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33 Abstract

34 A population of kisspeptin neurons located in the hypothalamic arcuate nucleus 

35 (ARN) very likely represent the gonadotrophin-releasing hormone pulse generator 

36 responsible for driving pulsatile luteinizing hormone secretion in mammals.  As such, 

37 it has become important to understand the neural inputs that modulate the activity 

38 of ARN kisspeptin (ARNKISS) neurons. Using a transgenic GCaMP6 mouse model 

39 allowing the intracellular calcium levels (i[Ca2+]) of individual ARNKISS neurons to be 

40 assessed simultaneously, we examined whether the circadian neuropeptides 

41 vasoactive intestinal peptide (VIP) and arginine vasopressin (AVP) modulated the 

42 activity of ARNKISS neurons directly.  To validate this methodology, we initially 

43 evaluated the effects of neurokinin B (NKB) on i[Ca2+] in kisspeptin neurons residing 

44 within the rostral, middle and caudal ARN subregions of adult male and female mice. 

45 All experiments were undertaken in the presence of tetrodotoxin and ionotropic 

46 amino acid antagonists. NKB was found to evoke an abrupt increase in i[Ca2+] in 95-

47 100% of kisspeptin neurons throughout the ARN of both sexes. In marked contrast, 

48 both VIP and AVP were found to primarily activate kisspeptin neurons located in the 

49 caudal ARN of female mice. Whereas 58 and 59% of caudal ARN kisspeptin neurons 

50 responded to AVP and VIP, respectively, in female mice, only 0-8% of kisspeptin 

51 neurons located in other ARN subregions responded in females and 0-12% of cells in 

52 any subregion in males (p<0.05). These observations demonstrate unexpected sex 

53 differences and marked heterogeneity in functional neuropeptide receptor 

54 expression amongst ARNKISS neurons organized on a rostro-caudal basis.  The 

55 functional significance of this unexpected influence of VIP and AVP on ARNKISS 

56 neurons remains to be established. 
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57 Introduction

58 The pulsatile release of luteinizing hormone (LH) is critical for fertility.  Adult males 

59 exhibit an LH pulse approximately every 3h while females show variable LH pulse 

60 rates ranging from a pulse every hour in the follicular phase to one every 3h in the 

61 luteal phase of the cycle (1).  However, a variety of internal and external factors can 

62 drive LH pulse frequency outside this normal range to suppress fertility. For example, 

63 the high LH pulse frequency of females with polycystic ovary syndrome and slow 

64 pulsatility observed in hypothalamic amenorrhea are often associated with infertility 

65 (2-4). 

66 Studies examining a range of mammalian species over recent years have indicated 

67 that kisspeptin neurons co-expressing neurokinin B and dynorphin (KNDy neurons) 

68 located in the hypothalamic arcuate nucleus are responsible for generating the 

69 pulsatile pattern of gonadotropin-releasing hormone (GnRH) release that drives 

70 pulsatile LH secretion (1, 5).  As such, the arcuate nucleus KNDy or kisspeptin 

71 (ARNKISS) neurons have become a focal point for investigators wanting to understand 

72 how different physiological and pathophysiological factors influence LH pulse 

73 frequency (1, 6, 7). 

74 Although the definition and role of circadian inputs to the preoptic population of 

75 kisspeptin neurons has received much attention (8, 9), no information exists 

76 regarding the potential circadian regulation of the ARNKISS neurons.  Studies in 

77 humans have identified sleep-wake variations in LH pulse frequency (10-12) raising 

78 the possibility that some form of circadian input may also be directed at the ARNKISS 

79 neurons. To begin to investigate this possibility, we have examined whether ARNKISS 

80 neurons in the mouse express functional receptors for arginine vasopressin (AVP) 

81 and vasoactive intestinal peptide (VIP), the two major neuropeptidergic outputs from 

82 the suprachiasmatic nucleus (SCN). Studies in rats and mice have identified receptors 

83 for both of these neuropeptides in the arcuate nucleus (13-15) and SCN neurons are 

84 known to project to and modulate the activity of ARN neurons in the rat (16, 17). 

85 However, we note that many neural populations expressing VIP and AVP are also 

86 found outside the SCN and may conceivably have a role in regulating LH secretion.

87
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88 To examine the potential effects of AVP and VIP, we have established a transgenic 

89 GCaMP6 calcium imaging approach that enables the effects of neurotransmitters on 

90 adult ARNKISS neurons to be assessed in the acute brain slice.  To ensure that we 

91 measure direct effects of these neuropeptides on kisspeptin neurons, intracellular 

92 calcium concentrations ([Ca2+]i) were assessed in the presence of amino acid receptor 

93 antagonists and tetrodotoxin (TTX).  

94

95 Materials and Methods

96 Experimental animals

97 Mice were generated by crossing Kiss1-Cre+/- (18) and homozygous floxed GCaMP6f 

98 (Ai95(RCL-GCaMP6f)-D)(19) lines to generate mixed background 129S6Sv/Ev 

99 C57BL6 Kiss1-Cre::GCaMP6f-lox-STOP-lox (Kiss1::GCaMP6) mice. Mice were group-

100 housed under conditions of controlled temperature (22±20C) and lighting (12-hour 

101 light/12-hour dark cycle (lights on at 6:00h and off at 18:00h) with ad libitum access 

102 to food and water. The University of Otago Animal Ethics Committee approved all 

103 animal experimental protocols.

104

105 Immunohistochemistry

106 Four adult female Kiss1::GCaMP6f mice were ovariectomized under Halothane 

107 anesthesia and 3-weeks later anesthetized and perfused through the heart with 4% 

108 paraformaldehyde, phosphate-buffered saline for free-floating dual 

109 immunofluorescence histochemistry as reported previously (20, 21). Mice were 

110 ovariectomized so as to increase the level of kisspeptin peptide in ARN neurons to 

111 improve immunohistochemical detection. Primary antisera raised against GFP 

112 (rabbit 1:5,000, Invitrogen; RRID:AB_221570) and kisspeptin (sheep 1:1,000, AC053 

113 gift of Alain Caraty, Nouzilly, France)(22) were used to increase the GCaMP6 signal 

114 and detect kisspeptin, respectively. Secondary antisera were biotinylated donkey 

115 anti-sheep immunoglobulins (1:200, Jackson ImmunoResearch Labs, PA) followed by 

116 streptavidin-568 (1:200, Molecular Probes), and donkey anti-rabbit-488 (1:200, 

117 Jackson), respectively. Dual-fluorescence images were captured on a NikonA1+ 

Page 4 of 23Journal of Neuroendocrinology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

5

118 inverted confocal microscope. Two sections at each of the rostral, middle and caudal 

119 levels of the ARN were analyzed in each mouse by counting the total number of cells 

120 that expressed GFP (GCaMP6) and/or kisspeptin.

121
122 Calcium imaging

123 The i[Ca2+] of multiple ARNKISS neurons was monitored simultaneously in acute brain 

124 slices using a methodology previously established for the preoptic kisspeptin 

125 neurons (23). Coronal brain slices (250m-thick) containing the rostral, middle and 

126 caudal regions of the ARN were prepared from adult male and diestrous-stage female 

127 Kiss1::GCaMP6f mice between 10:00-11:00h (N=4 for each sex, region and 

128 neuropeptide) and constantly perfused (1mL/min) with 300C, 95%O2/5%CO2 

129 equilibrated, artificial cerebrospinal fluid (aCSF) comprised of (mM) NaCl 120, KCl 3, 

130 NaHCO3 26, NaH2PO4 1, CaCl2 2.5, MgCl2 1.2 and glucose 10. To ensure that only direct 

131 neuropeptide responses were recorded from ARNKISS neurons, the aCSF contained 

132 TTX (0.5 μM) and the ionotropic GABAA and glutamate receptor antagonists 

133 picrotoxin (100 μM), CNQX (10 μM), and AP5 (40 μM) at all times (all sourced from 

134 Tocris Biosciences). Slices were placed under an upright Olympus BX51W1 

135 microscope and multiple individual cells in a plane of focus visualized through a 40x 

136 immersion objective using a xenon arc light source (300 W, filtered by a GFP filter 

137 cube (excitation 470-490 nm, Chroma)) and a DG-4 shutter (Sutter Instruments) 

138 providing 100ms duration light at 2Hz. Epifluorescence (495 nm long pass and 

139 emission 500-520 nm) was collected using a Hamamatsu ORCA-ER digital CCD 

140 camera.  

141 The effects of neuropeptides on ARNKISS neuron GCaMP6f fluorescence were assessed 

142 by measuring basal fluorescence over a 4 min period and then adding the test 

143 neuropeptide to the aCSF for a two-min period before switching back to aCSF only. 

144 Regions of interest over individual, non-overlapping, and in-focus fluorescent somata 

145 were selected and analyzed using ImageJ software and custom R scripts. Individual 

146 cells were considered to have responded if they exhibited an increase in fluorescence 

147 during the 2-min test period that was greater than their mean baseline level + 2 
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148 standard deviations (SD) derived from basal recordings. To accommodate for the 

149 gradual decline in fluorescence levels that occurs over the test period, the 

150 fluorescence levels over the first 4-min basal period were divided into the first (b1) 

151 and second (b2) two-minute basal recording periods and an adjusted baseline (F) for 

152 the 2-min stimulation period set at = b2-(b1-b2). For visualizing data, values are 

153 presented as relative fluorescence changes using  where F is the 
∆F
F =

Ft ― F
F ∗ 100

154 adjusted baseline and Ft is the fluorescence measured. 

155 To assess effects of neuropeptides on ARNKISS neuron located at different rostro-

156 caudal levels of the ARN, four rostral, four middle and four caudal slices from four 

157 separate mice were tested with each neuropeptide. The different rostrocaudal levels 

158 were determined by the distinctive topography of kisspeptin neurons in each area 

159 and the shape of the median eminence (Fig.1). Each slice received only one test.  

160 Results are reported as number of cells examined (n) and numbers of slices or mice 

161 (N). The effects of neurokinin B (NKB, 50nM), AVP (300nM) and VIP (1M) (Tocris 

162 Bioscience) were examined.  Prior studies in the laboratory have shown that these 

163 concentrations are effective in activating the firing of kisspeptin, GnRH and other 

164 neurons in acute brain slices (23-25). Statistical analysis comparing between sexes 

165 and ARN subregions was undertaken with two-way ANOVA and post-hoc Tukey tests.

166

167 Results

168 Expression of GCaMP6 in arcuate nucleus kisspeptin neurons

169 The distribution of GCaMP6-expressing cells throughout the rostro-caudal extent of 

170 the ARN in Kiss1::GCaMP6f mice (Fig.1A) was identical to that reported for kisspeptin 

171 neurons (21) with the largest numbers of cells detected in the caudal ARN (Table).  

172 Dual-label immunofluorescence demonstrated that 88-95% of GCaMP6 cells 

173 expressed kisspeptin and virtually all (99%) kisspeptin neurons contained GCaMP6 

174 (Fig.1B-D, Table).  

175

176 GCaMP6 calcium imaging
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177 The GCaMP6 imaging enabled the fluorescence levels of 8-25 ARNKISS neurons to be 

178 evaluated simultaneously in each brain slice.  Initial control experiments in slices 

179 from four diestrous female mice showed that 53 of the 54 recorded cells (N=4 slices) 

180 exhibited a stable baseline level of fluorescence that gradually declined over time 

181 (Fig.2). Only one of the 54 cells was found to show spontaneous fluctuations (Fig.2).

182

183 NKB activates all kisspeptin neurons in the ARN of males and females

184 To test the validity of this preparation, we first examined the effects of NKB as this 

185 neuropeptide has been reported to have direct stimulatory effects on the firing of 

186 nearly all ARNKISS neurons in male mice (24, 26, 27). Exposure to 50nM NKB was 

187 found to evoke an increase in fluorescence levels in essentially all GCaMP6-

188 expressing cells located throughout the ARN (Fig.3A-C). Responses could be abrupt 

189 or take over 1 min to occur with baseline levels typically restored to normal within 4-

190 5 min of the response (Fig.3C). In four diestrous Kiss1::GCaMP6f female mice, 37 

191 rostral, 100 middle, and 65 caudal cells were tested in four brain slices from each 

192 region with 100% of cells exhibiting a change in fluorescence signal that was > basal 

193 + 2SD. The same result was found for male mice (N=4) with 28/28 rostral, 75/79 

194 (95%) middle and 84/87 (97%) caudal cells responding to NKB (Fig.3D). Basal 

195 fluorescence signals in males were the same as those observed for females with only 

196 occasional evidence of spontaneous calcium transients.  No significant differences 

197 were detected between any regions or sexes (p>0.05, Two-way ANOVA).

198

199 VIP activates caudal arcuate kisspeptin neurons in a sexually dimorphic manner.

200 The administration of 1M VIP was found to have no effects upon GCaMP6 

201 fluorescence in 35 kisspeptin neurons (N=4) located in the rostral-aspect of the ARN 

202 in female Kiss1::GCaMP6f mice (Fig.4A).  While the middle ARN (N=4) was similar 

203 with only 2/58 (3%) cells responding, 46/80 (58%) kisspeptin neurons in the caudal 

204 ARN (N=4) were activated by VIP (Fig.4A,B; p<0.05 compared with other subregions, 

205 Two-way ANOVA, post-hoc Tukey’s tests).  These responses could take up to 2 min to 

206 initiate and typically exhibited a fluctuating profile before returning to baseline up to 
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207 10 min later (Fig.4B).  Although a relationship between the basal level of fluorescence 

208 and the magnitude of any response existed, responding cells could not be predicted 

209 by their basal level of fluorescence.  In male Kiss1::GCaMP6f mice, no cells in the 

210 rostral (n=32, N=4) or middle aspects of the ARN (n=71, N=4) responded to VIP with 

211 only 3/57 (6%, N=4) kisspeptin neurons in the caudal stimulated (p<0.05 compared 

212 to females, Two-way ANOVA, post-hoc Tukey’s tests; Fig. 4C). 

213

214 AVP activates caudal arcuate kisspeptin neurons in a sexually dimorphic manner.

215 Exposure to 300nM AVP had minimal effects on fluorescence levels in kisspeptin 

216 neurons located in the rostral (2/34 cell responded, 6%, N=4) and middle (5/66 cells, 

217 8%, N=4) aspects of the ARN but increased intracellular calcium levels in 46 of 78 

218 (59%, N=4) cells located in the caudal ARN (Fig.5A; p<0.05 compared with other 

219 subregions, Two-way ANOVA, post-hoc Tukey’s tests).  Responses evoked by AVP 

220 were typically immediate upon entry of AVP into the bath but short-lived, sometimes 

221 terminating during the application period (Fig.5B). In male Kiss1::GCaMP6f mice, 4-

222 12% of kisspeptin neurons responded throughout the rostro-caudal extent of the 

223 ARN; 1/24 rostral (4%), 5/67 middle (8%) and 10/81 caudal (12%)(N=4 each, 

224 Fig.5C). The numbers of kisspeptin neurons responding to AVP were significantly 

225 different in the caudal ARN of females compared to other subregions and males 

226 (p<0.05 compared to females, Two-way ANOVA, post-hoc Tukey’s tests; Fig. 5C).

227

228

229 Discussion 

230

231 We report here the unexpected observation that kisspeptin neurons located at 

232 different rostro-caudal locations within the ARN can express different functional 

233 neuropeptide receptors and, further, that this is sexually dimorphic. Whereas all 

234 ARNKISS neurons in both males and females express tachykinin receptors activated by 

235 NKB, the kisspeptin neurons activated by AVP and VIP are located primarily within 

236 the caudal ARN and exhibit a marked female-dominant sex difference.  These 

237 observations highlight the functional heterogeneity and striking sexually dimorphic 
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238 nature of the ARNKISS neuron population and, further, indicate that this may be 

239 organized in a rostro-caudal topographic manner.

240

241 The Kiss1::GCaMP6f mouse line was found to provide high fidelity targeting of 

242 GCaMP6 to the ARNKISS neuron population with essentially 100% of kisspeptin 

243 neurons expressing GCAMP6 and these cells representing 88-95% of all GCaMP6 

244 neurons located in the ARN. As such, this mouse line provides a good model 

245 preparation for examining the direct responses of ex-vivo ARNKISS neurons to putative 

246 neurotransmitters and neuropepitdes. Nevertheless, the approach has caveats, 

247 principally being that inhibitory effects of transmitters, or receptor activation that 

248 does not directly or indirectly modulate i[Ca2+], will not be revealed.  Thus, false 

249 negatives may occur but positive responses will be indicative of the presence of 

250 cognate receptors for the transmitter examined.

251

252 Prior electrophysiological brain slice studies have shown that 90-100% of ARNKISS 

253 neurons are activated by NKB or tachykinin receptor agonists in male mice (24, 26, 

254 27).  In good agreement, we find that essentially 100% of ARNKISS neurons in intact 

255 male mice respond directly to NKB with elevated i[Ca2+] and now extend this to 

256 demonstrate that this is also the case in diestrous female mice. Prior studies using 

257 dual-label in situ hybridization have reported that 75-100% of ARNKISS neurons 

258 located in the middle aspects of the ARN express Tacr3 transcripts in female mice (27, 

259 28).  By targeting recordings to the rostral, middle and caudal aspects of the ARN we 

260 are able to demonstrate remarkable consistency in the functional expression of NKB-

261 activated receptors by ARNKISS neurons in both males and females.  As a sub-

262 population of ARNKISS neurons will be the GnRH pulse generator, these observations 

263 are in good agreement with in vivo data showing that intracerebroventricular 

264 administration of senktide, an NK3R agonist, activates LH secretion in both intact 

265 male and diestrous-stage female mice (29). 

266

267 In striking contrast to the effects of NKB, both AVP and VIP exerted subregion- and 

268 sex-dependent effects on ARNKISS neuron i[Ca2+].  Whereas 58% of caudal ARNKISS 
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269 neurons responded to VIP in females only 6% were activated in male, and essentially 

270 no cells were stimulated in the rostral or middle regions of the ARN in either sex. 

271 Similarly, 58% of caudal ARNKISS neurons were activated by AVP compared with only 

272 4 -12% of neurons in other regions or in males. This indicates that female caudal 

273 ARNKISS neurons preferentially express functional receptors for VIP and AVP.  

274 Although not addressed in this study, it is possible that changes in ARNKISS neuron 

275 sensitivity to AVP and VIP may occur with postnatal development or across the 

276 estrous cycle in females.

277

278 Similar numbers of caudal ARNKISS neurons are activated by AVP and VIP in female 

279 but they evoke very different profiles of changing  i[Ca2+]. The molecular identities of 

280 the receptors activated are not known although VIP at 1M concentrations would be 

281 expected to activate both type 1 (VPAC1) and type 2 (VPAC2) VIP receptors in 

282 addition to the pituitary adenylate cyclase-activating peptide (PACAP) receptor (30).  

283 Recent studies have shown that PACAP neurons located in the premammillary 

284 nucleus project to ARNKISS neurons and can directly activate a sub-population of 

285 caudal ARN neurons in female mice (31). Hence, it is possible that PACAP is the 

286 endogenous ligand for VIP receptors expressed by ARNKISS neurons. Recent 

287 transcriptome-based cell sorting strategies failed to identify any AVP or VIP/PACAP 

288 receptor transcripts in pools of ARNKISS neurons from young female or mixed 

289 male/female mice (32, 33).  Given the sex-dependent and highly regionalised nature 

290 of AVP and VIP receptor expression revealed here, future transcriptomic studies of 

291 ARNKISS neuron will need to take potential subregion and sex differences into 

292 consideration. 

293

294 The sex- and region-specific nature of AVP and VIP effects identified here would not 

295 support the concept of a generalized direct circadian regulation of ARNKISS neurons 

296 by these neuropeptides. Studies have found day-night differences in LH pulse 

297 frequency in both human males and females (10-12) although their dependence on 

298 circadian cues, as opposed to environmental influences such as sleep and stress, has 
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299 been challenged (34).  Further, while studies in rodents have identified circadian-like 

300 changes in LH secretion in peripubertal females, it has remained unclear whether this 

301 was related to pulse or surge modes of LH secretion (35).  Hence, it is possible that 

302 there is no direct or substantial circadian modulation of the different ARNKISS neuron 

303 sub-populations. Instead, VIP/PACAP and AVP inputs to ARNKISS neurons may 

304 originate from neural populations located outside the suprachiasmatic nucleus, as 

305 has recently been demonstrated for PACAP neurons of the premammilary nucleus 

306 (31).  Interestingly, preliminary viral retrograde tracing data indicate that 

307 vasopressin neurons in the supraoptic nucleus project to ARNKISS neurons (Yeo & 

308 Colledge, unpublished).

309  

310 The function of neuropeptidergic inputs directed at caudal ARNKISS neurons in the 

311 female can only be speculated upon at present. Sex differences in ARNKISS morphology 

312 and function have been documented (20, 36) but the extent to which this depends on 

313 sexually differentiated inputs is unknown. Further, the functions of AVP/VIP-

314 sensitive ARNKISS neurons are unknown and may even be unrelated to the regulation 

315 of GnRH neurons. Indeed, tract tracing studies have shown that caudal ARNKISS 

316 neurons project to multiple limbic brain region in the mouse (37).  On the other hand, 

317 recent optogenetic studies have indicated that the ARNKISS neuron pulse generator 

318 may be located in the middle-caudal aspects of the nucleus (21) although no further 

319 features or markers of this population have been identified as yet. One intriguing 

320 speculation is that SCN inputs to ARNKISS neurons may modulate the LH surge. 

321 Although there is little evidence for the ARN to be involved in the timing of the LH 

322 surge (38), recent studies have suggested that the ARNKISS neurons may be involved 

323 in regulating the amplitude of the LH surge (39, 40), potentially through direct 

324 projections to preoptic area kisspeptin neurons (41).

325

326 In summary, these studies reveal marked sex- and subregion-specific effects of two 

327 neuropeptides on ARNKISS neurons. These observations reinforce the concept of 

328 functional heterogeneity amongst the ARNKISS neuron population. Alongside other 

329 evidence (21, 37), it seems that this heterogeneity may, in part, be organized on a 
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330 rostro-caudal basis within the ARN of the mouse.  In contrast, we find that the 

331 response of ARNKISS neurons to NKB is extremely uniform impacting upon essentially 

332 all kisspeptin neurons throughout the nucleus in both males and females. The 

333 functional relevance of this heterogeneity with respect to pulse generation as well as 

334 other functions of the ARNKISS neuron population awaits elucidation.  More 

335 specifically, the surprising observation of sexually dimorphic and region-specific AVP 

336 and VIP signaling within the ARNKISS neuron population raises intriguing questions as 

337 to the roles of these neuropeptides within the ARN.

338
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479 Figure legends 

480

481 Figure 1. Distribution of GCaMP6 in arcuate nucleus (ARN). A. Images from the same 

482 adult female mouse showing the GFP-immunofluorescence (GCaMP6) in the rostral, 

483 middle and caudal levels of the ARN. B-D, confocal images showing dual fluorescence 

484 for GFP- (B) and kisspeptin- (C) immunofluorescence, and with the overlapping 

485 signals represented in D.

486

487 Figure 2.  Baseline GCaMP6 fluorescence levels in arcuate kisspeptin neurons. A. Raw 

488 fluorescence levels of eight ARN kisspeptin neurons located in a middle arcuate 

489 nucleus brain slice over 12 min. B. Higher resolution change in fluorescence levels of 

490 5 of these cells showing the one cell (cell 3) that exhibited spontaneous fluctuations.

491

492 Figure 3. NKB activates essentially all kisspeptin neurons in both male and female mice. 

493 A. Single frame photograph of GCaMP6 fluorescence in the middle ARN of a slice being 

494 imaged. The five cells shown in C are labelled.  B. Raw fluorescence recordings from 

495 21 kisspeptin neurons in that brain slice showing their response to a 2-min 

496 application of 50nM NKB (grey bar) in the presence of TTX and amino acid receptor 

497 antagonists.  C. Higher resolution change in fluorescence levels from the five cells 

498 depicted in A. Colors are the same as in B. D. Histogram showing the percentage of 

499 kisspeptin neurons in the rostral, middle and caudal aspects of the ARN that 

500 responded to NKB in male and female mice (N=4, each). 

501

502 Figure 4. VIP preferentially activates caudal ARN kisspeptin neurons in female mice. A. 

503 Raw fluorescence traces from the rostral, middle and caudal aspects of the ARN from 

504 the same diestrous female Kiss1::GCaMP6f mouse. The two-min 1M VIP exposure 

505 period is indicated by the grey bar and each colored line represents a different cell. B. 

506 Higher resolution changes in fluorescence showing the response profiles of six caudal 

507 kisspeptin neurons to VIP. C. Histogram showing the percentage of kisspeptin 

508 neurons in the rostral, middle and caudal aspects of the ARN responding to VIP in 
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509 male and female mice (N=4 each) * p<0.05 compared to all other groups, Two-way 

510 ANOVA with post-hoc Tukey tests.

511

512 Figure 5. AVP preferentially activates caudal ARN kisspeptin neurons in female mice. 

513 A. Raw fluorescence traces from the rostral, middle and caudal aspects of the ARN 

514 from diestrous female Kiss1::GCaMP6f mouse. The two-min 300nM AVP exposure 

515 period is indicated by the grey bar and each colored line represents a different cell. 

516 Note the orange cell in the caudal traces that was discarded from analysis as it 

517 exhibited a spontaneous fluctuation in fluorescence prior to the test with AVP. B. 

518 Higher resolution change in fluorescence images showing the AVP response profiles 

519 of five of the caudal kisspeptin neurons shown in A. C. Histogram showing the 

520 percentage of kisspeptin neurons in the rostral, middle and caudal aspects of the ARN 

521 responding to AVP in male and female mice (N=4 each). * p<0.05 compared to all 

522 other groups, Two-way ANOVA with post-hoc Tukey tests.

523
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524 Table

nos. Kiss neurons 
/ hemi-section

% GCaMP6 cells 
+ve for kisspeptin

% kisspeptin cells 
+ve for GCaMP6

rostral ARN 37±14 88±7% 99±1%
middle ARN 60±7 94±1% 99±1%
caudal ARN 68±8 95±2% 99±1%

525

526 Table showing the numbers of kisspeptin-immunoreactive neurons detected in the 

527 three subregions of the ARN and their levels of co-expression with GCaMP6. N = 4 

528 ovariectomized female mice.

Page 18 of 23Journal of Neuroendocrinology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

 

Figure 1. Distribution of GCaMP6 in arcuate nucleus (ARN). A. Images from the same adult female mouse 
showing the GFP-immunofluorescence (GCaMP6) in the rostral, middle and caudal levels of the ARN. B-D, 
confocal images showing dual fluorescence for GFP- (B) and kisspeptin- (C) immunofluorescence, and with 

the overlapping signals represented in D.
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Figure 2.  Baseline GCaMP6 fluorescence levels in arcuate kisspeptin neurons. A. Raw fluorescence levels of 
eight ARN kisspeptin neurons located in a middle arcuate nucleus brain slice over 12 min. B. Higher 

resolution change in fluorescence levels of 5 of these cells showing the one cell (cell 3) that exhibited 
spontaneous fluctuations.
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Figure 3. NKB activates essentially all kisspeptin neurons in both male and female mice. A. Single frame 
photograph of GCaMP6 fluorescence in the middle ARN of a slice being imaged. The five cells shown in C are 

labelled.  B. Raw fluorescence recordings from 21 kisspeptin neurons in that brain slice showing their 
response to a 2-min application of 50nM NKB (grey bar) in the presence of TTX and amino acid receptor 

antagonists.  C. Higher resolution change in fluorescence levels from the five cells depicted in A. Colors are 
the same as in B. D. Histogram showing the percentage of kisspeptin neurons in the rostral, middle and 

caudal aspects of the ARN that responded to NKB in male and female mice (N=4, each). 
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Figure 4. VIP preferentially activates caudal ARN kisspeptin neurons in female mice. A. Raw fluorescence 
traces from the rostral, middle and caudal aspects of the ARN from the same diestrous female 

Kiss1::GCaMP6f mouse. The two-min 1M VIP exposure period is indicated by the grey bar and each 
colored line represents a different cell. B. Higher resolution changes in fluorescence showing the response 

profiles of six caudal kisspeptin neurons to VIP. C. Histogram showing the percentage of kisspeptin neurons 
in the rostral, middle and caudal aspects of the ARN responding to VIP in male and female mice (N=4 each) 

* p<0.05 compared to all other groups, Two-way ANOVA with post-hoc Tukey tests. 
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Figure 5. AVP preferentially activates caudal ARN kisspeptin neurons in female mice. A. Raw fluorescence 
traces from the rostral, middle and caudal aspects of the ARN from diestrous female Kiss1::GCaMP6f mouse. 

The two-min 300nM AVP exposure period is indicated by the grey bar and each colored line represents a 
different cell. Note the orange cell in the caudal traces that was discarded from analysis as it exhibited a 

spontaneous fluctuation in fluorescence prior to the test with AVP. B. Higher resolution change in 
fluorescence images showing the AVP response profiles of five of the caudal kisspeptin neurons shown in A. 
C. Histogram showing the percentage of kisspeptin neurons in the rostral, middle and caudal aspects of the 
ARN responding to AVP in male and female mice (N=4 each). * p<0.05 compared to all other groups, Two-

way ANOVA with post-hoc Tukey tests. 
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