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Abstract 

 

Environmental conditions during pregnancy affect fetal growth and development and 

programme the offspring for poor future health. These effects may be mediated by the 

placenta, which develops to transfer nutrients from mother to the fetus for growth. The ability 

to measure the uni-directional maternofetal transfer of non-metabolisable radio-analogues of 

glucose and amino acid by the placenta in vivo has thus been invaluable to our understanding 

of the regulation of fetal growth, particularly in small animal models. Herein, I describe the 

method by which in vivo placental transfer function can be quantified in the mouse, an animal 

model widely used in studies of in utero disease programming.  
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1 Introduction 

 

In mammals, the main determinant of growth and development in utero is the placenta. The 

placenta constitutes the interface between the mother and her fetus which is responsible for 

controlling the amount of nutrients and oxygen transferred. In human pregnancies, abnormal 

birth weight is associated with changes in placental transporter capacity, which suggests that 

the placenta is a key mediator of alterations in fetal growth [1, 2]. Indeed, in animal models, 

placental supply capacity is modified in response to environmental and hormonal challenges 

in the mother and appears to link maternal perturbations to changes in fetal growth and 

offspring outcome [3-6]. Moreover, placental transport capacity adapts dynamically to both 

fetal signals of nutrient demand and maternal signals of nutrient availability to ensure 

appropriate allocation of available resources [7-11]. Therefore, by assessing placental 

transport capacity we are able to better understand the regulation of fetal growth and identify 

programming mechanisms. 

 

This chapter aims to describe how the transfer of nutrients from mother to the fetus by the 

placenta may be quantified in vivo. The technique involves injecting radiolabelled non-

metabolisable substrates into the maternal circulation and then assessing the clearance rates 

across the placenta over time in relation to the accumulation of radiolabel in the fetus. The 

method has largely been used in studies of mouse, rat and guinea pig pregnancy and has been 

most widely used to measure the placental transfer of glucose and amino acid, which are 

indicative of facilitated diffusion and active transport function, respectively [9, 12-32]. 

However, this method has also been used to examine the in vivo transplacental transport of 

radioactive sodium and calcium [33-36] and the passive permeability characteristics of the 

placenta for solute flux, using radioactive inert hydrophilic substrates [12, 37, 38]. Thus, by 

substituting the radiolabelled substrate or tracer used, this method can also be applied to 

study other transport systems in vivo [39]. Herein, the method for simultaneous measurement 

of the uni-directional placental transfer of 
3
H-methyl-D glucose (

3
H-MeG) and 

14
C-amino 

isobutyric acid (
14

C-MeAIB), an amino acid analogue principally transferred by the System A 

transporters [40], is described for the mouse.   

 

 

2 Materials 
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2.1 Specialised equipment  

1. Warming/heating pad to maintain the dam’s body temperature. 

2. Table lamp. 

3. Sensitive balance to accurately measure weight of conceptuses.  

4. Incubator set at 55C. 

5. Liquid scintillation counter.  

6. Liquid dispensing pump for scintillation fluid. 

7. Refrigerated centrifuge. 

 

2.2 Materials and Reagents 

1. Small weigh boats.Stainless steel sterile scapel blades (size #21). 

2. Single-edge razor blades. 

3. 27 gauge needles 0.4 mm x 20 mm. 

4. 25 gauge needles 0.5 mm x 16 mm. 

5. Polythene tubing (800/100/200, I.D. 0.58 mm, OD 0.96 mm). 

6. Benchcote.  

7. Cotton bud tips. 

8. 1 mL syringes. 

9. Ethylenediaminetetraacetic acid (EDTA)-coated tubes. 

10. 1.5 mL eppendof tubes. 

11. 15 mL screw cap tubes. 

12. 5 mL plastic scintallation vials. 

13. AS Scintlogic Scintillation fluid (LabLogic; Sheffield, UK)  

14. 14
C-MeAIB (NEN NEC-671; specific activity 1.86 GBq/mmol).  

15. 3H-MeG (NEN NEC-377; specific activity 2.1 GBq/mmol). 

16. Hypnorm (fentanyl citrate, 0.315 mg/mL and fluanisone, 10 mg/mL). 

17. Hypnovel (midazolam, 10 mg/2mL). 

18. Sterile water for injection. 

19. Biosol (National Diagnostics; Atlanta, GA, USA). 

20. Sterile physiological saline 0.9% NaCl. 

21. 70% Ethanol.  
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2.3 Instruments 

1. Small curved, serrated forceps for holding catheter in vessel. 

2. Curved serrated forceps for dissection. 

3. Blunt dissecting scissors.  

4. Dressing/operating sharp scissors.  

5. Scapel blade holder. 

6. 3-sided, small needle file.  

7. Pair of mosquito forceps. 

8. Seeker needle. 

9. Pipettes and tips (10-1000 uL). 

 

 

3 Methods 

 

3.1 Catheters preparation 

1. Stretch the polythene tubing to around 10 cm (leave the first 1 cm un-stretched).  

2. Using a single edge razor blade, cut the stretched polythene tubing in such a way that 

both ends (about 0.5 cm) are un-stretched. 

3. With the aid of the mosquito forceps, break off the hub of one 27 gauge needle.  

4. To another 27 gauge needle, break off the pointed tip.  

5. Using the needle file, file down the broken off end of each needle (see Note 1).  

6. With the aid of mosquito forceps, insert the broken-off edge of each needle into 

opposite ends of the polythene tubing (see Note 2).  

7. Test the catheter with sterile water and ensure that the water is expelled afterwards. 

 

3.2 Radioactive isotope (see Note 3) 

1. Create a stock of 
3
H-MeG (see Note 4) and

 14
C-MeAIB, each at a concentration of 3.5 

µCi/100 uL in sterile physiological saline (0.13 MBq). 

2. Prepare a 1:1 mixture of 3.5 µCi of 
3
H-MeG and 3.5 µCi 

14
C-MeAIB of and store at -

20
o
C in a lockable freezer. 
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3. Prepare sufficient radioactive isotope for the batch of experiments to be performed 

(see Note 5).  

 

3.3 Anaesthetic preparation 

1. Prepare anaesthetic in the following ratio: 1 part hypnorm to 1 part hypnovel and 2 

parts sterile water (1:1:2) (see Note 6).  

 

3.4 Time-mating of mice (see Note 7) 

1. Order in adult mice from your prefered supplier and allow them to acclimitase in your 

animal facility for 1 week (see Note 8).  

2. Time mate female mice by placing 1 or 2 females in each stud male cage in the late 

afternoon (see Note 9).  

3. The next day, between 0800 and 1000 h check for the presence of a copulatory plug in 

the entrance to dam’s genital tract (the day of plug indicates day 1 of pregnancy). 

4. Females can either remain or be removed from the stud male cage (see Note 10).   

 

3.5 Placental transport assay (see Notes 11 and 12) 

1. On the day of pregnancy when placental transfer function will be assessed, weigh the 

dam. 

2. Prepare the room by turning on the heating pad, covering the entire bench (and heating 

pad) with benchcote.  

3. Label tubes and allow radioactive isotope mixture (containing 3.5 µCi of 
3
H-MeG

 
and 

3.5 µCi of 
14

C-MeAIB) to thaw at room temperature. 

4. Draw up 200 L of the radioactive isotope mixture into the catheter.  

5. Induce anaethesia in  the dam using ip injection of hypnorm-hypnovel solution (see 

Note 13).  

6. Check the dam for reflexes by firmly squeezing her foot and place her on her back, on 

the heat pad to ensure body temperature is maintained. 

7. Clean the neck area of the animal with a 70% ethanol. 

8. Expose the maternal jugular vein (Fig. 1) using a scapel blade fitted to a holder to 

make a 1.5-2 cm vertical incision in the skin of the neck, ~0.5 cm from midline.  
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9. Then, using the blunt scissors and small curved serrated forceps slowly use blunt 

dissection to clear the skin and expose the jugular vein.  

10. The fat pad needs to be slowly pushed/cleared away from the vessel using a cotton tip 

bud so that ~0.5-1 cm of the vessel can be easily observed (see Note 14).  

11. Apply a little pressure on the distal end of the vessel using your finger or cotton tip 

bud to help it to bulge.  

12. Then slowly insert the catheter into the vessel, keeping the insertion 

shallow/superficial to prevent injection through the vessel, into the underlying 

interstitium.  

13. Once in place, hold the catheter in the vessel using the small curved serrated forceps 

and slowly infuse in the radioactive isotope into the dam over ~15 s (see Notes 15 and 

16).  

14. Slowly withraw catheter and quicly place cotton tip bud over the vessel entrance to 

stop blood or isotope leaking out and immediately start the timer counting up. 

15. Schedule 1 kill the dam at 1-4 min after tracer injection (see Notes 17 and 18).  

16. When approaching the time to kill the dam, open the dam’s chest cavity and then cut 

through the top of the heart using the operating/dressing sharp scissors.  

17. Rapidly collect the exanguinated blood using the 1 mL syringe and dispense into a 

labelled pre-chilled EDTA tube, shake and keep on ice.  

18. Turn dam over and use cervical dislocation to ensure death of the animal. 

19. Open the peritoneal cavity and count the number of viable and dead/resorbing 

conceptuses in each uteine horn before removing the uterus from the dam.  

20. Separate each conceptus into its own small weigh boat.  

21. Then, dissect each fetus from its placenta and fetal membranes.  

22. After drying on tissue paper, weigh each fetus and placenta and then move fetus into a 

new weigh boat and decapitate (see Note 19).  

23. Mince the fetus in the weigh boat using a scapel blade and scrape entire sample into a 

15 mL screw cap tube.   

24. To the 15 mL tubes containing minced fetuses, add 2 mL or 4 mL of biosol for studies 

on days 15-16 and days 18-19 of pregnancy, respectively (see Note 20).  

25. Manually shake the fetal samples to ensure the entire minced fetus is immesered in the 

biosol. 

26. Incubate samples at 55
o
C for 1 week to ensure complete homogenisation/solubilisation 

of fetal tissue and release of radioactivity (see Note 21).  
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27. Centrifuge maternal blood at 3000 x g for 10 min at 4
o
C and recover plasma into an 

eppendorf tube (see Note 22).  

28. Them determine counts in maternal plasma, add 198 uL biosol, 2 uL plasma and 4 mL 

scintillation fluid to a scintillation vial.  

29. Cap the vial and then shake.  

30. Prepare triplicates of each plasma sample and also prepare a background sample which 

contains 200 uL biosol and 4 mL scintillation fluid.  

31. Allow all samples to sit in the dark to allow chemiluminence to dissipate and then 

determine 
3
H and 

14
C content using a liquid scintillation counter (see Notes 23 and 

24).  

32. To determine counts in homogenised fetuses, add 250 uL or 500 uL of fetal homogenate 

from days 15-16 and days 18-19 of pregnancy, respectively, to a scintillation vial.  

33. Add 4 mL scintillation fluid, cap the vial and then shake.  

34. Prepare duplicates of each fetal homogenate and prepare a background vial which 

replaces the volume of fetal homogenate with biosol.  

35. Allow samples to sit in the dark to allow chemiluminence to dispate and then 

determine 
3
H and 

14
C content using a liquid scintillation counter  (see Notes 23 - 25).  

 

3.6 Calculations and data analysis 

1. Subtract the background value from the mean maternal plasma and fetal counts.  

2. Using the maternal plasma counts, create a one phase exponential decay curve for 
3
H 

and 
14

C (see Note 26 and Fig. 2).  

3. Values should be in disintegrations per min (DPM) per L maternal plasma.  

4. Calculate the weight specific clearance of each tracer (Kmf) by the placenta using the 

equation: 

Kmf = NX / W          
 

 
 

 

Where NX is the radioactivity (DPM) in the fetus at time of death (X) 

W is the weight of the corresponding placenta in grams and          
 

 
 is the 

integral (area under curve) of the first order exponential decay curve of maternal 

plasma radioactivity (Cm, DPM per µL) with time, up to the time of death [12] 
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(Values should be presented as placental clearance of 
3
H-MeG and 

14
C-MeAIB 

expressed as µL/min/g placenta) 

5. Use radioactive counts in each fetus to calculate the amount of radioisotope transferred 

per gram of fetus (also known as fetal accumulation) using the following formula: 

 

[A x (Vb + fetal weight in grams) / Vf)] / weight of fetus in g 

 

Where A = DPM in fetal sample 

Vb = volume of biosol used to homogenize sample (eg 2 mL for samples on day 16 of 

pregnancy) 

Vf = volume of fetal homogenate counted (eg 0.25 mL for samples on day 16 of 

pregnancy)  

(Values should be presented as fetal accumulation of 
3
H-MeG and 

14
C-MeAIB 

expressed as DPM/g fetus) (see Notes 27 and 28) 

 

 

4 Notes 

 

1. File at right-angles to the needle and then around the edge of the break. Careful filing 

is essential to make sure there are no rough edges or splinters that can damage the 

polythene tubing (and make leaks in the catheter). 

2. If necessary, use the seeker needle to widen the opening of the polythene tubing. 

Make sure that a seal is made between the needle and tubing; that the needle reaches 

down to the stretched part of the catheter. 

3. Ensure all the regulatory procedures are in place, including appropriate training of 

individuals, to undertake 
3
H and 

14
C radioactive work in your workplace. Always 

abide by local, environmental and instutional policies for working and disposing of 

radioactive subtances. 

4. The 
3
H-MeG is often suplied in ethanol. If possible, purchase 

3
H-MeG in a 

concentrated form, so that once it is diluted there is only very little residual ethanol. 

The half life of 
3
H is 12.3 years. A decay correction may need to be applied when 

preparing new new batches of 
3
H-MeG. 
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5. This will eliminate introducing variation from preparing stocks on different days. 

6. This anaesthetic combination is most effective when prepared fresh on the day. 

Excess can be stored at 4
o
C for use within the week. 

7. Accurate timing of pregnancy is required as the nutrient transfer capacity of the 

placenta changes with gestational age.  

8. Ordered females should be older than 7 weeks and males older than 10 weeks to 

ensure they are sufficiently reproductively mature. 

9. To increase chance of mating, females should be placed in the stud cage when they 

are in estrous. 

10. Dams that are pregnant should start gaining weight from day 10 of pregnancy. 

11. Make sure ethical approval for the proposed regulated procedures on mice 

(administration of substances) have been attained from the government and local 

committees.  

12. This procedure has been performed on mice that are at day 15 or later in pregnancy.  

13. Typically, 400 uL is given to mice at day 16 of pregnancy and 600 uL to those on day 

19 of pregnancy. The hypnorm-hyponvel combination rapidly induces anaesthesia 

with minimal cardiovascular depression, and thus minimal changes in uterine blood 

flow. 

14. The jugular will be surround by a fat pad (the size of the fat pad depends on maternal 

age and environmental manipulation). 

15. If the first attempt does not work, apply pressure using cotton tip bud to the jugular 

vein to stop any bleeding. Then try the jugular vein on the other side of the animal. 

16. You can practice performing the procedure by injecting physiological saline or a 

coloured non-toxic substance.  

17. Between 1 and 4 min, there is minimal backflux of radioisotope from fetus to mother. 

Make sure that the average time for each experimental group is 2 min. 

18. Weigh catheter before and after tracer injection to ensure that 200 uL has been 

successfully administered to the dam. Exclude animal from placental transfer analysis 

if volume injected varies by 10% or more than intended. 

19. Yolk sacs or placentas can be taken for DNA extraction and sexing the fetuses, if 

required. 

20. Placentas can also be minced and then digested in biosol (2 mL) to determine 

radiolabel accumulation. Just note that due to large amounts of blood in the placenta, 

samples may have high levels of chemiluminenesce which interferes with the 
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discrimination of the 
3
H and 

14
C channels. Appropriate run programs should be 

developed in consultation with technical support for the scintillation counter.  

21. To speed up the solubilisation process, samples can be vortexed each day or placed in 

an incubator with a shaking element. 

22. Plasma can be stored at -20
o
C or immediately analysed for radioactivity content. 

23. The length of time required to allow chemiluminence to dissipate in the samples 

needs to be determined in consultation with technical support for the liquid 

scinillation counter. 

24. During measurement of both maternal plasma and fetal radioactivity, simultaneously 

run quench-adjusted standards with samples to discern between the 
3
H and 

14
C 

channels. This should be done in consultation with technical support for the liquid 

scintillation counter.  

25. If placental samples were homogenised in biosol, add 250 uL of the homogenate to 4 

mL scintillation fluid. Prepare duplicates of each sample and determine 
3
H and 

14
C 

content using a liquid scintillation counter. 

26. Prepare a radioisotope clearance curve for each tracer at each gestational age studied. 

27. If the surface area of the placenta functioning in maternofetal exchange has been 

determined stereologically using the method described by Coan et al., [41], then 

transfer of each radiolabel per unit of surface area can be estimated yielding the 

estimated µL/min/cm
2
 of placental exchange surface area [19]. 

28. If 3
H and 

14
C were counted in placental samples, placental accumulation of 

3
H-MeG 

and 
14

C-MeAIB can also be determined using the formula: 

 

[A x (Vb + placental weight in grams) / Vp)] / weight of the placenta in grams  

Where A = DPM in placental sample 

Vb = volume of biosol used to homogenize sample (ie 2 mL) 

Vf = volume of placental homogenate counted (ie 0.25 mL) 

(Values should be presented as placental accumulation of 
3
H-MeG and 

14
C-MeAIB 

expressed as DPM/g placenta) 
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Figure Legends 

 

Fig. 1 Photo of an anaesthetised pregnant dam, showing the jugular vein and fat pad cleared 

away (work was conducted in the University of Cambridge Animal Facility abiding by the UK 

Home Office Animals (Scientific Procedures) Act 1986 and local ethics committee). Prior to 

incision, the neck area is normally cleaned with 70% ethanol. 

 

Fig. 2 An example of a one phase exponential decay curve for a radioisotope. Each data point 

represents counts in a plasma sample from a single mouse dam. In larger species that have a 

greater blood volume, like the rat and guinea pig, repeated sampling of the dam is possible 

and a radioactive isotope clearance curve can be generated for each animal. 
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