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SUMMARY 5

We propose a test of independence of two multivariate random vectors, given a sample from
the underlying population. Our approach, which we call MINT, is based on the estimation of
mutual information, whose decomposition into joint and marginal entropies facilitates the use
of recently-developed efficient entropy estimators derived from nearest neighbour distances. The
proposed critical values, which may be obtained by simulation in the case where an approxima- 10

tion to one marginal is available or by permuting the data otherwise, facilitate size guarantees,
and we provide local power analyses, uniformly over classes of densities whose mutual infor-
mation satisfies a lower bound. Our ideas may be extended to provide new goodness-of-fit tests
of normal linear models based on assessing the independence of our vector of covariates and an
appropriately-defined notion of an error vector. The theory is supported by numerical studies on 15

both simulated and real data.

Some key words: Independence test; Mutual information; Nearest neighbours; Entropy estimation.

1. INTRODUCTION

Independence is a fundamental concept in statistics and many related fields, underpinning
the way practitioners frequently think about model building, as well as much of statistical the- 20

ory. Often we would like to assess whether or not the assumption of independence is reason-
able, for instance as a method of exploratory data analysis (Steuer et al., 2002; Albert et al.,
2015; Nguyen and Eisenstein, 2017), or as a way of evaluating the goodness-of-fit of a statistical
model (Einmahl and van Keilegom, 2008). Testing independence and estimating dependence are
well-established areas of statistics, with the related idea of the correlation between two random 25

variables dating back to Francis Galton’s work at the end of the 19th century (Stigler, 1989).
This was subsequently expanded upon by Karl Pearson (e.g. Pearson, 1920). Since then many
new measures of dependence have been developed and studied, each with its own advantages
and disadvantages, and there is no universally accepted measure. For surveys of several mea-
sures, see, for example, Schweizer (1981), Joe (1989), Mari and Kotz (2001) and the references 30

therein. We give an overview of more recently-introduced quantities below; see also Josse and
Holmes (2016).

In addition to the applications mentioned above, dependence measures play an important role
in independent component analysis, a special case of blind source separation, in which a linear
transformation of the data is sought so that the transformed data is maximally independent; see 35

e.g. Comon (1994), Bach and Jordan (2002), Miller and Fisher (2003) and Samworth and Yuan
(2012). Here, independence tests may be carried out to check the convergence of an algorithm
and to validate the results (e.g. Wu et al., 2009). Further examples include feature selection,
where one seeks a set of features which contains the maximum possible information about a
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response (Torkkola, 2003; Song et al., 2012), and the evaluation of the quality of a clustering in40

cluster analysis (Vinh et al., 2010).
When dealing with discrete data, often presented in a contingency table, the independence

testing problem is typically reduced to testing the equality of two discrete distributions via a
chi-squared test. Here we will focus on the case of distributions that are absolutely continuous
with respect to the relevant Lebesgue measure. Classical nonparametric approaches to measur-45

ing dependence and independence testing in such cases include Pearson’s correlation coefficient,
Kendall’s tau, and Spearman’s rank correlation coefficient. Though these approaches are widely
used, they suffer from a lack of power against many alternatives; indeed Pearson’s correlation
only measures linear relationships between variables, while Kendall’s tau and Spearman’s rank
correlation coefficient measure monotonic relationships. Thus, for example, if X has a sym-50

metric distribution on the real line, and Y = X2, then the population quantities corresponding
to these test statistics are zero in all three cases. Hoeffding’s test of independence (Hoeffding,
1948) is able to detect a wider class of departures from independence and is distribution-free
under the null hypothesis but, as with these other classical methods, was only designed for uni-
variate variables. Recent work of Weihs et al. (2018) has aimed to address some of computational55

challenges involved in extending these ideas to multivariate settings.
Other recent research has focused on constructing tests that can be used for more complex data

and that are consistent against wider classes of alternatives. The concept of distance covariance
was introduced in Székely et al. (2007) and can be expressed as a weighted L2 norm of the differ-
ence between the characteristic function of the joint distribution and the product of the marginal60

characteristic functions. This concept has also been studied in high dimensions (Székely and
Rizzo, 2013; Yao et al., 2017), and for testing independence of several random vectors (Fan et
al., 2017). In Sejdinovic et al. (2013) tests based on distance covariance were shown to be equiv-
alent to a reproducing kernel Hilbert space test for a specific choice of kernel. Such tests have
been widely studied in the machine learning community, with early understanding of the sub-65

ject given by Bach and Jordan (2002) and Gretton et al. (2005), in which the Hilbert–Schmidt
independence criterion was proposed. These tests are based on embedding the joint distribu-
tion and product of the marginal distributions into a Hilbert space and considering the norm of
their difference in this space. One drawback of the kernel paradigm here is the computational
complexity, though Jitkrittum et al. (2016) and Zhang et al. (2017) have recently attempted to70

address this issue. The performance of these methods may also be strongly affected by the choice
of kernel. In another line of work, there is a large literature on testing independence based on an
empirical copula process; see for example Kojadinovic and Holmes (2009) and the references
therein. Other test statistics include those based on partitioning the sample space (e.g. Gretton
and Györfi, 2010; Heller et al., 2016). These have the advantage of being distribution-free under75

the null hypothesis, though their performance depends on the particular partition chosen.
We also remark that the basic independence testing problem has spawned many variants. For

instance, Pfister et al. (2017) extend kernel tests to tests of mutual independence between a group
of random vectors. Another important extension is to testing conditional independence, which
is central to graphical modelling (Lauritzen, 1996) and also relevant to causal inference (Pearl,80

2009). Existing tests of conditional independence include the proposals of Su and White (2008),
Zhang et al. (2011), Fan et al. (2017), Shah and Peters (2018) and Berrett et al. (2018c).

To formalize the problem, suppose that d ∈ N can be written as d = dX + dY for some
dX , dY ∈ N, that X and Y are random vectors taking values in RdX and RdY respectively, and
that Z = (X,Y ) has density f with respect to Lebesgue measure on Rd. We write fX and fY85

for the marginal Lebesgue densities of X and Y . Given independent and identically distributed
copies Z1, . . . , Zn of Z, we wish to test the null hypothesis H0 that X and Y are independent
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against the alternative that X and Y are not independent. Our approach is based on construct-
ing an estimator În = În(Z1, . . . , Zn) of the mutual information I(X;Y ) between X and Y .
Mutual information turns out to be a very attractive measure of dependence in this context; we 90

review its definition and basic properties in Section 2 below. In fact, its decomposition into joint
and marginal entropies (see (1) below) facilitates the use of recently-developed efficient entropy
estimators derived from nearest neighbour distances (Berrett et al., 2018b), though we empha-
size that our results on power in Sections 4 and 5 in particular require several new ideas in
the analysis of nearest neighbour methods and permutation tests. We remark that nearest neigh- 95

bour approaches are now known to enjoy many attractive properties for nonparametric statistical
problems; see Biau and Devroye (2015) for several recent developments.

In the simpler setting where an approximation to either of the marginals fX and fY is available,
a simulation-based approach can be employed to yield a critical value for a test having at most
its nominal size q ∈ (0, 1), up to an additional term that reflects the quality of the approximation 100

to the marginal. This latter term vanishes when the approximation is exact. Our main result in
this setting is to provide regularity conditions under which the power of our test converges to 1
as n→∞, uniformly over classes of alternatives with I(X;Y ) ≥ bn, where we may even take
bn = o(n−1/2). To the best of our knowledge this is the first time that such a local power analysis
has been carried out for an independence test for multivariate data. When neither marginal is 105

known, we obtain our critical value via a permutation approach, yielding a test of at most nominal
size. Here, the test has power converging uniformly to 1 as n→∞ over the subset of densities in
our classes whose mutual information is bounded below by a positive constant. Again, we believe
that such uniform power analyses have not previously been provided for permutation tests of
independence. We call our test MINT, short for Mutual Information Test; it is implemented in 110

the R package IndepTest (Berrett et al., 2018a).
As an application of these ideas, we are able to introduce new goodness-of-fit tests of nor-

mal linear models based on assessing the independence of our vector of covariates and an
appropriately-defined notion of an error vector. Such tests do not follow immediately from our
earlier work as we do not observe realisations of the error vector directly; instead, we only have 115

access to residuals from a fitted model. Nevertheless, we are able to provide rigorous justification,
again in the form of a local analysis, for our approach. It seems that, when fitting normal linear
models, current standard practice in the applied statistics community for assessing goodness-of-
fit is based on visual inspection of diagnostic plots such as those provided by the plot command
in R when applied to an object of class lm. Our aim, then, is to augment the standard toolkit by 120

providing a formal basis for inference regarding the validity of the model. We mention that Sen
and Sen (2014) propose an alternative test based on the Hilbert–Schmidt independence criterion,
where a residual bootstrap approach is used to obtain the critical value. Under regularity condi-
tions, they provide an asymptotic size guarantee, and prove that their test has asymptotic power
1 against any fixed alternative. Further related work here includes Neumeyer (2009), Neumeyer 125

and Van Keilegom (2010), Müller et al. (2012) and Shah and Bühlmann (2017).
The following notation is used throughout. For D ∈ N, let λD and ‖ · ‖ denote Lebesgue

measure and the Euclidean norm on RD respectively. If f = dµ/dλD and g = dν/dλD are
densities on RD with respect to λD, we write f � g if µ� ν. We also write dTV(f, g) =

2−1
∫
RD |f − g| dλD and dH(f, g) =

{∫
RD(f1/2 − g1/2)2 dλD

}1/2 for the total variation and 130

Hellinger distances between f and g respectively, and f⊗n for the n-fold product of f , given
by f⊗n(x) =

∏n
i=1 f(xi) for x = (x1, . . . , xn) ∈ RD. For z ∈ RD and r ∈ [0,∞), we write

Bz(r) = {w ∈ RD : ‖w − z‖ ≤ r} and B◦z (r) = Bz(r) \ {z}. Write λmin(A) for the smallest
eigenvalue of a positive definite matrix A, and ‖B‖F for the Frobenius norm of a matrix B.
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2. MUTUAL INFORMATION135

2·1. Definition and basic properties
Retaining our notation from the introduction, let Z = {(x, y) : f(x, y) > 0}. A very natural

measure of dependence is the mutual information between X and Y , defined to be

I(X;Y ) = I(f) =

∫
Z
f(x, y) log

f(x, y)

fX(x)fY (y)
dλd(x, y).

This is the Kullback–Leibler divergence between the joint distribution of (X,Y ) and the product
of the marginal distributions, so is non-negative, and equal to zero if and only if X and Y are140

independent. Another attractive feature of mutual information as a measure of dependence is that
it is invariant to invertible transformations of X and Y . In fact, a consequence of the data pro-
cessing inequality for mutual information (e.g. Cover and Thomas, 2006, Theorem 2.8.1) is that
I
(
φ(X);Y

)
= I(X;Y ) whenever Y and X are conditionally independent given φ(X) (Kinney

and Atwal, 2014). This means that mutual information is self-equitable in the terminology of145

Kinney and Atwal (2014) as well as nonparametric in the sense of Weihs et al. (2018), whereas
several other measures of dependence, including distance covariance, reproducing kernel Hilbert
space measures and correlation-based notions are not in general. Under a mild assumption, the
mutual information between X and Y can be expressed in terms of their joint and marginal en-
tropies; more precisely, writing X = {x : fX(x) > 0} and Y = {y : fY (y) > 0}, and provided150

that each of H(X,Y ), H(X) and H(Y ) are finite,

I(X;Y ) =

∫
Z
f log f dλd −

∫
X
fX log fX dµdX −

∫
Y
fY log fY dµdY

= −H(X,Y ) +H(X) +H(Y ). (1)

Thus, mutual information estimators can be constructed from entropy estimators.
Moreover, the concept of mutual information is easily generalized to more complex situations.155

For instance, suppose now that (X,Y, U) has joint density f on Rd+dU , and let f(X,Y )|U (· | u),
fX|U (· | u) and fY |U (· | u) denote the (joint) conditional densities of (X,Y ), X , and Y given
U = u respectively. The conditional mutual information between X and Y given U is defined as

I(X;Y | U) =

∫
U
f(x, y, u) log

f(X,Y )|U (x, y | u)

fX|U (x | u)fY |U (y | u)
dλd+dU (x, y, u),

where U = {(x, y, u) : f(x, y, u) > 0}. This can similarly be written as

I(X;Y | U) = H(X,U) +H(Y,U)−H(X,Y, U)−H(U),

provided each of the summands is finite. Another extension is to situations with p random160

vectors. In particular, suppose that X1, . . . , Xp have joint density f on Rd, where d = d1 +
· · ·+ dp and that Xj has marginal density fj on Rdj . Then, writing Xp = {(x1, . . . , xp) ∈ Rd :
f(x1, . . . , xp) > 0}, we can define

I(X1; . . . ;Xp) =

∫
Xp
f(x1, . . . , xp) log

f(x1, . . . , xp)

f1(x1) · · · fp(xp)
dλd(x1, . . . , xp)

=

p∑
j=1

H(Xj)−H(X1, . . . , Xp),165
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with the second equality holding provided that each of the entropies is finite. The tests we intro-
duce in Sections 3 and 4 therefore extend in a straightforward manner to tests of independence
of several random vectors.

2·2. Estimation of mutual information
For i = 1, . . . , n with n ≥ 2, let Z(1),i, . . . , Z(n−1),i denote a permutation of {Z1, . . . , Zn} \ 170

{Zi} such that ‖Z(1),i − Zi‖ ≤ · · · ≤ ‖Z(n−1),i − Zi‖. For conciseness, we let

ρ(k),i = ‖Z(k),i − Zi‖

denote the distance between Zi and the kth nearest neighbour of Zi. To estimate the un-
known entropies, we will use a weighted version of the Kozachenko–Leonenko estimator
(Kozachenko and Leonenko, 1987). For k = kZ ∈ {1, . . . , n− 1} and weights wZ1 , . . . , w

Z
k sat-

isfying
∑k

j=1w
Z
j = 1, this is defined as 175

ĤZ
n = Ĥd,wZ

n,k (Z1, . . . , Zn) =
1

n

n∑
i=1

k∑
j=1

wZj log

(ρd(j),iVd(n− 1)

eΨ(j)

)
,

where Vd = πd/2/Γ(1 + d/2) denotes the volume of the unit d-dimensional Euclidean ball
and where Ψ denotes the digamma function. Berrett et al. (2018b) provided conditions on k,
wZ1 , . . . , w

Z
k and the underlying data generating mechanism under which ĤZ

n is an efficient es-
timator of H(Z) (in the sense that its asymptotic normalized squared error risk achieves the
local asymptotic minimax lower bound) in arbitrary dimensions. With estimators ĤX

n and ĤY
n 180

of H(X) and H(Y ) defined analogously as functions of (X1, . . . , Xn) and (Y1, . . . , Yn) respec-
tively, we can use (1) to define an estimator of mutual information by

În = În(Z1, . . . , Zn) = ĤX
n + ĤY

n − ĤZ
n . (2)

Thus our mutual information estimator În depends on k, kX , kY , w, wX , wY , though we sup-
press this dependence for notational simplicity. Kraskov et al. (2004) have proposed an alterna-
tive, popular estimator of mutual information. For our purposes, however, (2) is more analytically 185

tractable, as well as significantly quicker to compute. Having identified an appropriate mutual
information estimator, we turn our attention in the next two sections to obtaining appropriate
critical values for our independence tests.

3. THE CASE WHERE AN APPROXIMATION TO ONE MARGINAL IS AVAILABLE

In this section, we consider the case where an approximation to at least one of fX and fY , 190

constructed independently of the data Z1, . . . , Zn, is available and remark that in our experience,
little is gained by having an approximation to the second marginal density. To give examples
of practical situations where this may be realistic, observe that in the nonparametric regression
model

Y = g(X) + ε,

where X and ε are independent, testing the independence of X and Y is equivalent to testing the 195

null hypothesis that g = 0. In particular, one can imagine for example medical studies where the
question of interest is whether a health outcome, such as blood pressure, is associated with age.
Here, age distributions can be well approximated from independent demographic information.
In Section 5 below, we also consider the robustness of goodness-of-fit tests of regression models
where an approximation, up to a scale factor, to the error distribution is available. 200
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Without loss of generality, we assume that the marginal density fY is approximated by gY , and
further assume that we can generate independent and identically distributed random variables,
denoted {Y (b)

i : i = 1, . . . , n, b = 1, . . . , B}, from the density gY , independently of Z1, . . . , Zn.
Our test in this setting, which we refer to as MINTknown, or MINTknown(q) when the nominal
size q ∈ (0, 1) needs to be made explicit, will reject H0 for large values of În. The ideal critical205

value, if both marginal densities were known, would therefore be

C(n)
q = inf{r ∈ R : prfXfY (În > r) ≤ q}.

Using our pseudo-data {Y (b)
i : i = 1, . . . , n, b = 1, . . . , B}, generated as described above, we

define the statistics

Î(b)
n = În

(
(X1, Y

(b)
1 ), . . . , (Xn, Y

(b)
n )

)
for b = 1, . . . , B. Motivated by the thought that these statistics have approximately the same
distribution as În under H0, we can estimate the critical value C(n)

q by210

Ĉ(n),B
q = inf

{
r ∈ R : 1 +

B∑
b=1

1{Î(b)n ≥r}
≤ (B + 1)q

}
,

the (1− q)th quantile of {În, Î(1)
n , . . . , Î

(B)
n }. An interesting feature of MINTknown, which is

apparent from the proof of Lemma 1 below, is that there is no need to calculate ĤX
n in (1), either

on the original data, or on the pseudo-data sets {(X1, Y
(b)

1 ), . . . , (Xn, Y
(b)
n ) : b = 1, . . . , B}.

This is because in the decomposition of the event {Î(b)
n ≥ În} into entropy estimates, ĤX

n ap-
pears on both sides of the inequality, so it cancels. This observation somewhat simplifies our215

assumptions and analysis, as well as reducing the number of tuning parameters that need to be
chosen. The following lemma justifies this critical value estimate.

LEMMA 1. For any q ∈ (0, 1) andB ∈ N, the MINTknown(q) test that rejectsH0 if and only
if În > Ĉ

(n),B
q satisfies

sup
k,kY ∈{1,...,n−1}

sup
(X,Y ):I(X;Y )=0

pr
(
În > Ĉ(n),B

q

)
≤ q + dTV(f⊗nY , g⊗nY ),

where the inner supremum is over all joint distributions of pairs (X,Y ) with I(X;Y ) = 0.220

In particular, we see from Lemma 1 that if our approximation to fY is exact, in the
sense that gY = fY , then MINTknown has at most its nominal size. More generally, since
d2

TV(f⊗nY , g⊗nY ) ≤ 1−
{

1− d2
H(fY , gY )

}n, we see that whenever the approximation error
dH(fY , gY ) is small by comparison with n−1/2, the test will have approximately its nominal
size. As an example, suppose that fY and gY are the N(0, 1) and N(0, σ̂2

m) densities respec-225

tively, where σ̂2
m is the sample variance of an independent sample of size m, independent of

Z1, . . . , Zn, from fY . Then, if m/n→∞ as n→∞, we have that

EdTV(f⊗nY , g⊗nY ) =
( n

4π

)1/2
E|σ̂2

m − 1|+ o(n1/2m−1/2) =
( n

mπ2

)1/2
{1 + o(1)},

so the size of MINTknown is controlled asymptotically.
The remainder of this section is devoted to a rigorous study of the power of MINTknown that

is compatible with a sequence of local alternatives (fn) having mutual information In → 0. To230

this end, we first define the classes of alternatives that we consider. Let Fd denote the class of all
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density functions with respect to Lebesgue measure on Rd. For f ∈ Fd and α > 0, let

µα(f) =

∫
Rd
‖z‖αf(z) dz.

Now let A denote the class of decreasing functions a : (0,∞)→ [1,∞) satisfying a(δ) =
o(δ−ε) as δ ↘ 0, for every ε > 0. If a ∈ A, β > 0, f ∈ Fd is m = (dβe − 1)-times differen-
tiable and z ∈ Z , we define ra(z) = {8d1/2a(f(z))}−1/(β∧1) and 235

Mf,a,β(z) = max

{
max

t=1,...,m

‖f (t)(z)‖
f(z)

, sup
w∈B◦z (ra(z))

‖f (m)(w)− f (m)(z)‖
f(z)‖w − z‖β−m

}
.

The quantity Mf,a,β(z) measures the smoothness of derivatives of f in neighbourhoods of z,
relative to f(z) itself, and these neighbourhoods of z are allowed to become smaller when f(z)
is small. Finally, for Θ = (0,∞)4 ×A, and θ = (α, β, ν, γ, a) ∈ Θ, let

Fd,θ =

{
f ∈ Fd : µα(f) ≤ ν, ‖f‖∞ ≤ γ, sup

z:f(z)≥δ
Mf,a,β(z) ≤ a(δ) ∀δ > 0

}
.

Berrett et al. (2018b) show that all Gaussian and multivariate-t densities, amongst others, belong
to Fd,θ for appropriate θ ∈ Θ. However, the classes do rule out severe oscillations in the tails: 240

for instance, the density f(x) = {1− cos(x2)}1{x 6=0}/{(2π)1/2x2} does not belong to F1,θ for
any θ ∈ Θ.

Now, for dX , dY ∈ N and ϑ = (θ, θY ) ∈ Θ2, define

FdX ,dY ,ϑ =
{

(f, gY ) ∈ FdX+dY ,θ ×FdY ,θY : fY ∈ FdY ,θY , fXgY ∈ FdX+dY ,θ

}
and, for b ≥ 0, let

FdX ,dY ,ϑ(b) =
{

(f, gY ) ∈ FdX ,dY ,ϑ : I(f) > b
}
.

Thus, FdX ,dY ,ϑ(b) consists of pairs (f, gY ) where the mutual information of f is greater than b. 245

In Theorem 1 below, we will show that for a suitable choice of b = bn and for certain ϑ ∈ Θ2,
the power of the test defined in Lemma 1 converges to 1, uniformly over FdX ,dY ,ϑ(b).

Before we can state this result, however, we must define the allowable choices of k, kY and
the weight vectors. Given d ∈ N and θ = (α, β, γ, ν, a) ∈ Θ let

τ1(d, θ) = min

{
2α

5α+ 3d
,
α− d

2α
,

4(β ∧ 1)

4(β ∧ 1) + 3d

}
and 250

τ2(d, θ) = min

{
1− d

2β
, 1− d/4

bd/4c+ 1

}
We have that mini=1,2 τi(d, θ) > 0 if and only if both α > d and β > d/2. Finally, for k ∈ N,
let

W(k) =

{
w = (w1, . . . , wk) ∈ Rk :

k∑
j=1

wj
Γ(j + 2`/d)

Γ(j)
= 0 for ` = 1, . . . , bd/4c

k∑
j=1

wj = 1 and wj = 0 if j /∈ {bk/dc, b2k/dc, . . . , k}
}
.
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Thus, our weights sum to 1; the other constraints ensure that the dominant contributions to the255

bias of the unweighted Kozachenko–Leonenko estimator cancel out to sufficiently high order,
and that the corresponding jth nearest neighbour distances are not too highly correlated. In prac-
tice, we recommend choosing w ∈ W(k) to minimize ‖w‖; this can be obtained in closed form
using Lagrangian methods.

THEOREM 1. Fix dX , dY ∈ N, set d = dX + dY and fix ϑ = (θ, θY ) ∈ Θ2 with260

min
{
τ1(d, θ) , τ1(dY , θY ) , τ2(d, θ) , τ2(dY , θY )

}
> 0.

Let k∗0 = k∗0,n, k
∗
Y = k∗Y,n and k∗ = k∗n denote any deterministic sequences of positive integers

with k∗0 ≤ min{k∗Y , k∗}, with k∗0/ log5 n→∞ and with

max

{
k∗

nτ1(d,θ)−ε ,
k∗Y

nτ1(dY ,θY )−ε ,
k∗

nτ2(d,θ)
,

k∗Y
nτ2(dY ,θY )

}
→ 0

for some ε > 0. Also suppose that wY = w
(kY )
Y ∈ W(kY ) and w = w(k) ∈ W(k), and that

lim supn max(‖w‖, ‖wY ‖) <∞. Then there exists a sequence (bn) such that bn = o(n−1/2)
and with the property that for each q ∈ (0, 1) and any sequence (B∗n) with B∗n →∞,265

inf
Bn≥B∗n

inf
kY ∈{k∗0 ,...,k

∗
Y }

k∈{k∗0 ,...,k
∗}

inf
(f,gY )∈FdX,dY ,ϑ(bn)

prf,gY (În > Ĉ(n),Bn
q )→ 1.

Theorem 1 provides a strong guarantee on the ability of MINTknown to reject H0, uniformly
over classes whose mutual information is at least bn, where we may even have bn = o(n−1/2).
An interesting feature of this result is that we make no assumptions about how well gY approx-
imates fY , because we are able to show that Î(b)

n = op(n
−1/2) for b = 1, . . . , B. One choice of

kY and k that satisfies the conditions of Theorem 1 without knowledge of the parameter ϑ ∈ Θ2
270

is to set kY = k = min(log6 n, n− 1).

4. THE CASE OF UNKNOWN MARGINAL DISTRIBUTIONS

We now consider the setting in which the marginal distributions of bothX and Y are unknown.
Our test statistic remains the same, but now we estimate the critical value by permuting our
sample in an attempt to mimic the behaviour of the test statistic under H0. More explicitly,275

for some B ∈ N, we propose independently of (X1, Y1), . . . , (Xn, Yn) to simulate independent
random variables τ1, . . . , τB uniformly from Sn, the permutation group of {1, . . . , n}, and for
b = 1, . . . , B, set Z(b)

i = (Xi, Yτb(i)) and Ĩ(b)
n = În(Z

(b)
1 , . . . , Z

(b)
n ). For q ∈ (0, 1), we can now

estimate C(n)
q by

C̃(n),B
q = inf

{
r ∈ R : 1 +

B∑
b=1

1{Ĩ(b)n ≥r}
≤ (B + 1)q

}
,

and refer to the test that rejects H0 if and only if În > C̃
(n),B
q as MINTunknown(q). Now280

În > C̃
(n),B
q if and only if

1 +
B∑
b=1

1{Ĩ(b)n ≥În}
≤ (B + 1)q. (3)
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This shows that estimating either of the marginal entropies is unnecessary to carry out
the test, since Ĩ(b)

n − În = ĤZ
n − H̃

(b)
n , where H̃(b)

n = Ĥd,wZ

n,k (Z
(b)
1 , . . . , Z

(b)
n ) is the weighted

Kozachenko–Leonenko joint entropy estimator based on the permuted data.

LEMMA 2. For any q ∈ (0, 1) and B ∈ N, the MINTunknown(q) test has size at most q: 285

sup
k∈{1,...,n−1}

sup
(X,Y ):I(X;Y )=0

pr
(
În > C̃(n),B

q

)
≤ q.

We now study the power of MINTunknown, and begin by introducing the classes of marginal
densities that we consider. To define an appropriate notion of smoothness, for z ∈ {v : g(v) >
0} = V , g ∈ Fd and δ > 0, let

rz,g,δ =

{
δeΨ(k)

Vd(n− 1)g(z)

}1/d

. (4)

Now, for A belonging to the class of Borel subsets of V , denoted B(V), define

Mg(A) = sup
δ∈(0,2]

sup
z∈A

∣∣∣∣ 1

Vdr
d
z,g,δg(z)

∫
Bz(rz,g,δ)

g dλd − 1

∣∣∣∣.
Both rz,g,δ and Mg(·) depend on n and k, but for simplicity we suppress this in our notation. Let 290

φ = (α, µ, ν, (cn), (pn)) ∈ (0,∞)3 × [0,∞)N × [0,∞)N = Φ and define

GdX ,dY ,φ =

{
f ∈ FdX+dY : max{µα(fX), µα(fY )} ≤ µ,max{‖fX‖∞, ‖fY ‖∞} ≤ ν,

∃Vn ∈ B(X × Y) s.t.MfXfY (Vn) ≤ cn,
∫
Vcn
fXfY dλd ≤ pn ∀n ∈ N

}
.

In addition to controlling the αth moment and uniform norms of the marginals fX and fY , the
class Gd,φ asks for there to be a (large) set Vn on which this product of marginal densities is 295

uniformly well approximated by a constant over small balls. This latter condition is satisfied by
products of many standard parametric families of marginal densities, including normal, Weibull,
Gumbel, logistic, gamma, beta, and t densities, and is what ensures that nearest neighbour meth-
ods are effective in this context.

The corresponding class of joint densities we consider, for φ = (α, µ, ν, (cn), (pn)) ∈ Φ, is 300

Hd,φ =

{
f ∈ Fd : µα(f) ≤ µ, ‖f‖∞ ≤ ν,

∃Zn ∈ B(Z) s.t.Mf (Zn) ≤ cn,
∫
Zcn
f dλd ≤ pn ∀n ∈ N

}
.

In many cases, we may take Zn = {z : f(z) ≥ δn}, for some appropriately chosen sequence
(δn) with δn → 0 as n→∞. For instance, suppose we fix d ∈ N and θ = (α, β, ν, γ, a) ∈ Θ.
Then, by Berrett et al. (2018b, Lemma 12), there exists such a sequence (δn), as well as se- 305

quences (cn) and (pn), where

δn =
ka(k/(n− 1))

d
β∧1

n− 1
log(n− 1), cn =

15

7

2
β∧1
d d3/2

d+ (β ∧ 1)
log−

β∧1
d (n− 1),

for large n and pn = o((k/n)α/(α+d)−ε) for every ε > 0, such that Fd,θ ⊆ Hd,φ with φ =
(α, µ, ν, (cn), (pn)) ∈ Φ. We may now state our main result on the power of MINTunknown.
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THEOREM 2. Let dX , dY ∈ N, let d = dX + dY and fix φ = (α, µ, ν, (cn), (pn)) ∈ Φ with
cn → 0 and pn = o(1/ log n) as n→∞. Let k∗0 = k∗0,n and k∗1 = k∗1,n denote two deterministic310

sequences of positive integers satisfying k∗0 ≤ k∗1 , k∗0/ log2 n→∞ and (k∗1 log2 n)/n→ 0. Then
for any b > 0, q ∈ (0, 1) and any sequence (B∗n) with B∗n →∞ as n→∞,

inf
Bn≥B∗n

inf
k∈{k∗0 ,...,k

∗
1}

inf
f∈GdX,dY ,φ∩Hd,φ:

I(f)≥b

prf (În > C̃(n),Bn
q )→ 1

as n→∞.

Theorem 2 shows that MINTunknown is uniformly consistent against a wide class of alterna-
tives.315

5. REGRESSION SETTING

In this section we aim to extend the ideas developed above to the problem of goodness-
of-fit testing in linear models. Suppose we have independent and identically distributed pairs
(X1, Y1), . . . , (Xn, Yn) taking values in Rp × R, with E(Y 2

1 ) <∞ and E(X1X
T
1 ) finite and

positive definite. Then320

β0 = argmin
β∈Rp

E{(Y1 −XT
1 β)2}

is well-defined, and we can further define εi = Yi −XT
i β0 for i = 1, . . . , n. We show in the

proof of Theorem 3 in the supplement that E(ε1X1) = 0, but for the purposes of interpretability
and inference, it is often convenient if the random design linear model

Yi = XT
i β0 + εi, i = 1, . . . , n,

holds with Xi and εi independent. A goodness-of-fit test of this property amounts to a test of
the independence of X1 and ε1. The main difficulty here is that ε1, . . . , εn are not observed325

directly. Given an estimator β̂ of β0, the standard approach for dealing with this problem is to
compute residuals ε̂i = Yi −XT

i β̂ for i = 1, . . . , n, and use these as a proxy for ε1, . . . , εn. Many
introductory statistics textbooks, e.g. Dobson (2002, Section 2.3.4), Dalgaard (2002, Section 5.2)
suggest examining for patterns plots of residuals against fitted values, as well as plots of residuals
against each covariate in turn, as a diagnostic, though it is difficult to formalize this procedure.330

It is also interesting that when applying the plot function in R to an object of type lm, these
latter plots of residuals against each covariate in turn are not produced, presumably because it
may be prohibitively time-consuming to check them all in the case of many covariates; they are,
however, available in the package car.

The naive approach based on our work so far is simply to use the permutation test of Section 4335

on the data (X1, ε̂1), . . . , (Xn, ε̂n). Unfortunately, calculating the test statistic În on permuted
data sets does not result in an exchangeable sequence, which makes it difficult to ensure that this
test has the nominal size q. To circumvent this issue, we assume that the marginal distribution of
ε1 under H0 has E(ε1) = 0, that σ2 = E(ε21) is finite, and that the density fη of η1 = ε1/σ can
be approximated by gη, say, where

∫∞
−∞ xgη(x) dx = 0 and

∫∞
−∞ x

2gη(x) dx = 1. In practice,340

it will often be the case that we take gη to be the N(0, 1) density. We also assume that we can
sample from gη; of course, this is straightforward in the normal distribution case above. Let
X = (X1 · · ·Xn)T , Y = (Y1, . . . , Yn), and suppose the vector of residuals ε̂ = (ε̂1, . . . , ε̂n)T is
computed from the least squares estimator β̂ = (XTX)−1XTY . We then define standardized
residuals by η̂i = ε̂i/σ̂, for i = 1, . . . , n, where σ̂2 = n−1‖ε̂‖2; these standardized residuals are345
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invariant under changes of scale of ε = (ε1, . . . , εn). Suppressing the dependence of our entropy
estimators on k and the weights w1, . . . , wk for notational simplicity, our test statistic is now
given by

Ǐn = Ĥp
n(X1, . . . , Xn) + Ĥ1

n(η̂1, . . . , η̂n)− Ĥp+1
n

(
(X1, η̂1), . . . , (Xn, η̂n)

)
.

Writing η = ε/σ, we have

η̂i =
1

σ̂
(Yi −XT

i β̂) =
1

σ̂

{
εi −XT

i (β̂ − β0)
}

=
n1/2

{
ηi −XT

i (XTX)−1XT η
}

‖η −XT (XTX)−1XT η‖
,

whose distribution does not depend on the unknown β0 or σ2. Let {η(b) = (η
(b)
1 , . . . , η

(b)
n ) : b = 350

1, . . . , B} denote independent random vectors, whose components are generated independently
from gη. For b = 1, . . . , B we then set ŝ(b) = n−1/2‖(I −X(XTX)−1XT )η(b)‖ and, for i =
1, . . . , n, let

η̂
(b)
i =

1

ŝ(b)

{
η

(b)
i −X

T
i (XTX)−1XT η(b)

}
.

We finally compute

Ǐ(b)
n = Ĥp

n(X1, . . . , Xn) + Ĥ1
n(η̂

(b)
1 , . . . , η̂(b)

n )− Ĥp+1
n

(
(X1, η̂

(b)
1 ), . . . , (Xn, η̂

(b)
n )
)
, (5)

where the second and third terms in (5) are weighted Kozachenko–Leonenko estimates with 355

tuning parameters kη and k respectively. Analogously to our development in Sections 3 and 4,
we can then define a critical value by

Č(n),B
q = inf

{
r ∈ R : 1 +

B∑
b=1

1{Ǐ(b)n ≥r}
≤ (B + 1)q

}
.

The following lemma controls the size of the resulting test.

LEMMA 3. For each q ∈ (0, 1) and B ∈ N, the MINTregression(q) test that rejects H0 if
and only if Ǐn > Č

(n),B
q satisfies 360

sup
k,kη∈{1,...,n−1}

sup
(X,Y ):I(X;Y )=0

pr
(
Ǐn > Č(n),B

q

)
≤ q + dTV(f⊗nη , g⊗nη ).

As in previous sections, we are only interested in the differences Ǐn − Ǐ(b)
n for b = 1, . . . , B, and

in these differences, the Ĥp
n(X1, . . . , Xn) terms cancel out, so these marginal entropy estimators

need not be computed.
In fact, to simplify our power analysis, it is more convenient to define a slightly modified test,

which also has at most the nominal size. Specifically, we assume for simplicity that m = n/2 is 365

an integer, and consider a test in which the sample is split in half, with the second half of the
sample used to calculate the estimators β̂(2) and σ̂2

(2) of β0 and σ2 respectively. On the first half
of the sample, we calculate

η̂i,(1) =
Yi −XT

i β̂(2)

σ̂(2)

for i = 1, . . . ,m and the test statistic

Ĭn = Ĥp
m(X1, . . . , Xm) + Ĥ1

m(η̂1,(1), . . . , η̂m,(1))− Ĥp+1
m

(
(X1, η̂1,(1)), . . . , (Xm, η̂m,(1))

)
.
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Corresponding estimators {Ĭ(b)
n : b = 1, . . . , B} based on the simulated data may also be com-370

puted using the same sample-splitting procedure, and we then obtain the critical value C̆(n),B
q in

the same way as above. The advantage from a theoretical perspective of this approach is that,
conditional on β̂(2) and σ̂2

(2), the random variables η̂1,(1), . . . , η̂m,(1) are independent and identi-
cally distributed.

To describe the power properties of MINTregression, we first define several densi-375

ties: for γ ∈ Rp and s > 0, let fγ,sη̂ and fγ,s
η̂(1)

denote the densities of η̂γ,s1 = (η1 −XT
1 γ)/s

and η̂
(1),γ,s
1 = (η

(1)
1 −XT

1 γ)/s respectively; further, let fγ,sX,η̂ and fγ,s
X,η̂(1)

be the densities of

(X1, η̂
γ,s
1 ) and (X1, η̂

(1),γ,s
1 ) respectively. Imposing assumptions on these densities amounts to

imposing assumptions on the joint density f of (X, ε), and on the approximating density gη
for fη. For Ω = Θ2 × (0,∞)× (0, 1)× (0,∞)2, and ω = (θ1, θ2, r0, s0,Λ, λ0), we therefore380

let F∗p+1,ω denote the class of pairs of densities (f, gη) satisfying the following three properties:
first we ask that{

fγ,sη̂ : γ ∈ B0(r0), s ∈ [s0, 1/s0]
}
∪
{
fγ,s
η̂(1)

: γ ∈ B0(r0), s ∈ [s0, 1/s0]
}
⊆ F1,θ1

and{
fγ,sX,η̂ : γ ∈ B0(r0), s ∈ [s0, 1/s0]

}
∪
{
fγ,s
X,η̂(1)

: γ ∈ B0(r0), s ∈ [s0, 1/s0]
}
⊆ Fp+1,θ2 .

Next, we require the following moment bounds:

sup
γ∈B0(r0)

max
{
E log2 fγ,1η̂ (η1) , E log2 fγ,1

η̂(1)
(η1)

}
≤ Λ, (6)

and385

sup
γ∈B0(r0)

max
{
E log2 fη

(
η̂γ,11

)
, E log2 fη

(
η̂

(1),γ,1
1

)}
≤ Λ. (7)

Finally, writing Σ = E(X1X
T
1 ), we ask that λmin(Σ) ≥ λ0.

The first of these requirements ensures that we can estimate efficiently the marginal entropy of
our scaled residuals, as well as the joint entropy of these scaled residuals and our covariates. The
second condition is a moment condition that allows us to control |H(η1 −XT

1 γ)−H(η1)|, and
similar quantities, in terms of ‖γ‖, when γ belongs to a small ball around the origin. To illustrate390

the second part of this condition, it is satisfied, for instance, if fη is a standard normal density
and E(‖X1‖4) <∞, or if fη is a t density and E(‖X1‖α) <∞ for some α > 0; the first part
of the condition is a little more complicated but similar. The final condition is very natural for
random design regression problems.

By the same observation on the sequence (Ĭn, Ĭ
(1)
n , . . . , Ĭ

(B)
n ) as was made regarding the se-395

quence (Ǐn, Ǐ
(1)
n , . . . , Ǐ

(B)
n ) just before Lemma 3, we see that the sample-splitting version of the

MINTregression(q) test has size at most q.

THEOREM 3. Fix p ∈ N and ω = (θ1, θ2, r0, s0,Λ, λ0) ∈ Ω, where the first component of θ2

is α2 ≥ 4 and the second component of θ1 is β1 ≥ 1. Assume that

min
{
τ1(1, θ1) , τ1(p+ 1, θ2) , τ2(1, θ1) , τ2(p+ 1, θ2)

}
> 0.
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Let k∗0 = k∗0,n, k
∗
η = k∗η,n and k∗ = k∗n denote any deterministic sequences of positive integers 400

with k∗0 ≤ min{k∗η, k∗}, with k∗0/ log5 n→∞ and with

max

{
k∗

nτ1(p+1,θ2)−ε ,
k∗η

nτ1(1,θ1)−ε ,
k∗

nτ2(p+1,θ2)
,

k∗η

nτ2(1,θ1)

}
→ 0

for some ε > 0. Also suppose that wη = w
(kη)
η ∈ W(kη) and w = w(k) ∈ W(k), and that

lim supn max(‖w‖, ‖wη‖) <∞. Then for any sequence (bn) such that n1/2bn →∞, any q ∈
(0, 1) and any sequence (B∗n) with B∗n →∞,

inf
Bn≥B∗n

inf
kη∈{k∗0 ,...,k

∗
η}

k∈{k∗0 ,...,k
∗}

inf
(f,gη)∈F∗1,p+1:I(f)≥bn

prf,gη(Ĭn > C̆(n),Bn
q )→ 1.

Finally in this section, we consider partitioning our design matrix as X = (X∗X∗∗) ∈ 405

Rn×(p0+p1), with p0 + p1 = p, and describe an extension of MINTregression to cases where
we are interested in testing the independence between ε and X∗. For instance, X∗∗ may con-
sist of an intercept term, or transformations of variables in X∗, as in the real data exam-
ple presented in Section 6·3 below. Our method for simulating standardized residual vectors
{η̂(b) : b = 1, . . . , B} remains unchanged, but our test statistic and corresponding null statistics 410

become

Īn = Ĥp
n(X∗1 , . . . , X

∗
n) + Ĥ1

n(η̂1, . . . , η̂n)− Ĥp+1
n

(
(X∗1 , η̂1), . . . , (X∗n, η̂n)

)
Ī(b)
n = Ĥp

n(X∗1 , . . . , X
∗
n) + Ĥ1

n(η̂
(b)
1 , . . . , η̂(b)

n )− Ĥp+1
n

(
(X∗1 , η̂

(b)
1 ), . . . , (X∗n, η̂

(b)
n )
)
,

for b = 1, . . . , B. Similar arguments to those employed in Lemma 3 show that the test that rejects
the null hypothesis of independence between ε and X∗ when 415

1 +

B∑
b=1

1{Ī(b)n ≥Īn}
≤ (B + 1)q

has size bounded above by q + dTV(f⊗nη , g⊗nη ).

6. NUMERICAL STUDIES

6·1. Practical considerations
Choice of k: For practical implementation of the MINTunknown test, we consider a mul-

tiscale approach that averages over a range of values of k. To describe this approach, let K ⊆ 420

{1, . . . , n− 1} and, for k ∈ K, let ĥ(k) = Ĥn,k denote the unweighted Kozachenko–Leonenko
entropy estimate with tuning parameter k based on the original data (X1, Y1), . . . , (Xn, Yn).
Now, for b = 1, . . . , B and k ∈ K, we let ĥ(b)(k) = H̃

(b)
n,(k) denote the Kozachenko–Leonenko

entropy estimate with tuning parameter k based on the permuted data Z(b)
1 , . . . , Z

(b)
n . Writing

h̄ = |K|−1
∑

k∈K ĥ(k) and h̄(b) = |K|−1
∑

k∈K ĥ
(b)(k) for b = 1, . . . , B, we then define the p- 425

value for our test to be

1 +
∑B

b=0 1{h̄(0)≥h̄(b)}

B + 1
.

By the exchangeability of (h̄, h̄(1), . . . , h̄(B)) under H0, the corresponding test has at most its
nominal size. We refer to this test as MINTav, and remark that if K is taken to be a singleton



14 T. B. BERRETT AND R. J. SAMWORTH

set then we recover MINTunknown. In our simulations below, we took K = {1, . . . , 20} and
B = 100.430

Running time: Here, as in our study of the statistical properties of MINT, we consider d to be
fixed. The slowest step in the computation of our test statistic is the computation of the nearest
neighbour distances {ρ(1),i, . . . , ρ(k),i : i = 1, . . . , n}, which takes O(kn log n) operations (e.g.
Vaidya, 1989). Since, in common with many other independence tests, we use a permutation
approach with B permutations to obtain the critical value for our test, the overall complexity435

of our algorithm is O(Bkn log n). This compares favourably with several of the other methods
listed in the Introduction, e.g. distance covariance, reproducing kernel Hilbert space methods and
copula methods, which typically have complexity O(Bn2).

6·2. Simulated data
To study the empirical performance of our methods, we first compare our tests to existing440

approaches through their performance on simulated data. For comparison, we present corre-
sponding results for a test based on the empirical copula process decribed by Kojadinovic and
Holmes (2009) and implemented in the R package copula (Hofert et al., 2017), a test based
on the HSIC implemented in the R package dHSIC (Pfister and Peters, 2017), a test based on
the distance covariance implemented in the R package energy (Rizzo and Szekely, 2017) and445

the improvement of Hoeffding’s test, known as Hoeffding’s D, introduced in Weihs et al. (2018)
and implemented in the R package SymRC (Weihs et al., 2017). We also present results for an
oracle version of our tests, denoted simply as MINT, which for each parameter value in each set-
ting, uses the most powerful choice of k. Throughout, we took q = 0.05 and n = 200, ran 5000
repetitions for each parameter setting, and for our comparison methods, used the default tuning450

parameter values recommended by the corresponding authors. We consider three classes of data
generating mechanisms, designed to illustrate different possible types of dependence:

Setting 1: For l ∈ N and (x, y) ∈ [−π, π]2, define the density function

fl(x, y) =
1

4π2
{1 + sin(lx) sin(ly)}.

This class of densities, which we refer to as sinusoidal, form a particularly interesting class. On
the one hand, by the periodicity of the sine function, we have that the mutual information does455

not depend on l: indeed,

I(fl) =
1

4π2

∫ π

−π

∫ π

−π
{1 + sin(lx) sin(ly)} log

(
1 + sin(lx) sin(ly)

)
dx dy

=
1

4π2

∫ π

−π

∫ π

−π
(1 + sinu sin v) log(1 + sinu sin v) du dv ≈ 0·143.

On the other hand, the class is identified by Sejdinovic et al. (2013) as challenging to detect de-
pendence; intuitively, this is because as l increases, the dependence becomes increasingly local-460

ized, while the marginal densities are uniform on [−π, π] for each l. To explain this intuition more
formally, suppose we have any, potentially randomized, test of at most its nominal size q, with
the additional randomness encoded via a random variable taking values in a space T , say. Thus,
for each n ∈ N, we have a Borel measurable function φn : ([−π, π]× [−π, π])n × T → {0, 1}.
Suppose further that (X

(l)
1 , Y

(l)
1 ), . . . , (X

(l)
n , Y

(l)
n ) are independent and identically distributed465

pairs with density fl, that (X1, Y1), . . . , (Xn, Yn) are independent and identically distributed
pairs with the uniform density on [−π, π]× [−π, π] and that T takes values in T and is in-
dependent of our other data. Then it can be shown, e.g. using the Riemann–Lebesgue lemma,
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Fig. 1: Plots of the joint densities in our simulation study for particular values of the respective shape parameters.
Left: Setting 1 with l = 2; middle: Setting 2 with l = 2; right: Setting 3 with ρ = 0.3.

that the distribution of (X
(l)
1 , Y

(l)
1 , . . . , X

(l)
n , Y

(l)
n , T ) converges strongly as l→∞ to the dis-

tribution of (X1, Y1, . . . , Xn, Yn, T ) in the sense that for any Borel measurable subset B of 470

([−π, π]× [−π, π])n × T , we have

pr
{

(X
(l)
1 , Y

(l)
1 , . . . , X(l)

n , Y (l)
n , T ) ∈ B

}
→ pr

{
(X1, Y1, . . . , Xn, Yn, T ) ∈ B

}
as l→∞. In particular,

pr
{
φn(X

(l)
1 , Y

(l)
1 , . . . , X(l)

n , Y (l)
n , T ) = 1

}
→ pr

{
φn(X1, Y1, . . . , Xn, Yn, T ) = 1

}
≤ q,

and we conclude that, asymptotically as l→∞, no randomized test of at most nominal size can
have better than trivial power.

Setting 2: Let L,Θ, ε1, ε2 be independent with L ∼ U({1, . . . , l}) for some l ∈ N, Θ ∼ 475

U [0, 2π], and ε1, ε2 ∼ N(0, 1). SetX = L cos Θ + ε1/4 and Y = L sin Θ + ε2/4. For large val-
ues of l, the distribution of (X/l, Y/l) approaches the uniform distribution on the unit disc. The
distribution of (X,Y ) is spherically symmetric with density given by

f(r cos θ, r sin θ) =
8

πl
e−8r2

l∑
s=1

e−8s2I0(16sr),

for r ≥ 0 and θ ∈ [0, 2π), where I0(z) = π−1
∫ π

0 ez cos t dt is a modified Bessel function of the
first kind. 480

Setting 3: Let X, ε be independent with X ∼ U [−1, 1], ε ∼ N(0, 1), and for a parameter ρ ∈
[0,∞), let Y = |X|ρε.

Figure 1 gives plots of the joint densities for particular values of l, in Settings 1 and 2, and ρ,
in Setting 3. For each of these three classes of data generating mechanisms, we also consider a
corresponding multivariate setting in which we wish to test the independence of X and Y when 485

X = (X1, X2), Y = (Y1, Y2). Here, (X1, Y1), X2, Y2 are independent, with X1 and Y1 having
the dependence structures described above, and X2, Y2 ∼ U(0, 1).

The results are presented in Figure 2. Naturally, given the huge range of different possible
types of dependence, there is no uniformly most powerful test, and if the nature of the depen-
dence were known in advance, it may well be possible to design a tailor-made test with good 490

power. For instance, if it were known that the data were bivariate normal with non-negative cor-
relation, Pearson’s correlation coefficient would be expected to do well, and indeed this is verified
empirically in the supplementary material. However, as mentioned in the Introduction, this test
statistic has no power against certain other, non-linear, dependence structures. The aim of our
simulation study, then, is to demonstrate the types of dependence structure for which MINT pro- 495

vides good power. In this regard, Figure 2 shows that, especially in Settings 1 and 2, the MINT
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Fig. 2: Power curves as functions of the respective shape parameters for MINT ( ), MINTknown ( ), MINTav
( ), HSIC ( ), Distance covariance ( ), Copula ( ), Hoeffding’s D ( ) for Settings 1 (left), 2 (middle) and 3
(right). The marginals are univariate (top) and bivariate (bottom).

and MINTav approaches have very strong performance. In these examples, the dependence be-
comes increasingly localized as l increases, and the flexibility to choose a smaller value of k in
such settings means that MINT approaches are particularly effective. Where the dependence is
more global in nature, such as in Setting 3, other approaches may be better suited, though even500

here, MINT is competitive. MINTav appears to be a good method for tuning parameter selection;
indeed, in Setting 3, it even outperforms the oracle choice of k.

6·3. Real data
In this section we illustrate the use of MINTregression on the CalCOFI oceanographic

dataset, which is available from https://www.kaggle.com/sohier/calcofi, and505

which comprises various readings on water conditions off the coast of California from 1949
to 2016. To avoid time heterogeneity and dependence, we only consider those readings col-
lected in November 2016, which are the most recent readings. We consider water temperature
as the response variable of interest, with four predictor variables, namely depth below the sur-
face, salinity, specific-volume anomaly and dynamic height, all of which were centred. After510

removing observations for which any of these variables were missing, there were 1989 obser-
vations. Our initial linear model, fit to the whole dataset, yielded the plot of residuals against
fitted values shown in Figure 3a, indicating that this model is not a good fit to the data. To
improve the model we next added quadratic terms in each of the covariates, but from the cor-
responding residual plot in Figure 3b, we see that this model is also not a good fit. Now, as515

a demonstration of MINTregression, we randomly subsampled this data with sample sizes
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(a) (b)

Fig. 3: Plots of the residuals against fitted values for the linear models regressing water temperatue on depth below
the surface, salinity, specific-volume anomaly and dynamic height without quadratic terms (left) and with quadratic
terms (right).

Fig. 4: Plot of the power of optimally tuned MINTregression against sample size.

n ∈ {10, 20, . . . , 100}, fitted the linear model with quadratic terms and ran our procedure as de-
scribed at the end of Section 5 to test for the goodness-of-fit. A range of values of k and kη were
used with B = 100 and q = 0.05 and estimates of the power of our tests were found by aver-
aging over 1000 repetitions of the subsampling. For each value of n, the most powerful choices 520

of k and kη were selected, and the power of these tests is shown in Figure 4. It can be seen
from this figure that, even though we fit a linear model with 9 covariates, including the intercept,
and estimate entropies of five-dimensional random vectors, MINTregression achieves good
power with relatively small sample sizes.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes proofs of all stated results and
additional numerical studies.
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JITKRITTUM, W., SZABÓ, Z. & GRETTON, A. (2016). An adaptive test of independence with analytic kernel

embeddings. arXiv:1610.04782.
JOE, H. (1989). Relative entropy measures of multivariate dependence. J. Amer. Statist. Assoc., 84, 157–64.
JOSSE, J. & HOLMES, S. (2016). Measuring multivariate association and beyond. Statist. Surveys, 10, 132–67.570

KINNEY, J. B. & ATWAL, G. S. (2014). Equitability, mutual information, and the maximal information coefficient.
Proc. Nat. Acad. Sci., 111, 3354–9.

KOJADINOVIC, I. & HOLMES, M. (2009). Tests of independence among continuous random vectors based on
Cramér–von Mises functionals of the empirical copula process. J. Multivariate Anal., 100, 1137–54.

KOZACHENKO, L. F. & LEONENKO, N. N. (1987). Sample estimate of the entropy of a random vector. Probl.575

Inform. Transm., 23, 95–101.
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