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Summary: Shared parameter models (SPMs) are a useful approach to addressing bias from informative dropout in

longitudinal studies. In SPMs it is typically assumed that the longitudinal outcome process and the dropout time are

independent, given random effects and observed covariates. However, this conditional independence assumption is

unverifiable. Currently, sensitivity analysis strategies for this unverifiable assumption of SPMs are underdeveloped. In

principle, parameters that can and cannot be identified by the observed data should be clearly separated in sensitivity

analyses, and sensitivity parameters should not influence the model fit to the observed data. For SPMs this is difficult

because it is not clear how to separate the observed data likelihood from the distribution of the missing data given the

observed data (i.e., ‘extrapolation distribution’). In this paper, we propose a new approach for transparent sensitivity

analyses for informative dropout that separates the observed data likelihood and the extrapolation distribution,

using a typical SPM as a working model for the complete data generating mechanism. For this model, the default

extrapolation distribution is a skew-normal distribution (i.e., it is available in a closed form). We propose anchoring

the sensitivity analysis on the default extrapolation distribution under the specified SPM and calibrate the sensitivity

parameters using the observed data for subjects who drop out. The proposed approach is used to address informative

dropout in the HIV Epidemiology Research Study.
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1. Introduction

1.1 Shared parameter models and sensitivity analysis strategies

Shared parameter models (SPMs) are one of the three main model-based approaches to

dealing with informative dropout in longitudinal studies, where ‘informative’ means that the

dropout process depends on the unobserved outcomes even after conditioning on the observed

data (Tsiatis and Davidian, 2004; Daniels and Hogan, 2008). In SPMs the dependence

between the longitudinal outcome process and the dropout process is often characterized

by a set of time-invariant random effects. For example, a popular parameterization is to

specify simple random intercepts and random time slopes in the longitudinal outcome model,

while they are also included in the dropout model as covariates. Given the random effects

and observed covariates, it is typically assumed that the longitudinal outcome process (i.e.,

the complete longitudinal outcome data that are intended to be collected) and the dropout

time process are independent. This conditional independence assumption can be classified

as a latent ignorability assumption discussed in Harel and Schafer (2009). However, it is

unverifiable because it is not possible to assess the conditional independence between the

unobserved outcomes after dropout and the dropout time. Therefore, sensitivity analyses are

required for SPMs. In this paper we focus on the sensitivity of the inference for marginal

covariate effects on the longitudinal outcome to the unverifiable assumption of SPMs.

Unfortunately, unlike pattern mixture models (PMMs), research for sensitivity analysis

strategies based on SPMs is very limited. Sensitivity analyses, as defined in Daniels and

Hogan (2008), have been done for SPMs in a series of papers by Creemers and colleagues

(Creemers et al., 2010, 2011). Creemers et al. (2010) introduce a generalized class of SPMs

by incorporating additional random effects (not typically found in the original SPM) as

sensitivity parameters that connect the conditional distribution of the missing data given the

observed data (i.e., the extrapolation distribution) and the model for missingness indicators.
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The corresponding sensitivity parameters are not easily interpretable. Creemers et al. (2011)

also use the generalized class of SPMs with additional random effects, but their approach

is more similar to what we propose here because identifying restrictions like the missing

at random (MAR) assumption or the non-future dependence assumption (Kenward et al.,

2003) are used to define sub-classes of the generalized SPM that satisfy these restrictions.

However, in this paper we advocate using the typical SPM with the conditional independence

assumption and its default extrapolation distribution as the basis of a sensitivity analysis

(i.e., there are no additional random effects specified to link the the extrapolation distribution

and the dropout process) and introduce sensitivity parameters that are easily interpretable

in the context of the typical SPM.

Following the principle of a transparent sensitivity analysis advocated by Daniels and

Hogan (2008), we propose a new sensitivity analysis approach for informative dropout based

on a typical SPM with the conditional independence assumption, where the likelihood for

observed data and the sensitivity parameter are clearly separated. Within the Bayesian

framework, we first fit the SPM proposed by Barrett et al. (2015) to the observed longitudinal

outcome data and the dropout time. Specifically, a linear mixed model is assumed for

the complete longitudinal outcomes, while the dropout time distribution follows a probit

model for the discrete hazard of dropout. The two models are linked by correlated normal

random effects. Given these random effects and observed covariates, the longitudinal outcome

process and the dropout process are assumed to be independent. We show that under this

SPM, the default extrapolation distribution for missing data after dropout is a skew-normal

distribution depending on model parameters, covariates and observed longitudinal outcome

data. The proposed sensitivity analysis is then anchored at this ‘default’ extrapolation

distribution and a piece-wise linear model for individual longitudinal profiles is specified

to determine the extrapolation distribution at a fixed value of a global sensitivity parameter.
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The global sensitivity parameter can be interpreted as the parameter that controls the overall

deviation of the individual longitudinal profiles after dropout from the default extrapolations

under the SPM. Given a specific set of values for the covariates, posterior samples of the

model parameters and an informative prior for the global sensitivity parameter based on the

substantive context, we use G-computation (Robins, 1986; Scharfstein et al., 2014) to obtain

the inferences for the marginal (population-averaged) covariate effects on the longitudinal

outcome under both the default extrapolation distribution of the SPM and the extrapolation

distribution specified in the sensitivity analysis. The G-computation and the Markov Chain

Monte Carlo (MCMC) for fitting the SPM are separate; therefore our sensitivity analysis

approach does not impact the fit of the model to the observed data.

1.2 Motivating example

This work is motivated by data from the HIV Epidemiology Research Study (HERS). The

HERS was a longitudinal study of 1310 women with, or at high risk for, HIV infection

from 1993 to 2000 (Smith et al., 2003). During the study 12 visits were scheduled, where a

variety of clinical, behavioral and sociological outcomes were recorded approximately every

6 months. We will focus on the 850 women who were HIV-positive and had CD4 count

measurements at enrollment.

Like many other long-term follow-up studies, attrition by dropout in the HERS is substan-

tial, with more than half of the women not completing the study. Moreover, as suggested

by previous analyses of these data (Hogan et al., 2004; Daniels and Hogan, 2008), dropout

was likely informative and related to the disease progression characterized by CD4 counts.

In other words, the unobserved CD4 counts among those who dropped out could be system-

atically lower than those who continued follow-up, even after adjusting for covariates and

observed CD4 counts. Hogan et al. (2004) adopted the pattern mixture modeling approach

to dealing with this informative dropout problem when estimating the marginal effects of
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baseline covariates (HIV viral load, HIV symptom severity, antiretroviral treatment status)

on the longitudinal CD4 count for the HERS data. In this paper, we choose the shared

parameter modeling approach for the HERS data and implement the proposed sensitivity

analysis strategy tailored to SPMs. Because HIV disease progression, represented by changes

in CD4 count, is believed to be strongly associated with the dropout, we use random effects

in the model for CD4 counts to characterize the HIV disease progression. These random

effects also govern the relationship between HIV disease progression and dropout.

The rest of the paper is organized as follows. In Section 2, we describe the proposed

sensitivity analysis strategy, show its implementation using the specified SPM and derive

the default extrapolation distribution for the missing outcome under this SPM. In Section

3, the HERS data are analyzed to illustrate the proposed methods. We conclude with a

discussion in Section 4.

2. Methods

2.1 Sensitivity Analysis Strategy

In this section, we propose a general sensitivity analysis strategy for informative dropout

using SPMs. Because random effects are often used to characterize the individual longi-

tudinal profile, we can interpret the default extrapolation under a SPM as trying to use

the same random effect distribution given observed data before dropout for characterizing

the individual longitudinal profile after dropout. However, this might not be true if this

individual longitudinal profile beyond dropout varies from what the SPM predicts under the

conditional independence assumption. For example, in the HERS example, it is plausible

that the unobserved CD4 counts after patients’ dropout were decreasing more rapidly than

the SPM predicts. Therefore the individual longitudinal profile after dropout might not be

able to be described by the conditional distribution of the random effects given all observed

data. This discrepancy cannot be identified from the observed data, and can be the basis for
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a sensitivity analysis. Figure 1 provides a graphical illustration for the default extrapolation

under a SPM and the possible extrapolation under our proposed sensitivity analysis strategy.

[Figure 1 about here.]

We propose to anchor the sensitivity analysis at the default extrapolation distribution of

the SPM. In the next sections, we describe a typical SPM in our approach and the details

of the sensitivity analysis strategy for it.

2.2 Model

Suppose that N independent patients are followed up over time. For the ith (i = 1, . . . , N)

patient, longitudinal measurements Yi = (Yi1, . . . , YiM)T are scheduled to be taken at time

points ti1, . . . , tiM in [0, T ], where T is the total length of scheduled follow-up in the study.

However, patient can withdraw from the study during the follow-up, which terminates the

observation of the longitudinal outcome Yi. Let Si denote the ‘dropout time’ for the ith

patient. Information about exact time of dropout is often not available in practice. Therefore,

we define Si to be the number of the last follow-up visit, and hence it is discrete. When

Si = j − 1 < M (j = 2, . . . ,M), the outcome vector (Yij, . . . , YiM)T are unobserved. If the

patient has complete data, then Si is treated as administratively censored at visit M . We

let Yo
i = (Yi1, . . . , Yi,j−1)

T denote the vector of the observed outcomes and assume that Yi1

is always observed (baseline outcome).

In this paper, we adopt the SPM in Barrett et al. (2015) that is well suited to the HERS

data. First, the complete outcome Yij (j = 1, . . . ,M) at visit j is assumed to follow

Yij = xT

ijβ + zT

ijbi + εij, (1)

where β is a p× 1 vector of regression coefficients associated with exogenous covariates xij

(fixed effects), bi is a q×1 vector of random effects that are associated with covariates zij, εij

is the measurement error that is independent of covariates xij and zij, and (εi1, . . . , εiM)T ∼
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N(0, σ2
ε IM×M). The covariate vectors xij and zij are assumed to be completely observed. In

the HERS application, we assume xij includes (1, tij)
T and baseline covariates; and zij =

(1, tij)
T, so bi corresponds to a random intercept and a random slope. The random effects

bi follow a multivariate normal distribution N(0,Σb).

Let λi,j−1 = P(Si = j−1 | Si > j−1,bi,xS,i,j−1,Wi,j−1) be the discrete hazard of dropout

at visit j − 1 (j = 2, . . . ,M). We assume a probit model,

λi,j−1 = 1− Φ
{
xT

S,i,j−1α + (Wi,j−1bi)
Tγj−1

}
, (2)

where Φ(·) is the standard normal cumulative distribution function, xS,i,j−1 is a pS×1 vector

of covariates (possibly time-varying) with regression coefficients α. Wi,j−1 is a matrix for

constructing a qS × 1 vector of linear combinations of bi. In the HERS application, we have

Wi,j−1 = I2×2 and qS = 2. Other examples of Wi,j−1 include (1, ti,j−1)
T; see discussion on

these parameterizations in Chapter 7 of Rizopoulos (2012). γj−1 is an association parameter

vector that relates the longitudinal outcome and the dropout time via the random effects

bi. Note that if γj−1 = 0 then the dropout is ignorable. Given bi and the covariates, the

complete longitudinal outcome Yi and the dropout time Si are assumed to be independent.

2.3 Estimation and inference

We use a Bayesian approach for estimation and inference of the SPM. For simplicity of

presentation we suppress the conditioning on xij, zij, xS,i,j−1 and Wi,j−1. The observed data

are {Yo
i , Si = j − 1} (i = 1, . . . , N), and the observed data likelihood contribution from the

ith patient given the random effects is

Li(θ | Yo
i , Si = j − 1,bi) = f(Yo

i | bi;θ)f(Si = j − 1 | bi;θ)f(bi;θ), (3)

where θ denotes all unknown parameters in the SPM that include regression coefficients β,

α, γj−1 and covariance parameters in Σb. Let Xi = (xi1, . . . ,xiSi)
T and Zi = (zi1, . . . , ziSi)

T.

The likelihood from the observed longitudinal outcome given the random effects is
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f(Yo
i | bi;θ) = exp

{
− log(2π)Si/2− log(|Vi|)/2− (Yo

i − µi)
TV−1

i (Yo
i − µi)/2

}
,

where µi = Xiβ + Zibi and Vi = σ2
ε ISi×Si . The observed data likelihood contribution from

the dropout time given the random effects is

f(Si = j − 1 | bi;θ) =



λi1 when j − 1 = 1

λi,j−1
∏j−2
l=1 (1− λil) when 1 < j − 1 < M∏j−2

l=1 (1− λil) when j − 1 = M

(4)

Recall the density f(bi;θ) is N(0,Σb). We follow Daniels and Zhao (2003) and use the

modified Cholesky decomposition to parameterize Σb such that positive definiteness is guar-

anteed for Σb. In the HERS analysis in Section 3, we assume bi = (bi1, bi2)
T, where bi1 is a

random intercept and bi2 is a random slope. Then bi can be written in two parts: bi1 = ei1,

bi2 = δbi1 + ei2. The first equation corresponds to the marginal distribution of the random

intercept, and the second equation describes the conditional distribution of the random slope

given the random intercept. Let σ2
1 and σ2

2 be the variances of ei1 and ei2, respectively. Then

the covariance matrix Σb can be written as

Σb =

 σ2
1 δσ2

1

δσ2
1 δ2σ2

1 + σ2
2

 .
We provide details of the prior specification and posterior inference in the context of the

HERS analysis in Section 3.

2.4 Default extrapolation distribution under the SPM

To derive the default extrapolation distribution of the missing outcome Yik (k = j, . . . ,M)

after dropout at visit j−1, we first need to derive the conditional distribution of the random

effects bi, given the observed data Yi1, . . . , Yi,j−1, Si = j − 1, and Hi,j−1. Here Hi,j−1 is the

collection of the history of the corresponding covariates xi,j−1, zi,j−1, xS,i,j−1, Wi,j−1 up to

visit j − 1 (an overbar represents the history of a process). The conditional density of bi
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given the observed data is

f(bi | Yi1, . . . , Yi,j−1, Si = j − 1,Hi,j−1) (5)

∝ f(bi;θ)f(Yi1, . . . , Yi,j−1 | Hi,j−1,bi;θ)λi,j−1

j−2∏
l=1

(1− λil).

This conditional density is a member of the class of multivariate skew-normal distribution

described in González-Faŕıas et al. (2004) and Arnold (2009). Details of the proof for this

distribution can be found in supporting information.

Recall that the missing outcome Yik (k = j, . . . ,M) after dropping out at visit j − 1 is

assumed to follow the regression model of the form Yik = xT
ikβ + zT

ikbi + εik in (1) with

the error term assumed to be independent of the random effects and covariates. Given the

additive property of the multivariate skew-normal distribution (González-Faŕıas et al., 2004),

the conditional distribution of Yik given the observed data, Yi1, . . . , Yi,j−1, Si, Hik, xik and zik,

can also be shown to follow a skew-normal distribution; see details in supporting information.

This conditional distribution for Yik is the default extrapolation distribution under the

specified SPM. Given the model parameters and covariates, sampling from this extrapolation

distribution can proceed by separately drawing from the conditional distribution of bi given

the observed data and from the distribution of εik and then computing xT
ikβ + zT

ikbi + εik.

2.5 Sensitivity analysis for the SPM

Without loss of generality, we let zik = (1, tik)
T and then bi = (bi1, bi2)

T represents the

random intercept and random slope. In the sensitivity analysis, the model for Yik (k =

j, . . . ,M) after dropout at visit j − 1 is assumed to follow a piece-wise linear model

Yik = xT

ikβ + bi1 + bi2tik + ∆i(tik − ti,j−1)+ + εik, (6)

where (x)+ = x if x > 0 and 0 otherwise. Note that (bi1, bi2)
T in (6) follows the distribution

in (5). ∆i is the change of the slope for the ith patient after dropout at visit j − 1 (i.e.,

deviation from the random slope bi2; see Figure 1), which can depend on the observed data
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of the ith patient; when ∆i = 0 for all i we obtain the default extrapolation distribution.

For example, let

∆i = a {(M − Si)/(M − 1)}σbi2 , (7)

where a is the sensitivity parameter and σbi2 = {Var(bi2 | Yi1, . . . , Yi,j−1, Si = j−1,Hi,j−1)}1/2

is the standard deviation of the random slope given the observed data of the ith patient.

When Si = M , the patient has complete data, therefore no adjustment for the slope bi2 is

made and ∆i = 0. ∆i is proportional to (M − Si)/(M − 1), which allows more adjustment

of the random slope made for earlier dropout because these patients might have more severe

disease progression than what is characterized by the random effects. In particular, when

Si = 1 and the patient drops out right after baseline, the adjustment is the largest with

∆i = aσbi2 , i.e., a times standard deviation of the random slope given the observed data of

the ith patient. If Si = M −1 and the patient almost completes the study except for the last

scheduled visit, the adjustment is only a/(M − 1) times standard deviation of the random

slope given the observed data. We specify ∆i to be proportional to σbi2 to allow for the

adjustment calibrated to the observed outcome variation given the individual characteristics

of a specific patient. Note that ∆i implicitly depends on the covariates because σbi2 is the

posterior standard deviation of the random slope conditional on all observed data (including

the covariates). Therefore, implicitly the approach allows interactions between ∆i and the

covariates. Finally, a is a single sensitivity parameter that controls the overall deviation of

the individual longitudinal profiles after dropout from the default extrapolations under the

SPM for the study sub-population with dropout.

Within the Bayesian framework, we can specify a prior for a. For example, in the HERS

example in Section 3, we believe that patients can have more rapidly decreasing CD4 count

profiles after dropout, therefore a is assumed to follow a triangular distribution with the range

[−2, 0] and the mode at −1. Thus we expect at most a two-standard-deviation downward
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change for the slope for the earliest dropouts and overall the change is centered at one

standard deviation. When possible, the prior for the global sensitivity parameter a should

be elicited from expert opinion (or historical information).

Sampling from the extrapolation distribution in the sensitivity analysis requires calculation

of σbi2 . In supporting information, we show that this standard deviation is a function of the

model parameters and observed data. We then calculate ∆i in (7), given the sensitivity

parameter, and use the model in (6) to sample from the extrapolation distribution.

To assess the impact of the sensitivity parameter on the final inference, we use Monte

Carlo integration (i.e., G-computation) to calculate the predicted means of the longitudinal

outcome and summarize the marginal covariate effects on these predicted means for both

the fitted SPM and sensitivity analysis. Specifically, the steps are:

(1) Draw a sample from the prior for the sensitivity parameter a.

(2) Draw a sample of (Yi, Si) based on the specified SPM, a specific set of covariate values,

and a single set of posterior samples of the model parameters.

(3) Yi is truncated at Si to obtain the replicated observed longitudinal data vector Yo
i .

(4) If Si < M , then sample the missing outcomes from the default extrapolation distribution

under the SPM and from the extrapolation distribution based on the model (6) and the

current sample of a.

(5) Repeat Steps 2-4 for 100N times. Note that the size of the Monte Carlo samples needs

to be large relative to the sample size N . Here we follow Linero and Daniels (2018) and

use 100 times the sample size.

(6) Calculate summaries of all longitudinal outcome samples, e.g., average changes of longi-

tudinal outcomes from baseline to specific follow-up visits.

(7) Repeat Steps 2-6 for other sets of covariate values and calculate baseline covariate effects

on the longitudinal data summaries in Step 6 using contrasts between covariate groups.
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(8) Repeat Steps 1-7 for the entire set of posterior samples of model parameters, and

summarize the posterior distribution of the baseline covariate effects obtained in Step 7.

3. Application to the HERS data

In this section, we implement the proposed approach to the HERS data. Of the 850 women

who were HIV-positive and had CD4 count data at baseline, we exclude 23 women from the

analysis because their baseline covariate data were missing. The dropout time is treated as

discrete and set as the number of the last follow-up visit. For those women who finished

12 scheduled visits, their dropout times are treated as administratively censored at visit

12. During the follow-up, 566 (7.6%) CD4 count measurements were intermittently missing

before the patients’ dropout or the end of study. We assume that this intermittent missingness

is latent ignorable (Harel and Schafer, 2009). That is, given the observed outcomes, random

effects, dropout time, and covariates, the intermittent missingness is ignorable.

3.1 Fitted model

Following the previous analysis of the HERS data (Hogan et al., 2004), we assume a linear

mixed model for the complete longitudinal measurements of CD4 count as follows,

Yij = xT

ijβ + bi1 + bi2j
∗ + εij, (8)

where Yij is the square root of CD4 count at visit j after standardization by taking (y−18)/7

and xij is the covariate vector, including the visit j∗ = (j − 1)/11, indicator variables for

HIV viral load group (0, 500], (500, 5000], (5000, 30000] (copies/ml) at baseline, indicator

of antiretroviral therapy (ART) at baseline, HIV symptomatology (presence of HIV-related

symptoms on a scale from 0-5) at baseline and the interactions between time (visit) and these

baseline covariates. bi1 and bi2 are random intercept and slope, respectively, and they follow

the multivariate normal distribution with mean zero and covariance Σb, as parameterized
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by the modified Cholesky decomposition. The error term follows εij
i.i.d.∼ N(0, σ2

ε ), which is

independent of the random effects.

Based on some preliminary data exploration, we specify the following probit model for the

discrete hazard for the dropout time,

λi,j−1 = P(Si = j − 1|Si > j − 1,xS,i,j−1, bi1, bi2) = 1− Φ(xT
S,i,j−1α + γ1bi1 + γ2bi2), (9)

where j − 1 = 1, . . . ,M − 1, the covariate vector xS,i,j−1 includes indicators of baseline

HIV viral load groups, HIV symptomatology at baseline, indicator of ART at baseline,

(j− 1)∗ = (j− 2)/11 and {(j− 1)∗}2 (to account for the change in the discrete-time hazards

over time), and the interaction between ART and time (j − 1)∗. The specification of the

functional forms of the random effects in (9) is based on the belief that patients who had

higher CD4 count levels at baseline (i.e. intercept) and/or who showed a lower decreasing

rate in their longitudinal CD4 count profiles (i.e. time slopes) are less likely to drop out.

3.2 Priors and posterior inference

Independent normal priors N(0, 100) are assigned to β and the parameter δ in Σb. For

parameters in (9), we assign weakly informative N(0, 4) priors to α, γ1 and γ2. For variance

component parameters, we assign the prior σ2
ε ∼ Inverse-Gamma(0.001, 0.001) and σk ∼

Uniform(0, 5) (k = 1, 2) for Σb. We run three MCMC chains with diverse initial values using

the WinBUGS package (Spiegelhalter et al., 2003) and assess convergence within a 5, 000-

iteration burn-in period using trace plots and Gelman and Rubin convergence statistics. The

computation time is about 3.5 hours on a Windows server with 2.60GHz CPU (4 processors)

and 128GB memory when parallelizing the chains, which can be reduced if using MultiBUGS

(Goudie et al., 2017), the newly released parallelized version of WinBUGS. After convergence,

pooled posterior samples of size 9000 (after thinning by 5) are used for model inference.
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3.3 Model assessment

To assess the fit of the SPM to the observed data, we use posterior predictive checks,

specifically the χ2 discrepancy statistics described in Gelman et al. (1996) with replicated

observed data, as recommended in Daniels et al. (2012) and Xu et al. (2016). Detailed steps

can be found in supporting information. The posterior probability that the χ2 statistic is

larger than the observed χ2 statistic is 0.212, which does not indicate lack of fit of our SPM

to the observed HERS data.

3.4 Posterior Inference

The posterior summaries for the parameters in the SPM are presented in Table 1. For

comparison, we also fit a linear mixed model (LMM) that has the same form as in (8)

but assumes ignorability of the dropout time and a PMM that was described in Hogan et al.

(2004). Details for the PMM can be found in supporting information.

[Table 1 about here.]

The estimated main effect of time (posterior mean) from the SPM is -1.21 (95% credible

interval (CI) =[-1.59,-0.84]), which is larger in magnitude than the estimate from the LMM

under the ignorability assumption. The primary difference between the LMM and SPM

analyses is that the LMM assumes that those who dropped out from the study had similar

longitudinal CD4 profiles (intercept and time slopes) as those that did not, given past

observed longitudinal data and covariates. However, from Table 1 it is clear that patients

who dropped out early tended to have larger declines in CD4 count over time (γ2 = 0.28

(95% CI =[0.22, 0.35])). As a result, the time slope under ignorability may be underestimated

(with less steep decline). Similarly, the SPM estimates show larger differences in the slope of

CD4 count within baseline viral load groups, while results for the dropout model in Table 1

indicate that the hazard of dropout is higher for those with higher baseline HIV viral load.

Nevertheless, due to the unverifiable assumption on the extrapolation distribution in the



14 Biometrics, 000 0000

SPM, it is essential to conduct sensitivity analysis to check the impact on the final inference

for the covariate effects in the HERS population.

3.5 Sensitivity analysis

For sensitivity analysis, we use the specification for ∆i as in (7) and assume that the sensitiv-

ity parameter a follows a triangular distribution with the range [−2, 0] and the mode at −1.

Because we standardized the visit number j in (8), the missing outcome Yik (k = j, . . . , 12) af-

ter dropout at visit j−1 has the following form, Yik = xT
ikβ+bi1+bi2k

∗+∆i{k∗−(j−1)∗}++εik,

where ∗ stands for standardization by taking (x − 1)/11. Sampling from this distribution

then follows the procedure as described in Section 2.5.

To summarize the covariate effects, we use the G-computation procedure described in

Section 2.5. For presentation purpose, we fix the value of baseline HIV symptoms at zero

and focus on the effects of baseline HIV viral load and ART treatment groups.

Sampling from the extrapolation distribution in the sensitivity analysis involves evaluating

the posterior standard deviation of the random slope given the observed data, σbi2 , for each

G-computation sample. In supporting information, it can be seen that these evaluations

require numerous calculations of multivariate normal probabilities, which slow down the

overall G-computation when the dimension of the multivariate normal is high (up to 11 in

the HERS example). To speed up the G-computation for the HERS analysis, we approximate

σbi2 using the average estimated posterior standard deviations of the random slopes for all

HERS patients within each of the 8 covariate groups defined by the baseline viral load level,

ART status and HIV symptoms. More details about the approximation of σbi2 can be found

in supporting information. We use n = 82700 Monte Carlo samples for each covariate group

given a set of posterior samples of model parameters. The G-computation is parallelized for

320 sets of posterior samples of the model parameters using the ‘parallel’ package in R on

high performance clusters. It takes less than 2 hours to finish the G-computation for a set of
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posterior samples. This can be further reduced if the Monte Carlo samples for each posterior

sample are divided into blocks for parallelization.

Note that the marginal covariate effects in the sensitivity analysis no longer follow a linear

form as in the fitted SPM, i.e., there are interactions between covariates. Therefore we provide

the effects of baseline viral load level given the ART status, and also the effects of ART status

given the baseline viral load level, on the changes of mean CD4 counts from baseline to visits

6 and 12 in Figure 2. The top of Figure 2 shows the differences of the mean CD4 count

changes between three baseline viral load groups and the reference group (> 30000), given

the ART status. The estimated viral load effects in the sensitivity analysis are all larger

than those in the SPM. This is because the mean CD4 counts are adjusted downwards in

the sensitivity analysis compared with the SPM estimates, and the adjustment is biggest for

the group with highest viral load (reference group) which was more likely to drop out. As

a result, conclusions about the viral load effects differ in the two analyses. For example, in

both analyses the viral load (5000, 30000] group is associated with smaller decreases in mean

CD4 counts from baseline to visits 6 and 12, compared with the highest viral load group.

But in the sensitivity analysis, the 95% CIs for these effects no longer cover zero, unlike in

the SPM. Similarly, conclusions about the effects of the ART status also differ between the

two analyses. For example, the effects of the ART status (the bottom of Figure 2) have been

reduced in the sensitivity analysis, in particular, the 95% CIs for the ART effects in the

higher viral load groups ((5000, 30000], > 30000), now cover zero.

Overall, despite these differences, it appears that the conclusions of the covariate effects

from the SPM are not overly sensitive to the deviations considered here. For example, given

other baseline covariates, patients with higher baseline viral load had larger decreases of mean

CD4 counts compared with patients with lower baseline viral load. This is also consistent

with the findings from the PMM; see details in supporting information.
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[Figure 2 about here.]

4. Conclusion and discussion

In this paper we proposed a new sensitivity analysis approach for informative dropout using

SPMs. The distinctive feature of our approach is that the inference for observed data is not

influenced by the global sensitivity parameter, which follows the principle as proposed by

Daniels and Hogan (2008) in a full probability model based setting. We showed that the

default extrapolation distribution under the SPM specified here is available in a closed form.

Therefore it is convenient to anchor our sensitivity analysis at this default extrapolation

distribution. In addition, using the HERS data, we demonstrated that the deviation of

the extrapolation distribution specified in the sensitivity analysis from the default can be

calibrated using the observed data for each patient who dropped out.

Sensitivity analysis approaches for informative dropout based on selection models and

PMMs have also been proposed in the literature. In selection models, the sensitivity parame-

ter is specified in the selection function (e.g., the regression coefficients in the dropout model).

However, with parametric models for the longitudinal outcome and the selection function,

altering the sensitivity parameter in the selection function will also affect the model fit to

the observed data, which is not consistent with the principle of sensitivity analyses (Daniels

and Hogan, 2008). Since SPMs are also parametric, we anchor our sensitivity analysis at the

extrapolation distribution of the missing outcomes, not at the selection function, similarly

to the sensitivity analysis approach based on PMMs. We provide a more detailed discussion

on sensitivity analysis based on PMMs in supporting information.

Because we specified a piece-wise linear model for the individual longitudinal profile and

the random intercept bi1 reflects the CD4 count level at baseline of the HERS where data

are complete, we did not connect bi1 to the sensitivity parameter. However, if we follow the

approach in Linero and Daniels (2015), we can specify the sensitivity parameter to represent
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a location shift from bi1 + bi2t, where t is a time point after dropout. This location-shift

model can also be used in a SPM with informative intermittent missing data, where the

series of missing data indicators are modeled using a probit model. It is straightforward to

show that the default extrapolation distribution under this SPM is also skew-normal that

depends on all observed outcome data (not only the observed outcome data up to the current

visit with the intermittent missing data), covariates, and model parameters. The sensitivity

analysis can again be anchored at this default extrapolation distribution and we then specify

a location shift model for the deviation from the default extrapolation distribution that is

again controlled by a global sensitivity parameter. The final inference under the SPM and

sensitivity analysis can be provided through G-computation.

Using a probit model for the discrete hazard of dropout, the SPM used in our approach

benefits from a closed form of the default extrapolation distribution. The probit link used

in the dropout model not only facilitates sensitivity analysis, but also naturally reflects

the assumption that the discrete hazard of dropout depends on the normally distributed

random effects that characterize underlying individual longitudinal profiles. Other models,

e.g., logistic models, can also be used in a SPM. However, in such models, the default

extrapolation distributions are not available in closed forms. To approximate them, we can

first sample the posterior distribution of the random effects using the Metropolis-Hastings

algorithm and then sample the missing outcomes using the longitudinal model specified in

the SPM and the samples of random effects and other model parameters. This is similar to

the algorithm used for dynamic predictions based on SPMs described in Rizopoulos (2011).

The general approach for sensitivity analysis proposed here is similar in spirit to the

framework proposed by Linero and Daniels (2015) and Linero (2017), where a flexible

‘working model’ for the joint distribution of the complete longitudinal outcomes and the

dropout time is specified and identifying restrictions are then applied when performing
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sensitivity analyses with the extrapolation distribution. The typical SPM can be thought of

as the ‘working model’ described in these papers. Here, however, we recommend performing

sensitivity analysis grounded off the extrapolation distribution from the ‘working model’,

unlike anchoring at the MAR restrictions as done in Linero and Daniels (2015) and Linero

(2017).
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Default extrapolation 

Extrapolation under sensitivity analysis 

Outcome 

Observed data  

Figure 1. Graphical illustration of the default extrapolation under a typical SPM and the
possible extrapolation under the proposed sensitivity analysis.



22 Biometrics, 000 0000

Visit 6

Changes of mean CD4 counts from baseline

No ART: 

                       Viral load 0−500 

                        Viral load  500−5k

With ART:

                        Viral load  0−500 

                        Viral load  500−5k

 Viral load  0−500:       ART

 Viral load  500−5k:     ART

 Viral load  5k−30k:     ART

 Viral load  30k+:         ART

                        Viral load  5k−30k

                        Viral load  5k−30k

−1 0 1 2 3 4

●

●

●

●

●

●

●

●

●

●

−1 0 1 2 3 4

●

●

●

●

●

●

●

●

●

●

Visit 12

Changes of mean CD4 counts from baseline

−1 0 2 4 6 8 10

●

●

●

●

●

●

●

●

●

●

−1 0 2 4 6 8 10

●

●

●

●

●

●

●

●

●

●

Figure 2. Results (posterior means and 95% credible intervals) for marginal covariate
effects on changes of mean square root CD4 counts from baseline to visits 6 and 12 in the
HERS analysis. Top: baseline viral load effects on mean CD4 count changes, given baseline
ART status. Bottom: baseline ART status effects on mean CD4 count changes, given baseline
viral load levels. Solid lines ( ): 95% credible intervals under the default extrapolation
distribution of the SPM; dashed lines ( ): 95% credible intervals under the extrapolation
distribution in the sensitivity analysis. The estimated effects with 95% credible intervals
covering zero and not covering zero are in gray and black, respectively.
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Table 1
Posterior mean and 95% credible intervals of the model parameters in the SPM and the LMM fitted to the HERS

data.

SPM LMM
Longitudinal Dropout Longitudinal

Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5%

Intercept -0.55 -0.75 -0.36 1.11 0.91 1.32 -0.57 -0.75 -0.38

Baseline HIV viral load

0-500 1.52 1.32 1.74 0.75 0.54 0.97 1.54 1.33 1.74

500-5k 1.02 0.82 1.22 0.63 0.44 0.83 1.03 0.83 1.21

5k-30k 0.47 0.26 0.70 0.26 0.05 0.47 0.48 0.26 0.69

30k+ (reference)

Baseline HIV symptoms -0.02 -0.07 0.03 -0.01 -0.06 0.05 -0.03 -0.08 0.03

ART at baseline -0.65 -0.77 -0.53 -0.22 -0.40 -0.04 -0.66 -0.77 -0.55

(j − 1)∗ - - - 1.67 1.09 2.28 - - -
{(j − 1)∗}2 - - - -2.79 -3.41 -2.16 - - -
(j − 1)∗*ART at baseline - - - 0.37 0.04 0.70 - - -

Time (visit) -1.21 -1.59 -0.84 - - - -0.91 -1.29 -0.54

Time*baseline viral load

0-500 0.59 0.21 1.00 - - - 0.37 -0.03 0.78

500-5k 0.53 0.15 0.91 - - - 0.35 -0.03 0.74

5k-30k 0.37 -0.06 0.79 - - - 0.25 -0.16 0.67

30k+ (reference) - - -
Time*baseline HIV symptoms -0.06 -0.15 0.04 - - - -0.04 -0.14 0.05

Time*ART at baseline 0.21 0.01 0.40 - - - 0.25 0.06 0.43

corr(bi1, bi2) -0.20 -0.29 -0.13 - - - -0.23 -0.31 -0.14

var(bi1) 0.56 0.50 0.62 - - - 0.56 0.50 0.62

var(bi2) 1.24 1.07 1.44 - - - 1.12 0.97 1.29

σ2
ε 0.15 0.14 0.16 - - - 0.15 0.14 0.16

γ1 - - - 0.23 0.15 0.30 - - -
γ2 - - - 0.28 0.22 0.35 - - -


