 0.124 0.037 0.408 0.433 0.083 0.145 0.322 0.360 0.814 1

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

Eigenvalue 4.197 2.827 1.291 0.972 0.584 0.457 0.255 0.206 0.115 0.078 0.019

Variability (%) 38.152 25.699 11.735 8.835 5.310 4.154 2.320 1.877 1.044 0.705 0.169

Cumulative % 38.152 63.852 75.587 84.422 89.733 93.886 96.206 98.082 99.126 99.831 100.000
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Scree Plot 

 

 

 

Factor Loading Table 

 

 

 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

PRx 0.449 0.694 0.101 -0.078 0.112 0.493 0.053 -0.201 -0.020 -0.016 0.001

PAx 0.416 0.748 0.237 -0.215 -0.003 -0.198 0.312 0.144 -0.057 -0.075 -0.007

RAC 0.391 0.681 0.256 -0.045 0.442 -0.244 -0.235 -0.016 0.053 0.055 0.003

Mx 0.813 -0.294 -0.150 0.307 0.215 0.174 0.062 0.208 -0.025 0.091 -0.063

Mx_a 0.876 -0.039 -0.116 -0.278 -0.144 0.156 -0.198 0.220 -0.004 -0.063 0.061

Sx 0.626 0.253 -0.252 0.654 -0.084 -0.101 0.005 -0.063 0.124 -0.126 0.007

Sx_a 0.708 0.456 -0.206 0.047 -0.419 -0.157 -0.055 -0.106 -0.114 0.135 -0.006

Dx 0.629 -0.597 -0.299 -0.049 0.294 -0.110 0.184 -0.124 -0.046 0.043 0.073

Dx_a 0.672 -0.403 -0.271 -0.518 -0.001 -0.103 -0.037 -0.130 0.069 -0.077 -0.071

Lx 0.445 -0.552 0.626 0.209 0.012 -0.047 -0.098 -0.076 -0.190 -0.090 -0.012

Lx_a 0.551 -0.374 0.680 -0.039 -0.199 0.021 0.093 -0.022 0.191 0.082 0.013
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% Contribution 

 

 

 

Correlation Between Variables and Factors 

 

 

 

 

 

 

 

 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

PRx 4.812 17.052 0.793 0.620 2.154 53.259 1.112 19.525 0.335 0.333 0.004

PAx 4.114 19.775 4.352 4.757 0.002 8.545 38.122 10.035 2.836 7.208 0.255

RAC 3.641 16.384 5.061 0.205 33.495 13.044 21.724 0.121 2.430 3.844 0.052

Mx 15.744 3.058 1.735 9.697 7.884 6.597 1.483 20.993 0.536 10.582 21.691

Mx_a 18.284 0.053 1.047 7.928 3.555 5.360 15.441 23.412 0.012 5.051 19.857

Sx 9.337 2.265 4.933 44.040 1.203 2.221 0.009 1.940 13.423 20.328 0.302

Sx_a 11.953 7.352 3.280 0.230 30.103 5.397 1.187 5.393 11.241 23.638 0.226

Dx 9.417 12.593 6.931 0.247 14.787 2.655 13.293 7.408 1.826 2.350 28.493

Dx_a 10.752 5.745 5.673 27.633 0.000 2.342 0.541 8.127 4.139 7.571 27.477

Lx 4.713 10.786 30.346 4.483 0.023 0.484 3.732 2.806 31.508 10.362 0.758

Lx_a 7.233 4.938 35.850 0.159 6.794 0.096 3.357 0.240 31.714 8.734 0.885

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

PRx 0.449 0.694 0.101 -0.078 0.112 0.493 0.053 -0.201 -0.020 -0.016 0.001

PAx 0.416 0.748 0.237 -0.215 -0.003 -0.198 0.312 0.144 -0.057 -0.075 -0.007

RAC 0.391 0.681 0.256 -0.045 0.442 -0.244 -0.235 -0.016 0.053 0.055 0.003

Mx 0.813 -0.294 -0.150 0.307 0.215 0.174 0.062 0.208 -0.025 0.091 -0.063

Mx_a 0.876 -0.039 -0.116 -0.278 -0.144 0.156 -0.198 0.220 -0.004 -0.063 0.061

Sx 0.626 0.253 -0.252 0.654 -0.084 -0.101 0.005 -0.063 0.124 -0.126 0.007

Sx_a 0.708 0.456 -0.206 0.047 -0.419 -0.157 -0.055 -0.106 -0.114 0.135 -0.006

Dx 0.629 -0.597 -0.299 -0.049 0.294 -0.110 0.184 -0.124 -0.046 0.043 0.073

Dx_a 0.672 -0.403 -0.271 -0.518 -0.001 -0.103 -0.037 -0.130 0.069 -0.077 -0.071

Lx 0.445 -0.552 0.626 0.209 0.012 -0.047 -0.098 -0.076 -0.190 -0.090 -0.012

Lx_a 0.551 -0.374 0.680 -0.039 -0.199 0.021 0.093 -0.022 0.191 0.082 0.013
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2. 10 Second by 10 Second Data 

 

Loading Biplot:  PC1 vs. PC2 
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Spearman Correlation Matrix 

 

Eigenvalue Table 

 

 

 

 

 

 

 

 

 

 

 

 

Variables PRx PAx RAC Mx Mx_a Sx Sx_a Dx Dx_a Lx Lx_a

PRx 1 0.704 0.481 0.144 0.286 0.248 0.416 -0.089 0.036 -0.011 0.154

PAx 0.704 1 0.565 0.002 0.168 0.234 0.497 -0.153 -0.002 -0.143 0.049

RAC 0.481 0.565 1 0.044 0.071 0.369 0.248 -0.152 -0.112 0.034 0.063

Mx 0.144 0.002 0.044 1 0.705 0.536 0.310 0.815 0.535 0.380 0.175

Mx_a 0.286 0.168 0.071 0.705 1 0.332 0.565 0.561 0.796 0.244 0.286

Sx 0.248 0.234 0.369 0.536 0.332 1 0.650 0.266 0.097 0.101 0.002

Sx_a 0.416 0.497 0.248 0.310 0.565 0.650 1 0.147 0.351 -0.016 0.071

Dx -0.089 -0.153 -0.152 0.815 0.561 0.266 0.147 1 0.733 0.338 0.088

Dx_a 0.036 -0.002 -0.112 0.535 0.796 0.097 0.351 0.733 1 0.183 0.188

Lx -0.011 -0.143 0.034 0.380 0.244 0.101 -0.016 0.338 0.183 1 0.737

Lx_a 0.154 0.049 0.063 0.175 0.286 0.002 0.071 0.088 0.188 0.737 1

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

Eigenvalue 3.870 2.586 1.559 0.993 0.709 0.472 0.321 0.203 0.183 0.086 0.018

Variability (%) 35.184 23.513 14.174 9.027 6.441 4.292 2.915 1.847 1.665 0.778 0.164

Cumulative % 35.184 58.697 72.871 81.898 88.339 92.632 95.546 97.394 99.058 99.836 100.000
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Scree Plot 

 

 

Factor Loading Table 

 

 

 

 

 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

PRx 0.398 0.698 0.170 -0.268 -0.169 -0.382 -0.189 0.204 0.052 0.005 0.000

PAx 0.309 0.809 0.063 -0.262 -0.107 -0.062 0.350 -0.182 -0.033 -0.081 -0.004

RAC 0.244 0.693 0.210 0.212 -0.398 0.444 -0.096 0.028 -0.010 0.065 0.003

Mx 0.831 -0.278 -0.116 0.253 -0.236 -0.215 -0.075 -0.189 -0.054 0.055 0.073

Mx_a 0.875 -0.118 -0.106 -0.280 0.097 0.091 -0.264 -0.141 -0.136 -0.049 -0.065

Sx 0.600 0.316 -0.187 0.651 0.193 -0.025 -0.023 0.027 0.151 -0.137 -0.017

Sx_a 0.661 0.442 -0.218 0.014 0.516 0.057 0.105 0.089 -0.095 0.150 0.016

Dx 0.698 -0.533 -0.216 0.053 -0.309 -0.061 0.227 0.088 0.088 0.095 -0.066

Dx_a 0.722 -0.376 -0.214 -0.430 -0.013 0.250 0.041 0.135 0.105 -0.100 0.059

Lx 0.408 -0.360 0.754 0.205 0.000 -0.020 0.114 0.148 -0.230 -0.072 0.003

Lx_a 0.360 -0.153 0.845 -0.110 0.214 0.028 -0.019 -0.125 0.233 0.062 -0.003
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% Contribution 

 

 

Correlation Between Variables and Factors 

 

 

 

 

 

 

 

 

 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

PRx 4.098 18.813 1.849 7.224 4.018 30.839 11.181 20.482 1.461 0.034 0.001

PAx 2.471 25.277 0.258 6.890 1.610 0.824 38.117 16.271 0.582 7.599 0.102

RAC 1.537 18.591 2.841 4.531 22.397 41.785 2.897 0.389 0.057 4.929 0.046

Mx 17.838 2.999 0.865 6.429 7.887 9.748 1.757 17.645 1.617 3.555 29.660

Mx_a 19.761 0.536 0.715 7.871 1.337 1.735 21.667 9.775 10.061 2.750 23.792

Sx 9.315 3.873 2.246 42.647 5.237 0.130 0.161 0.352 12.408 22.054 1.578

Sx_a 11.287 7.564 3.045 0.020 37.566 0.699 3.416 3.862 4.885 26.158 1.500

Dx 12.585 10.978 2.990 0.283 13.448 0.796 16.074 3.808 4.270 10.616 24.153

Dx_a 13.459 5.463 2.937 18.649 0.025 13.195 0.534 8.914 6.058 11.679 19.088

Lx 4.304 5.007 36.451 4.233 0.000 0.088 4.083 10.821 28.845 6.123 0.046

Lx_a 3.344 0.901 45.805 1.224 6.474 0.161 0.113 7.681 29.757 4.503 0.035

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

PRx 0.398 0.698 0.170 -0.268 -0.169 -0.382 -0.189 0.204 0.052 0.005 0.000

PAx 0.309 0.809 0.063 -0.262 -0.107 -0.062 0.350 -0.182 -0.033 -0.081 -0.004

RAC 0.244 0.693 0.210 0.212 -0.398 0.444 -0.096 0.028 -0.010 0.065 0.003

Mx 0.831 -0.278 -0.116 0.253 -0.236 -0.215 -0.075 -0.189 -0.054 0.055 0.073

Mx_a 0.875 -0.118 -0.106 -0.280 0.097 0.091 -0.264 -0.141 -0.136 -0.049 -0.065

Sx 0.600 0.316 -0.187 0.651 0.193 -0.025 -0.023 0.027 0.151 -0.137 -0.017

Sx_a 0.661 0.442 -0.218 0.014 0.516 0.057 0.105 0.089 -0.095 0.150 0.016

Dx 0.698 -0.533 -0.216 0.053 -0.309 -0.061 0.227 0.088 0.088 0.095 -0.066

Dx_a 0.722 -0.376 -0.214 -0.430 -0.013 0.250 0.041 0.135 0.105 -0.100 0.059

Lx 0.408 -0.360 0.754 0.205 0.000 -0.020 0.114 0.148 -0.230 -0.072 0.003

Lx_a 0.360 -0.153 0.845 -0.110 0.214 0.028 -0.019 -0.125 0.233 0.062 -0.003
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Appendix C: Section 6.3 - Spearman Principal Component Analysis (PCA) – 

Supplementary Material – Entire TBI TCD Cohort 

 

* PCA = principal component analysis, F = factor, PC = principal component, F1 = PC1 = principal 

component #1, F2 = PC2 = principal component #2. PC1 and PC2 are the two components which 

contribute the largest amount of variance to the entire data set.   

*Biplots of PC1 vs. PC2 display which variables contribute variance to PC1 and PC2.  The longer the 

arm connecting (0,0) to the variable (such as PRx), the larger the contribution of that variable.  

Similarly, the quadrant on the biplot in which the variable fallscorrelates to its contribution to a 

particular PC. The upper left quadrant is primarily PC2; lower left quadrant is neither PC1 or PC2; the 

upper right quadrant is PC1 and PC2; the lower right quadrant is primarily PC1. 

*Eigenvalue tables display the eigenvalue for each principal component (PC) (also denoted F), with the 

% variability and cumulative variability for each factor/principal component. 

*Scree plot displays the same information form the eigenvalue table in a histogram format, with each 

F (or PC) along the x-axis, the eigenvalue along the left side y-axis and the % variability along the right 

y-axis.  Furthermore, the red line on the graph displays the cumulative variability with the addition of 

each F (or PC) moving from F1 to F18. 

*Factor loading tables display the loading of each variable (ie. PRx, etc.) for each principal component.  

Loading varies from -1 to +1, with negative values indicating that particular variable is less likely to 

contribute to the variance in that particular factor (F). Similarly, positive loadings indicate that 

particular variable likely contribute to the variance in that corresponding factor (F). 

*Contribution % of Variables tables displays the % contribution to the variance of each individual 

variable for each individual factor (F). 

*Correlation between variables and factor table – denotes the strength of association between 

various autoregulatory indices and the individual factors 
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1. Grand Mean Data Set 

 

Loading Biplot 

Spearman Type Principal Component Analysis of Autoregulatory/Cerebrovascular Reactivity Indices – Biplot of PC1 vs. PC2 
(Entire TBI TCD Cohort - Grand Mean Data) 

 

 

PCA = principal component analysis, F = factor, PC = principal component, F1 = PC1 = principal component #1, F2 = PC2 = 
principal component #2. PC1 and PC2 are the two components which contribute the largest amount of variance to the entire 
data set.  The above biplot of PC1 vs. PC2 displays which variables contribute variance to PC1 and PC2.  The longer the arm 
connecting (0,0) to the variable (such as PRx), the larger the contribution of that variable.  Similarly, the quadrant on the biplot 
in which the variable falls correlates to its contribution to a particular PC. The upper left quadrant is primarily PC2; lower left 
quadrant is neither PC1 or PC2; the upper right quadrant is PC1 and PC2; the lower right quadrant is primarily PC1.  
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Spearman Correlation Matrix 

Variables PRx PAx RAC Mx Mx_a Dx Dx_a Sx Sx_a 

PRx 1 0.715 0.507 0.338 0.409 0.232 0.304 0.430 0.495 

PAx 0.715 1 0.651 0.191 0.305 0.047 0.141 0.363 0.526 

RAC 0.507 0.651 1 0.340 0.224 0.191 0.109 0.545 0.339 

Mx 0.338 0.191 0.340 1 0.755 0.934 0.715 0.716 0.458 

Mx_a 0.409 0.305 0.224 0.755 1 0.713 0.886 0.508 0.654 

Dx 0.232 0.047 0.191 0.934 0.713 1 0.801 0.561 0.327 

Dx_a 0.304 0.141 0.109 0.715 0.886 0.801 1 0.361 0.444 

Sx 0.430 0.363 0.545 0.716 0.508 0.561 0.361 1 0.743 

Sx_a 0.495 0.526 0.339 0.458 0.654 0.327 0.444 0.743 1 

 

 

Eigenvalue Table 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 

Eigenvalue 4.862 1.938 0.788 0.678 0.368 0.202 0.100 0.048 0.016 

Variability 
(%) 54.027 21.533 8.752 7.529 4.084 2.246 1.116 0.531 0.182 

Cumulative 
% 54.027 75.560 84.311 91.841 95.925 98.171 99.287 99.818 100.000 
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Scree Plot 

 

 

 

Factor Loading Table 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 

PRx 0.629 0.525 -0.296 -0.200 -0.418 -0.159 0.013 -0.015 0.000 

PAx 0.534 0.731 -0.224 -0.130 0.110 0.314 -0.030 0.047 -0.006 

RAC 0.538 0.594 0.379 -0.308 0.293 -0.176 0.000 -0.048 0.002 

Mx 0.865 -0.349 0.250 -0.128 -0.106 0.129 0.130 -0.018 0.080 

Mx_a 0.861 -0.287 -0.305 0.052 0.180 -0.069 0.199 0.032 -0.050 

Dx 0.778 -0.524 0.167 -0.217 -0.101 0.115 -0.100 -0.086 -0.068 

Dx_a 0.765 -0.475 -0.319 -0.134 0.150 -0.107 -0.171 0.064 0.043 

Sx 0.800 0.133 0.451 0.322 -0.124 -0.038 -0.042 0.130 -0.023 

Sx_a 0.757 0.229 -0.130 0.582 0.061 -0.004 -0.045 -0.116 0.019 
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% Contribution 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 

PRx 8.148 14.237 11.151 5.906 47.458 12.469 0.170 0.459 0.002 

PAx 5.858 27.569 6.389 2.496 3.315 48.627 0.921 4.620 0.205 

RAC 5.956 18.223 18.228 13.956 23.295 15.399 0.000 4.909 0.035 

Mx 15.380 6.275 7.964 2.409 3.067 8.263 16.740 0.665 39.238 

Mx_a 15.256 4.254 11.791 0.406 8.774 2.324 39.431 2.193 15.570 

Dx 12.444 14.165 3.542 6.948 2.781 6.569 9.860 15.417 28.274 

Dx_a 12.033 11.659 12.940 2.653 6.121 5.640 29.126 8.498 11.331 

Sx 13.154 0.908 25.849 15.266 4.161 0.701 1.718 35.107 3.135 

Sx_a 11.772 2.710 2.146 49.960 1.027 0.008 2.035 28.132 2.211 

 

 

 

Correlation Between Variables and Factors 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 

PRx 0.629 0.525 -0.296 -0.200 -0.418 -0.159 0.013 -0.015 0.000 

PAx 0.534 0.731 -0.224 -0.130 0.110 0.314 -0.030 0.047 -0.006 

RAC 0.538 0.594 0.379 -0.308 0.293 -0.176 0.000 -0.048 0.002 

Mx 0.865 -0.349 0.250 -0.128 -0.106 0.129 0.130 -0.018 0.080 

Mx_a 0.861 -0.287 -0.305 0.052 0.180 -0.069 0.199 0.032 -0.050 

Dx 0.778 -0.524 0.167 -0.217 -0.101 0.115 -0.100 -0.086 -0.068 

Dx_a 0.765 -0.475 -0.319 -0.134 0.150 -0.107 -0.171 0.064 0.043 

Sx 0.800 0.133 0.451 0.322 -0.124 -0.038 -0.042 0.130 -0.023 

Sx_a 0.757 0.229 -0.130 0.582 0.061 -0.004 -0.045 -0.116 0.019 
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2. 30 Minute Mean Data 

 

Loading Biplot:  PC1 vs. PC2 

 

 

 

Spearman Correlation Matrix 

Variables PRx PAx RAC Mx Mx_a Dx Dx_a Sx Sx_a 

PRx 1 0.721 0.508 0.290 0.381 0.171 0.235 0.404 0.473 

PAx 0.721 1 0.671 0.187 0.297 0.040 0.110 0.371 0.500 

RAC 0.508 0.671 1 0.357 0.280 0.187 0.114 0.556 0.356 

Mx 0.290 0.187 0.357 1 0.796 0.919 0.715 0.707 0.442 

Mx_a 0.381 0.297 0.280 0.796 1 0.726 0.868 0.551 0.623 

Dx 0.171 0.040 0.187 0.919 0.726 1 0.813 0.530 0.290 

Dx_a 0.235 0.110 0.114 0.715 0.868 0.813 1 0.358 0.396 

Sx 0.404 0.371 0.556 0.707 0.551 0.530 0.358 1 0.765 

Sx_a 0.473 0.500 0.356 0.442 0.623 0.290 0.396 0.765 1 
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Eigenvalue Table 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 

Eigenvalue 4.807 2.018 0.745 0.688 0.356 0.200 0.121 0.050 0.015 

Variability 
(%) 53.407 22.424 8.279 7.649 3.954 2.219 1.345 0.557 0.166 

Cumulativ
e % 53.407 75.831 84.110 91.759 95.714 97.933 99.277 99.834 

100.00
0 

 

Scree Plot 
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Factor Loading Table 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 

PRx 0.587 0.566 -0.381 0.101 -0.394 -0.155 -0.003 -0.012 0.000 

PAx 0.527 0.732 -0.260 0.000 0.135 0.312 -0.008 0.047 -0.003 

RAC 0.564 0.573 0.076 -0.499 0.247 -0.184 -0.022 -0.053 0.001 

Mx 0.868 -0.355 0.082 -0.237 -0.133 0.102 0.152 -0.023 0.076 

Mx_a 0.877 -0.278 -0.161 0.195 0.178 -0.089 0.215 0.026 -0.053 

Dx 0.765 -0.544 -0.057 -0.240 -0.129 0.129 -0.119 -0.084 -0.062 

Dx_a 0.748 -0.500 -0.319 0.116 0.173 -0.093 -0.178 0.068 0.043 

Sx 0.809 0.139 0.533 -0.030 -0.137 -0.023 -0.049 0.136 -0.020 

Sx_a 0.738 0.254 0.324 0.513 0.081 0.012 -0.051 -0.117 0.017 

 

 

% Contribution 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 

PRx 7.168 15.871 19.502 1.481 43.714 11.984 0.007 0.274 0.000 

PAx 5.781 26.572 9.082 0.000 5.143 48.881 0.055 4.435 0.052 

RAC 6.623 16.288 0.779 36.184 17.077 17.008 0.402 5.625 0.014 

Mx 15.677 6.261 0.895 8.158 4.945 5.184 18.989 1.099 38.791 

Mx_a 16.008 3.830 3.475 5.507 8.919 3.926 38.361 1.300 18.674 

Dx 12.169 14.657 0.440 8.371 4.655 8.356 11.751 14.160 25.440 

Dx_a 11.625 12.364 13.634 1.943 8.406 4.325 26.257 9.131 12.314 

Sx 13.628 0.961 38.124 0.128 5.279 0.266 2.019 36.804 2.793 

Sx_a 11.322 3.197 14.069 38.229 1.863 0.071 2.159 27.171 1.921 

 

 

Correlation Between Variables and Factors 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 

PRx 0.587 0.566 -0.381 0.101 -0.394 -0.155 -0.003 -0.012 0.000 

PAx 0.527 0.732 -0.260 0.000 0.135 0.312 -0.008 0.047 -0.003 

RAC 0.564 0.573 0.076 -0.499 0.247 -0.184 -0.022 -0.053 0.001 

Mx 0.868 -0.355 0.082 -0.237 -0.133 0.102 0.152 -0.023 0.076 

Mx_a 0.877 -0.278 -0.161 0.195 0.178 -0.089 0.215 0.026 -0.053 

Dx 0.765 -0.544 -0.057 -0.240 -0.129 0.129 -0.119 -0.084 -0.062 

Dx_a 0.748 -0.500 -0.319 0.116 0.173 -0.093 -0.178 0.068 0.043 

Sx 0.809 0.139 0.533 -0.030 -0.137 -0.023 -0.049 0.136 -0.020 

Sx_a 0.738 0.254 0.324 0.513 0.081 0.012 -0.051 -0.117 0.017 
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3. Minute-by-Minute Data 

Loading Biplot:  PC1 vs. PC2 

 

 

 

Spearman Correlation Matrix 

Variables PRx PAx RAC Mx Mx_a Dx Dx_a Sx Sx_a 

PRx 1 0.671 0.462 0.218 0.320 0.121 0.206 0.345 0.450 

PAx 0.671 1 0.670 0.111 0.224 -0.005 0.082 0.300 0.446 

RAC 0.462 0.670 1 0.266 0.217 0.132 0.099 0.461 0.308 

Mx 0.218 0.111 0.266 1 0.792 0.902 0.701 0.680 0.445 

Mx_a 0.320 0.224 0.217 0.792 1 0.712 0.864 0.535 0.626 

Dx 0.121 -0.005 0.132 0.902 0.712 1 0.803 0.501 0.296 

Dx_a 0.206 0.082 0.099 0.701 0.864 0.803 1 0.362 0.417 

Sx 0.345 0.300 0.461 0.680 0.535 0.501 0.362 1 0.767 

Sx_a 0.450 0.446 0.308 0.445 0.626 0.296 0.417 0.767 1 
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Eigenvalue Table 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 

Eigenvalue 4.586 2.088 0.778 0.693 0.399 0.223 0.147 0.067 0.020 

Variability 
(%) 50.953 23.198 8.648 7.698 4.434 2.477 1.633 0.742 0.218 

Cumulative 
% 50.953 74.151 82.799 90.497 94.931 97.408 99.041 99.782 100.000 

 

 

 

Scree Plot 
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Factor Loading Table 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 

PRx 0.516 0.609 -0.275 -0.297 0.421 -0.144 0.001 -0.009 0.000 

PAx 0.444 0.782 -0.235 -0.041 -0.150 0.329 -0.012 0.055 -0.003 

RAC 0.482 0.628 -0.127 0.520 -0.194 -0.212 -0.006 -0.059 0.003 

Mx 0.863 -0.348 -0.005 0.239 0.165 0.111 0.176 -0.019 0.084 

Mx_a 0.881 -0.256 -0.102 -0.214 -0.194 -0.082 0.230 0.029 -0.066 

Dx 0.771 -0.508 -0.176 0.205 0.149 0.129 -0.145 -0.100 -0.066 

Dx_a 0.773 -0.433 -0.298 -0.185 -0.191 -0.108 -0.186 0.081 0.052 

Sx 0.789 0.130 0.529 0.185 0.136 -0.025 -0.067 0.150 -0.026 

Sx_a 0.745 0.248 0.470 -0.346 -0.139 0.014 -0.052 -0.141 0.023 

 

 

% Contribution 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 

PRx 5.809 17.781 9.744 12.721 44.481 9.349 0.001 0.113 0.001 

PAx 4.297 29.303 7.104 0.238 5.627 48.686 0.100 4.598 0.046 

RAC 5.066 18.917 2.060 39.036 9.425 20.250 0.024 5.186 0.035 

Mx 16.223 5.799 0.003 8.219 6.860 5.539 21.060 0.522 35.774 

Mx_a 16.916 3.143 1.340 6.582 9.431 3.008 36.096 1.303 22.181 

Dx 12.978 12.338 3.969 6.042 5.573 7.521 14.389 15.020 22.171 

Dx_a 13.036 8.963 11.392 4.934 9.185 5.275 23.474 9.881 13.860 

Sx 13.580 0.804 35.961 4.927 4.601 0.280 3.026 33.499 3.322 

Sx_a 12.096 2.952 28.426 17.301 4.816 0.091 1.829 29.877 2.611 

 

 

Correlation Between Variables and Factors 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 

PRx 0.516 0.609 -0.275 -0.297 0.421 -0.144 0.001 -0.009 0.000 

PAx 0.444 0.782 -0.235 -0.041 -0.150 0.329 -0.012 0.055 -0.003 

RAC 0.482 0.628 -0.127 0.520 -0.194 -0.212 -0.006 -0.059 0.003 

Mx 0.863 -0.348 -0.005 0.239 0.165 0.111 0.176 -0.019 0.084 

Mx_a 0.881 -0.256 -0.102 -0.214 -0.194 -0.082 0.230 0.029 -0.066 

Dx 0.771 -0.508 -0.176 0.205 0.149 0.129 -0.145 -0.100 -0.066 

Dx_a 0.773 -0.433 -0.298 -0.185 -0.191 -0.108 -0.186 0.081 0.052 

Sx 0.789 0.130 0.529 0.185 0.136 -0.025 -0.067 0.150 -0.026 

Sx_a 0.745 0.248 0.470 -0.346 -0.139 0.014 -0.052 -0.141 0.023 



 

309 
 

Appendix D: Section 7.1 - Patient Example and Full Population ARMA Models 

Tested (AIC, LL) 

 

 

Patient Example – ARIMA Modeling  

ARIMA Model Parameters AIC LL 

p q 

2 2 -69.3 39.65 

2 0 -53.06 30.53 

1 0 -40.16 23.08 

3 0 -61.58 35.79 

0 0 153.81 -74.91 

0 1 22.0 -8.0 

0 2 -42.03 25.01 

0 3 -67.76 38.88 

1 1 -47.19 27.59 

1 2 -65.5 37.75 

1 3 -67.66 39.83 

2 1 -55.42 32.71 

2 3 -66.11 40.05 

3 1 -61.12 36.56 

3 2 -66.11 40.06 

3 3 -64.16 40.08 
AIC = Akaike Information Criterion, ARIMA = auto-regressive integrative moving average, LL = log likelihood, p = auto-regression 
parameter for ARIMA model, q = moving average parameter for ARIMA model.*Note: bolded value represents the most 
appropriate ARIMA structure for the patient example.  This was the case for the 10 representative patient examples tested.  
There was no integrative parameter (ie. “d” parameter) included within the ARIMA models, given stationarity testing and 
auto.arima testing displayed stationary signals within the short recordings tested, hence no differencing of the signal was 
required.   
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LME Modelling with Embedded PRx ARIMA Structure – Full Population Assessing Best ARIMA Structure 

LME Model  PRx ARIMA Structure AIC BIC  LL 

Fixed 
Effects 

Random p q 

PRx ~ Sx_a intercept 2 2 -9797.294 -9735.699 4906.647 

PRx ~ Sx_a intercept 3 0 -9795.848 -9741.953 4904.924 

PRx ~ Sx_a intercept 3 1 -9797.767 -9736.172 4906.883 

PRx ~ Sx_a intercept 3 2 -9795.767 -9726.473 4906.884 

PRx ~ Sx_a intercept 3 3 FTC FTC FTC 

PRx ~ Sx_a intercept 2 0 -9795.465 -9749.269 4903.732 

PRx ~ Sx_a intercept 2 1 -9795.409 -9741.514 4904.705 

PRx ~ Sx_a intercept 2 3 -9794.578 -9725.284 4906.289 

PRx ~ Sx_a intercept 1 0 09271.307 -9232.810 4640.653 

PRx ~ Sx_a intercept 1 1 -9752.712 -9706.515 4882.356 

PRx ~ Sx_a intercept 1 2 -9707.924 -9744.029 4905.962 

PRx ~ Sx_a intercept 1 3 FTC FTC FTC 

PRx ~ Sx_a intercept 0 0 FTC FTC FTC 

PRx ~ Sx_a intercept 0 1 -4955.052 -4916.55 2482.526 

PRx ~ Sx_a intercept 0 2 -8254.316 -8208.199 4133.158 

PRx ~ Sx_a intercept 0 3 -9263.106 -9209.210 4638.553 
AIC = Akaike Information Criterion, ARIMA = auto-regressive integrative moving average, BIC = Bayesian Information Criterion, Dx_a = diastolic flow velocity (correlation between 
TCD based FVd and MAP), FTC = “failure to converge” for the model, FVd = TCD based diastolic flow velocity, FVm = mean TCD flow velocity, FVs = TCD based systolic flow velocity, 
ICP = intra-cranial pressure, LL = log likelihood, LME = linear mixed effects model, p = auto-regression parameter for ARIMA model, MAP = mean arterial pressure, PRx = pressure 
reactivity index (correlation between ICP and MAP), q = moving average parameter for ARIMA model, Sx_a = systolic flow index (correlation between TCD based FVs and MAP), 
TCD = transcranial Doppler. *Note: bolded value represents the most appropriate ARIMA structure for the patient population tested, based on principal of parsimony, lowest AIC 
and BIC.   There was no integrative parameter (ie. “d” parameter) included within the ARIMA models, given stationarity testing during patient examples (see appendix A and 
Methodology section of manuscript). 
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Appendix E: Section 7.3 – ACF/PACF/QQ Plots for Top LME Models and Bland-

Altman Plots for Estimated and Predicted PRx Results from LME Models 

 

A. QQ, Residual Density, ACF and PACF Plots for Top Two LME Models 

 

1. PRx ~ Sx_a LME Model (with random effects by patient in intercept and coefficients) 

 

QQ Plot 
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Residual Density Plot 

 

 

 

ACF Plot 
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PACF Plot 

 

 

2. PRx ~ Sx_a + Mx_a LME Model (with random effects by patient in intercept and coefficients) 

QQ Plot 
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Residual Density Plot 

 

 

 

 

 

 

ACF Plot 
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PACF Plot 

 

 

B.  – Bland Altman Analysis for Estimated vs. Observed PRx for Top Two LME Models 

*Grand mean Fisher transformed data utilized for Bland-Altman analysis 

 

1. PRx ~ Sx_a (with random effects introduced into intercept and coefficient) 

 
$lower.limit 
[1] -0.0628747 
 
$mean.diffs 
[1] -0.003253664 
 
$upper.limit 
[1] 0.05636738 
 
$lines 
 lower.limit   mean.diffs  upper.limit  
-0.062874705 -0.003253664  0.056367377  
 
$CI.lines 
lower.limit.ci.lower lower.limit.ci.upper   mean.diff.ci.lower   mean.diff.ci
.upper upper.limit.ci.lower  
         -0.10056477          -0.02518464          -0.02501403           0.01
850671           0.01867731  
upper.limit.ci.upper  
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          0.09405744  
 
$critical.diff 
[1] 0.05962104 
 

 
 

2. PRx ~ Sx_a + Mx_a (with random effects introduced into intercept and coefficient) 

 
$lower.limit 
[1] -0.0664208 
 
$mean.diffs 
[1] -0.003062638 
 
$upper.limit 
[1] 0.06029553 
 
$lines 
 lower.limit   mean.diffs  upper.limit  
-0.066420801 -0.003062638  0.060295526  
 
$CI.lines 
lower.limit.ci.lower lower.limit.ci.upper   mean.diff.ci.lower   mean.diff.ci
.upper upper.limit.ci.lower  
         -0.10647333          -0.02636828          -0.02618697           0.02
006170           0.02024300  
upper.limit.ci.upper  
          0.10034805  
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$critical.diff 
[1] 0.06335816 

 

 

 

 

 

 

 

 C. – Bland Altman Analysis for Predicted vs. Observed PRx for Top Two LME Models 

*Grand mean Fisher transformed data utilized for Bland-Altman analysis 

 

1. PRx ~ Sx_a (with random effects introduced into intercept and coefficient) 

 
$lower.limit 
[1] -0.2826737 
 
$mean.diffs 
[1] -0.05195699 
 
$upper.limit 
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[1] 0.1787597 
 
$lines 
lower.limit  mean.diffs upper.limit  
-0.28267367 -0.05195699  0.17875969  
 
$CI.lines 
lower.limit.ci.lower lower.limit.ci.upper   mean.diff.ci.lower   mean.diff.ci
.upper upper.limit.ci.lower  
         -0.42852364          -0.13682371          -0.13616351           0.03
224952           0.03290972  
upper.limit.ci.upper  
          0.32460965  
 
 
$critical.diff 
[1] 0.2307167 
 

 
 

2. PRx ~ Sx_a + Mx_a (with random effects introduced into intercept and coefficient) 

 
$lower.limit 
[1] -0.2932762 
 
$mean.diffs 
[1] -0.04899657 
 
$upper.limit 
[1] 0.195283 
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$lines 
lower.limit  mean.diffs upper.limit  
-0.29327618 -0.04899657  0.19528303  
 
$CI.lines 
lower.limit.ci.lower lower.limit.ci.upper   mean.diff.ci.lower   mean.diff.ci
.upper upper.limit.ci.lower  
         -0.44770008          -0.13885227          -0.13815326           0.04
016011           0.04085912  
upper.limit.ci.upper  
          0.34970694  
 
 
$critical.diff 
[1] 0.2442796 
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Appendix F: Section 8.1 - Sequential Chi-Square Threshold Analysis – 24hr, 72hr, 

5d, 7d and 10d Recording Periods 

 

1. 1st 24hr of Recording 

PRx 
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PAx 
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RAC 
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2. 1st 72hr of Recording 

PRx 
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PAx 
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RAC 
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3. 1st 5d of Recording 

PRx 
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PAx 
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RAC 
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4. 1st 7d of Recording 

PRx 
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PAx 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

331 
 

RAC 
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5. 1st 10d of Recording 

PRx 
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PAx 
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RAC 
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Appendix G: Chapter 9 - Injury and Lesion Data, Patient Numbers – Grand Mean Data 

 

Patient Demographics and Injury Characteristics 

Variable\Statistic 
Sum of 
weights Categories 

Frequency per 
category 

Gender 358 F 86.00 

  M 272.00 

Side of Shift (L = R to L; R = L to R) 358 L 40.00 

  NA 259.00 

  R 59.00 

Basal Cisterns (Normal = 0/Compressed = 1/Absent = 2) 358 0 218.00 

  1 81.00 

  2 59.00 

Lateral Ventricles (Normal = 0/mild compression = 
1/compressed-absent = 2) 358 0 165.00 

  1 127.00 

  2 66.00 

4th Ventricle (Normal = 0/mild compression = 1/compressed-
absent = 2) 358 0 329.00 

  1 21.00 

  2 8.00 

4th Vent Shift (mm) 358 0 358.00 

Direction of 4th Shift (L = R to L; R = L to R) 358 NA 358.00 

Convexity Gyri (Normal = 0/mild compression = 
1/compressed-absent = 2) 358 0 89.00 

  1 149.00 

  2 120.00 



 

336 
 

Tonsillor Descent (N = 0/Y = 1) 358 0 342.00 

  1 15.00 

  2 1.00 

Largest Lesion Type 358 0 4.00 

  Contusion 67.00 

  DAI 76.00 

  EDH 25.00 

  

Falcine 
SDH 1.00 

  NA 82.00 

  

Post Fossa 
EDH 2.00 

  SDH 101.00 

Lesion <25 mL (N = 0/Y = 1) 358 0 142.00 

  1 216.00 

Lesion >25 mL (N = 0/Y = 1) 358 0 301.00 

  1 57.00 

Evacuated Lesion (Y/N) 358 N 313.00 

  Y 45.00 

Non-Evacuated Mass (>25 mL) (N = 0/Y = 1) 358 0 337.00 

  1 20.00 

  NA 1.00 

DC (y/n) 358 N 358.00 

Convexity Subdural hematoma (Present = 1, Absent = 0) 358 0 235.00 

  1 123.00 

SDH Side (L or R) 358 L 66.00 

  NA 250.00 

  R 42.00 
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Tentorial SDH (Absent = 0/Present = 1) 358 0 349.00 

  1 9.00 

Falcine SDH (Absent = 0/Present = 1) 358 0 345.00 

  1 13.00 

Bilat SDH (Absent = 0/Present = 1) 358 0 338.0 

  1 20.00 

Epidural Mass Lesion (Present = 1/Absent = 0) 358 0 332.00 

  1 26.00 

EDH Side (L or R) 358 L 9.00 

  NA 334.00 

  R 15.00 

Bilat EDH (Absent = 0/Present = 1) 358 0 356.00 

  1 2.00 

ICH-contusion (Present = 1/ Absent = 0) 358 0 263.00 

  1 95.00 

ICH-contusion Side (L or R) 358 L 29.00 

  NA 297.00 

  R 32.00 

Bilat ICH-contusion (Absent = 0/Present = 1) 358 0 323.00 

  1 34.00 

  2 1.00 

IVH (Absent = 0/Present = 1) 358 0 271.00 

  1 87.00 

tSAH-conv (Extensive bilat (>90% convexity) = 2/visible in gyri 
= 1/ Absent = 0) 358 0 85.00 

  1 259.00 

  2 14.00 
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tSAH-conv thickness (>5mm = 2/1-5mm = 1/no blood = 0; 
*Note: visible blood is at least 1mm) 358 0 84.00 

  1 218.00 

  2 56.00 

tSAH-cist (Filled cisterns = 2/visible blood = 1/Absent = 0) 358 0 255.00 

  1 95.00 

  2 8.00 

DAI-SC (Present = 1/Absent = 0) 358 0 276.00 

  1 82.00 

DAI-CC (Present = 1/Absent = 0) 358 0 337.00 

  1 21.00 

DAI-BG (Present =1/Absent = 0) 358 0 335.00 

  1 23.00 

DAI-BS (Present = 1/Absent = 0) 358 0 346.00 

  1 12.00 

Post Fossa EDH (Present = 1/Absent = 0) 358 0 355.00 

  1 3.00 

Post Fossa SDH (Present = 1/Absent = 0) 358 0 358.00 

Post Fossa ICH-contusion (Present = 1/Absent = 0) 358 0 354.00 

  1 4.00 
BG = basal ganglia, Bilat = bilateral, BS = brain stem, CC = corpus callosum, cist = cistern, DAI = diffuse axonal injury, DC = decompressive craniectomy, EDH = epidural hematoma, 
F = female, ICH = intra-cerebral hemorrhage, IVH = intra-ventricular hemorrhage, L = left, M = male, mm = millimeter, mL = milliliters, N = No, NA = not applicable, R = right, SC = 
sub-cortical, SDH = subdural hematoma, tSAH = traumatic subarachnoid hemorrhage, Y = yes. 
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Appendix H – Chapter 9: IC Scoring Systems and Mean Index/%Time Above Threshold Results 

 

Intra-Cranial Ordinal CT Scoring Systems – KW and JT Testing 

 Marshall CT Grade p-
value 

Rotterdam CT Score p-
value 

I II III IV V VI 1 2 3 4 5 6  

Mean 
PRx 

NA 0.028 
(+/-
0.165) 

0.058 
(+/-
0.176) 

0.088 
(+/- 
0.256) 

0.085 
(+/-
0.143) 

0.053 
(+/-
0.225) 

0.096 0.043 
(+/-
0.167) 

0.031 
(+/-
0.163) 

0.041 
(+/-
0.154) 

0.058 
(+/-
0.210) 

0.164 
(+/-
0.214) 

-0.055 
(+/-
0.076) 

0.001 

Mean 
PAx 

NA -0.078 
(+/-
0.196) 

-0.046 
(+/-
0.169) 

0.003 
(+/-
0.260) 

-0.028 
(+/-
0.195) 

-0.015 
(+/-
0.233) 

0.354 -0.81 
(+/-
0.208) 

-0.071 
(+/-
0.192) 

-0.050 
(+/-
0.165) 

-0.028 
(+/-
0.228) 

0.016 
(+/-
0.208) 

-0.105 
(+/-
0.225) 

0.001 

Mean 
RAC 

NA -0.383 
(+/-
0.251) 

-0.337 
(+/-
0.224) 

-0.275 
(+/-
0.310) 

-0.281 
(+/-
0.259) 

-0.316 
(+/-
0.315) 

0.054 -0.354 
(+/-
0.288) 

-0.385 
(+/-
0.237) 

-0.363 
(+/-
0.230) 

-0.267 
(+/-
0.265) 

-0.224 
(+/-
0.289) 

-0.394 
(+/-
0.348) 

0.001 

% Time 
Above 
PRx of 
0 

NA 49.7 
+/-16.8 

52.6 
+/- 
17.1 

54.8 
+/- 
20.2 

57.8 
+/- 
15.1 

52.2 
+/- 
17.6 

0.037 51.7 
+/- 
18.0 

50.4 
+/- 
16.6 

51.8 
+/- 
16.2 

52.3 
+/- 
17.2 

62.6 
+/- 
17.5 

39.9 
+/-7.8 

0.074 

% Time 
Above 
PRx of 
+0.25 

NA 28.9 
+/- 
15.5 

32.6 
+/- 
17.4 

34.2 
+/- 
22.3 

34.5 
+/- 
15.6 

31.5 
+/- 
18.8 

0.076 30.0 
+/- 
15.7 

29.6 
+/- 
15.4 

30.3 
+/- 
15.7 

32.3 
+/- 
18.9 

41.6 
+/- 
20.9 

21.5 
+/- 7.1 

0.052 

% Time 
Above 
PRx of 
+0.35 

NA 22.3 
+/- 
14.4 

26.1 
+/- 
16.5 

27.8 
+/- 
22.4 

26.3 
+/- 
14.4 

24.8 
+/- 
18.9 

0.130 23.2 +-
/- 14.8 

22.8 
+/- 
14.2 

22.5 
+/- 
14.3 

26.0 
+/- 
19.0 

34.0 
+/- 
21.1 

16.4 
+/- 5.8 

0.04 

% Time 
Above 
PAx of 
0 

NA 40.4 
+/- 
19.6 

43.8 
+/- 
17.3 

49.1 
+/- 
26.6 

45.9 
+/- 
19.4 

44.8 
+/- 
19.0 

0.268 39.8 
+/- 
21.2 

41.3 
+/- 
19.1 

43.0 
+/- 
17.3 

45.4 
+/- 
21.1 

50.4 
+/- 
21.3 

36.4 
+/- 
22.3 

0.022 
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% Time 
Above 
PAx of 
+0.25 

NA 21.0 
+/- 
15.9 

23.2 
+/- 
14.2 

28.3 
+/- 
23.3 

24.5 
+/- 
19.0 

24.45 
+/- 
20.4 

0.310 20/8 
+/- 
15.4 

21.5 
+/- 
15.7 

22.1 
+/- 
15.0 

25.0 
+/- 
19.1 

29.0 
+/- 
19.6 

18.6 
+/- 
19.2 

0.016 

% Time 
Above 
RAC of  
-0.05 

NA 22.0 
+/- 
19.3 

25.4 
+/- 
17.8 

28.8 
+/- 
26.8 

28.6 
+/- 
22.6 

26.2 
+/- 
22.4 

0.119 24.7 
+/- 
22.1 

21.7 
+/- 
18.3 

23.0 
+/- 
18.8 

30.1 
+/- 
20.8 

33.8 
+/- 
25.1 

21.9 
+/- 
26.2 

0.005 

% Time 
Above 
PRx of   
-0.10 

NA 24.6 
+/- 
20.4 

28.3 
+/- 
19.0 

31.4 
+/- 
27.2 

23.2 
+/- 
23.2 

29.1 
+/- 
23.0 

0.117 27.5 
+/- 
23.2 

24.3 
+/- 
19.2 

25.8 
+/- 
19.9 

33.2 
+/- 
21.6 

37.0 
+/- 
25.8 

23.9 
+/- 
27.7 

0.013 

 Helsinki CT Score p-
value 

Stockholm CT Score – “Range” p-
value 

-3 to +14 0 – 1 1.1 – 2 2.1 – 3 3.1 – 4 4.1 – 5 5.1 - 6  

Mean 
PRx 

 
 
 
*Please refer to figure for box plot of PRx, PAx and 
RAC across each category of the Helsinki Score. 

0.001 0.034 
(+/-
0.152) 

0.024 
(+/-
0.165) 

0.065 
(+/-
0.194) 

0.058 
(+/-
0.183) 

0.032 
(+/-
0.097) 

0.301 0.173 

Mean 
PAx 

0.001 -0.082 
(+/-
0.186) 

-0.076 
(+/-
0.185) 

-0.026 
(+/-
0.203) 

-0.031 
(+/-
0.220) 

-0.080 
(+/-
0.119) 

0.268  0.057 

Mean 
RAC 

0.001 -0.356 
(+/-
0.249) 

-0.389 
(+/-
0.234) 

-0.314 
(+/-
0.264) 

-0.291 
(+/-
0.290) 

-0.435 
(+/-
0.135) 

0.194 0.018 

% Time 
Above 
PRx of 
0 

0.002 51.0 
+/- 
16.7 

50.7 
+/- 
17.3 

53.1 
+/- 
16.5 

53.2 
+/- 
17.9 

51.5 
+/- 
10.7 

82.6 0.124 

% Time 
Above 
PRx of 
+0.25 

0.001 29.4 
+/- 
14.1 

29.9 
+/- 
16.1 

32.2 
+/- 
18.2 

32.5 
+/- 
17.4 

28.0 
+/- 9.5 

62.0 0.104 
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% Time 
Above 
PRx of 
+0.35 

0.001 22.7 
+/- 
12.8 

23.2 
+/- 
14.7 

25.5 
+/- 
18.0 

25.8 
+/- 
16.3 

20.5 
+/- 7.9 

50.5 0.134 

% Time 
Above 
PAx of 
0 

0.001 40.1 
+/- 
19.4 

40.7 
+/- 
18.9 

45.2 
+/- 
19.1 

45.3 
+/- 
21.3 

40.4 
+/- 
11.6 

80.1 0.038 

% Time 
Above 
PAx of 
+0.25 

0.001 20.6 
+/- 
14.3 

21.0 
+/- 
15.3 

24.4 
+/- 
18.0 

25.3 
+/- 
20.0 

18.9 
+/- 9.2 

56.3 0.040 

% Time 
Above 
RAC of  
-0.05 

0.001 23.4 
+/- 
19.6 

21.5 
+/- 
18.0 

26.3 
+/- 
20.9 

30.0 
+/- 
23.5 

15.8 
+/- 
12.7 

76.2 0.020 

% Time 
Above 
PRx of   
-0.10 

0.001 26.6 
+/- 
20.8 

24.1 
+/- 
19.1 

29.1 
+/- 
21.6 

32.9 
+/- 
24.5 

18.0 
+/- 
13.3 

80.4 0.029 

KW = Kruskal-Wallis Test for variance, JT = Jonckheere-Terpstra test for ordinal variance, NA = not available, CT = computed tomography, PRx = pressure reactivity index 
(correlation between ICP and MAP), PAx = pulse amplitude index (correlation between pulse amplitude of ICP (AMP) and MAP), RAC = correlation between AMP and CPP.  *NOTE: 
bolded values are those which have reached statistical significance (p<0.05). The mean values for PRx, PAx, RAC and % time above threshold were tested across the Marshall CT 
grades with the KW test.  The mean values for PRx, PAx, RAC and % time above threshold were tested across the ordinal Rotterdam, Helsinki and Stockholm scores using the JT 
test. 

 

 

 

 

 



 

342 
 

Appendix I – Chapter 9: Mann U testing for Thresholds of PRx and PAx 

Mann U Testing For Continuous Variables Across Index Thresholds – PRx Thresholds of 0, +0.25, and +0.35 

Demo 
(Mean and 

Medians 
with Std 
Dev/IQR) 

PRx p-value PRx p-value PRx p-value 

<0 ≥0 <0.25 ≥0.25 <0.35 ≥0.35 

N 153 205 - 324 34 - 340 18 - 

Age 37.1 (17.4) 43.2 (16.5) <0.0001 39.8 (16.9) 48.2 (18.1) 0.009 40.1 (17.0) 49.6 (18.7) 0.029 

GCS 7 (4-9) 7 (3-10) 0.674 7 (4-9) 5.5 (3-9) 0.434 7 (4-95) 3.5 (3-8) 0.088 

Marshall 2 (2-3) 3 (2-4) 0.002 2 (2-3) 3 (2-3.75) 0.532 2 (2-3) 3 (2-4) 0.113 

Rotterdam 2 (2-3) 2 (2-3) 0.097 2 (2-3) 2.5 (2-4) 0.222 2 (2-3) 3 (2-4) 0.041 

Helsinki 2 (0-4) 3 (1-5) 0.001 3 (0-5) 4 (2-5) 0.047 3 (0-5) 4 (3.25-5) 0.008 

Stockholm 1.993 
(0.849) 

2.166 
(0.927) 

0.114 2.084 
(0.893) 

2.169 
(0.955) 

0.834 2.072 
(0.901) 

2.479 
(0.759) 

0.034 

Stockholm 
Range 

2 (2-3) 2 (2-3) 0.072 2 (2-3) 2 (2-3) 0.612 2 (2-3) 3 (2-3) 0.033 

ISS 32.732 
(11.342) 

33.175 
(11.379) 

0.614 32.451 
(11.084) 

37.333 
(12.866) 

0.100 32.800 
(11.346) 

35.467 
(11.351) 

0.522 

APACHE II 12.272 
(5.722) 

11.773 
(5.382) 

0.362 11.849 
(5.495) 

14.029 
(6.028) 

0.030 11.838 
(5.467) 

16.167 
(6.167) 

0.004 

MLS (mm) 1.4 (3.2) 2.1 (3.9) 0.044 1.7 (3.6) 2.4 (4.2) 0.391 1.7 (3.6) 3.1 (4.8) 0.165 

Largest 
Lesion 
Volume 

9.5 (19.3) 15.8 (26.0) 0.004 13.1 (24.3) 13.1 (15.4) 0.412 13.1 (24.0) 13.9 (14.8) 0.246 

# 
Contusions 

0.31 (0.73) 0.53 (0.92) 0.008 0.43 (0.84) 0.56 (0.93) 0.362 0.44 (0.85) 0.50 (0.92) 0.816 

# DAI 
Lesions 

1.5 (2.6) 0.74 (2.7) <0.0001 0.35 (1.2) 1.1 (2.8) 0.018 1.1 (2.8) 0.44 (1.3) 0.149 

Total 
Contusion 
Volume 

4.3 (14.0) 7.2 (18.0) 0.003 6.1 (17.0) 4.5 (9.7) 0.741 6.1 (16.8) 3.3 (7.2) 0.847 
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# = number, DAI = diffuse axonal injury, GCS = Glasgow Coma Scale, IQR = inter-quartile range, ISS = injury severity score, mm = millimeters, N = number of patients, Std Dev = 
standard deviation. *Bolded values are those reaching a p<0.05. 

 

 

Mann U Testing For Continuous Variables Across Index Thresholds – PAx Thresholds of 0, and +0.25 

Demo (Mean 
and Medians 

with Std 
Dev/IQR) 

PAx p-value PAx p-value 

<0 ≥0 <0.25 ≥0.25  

N 239 119 - 338 20 - 

Mean Age  36.3 (16.7) 49.2 (14.9) <0.0001 40.0 (16.6) 58.0 (17.3) <0.0001 

Median GCS  6 (3-9) 7 (4-10) 0.120 7 (3-9) 6.5 (3-9.25) 0.855 

Marshall 2 (2-3) 3(2-3) 0.173 2 (2-3) 3 (2-5) 0.035 

Rotterdam 2 (2-3) 2(2-3) 0.077 2 (2-3) 3 (2-4) 0.081 

Helsinki 2 (0-4) 4 (1.5-6) 0.001 3 (0-5) 4 (2.75-7) 0.010 

Stockholm 2.0 (0.90) 2.2 (0.89) 0.169 2.1 
(0.89) 

2.5 (1.0) 0.041 

Stockholm 
Range 

2 (2-3) 2 (2-3) 0.341 2 (2-3) 3 (2-4) 0.010 

ISS 33.3 (11.2) 32.1 (11.7) 0.274 32.8 (11.5) 34.6 (9.2) 0.479 

APACHE II 11.2 (5.6) 13.8 (5.0) <0.0001 11.8 (5.4) 16.3 (6.3) 0.004 

MLS (mm) 1.6 (3.4) 2.1 (4.1) 0.310 1.6 (3.5) 4.0 (4.7) 0.002 

Largest Lesion 
Volume 

11.6 (22.6) 16.2 (25.2) 0.001 12.8 (23.9) 19.1 (16.7 0.007 

# Contusions 0.32 (0.75) 0.68 (0.98) <0.0001 0.43 (0.85) 0.60 (0.94) 0.334 

# DAI Lesions 1.4 (3.1) 0.46 (1.5) <0.0001 1.1 (2.8) 0.15 (0.67) 0.026 

Total Contusion 
Volume 

4.8 (14.7) 8.4 (19.3) <0.0001 6.0 (16.7) 5.2 (11.0) 0.606 

# = number, DAI = diffuse axonal injury, GCS = Glasgow Coma Scale, IQR = inter-quartile range, ISS = injury severity score, mm = millimeters, N = number of patients, Std Dev = 
standard deviation. *Bolded values are those reaching a p<0.05. 
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Appendix J – Chapter 9: Univariate Logistic Regression for CT Injury Characteristics and ICP Indices – Grand 

Mean Data 

 

Univariate Logistic Regression Analysis for Injury Characteristics and ICP Indices – Grand Mean Data 

 PRx >0 PRx >0.25 PRx >0.35 PAx >0 PAx >0.25 RAC >-0.05 RAC>-0.10 

 AUC P AUC P AUC P AUC P AUC P AUC P AUC P 

MLS 0.533 0.084 0.590 0.270 0.629 0.113 0.561 0.204 0.703 0.009 0.590 0.018 0.533 0.072 

Largest 
Lesion 
Volume 

0.590 0.015 0.549 0.001 0.586 0.022 0.607 0.088 0.675 0.251 0.590 0.106 0.568 0.192 

# of 
Contusions 

0.565 0.019 0.588 0.388 0.578 0.753 0.643 0.001 0.613 0.385 0.518 0.955 0.546 0.448 

# of DAI 
Lesions 

0.614 0.017 0.659 0.095 0.667 0.302 0.648 0.003 0.706 0.125 0.618 0.132 0.602 0.050 

Total 
Contusion 
Volume 

0.578 0.114 0.531 0.590 0.568 0.493 0.640 0.058 0.526 0.829 0.513 0.401 0.533 0.958 

Basal Cistern 
Compression 
Grade 

0.557 0.053 0.619 0.111 0.683 0.101 0.591 0.057 0.663 0.159 0.576 0.252 0.560 0.241 

Basal Cistern 
Compression 
– Any 

0.555 0.018 0.610 0.174 0.679 0.057 0.598 0.017 0.678 0.055 0.576 0.213 0.561 0.130 

Basal Cistern 
Compression 
– Severe 

0.512 0.076 0.635 0.037 0.673 0.056 0.558 0.186 0.626 0.296 0.579 0.108 0.536 0.142 

Lat Ventricle 
Compression 
Grade 

0.538 0.183 0.636 0.074 0.624 0.263 0.570 0.263 0.643 0.155 0.592 0.243 0.556 0.415 
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Lat Ventricle 
Compression 
– Any 

0.532 0.165 0.559 0.808 0.602 0.531 0.576 0.124 0.605 0.575 0.553 0.579 0.525 0.729 

Lat Ventricle 
Compression 
- Severe 

0.508 0.089 0.637 0.032 0.651 0.103 0.563 0.241 0.662 0.057 0.575 0.234 0.534 0.317 

4th Ventricle 
Compression 
Grade 

0.495 0.387 0.629 0.249 0.656 0.118 0.570 0.194 0.644 0.571 0.586 0.471 0.543 0.641 

4th Ventricle 
Compression 
– Any 

0.496 0.188 0.606 0.414 0.655 0.185 0.551 0.577 0.622 0.749 0.562 0.797 0.529 0.775 

4th Ventricle 
Compression 
– Severe 

0.480 0.762 0.612 0.691 0.621 0.972 0.570 0.238 0.654 0.973 0.572 0.560 0.353 0.446 

Gyri 
Compression 
Grade 

0.545 0.166 0.653 0.042 0.662 0.214 0.567 0.327 0.623 0.476 0.615 0.109 0.592 0.121 

Gyri 
Compression 
– Any 

0.507 0.627 0.620 0.143 0.606 0.769 0.570 0.353 0.596 0.988 0.604 0.133 0.582 0.090 

Gyri 
Compression 
– Severe 

0.529 0.062 0.608 0.172 0.650 0.136 0.572 0.147 0.628 0.267 0.555 0.444 0.516 0.705 

Tonsillar 
Descent   

0.507 0.113 0.597 0.887 0.624 0.318 0.551 0.981 0.632 0.648 0.557 0.874 0.522 0.971 

Lesion >25 
mL 

0.547 0.003 0.588 0.773 0.614 0.929 0.559 0.529 0.690 0.085 0.552 0.662 0.522 0.409 

Evacuated 
Mass – Any 
Size 

0.528 0.010 0.593 0.693 0.623 0.592 0.558 0.746 0.689 0.094 0.566 0.477 0.524 0.674 
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Non-
Evacuated 
Mass >25 mL 

0.507 0.242 0.617 0.299 0.648 0.562 0.565 0.509 0.614 0.906 0.539 0.749 0.493 0.935 

Convexity 
SDH 

0.538 0.032 0.641 0.019 0.706 0.006 0.631 <0.0001 0.774 0.001 0.633 0.003 0.585 0.008 

Tentorial 
SDH 

0.511 0.088 0.590 0.867 0.638 0.970 0.586 0.164 0.642 0.476 0.589 0.068 0.541 0.155 

Falcine SDH 0.510 0.061 0.639 0.015 0.696 0.008 0.592 0.010 0.748 0.001 0.591 0.239 0.544 0.457 

Bilateral 
Convexity 
SDH 

0.518 0.008 0.631 0.003 0.689 0.001 0.586 0.013 0.708 <0.0001 0.569 0.084 0.531 0.077 

Supra-
tentorial 
EDH 

0.498 0.438 0.608 0.745 0.648 0.775 0.585 0.258 0.677 0.397 0.579 0.619 0.532 0.970 

Bilateral 
Supra-
tentorial 
EDH 

0.491 0.485 0.598 0.743 0.632 0.497 0.570 0.627 0.641 0.534 0.557 0.858 0.519 0.975 

Contusion – 
Any 

0.559 0.011 0.588 0.421 0.579 0.903 0.639 0.001 0.618 0.381 0.552 0.630 0.551 0.175 

Bilateral 
Contusions 

0.527 0.015 0.624 0.112 0.632 0.320 0.613 0.001 0.651 0.124 0.550 0.361 0.523 0.220 

IVH 0.529 0.298 0.572 0.596 0.589 0.833 0.552 0.983 0.614 0.645 0.595 0.217 0.575 0.139 

tSAH 
Convexity 
Grade 

0.516 0.406 0.574 0.846 0.639 0.755 0.583 0.026 0.638 0.640 0.548 0.580 0.540 0.476 

tSAH 
Convexity – 
Any 

0.514 0.357 0.566 0.650 0.612 0.473 0.578 0.031 0.640 0.351 0.542 0.866 0.537 0.262 

tSAH 
Convexity - 
>90% 

0.491 0.282 0.606 0.760 0.658 0.742 0.571 0.062 0.643 0.797 0.566 0.297 0.525 0.546 
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tSAH 
Convexity 
Thickness 
Grade 

0.542 0.016 0.595 0.200 0.662 0.032 0.609 0.001 0.679 0.015 0.547 0.643 0.542 0.454 

tSAH 
Convexity 
Thickness - 
>5mm 

0.521 0.004 0.633 0.073 0.698 0.009 0.598 0.001 0.700 0.004 0.558 0.350 0.529 0.371 

tSAH 
Cisterns 
Grade 

0.542 0.074 0.607 0.285 0.639 0.072 0.590 0.137 0.617 0.642 0.577 0.104 0.557 0.045 

tSAH 
Cisterns – 
Any 

0.540 0.034 0.578 0.756 0.637 0.335 0.591 0.055 0.619 0.528 0.576 0.237 0.553 0.213 

tSAH 
Cisterns – 
Severe 

0.496 0.095 0.601 0.153 0.639 0.023 0.562 0.318 0.638 0.405 0.562 0.044 0.535 0.016 

DAI – SC 0.585 <0.0001 0.647 0.052 0.658 0.236 0.631 0.001 0.695 0.083 0.615 0.027 0.592 0.010 

DAI – CC 0.518 0.028 0.624 0.282 0.654 0.476 0.602 0.032 0.663 0.491 0.587 0.203 0.553 0.143 

DAI – BG 0.512 0.029 0.604 0.398 0.624 0.878 0.585 0.045 0.658 0.450 0.565 0.590 0.533 0.352 

DAI – BS 0.504 0.101 0.619 0.502 0.650 0.822 0.578 0.231 0.659 0.767 0.578 0.388 0.541 0.294 

Post-Fossa 
EDH 

0.484 0.743 0.597 0.871 0.631 0.587 0.561 0.997 0.641 0.630 0.566 1.000 0.528 0.874 

Post-Fossa 
Contusion 

0.495 0.769 0.592 0.985 0.626 0.676 0.568 0.483 0.636 0.724 0.564 0.879 0.526 0.750 

AUC = area under the receiver operative curve, BG = basal ganglia, BS = basal cistern, CC = corpus callosum, DAI = diffuse axonal injury, EDH = 

epidural hematoma, IVH = intra-ventricular hemorrhage, Lat = lateral, mL = milliliter, MLS = midline shift, mm = millimeters, p = p-value, PRx = 

pressure reactivity index (correlation between ICP and MAP), PAx = pulse amplitude index (correlation between pulse amplitude of ICP (AMP) 

and MAP), RAC = correlation between AMP and CPP, SC = sub-cortical, SDH = subdural hematoma, tSAH = traumatic subarachnoid hemorrhage, . 

*NOTE: bolded values are those which have reached statistical significance (p<0.05). 

 


