
A First Look at Data Center Network Conditions
Through The Eyes of PTPmesh

Diana Andreea Popescu
University of Cambridge

diana.popescu@cl.cam.ac.uk

Andrew W. Moore
University of Cambridge

andrew.moore@cl.cam.ac.uk

Abstract—Increased network latency and packets losses can
affect substantially application performance. Due to the scale
of data centers, custom network monitoring tools have been
developed to measure network latency and packet loss. In our
previous work, we used the Precision Time Protocol (PTP) to
measure one-way delay and to quantify packet loss ratios, and
we proposed PTPmesh as a cloud network monitoring tool.
In this work, we provide a better understanding on how to
exploit the measurement data offered by PTPmesh and present a
detailed analysis of PTPmesh measurements collected in ten data
centers from three cloud providers. Our findings reveal different
latency, latency variance and packet loss characteristics across
data centers. Through our analysis, we showcase the strengths
and limitations of PTPmesh as a cloud network monitoring tool.
To foster further research in this area, we make our dataset
available.

Index Terms—PTP, Network Measurement, Data Centers,
Network Latency, One-way Delay, Packet Loss

I. INTRODUCTION

With more and more businesses moving to the cloud, the
data center networks [1], [2] that power up the cloud have
to be reliable and to offer performance guarantees. Data
center networks have become increasingly complex in recent
years, requiring a significant effort to debug and troubleshoot.
Furthermore, application performance can be affected by net-
work conditions in data centers [3]–[5]. Several data center
network monitoring tools have been proposed, mostly by cloud
operators [6]–[8]. However, for their customers, it is usually
difficult to have access to information regarding network
conditions. In our previous work, we introduced PTPmesh [9]
as an easy to deploy network monitoring tool for cloud users
to gather information such as network latency and packet
losses. PTPmesh is a lightweight measurement service that is
always-on and that offers end-to-end one-way delay (OWD)
measurements. In this paper, we calibrate the open source
software implementation of PTP, the PTPd [10] daemon, by
performing several experiments both on local testbeds and
in the cloud. We use PTPmesh to perform network latency
and packet loss measurements in data centers from different
cloud providers (Amazon AWS EC2, Google Compute Engine,
Microsoft Azure), in order to validate its use as a monitoring
tool for measuring network conditions with network traffic
from data centers. We showcase the strengths and limitations
of PTPmesh through analysis of the measurement data.

In this paper, we make the following contributions:

• We analyze the impact of virtualization on the OWD
measurement, the overhead of PTPd at the end-host and
on the network depending on the message frequency,
and the impact the number of PTPd clients has on the
accuracy of OWD.

• We perform measurements between pairs of virtual ma-
chines (VMs) in ten different data centers from three
cloud providers, and we perform a temporal analysis of
the traces at different time scales. We identify different
characteristics with regards to latency, latency variance
and packet loss for data centers.

• We share publicly our datasets at https://doi.org/10.
17863/CAM.23126.

II. BACKGROUND AND RELATED WORK

In this section, we summarise our previous work from [9],
and we review the related work that has been published since.

Background. In our previous work [9], we leveraged the
Precision Time Protocol (PTP) [11] to infer network latency
and packet loss in data centers through controlled experiments
on small-scale testbeds. We used the open source software
implementation of PTP, the PTPd daemon. Additionally, we
conducted a small-scale study of network conditions in several
data centers, albeit limited in temporal and spatial coverage,
and presented a preliminary analysis of the collected data.
In this work, we collected extensive data and performed a
thorough analysis on several dimensions.

For network latency, we validated the use of the one-way
delay as a measure for network latency through experiments
that compare the one-way delay with the output of ping and a
custom UDP-based tool [4]. We also studied the effect of net-
work congestion on the one-way delay, showing that through
increases in the one-way delay values, we can detect periods
of network congestion. The duration of the network conges-
tion periods that can be detected depends on the message
frequency. The one-way delay also has increased values after
the network congestion period has passed because of the time
needed for the slave’s clock to converge again. We also showed
that using PTP-enabled NICs (Solarflare SFN8552 Network
Interface Card (NIC) [12] supporting PTP with hardware
timestamping NICs and using the sfptpd daemon) removes the
overhead and inaccuracies introduced by a software solution,
since the packets are timestamped at the NIC, leaving the one-
way delay measurement to account only for the delay within

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/200998141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the network. For packet losses, we proposed and validated a
metric for computing packet loss ratio over a period of time.
We defined the metric based on the number of Delay Request
and Delay Response messages, and we computed it as
1− #Delay Response messages

#Delay Request messages .
Related work. Network monitoring for data centers is an

active area of research, and several works have appeared
since our previous publication [8], [13]–[16]. deTector [8]
presents an algorithm to minimize the number of probes sent
for detecting and localizing packet losses and latency spikes.
[13], [14] and [15] employ passive measurement for network
faults localization. [13] presents a classification algorithm
that identifies the root cause of failure using TCP statistics
collected at one of the endpoints. The work in [14] looks from
the end-host to identify the faulty links and switches, by cor-
relating anomalies in end-host statistics with the network path
of the traffic. Vigil [15] tracks the path of TCP connections
that display retransmissions through traceroute, and identifies
the links with the most retransmissions as the faulty ones.
[16] presents a sampling framework which can poll a subset
of switch counters at microsecond-level granularity, used to
determine microbursts in data centers. Our work can determine
periods of increased latency with millisecond-level granularity
depending on the message frequency. Increasing the message
frequency beyond 128 messages per second allows detection
at an even higher resolution. NTP statistics have been used to
measure Internet latency [17].

III. METHODOLODY AND MEASUREMENT CALIBRATION

Virtualization. The experiments run on the local testbed
from our previous paper [9] were performed without virtual-
ization, on bare metal hosts. In order to be able to interpret our
collected data in the cloud, where virtualization is the norm,
we ran an experiment on the same local testbed to quantify the
overhead of virtualization on PTPd statistics, with the PTPd
master and client running in VMs. The hypervisor used is Or-
acle VM VirtualBox version 5.0.40 Ubuntur115130, which is
a hosted hypervisor. Without virtualization, the OWD has the
following distribution: median 83.14µs, average 83.24µs, stan-
dard deviation 1.15µs, 99thpercentile 85.47µs, 99.9thpercentile
85.59µs, minimum value 80.85µs, maximum value 85.63µs.
When PTPd runs in VMs, median OWD reaches 285.28µs,
average 285.37µs, standard deviation 5.44µs, 99thpercentile
295.64µs, 99.9thpercentile 295.9µs, minimum value 273.96µs,
maximum value 295.92µs. We exclude the first 5 minutes
from the data, when the two clocks are not synchronized.
These results show that virtualization adds almost 200µs
of overhead and increased jitter to the OWD, although the
standard deviation of the OWD is not significant. Both these
issues can be solved by using PTP-enabled NICs, which
provide hardware timestamping, as we showed in our previous
work. More recently, OS bypass through a custom software
packet processing path [18] or through custom hardware [2]
alleviates these issues. Also, given that some cloud providers
offer bare metal instances, the virtual switch overhead would
be removed in this case.

Cloud Experimental Setup. We used PTPd v2 2.3.1, using
the latest source code from the public repository. We ran PTPd
in unicast mode, using unicast negotiation, and using end-
to-end delay measurement. Since currently multicast either
requires additional configuration and expenses in the case
of Amazon AWS1 or is not supported at all in the case of
Google Compute Engine2 and Microsoft Azure3, we used
PTPd in unicast mode for the cloud deployment. We measured
the one-way delay between multiple virtual machines (VMs)
from different cloud providers. For each of the three cloud
providers chosen, Amazon AWS, Google Compute Engine
and Microsoft Azure, we chose several zones, and we rented
two, four or ten VMs in each zone. We ran the PTPd master
on one VM, while the other VMs acted as slaves, running
simultaneously. The VMs’ types and specifications, running
Ubuntu 16.04, can be seen in Table I. We list them along
with an assigned name that we use to identify the traces we
collected. For Amazon AWS, we ran measurements in regions
Ireland zone eu-west-1a (EC2-EUW), Northern California
zone us-west-1b (EC2-USW) and Ohio zone us-east-2a (EC2-
USE). For Google Compute Engine, the measurements were
ran in us-west1-b (GCE-USW) and europe-west1-b (GCE-
EUW), and between us-west1-b (GCE-USW) and us-west1-
d (GCE-USW2). For Microsoft Azure, we used UK West
(Azure-UKW), UK South (Azure-UKS), US West (Azure-
USW) and Korea South (Azure-KS). In UK South, the VM
type we used was the Standard D2s v3 and Standard E16s v3
or E32s (with [2] enabled), while in the other zones we used
the Standard D1 v2. We will refer to a zone as a data center
in the rest of the paper.

PTPd overhead. According to the PTP standard, the inter-
val between messages can be set between 2−7 to 27 seconds,
which means a maximum of 128 messages per second. PTPd’s
experimental implementation allows message frequencies of
up to 230 messages per second. We performed several experi-
ments where we vary the number of messages between 1 to 27

per second to determine whether a different message interval
yields different latency values. We set these values for both
the number of Sync and Delay Request messages exchanged
between the master and the slave. This means that the number
of Delay Response messages should be the same as the number
of Delay Request messages. In Figure 1, as we increase the
message frequency per second, the one-way delay decreases,
going from median 262.92µs and 99th percentile 286.6µs for 1
message per second, to 191.49µs and 99th percentile 237.85µs
for 128 messages per second. We hypothesize that the cause of
this behaviour is that, when the message frequency increases,
the code that performs the timestamps remains in the cache,
leading to smaller OWD values. Another cause might be due
to the way the interrupts are coalesced at the NIC, since
messages are not timestamped by the NIC, but in software. The
hypervisor could also be a factor that leads to this behaviour.

1https://aws.amazon.com/marketplace/pp/B071RMCZ1X
2https://cloud.google.com/vpc/docs/vpc\#quotas\ and\ limits
3https://docs.microsoft.com/en-us/azure/virtual-network/

virtual-networks-faq



TABLE I: VM types and settings for the three cloud providers

Cloud Instance vCPU Mem Storage Storage #NICs Network
provider type (GB) (GB) Type used bandwidth

Amazon AWS t2.micro 1 1 10/30 Elastic Block Store4 1 moderate
Google Compute Engine n1-standard-1 1 3.75 10 Standard Persistent Disk 1 maximum 2Gbps

Microsoft Azure Standard D1 v2 1 3.50 50 Local SSD 1 moderate
Microsoft Azure Standard D2s v3 2 8 50 Local SSD 1 moderate
Microsoft Azure Standard E16/32s v3 16/32 128/256 256/512 Local SSD 1 high

0 50 100 150 200 250 300 350 400

One-way delay [µs]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F 1
2
4
8
16
32
64
128

Fig. 1: OWD measured using PTPd for periods of 15 minutes
between two VMs.

While increasing the message frequency leads to better
accuracy for the one-way delay measurements, the CPU util-
isation and network bandwidth consumption increase as well.
Since the initial goal was to have a low-overhead measurement
system that runs as a service in a VM or in the hypervisor,
choosing the message interval implies a tradeoff between
host and network resource consumption and measurement
accuracy. To this end, we performed an experiment with a
PTPd master and a single PTPd client running in the Azure-
KS data center with different message frequencies. We ran
measurements for each message frequency from 1 message per
second to 230 messages per second for 15 minutes. We monitor
the average CPU utilisation, memory and send and receive
network bandwidth (using iftop). The CPU utilisation doubles
with the doubling of the message frequency, the maximum
CPU utilisation achieved being less than 10%. For a frequency
of 1 message per second, the average CPU utilisation is
almost 0% and the peak network bandwidth consumption
is 576 b/s (receive) and 3.33 Kb/s (send). For a frequency
of 27 messages per second, the average CPU utilisation is
0.7% and the peak network bandwidth consumption is 72.3
Kb/s (receive) and 234 Kb/s (send). From 212 upwards, due
to the fact that the protocol operates in a request-response
manner and taking into account the latency on the network, the
message frequency does not actually achieve the set message
frequency. The VM has a network bandwidth of 0.75 Gb/s,
which is not reached for message frequencies greater than
212, the maximum bandwidth consumed being less than 10
Mb/s. Since these values are reported for a single slave, when
synchronising with multiple slaves, we expect the network
bandwidth to increase proportionally. For example, if using

100 101 102 103 104 105 106 107 108 109 1010

#Messages/s

0

2

4

6

8

10

C
P

U
ut

ili
sa

tio
n

(%
)

CPU

0

500

1000

1500

2000

2500

3000

3500

4000

4500

B
an

dw
id

th
(K

bp
s)

Bandwidth

Fig. 2: CPU utilisation and network bandwidth of the PTPd
master synchronising with one PTPd client.

1000 slaves, the peak network bandwidth at the PTP master
would be 7.23 Mb/s (receive) and 23.4 Mb/s (send). The
memory usage is the same regardless of the message interval,
being 0.1% when using a VM with 1.6 GB RAM.

Number of concurrent PTPd clients in the cloud. Another
aspect that needs to be taken into account is the number
of slaves a master can synchronize with before becoming
overloaded because of CPU processing of messages and end-
host queueing of packets. To see if the number of clients
affects significantly the OWD values, we performed a suite
of experiments in our local testbed with ten bare metal hosts,
using one PTPd master and a maximum of nine PTPd clients,
and a similar experiment in EC2-USE, using 128 messages
per second. In our local testbed, we found that the reported
OWD is not affected by the number of clients, with median
values between 18.5µs and 19µs, with standard deviations less
than 1µs and a maximum value of 20µs across runs with a
different number of clients. In contrast, figure 3 shows the
OWD between one pair of VMs when varying the number of
concurrent PTPd clients synchronising with the same PTPd
master. The variations in the OWD when having up to four
clients are not related to the number of clients. However,
adding an additional client leads to an increase in the median
latency of 7 µs. Having six or seven clients leads to increases
in the OWD by approximately 10 µs. For eight clients, the
median OWD is larger by approximately further 7µs. For nine
clients, the median OWD is approximately 20µs. Additionally,
in data centers from the two other providers we did not
see any noticeable impact when using a maximum of four
clients. We leave testing with more clients to future work.
We hypothesize that this is related to the hypervisor, since



0 100 200 300 400 500 600
One-way delay [µs]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F
1 client
2 clients
3 clients
4 clients
5 clients
6 clients
7 clients
8 clients
9 clients

Fig. 3: Varying the number of PTPd clients synchronising with
the PTPd master can affect the OWD.

our ten hosts testbed is composed of bare metal hosts, but
the results are also influenced by the competing network
traffic in the cloud, whereas in our testbed there was no
other traffic. Given that our measurements were taken using
a maximum of three simultaneous VMs, our measurements
were not affected by this behaviour. To mitigate this issue,
the current infrastructure of PTPmesh can be extended to
perform measurements between VMs independently in pairs.
Alternatively, all VMs can be visited in a round robin manner
with the clock synchronization running for several minutes
per client to allow the client’s clock to synchronise with the
master. We leave this extension to future work.

IV. NETWORK LATENCY MEASUREMENTS

In the first instance, we set the number of Sync and Delay
Request messages to 1 per second, since this is the default
value configured in PTPd, which will be named in the rest of
the paper as the low message frequency. We ran a full week
of measurements in six data centers using the low message
frequency. Additionally, we performed measurements in three
data centers for one day using a higher message frequency
of 27 messages per second, which will be named in the rest
of the paper as the high message frequency. The challenge
with using a higher message frequency is, on one hand, the
increased CPU utilisation and network bandwidth at the end-
host, while on the other, the amount of data collected for which
additional storage is needed if measurements are performed for
an extended period of time. The advantages of using a higher
frequency are the detection of possible network congestion
events with a higher resolution. Regardless of the message
frequency used, the OWD values offered by PTP can serve as
a reference for normal network conditions and can be used to
detect anomalies.

A trace represents the PTPd statistics collected by the client,
representing the measurements taken between two VMs. We
list the number of messages recorded in the trace, and the start
time and duration in Table II, each trace being identified by
the assigned name of the data center and a number. For the
first part of the table, the low frequency was used, while in the
second part of the table, the high frequency was used. These

traces are indicative for the temporal perspective of network
conditions in data centers. The spatial perspective is limited,
since we used a maximum of three PTPd slaves at the same
time. All datasets except one contain measurements taken
between VMs that were located within the same zone. GCE-
USW2-1 contains measurements taken between VMs that are
located in different zones within the same region. Due to lack
of space, we show figures only for representative traces.

A. Low Message Frequency

Latency Values. Table II lists the average, median, 99thand
99.9thpercentiles, maximum, standard deviation for the OWD
values, and the number of latency spikes (a sudden increase
in latency to values over 500µs) for the trace. OWD values
are higher in the EU data centers than the US data centers for
EC2 and Azure. The GCE-EUW data center OWD values are
similar to the ones in the GCE-USW data center, the difference
coming from the extended period of increased latency that
can be seen in Figure 4b. Most of the traces have maximum
observed OWD values in the order of milliseconds.

In Figure 4a, in the EC2-EUW-2 trace we can observe multi-
ple latency spikes, with a maximum observed of 14.364ms. In
GCE-EUW the values are less or slightly higher than 100µs
up to the 90thpercentile, with a maximum 99thpercentile of
1.382ms and maximum 99.9thpercentile of 3.477ms amongst
the three VM pairs. In contrast, for GCE-USW data center,
the maximum 99this 120.34µs, and only in the case of the
trace between VM1 and VM2 the 99.9thpercentile is higher,
981.945µs, compared to the traces for the two other VM pairs.
The traces captured in the GCE EU West data center stand out
in comparison to the other traces collected, since they contain
major disruptions for latency values over a prolonged period,
accompanied by a high packet loss ratio. Between 2017-10-17
09:25 and 2017-10-18 05:16 the OWD reported varied greatly,
reaching a maximum value of 8.83ms, with a significant part
of the latency spikes of over 500µs taking place during this
interval. These events can be noticed for all three VM pairs,
which can lead to the hypothesis that these events were data
center-wide or that the VMs were placed within the same rack
or on the same host. While the median latencies within the
same data center are between 71 and 97 µs, the median latency
between two data centers in the same region is 180 µs (GCE-
USW2-1), almost double compared to the one ones within a
data center.

The Azure UK West data center traces display a decrease
of the OWD values of approximately 100µs towards the end
of the trace (Figure 4c), which corresponds to the network
traffic for Sunday. The last part of the trace was captured
on Monday, showing an increase in the OWD values back
to the values before Sunday, except for the pair VM1-VM3.
In the case of the Azure US West data center (Figure 4i)
in the second day of measurements (after 172800 messages),
a sudden decrease by approximately 50µs in OWD can be
noticed for all three pairs for a period of time, followed by
an increase for the OWD to values higher by approximately
50µs than the ones before the dip. It is interesting to see that



0

86
40

0
17

28
00

25
92

00
34

56
00

43
20

00
51

84
00

60
48

00
69

12
00

77
76

00
86

40
00

Number of messages since start

0

2000

4000

6000

8000

10000

12000

14000

16000
O

ne
-W

ay
D

el
ay

[µ
s]

OWD

(a) EC2-EUW OWD

0

86
40

0
17

28
00

25
92

00
34

56
00

43
20

00
51

84
00

60
48

00
69

12
00

77
76

00
86

40
00

95
04

00
10

36
80

0

Number of messages since start

0

1000

2000

3000

4000

5000

6000

7000

O
ne

-W
ay

D
el

ay
[µ

s]

OWD

(b) GCE-EUW OWD

0
86

40
0

17
28

00
25

92
00

34
56

00
43

20
00

51
84

00
60

48
00

69
12

00
77

76
00

86
40

00
95

04
00

10
36

80
0

11
23

20
0

Number of messages since start

0

200

400

600

800

1000

1200

O
ne

-W
ay

D
el

ay
[µ

s]

OWD

(c) Azure-UKW OWD

0 20 40 60 80 100 120

Interval number

0

10

20

30

40

50

P
kt

lo
ss

ra
tio

x
1
0
−

4

(d) EC2-EUW Pkt.loss ratio

0 20 40 60 80 100 120 140

Interval number

0

10

20

30

40

50

P
kt

lo
ss

ra
tio

x
1
0
−

4

(e) GCE-EUW Pkt.loss ratio

0 20 40 60 80 100 120 140 160

Interval number

0

10

20

30

40

50

P
kt

lo
ss

ra
tio

x
1
0
−

4

(f) Azure-UKW Pkt.loss ratio

0

86
40

0
17

28
00

25
92

00
34

56
00

43
20

00
51

84
00

60
48

00
69

12
00

77
76

00
86

40
00

95
04

00

Number of messages since start

0

200

400

600

800

1000

1200

1400

O
ne

-W
ay

D
el

ay
[µ

s]

OWD

(g) EC2-USW OWD

0
86

40
0

17
28

00
25

92
00

34
56

00
43

20
00

51
84

00
60

48
00

69
12

00
77

76
00

86
40

00
95

04
00

10
36

80
0

11
23

20
0

12
09

60
0

Number of messages since start

0

100

200

300

400

500

600

O
ne

-W
ay

D
el

ay
[µ

s]

OWD

(h) GCE-USW OWD

0
86

40
0

17
28

00
25

92
00

34
56

00
43

20
00

51
84

00
60

48
00

69
12

00
77

76
00

86
40

00
95

04
00

10
36

80
0

11
23

20
0

Number of messages since start

0

100

200

300

400

500

600

700

800

O
ne

-W
ay

D
el

ay
[µ

s]

OWD

(i) Azure-USW OWD

0 20 40 60 80 100 120

Interval number

0

10

20

30

40

50

P
kt

lo
ss

ra
tio

x
1
0
−

4

(j) EC2-USW Pkt.loss ratio

0 20 40 60 80 100 120 140 160

Interval number

0

10

20

30

40

50

P
kt

lo
ss

ra
tio

x
1
0
−

4

(k) GCE-USW Pkt.loss ratio

0 20 40 60 80 100 120 140 160

Interval number

0

10

20

30

40

50

P
kt

lo
ss

ra
tio

x
1
0
−

4

(l) Azure-USW Pkt.loss ratio

Fig. 4: OWD and packet loss ratios over 1-hour intervals between VM1-VM3 in EU and US data centers over one week.

the traces share similar characteristics for certain changes in
the OWD values, meaning that the events were data center-
wide or that the VMs were placed within the same rack or the
same host. We performed experiments using better machines
in Azure-UKS (Azure-UKS-N1), the median latency is in
similar ranges to the ones obtained using slower machines. We
additionally performed experiments with VMs with the new
feature [2] enabled, which removes most of the software-based
networking stack into FPGA-based smartNICs, and found that
the one-way delay reported is significantly lower than the
other reported values, with median values of 94.54µs with low
message frequency (Azure-UKS-A1) and 82.28µs with high
message frequency (Azure-UKS-A2). Recently, EC2 started
offering a similar option using SR-IOV [19], but we have not
performed measurements with it.

Latency Variance. An important aspect of network latency

is latency variance. If the variance is low, then the applica-
tion performance will be determined by the median latency
observed, essentially reducing the problem to improving the
median latency in data centers. To this end, we compute the
standard deviations of the one-way delay measurements over
different intervals of time, and we call this the latency variance
profile of the data center. The histograms in Figure 5 show
the standard deviation of the OWD for intervals of 1 minute
and 1 hour, binned in bins of size 1, truncated to 100. The
distributions for the OWD are skewed to the right, towards
small values, with a few values that are larger than the rest.
The histograms for the two EC2 data centers are similar. When
looking at periods of 1 minute, the standard deviations fall
mostly between 0µs and 10µs. When looking at periods of
1 hour, the standard deviations fall between 10µs and 30µs.
The histograms for the two GCE data centers are similar, but



TABLE II: Traces collected in data centers across the world from three cloud providers. Last column represents the number
of latency spikes (l.s.) (> 500µs) observed throughout the trace.

Trace #Msgs Start time Duration Avg.(µs) 50th(µs) 99th(µs) 99.9th(µs) Max(µs) Std.dev.(µs) #L.s.
EC2-EUW-1 1204053 2017-11-06 14:43:20 7d00h03m10s 304.87µs 289.57µs 415.18µs 516.5µs 2.69ms 49.71µs 19
EC2-EUW-2 879099 2017-11-06 14:43:22 5d15h12m50s 352.77µs 345.17µs 481.53µs 2.32ms 14.36ms 192.57µs 90
EC2-EUW-3 906750 2017-11-06 14:43:24 5d17h28m36s 352.17µs 350.97µs 459.5µs 616.3µs 3.16ms 50.68µs 48
EC2-USW-1 934978 2017-11-07 12:56:48 5d10h08m30s 259.63µs 256.93µs 335.08µs 486.3µs 1.73ms 33.18µs 7
EC2-USW-2 953109 2017-11-07 12:56:50 5d12h50m25s 279.22µs 275.86µs 361.42µs 474.35µs 1.25ms 29.08µs 12
EC2-USW-3 870190 2017-11-07 12:56:52 5d01h04m16s 287.82µs 283.44µs 363.88µs 429.06µs 686µs 24.15µs 5
GCE-EUW-1 1208861 2017-10-16 14:11:06 7d00h00m00s 138.32µs 97.1µs 1.2ms 2.74ms 7.72ms 223.32µs 237
GCE-EUW-2 1069898 2017-10-16 14:10:59 6d04h45m41s 138.29µs 87.34µs 1.44ms 3.48ms 6.58ms 268.65µs 216
GCE-EUW-3 1208306 2017-10-16 14:10:51 7d00h03m09s 132.78µs 82.97µs 1.38ms 3.6ms 8.83ms 275.73µs 243
GCE-USW-1 1210156 2017-10-16 16:38:32 7d00h02m57s 81.05µs 76.9µs 120.34µs 981.94µs 4.57ms 60.64µs 16
GCE-USW-2 1210507 2017-10-16 16:39:15 7d00h02m14s 72.07µs 71.35µs 92.24µs 119.22µs 531µs 8.65µs 1
GCE-USW-3 1209171 2017-10-16 16:41:33 6d23h59m56s 79.7µs 78.79µs 104.34µs 128.65µs 396µs 8.03µs 1

GCE-USW2-1 42907 2017-04-07 23:58:42 0d05h59m28s 191.65µs 180.66µs 526.84µs 908.27µs 1.21ms 63.04µs 5
Azure-UKW-1 1206919 2017-09-13 15:51:29 6d23h45m10s 441.37µs 447µs 529.27µs 570.62µs 1.38ms 47.4µs 2380
Azure-UKW-2 1160593 2017-09-13 15:51:33 6d17h11m17s 432.95µs 441.3µs 522.88µs 565.55µs 1.01ms 48.7µs 3979
Azure-UKW-3 1208739 2017-09-13 15:51:40 6d23h59m59s 412.59µs 419.62µs 483.48µs 521.42µs 827µs 39.96µs 134
Azure-USW-1 1203300 2017-09-13 15:26:09 6d23h08m41s 313.42µs 315.14µs 357.72µs 379.86µs 549µs 22.78µs 1
Azure-USW-2 1208955 2017-09-13 15:26:11 7d00h00m00s 282.46µs 281.21µs 330.64µs 362.23µs 717µs 15.31µs 3
Azure-USW-3 1208849 2017-09-13 15:26:16 6d23h59m59s 357.83µs 358.46µs 415.68µs 449.11µs 732µs 22.22µs 4

Azure-UKS-N1 108073 2018-02-22 20:11:00 0d16h37m07s 268.49µs 261.31µs 363.22µs 481.65µs 598µs 25.16µs 2
Azure-UKS-A1 96635 2018-02-22 22:18:24 0d13h54m09s 95.7µs 94.54µs 139.79µs 212.75µs 268µs 11.08µs 0

EC2-USE-1 21864606 2018-02-19 17:27:23 0d23h59m48s 181.96µs 172.05µs 291.55µs 411.82µs 2.04ms 30.71µs 139
EC2-USE-2 21864606 2018-02-19 17:27:23 0d23h59m49s 197.33µs 190.08µs 293.74µs 390.46µs 1.77ms 27.14µs 79
EC2-USE-3 21891242 2018-02-19 17:27:23 0d23h59m49s 188.53µs 196.83µs 301.86µs 406.26µs 1.48ms 30.65µs 86
GCE-USW-1 19378393 2017-12-22 22:31:59 1d10h04m00s 65.48µs 64.33µs 89.08µs 106.15µs 451µs 7.14µs 0
GCE-USW-2 21161197 2017-12-22 22:32:17 1d09h17m34s 70.4µs 69.47µs 92.8µs 106.11µs 295µs 8.35µs 0
GCE-USW-3 20854143 2017-12-22 22:32:29 1d07h52m56s 58.47µs 57.94µs 76.02µs 86.28µs 286µs 6.33µs 0
Azure-UKS-1 20164042 2018-02-17 22:12:21 0d23h59m48s 286.58µs 269.34µs 684.45µs 884.02µs 1.22ms 74µs 2235
Azure-UKS-2 21111652 2018-02-17 22:12:21 0d23h59m48s 271.41µs 249.55µs 724.43µs 907.24µs 1.37ms 84.65µs 4747
Azure-UKS-3 17427943 2018-02-17 22:12:21 0d23h59m48s 340.02µs 322.17µs 760.13µs 949.7µs 1.29ms 81.7µs 2793

Azure-UKS-A2 5043445 2018-02-23 12:47:02 0d05h54m20s 83.23µs 82.28µs 118.92µs 178.79µs 459µs 9.11µs 0

they are different from the two other cloud providers, with the
standard deviations of the OWD values being smaller. For the
US West data center trace, for 1 minute intervals, most of the
values are between 0µs and 1µs. For 1 hour intervals, most
of the values are between 1 and 10. The median values for
the EU West data center trace are sligthly higher, due to the
increase of the OWD for a long period of time (1.5 days).
There are differences between the two Azure data centers. In
the case of the UK West data center, for 1 minute intervals,
most of the values are between 1µs and 15µs. For 1 hour
intervals, most of the values are between 10µs and 30µs. In
the case of the US West data center, the values are slightly
lower. For 1 minute intervals, most of the values are between
0µs and 10µs. For 1 hour intervals, most of the values are
between 10µs and 20µs. It can be seen that in GCE the OWD
has the lowest variance. EC2 and Azure are similar, with more
variance seen for EC2. When enabling [2], the Azure latency
variance profile becomes similar to the GCE one. Having less
variance for OWD is better, since tail latencies can lead to a
drop in application performance [20].

B. High Message Frequency

Latency Values. The OWD values measured using high
message frequency are lower than the ones measured using
the low one. The EC2 US East OWD median values are
between 172µs and 196µs. The GCE US West OWD values

have medians between 58µs and 69µs. Our low message
frequency measurements (due to the low throughput, less than
20kbps) may have been redirected through switch gateways
in GCE [18], whereas the high message frequency ones may
have been sent host-to-host. After studying the timeline of the
Azure-UKS OWD values, we noticed two prolonged periods
of increased latency, with values close to and over 1ms. The
medians OWD are between 271µs and 340µs.

Latency Variance. In the case of GCE-USW, the latency
variance profile is similar to the one obtained using the low
message frequency. Although the compared data centers are
not the same, we note that the EC2-USE profile is similar to
the EC2-USW one, and the Azure-UKS is similar to Azure-
UKW. In the case of Azure-UKS, the tail of the profile is long,
reflecting the two periods of increased latency that appear in
the trace.

V. PACKET LOSS MEASUREMENTS

We investigate packet losses in six data centers over a week
for each of the VM pair. We logged the number of Delay
Request and Delay Response messages exchanged between the
slaves and the master when we ran the measurements with
the low message frequency. Using the metric we defined for
computing packet loss ratio in Section II, we compute the
packet loss ratio over intervals of 1 hour and 1 day over one
week, and we show the minimum, average, median, maximum



0 10 20 30 40 50 60 70 80 90 100
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
std dev OWD

(a) EC2-EUW 1 min

0 10 20 30 40 50 60 70 80 90 100
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
std dev OWD

(b) EC2-EUW 1 hour

0 10 20 30 40 50 60 70 80 90 100
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
std dev OWD

(c) EC2-USW 1 min

0 10 20 30 40 50 60 70 80 90 100
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
std dev OWD

(d) EC2-USW 1 hour

0 10 20 30 40 50 60 70 80 90 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6
std dev OWD

(e) GCE-EUW 1 min

0 10 20 30 40 50 60 70 80 90 100
0.00

0.05

0.10

0.15

0.20

0.25
std dev OWD

(f) GCE-EUW 1 hour

0 10 20 30 40 50 60 70 80 90 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
std dev OWD

(g) GCE-USW 1 min

0 10 20 30 40 50 60 70 80 90 100
0.00

0.05

0.10

0.15

0.20

0.25
std dev OWD

(h) GCE-USW 1 hour

0 10 20 30 40 50 60 70 80 90 100
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
std dev OWD

(i) Azure-UKW 1 min

0 10 20 30 40 50 60 70 80 90 100
0.00

0.02

0.04

0.06

0.08

0.10
std dev OWD

(j) Azure-UKW 1 hour

0 10 20 30 40 50 60 70 80 90 100
0.00

0.05

0.10

0.15

0.20

0.25
std dev OWD

(k) Azure-USW 1 min

0 10 20 30 40 50 60 70 80 90 100
0.00

0.02

0.04

0.06

0.08

0.10

0.12
std dev OWD

(l) Azure-USW 1 hour

Fig. 5: Histogram of standard deviation values for OWD computed for different intervals in different data centers.

TABLE III: Packet loss ratio ×10−4 over one week

Data center 1 hour 1 day
min average median max stddev min average median max stddev

AWS-EUW 0.0 2.028 0.161 11.198 2.511 0.886 1.737 1.679 2.548 0.461
AWS-USW 0.0 1.06 0.0 8.324 1.74 0.116 0.779 0.777 1.617 0.373
GCE-EUW 0.0 2.96 0.0 46.961 7.081 0.109 2.95 0.463 14.082 4.56
GCE-USW 0.0 0.476 0.0 8.373 1.158 0.0 0.154 0.0 0.81 0.256

Azure-UKW 0.0 2.45 2.758 16.533 2.806 1.273 2.405 2.197 3.707 0.633
Azure-USW 0.0 1.244 0.0 11.123 1.9 0.116 0.843 0.753 1.618 0.417

and standard deviation for all the 1-hour and 1-day intervals in
Table III. Interestingly, all EU data centers have higher packet
loss ratios than the US data centers across all cloud providers.
Figure 4 presents timelines over one week for packet loss ratios
computed over 1 hour intervals for one VM pair in EU and
US data centers, respectively. The packet loss ratio computed
serves as a coarse-grained estimate and is influenced by the
message frequency, but we can use it to obtain a baseline, and
monitor anomalies.

In general, the packet loss ratios are low for all data centers,
with most of the 1-hour intervals having no loss or having
1-4 messages lost per hour (out of 3600), which is at most
approximately 11.1×10−4. For EC2, the number of messages
lost per hour is at most four (Figures 4d and 4j). High packet
loss values of up to 46.96×10−4 appear in the first part of the
GCE-EUW data center traces (Figure 4e), and are associated
with the significant increase in network latency shown in
Section IV-A, but later in the trace the values are normal, with

at most three messages lost per hour. In the GCE-USW data
center (Figure 4k) the number of messages lost per hour is at
most two, being the data center with the least packet loss. For
Azure-UKW (Figure 4f), slightly higher packet loss ratios can
be observed, while for Azure-USW (Figure 4l) the maximum
number of messages lost per hour is four.

VI. DISCUSSION

Latency Contributors Analysis. PTPmesh offers an end-
to-end measurements, including the intermediate virtualization
layer. The one-way delay latency values offer insights with
respect to end-host overhead, in-network congestion and data
center network architecture. If we couple our measurement
results in data centers and our virtualization overhead measure-
ments from Section III with the network latency contributions
percentages presented in [4], we arrive at the same conclusion
as prior research: the end-host, with the hypervisor, is a signif-
icant contributor to the overall measured latency from within



0 10000 20000 30000 40000 50000

Number of messages since start

0

500

1000

1500

2000

2500
O

ne
-W

ay
D

el
ay

[µ
s]

OWD

Fig. 6: Measured OWD between VM1 and VM10 in Amazon
Ohio data center

the VM. The other significant contributor is network queueing.
If we look at the network latency contributors [4], we notice
that switching in the data center fat tree topology takes up
almost 75%, which is approximately 15µs in their analysis,
while the rest is taken up by NICs and fiber length, with
an estimate of 20µs total. This analysis represents baseline
contributions. On top of this, we can add the hypervisor’s
overhead, which based on our measurements is 200µs when
using a low message frequency and 190µs when using a high
message frequency, giving a median baseline of 220µs one-
way delay, and 210µs respectively. This back-of-the-envelope
calculation shows that the remaining latency may come from
in-network congestion, traffic bursts from other colocated
VMs, transparent VM live migration, when it is observed
for short periods, or from sustained increased network traffic
(whose cause may be bulk network transfers across the data
center, competing traffic from other colocated VMs, cluster
drains), when it is observed over longer periods of time.
Smaller values than this baseline mean that the OS is bypassed
[2], [18], or that the VMs may be collocated on the same host,
or that there is a shorter network path between VMs.

Interesting Events. While analyzing the datasets, we no-
ticed a few interesting events. While performing the Amazon
EC2 Ohio measurements, the latency suddenly increased sub-
stantially from median 200µs to median 1.75ms, as seen in
Figure 6. We notice that the latency values return for 2 seconds
(using the high message frequency) to previous values, but
then the latency increases again.

In the Azure-KS data center, after restarting our VMs, we
consistenly got substantial latencies (median 1.39ms) com-
pared to previous values (median 191.49µs), that we kept on
measuring even after several VM restarts, and across almost
one month of measurements. The first time we observed these
large latency values was on the 29th of December 2017, and
the last time we performed measurements in this data center
was 23rd of January 2018.

VII. CONCLUSION

Data centers have become an essential computing infrastruc-
ture, whose network complexity needs specialized monitoring

tools to ensure their performance and reliability. In this paper,
we extended our work on measuring network latency and
packet losses in data centers using PTPmesh. We offered a
better understanding of how to use PTPd data, and we per-
formed a detailed analysis of the measurement data collected
in several data centers, finding that data centers have different
latency, latency variance and packet loss characteristics within
the same provider and across providers. We provide our data
to the community. In future work, we would like to explore
extending our current infrastructure for fault localization.

Acknowledgements. The authors would like to thank George Neville-Neil,
Salvator Galea and Noa Zilberman for helpful discussions and logistic support.
This work is supported by the EU FP7 ITN METRICS (grant agreement no.
607728) and the EPSRC under EARL (project reference EP/P025374/1).

REFERENCES

[1] A. Singh et al., “Jupiter Rising: A Decade of Clos Topologies and
Centralized Control in Google’s Datacenter Network,” in Special Interest
Group on Data Communication (SIGCOMM). ACM, 2015.

[2] D. Firestone et al., “Azure Accelerated Networking: SmartNICs in
the Public Cloud,” in 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18), 2018.

[3] J. C. Mogul and R. R. Kompella, “Inferring the Network Latency
Requirements of Cloud Tenants,” in Hot Topics in Operating Systems
(HOTOS). USENIX, 2015.

[4] N. Zilberman, M. Grosvenor, D. A. Popescu, N. Manihatty-Bojan,
G. Antichi, M. Wojcik, and A. W. Moore, “Where Has My Time Gone?”
in Passive and Active Measurement (PAM). Springer, 2017.

[5] D. A. Popescu et al., “Characterizing the impact of network latency
on cloud-based applications’ performance,” University of Cambridge,
Computer Laboratory, Tech. Rep. UCAM-CL-TR-914, Nov. 2017.

[6] C. Guo et al., “Pingmesh: A Large-Scale System for Data Center
Network Latency Measurement and Analysis,” in ACM SIGCOMM.
ACM, 2015.

[7] Y. Zhu et al., “Packet-Level Telemetry in Large Datacenter Networks,”
in ACM SIGCOMM. ACM, 2015.

[8] Y. Peng, J. Yang, C. Wu, C. Guo, C. Hu, and Z. Li, “deTector:
a Topology-aware Monitoring System for Data Center Networks,” in
Annual Technical Conference (ATC). USENIX Association, 2017.

[9] D. A. Popescu et al., “PTPmesh: Data Center Network Latency Mea-
surements Using PTP,” in Symp. on Modeling, Analysis, and Simulation
of Computer and Telecom. Systems (MASCOTS). IEEE, 2017.

[10] “PTPd,” https://github.com/ptpd/ptpd, online; accessed May 2018.
[11] “IEEE 1588-2008 Precision Time Protocol,” https://www.nist.gov/el/

intelligent-systems-division-73500/introduction-ieee-1588, online; ac-
cessed March 2017.

[12] “Solarflare PTP Adapters,” http://www.solarflare.com/ptp-adapters, on-
line; accessed March 2017.

[13] B. Arzani et al., “Taking the Blame Game out of Data Centers Opera-
tions with NetPoirot,” in Special Interest Group on Data Communication
(SIGCOMM). ACM, 2016.

[14] A. Roy, H. Zeng, J. Bagga, and A. C. Snoeren, “Passive Realtime
Datacenter Fault Detection and Localization,” in Networked Systems
Design and Implementation (NSDI). USENIX, 2017.

[15] B. Arzani et al., “Closing the Network Diagnostics Gap with Vigil,” in
Special Interest Group on Data Communication (SIGCOMM). ACM,
2017.

[16] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy, “High-resolution
Measurement of Data Center Microbursts,” in Internet Measurement
Conference (IMC). ACM, 2017.

[17] R. Durairajan, S. K. Mani, J. Sommers, and P. Barford, “Time’s
Forgotten: Using NTP to Understand Internet Latency,” in Hot Topics
in Networks (HotNets). ACM, 2015.

[18] M. Dalton et al., “Andromeda: Performance, Isolation, and Velocity at
Scale in Cloud Network Virtualization,” in 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18), 2018.

[19] “Amazon Enhanced Networking,” https://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/enhanced-networking.html, online; accessed
May 2018.

[20] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74–80, Feb. 2013.


